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Abstract

In this thesis, we clarify the herding effect due to cluster dynamics of
traders. We provide a framework which is able to derive the crash
hazard rate of the Johannsen-Ledoit-Sornette model (JLS) as a power
law diverging function of the percolation scaling parameter. Using this
framework, we are able to create reasonable bubbles and crashes in
price time series. We present a variety of different kinds of bubbles
and crashes and provide insights into the dynamics of financial mar-
kets. Our simulations show that most of the time, a crash is preceded
by a bubble. Yet, a bubble must not end with a crash. The time of a
crash is a random variable, being simulated by a Poisson process. The
crash hazard rate plays the role of the intensity function. The headstone
of this thesis is a new description of the crash hazard rate. Recently dis-
covered super-linear relations between groups sizes and group activi-
ties, as well as percolation theory, are applied to the Cont-Bouchaud
cluster dynamics model.
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Chapter 1

Motivation

Many financial crashes, including the crash of October 1929 as well as the
recent financial crash which started in 2007, were preceded by at least one
bubble [1]. However, a bubble being defined as the deviation of the observed
price from the fundamental values, its detection of a bubble turns out to be
very difficult: the determination of the actual fundamental value is almost
impossible.

The Johanson-Ledoit-Sornette Model (JLS) provides a different access to bub-
bles [2][3][4][5]. It defines a bubble as a transient ”faster-than-exponential”
growth, resulting from local self-reinforcing imitations between traders. In
the risk-driven JLS model, crashes and bubbles are explained by local imi-
tation of traders propagating spontaneously into global cooperation. This
global cooperation among traders may cause a crash.

Why do agents imitate? Sornette applies the Ising model from statistical
physics in order to quantitatively analyze the imitation of traders [6][7]: Ini-
tially idiosyncratic beliefs among traders predominate due to lacking infor-
mation which might allow to adequately price the asset. This noise corre-
sponds to the fluctuations described in the Ising model. Later on, traders
poll their colleagues and friends in order to price the asset. This behav-
ior may lead to a coupling among traders similarly to the coupling of spins.
This perspective allows to reduce markets to systems that are determined by
a fight between order (due to couplings) and disorder (due to idiosyncratic
noise).

The system can undergo a phase transition from a disordered state where
the idiosyncratic noise dominates, to the ordered state where the imitations
dominate. Passing the critical point of the phase transition, global coopera-
tion occurs in analogy to the occurrence of magnetization in the Ising model
once the Curie point has been reached. Such a transition can lead to a large
shift in the number of buyers and sellers. Kyle provides a model that relates
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1. Motivation

the difference in the number of sellers and buyers linearly to the price [8].
Therefore, the phase transition can cause a fall in prices which is called a
crash. On the other hand, a raise of the price, a positive crash, would be
possible as the system is symmetrical. However, we will constrain ourselves
to crashes in the usual sense without limiting the generality of our theory.

The transition to global cooperation of traders is in good analogy to the
dynamics of critical phenomena in physics. The hallmark of criticality is a
power law in the scaling parameter. The exponent of this power law is uni-
versal, meaning that it does not depend on the specific details of a physical
system, but rather on the dimension, the range as well as the interaction. Ac-
cording to the JLS model, the price is driven by the risk of a crash. The crash
possesses a stochastic description by a crash hazard rate which is assumed
to scale with such a power law.

Many dynamical models have already implemented this concept. This thesis
tackles the crash hazard rate by a cluster approach, in order to clarify the
mechanism behind bubbles and crashes. A mathematical work by Cont and
Bouchaud provides a framework to model herding processes with the help
of cluster dynamics [9]. They suggest that imitating agents group together
and can be described as a single super-trader which is a cluster of traders
with one unique opinion. These clusters can correspond to mutual funds or
to herding among security analysts in the context of a stock market.

In this thesis, we provide a framework that extends the cluster description
of Cont and Bouchaud by means of percolation theory [10]. We investigate
the cluster formation as we approach the critical regions of phase transitions
and show that a crash and a preceding bubble are related to the networks
of the traders. This relation allows us to perform price simulations and
create bubbles and crashes only by varying the underlying trader network.
We present a variety of different kinds of bubbles and crashes, and provide
interesting insights into the dynamics of financial markets.

We start with an introduction of the theoretical background in chapter ”Mod-
els & Methods”. Chapter ”Results” presents our framework and price sim-
ulations with bubbles and crashes therein. The last chapter, ”Conclusion”,
summarizes our main findings and provides an outlook for possible im-
provements of our framework. The ”Appendix” gives further explanations
and figures.
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Chapter 2

Models & Methods

This section presents the models and methods we will need in order to de-
scribe bubbles and crashes as well as perform simulations to describe them.
We start with a brief summary of the JLS model and an introduction of the
crash hazard rate. This is followed by a short overview of percolation theory
and of the Ising model. Finally, Glauber dynamics, the Ornstein-Uhlenbeck
process and the non-homogeneous Poisson process are explained.

2.1 The Johanson-Ledoit-Sornette (JLS) Model

The Johanson-Ledoit-Sornette (JLS) model provides an alternative access to
bubbles as it defines them as a transient ”faster-than-exponential” growth,
resulting from local self-reinforcing imitations between traders. The model
claims that characteristic log-periodic signatures can be detected in bubbles
before a crash occurs. This allows to predict changes of phases and price
bubbles by studying the time series of a financial asset. In the following, we
state the key ingredients of the JLS model and show the derivation of the
price equation.

The model makes the following assumptions:

• The market can be divided into traders with rational expectations and
noise traders. The latter are influenced by other traders and thus may
exhibit herding behavior.

• Local self-reinforcement of noise traders and the resulting herding ef-
fects are responsible for the bubble as well as the crash. A crash may
occur if the herding effects exceed a critical point and many traders
sell at the same time. For a motivation of these herding effects, see
[6]. Due to the ubiquity of noise, the JLS model proposes a stochastic
description of a crash by using a crash hazard rate.
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2. Models & Methods

• A crash is not a deterministic outcome of the bubble, i.e., the time of
the crash is a random variable. Therefore, it is rational for traders to
stay invested in the asset although it exhibits a bubble behavior as long
as the return excesses the expected risk.

• The asset is purely speculative and pays no dividends in a market
where we ignore the interest rate, risk aversion, information asymme-
try and the market-clearing condition.

Under these assumptions, one can derive an equation for the dynamics of
the price evolution. Applying the last assumption, rational expectation is
equivalent to the familiar martingale hypothesis. For the price price(t) of the
asset at time t and the expectation Et[•] conditional on information revealed
up to time t, we get

∀t′ > t : Et[price(t′)] = price(t). (2.1)

We model a crash as a jump-process dj which takes the value dj = 1 when
a crash occurs and dj = 0 for all other times. The time of the crash t∗ is a
random variable which is described by the deterministic crash hazard rate h(t).
It gives the conditional probability that there is a crash between t and t + dt
given that the crash has not occurred yet. The probability for having a crash
in the time interval t and t + dt is thus given by h(t)dt. See appendix A for
a more precise statistical derivation of the crash hazard rate.

Assume that the price drops by a fixed percentage κ at the crash. We denote
µ as the return of the asset. Furthermore, we add a Wiener process with in-
finitesimal increment dw(t). It describes the volatility of the price. We scale
it with a constant η times price. Altogether, we obtain the price dynamics

dprice(t) = µ(t)price(t)dt− κprice(t)dj(t) + η · price(t)dw(t) for t < t∗

(2.2)
which are valid for all time before the crash. The crash hazard rate enters
this equation when we calculate the expected price change dp. Combining
the last two equations and using the linearity of the expectation we get

Et[dprice(t′)] = µ(t′)price(t′)dt− κprice(t′)h(t′)dt + 0 = 0, ∀t′ > t :,
(2.3)

where we used Et[dj] = 1 · h(t)dt + 0 · (1− h(t)dt) = h(t)dt and Et[dw] = 0.
Rearranging the last equation links the return to the crash hazard rate:

µ(t′) = κh(t′) ∀t′ > t. (2.4)

Plugging this relation into equation (2.2), we finally get an expression for
the price before a crash, driven only by the crash hazard rate and a random
walk:

dprice(t)
price

= κh(t)dt− κdj(t) + ηdw(t) for t < t∗. (2.5)
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2.2. Percolation theory

Using discrete time steps, we can reformulate this equation as a recursive
formula for the price at any time t before the crash. We substitute the Wiener
process by a symmetrical random walk, which we will also call dw in the
following. The symmetrical random walk is the pendant of the Wiener pro-
cess as it converges to a Wiener process in the limit of an infinite number of
time-steps [11].

price(t) = price(t− 1) [κh(t)− κdj(t) + η∆w(t)] for t < t∗. (2.6)

We will use this equation in our price simulations. The higher the probability
of a crash, the faster the price must go up in order to satisfy the martingale
condition. Intuitively, an asset that might crash must be compensated by
higher returns in order to stay attractive for investors.

In the risk-driven JLS model, crashes and bubbles are explained by local
imitation of traders propagating spontaneously into global cooperation, as
we outlined in the introduction. This global cooperation, also called herding,
was explained as the phase where order dominates. A large shift in the
marketbook, leading to a crash according to the Kyle model [8], is possible in
this herding phase. If the price is risk-driven, the crash hazard rate describes
the price as seen above. In statistical terms, the crash hazard rate is the
conditional probability that the crash occurs in the time interval [t, t + dt],
given that it has not happened yet. Note that it is a rate with unit 1 over time;
in particular, it is not a probability (see appendix for further explanations).
The transition to the herding phase is in good analogy to the dynamics of
critical phenomena in physics. The hallmark of criticality is a power law
with universal exponent. The crash hazard rate is assumed to be a power
law in time multiplied by a log-periodic factor. For simplicity, we neglect
the latter and concentrate on the power law behavior:

h(t) ∝ (tc − t)α (2.7)

Our goal is to present a framework which is able to derive this power law
divergence of the crash hazard rate. Cont and Bouchaud presented a model
of a herding process using cluster dynamics [9]. They suggest that imitating
agents group together and can be described as a cluster of traders with
one unique opinion. They state that these clusters can correspond to mutual
funds or to herding among security analysts in the context of a stock market.
Cluster dynamics are described by percolation theory, which we summarize
now.
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2. Models & Methods

Site percolation on a square lattice for p=0.45

Figure 2.1: Site percolation on the two dimensional square lattice for p =
0.45. We have one percolating cluster of size s = 18 (red), two clusters of
size s = 4 and five clusters of size s = 1. The red cluster goes from the upper
boundary to the opposite boundary. The cluster percolates and the system
exhibits percolation.

2.2 Percolation theory

2.2.1 Introduction

Percolation theory is a quite old, but widely used, model in statistical physics
[10]. It is simple to define;yet it is able to describe phase transitions in ma-
terial science, neural science or socio-science. We will describe our financial
system of the stylized market introduced above by using percolation theory.

What is percolation? Imagine a chessboard which consists of 8 × 8 = 64
fields. Suppose that a tree is on a field with probability p and the field is
empty with probability 1− p. Figure 2.1 shows a realization of this configu-
ration. The set of occupied nearest neighbor fields forms a clusters. Nearest
neighbors of a field are the fields to the north, to the south, to the west and
to the east. In the figure, clusters are in the same color. Suppose now that
we set fire on all the fields at the top. Will the fire arrive at the bottom for
a given probability p if a burning tree passes the fire to its nearest neigh-
bors? We need a chain of occupied sites from top to bottom, i.e., we need
a so-called percolating cluster. The figure exhibits such a percolating clus-
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2.2. Percolation theory

ter. Generally, percolation theory tries to derive theoretical answers to this
question as well as to provide the distribution and properties of the clusters
in the limit of an infinite number of fields. Fields are called sites and the
nearest neighbor can have a more general form by introducing a bond: Two
sites are neighbored if there is a bond between them. Bonds between any
two sites are possible. Any such arbitrary graph can then be investigated by
percolation theory.

2.2.2 Percolation Point and Cluster Number

The percolation threshold pc is the value of probability p for which an in-
finite cluster occurs for the first time. It is a unique deterministic value in
the limit of an infinite system. Percolation points for a wide bandwidth of
graphs are known exactly or have been calculated numerically. Stauffer and
Aharony [10] state that the percolation threshold for an infinite chessboard
as underlying graph structure, in percolation terminology called site perco-
lation model on the square lattice, is given by pc ' 0.592746. The cluster
number np(s) is the distribution of clusters of finite size s per site depend-
ing only on the probability p. It is also a deterministic variable in the limit
of an infinite system. Due to the fractal structure of clusters, the cluster
number is not dependent on the square lattice size up to volatility. Stauffer
and Ahorny state that the cluster number at the percolation threshold is a
power law in the size s, whereas it exhibits an additional exponential factor
for all other values of p. The following relations for the cluster number are
valid not only for the square lattice, but for all different kinds of graphs:

np(s) ∝


s−τ exp(− s

s∗ ) for p < pc,
s−τ for p = pc,
s−τ exp(− s1−1/d

s∗ ) for p > pc.

(2.8)

Here, we have introduced the Fisher exponent τ from the Fisher droplet
model. It can be derived analytically on the square lattice: τ = 187

91 ≈ 2.05.
We will use also the variable µ, which is linked to the Fisher exponent by
τ = 1 + µ. The dimension of the system is d. The variable s∗ denotes the
size of the largest cluster and scales with another critical exponent σ via

s∗(p) ∝ |p− pc|
1
σ . (2.9)

The exponent is equal to σ = 36
91 ≈ 0.3956 on the two dimensional square

lattice. The exponential factor acts as a cut-off. Cluster sizes bigger than
the cut-off size s∗ have no significant contributions to a sum over the clus-
ter number. For cluster sizes s < s∗, the effective cluster number can be
approximated by a power law with the Fisher exponent τ. Sums over the
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2. Models & Methods

cluster number multiplied by the cluster size s are called moments. The first
moment of the cluster size distribution equals

∞

∑
s

s · n(s) =
{

p for p < pc.,
p− const · |p− pc|

5
36 for p > pc.

(2.10)

If the percolating cluster occurs, it lowers the sum, as the biggest cluster s∗

is no longer part of the summation. This lowering explains the subtracting
term in the case p > pc. It is the strength or weight of the percolating
cluster P which is a power law in p− pc with according exponent β = 36

5 for
the two dimensional square lattice. The second moment, also called mean
cluster size, diverges near pc as a power law, i.e.,

∞

∑
s

s2 · n(s) ∝ |p− pc|−γ. (2.11)

The exponent is equal to γ = 43
18 ≈ 2.3889 on the two dimensional square

lattice. We summarize the introduced exponents in table 2.1.

Table 2.1: Critical exponents for the site percolation on a square lattice with
percolation threshold at pc = 0.592746.

Exponent
Analytical
value

Approximated
value

τ 187/91 2.0549
σ 36/91 0.3956
γ 43/18 2.3889

2.2.3 Finite Size Effects

Financial markets consist of a finite number of traders. The relations derived
in the L → ∞ limit have to be slightly modified if we are on a finite lattice.
Let us motivate this again on the chessboard. It is very unlikely that we have
a percolating cluster of trees the first time exactly for pc = 0.592746. If we
try many values of p below the threshold, we will sooner or later get a per-
colating cluster. Due to the finite size of the system, the cluster distribution
and the percolation transition become randomly influenced variables. Other
finite size effects are a shifting of the percolation threshold to lower values
and a rounding of the mean cluster size instead of a diverging power law
[12]. Finite size effects are visualized in figure 3.2.
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2.3. Ising Model

Figure 2.2: Plot of a two dimensional lattice spin model. The red spin is
influenced by the four nearest neighbors in yellow.1

2.3 Ising Model

2.3.1 Introduction

The Ising model is a theoretical framework in statistical mechanics explain-
ing ferromagnetism [7][13]. Spins act as magnetic dipoles which means that
they can be in one of the two states σi = ±1. Sitting on a lattice spins interact
with their nearest neighbors. Figure 2.2 illustrates such a lattice 1. This in-
teraction is described by the coupling strength J > 0 for ferromagnets. The
Hamiltonian of the Ising model is given by

H = −J ∑
〈i,j〉

sisj − h ∑
i

si (2.12)

where h is an external magnetic field and The system is connected to a
heat bath with energy kBT leading to the Boltzmann distribution P(s±1) ∝
exp(H±1/kBT). The solution of the energy minimization of this Hamiltonian
was provided by Ernest Ising for the one dimensional model in his doctoral
thesis in 1925. There is no finite critical temperature, a phase transition
occurs only at T = 0. Lars Onsager proved in 1944 that there is indeed a
phase transition for a finite critical temperature Tc =

2J
kB log(1+

√
2)
' 2.27 J

kB
in

two dimensions [14]. The system undergoes a transition from the disordered

1http://www.lancaster.ac.uk/pg/jamest/Group/physics2.html Date: 19th January 2015
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2. Models & Methods

phase where fluctuations dominate the correlation between the spins, into
an ordered phase where the correlations between the spins dominate the
fluctuations. The critical point Tc is also called Curie point.

2.3.2 Glauber Dynamics in the Ising Model

Glauber dynamics extends the Ising model by providing a simulation of
non-equilibrium dynamics [15]. It is a discrete Markov chain that has the
equilibrium state of the Ising model as its stationary distribution. Starting
from any initial condition, we can let the Ising system evolve to its equilib-
rium state. It is a so-called single-flip algorithm. Given a configuration of
spins at time t, Glauber dynamics investigates each single spin by introduc-
ing a random variable with two events: a spin can flip its state or stay in the
same state. The Boltzmann distribution with temperature T, a function of
the energy change of the two events, gives access to the probability of this
random variable.

Pi( f lip) =
1

1 + exp(∆Ei,j(K)/cdotK)
(2.13)

Not flipping is the conjugated event and thus has the probability 1− Pi,j( f lip).
The change of energy ∆E(K)i,j for flipping or staying is dependent on the
nearest neighbors j and the inverse temperature K = J

kBT . It does not de-
pend on the actual value of the spin states but on the number of states that
have the same state. Figure 2.3 illustrates the different probabilities of flip-
ping on the square lattice for different values of K. After all spins have been
investigated once, we obtain the new configuration of the system at time-
step t + 1. In the end, the system will converge to its stationary state after
tm time-steps called the mixing time. However, the mixing time tm of the
Glauber dynamics can be quite high. Indeed, it is a function of the number
of spins n. Mixing times tm for the Glauber dynamics are

tm ∝


n log(n) for K � Kc,
n

3
2 for K ' Kc,

exp(
√

n) for K > Kc.

(2.14)

Especially in the ordered phase, the convergence is very slow, as the mixing
time grows exponential with the number of spins. That is why we start our
simulations not in an arbitrary spin configuration, but with a configuration
where 75% of the states are in one state. This lowers the mixing time as
we are much closer to the stationary state for K > Kc, where the Glauber
dynamics converge very slowly. In the region K < Kc, we take an arbitrary
starting configuration.
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Figure 2.3: Plot of the probability of flipping as a function of spins of same
sign in the neighborhood for different values of inverse temperature K. The
constant line is for the smallest interaction K = 0.

2.4 Ising and JLS Model

The Ising model has a wide application range since it is easy to define, and
its behavior is rich. The principal story of the Ising model, the fight between
order and disorder, has been applied in very different research areas like
the activity of neurons in the brain [16], the description of spin glasses in
physics [17] and, as already stated in the introduction, to crashes in finan-
cial economics occurring due to the herding behavior of traders [6][18]. In
the latter case, traders are assumed to be organized into networks (friends,
families, colleagues etc.). They are influenced by their nearest neighbors just
as the spins in the Ising model. The thermal fluctuations are substituted by
idiosyncratic belief. If we apply the Ising model, the system of traders can
undergo a phase transition similarly to the phase transition of the ensemble
of magnetic dipoles. Herding behavior on financial markets, described in
analogy to the Ising coupling, can lead to global imitation at such a critical
point triggering a crash.
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2. Models & Methods

2.5 Ising Model and Percolation Theory

The Ising model can be described by percolation theory. The concepts are
similar and there are indeed lots of analogies, but there are also some im-
portant differences. The connectedness of sites is not an interacting dynam-
ical but a graphical property. In the Ising model, we have to determine
the Hamiltonian of our system, minimize it with the help of calculus from
statistical physics before we can calculate the correlation and therefore the
interaction between two spins. In graph theory, we can describe connections
between agents. To get correlation between the agents, one still needs to
define a way of interactions (e.g. the Cont-Bouchaud-model: everybody in
a cluster takes the same state defines an interaction[9]). We also have to be
aware of an important difference between a phase transition and a perco-
lation transition. The former is dynamical, due to couplings, whereas the
latter is a geometrical effect. Think of a random landscape with islands
and oceans. Now, if the water level is lowered, Islands will get larger and
larger and suddenly, there will be a continent. The underlying structure has
not changed, a percolation threshold appears as the answer to the question
”when will there be a largest connected component”? In a dynamical physi-
cal transition however, there are couplings that force the system into another
state.

Nonetheless, the site percolation model seems to be a generic candidate
to describe the Ising model, as sites have also two possible states: it can
be occupied or not occupied. We associate each spin in state si = 1 with
an occupied site and each spin in state si = −1 with an unoccupied site.
Nearest neighbors of an occupied site are not dynamically coupled to this
site, but they are said to be connected to it if they are also occupied. The set
of connected sites forms a cluster which we call Ising cluster in the following.
Coniglio and Klein showed in [19] that the percolating threshold coincides
with the critical Curie point in two dimensions. Moreover, they showed that
the linear dimension, identified as the connectedness length, diverges as the
Ising correlation length close to the critical point.

However, in three dimensions, a percolating cluster occurs already for a
temperature Tp = 4.52, whereas the ordered phase starts at the Curie Point
Tc = 4.44. The second moment of the percolation model, the mean cluster
size S, diverges as a power law (T − Tc)−γp when we approach the perco-
lation point. The exponent is known to be γp = 1.91. The second moment
of the Ising model, the susceptibility, also diverges as a power law, but with
exponent γ = 1.75 when we come close to the Ising critical point. Ising
clusters are too big to describe Ising droplets from the Fisher droplet model
[20]. This becomes clearer when we think of the T → ∞ limit: Couplings
between spins vanish due to the fluctuations, but clusters can still be there.
Coniglio and Klein solved this problem by introducing additional bonds
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2.6. Time Evolution: Non-Homogeneous Poisson Process and Ornstein Uhlenbeck
Process

Figure 2.4: Occupied sites are denoted by points and the bonds by lines.
This configuration shows two Ising clusters of size s = 2 and s = 5 whereas
it exhibits five Ising Droplets, three isolated ones and two of size s = 2.

between sites in a cluster. The probability of such a bond is chosen to be

pB = 1 − e−2 J
kBT . New clusters are formed under the condition that they

have to be clusters in the former sense and additionally be connected by a
bond. Both clusters are illustrated in 2.4. In this model, the mean cluster
size diverges with the same exponent as the susceptibility and the perco-
lation point coincides with the Curie point in this approach also in three
dimensions.

2.6 Time Evolution: Non-Homogeneous Poisson Pro-
cess and Ornstein Uhlenbeck Process

If we want to simulate a real crash, we need a time evolution of the crash
hazard rate h(t) due to varying networks, as well as a realization of the crash
time t∗. To achieve the former, we can set p linear in time as a first simple
time evolution. Another possibility is the Ornstein-Uhlenbeck process. To
achieve the latter, we simulate the random variable by a non-homogeneous
Poisson Process realization. We summarize the Poisson-process and the
Ornstein-Uhlenbeck process in the following.

2.6.1 Non-Homogeneous Poisson Process

Poisson processes are a convenient tool if the intensity function is very small
and these rare events have high impact. Poisson processes are used to sim-
ulate radioactive decay in physics [21], phone calls [22] in socio-science or
plate tectonics spontaneous stress release in geology [23]. Our application of
the Poisson process will be in close analogy to the stress-release simulation
in seismology. Bubbles in our case correspond to the stress between tectonic
plates and the crash acts like a release. The crash hazard rate h(t) plays the
roll of the intensity function which we will introduce in the following.

13
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Point Process

For our purposes we consider a point process on the real line in continuous
time. A point process j on the real line is nothing else than a counting
measure. It can be seen as counting the occurrences of some events which
happen at certain times {ti} [24]. A temporal point process dj can take only
one of two possible values at each time-step t, i.e.,

dj(t) ∈ {0, 1} ∀t (2.15)

The value dj(t) = 1 indicates that an event occurs at that time t and the
value dj(t) = 0 indicates that the event does not occur at time t.

The event is the crash in our case. A crash occurs if the point process takes
the value dj(t) = 1, and for all other times the process takes the value
dj = 0. Recall that a crash is described via the crash hazard rate h(t) which
is the probability of having a crash in the infinitesimal time interval between
[t, t+ dt] and thus dj(t) = 1. The probability for having no crash, in numbers
dj(t) = 0, is the complementary probability 1− h(t).

Renewal Process

As we are only interested in the behavior before the crash, we use a renew-
able process [24]. The formal definition might be a bit abstract, but we will
soon relate it to our model:
Consider {Xi} a collection of real-valued iid random variables with distribu-
tion function F. Then the renewal process is

N(t) =
∞

∑
k=1

1{Sk≤t}, where Sk =
k

∑
i=1

Xi.

In our model the random variables {Xi} are the time between two subse-
quent crashes. Its distribution function F is therefore also called the inter-
arrival distribution function. Thus, the sum of the {Xi}, Sk = ∑k

i=1 Xi is the
time till the k-th crash. Our indicator function 1{Sk≤t} then clearly is equal
to zero if k crashes did not happen before or at time t, and is equal to one if
k crashes did happen before or at time t. Hence, N(t) is our renewal process
which counts the number of crashes till and including time t.

Homogeneous Poisson Process

The simplest class of a point process is the Poisson process [24][25]. It is a
renewal process characterized by the fact that the interarrival distribution
function F is the exponential distribution with parameter λ0 (which one can
show to be also the expected events per unit time). The Poisson process has
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a conditional intensity function that gives the expected events per unit time
as λ(t|Ht). If the process is in addition independent of time t, it is called a
homogeneous Poisson process. It has a constant conditional intensity function
that gives the expected events λ0 per unit time as

λ(t|Ht) = λ0. (2.16)

The number of events k = N(t + dt) − N(t) in the time interval [t, t + dt]
follows a Poisson distribution with associated parameter λ0 · dt explaining
the name:

P(k) =
e−λ0dt(λ0dt)k

k!
k = {0, 1, 2, . . .} (2.17)

An algorithm that simulates a homogeneous Poisson process with intensity
λ0 up to an end time T has to determine all the times tN of event occurrences
for t < T. This can be done by the following algorithm with intensity λ up
to time T [26]:

Algorithm Homogeneous Poisson process

1. t = 0, N = 0

2. Generate random variable r = uniform(0, 1).

3. Event time: t + [− 1
λ0

log(r)]. If t > T, then stop.

4. Set N = N + 1 and tN = t.

5. Go back to 2.

Non-Homogeneous Poisson Process

A non-homogeneous Poisson process [25] is a Poisson process with time-dependent
intensity function λ(t)

λ(t|Ht) = λ(t). (2.18)

It is still independent of the history of past events. The expected number of
events in the time interval [a, b] has to be calculated using an integral:

Nt,t+dt =

t+dt∫
t

λ(s)ds. (2.19)

The probability distribution for k = {0, 1, 2 . . .} events in the time-interval
[t, t + dt] becomes a Poisson distribution with associated parameter Na,b:

P(k) =
e−Na,b(Na,b)

k

k!
(2.20)
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Figure 2.5: Simulations of a homogeneous Poisson process with intensity
function λ∗ and of a non-homogeneous Poisson process with intensity func-
tion λ(t). The event times of the latter one are the ”thinned” event times of
the former. The third plot exhibits the corresponding intensity functions.

It is more difficult to simulate a non-homogeneous Poisson process than
a homogeneous one. Here, we use the thinning method [27]. The intuitive
idea is the following: one determines the maximum of the intensity function
λ̂ = max(λ(t)), then simulates a homogeneous Poisson process with inten-
sity λ̂ and finally ”thins” the occurred events by an acceptance/rejection
algorithm. The homogeneous Poisson process with the maximum intensity
λ̂ = max(λ(t)) gives too many events. The acceptance/rejection algorithm
reduces the times of the events to tN which are a good realization of the true
values. This can be done by the following algorithm:

Algorithm Non-homogeneous Poisson process (Thinning) [26]

1. t = 0, N = 0

2. Generate random variable r1 = uniform(0, 1)
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3. Event time: t +
[
− 1

λ̂
log(r)

]
. If t > T, then stop.

4. Generate random variable r2 = uniform(0, 1)

5. If r2 ≤ λ(t)
λ̂

, then set N = N + 1 and tN = t.

6. Go back to 2.

Figure 2.5 illustrates this. Simulations of a homogeneous Poisson process
with intensity function λ∗ and of a non-homogeneous Poisson process with
intensity function λ(t) are given as well as a plot of the two intensity func-
tions. The non-homogeneous event times are the ”thinned” event times of
the homogeneous Poisson process.

2.6.2 Ornstein-Uhlenbeck Process

We will describe our control parameter as a random walk trapped in a
quadratic potential. We use the Ornstein-Uhlenbeck (OU) process [28] which
exhibits exactly these properties. The process is mean reverting which means
that it drifts to a long-term mean value over time. Mathematically spoken,
it is a stationary, Gaussian and Markovian process. It is the continuous time
analogue of the discrete auto-regressive model AR(1).

The Ornstein-Uhlenbeck process is a stochastic process that satisfies the fol-
lowing stochastic differential equation

dpt = ϑ(µ− pt)dt + σdWt, (2.21)

with the parameters:

1. Wt is a standard Brownian motion on t ∈ [0, ∞);

2. ϑ > 0 is the rate of mean reversion;

3. µ is the long-term mean of the process;

4. σ > 0 is the volatility or average magnitude of random fluctuations
that are modeled as Brownian motions.

If we ignore the random fluctuations due to the Brownian Motion Wt in the
process, we see that Xt has an overall drift towards a mean value µ. The pro-
cess Xt reverts to this mean exponentially, at rate ϑ. The magnitude of this
reversion is in direct proportion to the distance between the current value of
Xt and µ. Consequently, the overall drift exhibits indeed a quadratic poten-
tial. Two realizations of the OU-process are shown in figure 2.6. In the top
plot, parameters are chosen such that the excursions are short. The process
reverts very fast to its mean value (short memory). In the bottom plot, pa-
rameters are chosen such that excursions are long. The process reverts very
slowly to the mean value (long memory).
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Figure 2.6: Two realizations of the OU-process. (a) Parameters are chosen
such that the excursions are short, the process reverts very fast to its mean
value (short memory). (b) Parameters are chosen such that excursions are
long return very slowly to the mean value (long memory).
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Chapter 3

Results I: New Description of The
Crash Hazard Rate

In this chapter, we present a framework that allows us to determine the crash
hazard rate, and simulate crashes and bubbles described by the crash haz-
ard rate. First, we reformulate the access to the crash hazard rate presented
by Cont and Bouchaud in [9] and by Sornette in [6] by using cluster dynam-
ics and super-linear relations between contributions and group sizes. The
second part derives a theoretical estimate of a power law divergence near
a critical parameter using percolation theory. In the third part, we confirm
our theoretical results by brute force simulations on the Potts model [29] for
q → 1 on the 2d square lattice. In the last part, we provide a second verifi-
cation of the presented framework above using the Potts model with q = 2,
also known as the Ising Model. Price simulations using this framework are
presented in the next chapter.

3.1 Crashes as Large Cluster Sell-offs

In the JLS Model, the crash hazard rate gives the conditional probability that
there is a crash at the time-step t given that the crash has not occurred yet.
The product h(t)dt is the probability that a crash occurs between t and t+ dt.
We introduce a cluster description of this deterministic variable by applying
percolation theory.

A crash is a coordinated sell-off of a large number of agents. A large shift
in the number of buyers and sellers in the market-book will occur if two
conditions are fulfilled:

1. We need a huge network of imitating noise traders that are partici-
pating in the market. We make the same assumption as Cont and
Bouchaud in their framework: Noise traders influence each other so
strongly that everybody in the network does the same. The network be-
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3. Results I: New Description of The Crash Hazard Rate

comes a herd consisting completely of either buying or selling agents.
Mathematically, we state that we need a large network of size s > sm
of synchronous agents. The specific value of sm is investigated later.

2. One of these large networks must change its choice from buying to sell-
ing or the other way around. One trader is enough to carry the whole
network since agents in a network are synchronous. For simplicity, we
focus on positive bubbles and negative price crashes.

The probability h(t)dt for a crash is the joint probability for all possibili-
ties of having the two independent conditions above both fulfilled. We use
graph theory to describe the networks of the traders. They are represented
by sites and the networks by bonds. Two traders which influence each other
are represented by a bond connecting them. We can generate a graph that
represents the network and obtain clusters of connected, in the market par-
ticipating, traders. Percolation theory provides a mathematical expression
for condition (1). The probability of having a network of size s is expressed
by the cluster number nt(s). The clusters can change in time, therefore, the
cluster number is also a function of time t. Of course, the choice of such
a cluster can vary with time. We call a change from buying to selling or
the other way around the network becomes active. We denote with Pactive(s)
the probability that a cluster of size s gets active in a time interval of length
dt. This is the second condition stated above. How often does a cluster
become active? What influences the choice of the group? Group dynamics
are often described by super-linear relations. It has been found out that the
social quantities of cities (such as productions or new inventions) scale super-
linearly with its population [30]. More recently, a super-linear dependence
between contributions in Open-Source programs and the number of contrib-
utors has been discovered [31]. The following equation with the variables R
as productivity and N as group size holds in both cases.

R ∝ Na (3.1)

The triggering activity of an investment for a group of size s can be described
in analogy to such a production or activity process benefiting from collective
interactions and processes similar to or the same as those for production and
productivity. Thus, the rate R for a cluster being active can be expressed by a
term which is super-linear in s with an exponent a. The probability Pactive(s)
that there is an active trader in a cluster of size s in a time-interval of length
dt becomes

Pactive(s) ∝ sadt. (3.2)

Note that there is no time dependence in the probability for an active trader
since it is a mean value over time.
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Multiplying the probabilities for the two conditions and summing up over
cluster sizes larger than sm leads to

h(t)dt =
∞

∑
s=sm

Pactive(s)n(s). (3.3)

We insert the super-linear relation and get

h(t)dt = dt
∞

∑
s=sm

sant(s). (3.4)

This holds for all time and we can access the crash hazard rate:

h(t) =
∞

∑
s=sm

sant(s) ∀t (3.5)

We have not specified the value of sm. We investigate this at the end of the
next section.

3.2 Theoretical Derivation: The crash hazard rate di-
verges with a power law

Theorem 3.1 The crash hazard rate h undergoes a critical transition near the per-
colation threshold for a > µ. It diverges as a power law of the scaling parameter p
that a site is occupied. The power law exponent is given by α = − a−µ

σ .

h(p) ∝
1

a− µ

1

|p− pc|
a−µ

σ

for a > µ (3.6)

Proof Recall from the last section that we can write the crash hazard rate
h as a deterministic probabilistic variable depending only on the clusters of
the underlying network of traders.

h =
∞

∑
s=sm

san(s) (3.7)

In section 2.2 we saw that there exists a cutoff size s∗ above which there are
no significant contributions to a sum over the cluster number. The cluster
number can be approximated by a power law with exponent τ = 1 + µ for
s < s∗. Recall that the cut-off size equals the size of the largest clusters
and diverges as a power law near the percolation threshold with scaling
exponent σ:

s∗ ∝
1

|p− pc|
1
σ

. (3.8)
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Applying this to the sum above yields

h ∝
∞

∑
sm

san(s) ∝
s∗

∑
sm

sa

s1+µ
=

s∗

∑
sm

1
s1+µ−a . (3.9)

The sum can be transformed into an integral without significant loss of ac-
curacy via

h(p) '
s∗(p)

∑
sm

1
s1+µ−a '

∫ s∗(p)

sm

ds
s1+µ−a for a 6= aµ (3.10)

The integral can easily be computed. We obtain:

h(p) ' −1
µ− a

1
sµ−a

∣∣∣∣s=s∗(p)

s=sm

=


1

µ−a

(
1

sµ−a
m
− 1

(s∗)µ−a

)
for a < µ

1
a−µ

(
s∗(p)a−µ − sa−µ

m

)
for a > µ

(3.11)

With s∗(p)� sm, we can approximate

h(p) '
{

1
µ−a

1
sµ−a

m
for a < µ

1
a−µ s∗(p)a−µ for a > µ

. (3.12)

We focus on the latter, a > µ. As a last step, we insert the power law in p for
s∗ (equation (2.9)) and arrive at

h(p) ∝
1

a− µ

1

|p− pc|
a−µ

σ

for a > µ. (3.13)
�

We still have not specified the value of the minimum cluster size sm for a
crash. According to our derivation above, sm must be much smaller than the
cut-off size s∗. On the other hand, we need a large shift in the market book
in order to have a crash. The Kyle model states [8]

p ' 1
D
(B(t)− S(t)) ∝

1
N(t)

(B(t)− S(t)). (3.14)

The price of an asset is proportional to the difference between the number of
buyers B(t) and the number of sellers S(t) at a given time t. The constant is
1/D with D denoting the market depth. The market depth is proportional
to the number N of traders that are actively participating in the market. The
larger the number of traders, the more extreme the difference in the market
book must be in order to obtain the same price change. We conclude that
the minimum cluster size depends on the number of traders in the market
N. But how many percent of traders are needed to cause a crash? It is not an
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easy task to state a concrete value. Therefore,we will assume that clusters
must be larger than 1% of the active traders and keep in mind, that this
value might actually be larger. We state:

sm = 0.01 · N (3.15)

3.3 Explicit Calculation: The crash hazard rate deter-
mined by the Site Percolation Model

This section presents the results for the crash hazard rate h calculated ex-
plicitly using the site percolation model. It is the limit of the Potts model
for q → 1. As underlying graph we always use the two dimensional square
lattice with open boundary conditions. We allow traders to be in two states:
They are either actively participating in the market if their site is occupied
or not actively participating if their corresponding site it unoccupied. Bonds
are only between nearest neighbors as we are on the square lattice. Recall
that, on the square lattice, nearest neighbors are in the same cluster if they
are both occupied. Clusters are formed in dependence of which trader are
actively in the market. The number of active participants in the market
drives the crash hazard rate. For large lattices, it is related in good approxi-
mation directly to the probability p that a site is occupied. The probability p
becomes in the following the control parameter of our system. Note that this
framework is also used to describe dilute magnets in combination with the
Ising model [10]. The spontaneous diverging susceptibility is the analogous
phenomena to the diverging crash hazard rate. The first part reproduces the
most important results of percolation theory and the properties of its clus-
ters on the square lattice. The second part presents the crash hazard rate
as a function of the probability that a site is occupied. We investigate the
dependence of the crash hazard rate on the square lattice size L, the super-
linear exponent a and the control variable p. We end this section with the
determination of the explicitly calculated power law exponent αexp of the
crash hazard rate and a comparison to the theoretical estimation α derived
above.

3.3.1 Cluster Number and Finite Size Effects

For a lattice of infinite length L at the critical point pc, the cluster number
n(s) is a power law distribution as a function of the cluster size s. We
reproduce the so-called Fisher exponent τ for a lattice of size L = 1000
in figure 3.1. We obtain τ = −1.95 by a linear regression in the log-log-
plot. Note that we use logarithmic binning to reach values up to n(s) '
10−12 instead of n(s) ' 10−6. Our result is in good agreement with the
analytic value τtheo = 187/91 ' 2.05 [10]. We can also estimate the Fisher
exponent applying the Hill estimator. This yields τ = 1.88 and we see
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Figure 3.1: Cluster number n(s)

that the logarithmic binning gives a better estimate than the popular Hill
estimator in our case.

In the theoretical derivation of the crash hazard rate, we use the exponential
cut-off for contributions in the sum over the cluster number. We visualize
the exponential factor exp(−s/s∗) in the cluster number on the square lat-
tice of size L = 10000 in figure 3.1. For probabilities p smaller than the
critical percolation probability pc, the cluster number n(s) indeed exhibits
the exponential decay.

Lowering the lattice size to L = 100 and L = 10, we can investigate the
so-called finite size effects on the cluster numbers and provide a value for
the shift for the percolation threshold. In figure 3.2, we see that the cluster
number becomes little volatile for L = 100 and highly volatile for L = 10.
The further we are away from the L → ∞ limit, the stronger the cluster
number deviates from the deterministic curve presented above. The curves
for L = 1000 and L = 100 are identical up to the volatility. This confirms
the fractal structure of the clusters, also called self-similarity. What happens
to the percolation threshold for these lattice sizes? Again, if we are further
from the L→ ∞ limit, we will have larger volatility. As figure 3.2 shows, the
probability of having an infinite cluster is no longer a sharp step-function.
The smaller the lattice size, the more blurred the percolation threshold be-
comes. But it is not the only finite size effect on the percolation threshold.
If we take the point where the infinity cluster probability becomes P∞ = 1

2
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Figure 3.2: Finite size effects

as the percolation threshold, we see a shift to the left depending on the lat-
tice size. The smaller the lattice size, the larger the shift (see table 3.1). We
can confirm the well-known results from percolation theory. These finite
size effects are important for the analysis of the crash hazard rate which we
present in the next section.

L 10 100 1000 L→ ∞
pc 0.546 0.589 0.592 0.593

Table 3.1: Shift of the percolation threshold pc for finite lattice sizes L.

3.3.2 Crash hazard rate hexp for varying square lattice size L

We present the results for the explicitly calculated crash hazard rate hexp(p)
for lattice sizes L of three different orders. We initialize a new random site
percolation lattice for each value of p. We extract the clusters and calculate
the crash hazard rate h(p). Note that if we want to compare the results
to the theoretical crash hazard rate, we have to scale the theoretical crash
hazard rate by a constant C<(see equation (3.6)) in the phase p < pc and by
a constant C> in the phase p > pc. The two constants are not equal because
the amplitude of the two phases are not equal [32]. The constants are set
to the mean of the ratio htheo(pi)/hhexp(pi) for values of p in the according
phase.
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Figure 3.3: Plot of the explicitly calculated crash hazard rate hexp(p) (blue)
and the theoretical one hexp(p) (red) for a single realization on the L = 10
square lattice. The crash hazard rate increases slightly and the volatility
increases strongly for growing control parameter p. But the power law be-
havior is cut off already near p ' 0.5 far away from the critical point.

The explicitly calculated crash hazard rate hexp(p) on a 10× 10 square lattice
is not diverging with a power law as one reaches the percolation threshold of
the L → ∞ limit. Though it is near the red line of the theoretical power law
for values larger of the control parameter larger than 0.2 and smaller than
0.5. We have power-law behavior starting near p = 0.2 which is already cut
off near p ' 0.5. Finite size effects are dominating on small lattices and
are the explanation for the the cut-off. For this order of lattice size, there
is a small maximum for the size of the biggest cluster s∗ which is reached
very fast. This leads to a limit for the explicitly calculated crash hazard rate
hexp(p). The cluster number n(s) and the percolation point pc are still a
random variable for this size. We conclude that finite size effects influence
the crash hazard rate strongly for lattices of size L = 10. Finite size effects
lead to a cut-off in the power law behavior and an increasing volatility.

The explicitly calculated crash hazard rate hexp(p) on a square lattice of size
L = 100 shows a divergence if one approaches the percolation threshold
pc(L = 100) = 0.587. This divergence is in good agreement with the power
law divergence of the theoretical crash hazard rate htheo(p). As figure 3.4
shows, the blue points (hexp(p)) are well described by the red curve (htheo(p))
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Figure 3.4: Plot of the explicitly calculated crash hazard rate hexp(p) (blue)
and the theoretical one hexp(p) (red) for a single realization on the L = 100
square lattice. The crash hazard rate shows a divergence if one approaches
the percolation threshold pc. This is in a good agreement with the theoretical
estimate. The volatility is increased in the critical region.

up to p = 0.55. The volatility starts to increase much later than in the
previous case. Finite size effects also start later, but are still visible. As
seen in the previous section, the percolation transition is still not a sharp
step function and the probability of having a percolating cluster becomes
blurred. As before, the cluster number n(s) is random influenced. The crash
hazard rate h(p) gets massively lowered if we turn an almost percolating
biggest cluster into a percolating cluster, since the percolating cluster is no
longer considered in the sum over all cluster sizes and the crash hazard
rate hexp(p) decreases strongly. Thus, the crash hazard rate also takes small
values near the percolation threshold, leading to a high volatility.

The explicitly calculated crash hazard rate hexp(p) on a 1000× 1000 square
lattice shows a clear divergence when one approaches the percolation thresh-
old pc. Figure 3.5 shows clearly that the red and the blue curve are almost
identical. We have a relatively sharp percolation transition: For the control
parameter p = 0.6 still close to pc, the crash hazard is drastically decreased
with respect to the peak. The increase in the volatility, which we observed
in the preceding results, is no longer visible. Finite size effects become
negligible for L = 1000. The square lattice of 1000× 1000 sites exhibits a

27



3. Results I: New Description of The Crash Hazard Rate

p
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

cr
a
sh

h
a
za
rd

ra
te

h
(p
)

0

10

20

30

40

50

60

70

80

90

Crash hazard rate h(p): L=1000, a=1.5

h
exp

h
theo

Figure 3.5: Plot of the explicitly calculated crash hazard rate hexp(p) (blue)
and the theoretical one hexp(p) (red) for a single realization on the L =
1000 square lattice. The crash hazard rate shows a divergence in very good
agreement with the theoretical estimate. For a large lattice, one can observe
a self-averaging property. No volatility is visible and finite size effects are
negligible.

self-averaging property and is convenient to filter finite size effects such as
raising volatility. Graphs get clearer if they are not blurred by raising volatil-
ity. However, as we will see later, finite size effects are again visible if we
consider intervals closer to the percolation threshold.

3.3.3 Crash hazard rate hexp for varying super-linear contribution
exponent a

What will happen if we vary the super-linear coefficient a which determines
the probability that the cluster becomes active?

In order to investigate this issue, we plot the explicitly calculated crash haz-
ard rate hexp(p) for four different super-linear contribution exponents a with
all other parameters kept constant. The realization of the networks is done
as in the previous case. We initialize a random site percolation lattice for
each value of p and calculate the crash hazard rate h(p). We use the same
lattice initialization for all four values of a. The underlying network for each
plot is thus the same. The lattice size is chosen to be 100× 100 in order to
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avoid high volatility. Figure 3.6 shows the crash hazard rate for a broad spec-
trum of the super-linear exponent a. It takes values in the range a ∈ [1, 2].
Figure 3.7 exhibits the behavior for four values near the potential critical
value of a = µ ' 1.05.

In Figure 3.6, we see that no divergence is visible for a = 1 < 1.05 ' µ.
Indeed, the crash hazard rate hexp(p) is the first moment and gets equal to
the control parameter p following the well-known relation from percolation
theory:

∑
s

s · n(s) =
{

p for p < pc

p− C · |p− pc|
5
36 for p > pc

(3.16)

If the percolating cluster occurs, it lowers the sum as already explained
above. This lowering explains the subtrahend in the second case. It is the
strength or weight of the percolating cluster P with according exponent β =
36
5 for the two dimensional square lattice.

All the three remaining curves satisfy a > µ and exhibit the expected di-
vergence with increasing volatility near the percolation threshold pc. The
curves are very similar to each other differing only in the order of magni-
tude.

Figure 3.7 shows four plots with the super-linear coefficient near to its criti-
cal value a = µ = 1.05. The graphs show very different characteristics. The
first one, calculated for a = 0.95, is concave for p < pc. It does not have
the potential to diverge near the percolation threshold. The second graph,
calculated for a = 1, has already been discussed above. This value seems
to be the border between convex and concave crash hazard rates. The two
latter graphs are convex curves. They would have the potential to diverge.
However, the divergence is very moderate even very close to the percolation
threshold pc. We would have to come very close to the critical value in order
to obtain divergence for such small power law exponents. Actually, all these
four graphs have in common that the crash hazard rate does not take high
values even close to pc. We do not see an abrupt change in the crash hazard
rate as one goes from a < µ to a > µ as one could have expected according
to the theoretical considerations in section 3.2.

From these observations we infer that: If the super-linear coefficient is in
the regime a > µ, it determines only the degree of divergence of a convex
function as does the exponent in a power law divergence. In the regime a <
µ, the crash hazard rate becomes a concave function and there is obviously
no divergence. The transition from one regime to the other is not phase-
transition-like, as the divergence emerges rather smoothly with increasing
a.
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Figure 3.6: Plot of the explicitly calculated crash hazard rate hexp(p) for
different superlinear contribution exponent a. Note that the underlying net-
works are the same for each plot. For a = 1 < 1.05 ' µ, no divergence is
visible. Indeed, the crash hazard rate gets equal to the control parameter p.
All three remaining curves show divergence with increasing volatility near
the percolation threshold pc.

3.3.4 Comparing the exponent and investigating the robustness of
the power law divergence

In this section, we corroborate the assumption of a power law behavior of
the crash hazard rate close to the percolation threshold. We present results
for the power law exponent αexp of the explicitly calculated crash hazard rate.
Furthermore, we check the robustness of the result of the exponent. We use
a square lattice of size L = 100 respectively L = 1000 and vary the super-
linear coefficient a to get intervals of validity for the control parameter p.
We use linear regression in the shifted log-log-plot to extract the power law
exponent αexp of the explicitly calculated crash hazard rate hexp(p). Note
that we use the value that gives the best fit to a power law (least square
method) for pc. The two values pc(L = 100) = 0.5915 and pc(L = 1000) =
0.5924 are in good agreement with the shifted percolation points due to
finite size effects calculated in (3.3.1).

The theoretical straight line with gradient αtheo = −1.13 seems to be accurate
for 0.4 < p < 0.55 on the square lattice with size L = 100 and for 0.4 < p <
0.59 on the square lattice with size L = 1000 (see figure 3.8). However,
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Figure 3.7: Plot of the explicitly calculated crash hazard rate hexp(p) for
super-linear contribution exponents near the critical value a = 1.05. The
crash hazard rate does not take high values even close to pc in any graph.
Note that the underlying networks are the same for each plot.

systematic deviations from the power law straight line arise for values p <
0.4 as well as for values p > 0.59. The deviated values are lower than the
expected ones. The two curves differ in their behavior near the percolation
threshold. Deviation starts near p = 0.55 for L = 100 and much more later,
namely p = 0.59, for L = 1000. Explanations for these observations are
given below.

We compare the results for the exponent of the explicitly calculated crash
hazard rate to the theoretical exponent in table (3.2). The values for the
former are obtained by linear regression where the deviated values are ex-
cluded.

The first row of the table presents the result for the square lattice of size
L = 100. The control parameter p is confined to the interval [0.4, 0.55] to
avoid the outliers. The theoretical exponent αtheo seems to be a reasonable
estimate, although systematic deviations are visible. The exponent α is lower
for small super-linear exponents a than the theoretical one and higher for
larger a.

The second row presents the result for the lattice of size L = 1000. As seen in
figure 3.8, the deviation starts later than for the lattice size L = 100 and we
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Figure 3.8: Reversed log-log-plot of the explicit calculated crash hazard rate
hexp(p) versus |pc − p| for the super-linear exponent a = 1.5 and square
lattice sizes L = 100 on the left and L = 1000 on the right. The theoretical
straight line with exponent αtheo = −1, 13 seems to be accurate for 0.4 <
p < 0.55 on the left and 0.4 < p < 0.59 on the right. Note that we use the
value that gives the best fit for pc. The actual values on the horizontal line
are the difference |p− pc|.

can confine the control parameter to a larger interval [0.4, 0.59]. The majority
of the exponents get slightly closer to its theoretical estimate, but differences
are still visible.

The third row presents the result for the lattice of size L = 1000 with the
control parameter confined to an interval closer to the percolation threshold
[0.5, 0.59]. The theoretical exponent αtheo is a very good estimate of these
explicitly calculated exponents. We conclude that the larger the lattice size
L and the more we confine the control parameter near to the percolation
threshold, the better the theoretical estimate is. This can be explained as
follows:

Finite size effects are responsible for the lowering of the exponent α for val-
ues close to the percolation threshold. Since the system is finite, the crash
hazard rate cannot really diverge to infinity. This effect is called rounding in
percolation theory. Values far away from the percolation threshold are low-
ered in the same way independently of the lattice size (compare figure 3.8
and 3.9). The lower bound of the power law regime is actually dependent on
the super-linear exponent a. Figure 3.9 indicates that the power law behav-
ior begins earlier the larger the super-linear exponents is. For an exponent
of a = 2, the power law regime seems to begin at least near p = 0.4 while
we reach the the power law regime not until p = 0.52 for a = 1.1. These
finite size effects explain why we get the best results in the third column in
table (3.2): For larger lattice sizes, the influence of finite size effects on our
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Table 3.2: Comparison of the explicitly calculated exponents α[100] and
α[1000] versus the theoretical value αtheo = − a−µ

σ . The number in the square
bracket denotes the square lattice size L. Only values of the control parame-
ter in the given interval are used to extract the exponent.

a α[100] α[1000] α[1000] αtheo
p ∈ [0.4, 0.55] p ∈ [0.4, 0.59] p ∈ [0.5, 0.59]

1.05 -0.19 -0.25 -0.18 0

1.2 -0.51 -0.49 -0.46 -0.37

1.33 -0.73 -0.72 -0.70 -0.70

1.5 -1.14 -1.16 -1.15 -1.13

1.67 -1.49 -1.58 -1.54 -1.55

2 -2.09 -2.31 -2.37 -2.39

2.5 -3.02 -3.48 -3.43 -3.65

3 -4.19 -4.78 -4.81 -4.92

results decreases. Additionally, we can push our interval closer to pc. This
improves the results as we can put more weight on values close to the perco-
lation point. If we confine ourselves to the interval p ∈ [0.5, 0.6], for which
the explicitly calculated crash hazard rate does not diverge as a power law,
are then mostly excluded.

Estimations of boundaries for the validity of the theoretical estimation of the
exponent α depend both on the super linear exponent a and on the square
lattice size L. Finite size effects are visible in the region of p > 0.54 for
a square lattice of size L = 100, and in the region of p > 0.58 for a square
lattice of size L = 1000 in our results. We take these values as our estimation
for the upper boundaries. For both lattice sizes, the theoretical estimation
α = − a−µ

σ seems to be invalid near p = 0.3. Indeed, the beginning of the
straight line does not depend on the lattice size L but on the super linear
exponent a.

3.3.5 Conservative Traders

We have seen high volatility in the crash hazard rate above for lattice sizes
L = 10 and even L = 100. We re-initialized the whole lattice for every value
of p. We implicitly assumed that traders can change frequently from partic-
ipating to not participating. If we want a framework for more conservative
traders that do not change their choice so often, we consider to initialize
the lattice by adding site by site. Clusters are created and grow the same
way as before. The number of participating traders N becomes deterministic
being our control parameter which is clearly related to the former control
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(a) Plot of the explicitly calculated crash haz-
ard rate hexp(p) for super-linear contribution
exponents a = (1.1, 1.5, 1.67, 2) on the square
lattice of size L = 100.
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(b) Plot of the explicitly calculated crash haz-
ard rate hexp(p) for super-linear contribution
exponents a = (1.1, 1.5, 1.67, 2) on the square
lattice of size L = 1000.

Figure 3.9: Crash hazard rate for different super-linear coefficient a. The
lower bound for power law behavior is depending on the super-linear expo-
nent a. Rounding due to finite size effects can be lowered for larger lattice
sizes L.

parameter:

p =
N
L2 (3.17)

The main difference to above is that clusters cannot change abruptly when
we slightly adjust the control parameter as we just add some sites and do
not reinitialize the whole lattice. Figure 3.10 exhibits of the crash hazard
rate under this modification for a single realization. The crash hazard rate
is a much less volatile curve as large cluster changes are no longer possible.
Figure 3.10 illustrate diverging curves for very small lattice sizes of L =
4 and L = 10. Yet, we get very different peaks for different realizations.
Furthermore, we observe that the crash hazard rate is again not symmetrical
as the the decay is rounded off on the right side of the threshold. Finally,
note that the difference between the two ways of calculating the crash hazard
rate becomes more and more less for larger lattice sizes. Therefore, we use
only the one presented first for our price simulations.
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(a) Plot of the explicitly calculated crash haz-
ard rate hexp(N) (blue) and the theoretical
one hexp(p) (red) for a single realization on
the L = 4 square lattice. We increase the
new control parameter N by adding site by
site. The crash hazard rate is diverging near
N/L2 = 55 in this realization. We see much
less volatility in contrary to the previous re-
sults where we re-initialized the whole lattice
for each new value of the control parameter.
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(b) Plot of the explicitly calculated crash haz-
ard rate hexp(N) (blue) and the theoretical
one hexp(p) (red) for a single realization on
the L = 10 square lattice. We increase the
new control parameter N by adding site by
site. The crash hazard rate is diverging near
N = 50 in this realization. We see much less
volatility in contrary to the previous results
where we re-initialized the whole lattice for
each new value of the control parameter.

Figure 3.10: Crash hazard rate for fixed number of participants realized by
adding site by site.

3.4 A second approach to the crash hazard rate via
Ising Clusters

In this section, we present another confirmation of the divergence of the
crash hazard rate. We use again site percolation on the square lattice as un-
derlying graph, but this time, we use the Ising model and Glauber dynamics
to create clusters. The Ising model is the Potts model if we choose q = 2.
In our model, sites describe traders that are participating in the market by
choosing one of two states: spin-up stands for ”buying” or ”bullish” and
spin-down for ”selling” or ”bearish”. Clusters are defined as all sites of
equal spin which are connected via a nearest neighbor path. Coniglio and
Klein called them Ising clusters, so we will also use this name in the fol-
lowing. The inverse temperature of the Ising model K = J

kT , with coupling
constant J between nearest neighbors, plays the role of the control parameter.
It describes the imitation strength between traders. The first part of this sec-
tion presents the properties of the Ising clusters. The second part provides
the crash hazard rate as a function of the control parameter K for different
lattice sizes L. We end this section with the determination of the exponent
αexp and a comparison with the theoretical approximated exponent αtheo.
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3.4.1 Cluster number for site percolation on the Ising model

First, we want to get familiar with the properties of the clusters created by
Glauber dynamics. We investigate the critical value in our system and we
confirm Coniglio and Klein’s theory of the relation between the Ising critical
points and the percolation point. This is followed by a section about the
Ising cluster number analogously to the treatment of the cluster number of
random graph site percolation above.

The critical point in our model is the percolation threshold of K. Figure
3.12 and 3.13 show the probability of having an infinite cluster P∞ and the
magnetization m as a function of the Ising control parameter K. The magne-
tization as well as the probability of having an infinite cluster exhibit phase
transitions at K = 0.44 as predicted by Coniglio and Klein. The value is in
good agreement with the analytically determined Curie Point Kc = 0.4407.
Consequently, we can use the Curie point as the critical point of our system.
The cluster number for the Ising model behaves very similar to the cluster
number for the random graph percolation. We see a straight line in the log-
log-plot for K = Kc (see figure 3.11). The cluster number is a power law in
the cluster size s. We extract τ = −2.17 as the gradient of the straight line.
Furthermore, we observe an exponential decay of the cluster number away
from the critical point Kc.

3.4.2 Crash hazard rate

We present the results for the explicitly calculated crash hazard rate hexp(K)
as a function of the imitation strength K for a single realization on different
lattice sizes L. We start with K1 = 0.1 and a random configuration of spins
and apply t(L) rounds of Glauber dynamics. Recall that the mixing time of
the Glauber dynamics is a function of the lattice size L. We extract the cluster
configuration and calculate the crash hazard rate hhexp(K1). We proceed
by applying again t Glauber dynamics but with parameter K2. The crash
hazard rate is calculated and we proceed to K3. In this way, we calculate
recursively the crash hazard rates for all given K. Note that if we want to
compare the results to the theoretical crash hazard rate, we have to scale the
theoretical crash hazard rate by a constant (see equation 3.6). The constant
is set to the mean of the ratio htheo(Ki)/hhexp(Ki) for K < Kc.

The explicitly calculated crash hazard rate hexp(K) on a 10× 10 square lat-
tice is not diverging as one reaches the percolation threshold Kc. Figure 3.12
exhibits a high volatile curve and a peak at K = 0.4 on the left side. This
occurs due to finite size effects which can be seen in the right plot. We
observe a non vanishing probability for an infinite number P∞. This is in
agreement with Coniglio and Klein’s theory that the Ising cluster are too
large to describe actual Ising Droplets. Coniglio and Klein’s site-bond per-
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Figure 3.11: Log-log-plot of the cluster number n(s) versus cluster size s for
different values of the control parameter K. The linear regression for the
cluster number at the critical point gives the fisher exponent τ = 2.07. This
is very close to the analytic value in the literature of τtheo = 187

91 ' 2.05.

colation could improve the outcome of this framework as the magnetization
is not intensively blurred.

The explicitly calculated crash hazard rate hexp(K) on a 100 × 100 square
lattice shows a divergence if one approaches the percolation threshold Kc.
This divergence is in a good agreement with the power law divergence of
the theoretical crash hazard rate htheo(p). The left plot of figure (3.4) shows
this using t = 106 rounds of Glauber dynamics. The blue points (hexp(p))
are well described by the red curve (htheo(p)) up to volatility. The explicit
calculated crash hazard rate exhibits high volatility as we come close to the
percolation threshold.

The explicitly calculated crash hazard rate hexp(p) on a 1000× 1000 square
lattice shows a clear divergence if one approaches the percolation threshold
pc. In figure (3.5) we observe that the red and the blue curve are almost
identical. We have a relatively sharp percolation transition: For the control
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(a) Plot of the explicitly calculated crash
hazard rate hexp(K) and the theoretical
one hexp(K) for a single realization on
the square lattice of size L = 10. The
crash hazard rate increases slightly and
the volatility increases strongly for grow-
ing control parameter K.
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(b) Plot for the probability P∞ of having
an infinite cluster and the absolute value
of the magnetization m as a function of
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Figure 3.12: Square lattice of size L = 10
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(a) Plot of the explicitly calculated crash
hazard rate hexp(K) and the theoretical one
hexp(K) for a single realization using t = 106

rounds of Glauber dynamics on the square
lattice of size L = 100. Up to volatility,
the blue explicit crash hazard rate is well de-
scribed by the theoretical estimate in red. The
volatility increases strongly as we get close to
the percolation threshold K.
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Figure 3.13: Square lattice of size L = 100.
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3.5. Proposition: Ising droplets instead of the Ising clusters by using
site-bond-percolation
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Figure 3.14: Plot of the explicitly calculated crash hazard rate hexp(p) and
the theoretical one hexp(p) for t = 10000 rounds of Glauber dynamics on the
square lattice of size L = 1000. The crash hazard rate shows a divergence
in a very good agreement with the theoretical estimate if one approaches
the percolation threshold pc. No volatility is visible, finite size effects are
negligible due to the self-averaging property of large lattice sizes in analogy
to previous results.

parameter K = 0.4413 still close to pc, the crash hazard is drastically de-
creased with respect to the peak. The increase in the volatility which we
had in the precedent results, is disappeared due to the self-averaged prop-
erty of large lattices. Finite size effects become negligible as we have a sharp
enough transition for L = 1000.

3.5 Proposition: Ising droplets instead of the Ising clus-
ters by using site-bond-percolation

Better results may be obtained by using site-bond-percolation as proposed
in [19] to create Ising droplets. The advantage of using the Ising droplets
is that we describe the crash hazard rate in analogy with an interacting
physical process (magnetization in the Ising model) and not with a phase
transition due to graphical processes. Recall that the probability of a bond
between two occupied sites is a function of K.
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3. Results I: New Description of The Crash Hazard Rate

pB = 1− e−2K (3.18)

This probability is a measure of the couplings between agents within a clus-
ter as a function of the ratio K = coupling/temperature . K is again the
coupling strength.

The algorithm:

1. Generate Ising clusters with Glauber dynamics as in the previous case
for a given K. A cluster is the ensemble of neighbored spins up.

2. Generate a bond between neighbored ”spin up”s with bond probabil-
ity pB = 1− e−2K. The new clusters are the Ising droplets. They are
the ensemble of ”spin-up” traders that are neighbored and bonded.

3. Calculate the crash hazard rate by taking the sum over the droplets
multiplied by the contribution rate.
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Chapter 4

Results II: Bubbles in Price
Simulations

In this chapter, we present a wide variety of price simulations containing
bubbles and crashes.

If we know the crash hazard rate in the JLS model for all time t, we can de-
scribe the price at any time t before a crash up to a Random Walk according
to the following recursive equation (see 2.5):

price(t) = price(t− 1) [κh(t)− κdj(t) + ηdw(t)] for t < t∗ (4.1)

We can simulate real stock prices if we know the underlying network evolu-
tion. Unfortunately, it is not so easy to rebuild the real-life networks, espe-
cially if we describe the networks using the stylized site percolation model
on the square lattice. Yet, despite its simpleness, the random site percolation
model on the square lattice is able to provide interesting price curves. We
present price simulations for different network evolution on the site perco-
lation model in the following. The probability p of a site being occupied is
the control parameter in the simulation. Taking the clusters formed under
the given value of p at each time step, we can calculate the crash hazard rate
and consequently the price. We use a non-homogeneous Poisson process to
simulate the exact time when the crash occurs. Note that the time of the
crash is the random variable t∗ described by the deterministic hazard crash
rate h. The hazard crash rate plays the role of the intensity function of the
Poisson process, i.e., h(t)dt gives the probability for having a crash in the
interval [t, t + dt].

4.1 A First Simple Crash Scenario

To understand a potential bubble or crash process, we assume simple net-
work dynamics. The number of traders participating in the market is linearly
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4. Results II: Bubbles in Price Simulations

increasing with t up to the time of crash t∗.

p(t) = C · t + p0 for t < t∗. (4.2)

We set the initial value of the control parameter to p0 = 0.4 and the constant
to C = 10−4. Each time-step, more and more traders get participating in
the market leading to a increasing crash hazard rate. If the crash occurs, the
price loose κ = 0.2 of its price. We can say in a way that the jump process
resets the price. We do the same with the control parameter that is, right
after the crash, we reset it to its initial value p0 = 0.4 .

We use random site percolation on the square lattice of size L = 500. The
result for the price simulation of this first simple network evolution model
is shown in figure 4.1. The first plot shows the price evolution, the second
the crash hazard rate and the third the control parameter p. We implement
10000 time steps with length ∆t = 10−4. Although we have identical network
dynamics and thus the same crash hazard rates raising from p0 = 0.4 after a
crash, the time between two crashes is not a fixed constant, but varying. The
time of the crash is a random variable. We see again the diverging character
of the crash hazard rate as we get close to the critical value of the control
parameter p. The simple model is able to illustrate the key features of the
JLS model:

1. A crash is preceded by a bubble.

2. The duration of the bubble is varying. The death of the bubble occurs
spontaneously, being a random variable.

3. The crash hazard rate exhibits diverging character in time near the
percolation threshold.
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4.1. A First Simple Crash Scenario
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4. Results II: Bubbles in Price Simulations

4.2 Ornstein-Uhlenbeck Simulations

We use an Ornstein-Uhlenbeck (OU) process to describe the control parame-
ter p (see section 2.6.2). The Ornstein-Uhlenbeck process is a mean-reverting
Wiener process. It should simulate network dynamics more realistically than
the simple linear growth of the control parameter p. As in the previous case,
we calculate the crash hazard rate and the price via the cluster configuration
given by the parameter parameter at each time-step. The time of the crash
dj is again realized by a non-homogeneous Poisson process in analogy to
the previous simulation. After a crash, we reset the control parameter to its
initial value. Turbulent and complex changes can occur which we cannot
describe in our stylized model. We are only interested in the time preceding
the crash. As an approximation, we reset the control parameter to its initial
value if a crash has occurred. We present many scenarios of bubbles and
crashes for various lattice sizes L and conditions (exponent a) as well as OU
memory values and volatility of the price process. First, we vary the lattice
size L while all other parameters are held constant. We use L = 10 and
L = 1000. We vary the condition to a = 1.5 and a = 2.5. We present results
for varying memory of the underlying Ornstein-Uhlenbeck process. We dis-
tinguish three types of excursions, long memory excursions that last more
than 1000 time-steps, normal memory excursions lasting around 1000 time-
steps and short memory excursion lasting much less than 1000 time-steps.
The according parameter is the mean-reverting parameter ϑ in combination
with the volatility parameter σ. The significance of our bubbles with respect
to the volatility of the price process is investigated by changing the ratio of
the JLS parameter κ divided by parameter η which weighs the random walk.
The former is held constant to κ = 0.2, we change only the latter by using
η = 0.01, η = 0.005 and η = 0.001. We end this section by a simulation
where we do not reset the price after a crash. Again, the first plot in each
figure shows the price evolution, the second the crash hazard rate and the
third the control parameter p. We implement 10000 time steps with artificial
length of time-intervals ∆t = 10−4.

We summarize our observations in the following. We state the number of
the figures where we made the observations in brackets.

1. The JLS model is consistent in the sense of an isolated system. The
price returns to 1 in the L→ ∞-limit (see all figures).

2. We are able to generate reasonable bubbles. Bubbles occur basically if
the control parameter takes a long-memory excursion in the direction
of the critical value. By construction, these times are the most likely
times for a crash to occur (see all figures)

3. Bubbles can end with a crash or survive without a crash leading to a
new price plateau (see figures 4.3, 4.4, 4.6, 4.8, 4.12).
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4.2. Ornstein-Uhlenbeck Simulations

4. During bubbles, price is growing convexly if the control parameter is
increasing. Bubbles exhibit a linearly increasing price if the control
parameter is constant. (4.9)

5. large lattices are less susceptible to crashes than smaller ones (compare
the figures 4.3 and 4.4 to figure 4.5). For higher values of the minimum
cluster size sm that is needed for a crash, this effect can even increase
or occur for smaller lattice sizes (see figure 4.13). We investigate the
issue immediately after this enumeration.

6. The higher the condition a, the sharper and larger the bubbles can get.
Crashes occur more frequently (compare the figures 4.3, 4.6 and 4.7).

7. Long memory of the OU process leads to larger bubbles that end very
likely with a crash. Short memory of the OU process leads to small
bubbles that occur very often, but rarely end with a crash (compare
the figures 4.3, 4.8 and 4.9).

8. For the parameter of the price volatility process equal to η = 0.005 and
η = 0.01, volatility of the price process can amplify the bubble or cover
it completely. For a lower value η = 0.001, no price volatility is visible
and the price is only dominated by the crash hazard rate (Compare
figures 4.10, 4.11 and 4.12).

We have seen that crashes become very unlikely for lattice sizes L = 1000 as
we choose the minimal cluster size for a crash sm = 0.01 · p · L2. In figure 4.5,
the crash hazard rate is still zero even for p = 0.52. We need clusters of sizes
larger than sm(L = 1000) ' 5000 as opposed to sm(L100) ' 50 for a lattice
size L = 100. We have excluded all the small clusters and their possibility
to cause a crash. In a sense, larger systems exhibit less bubbles as the crash
hazard rate is zero unless we are very close to the critical region. But if there
is a bubble, then it will be a huge one. In figure 4.13, we have seen that this
effect occurs also for L = 100 if we take a higher value for sm. The reason for
this dependence on L is the fractal structure of the clusters. The minimum
cluster size goes quadratic in L:

sm = 0.01 · p · L2 (4.3)

whereas the cluster number

n(s) = const · sτ · L2

/L2 , (4.4)

the probability of having a cluster of s sites per site, does not depend on L.
This is explained by the fractal structure of the clusters or, in other words,
self-similarity. If we increase the system size, sm gets larger in contrast to the
cluster number n(s). That is why we cut more and more contributions from
smaller clusters of the crash hazard rate as the system size gets larger. We
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4. Results II: Bubbles in Price Simulations
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Figure 4.2: Ratio of the crash hazard rate for L = 100 divided by the one
for L = 1000. The minimum cluster size was chosen to be sm = 0.01 · p · L2.
The crash hazard rate is clearly larger for L = 1000 than it is for L = 100,
around five times larger near p = 0.4. The outliers are explained by the high
volatility for a single realization.

conclude that it is more difficult to get an imbalance in the market book if the
system size L is large. Larger systems are rarely susceptible to large bubbles
and pretty insusceptible for normal bubbles because of self-similarity. We
can express this in a more general way. If the underlying networks of traders
are self-similar, large systems exhibit less risk to bubbles due to herding of
noise traders than smaller systems.

This effect occurs only when we set sm as a function of L as above. If we
set sm to a fixed small value for all L,we do not see this effect. Indeed, we
observe exactly the opposite effect in figure 4.2. The crash hazard rate is
larger for L = 1000 than it is for L = 100, around five times larger near
p = 0.4.

We can add a volatility process dW to our price simulation. Then, the process
dW(t) takes one of the two values ±1 with equal property at each time-step.
Its magnitude is described by η. Plugging this random walk into the price
equation yields

price(t) = price(t− 1) ∗ (1 + κh(t− 1)− κ ∗ dj(t− 1) + ηdW(t)). (4.5)

We present results for varying parameter η. The price volatility can amplify
the bubble (see 4.10) or even cover it completely (see figure 4.11).

46



4.2. Ornstein-Uhlenbeck Simulations

T
im

e
s
te

p
s
 t

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0
8

0
0

0
9

0
0

0
1

0
0

0
0

Price(t)

0
.81

1
.2

1
.4

1
.6

(a
)
J
L
S
M

o
d
e
l
P
ri
c
e
S
im

u
la
ti
o
n
R
a
n
d
o
m

G
ra

p
h
(L

,a
)
=

(1
00
,2
),
(κ
)
=

(0
.2
)

J
L

S
 d

y
n

a
m

ic
s

T
im

e
s
te

p
s
 t

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0
8

0
0

0
9

0
0

0
1

0
0

0
0

Crash hazard rate h(t)

0

0
.0

0
5

0
.0

1
(b

)
C
ra

sh
h
a
z
a
rd

ra
te

h
(t
):

s
m
=

0.
01

·
p
·
L
2

T
im

e
s
te

p
s
 t

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0
5

0
0

0
6

0
0

0
7

0
0

0
8

0
0

0
9

0
0

0
1

0
0

0
0

p(t)

0

0
.2

0
.4

0
.6

(c
)
P
ro

b
a
b
il
it
y
p
(t
):

O
U
-P

ro
c
e
ss

p
0
=

0.
3
µ
=

0.
3
σ
=

0.
00
3
ϑ
=

0.
00
05

Fi
gu

re
4.

3:
Pl

ot
of

(a
)

th
e

JL
S

m
od

el
pr

ic
e

si
m

ul
at

io
n,

(b
)

th
e

as
so

ci
at

ed
cr

as
h

ha
za

rd
ra

te
an

d
(c

)
th

e
lin

ea
r

in
cr

ea
si

ng
co

nt
ro

l
pa

ra
m

et
er

p
de

te
rm

in
in

g
th

e
cr

as
h

ha
za

rd
ra

te
on

a
ra

nd
om

si
te

pe
rc

ol
at

io
n

sq
ua

re
la

tt
ic

e
of

si
ze

L
=

10
0

w
it

h
co

nd
it

io
n

a
=

2.
T

he
co

nt
ro

l
pa

ra
m

et
er

p
fo

llo
w

s
an

O
rn

st
ei

n-
U

hl
en

be
ck

pr
oc

es
s.

Bu
bb

le
s

of
di

ff
er

en
t

m
ag

ni
tu

de
ar

e
cr

ea
te

d.
T

he
fir

st
tw

o
bu

bb
le

s
ar

ou
nd

t
=

12
00

an
d

t
=

37
00

en
d

w
it

ho
ut

a
cr

as
h.

Th
ei

r
su

rv
ei

lla
nc

e
le

ad
to

ne
w

pr
ic

e
pl

at
ea

us
.

T
he

th
ir

d
an

d
fo

ur
th

on
e,

al
th

ou
gh

m
uc

h
sm

al
le

r
th

an
th

e
pr

ev
io

us
on

es
,e

nd
w

it
h

cr
as

he
s.

Th
e

ti
m

e
se

ri
es

en
d

ne
ar

th
e

st
ar

ti
ng

pr
ic

e
p r

ic
e(

0)
=

1.

47



4. Results II: Bubbles in Price Simulations

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Price(t)

0
.8 1

1
.2

1
.4

(a
)
J
L
S
M

o
d
e
l
P
ric

e
S
im

u
la
tio

n
R
a
n
d
o
m

G
ra

p
h
(L

,a
)
=

(10
,2),(

κ
,
η
)
=

(0
.2
,0
.005)

J
L

S
 d

y
n

a
m

ic
s

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Crash hazard rate h(t)

×
1
0

-3

0 1 2
(b

)
C
ra

sh
h
a
z
a
rd

ra
te

h
(t):

s
m
=

0
.01

·
p
·
L
2

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

p(t)

0

0
.2

0
.4

0
.6

(c
)
P
ro

b
a
b
ility

p
(t):

O
U
-P

ro
c
e
ss

p
0
=

0
.3

µ
=

0
.3

σ
=

0
.003

ϑ
=

0
.0005

Figure
4.4:

Plot
of

(a)
the

JLS
m

odel
price

sim
ulation,

(b)
the

associated
crash

hazard
rate

and
(c)

the
linear

increasing
control

param
eter

p
determ

ining
the

crash
hazard

rate
on

a
random

site
percolation

square
lattice

of
size

L
=

10
w

ith
condition

a
=

2.
T

he
control

param
eter

is
controlled

by
an

O
rnstein-U

hlenbeck
process.

Bubbles
of

different
m

agnitude
are

created.
The

O
rnstein-U

hlenbeck
possesses

long
m

em
ory

allow
ing

itself
to

take
long

excursions.
W

e
get

a
bubble

that
ends

w
ith

a
crash

and
a

bubble
that

survives
until

the
end.

G
enerally,crashes

occur
less

often
for

this
lattice

size
L
=

10
than

for
larger

sizes
L
=

100.W
e

need
the

controlparam
eter

to
com

e
close

to
the

criticalvalue
that

a
crash

w
illhappen.

48



4.2. Ornstein-Uhlenbeck Simulations

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Price(t)

0
.81

1
.2

1
.4

1
.6

(a
)
J
L
S
M

o
d
e
l
P
ri
c
e
S
im

u
la
ti
o
n
R
a
n
d
o
m

G
ra

p
h
(L

,a
)
=

(1
00
0,
2)
,(
κ
)
=

(0
.2
)

J
L

S
 d

y
n

a
m

ic
s

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Crash hazard rate h(t)

0

0
.1

0
.2

0
.3

0
.4

(b
)
C
ra

sh
h
a
z
a
rd

ra
te

h
(t
):

s
m
=

0.
01

·
p
·
L
2

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

p(t)

0

0
.2

0
.4

0
.6

(c
)
P
ro

b
a
b
il
it
y
p
(t
):

O
U
-P

ro
c
e
ss

p
0
=

0.
3
µ
=

0.
3
σ
=

0.
00
3
ϑ
=

0.
00
05

Fi
gu

re
4.

5:
Pl

ot
of

(a
)

th
e

JL
S

m
od

el
pr

ic
e

si
m

ul
at

io
n,

(b
)

th
e

as
so

ci
at

ed
cr

as
h

ha
za

rd
ra

te
an

d
(c

)
th

e
lin

ea
r

in
cr

ea
si

ng
co

nt
ro

l
pa

ra
m

et
er

p
de

te
rm

in
in

g
th

e
cr

as
h

ha
za

rd
ra

te
on

a
ra

nd
om

si
te

pe
rc

ol
at

io
n

sq
ua

re
la

tt
ic

e
of

si
ze

L
=

10
00

w
it

h
co

nd
it

io
n

a
=

2.
Th

e
co

nt
ro

lp
ar

am
et

er
is

co
nt

ro
lle

d
by

an
O

rn
st

ei
n-

U
hl

en
be

ck
pr

oc
es

s.
Th

e
cr

as
h

ha
za

rd
ra

te
is

ze
ro

un
ti

l
w

e
ar

e
ve

ry
cl

os
e

to
th

e
cr

it
ic

al
re

gi
on

of
th

e
co

nt
ro

lp
ar

am
et

er
p.

W
e

do
no

t
se

e
bu

bb
le

s
in

th
e

re
gi

on
p
=

0.
5

as
op

po
se

d
to

be
fo

re
.

W
e

ne
ed

ex
tr

em
e

ex
cu

rs
io

ns
of

th
e

O
U

pr
oc

es
s

fo
r

bu
bb

le
s.

Th
en

,t
he

cr
as

h
ha

za
rd

ra
te

ge
ts

ve
ry

la
rg

e
le

ad
in

g
to

a
sh

ar
p

bu
bb

le
.

Th
e

bu
bb

le
en

ds
by

a
cr

as
h.

la
rg

er
sy

st
em

s
se

em
to

be
m

uc
h

le
ss

su
sc

ep
ti

bl
e

to
bu

bb
le

s.
W

e
ob

se
rv

e
ra

re
ly

,o
nl

y
ex

tr
em

e
sh

ar
p

bu
bb

le
s.

49



4. Results II: Bubbles in Price Simulations
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4.2. Ornstein-Uhlenbeck Simulations
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4. Results II: Bubbles in Price Simulations
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4.2. Ornstein-Uhlenbeck Simulations
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4. Results II: Bubbles in Price Simulations
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4.2. Ornstein-Uhlenbeck Simulations
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4. Results II: Bubbles in Price Simulations
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4.2. Ornstein-Uhlenbeck Simulations
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4. Results II: Bubbles in Price Simulations
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4.3. Collection of Interesting Price Curves

4.3 Collection of Interesting Price Curves

Our framework is able to produce nice looking prices curves with bubbles.
We present them in the following for varying price volatility parameter η,
super-linear contribution exponent a and Ornstein-Uhlenbeck parameters
on a square lattice of fixed size L = 100. We also fix the value of the mini-
mum cluster size required for a crash to sm = 0.01 · p · Ld f (≈ 30).
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4. Results II: Bubbles in Price Simulations

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Price(t)

0
.8 1

1
.2

1
.4

(a
)
J
L
S
M
o
d
el

P
rice

S
im

u
la
tio

n
R
a
n
d
o
m

G
ra
p
h
(L

,a
)
=

(1
0
0
,2
),
(
κ
,
η
)
=

(0
.2
,0
.0
0
2
5
)

J
L

S
 d

y
n

a
m

ic
s

J
L

S
 &

 V
o

la
tility

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Crash hazard rate (t)

×
1
0

-3

0 2 4 6
(b
)
C
ra
sh

h
a
za
rd

ra
te

h
(t):

s
m
=

0
.0
1
·
p
·
L
d
f

T
im

e
s
te

p
s
 t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

p(t)

0

0
.2

0
.4

0
.6

(c)
P
ro
b
a
b
ility

p
(t):

O
U
-P
ro
cess

p
0
=

0
.4

µ
=

0
.4

σ
=

0
.0
0
2
θ
=

0
.0
0
1

Figure
4.15:

Plot
of

(a)
the

JLS
m

odel
price

sim
ulation

w
ith

(blue)
and

w
ithout

(red)
random

w
alk,

(b)
the

associated
crash

hazard
rate

and
(c)

the
linear

increasing
control

param
eter

p
determ

ining
the

crash
hazard

rate
on

a
random

site
percolation

square
lattice

of
size

L
=

100
w

ith
condition

a
=

2.
The

price
volatility

param
eter

is
η
=

0.0025.
The

control
param

eter
p

is
described

by
an

O
rnstein-U

hlenbeck
process

w
ith

driftrespectively
starting

value
µ
=

p
0
=

0.4.W
e

observe
tw

o
clear

bubbles
that

end
w

ith
a

crash.

60



4.3. Collection of Interesting Price Curves
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4. Results II: Bubbles in Price Simulations
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4.3. Collection of Interesting Price Curves
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4. Results II: Bubbles in Price Simulations

T
im

estep
s
t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Price(t)

0
.5 1

1
.5 2

(a
)
J
L
S
M
o
d
el

P
rice

S
im

u
la
tio

n
R
a
n
d
o
m

G
ra
p
h
(L

,a
)
=

(1
0
0
,2
),

(
κ
,
η
)
=

(0
.2
,0
.0
0
5
)

J
L

S
 d

y
n

a
m

ic
s

J
L

S
 &

 V
o

la
tility

T
im

estep
s
t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Crash hazard rate (t)

0

0
.0

0
5

0
.0

1

0
.0

1
5

0
.0

2
(b
)
C
ra
sh

h
a
za
rd

ra
te

h
(t):

s
m
=

0
.0
1
·
p
·
L
d
f

T
im

estep
s
t

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

p(t)

0

0
.2

0
.4

0
.6

(c)
P
ro
b
a
b
ility

p
(t):

O
U
-P
ro
cess

p
0
=

0
.4

µ
=

0
.4

σ
=

0
.0
0
2
θ
=

0
.0
0
0
7
5

Figure
4.19:

Plot
of

(a)
the

JLS
m

odel
price

sim
ulation

w
ith

(blue)
and

w
ithout

(red)
random

w
alk,

(b)
the

associated
crash

hazard
rate

and
(c)

the
linear

increasing
control

param
eter

p
determ

ining
the

crash
hazard

rate
on

a
random

site
percolation

square
lattice

of
size

L
=

100
w

ith
condition

a
=

2.
The

price
volatility

param
eter

is
η
=

0.005.
The

control
param

eter
p

is
described

by
an

O
rnstein-U

hlenbeck
process

w
ith

drift
respectively

starting
value

µ
=

p
0
=

0.4.

64



4.3. Collection of Interesting Price Curves
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4. Results II: Bubbles in Price Simulations
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4.3. Collection of Interesting Price Curves
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4. Results II: Bubbles in Price Simulations
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4.3. Collection of Interesting Price Curves
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4. Results II: Bubbles in Price Simulations

4.4 Price Simulation Using the Ising Model

To understand a potential crash process using the Ising model, we assume
a simple process of constant strengthening of imitation: Let the coupling
strength be proportional to time, K(t) ∝ t. In the beginning, K is small and
there are only small clusters. The crash hazard rate is very low, a crash
is very uncertain. As the coupling strength K(t) grows, the typical size of
clusters increases and one gets a broad distribution n(s of cluster sizes. The
coupling strength K(t) approaches its critical value Kc when a macroscopic
large cluster of synchronous agents is formed. If a large enough cluster gets
active, certainly before Kc, a crash will occur.

We present a price simulation for a network whose evolution is realized
by Glauber dynamics. We take the linearly increasing control parameter
as simple network dynamics. We simulate the price on a market, where
the imitation strength of traders is raising each time step. We do this by
applying one round of Glauber dynamics each time-step giving the agents
the possibility to change their cluster. Using the new configuration of states,
we can calculate the crash hazard rate and consequently the price round for
round. The occurrence of a crash is realized by a non-homogeneous Poisson
process as above. After a crash, we reset our networks to a random and
uncritical configuration. Figure 4.25 illustrate such a simulation for growing
control parameter K = 0.05 · t + 0.1.
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4.4. Price Simulation Using the Ising Model
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Chapter 5

Conclusion and Outlook

In the present work, we clarified the herding effect due to cluster dynamics
of traders. We provided a framework which is able to derive the crash haz-
ard rate of the JLS Model as a power law diverging function of the scaling
parameter. Using this framework, we are able to create reasonable bubbles
and crashes in price time series. Our simulations show that bubbles occur
basically if the scaling parameter takes long-memory excursions in the direc-
tion of the critical value. Most of the times, a crash is preceded by a bubble.
The time of the crash, however, is a random variable. The bubble must not
end with a crash, we also observe bubbles that survive without a crash lead-
ing to a new price plateau when the scaling parameters removes itself away
from the critical region. Our simulations suggest that larger systems are less
susceptible to bubbles and crashes, but if a bubble occurs, it is a very sharp
one as opposed to smaller systems. We explained this by the self-similarity
of the clusters. It is more difficult to get an imbalance in the market book
if the system size L is large. We conclude that if the underlying networks
of traders are self-similar, large systems exhibit less risk to bubbles due to
herding of noise traders than smaller systems.

Furthermore, our simulations relate the occurrence of a bubble and a crash
to the memory of the process (OU-process in our case) that describes the
networks. We found out that the larger the memory, the heavier are the bub-
bles and the more likely are crashes. In order to access the crash hazard rate,
we made the assumption that connected traders form a cluster that acts per-
fectly coherently. We use the critical phenomena of the diluted magnet from
percolation theory to describe the imitation between traders. The clusters
can cause a crash if clusters of imitating traders are large enough and get ac-
tive, that is, they change their choice from buying to selling. Transferred to
financial market, the scaling parameter becomes the fraction of traders that
are actively participating in the market. We propose that the rate, which
describes how often a cluster gets active, is depending on its size following
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5. Conclusion and Outlook

a super-linear relation between contributions of a group and group size. A
single contribution, which is nothing else than one single trader who gets
active, is enough to flip the choice of the whole cluster.

Combining the super-linear flipping rate and the cluster distribution we
derive a theoretical estimate of the power law exponent of the crash hazard
rate h as a function of the scaling parameter p:

h(p) ∝ |p− pc|−
a−µ

σ for a > µ. (5.1)

It is a function of the condition a, which is the super-linear exponent that
describes the flipping rate for clusters, and the universal critical exponents
µ and σ of percolation theory. Being universal, the latter two ones are only
depending on the dimension, the range, as well as the way of interaction of
our system.

For the specific case of the site percolation model on the square lattice, we
obtain α = 2.39 as theoretical estimate for the super linear coefficient a = 2.
Numerical calculations on this model of networks confirm the theoretical
estimate as long as there is no infinite cluster. In the phase of no percolating
cluster, we obtain α = 2.37 for a = 2 and lattice size L = 1000. For the
phase of percolation, we observe a faster decay due to rounding offs. The
divergence of the crash hazard rate is not symmetrical. Note that equation
5.1 holds only for a > µ. If we have a < µ, we show that the crash hazard
rate becomes a concave function which does not diverge.

The stylized framework of nearest neighbor connectedness can be substi-
tuted with a more general approach in further researches. Traders in the
real world are organized into more complex networks than the simple near-
est neighbor lattice. Although the square lattice is able to provide us with
many insights, it could be interesting to investigate the crash hazard rate on
well-behaving random graphs.

Furthermore, we are also able to confirm the power law diverging character
of the crash hazard rate by using the Glauber dynamics on large lattices in
the Ising model. The results for smaller lattice sizes like L = 10 are biased
due to the overestimation of the Ising clusters. Further researches could
improve the output for smaller lattice sizes L by using the Ising droplets
instead. In this framework, we present price simulations only for L = 50,
which is a value that compromises between a biased output and a numeri-
cally extensive calculation of the Glauber dynamics. The Ising clusters ap-
proach is also able to create bubbles and crashes. However, we need many
rounds of the Glauber dynamics to see dynamics in the system. Further
investigations could apply cluster flip dynamics like the Swendsen-Wang
algorithm [33].

We constrained ourselves to negative price-shocks due to simplicity. How-
ever, our theoretical considerations also allow positive price-shocks. Indeed,

74



they are identical to the negative ones. They are just preceded by a negative
bubble. A future work could simulate an asset that exhibits both negative
and positive crashes. Further research could also apply a recently discovered
triggering process of failing of interacting ponzi-firms (see [34]) to simulate
the crash more dynamically.
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Appendix A

Appendix

A.1 The crash hazard rate from a statistical point of
view

The crash hazard rate h(t) from the JLS model is the probability that a crash
occurs in the interval [t, t+ dt] for dt→ 0 given that it has not occurred until
time t. Let F(t) be the cumulative distribution function (cdf) of the occur-
rence of a crash up to time t. The longer we wait the more likely a crash
has happened. In other words, the cdf F(t) is the cumulative incidence for
incident events up to a proportion. The survival probability, which means
that there is no crash up to time t, is directly linked to the cdf. It is the com-
plementary event of that a crash has occurred up to time t whose probability
is given by the cdf F(t). We get

S(t) = 1− F(t). (A.1)

The probability that a crash occurs at time t is given by the derivative of
the cumulative distribution function dF(t)/∆t. It is a probability density
function (pdf).

With the help of the equation for conditional probability, the probability that
a crash occurs at time t given that is has not occurred until time t is given
just by:

h(t) =
dF(t)/∆t
1− F(t)

(A.2)

Note that the crash hazard rate itself is not a probability! Look at the units of
the last equation: It is a probability divided by time divided by a probability
leading to 1 over time. This explains the name hazard rate, since h(t) is a
rate and not a probability. ], the product of crash hazard rate times time
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A. Appendix
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Figure A.1: Plot of the noisy tail of the cluster number.

is a probability. h(t)dt denotes the unconditional probability that there is a
crash in between [t, dt].

A.2 Logarithmic Binning, Adaptive Kernel Estimation
and the Hill estimator

As we can clearly see in figure A.1, the right hand side of the distribution is
noisy. In contrast to the big values on the left side with its high frequency,
fractional fluctuations are not suppressed in the tail. Data is small there,
only a few clusters exist, if any. Indeed, fractional fluctuations are large for
each cluster size counts in the tail. This is the reason for the statistical noise
in the tail on the plot. We have three alternatives here to improve the results
that we obtain with the help of simple linear regression in the log-log-plot.

1. Cumulative Distribution Function via Rank plot

2. Logarithmic binning

3. Data adaptive kernel estimation

A.2.1 Cumulative Distribution Function via Rank Plot

Sorting and ranking measurements is usually the quickest way to access
the cumulative distribution function. If we rank the cluster sizes in order,
then by definition there are s words with frequency greater than or equal
to that of the s-th biggest cluster. Thus the cumulative distribution of the
cluster number is simply proportional to the rank n of a word. If we want to
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A.2. Logarithmic Binning, Adaptive Kernel Estimation and the Hill estimator

access the exponent of our cluster number, we start by sorting the clusters
in decreasing order of frequency, then number them beginning with 1, plot
their ranks as a function of their frequency in a log-log-plot and determine
the gradient of the straight line. Finally, the exponent for the cluster number
is exponent-1.

A.2.2 Data adaptive kernel estimation: Logarithmic binning

We divide the different values for s into bins B of varying length lB. Loga-
rithmic binning means that each bin is a multiple k wider one than the one
before it. In numbers: lB = l1 ∗ kB. {yB1, yB2, . . . , yBN} are the data points
that fall in the B-th bin. The frequency histogram must be normalized by
the width of the bins, i.e. the number of integers that fall in the bin. We get
the following equation:

yB =
yB1 + . . . + yBN

n
(A.3)

The normalized sample count gets independent of the bin width on average.
Using bins with increasing width one has the advantage that the bins in the
tail of the distribution get more samples and therefor suppress the fractional
fluctuations compared to them with fixed bin sizes.

A.2.3 Hill estimator µ̂

The Hill estimator has a wide variety of applications. Its advantages and
disadvantages are well known (Drees et al,2000 ). E.g., modeling the tails
of the distribution of returns is important in the evaluation of risk (Em-
brechts et al.,1997) Suppose that X1, ..., XN are independent and identically
distributed (i.i.d) random variables with cumulative density function (cdf)
P(Xi < x) = x−µL(x). Let X(1) ≥ X(2) ≥ ... ≥ X(kN+1) be the kN + 1 largest
order statistics. We take the exponential approximation of the normalized
log-spacings Yj = j log(X(j)/X(j+1)) for j = 1, ..., k and estimate a pseudo-
maximum likelihood. This estimator of the tail index µ is called Hill estima-
tor [35]. More precisely, the Hill estimator is defined for some kN by

µ̂N =

{
1

kN

kN

∑
i=1

log(X(i)/X(kN+1))

}−1

(A.4)

We apply the Hill estimator to get an estimation for our cluster distribution.
Note that the random variables are the cluster sizes s. Having the site perco-
lation model initialized, we have to take all the formed clusters into account.
Each cluster is a realization of our random number. Consequently, the total
number of clusters denotes the number of different random numbers N. The
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A. Appendix

pdf is the probability to pick a cluster of size s if I pick a cluster out of the
set of all the clusters that are realized. The according cdf is the theoretical
cluster number n(s) = 1

sµ . n(s) is also called cluster distribution. Being a
constant we set L(x) ≡ 1.

We take the order statistics of our cluster sizes, i.e. we sort descendant all
the realized cluster according to the size. The function L(x) is a constant,
thus, we do not need a threshold kn for cutting our sample to have L(x)
slowly varying.

But we do have set a limit for the sample. As we have seen in figure A.1, the
right hand of the distribution in the loglog-plot is noisy. Therefor we skip
the noisy part and set an according limit to the cluster sizes s.

Error calculation: The variance is proportional to α2

k

∆µ

µ
≈ 1√

kn
(A.5)
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