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August 17, 2012





Acknowledgments

I would like to express my gratitude to my supervisor Didier Sornette for his
excellent academic guidance. The present thesis would not have been possible
without his constant support; he has always been available for discussions and
help for solving problems which is highly appreciated given his tight schedule as
person in high demand.

Further, I would like to thank Yannick Malevergne for being my co-referee and
for invaluable help in co-authoring the mutual fund paper. My thanks also go to
Ryan Woodard and Peter Cauwels for sharing their academic experience with me
and supporting me with their helpful advice; Cars Hommes, Peter Woehrmann
and Shengsui Hu for help developing the respective parts of the thesis; Mika
Kastenholz and his team for providing me with an internship at Credit Suisse and
sharing his expertise on financial markets with me.

I would also like to thank my friends and colleagues Georges Harras, Moritz
Hetzer, Vladimir Filimonov, Susanne von der Becke, Qunzhi Zhang, Ryohei
Hisano, Zalan Forro, Wanfeng Yan and Maxim Fedorovsky for ongoing discussion
about research and other topics. Finally, I am also grateful to our secretary Heidi
Demuth for dealing with countless administrative issues on top of her normal paper
work. Last, but not least I would like to acknowledge the Chair of Entrepreneurial
Risks for providing financial support.





Table of Contents

Acknowledgments iii

Table of Contents v

Abstract vii

Zusammenfassung ix

1 Introduction 1
1.1 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Cognitive Errors and Emotional Biases . . . . . . . . . . . . . . . . 3

2 Investors’ Expectations, Management Fees and the Underperformance
of Mutual Funds 5
2.1 Introductory comments . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Discussion & Perspective . . . . . . . . . . . . . . . . . . . . . . . . 62

3 Super-exponential Bubbles in Lab Experiments: Evidence for Anchoring
over-optimistic Expectations on Price 63
3.1 Introductory comments . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Discussion & Perspective . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4 Supplement: An Information Theory Approach . . . . . . . . . . . 91

4 Evidence for super-exponentially Accelerating Atmospheric Carbon Diox-
ide Growth 95
4.1 Introductory comments . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2 Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3 Discussion & Perspective . . . . . . . . . . . . . . . . . . . . . . . . 127

5 Conclusions 131

Bibliography 133



vi

Curriculum Vitae 139



Abstract

The present thesis is concerned with biased expectations in unsustainable financial
and economic systems. The term “biased expectations” implies that human
beings are not cold calculating robots. Humans are subject to finite computing
power, limited memory and emotions. Although the concept of perfectly rational
“homo economicus” has been very useful in classical finance, the newer behavioral
finance has helped to explain some remaining puzzles in the field. Starting with
Tversky and Kahneman (1974), these two psychologists began to systematically
examine how humans make judgments under uncertainty and identified a number
of cognitive errors and emotional biases. This thesis will refer to the work by
Tversky and Kahneman to explain some puzzles observed in financial and economic
systems.

In the first segment, mutual funds are investigated. We start with a model
assuming perfectly rational agents (“homo economicus”), but we will see that
there is a mismatch between the value of the provided service by the fund manager
and the service fee paid by the investor. This difference could be explained, for
example, by over-optimism.

In the second segment, the dynamic of bubbles in a laboratory experiment is
investigated. We find that bubbles can grow faster than exponentially and that
agents seem to anchor their expectations on previous prices and extrapolate their
expectations instead of considering the fundamental value. The resulting faster
than exponential growth is non-sustainable and, therefore must burst in finite
time.

In the last segment, we investigate non-linear processes and how they interact
with each other: population and economic production per capita are the driving
factors of atmospheric carbon dioxide content. Although each process by itself
can grow only exponentially, the interplay can lead to faster than exponential
growth and a finite time singularity. However, current efforts to bring emissions
down to a sustainable level are anchored on past emissions which might no be
sufficient, according the latest research.

In all three presented cases, the collective would be better off if the individuals
would adopt a more rational view while avoiding biases to give up the their short
term interests for the longer term good of all.





Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit “verzerrten Erwartungen” in nicht-
nachhaltigen Finanz- und Wirtschaftssystemen. Der Bergriff “verzerrte Erwartun-
gen” bringt zum Ausdruck, dass Menschen nicht emotionslose Roboter sind.
Menschen haben ein beschränktes Erinnerungsvermögen, können Gleichungen
oftmals nur näherungsweise lösen und haben Gefühle. Obwohl das Konzept eines
“Homo economicus” in der Finanzliteratur äussert hilfreich ist, hat die neuere
“Behavioural Finance” geholfen, mehrere bisher unverstandene Phänomene zu
erklären. Tversky and Kahneman (1974), zwei Psychologen, haben erstmals die
Mechanismen systematisch untersucht, wie Menschen Entscheidungen unter Un-
sicherheit treffen. Die Vorliegende Arbeit wird immer wieder Bezug auf die von
Tversky und Kahneman gefundenen Erklärungen nehmen.

Im ersten Teil der vorliegenden Arbeit werden Aktienfonds untersucht. Das
verwendete Modell setzt rationale Agenten voraus. Aber wie wir feststellen werden,
besteht zwischen dem Wert der erbrachten Leistung des Manager des Aktienfonds,
und des bezahlten Preises dafür, eine nicht zu vernachlässigenden Differenz. Diese
Differenz könnte unter anderem durch übertriebener Optimismus erklärt werden.

Im zweiten Teil wird die Dynamik einer Blasenbildung in einem simulierten
Aktienmarkt untersucht. Diese Blasen können schneller als exponentiell wachsen
und die Händler scheinen ihre Erwartungen nicht am Fundamentalpreis, sondern
aufgrund des letzten beobachten Wert zu bilden. Das resultierende “schneller-als-
exponentielle” Wachstum ist nicht nachhaltig und die entsprechende Blase muss
innert endlicher Zeit platzen.

Im dritten Teil untersuchen wir die Wechselwirkung zweier nicht-linearer
Prozesse (Wirtschaftswachstum und Bevölkerung) auf Umweltverschmutzung.
Obwohl jeder der verursachenden Prozesse für sich genommen nur linear wachsen
kann, kann durch das Wechselspiel der beiden schneller als exponentielles Wachs-
tum entstehen. Bei den Bemühungen, Karbon-Dioxidemissionen einzuschränken,
sollte deswegen unbedingt beide Prozesse (Wirtschaftswachstum und Bevölkerung)
gleichzeitig, sowie deren Wechselspiel berücksichtigt werden. Die derzeitigen
Bemühungen die Verschmutzung einzugränzen Beschränken sich aber mehrheitlich
darauf, wieder die Levels der 90er Jahre zu erreichen, was ungenügend ist.

In allen drei präsentierten Beispielen wäre es besser für die Gesellschaft als
Ganzes, wenn die Individuen rationell Erwartungen hätten; dies würde dazu führen,
dass weniger kurzfristige Ziele verfolgt würden und würde auch im langfristigen
Interesse der Gesellschaft liegen.
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Introduction

1.1 Organization of the Thesis

The thesis is organized as follows:

In the present chapter, we give a general introduction to expectations and
cognitive errors. Each of the following three chapters is dedicated to a specific
subject and starts with a brief introduction to the chapter’s topic. We then
present the respective original research paper. Finally, we end each chapter with
some further perspective and concluding discussion.

Chapter 2 is dedicated to a model investigating the fee setting in mutual funds.
We give a very short introduction to modern portfolio theory and efficient markets,
before we present our research on mutual funds. Highlights and contribution of
this paper are:

• We explain the relationship between a representative investor and a fund
manager.
• Investor’s perception plays a key role in the fund’s fee-setting mechanism.
• US domestic equity mutual funds underperform the market expectation by

about 1.5%.

We conclude this chapter with a short discussion on some of the limitations faced
by classical finance and the economic vs. econophysics paradigm.

Chapter 3 is dedicated to a empirical test of an applied economic model of
bubbles. We start by giving some background information on bubbles. We then
present the research paper itself containing the following highlights:

• An interpretation of lab experiments is offered that exhibits financial bubbles.
• Our calibration reveals the existence of positive feedbacks.
• We find traders anchor expectations more on price than on returns in these

bubbles.
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We conclude this chapter by discussing possible extension such as the FTS-GARCH
model and the LPPL model. A supplementary section is added to discuss an
information theoretic approach to estimate parameters in non-stationary time
series.

Chapter 4 is dedicated to a simple economic model linking atmospheric carbon
dioxide content to population and GDP growth. The main results are as follows:

• A model coupling CO2 emissions and macro-economic variables is developed.
• The model accounts for non-linear dynamic interaction between the variables.
• The growth rate of atmospheric CO2 shows no sign of slowing down as we

find strong evidence that it is in fact accelerating at least exponentially,
with even evidence of super-exponential growth.

We conclude this chapter with a short assessment of the predictions by the Club
of Rome and a general discussion on the limitations of forecasting.

Finally, chapter 5 concludes.

1.2 Expectations

Expectations play in all three presented papers a key role and are a central theme
of the present thesis. Already Keynes (1937) noted that stock prices are mainly
a “convention” of expectations: “A conventional valuation [ . . . ] is established as
the outcome of the mass psychology of a large number of ignorant individuals.”
Expectations1 have to be evoked as soon as an outcome is no longer certain (as
opposed to a certain outcome with probability one). Knight (1964) distinguishes
two kinds of uncertainty or risk: “There is a fundamental distinction between the
reward for taking a known risk and that for assuming a risk whose value itself is
not known.” The latter is also referred to as Knightian uncertainty. Statistics
allow to efficiently handle risk, when probability distributions are known or can
be calibrated. It is interesting to note that even if the outcome is not certain,
but the underlying probability distribution is known (for example an asset with
normal distributed returns), there is very often a possibility to mitigate risk; it
can be either hedged away or insured. In contrast, for Knightian uncertainty,
the situation is becoming more complicated. It is virtually impossibly to risk
manage such events as they would require to know the magnitude of the event as
well as the probability. The concept of Knightian uncertainty has recently gained
more attention with Taleb’s “Black Swan”, (Taleb, 2007), see also former US
defense secretary Rumsfeld’s somehow comical press conference where he refered
to “known unknowns” and “unknown unknowns” (i.e. Knightian uncertainty)2.

1from latin expectatum (look out for, await), see Webster’s dictionary.
2There are known knows; there are things we know we know.
We also know there are known unknowns – that is to say we know, there are some things we
do not know.
But there are also unknown unknowns – the ones we do not know we don’t know.
available at https://www.youtube.com/watch?v=GiPe1OiKQuk

https://www.youtube.com/watch?v=GiPe1OiKQuk
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Financial markets are convenient to study expectations as prices reflect agents’
aggregated expectations. Arrow (1964) described a perfect market where every
kind of risk is replicable and tradeable. Such a market is referred as “complete”.
Up to a certain degree, some financial markets can be considered as complete as
derivatives allow to be exposed only to specific risk factors. For example, fixed
income derivatives allow to directly trade expectations in interest rate changes in
a single transaction. Hence, in modern financial markets, it is no longer necessary
to construct a complex fixed income portfolio to obtain a desired risk profile (see
for example Hull, 2011). However, although there exists a plethora of derivatives,
not all risks are tradeable on an exchange, in particular personal risks like for
example a divorce.

Starting with Walras (1874) at the end of nineteenth century, economists began
to model the economy as an aggregated sum of supply and demand of agents. The
idea is that supply and demand are matched in order to clear the market. The
resulting price, which balances the two, is the equilibrium price. This is called
the “general equilibrium theory” (see Kurz (2007) for a short introduction and
some generalization). Each of the agents in these models typically observe their
environment and are equipped with an utility function, to make decisions which
are most beneficial. It is important to note that it is generally assumed that
the agents are perfectly rational, are only focused on their own personal interest
and have the capability to perfectly compute their optimal decision. This idea
is generally referred as “homo economicus”. As discussed in Sargent (2008), a
“homo economicus” is said to have “rational expectations”. Kurz (1996) proposes
a particularly interesting approach and develops an agent based model, which
allows each agent to have its own expectations (which can be in “general wrong”
in the sense that they are biased). These expectations, which agents form from
their personal preferences and experiences are similar to a Bayesian priors, where
agents try to assess parameters by conditioning them on what they have learned
from the past (Hájek, 2012). The price itself is formed as an aggregate over the
demand and supply of all agents in order to clear the market at the end of each
period. Further, Kurz’ model introduces an “endogenous uncertainty” component
by amplifying exogenous fluctuations; Fitting his model to the US market, Kurz
claims that “[ . . . ] more than 2/3 of the variability of stock returns is due to
endogenous uncertainty” which would explain some of the excess volatility puzzle
(Shiller, 2005).

1.3 Cognitive Errors and Emotional Biases

In everyday situations, people are not able to act as complete rational agents
and as a result of this, they make suboptimal decisions; the “homo economicus”
is an idealized construct of finance. Making decisions, humans suffer from a
plenitude of cognitive errors and emotional biases. The former, cognitive errors,
result from incomplete information whereas the latter, emotional biases, stem
from spontaneous reaction (Kuhlman, 2012). Tversky and Kahneman (1974)
were among the firsts to investigate how humans (as compared to a rational



4 Chapter 1. Introduction

agent), in different environments and under uncertainty, behave. Kahneman won
a Nobel prize in 2002 for this work (when Tversky had already died). Of the
many cognitive errors and emotional biases described by Tversky and Kahneman
and his colleagues3, the over-optimism, anchoring and belief confirmation biases
are most relevant for the present thesis.

• Over-optimism: “Perhaps the best documented of all psychological error is
the tendency to be over-optimistic. People tend to exaggerate their own
abilities (Montier, 2002)”. “The main advantages of optimism may be
found in increasing persistence and commitment during the phase of action
toward a chosen goal, and in improving the ability to tolerate uncontrollable
suffering. [ . . . ] Confidence, short of complacency, is surely an asset once
the contest begins. The hope of victory increases effort, commitment, and
persistence in the face of difficulty or threat of failure, and thereby raises
the chances of success” (Kahneman, 2002). See also Kurz (2007) for a model
with “rational over-confidence”.
• Anchoring: “[ . . . ] people make estimates by starting from an initial value

that is adjusted to yield the final answer” (Tversky and Kahneman, 1974).
To consider something as cheap or expensive does not so much depend
on the intrinsic value of a good, but more on the reference price; a good
which is sold with a discount of 50% can be perceived as cheap, even if
the discounted price is still well above the intrinsic value because the agent
anchors its estimate to the original price.
• Belief confirmation: the subject may consider new information, but only if

it matches his present expectations. He is mainly concerned to preserve the
status quo and is not willing to adopt any new information. This can also
lead to over-optimism, as the agent will only examine information which
confirms his view (Rabin and Schrag, 1999).

Obviously, human agents who are participating in markets are not perfectly
rational. It is impossible to “calculate” the optimal action for every problem,
as the human brain is not a computer and agents have to make decision under
limited information. Moreover, it has been shown in many studies that people are
risk averse, i.e. people are willing to take upside risk, but only limited down side
risk (see for example Tversky and Kahneman, 1974).

Behavioral finance tries to improve the classical models with perfectly rational
agents by considering cognitive and emotional biases. See Camerer (2003) for
a good general overview and Hens and Bachmann (2009) for an illustration of
behavioral economics with many practical examples. We will refer to the biases
discussed in this chapter in all of the remaining chapters.

3see for example https://en.wikipedia.org/wiki/Cognitive_biases for an extensive list.

https://en.wikipedia.org/wiki/Cognitive_biases


2
Investors’ Expectations,

Management Fees and the
Underperformance of Mutual

Funds

It is hard to see how any rational man can ever invest.
—John Maynard Keynes

2.1 Introductory comments

Originally, investors were concerned with building a portfolio out of individual
stocks in which each investment is judged individually (prudent man rule). In
the early 1950s, Markowitz developed the modern portfolio theory where the
portfolio is judged holistic. Portfolios are constructed as a combination of different
assets, and diversification between stocks plays an important role to reduce the
overall volatility (measured as standard deviation). Further, the portfolio with the
highest return, given a specific level of risk, is called efficient portfolio (Markowitz,
1952).

The CAPM (capital asset pricing model) builds on top of Markowitz’s idea:
it assumes that all agents in a market invest only in the most efficient portfolio,
which is the so called tangent portfolio. The model distinguishes specific risk from
systematic risk: While specific risk is related to a specific asset and risk can be
diversified away in the portfolio, systematic risk is inherent. The CAPM assumes
the market is arbitrage free and the resulting prices form a price equilibrium at
which agents will trade the respective assets.
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Markovitz’ approach as well as the CAPM are foremost based on purely theo-
retical consideration. If the CAPM holds in reality is subject to debate: while
Kurz (2007) casts doubt, others (Levy and Roll, 2010; Ni et al., 2011) find that
the CAPM can not be rejected, but crucially depends on the market proxy. The
CAPM has been extended in several dimension which fix some of the observed
anomalies: Fama and French (1993) use a three factor model to account for
the large cap effect. The resulting classification in large-small and growth-value
companies has been adopted by many practitioners. Daniel et al. (2001) offer an
adoption of the CAPM model which takes behavioral biases in account. Finally,
Malevergne and Sornette (2005) offer an overview over the various extensions of
the CAPM model.

Fama proposed the “Efficient Market Hypothesis” in his seminal paper (Fama,
1970) to check if some investors are able to systematically outperform the market
(which would be in contradiction to CAPM). Fama proposes three forms of
efficiency of markets (known as efficient market hypothesis (EMH)):

• Weak form: The information set is just “past price (or return) history”.
Hence, historical patterns, etc. should not persist. The assumption of the
weak form explains also why Brownian motion of prices of financial assets is
a popular assumption.
• Semi-strong form: “the concern is the speed of price adjustment to other

obviously publicly available information (e.g., announcements of stock splits,
annual reports, new security issues, etc.).”
• Strong-form: To the previous sets, the information adds “monopolistic access

to any information”, i.e. it also includes insider information.

If the market actually follows all three forms of the EMH is subject to debate;
whereas Fama and the Chicago school are strong advocates and belief that the
EMH holds approximately in all three forms, others are more pessimistic (see
for example Lo (2007) for a relatively recent review of the EMH). Moreover,
behavioral scientists, as discussed in chapter 1, consider the assumption that
agents act perfectly rational as flawed. To what degree departure of rationality
leads also to deviations (and what deviations) from market efficiency is a hotly
investigated issue in modern financial economics.

However, it is important to note that finance is a social science above all. As
such, a hypothesis like the EMH does not get immediately rejected as soon as
some weak evidence against it is found; a theory (even falsified) is only dropped
when a new and better theory exists (McCauley, 2006). This should make clear
why the Markovitz rule for portfolio allocation is still the working horse in finance.

The research paper on mutual funds presented in the next section follows the
setup of Fama (1970) by assuming efficient markets. However, we will reveal that
investors overpay mutual fund managers if they consider the Markovitz rule for
their investments relative to the broad market.
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2.2 Paper

On the following pages, we present the paper in full length. The paper is available
as:

A. D. Huesler, Y. Malevergne, and D. Sornette. Investors’ Expectations,
Management Fees and the Underperformance of Mutual Funds. Social
Science Research Network Working Paper Series, Feb. 2012
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Investors’ Expectations, Management Fees and

the Underperformance of Mutual Funds

This version: May 14, 2012

May 14, 2012

Abstract

Why do investors buy underperforming mutual funds? To address this
issue, we develop a one-period principal-agent model with a representative
investor and a fund manager in an asymmetric information framework.
This model shows that the investor’s perception of the fund plays the
key role in the fund’s fee-setting mechanism. Using a simple relation
between fees and funds’ performance, empirical evidence suggests that
most US domestic equity mutual funds have added high markups during
the period from July 2003 to March 2007. For these fees to be justified, we
show that the investor would have expected the fund manager to deliver
an overall annual net excess-return of around 1.5% above the S&P 500 on
a risk adjusted basis. In addition, our model offers a new classification of
funds, based on their ability to provide benefits to investors’ portfolios.

JEL-Classification: G23, G11, D82
Keywords: Mutual Fund Fee, Mutual Fund, Asymmetric Information, Principal-
Agent Relationship, Markup

1 Introduction

The lack of performance of the mutual fund industry and the lack of investors’
reaction to these poor performances is a widely reported phenomenon (see for in-
stance Palmiter and Taha (2008), Berk and Green (2004), Nanigian et al. (2008),
and Glode (2011)). However, despite its apparent underperformance, the total
net assets managed by US mutual funds have increased from 7.0 trillion dollars
in 2000 to 11.8 trillion dollars in 2010, according to the Investment Company
Institute (2009). Why do investors buy these obviously underperforming in-
vestment vehicles? At the same time, how can one explain the long-standing
puzzle of high markups in the mutual fund industry? These questions are even
more crucial in recent years, given the emergence of new investment vehicles
such as low-cost index funds (some index funds track S&P 500 indices with an
annual expenses of 10 basis point and have no load fees) and exchange-traded
funds (ETFs). With growing competition and increasing disclosure and trans-
parency in the fund market, and given their relatively poor performance, one
could expect that mutual funds would reduce their fees, but a report by the
US Securities and Exchange Commission clearly shows that mutual fund total
expense ratios (TER) have been overall on the rise since the late 1970s, see SEC
(2001) for instance.

1
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The present paper proposes a simple solution to these two related puzzles
in terms of a principal-agent model in an asymmetric information framework.
Our model provides a theoretical framework to account for the investors’ limited
abilities and to test some of its observable consequences. We find that the opti-
mal fee level, determined by the fund managers in their own interest, depends
only on the information and preferences of the investors. Because investors have
only partial information on the fund managers’ true abilities and limited knowl-
edge of the financial markets, they may hold a biased view of the fund’s true
performance. Fund managers can then take advantage of the investors’ biased
view, attracting their investment and charging them an additional premium
significantly above the competitive level of fund fees.

Our model assumes that the origin of the misperception of investors about
the fund performance lies in their limited or misguided information (the two
following perspectives about the rationality of investors can not be distinguished
within our framework: either investors are rational but take their decisions
based on limited information, or they have only bounded rationality) and in
their inability to update their priors. Given these limitations, investors make
rational decisions. The assumption of lack of learning has the advantage of
reducing the problem to a simple one-period set-up and is justified by several
survey evidence that show that most individual investors in mutual funds are
unsophisticated and pay little attention to funds features that are not directly
observable, so that their learning ability is actually questionable. Barber et al.
(2005) and Choi et al. (2009) provide empirical evidence that investors are very
sensitive to salient fees such as front-load fees. Surprisingly, investors appear to
be unaware of the existence of mutual funds’ expense ratios. Capon et al. (1996)
and Alexander et al. (1998) demonstrated that investors are not familiar with
many basic facts about mutual funds such as the level of fees they are paying
to their funds. Further, investors’ bias is probably influenced and reinforced by
the marketing practices of mutual funds, which promote the sale of fund shares.
Since 1980, after approval of the SEC Rule 12b-1, mutual funds have been
allowed to charge marketing and distribution fees to their investors by adopting
a 12b-1 plan, see Malhotra and McLeod (1997). Khorana and Servaes (2004)
and Barber et al. (2005) have identified a positive impact of 12b-1 fees on funds’
money flows. Murray (1991) explains various marketing strategies in promoting
fund sales. Nonetheless, the debate is still open and another trend of literature
suggests that investors are able to learn and adapt their decision making process
to past information, which requires the introduction of a multi-period model
with learning as in Berk and Green (2004) or Gil-Bazo and Ruiz-Verdú (2009)
for instance.

In addition, our model suggests two alternative fee-setting mechanisms.
First, when the fund provides diversification benefits from the perspective of
an investor’s global portfolio, investors have to pay higher fees to get access
to this benefit. This scenario has been analyzed by Gil-Bazo and Ruiz-Verdú
(2009). Second, when a fund does not provide diversification benefits, but actu-
ally adds additional returns to the investor’s global portfolio, the fund manager
will lower fund fees to attract more money inflow.

The existing literature attributes the investors’ puzzling investment behavior
either to the existence of redemption fees (Nanigian et al. (2008)), to the per-
formance of funds in bad economic times (Glode (2011)), to competition among
funds (Gil-Bazo and Ruiz-Verd (2008)), and to representativeness heuristic of

2
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investors influenced by recent returns independently of risk profiles (Harless
and Peterson (1998)). Whether fund fees are excessive is a long-standing de-
bate among academics. Several studies such as Coates and Hubbard (2007) and
Grinblatt et al. (2008) argue that there is an adequate level of competition in
the mutual fund industry and fees in the fund market are thus competitive. The
result of our empirical study contradicts this view. More specifically, we show
that after accounting for the returns on funds, diversification benefits and fees,
most US domestic equity mutual funds, both actively and passively managed,
have added markups. In addition, these mutual funds demonstrate competitive
disadvantage to low-cost index funds or index ETFs. In this respect, our study
provides additional evidence to previous works from School (1982), Freeman
(2007), Freeman and Brown (2001), which report that mutual fund advisers
charge significantly higher fees than free-market prices would suggest.

Our model is based on the observation that the relationship between a
manager and a representative investor constitutes an example of the general
principal-agent problem. Following the seminal work of Ross (1973) and Holm-
strom (1979), numerous studies have applied the principal-agent model to var-
ious situations of economic exchange between two parties. In a nutshell, an
investor “hires” a mutual fund manager and the fee structure of the mutual
fund is the mechanism used to attempt to align their interest, under prevailing
conditions of incomplete and asymmetric information between them.One can
notice in passing that Cornell and Roll (2005) showed that the manager invests
according her own objective function which can differ from the investor’s utility
function, even when she is compensated relative to a benchmark. In the lan-
guage of the principal-agent problem, the manager sells her service, presented
as information gathering ability and managerial efforts, to the investor in return
for a compensation represented as the management fees (Golec (1992); Heinkel
and Stoughton (1994); Starks (1987)). We assume that managers have full ac-
cess to an investor’s private information, whereas the investor has no access to
a manager’s private information.

We derive the demand function of the representative investor and the opti-
mal level of management fees charged by the manager in an equilibrium. The
information on the manager’s skills is revealed to the investor by the return his-
tory of the managed fund. For a specified level of management fees, the demand
function of the representative investor is determined by the composition of her
optimal portfolio. This portfolio is defined as a mixture of the mutual fund
investment and of other vehicles that she picks up herself. The fund manager
uses her private knowledge of her own management skills and the full under-
standing of the investor’s decision process to determine the optimal fee level,
which maximizes her expected utility.

Our approach generalizes in three directions the work of Golec (1992), who
also studied a one-period principal-agent model in which mutual fund man-
agers trade their information-gathering abilities with investors: (ı) we solve the
principal-agent problem by fully considering the informational disadvantage of
the investor; (ıı) we focus our attention on the fixed-fee compensation scheme
as it is the most-used standard in the mutual fund industry; and (ııı) our treat-
ment is not restricted to the mean-variance utility function, even if we eventu-
ally show that it is often sufficient to provide reasonable results. In contrast to
other studies, such as Gruber (1996), Wermers (2000), Glode (2011) and French
(2008), which focus on actively managed mutual funds, our model requires no
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assumption on whether the fund is actively or passively managed.
We obtain two main theoretical results. Firstly, the fee-setting mechanism

including the fees at equilibrium is fully determined by the information available
to the investor, while the manager’s information is irrelevant. The investor’s
information includes her choice of the benchmark portfolio (The benchmark
portfolio represents the investor’s standard choice of investment vehicles. This
can be ETFs or bank savings, depending on the investor’s financial knowledge
and risk preference.) and her anticipation of the fund’s relative performance
in terms of both diversification benefits and returns, when compared to her
benchmark. Secondly, we provide a simple relation to analyze a fund’s risk-
adjusted performance, when fees come into play. In addition, our results do not
require any restrictive assumptions on the form of the fund’s return distribution
and the investor’s utility function as long as it is an increasing and concave
function.

Then, we test whether the returns delivered by US equity mutual funds can
justify their fees in recent years, given the perspective offered by our model.
For this, we use a data set of 3,273 US domestic equity funds over the period
from July 2003 to March 2007 from the CRSP Survivor-Bias-Free US Mutual
Fund database. The results show that most funds have charged high markups
to their investors. At the same time, we interpret the continued presence of high
markups as an indication of investors’ over-optimism about the funds’ future
performance when they make their investment decisions. The over-optimism
of investors translates into decisions made on the basis of limited or misguided
information, and leads to investments in underperforming mutual funds. This
indicates the investor’s incorrect selection of benchmark, possibly due to the
lack of investment knowledge.

This paper is organized as follows. Section 2 describes the model, stressing
its economic underpinning. In section 3, we present our main results, with the
characterization of the equilibrium and its main properties. Section 4 presents
the empirical framework and results. Section 5 summarizes our conclusions. An
appendix with the proofs and additional table is available from the authors on
request.

2 The Model

2.1 General Set-up

Let us consider a fund manager and a representative investor who play a one pe-
riod game. Consistent with the literature on mutual fund fees (Freeman (2007);
Herman (1963); Holmstrom (1979); Luo (2002b)), we focus on the situation in
which the representative investor has no bargaining power. This setup implies a
competitive supply of capital to mutual funds, as suggested by Berk and Green
(2004). This assumption is realistic, given the large number of small investors
and their weak market power in the mutual fund market. In addition, except
for index funds or ETFs, the whole mutual funds market can be considered
as a monopoly Chordia (1996). Further, Luo (2002a) points out that the vast
majority of the management fee charge is due to the lack of competitiveness.

The investor is a utility-maximizer with incomplete information. The in-
vestor chooses the optimal amount of her money to invest in the managed fund,
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12 Chapter 2. Investors’ Expectations, Management Fees and the Underperformance. . .

on the basis of its perceived average return and risk profile as well as the man-
agement fees charged by the fund manager. This latter is assumed to be a
utility-maximizer too, privy of her own personal information.

We consider a one period game between the fund manager and the repre-
sentative investor. This convenient simplification is not restrictive, because it
actually reflects the reality that most mutual fund investors buy for the long-
term and redeem their shares infrequently, about every four or five years (In-
vestment Company Institute (2009)). This buy-and-hold strategy is encouraged
by most funds, charging front- and back-loads or penalties for early redemption.
Alves and Mendes (2007) showed that back-end load fees do have an impact on
investor’s redemption activity. On average, the Investment Company Institute
(2001) suggested a redemption rate of 15% for domestic equity funds over the
period from 1992 to 1999. Although our model is one-period, this does not im-
ply that the fund is statically managed. We do not make any assumption about
the underlying management process, which can include any general dynamic
strategy. This makes our model quite versatile and relevant for both static and
active mutual fund strategies.

The game unfolds as follows (see also Figure 1). At the beginning of the
period, the fund manager decides on the level of management fees as a per-
centage of her asset under management. The representative investor observes
the proposed fee structure and builds up her portfolio accordingly. She can
purchase shares from the manager’s fund, which involves a cost specified by the
management fees. She can also buy shares from a “benchmark portfolio” which
is accessible at zero management cost. This benchmark asset can be the risk-
free asset or any exchange-traded fund (ETFs) that replicates a market index
or a risk factor which is representative of the asset class used by the manager.
Static index ETFs have no annual expenses. There is only a commission as
low as 5-20 basis points when buying and selling the shares. Assuming 5 years
holding period, this means 2-8 basis point per year. Poterba and Shoven (2002)
compares the S&P 500 SPDR trust, the largest ETF to the Vanguard Index 500
and concludes that they both offer similar returns to investors.

The initial endowment of the investor is equal to one monetary unit. She
invests ω in the managed fund and the rest, 1−ω, in the benchmark portfolio (a
table summarizing the most important symbols can be found in Table 1). The
benchmark portfolio can be sold short (unlike index-funds, short-selling ETFs
is possible), but only long positions are allowed for the managed fund, so that
ω ≥ 0. At the end of the period, the manager extracts her fees and then redeems
the remaining capital to the investor.

Following the prevalent habit in the mutual fund industry, our set-up as-
sumes a fixed-fee compensation scheme for the mutual fund, i.e., the fee is
a fixed percentage per period of the net asset under management. This fee
structure is to be contrasted with the incentive fee that usually includes a pro-
portional base fee plus a percentage of the return above a certain benchmark,
which is the prevalent compensation scheme in the hedge fund industry. For the
mutual fund industry, Golec (1992) reported that, in 1985, only 27 out of 476
US equity funds used performance based compensation schemes. More recently,
Elton et al. (2003) documented that, in 1999, only 108 out of 6716 US mutual
funds specializing in bonds and stocks used incentive fees. This justifies our
focus on the fixed-fee scheme.

We denote by fe the expense ratio for the one-period and by f the corre-
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sponding management fees. Both are expressed as a percentage of the investor
wealth under management in the fund. The compensation of the manager only
includes the management fee f . Denoting by f0 the remaining part of the ex-
pense ratio, we have

fe := f0 + f, (1)

where f0 gathers all the costs that do not contribute to the manager’s com-
pensation, such as annualized shareholder costs (when f0 includes annualized
shareholder costs, the expense ratio fe is replaced by Total Shareholder Cost
(TSC), denoted as fTSC), distribution(12b-1) costs, legal costs and so on. The
fund manager cannot benefit directly from f0, but the investor must pay this
cost.

Denoting by r̃m and r̃i the return on the mutual fund and on the benchmark
portfolio respectively, the investor’s terminal wealth W̃i reads

W̃i = (1− ω)(1 + r̃i) + ω(1 + r̃m)(1− fe), (2)

while the manager’s compensation W̃m is given by

W̃m = ω(1 + r̃m)f. (3)

2.2 Description of the manager’s and the investor’s opti-
mization problems

The game in our model is sequential. First, the fund manager announces the
fee f she will charge. Then, the investor chooses the optimal amount ω of her
initial wealth she wishes to invest in the mutual fund.

Definition 1. The investor’s demand function is the mapping Ω : fe 7→ ω =
Ω(fe). It relates the expense ratio charged by the manager to the wealth invested
by the investor in the mutual fund.

We assume that the investor is rational; her demand function Ω(fe) is such
that it maximizes the expected utility of her terminal wealth W̃i, conditional
on her information set Ii,

Ω(fe) = argmax
ω

E
[
Ui

(
W̃i

)∣∣∣ Ii
]
,

s.t. ω ≥ 0.
(4)

A solution exists if and only if the managed fund is not undesirable.

Assumption 1. In the absence of any management fees (fe = f0), the managed
fund is not undesirable if ∃ω > 0, such that

E [Ui ((1− ω)(1 + r̃i) + ω(1 + r̃m)(1− f0))| Ii] ≥ E [Ui (1 + r̃i)| Ii] . (5)

The demand function is strictly decreasing with respect to fe. Since we do
not allow short-selling of fund shares, it is convenient to define the reservation
fee as the upper limit for f such that the demand remains always positive.

Definition 2. The reservation fee, i.e. the maximum level of management fees,
denoted by fmax, is

fmax = min {1− f0, inf{f |Ω(f0 + f) > 0}} . (6)
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We immediately get the following result:

Proposition 1. Given a non-undesirable managed fund, the reservation fee the
manager can charge is

fmax = (1− f0)−
E [(1 + r̃i) · U ′ (1 + r̃i) |Ii]
E [(1 + r̃m) · U ′ (1 + r̃i) |Ii]

. (7)

It is the largest fee that makes the managed fund non-undesirable.

Assumption 2. We assume that the manager knows the expression of the
investor’s demand function.

Such an assumption is rather strong and may seem both simplistic and un-
realistic. On the contrary, as we will see latter, this assumption is reasonable
from a practical point of view. Indeed, we shall prove that, irrespective of the
specific shape of the investor’s utility function, her optimal demand function
always remains close to a linear (affine) function of the expense ratio.

Denoting by Um the manager’s utility function and byW0 her initial personal
wealth, her optimization problem reads

max
f

E
[
Um

(
W0 + W̃m

)∣∣∣ Im
]
,

s.t.

{
ω = Ω(f0 + f)
f ∈ [0, fmax],

(8)

where W̃m in the compensation scheme (3). The fund manager thus chooses the
optimal level of fees in response to her expected investor’s demand, conditional
on her own information set Im.

In our setting, the manager can only choose the percentage of the manage-
ment fees f . She plays no role in the determination of f0, which is exogenously
set. The determination of the optimal value of f0 is a subtle problem and is
beyond the scope of this article. A priori, f0 should be kept as small as possible
in order to reduce the total fees and therefore attract the largest number of
investors. But, among others, f0 includes the advertisement costs, which may
increase the demand for the fund as argued by Sirri and Tufano (1998). We
make the assumption that the optimal levels for f0 and f can be determined
independently and that f0 has already been fixed by the various running costs
and the commercial strategy of the fund. We can then state the following im-
portant result, whose proof is given in supplementary material which is available
on request.

Proposition 2. Let f∗ be the solution to the manager’s optimization problem
(8). If a solution f∗ exists, it solves the optimization problem

max
f

f · Ω(f0 + f),

s.t. f ∈ [0, fmax].
(9)

The optimal management fee f∗ depends neither on the manager’s preferences
Um, nor on the manager’s perceptions about the distribution of asset returns
(r̃i, r̃m|Im).
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A priori, since the investors have no bargaining power, the management fees
appear as a commitment from the manager, and therefore should depend on her
own preferences. The fact that the optimal management fee does not depend on
the manager’s preferences is a result of the following assumptions: (ı) Investors
have no market power, they are price-takers and can only passively react to
the fund manager’s fee-setting strategy and (ıı) the fund manager has a full
knowledge of investor’s preferences and therefore of her demand function.

It is worth noticing that this result is independent of (ı) the distribution of
both manager’s and investor’s portfolio, (ıı) the form of the investor’s utility
function, as long as it is increasing and concave, (ııı) the investor’s rationality,
as long as investors exhibit a decreasing demand function. In detail, as Capon
et al. (1996) suggested, investors do not have to be utility-maximizers. They can
exhibit some deviations from pure rationality in their decision process, leading
to possibly nonlinear demand functions.

Proposition 2 suggests that all relevant information for the analysis of mutual
fund fees is contained in the investor’s information set on the fund and on the
benchmark portfolio, which is a subset of all the public information available in
the market. In the presence of search costs, the investor’s limited information
processing and gathering ability lead to some ignorance on otherwise accessible
public information, a phenomenon referred to as bounded rationality by Simon
(1982).

However, Proposition 2 is more interesting from an empirical point of view
as it makes the fund manager’s private information irrelevant to the determi-
nation of what should be the right fee level; it puts emphasis on the role of
investor’s limited ability and knowledge in explaining potential mispricings of
the fund services. First, investors may receive biased information about the
fund’s historical performance. While financial information disclosed by mutual
funds have to comply with SEC rules, there is still room for funds to make their
performance appear better within these legal constraints. The Standards of
Practice Handbook of the CFA Institute (2005) provides many examples of how
funds may potentially beautify their performance. Second, unsophisticated in-
vestors may simply follow recommendations from their friends or from the funds
themselves, instead of performing their own analysis. Third, it is difficult for
most investors to assess correctly the fund’s future performance due to lack of
persistence in returns. Berk and Green (2004), Gruber (1996), Carhart (1997)
and Busse et al. (2010) find that there is generally no persistence of funds’ per-
formance over the long term. Similarly, Fama and French (2009) and Barras
et al. (2010) analyzed the persistence of abnormal returns (alpha) and show
that a few fund managers have indeed the skills to produce abnormal returns
that can not be explained by pure luck.

3 Characterization of the equilibrium, of the in-
vestor demand function and of the optimal
management fee

In this section, we show the existence of an optimal allocation ω and an optimal
management fee f and solve this problem in the equilibrium.

Definition 3. An equilibrium solution (ω∗, f∗) ∈ R+ × [0, fmax] is a solution

8
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to the optimization problems (8) and (4) with ω∗ = Ω(f0 + f∗).

We first focus on the case where the investor chooses the risk-free rate as
her benchmark. Then, we investigate the consequences of her choice of a risky
portfolio as the benchmark.

3.1 Case where the benchmark portfolio is the risk-free
asset

We first consider the case where the benchmark portfolio is the risk-free asset
with return rf . We assume that, conditional on the investor’s information set,
the returns of the managed fund are normally distributed

r̃m|Ii ∼ N
(
r̄m, σ2

m

)
, (10)

with r̄m > rf . In order to get a closed form expression, we restrict our attention
to the case where the investor is equipped with a CARA utility function. Denot-
ing by a the coefficient of absolute risk aversion of the investor, Assumption 1
is satisfied if and only if (1− f0)(1+ r̄m) > (1+ rf ). This simply means that, in
the absence of management fees, for the manager’s fund to be non-undesirable,
the expected return of the managed fund, net of operating costs, must be larger
than the risk free rate. The demand function which solves the optimization
problem (4) then reads

Ω(fe) =
(1 + r̄m)(1− fe)− (1 + rf )

a · σ2
m(1− fe)2

. (11)

It is a linearly increasing function of the after-fee excess return of the managed
fund over the risk-free rate and a hyperbolically decreasing function of the risk
of the managed fund. This leads to the following result:

Proposition 3. An equilibrium solution exists if and only if assumption 1 holds.
It is characterized by the demand

ω∗ =
(1− f0)

2 · (1 + r̄m)2 − (1 + rf )
2

4a · σ2
m(1− f0)2 · (1 + rf )

, (12)

and by the optimal management fee charged by the fund manager

f∗ = (1− f0) ·
(1 + r̄m) · (1− f0)− (1 + rf )

(1 + r̄m) · (1− f0) + (1 + rf )
, (13)

provided that f∗ ∈
[
0,

r̄m−rf
1+r̄m

− f0

]
.

Assumption 1 ensures that the interval
[
0,

r̄m−rf
1+r̄m

− f0

]
is non-empty, and

therefore that an equilibrium solution exists. The proof of Proposition 3 is given
in the supplementary material which is available from the authors on request.

While the optimal demand depends on the coefficient of risk aversion a and,
therefore, may change from one investor to the other (characterized by different
risk aversions), the optimal management fee level remains the same, irrespective
of the risk aversion and, consequently, of the risk level σm of the managed fund.

9
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Expression (13) can be approximated by

f∗ ≈ 1

2

(
r̄m − rf
1 + r̄m

− f0

)
≡ fmax − f0

2
, (14)

where fmax =
r̄m−rf
1+r̄m

is the absolute maximum level of fees the manager can
charge, as seen from expression (7) with (11). Formula (14) shows that the
optimal management fee is close to one-half of this maximum value. We will
show below that this result is quite general.

Further insight into this result can be obtained by remarking that, since r̄m
is usually much smaller than 1, the optimal management fee is approximately
equal to one-half the excess return of the managed fund over the risk free rate
minus all other fees. Thus, in equilibrium, the benefits of the fund management
resulting in a non-zero excess return net of fees, the so-called α, should be
equally shared between the investor and the manager. This theoretical result
contrasts with the evidence presented by Fama and French (2009) and Barras
et al. (2010) showing generally that managers do not share their excess returns,
if any, and increase instead their own income by setting higher fees, leaving
very few outperforming fund to the investor. However, in a more recent study,
Cremers et al. (2011) distinguish between “closet indexing” and truly active
mutual funds and find that “closet indexing” funds are related to higher fees
and active funds are indeed able to earn excess returns.

An alternative interpretation is that, given the fee, the investor expects a
rate of return on the managed fund equal to

r̄m ≈ rf + 2 · f + f0, (15)

so that her expected gain, net of fees, is

(1 + r̄m)(1− f∗
e ) = (1 +

f∗

1− f0
)(1 + rf ), (16)

i.e., the risk-free rate plus the management fees. Thus, higher management
fees must be justified by higher expected returns, both before and after fees.
This shows that good managers can signal their performance by charging high
management fees. However, this mechanism can also lead to adverse selection
insofar as managers with bad performance will imitate the fee level of good
managers in order to mislead and attract investors.

In fact, empirical evidence shows that funds with higher expense ratios de-
liver lower before-fee returns, as demonstrated by Elton et al. (1993), Gruber
(1996) and Chevalier and Ellison (2002). Gil-Bazo and Ruiz-Verdú (2009) inter-
pret this observation as a selection bias: underperforming funds target the pool
of investors who are least sensitive to fund performance, while better perform-
ing funds charge lower fees to compete for and to attract performance sensitive
investors. Christoffersen and Musto (2002) studied money market funds with
a similar argument and showed that demand-curve variations explain fee vari-
ations. This argument can be rationalized within our model that managers
exploit demand insensitive investors by charging them more fees. This will be
discussed in more details in next subsection.
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3.2 Case of a benchmark portfolio made of risky assets

We now assume that, conditional on the investor’s information set Ii, the joint
distribution of returns of the benchmark portfolio and of the mutual fund is
given by (

r̃i
r̃m

∣∣∣∣ Ii
)

∼ N
((

r̄i
r̄m

)
,

(
σ2
i ρσiσm

ρσiσm σ2
m

))
. (17)

We still restrict our attention to the case where the investor is equipped with
a CARA utility function. We have also solved this problem for CRRA utility
functions. In this case, the solution does not have a closed analytical form and
requires numerical computations. The numerical results confirm the remarkably
strong robustness of our analytical result derived for CARA utility functions.
Calculations for CRRA utility functions can be found in the supplementary ma-
terial which is available from the authors on request. We find that Assumption 1
is satisfied if and only if

(1− f0) · (1 + r̄m − aρσiσm) > 1 + r̄i − aσ2
i , (18)

where a is the coefficient of absolute risk aversion of the investor. Hence, the
manager’s fund can be desirable for an investor with risk aversion a due to three
effects: first, its expected return r̄m is higher than the benchmark’s r̄i, second,
the fund’s volatility σm is smaller then the benchmark’s volatility σi and, third,
the fund’s diversification effect is high, i.e. ρ is small or even negative.

Proposition 4. An equilibrium solution exists if and only if assumption 1 holds.
It is then characterized by the demand function

Ω(fe) =
1

a
· (1 + r̄m − aρσiσm) · (1− fe)− (1 + r̄i − aσ2

i )

σ2
m(1− fe)2 − 2ρσiσm(1− fe) + σ2

i

(19)

and by the optimal management fee charged by the fund manager

f∗ =
Rmk1
k2

−
√

k1 · [R2
mσ2

i − 2RmRiρσiσm +R2
i σ

2
m]

k2
, (20)

where
Rm = 1 + r̄m − aρσmσi,
Ri = 1 + r̄i − aσ2

i ,
k1 = σ2

i − 2(1− f0)ρσiσm + (1− f0)
2σ2

m,
k2 = Rm(1− f0)σ

2
m − 2Rmρσiσm +Riσ

2
m,

(21)

provided that f∗ ∈
[
0, Rm−Ri

Rm
− f0

]
.

As stated previously, assumption 1 ensures that the interval
[
0, Rm−Ri

Rm
− f0

]

is non-empty, and therefore that an equilibrium solution exists. The proof of
Proposition 4 is given in the supplementary material which is available from the
authors on request.

To provide more insight, we expand the cumbersome expression (20) to the
first order with respect to r̂i = Ri − 1, r̂m = Rm − 1 and f0. The optimal
management fee can then be simplified into

f∗ ≈ r̂m − r̂i
2

− f0
2

≈ fmax − f0
2

. (22)
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This equation has the same structure as (14), except that rf is now replaced by
r̂i. There is also an adjustment for risk, as rm and rf are replaced by r̂m and r̂i
respectively. Again, the optimal management fee is approximately half of the
maximum level of fees the manager can charge to the investor. As proved in
supplementary material, this rule is to a large extent independent of (ı) the joint
distribution of returns on the benchmark portfolio and the managed portfolio
and (ıı) the form of the investor’s utility function, as long as it is increasing and
concave. In fact, it holds as long as the investor’s demand function is almost
linear, which turns out to be a very good approximation for most practical
situations.

Relation (22) links fees to the fund’s performance conditional on the in-
vestor’s information. It provides the amount of fees the investor is willing to
pay for the fund’s investment management service, in equilibrium. This fee is
fully characterized by the investor’s choice of the benchmark and her antici-
pation of the future performance of both the fund and the benchmark. More
transparently, we have

f∗ + fe ≈ (r̄m − r̄i)− a(βm − 1)σ2
i , (23)

where

βm =
Cov(r̃m, r̃i)

Var(r̃i)
. (24)

This general relation will be the cornerstone of our empirical analysis presented
below.

Figure 2 plots the demand function (19) versus the total fee fe for different
values of the coefficient of absolute risk aversion a. The reservation fee fmax

is the value corresponding to the intersection of the curves with the horizontal
axis. As previously announced, the various demand functions are very close to
straight lines. In addition, irrespective of the value of the coefficient of absolute
risk aversion a, all the curves intersect at the point

fp =
r̄m − r̄i
1 + r̄m

, Ω(fp) := Ωp =
σ2
i − 1+r̄i

1+r̄m
ρσiσm

σ2
m

(
1+r̄i
1+r̄m

)2

− 2ρσiσm · 1+r̄i
1+r̄m

+ σ2
i

. (25)

The approximate linear dependence of the demand function observed in Figure 2
can be rationalized analytically by a first order expansion of (19) around this
fixed point, yielding

Ω(fe) ≈ Ωp +



ρσiσm +

(
1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2

− 2ρσiσm · 1+r̄i
1+r̄m

+ σ2
i


 · (fe − fp).

(26)
The two leftmost terms in the numerator of the fraction are generally much
smaller than the rightmost one. Thus, the slope of the demand function is almost
inversely proportional to the investor’s absolute risk aversion. This linearized
expression (26) of the demand function shows that the absolute value of the
slope, i.e. the elasticity of the demand, decreases when the coefficient of absolute
risk aversion increases. Investors tend to be less sensitive to a change in fees
when they are more risk averse.
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The management fee in equation (20) depends on the coefficient of risk
aversion a only through the ratio

Ri

Rm
=

1 + r̄i − aσ2
i

1 + r̄m − aρσmσi
(27)

Therefore, if the relation
1 + r̄i
σi

=
1 + r̄m
ρσm

(28)

holds, the optimal management f∗ fee is independent from a and it is given by

f∗ =
ρσ2

i − 2(1− f0)ρ
2σiσm + (1− f0)

2σ2
mρ

ρ(1− f0)σ2
m − 2ρ2σiσm + σiσm

−σi

√
[(1− f0)2σ2

m − 2(1− f0)ρσiσm + σ2
i ] · [1− ρ2]

ρ(1− f0)σ2
m − 2ρ2σiσm + σiσm

(29)

This result rationalizes in a general way the two distinct scenarios that we show
in Figure 2. In one scenario we have

1 + r̄i
σi

≥ 1 + r̄m
ρσm

, (30)

whereas the opposite inequality holds for the alternative scenario. The optimal
management fee is either increasing or decreasing in the risk aversion coefficient
a in these two scenarios. In the upper panel, the investor considers the fund to
have diversification benefits in the context of her own portfolio strategy. This
is the case when Ωp > 0. The fund’s beta is then close to one (actually we have
βm = ρσm/σi < 1 + r̄m/1 + r̄i, r̄m is larger than r̄i and the right term is usually
slightly larger than 1). In the lower panel of Figure 2, the fund is a leveraged
fund. In this case, we have Ωp < 0 and the fund’s beta is strictly larger than
one.

In the first case, the equilibrium solutions (f∗, ω∗) show that the manager
actually exploits the diversification value perceived by the investor by charging
higher fees when the investor coefficient of absolute risk aversion is larger. This
rationalizes the interpretation of Gil-Bazo and Ruiz-Verdú (2009) according to
which fees tend to increase when the elasticity of the demand decreases. In the
case of a leveraged fund, a reversed relationship is revealed: risky funds attract
risk-averse investors by charging smaller fees.

4 Empirical Analysis

In the light of the theoretical results presented in the previous section, we now
analyze the management fees charged by fund managers between July 2003 and
March 2007 using the CRSP Survivor Bias-Free US Mutual Fund Database.

4.1 Description of the Empirical Model

Our model shows that, in equilibrium, fees are determined solely by the in-
vestors’ anticipations on the future performance of the mutual funds. Expres-
sion (23) quantifies how this anticipation is transformed into an equilibrium fee
level that investors agree to pay.
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The CRSP Mutual Fund Database only gives access to the ex-post perfor-
mance of the funds through their historical returns. Our strategy is to infer the
ex-ante expectations of the investors on the fund performance on the basis of
the amount of fees they are willing to pay, by using relation (23). In this way,
we test the following hypothesis:

(ı) Does the performance achieved by funds justify the fees they charge, given
a rational choice of the benchmark asset?

(ıı) Do funds possess a competitive advantage in terms of fees, realized returns
and diversification benefits, when compared to the benchmark asset?

(ııı) Do investors correctly anticipate funds relative performances, given their
benchmark asset?

As the industry practice suggests, a natural choice of the benchmark portfolio
that investors should use is an index portfolio for the market in which the fund
operates. In the following empirical test, we impose the S&P 500 total return
index to be the investor’s benchmark portfolio for US domestic equity mutual
funds. This is in line with the fact that investors can buy Exchange Traded
Funds (ETFs) or low-cost index funds to achieve index performance while paying
a nearly-zero cost. One could however wonder whether the relevant benchmark
to consider would not be a portfolio formed by a mixture of the S&P 500 and the
risk-free asset. Indeed, a typical mutual fund investor may hold treasury bonds
(or just put money in a savings account or a money market fund) and shares of
an index fund or ETF that replicates some market index such as the S&P 500.
This possibility is addressed in supplementary material (available on request),
which shows that investors use an equity dominated benchmark: about 90%
invested in the S&P 500 and only 10% in the risk-free asset so that the results
do not significantly change with respect to the case considered in this section,
namely the case where the benchmark portfolio is made of the S&P 500 alone.

For convenience, we define both the after-fees excess return and the adjusted
beta for the fund j over a given period, as follows:

after fees excess returnj = (r̄j − r̄index)− (f̄ j + f̄ j
TSC) , (31)

adjusted betaj = (βj − 1)(σindex)
2 , (32)

where
f̄ j and f̄ j

TSC = average management fee and average total
shareholder cost,

r̄j and βj = fund’s realized average return and beta,
r̄index and σindex = realized average return and volatility of the

market index.
Similarly to Khorana et al. (2009), we define fund j’s total shareholder cost

(TSC) as a sum of both annual total expenses and annualized shareholder fees,
given a five-year holding period in our analysis:

f̄ j
TSC = f̄ j

e (average TER) + front-load/5 + back-end load at five years/5. (33)

Then, expression (23) leads to the regression model:

after fees excess returnj = a · adjusted betaj + b+ εj , (34)
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where a stands for the investor’s relative risk aversion. In the theoretical part, we
have denoted by a the coefficient of absolute risk aversion while the total initial
investor’s wealth was set to one dollar. Our results generalize to an arbitrary
initial endowment by replacing the absolute risk aversion by the relative risk
aversion. b is an intercept that should equal zero if investor’s ex-ante expectation
matches exactly fund’s ex-post performance and ε is a mean zero error term.
The value of the bias b reflects the deviation of the ex-post performance of
the funds from the investors’ ex-ante expectations of the fund performance. A
positive (respectively negative) value of the bias b can be interpreted as the
fact that investors underestimate (respectively overestimate) the funds relative
performance.

If our model was the whole story of what determines the strategic inter-
actions between homogeneous investors and mutual fund managers, and what
represents the risk-return performances of mutual funds and of the benchmark
asset, then the regression model (34) should provide directly a unique estima-
tion of investors’ risk aversion for the whole mutual fund universe. However,
this expectation is of course naive, given the heterogeneity of mutual funds and
of investors. Notwithstanding the formidable problem of making sense of the
heterogeneity in fund performance and in their fee structure, we can neverthe-
less identify robust and meaningful regularities. The key insight was to organize
the universe of mutual funds into deciles of decreasing risk-adjusted return per-
formance quantified by their Sharpe ratio. As we show in the following sections,
remarkably good regressions with model (34) are found, which provide insightful
economic interpretations. Particularly, we identify different groups of investors
characterized by their specific risk aversion coefficient a. We are able to relate
these groups to distinct fund characteristics, such as their leverage level and their
relative performance. Our model also allows us to identify several subclasses of
“abnormal” funds, which either provide good diversification and after-fees over-
performance or give lower diversification benefits and sub-performance. This
classification is performed on the basis of clustering analysis and the values of
the regression intercept b.

4.2 Description of the Data Sample

We obtained our sample from the CRSP Survivorship-Bias-Free US Mutual
Fund Database. This database contains as per June 2009 monthly data of more
than 42,000 US mutual funds from January 1962 to June 2009.

In our analysis, we have focused on the time period from July 2003 to March
2007 which is characterized by strong growth. The rationale is the following:
our model requires the investor to allocate her wealth between the fund manager
and the benchmark portfolio. This assumption is only realistic if the investor
is convinced that she will earn a positive return by combining the fund with
the benchmark. Similar to the CAPM model, we use historic returns to proxy
the future expectation of the investor (see Pettengill et al. (1995)). Hence, only
periods with overall positive returns can be considered; if an investor really had
expected negative returns in the market, she would have moved her wealth im-
mediately to the risk free asset, which is not part of our model. Further, falling
back to the risk-free asset as a benchmark in bull markets is not feasible; there
are almost no mutual funds with significant negative beta to the market bench-
mark and consequently, none of these mutual fund can be desirable, i.e. fulfill
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Assumption 1. Moreover, for the time before 2000, the CRSP data base is not
complete with respect to availability of funds for retail investors. For all these
reasons, we have restricted our analysis on the time period above.

We used the one month US treasury T-Bill (XIUSA04G7W) as a proxy for
the risk-free rate, which is used to calculate the Sharpe ratio, and the S&P 500
TR (XIUSA04G92) from Morningstar as the benchmark.

Our initial sample is chosen to contain all mutual funds operating during
the period from July 2003 to March 2007 having complete monthly returns
history. Moreover, we require the funds to have no sale restrictions, to be open
for investments and to be available to retail investors. Further, we consider
only funds with the investment objectives from Table 2, i.e. funds which can be
compared with the S&P 500 TR, and leave out funds with emerging markets,
and fixed income strategies.

We do not include funds having negative fees (some funds in the CRSP
database are listed with negative fees due to wavers or reimbursements). Be-
cause we take the perspective of a private investor for a one-period investment,
we assume that the fees are locked-in at the beginning of the investment period
when the current fees are observed by the investor, since the manager is not
allowed to retrospectively change the terms of the agreement. Note that some
funds are available in both (i) different share classes (for example A, B, C) that
usually represent different fee contracts, and (ii) Service (service shares charge
an additional small amount (less than 0.25%) to the investor to compensate a
third party adviser) and Investor shares as well. As these different mutual fund
shares and classes represent different choices that are open for investment, we let
them coexist in the sample. For robustness, we have also considered removing
all, but the main share class or weight each share class by its TNA and form
value-weighted classes. However, this does not significantly influence any of the
results.

Applying the above selection procedure, we are left with a sample to study,
which contains 3,273 US domestic equity mutual funds. The total period covers
45 months. Table 3 characterizes our sample and presents descriptive statistics
like weighted average total net assets (TNA), turnover ratio, Sharpe ratio and
various fees such as the average TER, average management fees, average total
shareholder cost (TSC), both front-load and back-end load fees.

4.3 Descriptive Statistics and Characteristics of Sharpe
Ratio-Sorted Domestic Equity Funds

Figure 3 plots the after-fees excess returns for the whole sample of 3,273 US
domestic equity mutual funds as a function of their adjusted betas. Since the
benchmark portfolio corresponds to the origin of this plot, the set of positions
with respect to the origin provide a natural classification of the performances
of our fund universe. It is convenient to label funds with a beta smaller (re-
spectively larger) than one as “diversification funds” (respectively “leveraged
funds”). A beta β smaller (respectively larger) than one corresponds to an ad-
justed beta smaller (respectively larger) than zero. The top-left side of Figure 3
corresponds to the best funds which provide both diversification benefits and ab-
solute benchmark-beating performances. Funds in the bottom-right side of the
panels of Figure 3 are the worst funds, that are inferior to the index, even with
leverage. Regardless of the investors’ risk aversion, funds in the top-left side
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provide superior relative performance and funds in the top-right side provide
inferior relative performance, when compared with the benchmark portfolio.
Funds in the top-right side of the panels provide index-beating performance,
but at the price of higher risks (higher leverage). Funds in the bottom-left side
of the panels provide diversification benefits, but fails to beat the benchmark’s
return after fees. The comparison of fund performance between funds from the
top-right side and bottom-left side and the benchmark depends on how investors
value risks against returns, i.e. on the risk aversion coefficient in our model.

Regressing this universe of funds on our model (34) gives a significant nega-
tive bias (b = −0.5%), but the determination coefficient R2 is very small (around
0.5%), so that our model has nearly no explanatory power when applied to the
whole sample of mutual funds. However, this result is not so surprising in the
presence of the huge heterogeneity of fund styles and investor preferences. Re-
call that our model assumes that (i) the investors are characterized by a unique
risk-aversion coefficient a and (ii) the funds have a well-defined profile to sell to
their clients, i.e. are desirable.

But, in reality, investors have heterogeneous risk aversions and, as a conse-
quence, look for different risk vs. return trade-offs, and funds are very diverse
in style and performance. In order to use our model, it is necessary to sort
the universe of funds in what can be considered a priori to be homogeneous
classes. With the data at our disposal, we cannot sort by classes of investors,
but we hypothesize that there is a self-selection among investors, who cluster
in those funds that best match their risk aversion profiles. Hartman and Smith
(1990) have indeed suggested that funds investors can be best segmented by
their risk tolerance. We consider the simplest and most generally used measure
of risk-return profile, namely the Sharpe ratio. We thus sort and group funds
by their Sharpe-ratios in 10 deciles, from the first decile corresponding to the
best performing funds to the tenth decile of the worst funds, according to their
Sharpe ratios. As we shall see later on, it turns out that all the investors expect
more or less the same level of return (about 1.5% more than the S&P 500, see
section 4.4), so that the Sharpe ratio is an indirect way to assess the level of
risk aversion the investors are ready to bear and hence their risk appetite.

In Table 4, we sort the selected set of 3,273 domestic equity funds into 10
deciles according to their Sharpe ratios. We present several descriptive statistics.
For each decile, we provide the mean value of the Sharpe ratio, net returns, fees,
turnover, and beta.

Table 4 shows that the total expense ratio (TER), total shareholder costs
(TSC) and management fees tend to increase when the Sharpe ratio decreases.
Funds from the bottom decile charge on average 10 basis points more in man-
agement fee and 70 basis point more in TSC than top decile funds. These
differences are economically significant. This is in line with existing empirical
evidence that worse performing funds tend to charge higher management fees
and total expenses. Worse-performing funds tend to also have a higher beta
and a higher turnover ratio.

Another interesting observation provided by Table 4 is that funds from the
last Sharpe ratio deciles charge higher back-end loads and lower front-loads,
compared to better performing funds. This could be rationalized as a strategic
behavior of mutual fund managers, exploiting deficient information gathering
or inattention on the part of investors: poor-performing funds attract investor’s
initial investment by lowering front-load fees. This strategy makes sense, given
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the observation by Barber et al. (2005) that investors are more sensitive to
salient fees such as front loads than to operating expenses. Then, by raising
back-end load fees, bad-performing funds hinder investor’s redemption activity.
In support of this reasoning, Nanigian et al. (2008) indeed suggested that the
lack of reaction of investors to bad-performing funds is caused by the existence
of back-end loads.

Furthermore, Table 4 shows that both 12b-1 fee and the maximal level of
12b-1 fees tend to increase when the fund’s Sharpe ratio decreases. This suggests
that bad-performing funds tend to spend more on marketing and distribution
than better-performing funds. This is in line with previous reports that worse-
performing funds tend to charge higher fees than better-performing funds, see
Elton et al. (1993), Gruber (1996) or Chevalier and Ellison (2002) for instance.

In each Sharpe-ratio deciles, funds have various investment styles. Table 2
lists all Lipper investment objectives used in this study. Empirical studies such
as Wermers (2000), Brown and Goetzmann (1997), Chan et al. (2002), Brown
and Harlow (2002), Barberis and Shleifer (2003) and Bogle (1998) have shown
that funds with various styles exhibit different performances. These funds may
target different groups of investors, with diverse degrees of risk aversion.

It might be fruitful to distinguish between different fund segments by an
other criteria than Sharpe-ratio. A first idea would be to classify funds according
to their investment styles, but the model did not perform and explanatory power
was very low. This might show some limitations of our model. An other possible
explanation could be that this approach is unreliable because funds often change
their investment style and sometimes report misleading information; Brown and
Goetzmann (1997) argued that reported investment styles are not satisfying in
terms of reflecting a fund’s true investment activities. Brown and Goetzmann
(1997) and Donnelley (1992) have shown that some funds misclassify themselves.
Below, we will use cluster analysis based on the formulation of our regression
model, that reveals regularities in the best- and worst-performing funds.

4.4 Empirical Tests of the Model

As discussed in the previous section, we apply our regression model (34) sepa-
rately on each of these ten deciles. If our model is correct, we should expect the
following characteristics.

1. Good fits to the majority of the funds in each decile would define a market
segment characterized by a given risk-return profile corresponding to a ho-
mogeneous class of investors with a common coefficient of risk aversion a.
In other words, a well-defined risk aversion coefficient a would characterize
that class of investors associated with that decile of mutual funds.

2. We would obtain a diagnostic of the efficiency of the fee structure in each
fund decile via the bias b and its statistical significance,

3. An identification of over-performing and under-performing funds (with re-
spect to our model) would become apparent for instance from the existence
of a second cluster of funds in a given decile which is markedly different
from the main regression. Our model could thus offer a new methodology
for identifying desirable and non-desirable funds.
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To test these hypotheses, we apply a mixture of regression of two regressions
to each sub-sample fund decile. Brown and Goetzmann (1997) already devel-
oped a cluster classification scheme based on fund returns, that identified seven
clusters. Our cluster analysis is however completely different because it uses
the fund data organized according to the regression model (34). In other words,
different clusters, if any, correspond in our approach to different pairs of after
fees excess return and adjusted beta. This can be interpreted as corresponding
to different investors risk aversion a and different abnormal excess returns b.

Figure 4 presents an example (plots of the remaining deciles are available on
request) of the results of the mixture of regressions with our model (34) applied
to the ten different Sharpe ratio fund deciles. Details about the funds’ after fee
excess returns as a function of their adjusted beta for each Sharpe ratio decile
can be found in Table 5. We also provide further information about the mean
value of the Sharpe ratio, net returns, fees, turnover, beta, and investors ex-ante
expected returns. As explained above, we use the mixture of regressions method
to test for the possible existence of abnormal funds.

For the deciles one to three, the normal funds is characterized by investors
with a high risk aversion coefficient a ≈ 27 and a significant positive bias b,
indicating the fund managers of these funds are truly skilled and provide returns
in excess to the benchmark on a risk and fee adjusted basis. Further, the
mixture regression identifies a second cluster of funds; these abnormal funds are
characterized by smaller risk aversion a and have a substantial positive bias b.
According to our model, these funds in the abnormal cluster identify the best
fund relative to a benchmark on a risk and fee adjusted basis and are the most
favorable for the investor.

For the deciles four to ten, the results are qualitatively different. First, the
intercept b for the normal funds is no longer positive, indicating the fund man-
agers are no longer able to deliver excess returns over the benchmark. Second,
the added performance for the abnormal funds is rather small and evidence for
a second cluster is weaker. However, for the ninth and tenth decile, the abnor-
mal cluster have very strong negative bias b; these funds correspond to a class
of particularly under-performing funds, the least desirable funds of the whole
sample.

More generally, b is significantly smaller than zero for seven of ten deciles
for normal funds and for three of the 10 deciles for abnormal funds. Within
our regression model, this can be interpreted as evidence that about 70% of
US domestic equity funds have added markups over the period from July 2003
to March 2007. The rationalization is the following: In a market with perfect
competition, if a fund underperforms the benchmark in terms of returns, diver-
sification benefits and fees, for several years, it either has to lower down its fees
to match its relative after-fees performance to the benchmark asset, or to exit
the market. The continuing existence of these seriously underperforming funds
is an indication for possible markups in the fund industry. Along with statistics
on fees across all deciles in Table 5, our model provides a natural characteriza-
tion for the well-known observation that worse-performing funds tend to charge
higher fees than better-performing funds as reported in studies by Elton et al.
(1993), Gruber (1996) and Chevalier and Ellison (2002).

For both the normal and the abnormal funds, we find that the coefficient a of
risk aversion tend to be larger for the top decile (better-performing) funds than
for the bottom deciles (worst-performing) funds. Interpreted within our model,
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this indicates investors’ self-selection according to the inverse risk measure pro-
vided by the Sharpe ratio. This behavior is fully rational: the more risk-averse
investors choose the less risky funds, i.e. those with the highest Sharpe ra-
tio. In contrast, the less risk-averse investors choose the most risky funds, i.e.,
those with the smallest Sharpe ratio. In addition, the underperforming funds
are mostly leveraged funds with an average beta around 1.30. Fund in the top
deciles typically have betas slightly above 1.00, the abnormal funds have smaller
betas. This is remarkable as our analysis focuses on a raising market and one
could expect the deciles with higher betas would also deliver higher returns.
Anyhow, this is in accordance with the second scenario obtained from our theo-
retical model: when funds are leveraged, managers tend to charge either higher
fees to less risk averse investors or tend to offer lower fees to attract the more
risk averse investors.

We now invert the logic of the model (34) and use the return bias b to
estimate the investors ex-ante AFER, defined by

ex-ante AFER = ex-post AFER− b. (35)

We find that the investors expected ex-ante AFER is remarkably well-behaved
when the S&P 500 TR index is taken as the investor’s benchmark; ANOVA tests
for the mean show that we cannot reject the hypothesis that the mean value
of investors’ expected return of funds from the 4th, 5th, 6th, 7th, 8th and 9th
deciles are equal, at the 5% significance level. We come to the same conclusion
for funds from the 2nd, 3rd and 10th deciles. Similar results also hold for the
Kruskal-Wallis test (see for instance Siegel and Castellan (1988) for more de-
tails about this tests). This results suggest that investor’s ex-ante AFER are
comparable for all ten Sharpe ratio deciles.

This indicates that, irrespective of their risk aversion, investors have homo-
geneous anticipations, as viewed from the perspective of our model. In this
respect, sorting funds by Sharpe ratio is the same as sorting funds by risk level
and hence by risk aversion, which legitimates the approach chosen in section 4.3.
Overall, the investors expect a typical mutual fund to deliver an excess-return
after fees of approximately 1.5% above the benchmark.

Investors’ optimism bias is revealed by (i) the negative values of b and (ii)
investors’ high ex-ante expected returns. As negative b’s are found for all normal
fund deciles except the top three, this suggests that most investors overestimate
the performance of funds in terms of fee-adjusted excess returns and of diver-
sification potential. A possible origin of this optimism bias may be ascribed to
the lack of financial literacy, as reported in Capon et al. (1996) and Alexander
et al. (1998). Funds’ marketing efforts, as reflected by their 12b-1 fees, could
also play an important role. Table 5 shows that both normal and abnormal
funds of the last two deciles tend to spend more on marketing and distribution
than funds from the first two deciles.

The last column of Table 5 presents the expected return biases b∗ of various
deciles sorted by their Sharpe ratios, calculated according to the assumption
that the investors choose a risk-free asset as their benchmark.

bj∗ = r̄j − r̄jrisk−free − f̄ j
TSC − f̄ j . (36)

We observe that b∗ is significantly positive for almost all fund funds. This
suggests that the investors’ optimism bias may come from the choice of such a
suboptimal benchmark, possibly due to lack of sufficient financial literacy.
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Finally, Table 6 presents the breakdown of the population of funds, classified
according to the Sharpe ratio deciles, their leverage and excess returns, both
for normal and abnormal funds in each decile. Unsurprisingly, diversification
funds with positive after-fee excess return (AFER) are mostly concentrated in
the top decile. At the other extreme, leveraged funds with negative after-fee
excess return (AFER) are mostly concentrated in the bottom decile. The two
other categories are more uniformly populated. One can also observe that most
normal funds are leveraged funds with a negative after-fee excess return. In the
last three deciles, approximately 80% of the funds belong to this category.

5 Conclusion

In order to understand why investors are buying underperforming investment
vehicles, we have proposed a one-period principal-agent model based on a se-
quential game played by a representative investor and a fund manager in an
asymmetric information framework. Our first main result is that only investor
preference and information set determines the fee level of mutual funds. The
manager’s true ability is irrelevant here. Second, we have derived an analytical
formula and provided an empirical framework that can help investors to gauge
their funds and their portfolios. Third, our model has identified two alternative
fee-setting scenarios depending on the fund’s possible diversification benefits.
Leveraged funds tend to exploit demand-insensitive investors by charging them
higher fees, while funds providing diversification benefits lower fees to attract
more risk averse investors and charge higher fees to the less averse investors.
A salient point of our model is that investor are making rational decisions,
but these are based on limited, misguided or incorrect information as a result
of their possible misperception about the fund returns and the overall mar-
ket. This misperception is identified in the later empirical results as investors’
over-optimism about funds’ future returns, which suggests possible mismatch
between information perceived by the investors and the reality.

The excellent performance of our regression model on funds sorted in ten
deciles according to their Sharpe ratios support the hypothesis that there is
a self-selection among investors, who cluster in those funds that best match
their risk aversion profiles. Then, just two variables, after fees excess return
and adjusted beta, provides an accurate explanation of the impact of the risk
aversion on the fund’s performance relative to the market index. As a bonus,
our mixture of regression method provides a novel methodology for identifying
over-performing and under-performing funds, i.e., “skill” as well as “lemons.”

Our empirical study of the U.S domestic equity fund market over the period
from July 2003 to March 2007 has identified positive markups for around 70%
of the funds in our sample. This basically means that these funds underper-
form low-cost index funds or ETFs, after taking the returns, the diversification
benefits and the fees into account. However, investors keep investing in these
underperforming funds. Within the information asymmetry framework of our
model, we have shown that this puzzling investment behavior can be interpreted
as an optimism bias towards funds’ future performances. We have been able
to estimate that, on an ex-ante basis, investors expect the fund managers to
deliver an overall annual excess-return of around 1.5% over the S&P 500 TR,
net of fees, irrespective of the investment style and of the risk level of the funds.
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Investor’s optimistic expectations of the fund market leads to the high markups
in today’s fund market. The correlation between investors’ overconfidence and
the high management fees and distribution (12b-1) fees found in our analysis
suggest that the later play a role in promoting the former. Another element for
investors’ optimism bias is their lack of financial knowledge. More specifically,
we demonstrated that this optimism bias can be rationalized by assuming that
investors choose a risk-free asset as their benchmark. Our empirical analysis
suggests that both factors may explain investor’s overconfidence.

Our one-period model provides a static view of investors’ behavior whose
main advantage is its simplicity and versatility. We did not need any assump-
tion on the fund management strategy. We focused on the crucial effect of
information asymmetry on the pricing of mutual funds in order to disentangle
it from learning effects. Our results raise the intriguing question of why in-
vestors have been continuously overoptimistic over time, apparently failing to
learn the lessons of past under-performance of their investments. To address
this question, a dynamic framework that includes learning would be needed.
A priori, both asymmetric information and lack of learning may contribute to
higher pricing of funds. This paper demonstrated the role of the former ingredi-
ent. The study of the impact of learning and of its lack thereof for this context
is worthy of future research.
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f denotes the annual management fee which rewards the manager.

fe denotes the total of all fees in percent. It includes the management fees,
12b-1 fees, brokerage fees caused by the manager for implementing his
strategy and all other charges (except loads) annualized.

f0 gathers all cost that do not contribute to the manager’s compensation,
i.e. f0 = fe − f .

ω denotes the initial wealth from the investor invested in the manager’s fund.

ri denotes the annualized return of the benchmark portfolio in which the in-
vestor can be invested at no additional cost.

rm denotes the annualized gross return on the manager’s portfolio. Before the
returns are delivered to the investor, the fees (i.e. fe) are subtracted.

fTSC denotes the annualized total shareholder cost, i.e. fe plus annualized front-
and back-load which is included with 1/5th annual breakout.

rnet denotes the annualized return that the manager delivers to the investor,
i.e. the return the manager actually realizes net of all fees (including loads).

Table 1: Summary of the most important symbols.
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Code Lipper Classification Name
EIE Equity Income Funds
FS Financial Services Funds
H Health/Biotechnology Funds
LCC Large-Cap Core Funds
LCG Large-Cap Growth Funds
LCV Large-Cap Value Funds
MCC Mid-Cap Core Funds
MCG Mid-Cap Growth Funds
MCV Mid-Cap Value Funds
MLC Multi-Cap Core Funds
MLG Multi-Cap Growth Funds
MLV Multi-Cap Value Funds
SPS S&P 500 Index Objective Funds
TK Science & Technology Funds
SCC Small-Cap Core Funds
SCG Small-Cap Growth Funds
SCV Small-Cap Value Funds
TL Telecommunication Funds
UT Utility Funds

Table 2: Lipper Investment Objectives.

Mean S.D. Median min max
Total Net Assets ($1M) 508.26 2478.04 55.20 0.10 65899.50
Expense Ratio (%/year) 1.72 1.01 1.70 0.00 42.26

Mgm Fee (%/year) 0.72 0.31 0.74 0.00 5.17
12b-1 Fee (%/year) 0.66 0.36 0.75 0.00 1.09

Front-load (%) 1.51 2.37 0.00 0.00 8.50
Back-end-load (%) 1.12 1.47 0.50 0.00 6.00

TSC (%/year) 2.24 1.12 2.33 0.00 43.86
Turnover 1.39 3.35 0.69 0.00 45.50

Net Return(%/year) 13.44 4.27 13.29 -20.94 35.47
Std. Dev. (%/year) 10.57 3.54 9.73 2.71 39.49

Beta 1.19 0.34 1.13 -0.10 3.65
Sharpe Ratio 1.07 0.45 1.09 -0.87 2.96

Table 3: Summary Statistics of US Domestic Equity Mutual Funds. This table
summarizes the main features of the 3,273 US Domestic Equity Mutual Funds
extracted from the CRSP Survivorship-Bias-Free US Mutual Fund Database
over the period from July 2003 to March 2007. TSC refers to total shareholder
costs. 12b-1 fee is the annual fee that funds have charged for marketing and
distribution.
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Decile # Sharpe Net Return Std. Dev. Expense Ratio Mgm Fee 12b-1 Fee Front Load Back Load TSC Beta Turn- TNA Ex-ante AFER
Ratio (%/year) (%/year) (%/year) (%/year) (%/year) (%) (%) (%/year) over (million $) (%/year)

best 327 1.87 17.90 8.35 1.53 0.70 0.58 1.82 0.99 2.10 0.91 0.78 59.00 -0.42
2nd 327 1.53 15.87 8.84 1.61 0.71 0.65 1.56 1.12 2.15 1.04 1.02 62.40 0.42
3rd 328 1.37 14.81 9.07 1.45 0.66 0.60 1.44 0.98 1.93 1.08 0.80 62.90 0.93
4th 327 1.25 14.47 9.69 1.51 0.66 0.61 1.72 0.96 2.04 1.15 1.00 78.30 1.89
5th 328 1.15 13.78 9.99 1.68 0.69 0.70 1.40 1.29 2.21 1.17 1.24 57.40 1.89
6th 327 1.03 13.33 10.69 1.68 0.73 0.66 1.42 1.08 2.18 1.21 1.82 55.75 2.18
7th 327 0.88 11.91 10.85 1.72 0.75 0.65 1.46 1.03 2.21 1.21 1.86 48.80 1.89
8th 328 0.74 10.92 11.62 1.84 0.74 0.70 1.57 1.23 2.40 1.28 1.72 47.70 1.93
9th 327 0.59 9.50 12.14 1.83 0.75 0.69 1.48 1.27 2.38 1.31 1.34 41.90 1.67
worst 327 0.32 6.65 14.44 2.30 0.83 0.71 1.26 1.21 2.79 1.49 2.31 34.90 1.06

S&P 500 1.34 12.61 7.29

Table 4: Summary statistics for Sharpe Ratio-Sorted US Domestic Equity Funds. This table summarizes the main features of all ten
Sharpe Ratio-sorted deciles of the 3,273 US Domestic Equity Mutual Funds extracted from the CRSP Survivorship-Bias-Free US Mutual
Fund Database over the period from July 2003 to March 2007. TSC refers to total shareholder costs. 12b-1 fee is the annual fee that
funds have charged for marketing and distribution. TNA (weighted average total net assets) is given as the median of the corresponding
decile and all other fees and ratios are the mean of the corresponding deciles. AFER is the after-fee excess return.
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decile # Sharpe a b R2 Net Return Std. Dev. Exp. Ratio Mgmt. Fee 12b-1 Fee Front Load Back Load TSC Beta Turn- Ex-ante AFER b∗
Ratio (%/year) (%/year) (%/year) (%/year) (%/year) (%/year) (%/year) (%) (%/year) over (%/year) (%/year)

Normal Funds

best 258 1.80 28.54 *** 3.89 *** 0.80 16.87 8.16 1.49 0.72 0.57 1.93 0.99 2.07 0.98 0.69 -0.35 13.88 ***
2nd 309 1.53 29.23 *** 1.65 *** 0.88 15.75 8.78 1.62 0.70 0.66 1.61 1.15 2.17 1.05 0.76 0.79 12.74 ***
3rd 317 1.37 26.90 *** 0.26 *** 0.86 14.69 8.99 1.44 0.65 0.60 1.49 0.98 1.93 1.08 0.70 1.17 11.67 ***
4th 286 1.25 25.57 *** -1.04 *** 0.93 14.21 9.54 1.49 0.64 0.60 1.85 1.02 2.07 1.15 0.88 2.00 11.29 ***
5th 297 1.15 24.44 *** -1.87 *** 0.91 13.63 9.89 1.68 0.68 0.71 1.46 1.34 2.24 1.17 1.14 2.21 10.65 ***
6th 280 1.02 21.05 *** -2.70 *** 0.93 13.03 10.45 1.64 0.72 0.66 1.54 1.12 2.17 1.21 1.48 2.40 9.98 ***
7th 319 0.88 16.44 *** -3.43 *** 0.89 11.81 10.75 1.71 0.76 0.64 1.48 1.03 2.21 1.22 1.67 1.88 8.70 ***
8th 215 0.73 15.43 *** -5.29 *** 0.95 10.56 11.43 1.84 0.76 0.68 1.93 1.35 2.50 1.30 1.32 2.49 7.60 ***
9th 202 0.61 8.99 *** -4.80 *** 0.79 10.21 12.91 1.90 0.78 0.72 1.03 1.18 2.34 1.34 1.56 1.63 7.02 ***
worst 304 0.35 6.04 *** -7.75 *** 0.52 7.08 13.72 2.06 0.81 0.72 1.27 1.26 2.57 1.44 1.93 1.41 3.92 ***

Abnormal Funds

best 69 2.16 15.00 *** 11.17 *** 0.36 21.77 9.07 1.70 0.64 0.63 1.41 1.00 2.18 0.67 1.16 -2.65 18.75 ***
2nd 18 1.55 10.65 * 5.74 *** 0.23 17.82 9.81 1.47 0.75 0.42 0.85 0.54 1.75 0.77 5.46 -1.28 14.49 ***
3rd 11 1.39 11.50 ** 5.56 *** 0.54 18.37 11.29 1.78 0.75 0.88 0.00 0.91 1.96 0.91 3.69 -0.55 14.94 ***
4th 41 1.27 20.05 *** 1.18 *** 0.93 16.22 10.74 1.61 0.74 0.67 0.78 0.56 1.88 1.16 1.82 1.69 12.89 ***
5th 31 1.16 12.84 *** 0.97 * 0.52 15.26 11.00 1.70 0.80 0.63 0.78 0.78 2.01 1.13 2.21 0.89 11.92 ***
6th 47 1.03 16.18 *** -0.05 0.82 15.10 12.13 1.95 0.78 0.65 0.73 0.79 2.25 1.21 3.87 1.77 11.77 ***
7th 8 0.89 22.04 *** 0.15 0.94 15.67 14.73 1.95 0.58 0.85 0.81 1.00 2.32 1.20 9.50 2.33 12.59 ***
8th 113 0.76 11.22 *** -3.19 *** 0.85 11.59 11.99 1.84 0.71 0.74 0.88 1.00 2.22 1.24 2.47 1.46 8.40 ***
9th 125 0.57 12.40 *** -6.73 *** 0.95 8.34 10.90 1.73 0.72 0.66 2.20 1.42 2.46 1.26 0.99 1.74 5.49 ***
worst 23 -0.08 10.45 ** -19.14 *** 0.31 0.95 23.98 5.47 1.03 0.49 1.10 0.43 5.77 2.16 7.13 6.46 -2.63

S&P 500 1.34 1.00 12.61 7.29

Table 5: Results of regression analysis of US domestic equity funds sorted by Sharpe Ratios. This table presents the results of the OLS regression of the after fees excess return against
adjusted beta. b and a denote the regression coefficient to the risky-asset. b∗ denotes the regression coefficient to the risk-free asset. The “normal” and “abnormal” funds are identified
mixture regression.
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Decile # Leveraged Funds (in %) Diversification Funds (in %)
(=100% ) AFER > 0 AFER < 0 AFER > 0 AFER < 0

Normal Funds

best 258 23.3 0.0 70.5 6.2
2nd 309 50.2 0.3 25.9 23.6
3rd 317 60.6 6.9 5.4 27.1
4th 286 51.7 28.3 0.0 19.9
5th 297 47.8 37.0 0.0 15.2
6th 280 46.1 37.5 0.0 16.4
7th 319 31.0 45.8 0.0 23.2
8th 215 10.2 79.1 0.0 10.7
9th 202 6.9 72.8 0.0 20.3
worst 304 2.0 84.5 0.0 13.5

Abnormal Funds

best 69 10.1 0.0 88.4 1.4
2nd 18 22.2 0.0 61.1 16.7
3rd 11 45.5 0.0 54.5 0.0
4th 41 65.9 0.0 9.8 24.4
5th 31 64.5 0.0 6.5 29.0
6th 47 63.8 2.1 2.1 31.9
7th 8 87.5 0.0 0.0 12.5
8th 113 28.3 45.1 0.0 26.5
9th 125 2.4 93.6 0.0 4.0
worst 23 4.3 95.7 0.0 0.0

Table 6: Breakout of US domestic equity funds sorted by Sharpe Ratios, ac-
cording to different properties. For each decile of the distribution of Shape
ratios, this Table reports the number of mutual funds in each of four follow-
ing mutual fund categories: (i) leveraged funds with positive after-fee excess
return (AFER), (ii) leveraged funds with negative AFER, (iii) diversification
funds with positive AFER and (iv) diversification funds with negative AFER.
We define a fund as leveraged (or diversifying) if βm − 1+rm

1+ri
is greater (or

smaller, respectively) than zero. We perform count statistic for normal funds
and abnormal funds separately.
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Figure 1: Summary of the model.
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Figure 2: Investor’s demand function for different values of the risk aversion
coefficient a. The investor’s invested amount is plotted against the fund’s man-
agement fee. The equilibrium solutions (fp, ω(fp)) for each value a has been
marked with an asterisk. For diversification funds with a beta smaller than
1 (upper panel), the equilibrium weight is decreasing and the equilibrium fee
is increasing when investors becomes more risk averse. For leveraged funds
with a beta larger than 1 (bottom panel), both the equilibrium weight and the
equilibrium fee are decreasing. The parameters for top figure are: r̄i = 0.08,
r̄m = 0.09, σi = 0.09 and σm = 0.08; the parameters for bottom figure are:
r̄i = 0.08, r̄m = 0.12, σi = 0.08, and σm = 0.13. Both have ρ = 0.7 and f0 = 0.
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Figure 3: Plot of the after-fees excess returns versus their adjusted betas. For
simplicity, six funds which are falling outside the margins of the plot, are not
shown.
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Figure 4: Cluster Analysis of the top and 7th deciles for the US Domestic Equity
Mutual funds from July 2003 to March 2007. The details of the regression can
be found in table 5.
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Appendix

1 Proof of Proposition 2

The necessary condition for the existence of solutions to the problem

max
f |ω(f)

E[Um(W̃m)|Im] (1)

is
∂E [Um(W0 +Ω(f)(1 + r̃m)f)|Im]

∂f
= 0 , (2)

namely

E

[
U

′
m(W0 +Ω(f)(1 + r̃m)f)(1 + r̃m)(Ω(f) + f

∂Ω(f)

∂f
)

∣∣∣∣ Im
]
= 0. (3)

The demand function Ω(f) is a deterministic function of f , therefore,

E[U
′
m(W0 +Ω(f)(1 + r̃m)f)(1 + r̃m)|Im](Ω(f) + f

∂Ω(f)

∂f
) = 0 . (4)

We have in reality r̃m > −1 and because utility functions are increasing with
wealth, namely U

′
m(x) > 0, we get

E[U
′
m(W0 +Ω(f)(1 + r̃m)f)(1 + r̃m)|Im] > 0 (5)

Therefore, the solution to (1) must be the solution to (9) in the main text. The
concavity of Um ensures the sufficiency of the first order condition. We stress
that we did not need to specify the form of the utility function Um, nor that of
the demand function Ω(f). Q.E.D.

2 Proof of Proposition 3

Using equation (11) in the main text, the investor’s demand function reads

Ω(fe) =
(1 + r̄m)(1− fe)− (1 + rf )

a · σ2
m(1− fe)2

(6)

with fe = f + f0. Then the solution to the manager’s optimization problem is
given by proposition 2. The first order condition yields

f = (1− f0) ·
(1 + r̄m) · (1− f0)− (1 + rf )

(1 + r̄m) · (1− f0) + (1 + rf )
, (7)

while the second order condition

(1− f0)(1 + rf ) ≥ 0 (8)

always holds. Q.E.D.
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3 Proof of Proposition 4

The investor’s demand function is solution to the problem

max
ω|fe

E
[
−e−a((1−ω)(1+r̃i)+ω(1+r̃m)(1−fe))|Ii

]
(9)

with ω ≥ 0 and (r̃i, r̃m) distributed according to (17). The expectation can be
readily calculated

E
[
−e−a((1−ω)(1+r̃i)+ω(1+r̃m)(1−fe))|Ii

]
= −eφω(−a), (10)

where φω(−a) is the cumulant generating function of a Gaussian random vari-
able at point −a, so that

φω(−a) =
a2

2

[
(1− ω)2σ2

i + 2ω(1− ω)(1− fe)ρσiσm + ω2(1− fe)
2σ2

m

]

− a [(1− ω)(1 + r̄i) + ω(1− fe)(1 + r̄m)] . (11)

Maximizing the expectation in (9) is equivalent to minimize φ and therefore the
first order condition yields

Ω(fe) =
1

a
· (1 + r̄m − aρσiσm) · (1− fe)− (1 + r̄i − aσ2

i )

σ2
m(1− fe)2 − 2ρσiσm(1− fe) + σ2

i

(12)

while the second order condition

a2
(
σi

2 − 2 (1− fe) ρσiσm + (1− fe)
2
σm

2
)
≥ 0 (13)

always holds.
Since fe is defined within the range that satisfies ω ≥ 0, it is easy to check

that

fmax =
r̄m − r̄i + aσ2

i − aρσiσm

1 + r̄m − aρσiσm
− f0. (14)

As for the manager’s optimization problem, proposition 2 shows that the
optimal fee is solution to the first order condition

Ω(f0 + f) + f · ∂fΩ(f0 + f) = 0 , (15)

namely, with the notations of proposition 4
[
Rm(1− f0)σm − 2Rmρσiσm +Riσ

2
m

]
f2

− 2Rm

[
σ2
i − 2(1− f0)ρσiσm + (1− f0)

2σ2
m

]
f (16)

+ [Rm(1− f0)−Ri] ·
[
σ2
i − 2(1− f0)ρσiσm + (1− f0)

2σ2
m

]
= 0

whose solutions are

f± =
Rm

[
σ2
i − 2(1− f0)ρσiσm + (1− f0)

2σ2
m

]

Rm(1− f0)σ2
m − 2Rmρσiσm +Riσ2

m

+

±
√
[(1− f0)2σ2

m − 2(1− f0)ρσiσm + σ2
i ] · [R2

mσ2
i − 2RmRiρσiσm +R2

i σ
2
m]

Rm(1− f0)σ2
m − 2Rmρσiσm +Riσ2

m

.

(17)
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Since

∂2
f (f · Ω(f0 + f))f=f±

= ±
√ [

(1− f0)
2σ2

m − 2(1− f0)ρσiσm + σ2
i

]

×
[
R2

mσ2
i − 2RmRiρσiσm +R2

i σ
2
m

] , (18)

the second order condition leads us to choose f−.
However, this solution is admissible if and only if f− ≥ 0, which requires

R2
m

[
σ2
i − 2(1− f0)ρσiσm + (1− f0)

2σ2
m

]
R R2

mσ2
i − 2RmRiρσiσm +R2

i σ
2
m

(19)
and

Rm(1− f0)σ
2
m − 2Rmρσiσm +Riσ

2
m R 0 . (20)

Factorizing (19), we get

[(1− f0)Rm −Ri] ·
[
Rm(1− f0)σ

2
m − 2Rmρσiσm +Riσ

2
m

]
R 0, (21)

so that, according to (19) and (20)

f− ≥ 0 ⇐⇒ (1− f0)Rm ≥ Ri (22)

which holds by the assumption made in proposition 4. Q.E.D.

4 Generalization

We now consider the general case where the investor’s utility function can be
any increasing and concave function. We do not make any assumption on the
joint distribution of returns on the benchmark portfolio and on the managed
portfolio. We just assume that the funds are not too risky and that the investors
are not too risk averse to justify a second order expansion of the investor’s utility
function. Then, as proved in 5 down-below, the following result holds

Lemma 1. Up to second order terms in an expansion in powers of the returns
and fees, the investor’s demand function reads

Ω =

[
σ2
i − (1− fe)ρσiσm

]
+ a(Ω)−1 · [(1 + r̄i) + (1− fe)(1 + r̄m)]

σ2
i − 2(1− fe)ρσiσm + (1− fe)2σ2

m

, (23)

where a(Ω) denotes the investor’s absolute risk aversion at the point (1−Ω)(1+
r̄i) + Ω(1− fe)(1 + r̄m).

As previously, the demand is independent of the risk aversion for fe = fp =
r̄m−r̄i
1+r̄m

. Thus, up to the first order in fe − fp, we get

Ω(fe) ≈ Ωp +



ρσiσm +

(
1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2

− 2ρσiσm · 1+r̄i
1+r̄m

+ σ2
i


 · (fe − fp).

(24)
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As checked later in 6, for the case of CRRA utility functions, the linear ap-
proximation of the demand function is quite good. This justifies assumption 2
according to which the fund manager knows the investors’ demand function.

Without loss of precision, (24) can be simplified by replacing a(Ω) with a(Ωp)
in (23). Then, performing the same calculation as in 3, we can generalize the
result of proposition 4. More importantly, we can state

Proposition 5. Within the limits of the hypothesis of this section, irrespec-
tive of the investor’s utility function and of the distributions of returns on the
benchmark portfolio and on the managed portfolio, the optimal management fee
the manager should charge is approximately half the fee that starts to make the
managed fund undesirable to the investor:

f∗ ≈ r̂m − r̂i
2

− f0
2
, (25)

where
r̂m = r̄m − a (Ωp) ρσiσm and r̂i = r̄i − a (Ωp)σ

2
i (26)

are the risk-adjusted expected returns on the managed and on the benchmark
portfolio.

As a corollary to this proposition, we can generalize the results derived when
the benchmark portfolio is the risk-free asset.

Corollary 1. After adjustment for the level of risk, the expected return on the
managed fund, net of all fees, is equal to the expected return on the benchmark
plus the management fee

r̂m − fe = r̂i + f∗. (27)

5 Proof of lemma 1

Let us denote by U the investor’s utility function. It is assumed increasing and
concave. The demand function is solution to

max
ω

E [U ((1− ω)(1 + r̃i) + ω(1− fe)(1 + r̃m))] . (28)

We denote by 1+ r̄(ω) the average gross rate of return and by σ(ω)2 the variance
of the return on the investor’s portfolio. Then expanding the utility function in
the neighborhood of r̄ up to the second order, the optimal demand solves

∂ω r̄(ω) = −U ′′(r̄)
U ′(r̄)

· ∂ωσ(ω)
2

2
, (29)

where we recognize the coefficient of absolute risk aversion −U ′′/U ′. The higher
order term ∂ω r̄(ω)U

′′′(r̄)σ(ω)2 has been neglected.
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Expressing r̄(ω) and σ(ω)2 and substituting in the equation above, we get

− (1 + r̄i) + (1− fe)(1 + r̄m)

= −U ′′(r̄)
U ′(r̄)

[
ω(1− fe)

2σ2
m + (1− 2ω)(1− fe)ρσiσm − (1− ω)σ2

i

]
. (30)

To simplify notations, we define

a(ω) := −U ′′(r̄(ω))
U ′(r̄(ω))

, (31)

so that the optimal demand function reads

Ω(fe) =

[
σ2
i − (1− fe)ρσiσm

]
− a(Ω)−1 · [(1 + r̄i)− (1− fe)(1 + r̄m)]

σ2
i − 2(1− fe)ρσiσm + (1− fe)2σ2

m

. (32)

This equation remains implicit since the level of the demand appears in the
right-hand side to set the level of absolute risk aversion. But, if it does not vary
too fast, it is reasonable to make the approximation that it is locally constant.

Expanding this relation around fe = fp, we first evaluate

Ω(fp) = Ωp =
σ2
i − 1+r̄i

1+r̄m
ρσiσm

σ2
m

(
1+r̄i
1+r̄m

)2

− 2ρσiσm · 1+r̄i
1+r̄m

+ σ2
i

, (33)

and

Ω′(fp) =
ρσiσm +

(
1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a(Ωp)

−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2

− 2ρσiσm · 1+r̄i
1+r̄m

+ σ2
i

, (34)

so that

Ω(fe) ≃ Ωp+



ρσiσm +

(
1+r̄i
1+r̄m

· σm
2 − ρσiσm

)
Ωp − a(Ωp)

−1 (1 + r̄m)

σ2
m

(
1+r̄i
1+r̄m

)2

− 2ρσiσm · 1+r̄i
1+r̄m

+ σ2
i


·(fe−fp).

(35)

6 Robustness Check: CRRA utility function with
Log-Prices

The dependence of the results of our model is tested for a larger class of utility
functions:

Ui(x) =
x1−a

1− a
(36)

Ui(x) =
x1−b

1− b
(37)

5



48 Chapter 2. Investors’ Expectations, Management Fees and the Underperformance. . .

with a, b > 0 and a, b 6= 1, a, b represent respectively the constant relative risk
aversion level of the investors and managers.

To avoid negative prices, we use log-returns. The wealth of the investor at
period 1 is

W̃i = (1− ω)er̃i + ωer̃m(1− fe) . (38)

The wealth of the manager at period 1 is

W̃m = ωer̃mf (39)

The log-returns r̃i and r̃m are Gaussian distributed as

r̃i|i ∼ N(r̄i, σ
2
i ) (40)

r̃m|i ∼ N(r̄m,i, σ
2
m,i) (41)

Their correlation perceived by the investor is denoted ρ.
The investor’s optimization problem is formulated as:

max
ω|fe

E[
((1− ω)er̃i + ωer̃m(1− fe))

1−a

1− a
|i] (42)

with ω > 0. The manager’ optimization problem is formulated as

max
f |ω∗

E[
(ωer̃mf)1−b

1− b
|m] (43)

with 0 < f + f0 < 1 given

r̃m|m ∼ N(r̄m,m, σ2
m,m) (44)

In this setup, a closed form solution is difficult to find and we resort to
numerical methods.

For the investor’s optimization problem, we have

E[((1− ω)er̃i + ωer̃m(1− fe))
1−a|i] = 1

2πσiσm,i

√
1− ρ2(1− a)

I (45)

with

I =

∫ +∞

−∞

∫ +∞

−∞
((1− ω)eri + ωerm(1− fe))

1−a

×e
− 1

2(1−ρ2)
(
(ri−r̄i)

2

σ2
i

+
(rm,i−r̄m,i)

2

σ2
m,i

− 2ρ(ri−r̄i)(rm,i−r̄m,i)

σiσm,i
)
dridrm,i (46)

We numerically calculated this double integral and solved the optimization prob-
lem.

For the managers’ optimization problem, we have (notice ω∗(f) is the same
as ω∗(fe) here)

E[
(ωer̃mf)1−b

1− b
|m] =

1√
2πσm,m(1− b)

(ω∗(f)f)1−bI(b, rm,m, σm,m) (47)
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with

I(b, rm,m, σm,m) =

∫ +∞

−∞
erm(1−b)e

− 1
2 (

(rm−r̄m,m)2

σ2
m,m

)
drm (48)

Notice that only (ω∗(f)f)1−b depends on f , therefore, the manager’s optimiza-
tion problem (43) is equivalent to

max
f |ω∗

(ω∗(f)f)1−b (49)

The numerical results confirm the remarkably strong robustness of our ana-
lytical result derived for CARA utility functions. Figures are available from the
authors upon request.

7 Shape of the demand function Ω

Figure 1 depicts the changes of the optimal management fee (upper panel) and of
the corresponding investor’s demand (lower panel) as a function of the investor’s
anticipated correlation between the mutual fund and the benchmark portfolio,
for different degrees of the investor’s absolute risk aversion a. The upper panel
predicts that the equilibrium fee decreases when the correlation between the
two portfolios increases. This reflects the fact that investors put more value
on those funds which provide a greater diversification potential with respect to
their benchmark portfolio. In addition, this figure confirms that more risk averse
investors accept higher fees when the fund provides diversification benefits.

In the upper panel of Figures 1, 2 and 3, all curves intersect at one single
point. At this point, the optimal management fee is the same for investors with
different value of the risk aversion coefficient a.

The lower panel shows the dependence of the demand as a function of the
correlation, for different types of investors. For the chosen parameters, we ob-
serve that the less risk averse investors put a larger fraction of their wealth in
the managed portfolio when the correlation increases, while the more risk averse
investors invest less in this portfolio for the same correlation. This reflects the
fact that more risk averse investors are more eager to seek diversification.

Figure 2 plots the equilibrium fee (upper panel) and the investors’ demand
(lower panel) as a function of the investor’s expected future volatility (standard
deviation) of the benchmark portfolio. The correlation coefficient is set to ρ =
0.7. We recall that the expected future volatility of the mutual fund is σm =
0.08.

The upper panel shows that, overall, investors accept higher fees when the
expected volatility of the benchmark portfolio increases. This result is not
surprising in so far as, everything else taken equal, the larger the benchmark
volatility, the more attractive the managed portfolio. In addition, as previ-
ously, the more risk-averse investors are the more sensitive to an increase of the
benchmark volatility and are thus more agreeable to paying higher fees. The
lower panel confirms that the more risk-averse investors buy more mutual fund

7
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shares than the less risk-averse investors even if the number of shares they buy
decreases, overall, when the benchmark volatility increases.

Figure 3 shows the equilibrium fee (upper panel) and the investor’s demand
(lower panel) as a function of the investor’s expected return on the mutual fund.
According to expression (22) in the main text, the equilibrium fee increases with
the expected return on the mutual fund. The upper panel shows that the change
is almost insignificant with respect to the different levels of risk aversion. In
contrast, the lower panel shows that the level of risk aversion affects the demand
significantly. More risk-averse investors are more sensitive.

8 Investment style versus Sharpe Ratio

Table 1 provides information on how the different investment styles are dis-
tributed over the ten Sharpe ratio deciles. The abbreviation codes used in the
table are reported in Table 2 in the main text. The most frequent categories
(about 27% of the total sample) in our data sample are large-cap (L) funds,
closely followed by mid-cap (M) funds (23%) and small-cap (S) funds (17%).
Most funds are classified after market capitalization and typically fall into the
normal fund category, which is about 80% of the total sample. Further, value
(V) funds tend to lie in the top deciles, whereas more growth (G) funds lie
in the bottom deciles, as growth funds are more sensitive to market changes
and experience higher volatility. The remaining funds (about one third of the
sample) are not classified according to the market capitalization; most of these
remaining fund invest into specific industry sectors with the exception of equity
income (EIE) funds and S&P 500 index objective (SPS) funds. Unsurprisingly,
all the S&P 500 index objective funds (SPS) funds have a very similar char-
acteristic and fall in the middle deciles (fourth and fifth decile to be specific)
of the normal funds. Equity Income (EIE) funds fall with very few exceptions
into the normal cluster as they invest in dividend paying stocks, which can as
well be found in large-cap portfolios. Utility (UT) funds performed particular
well during the investment period and mostly fall into the top deciles of the
abnormal funds. Financial services (FS) funds were similar successful. Finally,
the performance of Health Care and Biotech (H) funds is more heterogeneous
and these fund typically fall in the bottom deciles of the normal funds, with
a few exceptions though. We can confirm that investment styles have a large
impact on performance, which is in line with many other studies, for instance
by Chan et al. (2002), Brown and Harlow (2002) and Bogle (1998).

9 Adding the risk-free asset to the equity bench-
mark portfolio

Consider the investor’s benchmark as a mix of the risk-free asset (bond index)
with return rf and of a stock index, whose expected return is r̄i, risk σi and
correlation ρ with the managed fund i. Let x denote the weight of the stock index

8



2.2. Paper 51

in the benchmark portfolio. We consider the case where x is set exogenously. In
this case, the results in section 3.2 of the main text hold with the correspondence

r̄i 7→ rf + x (r̄i − rf ) , (50)

σi 7→ xσi, (51)

so that equation (17) in the main text becomes

f∗ + fe ≃ [r̄m − rf − x · (r̄i − rf )]− a

(
ρ
σm

xσi
− 1

)
x2σ2

i , (52)

and x has to be considered as an (additional) independent variable in the re-
gression model derived from this relation.

9.1 Regression framework

From eq. (52) we have

r̄m − rf − f∗ − fe = x · (r̄i − rf ) + a · x · ρmσmσi − a · x2 · σ2
i , (53)

where m is the varying index from one managed fund to another. We can then
perform the linear regression

r̄m − rf − f∗ − fe = α+ β · ρmσm + ǫm, (54)

where α and β are the parameters to be estimated and ǫm is a zero mean error
term. The parameters α and β have the following definitions

α = x · (r̄i − rf )− a · x2 · σ2
i , (55)

β = a · x · σi, (56)

from which we get

a =
β

α
· r̄i − rf

σi
− β2

α
, (57)

x =
α

(r̄i − rf )− βσi
. (58)

With this approach, there is no intercept which can be interpreted in terms of
investor’s optimism. However, we can still compare the weight to the equity
weight of the benchmark x, which depends on a.

9.2 Maximum Likelihood solution

The problem with the equation

(1 + r̄m)(1− fm
e − fm)− (1 + rf ) = α+ βρmσm(1− fm

e − fm) + ǫm (59)

9
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is that the condition

fm(1 + r̄m − βρmσm) ≥ −ǫm (60)

should be considered in the regression, leading to a non-trivial maximum likeli-
hood estimation procedure.

As we were not able to find a closed form solution for a maximum likelihood
estimator for the problem (59) simultaneously respecting condition (60), we are
estimating α and β from equation (55) and (56), respectively, by an iterative
robust maximum likelihood methodology introduced by Dupuis and Morgen-
thaler (2002). This estimator weights observations with respect to the model.
This is important as it allows us to down-weight observation which do no fulfill
condition (60) and subsequently do not need to fulfill equation (59). Moreover,
this estimator has some good properties, such as unbiasedness and consistency.
The result of the methodology can be found in Figure 8. We obtain α = 0.074
and slope β = 0.225 corresponding to x = 0.904 and a = 4.3, respectively. Note
that this results should be interpreted with care because weighting observation
by the model is a very strong assumption. However, applying this methodology,
the results are in line with our previous results. The weight x is relatively close
to 1, indicating that investors seem to use an equity dominated benchmark. The
risk aversion a ≈ 4 is also in line with the results presented previously where
the sample was divided into ten Sharpe ratio deciles.
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Figure 1: Fund’s management fee and investor’s invested amount in the mutual
fund as a function of the anticipated correlation between the fund’s portfolio and
investor’s benchmark portfolio, with all the other parameters being kept fixed.
When the two portfolios are perfectly correlated, it should not be surprising to
find that, depending on their risk aversion and taste for mean return, investors
may invest fully in the benchmark portfolio or the mutual fund, or partly in
the mutual fund and partly in the benchmark portfolio. The parameters are:
r̄i = 0.08, r̄m = 0.12, σm = 0.13, σi = 0.08 and f0 = 0.
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Figure 2: Fund’s management fee and investor’s invested amount in the mutual
fund as a function of the expected future volatility (standard deviation) of the
investor’s benchmark portfolio, with all the other parameters being kept fixed.
The parameters are: r̄i = 0.08,r̄m = 0.10, σm = 0.08, ρ = 0.7 and f0 = 0
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Decile EIE FS H LCC LCG LCV MCC MCG MCV MLC MLG MLV SCC SCG SCV SPS TK TL UT Total

Normal Funds

best 39 9 0 4 1 35 19 1 41 10 1 79 10 0 6 0 0 2 1 258
2nd 34 2 0 19 0 51 21 9 29 30 2 59 22 0 27 0 0 1 3 309
3rd 20 6 0 38 0 37 40 7 14 55 8 36 19 1 28 7 0 1 0 317
4th 6 4 0 49 2 17 24 10 4 35 17 19 33 5 17 36 0 8 0 286
5h 4 10 0 62 6 24 17 24 7 24 5 11 42 14 22 20 4 1 0 297
6th 2 6 0 72 8 15 16 26 11 19 19 16 35 23 11 0 1 0 0 280
7th 3 11 7 61 33 2 9 47 4 37 28 10 22 41 2 0 2 0 0 319
8th 0 0 0 42 49 0 2 40 5 12 18 3 6 26 1 0 10 1 0 215
9th 0 5 23 17 25 1 2 24 1 11 18 5 7 24 2 0 36 1 0 202
worst 4 0 32 25 85 0 3 9 2 6 35 0 4 17 1 0 81 0 0 304

Total 112 53 62 389 209 182 153 197 118 239 151 238 200 151 117 63 134 15 4 2787

Abnormal Funds

best 0 0 2 0 0 0 6 0 7 1 0 4 4 0 1 0 0 0 44 69
2nd 0 1 3 0 0 0 0 1 0 0 0 0 3 1 1 0 0 0 8 18
3rd 0 0 2 0 0 0 1 0 0 0 0 1 4 0 1 0 1 0 1 11
4th 0 3 0 2 0 1 7 5 2 2 3 3 5 2 6 0 0 0 0 41
5h 3 5 3 6 0 1 1 4 1 1 2 1 0 2 1 0 0 0 0 31
6th 0 8 5 4 1 1 2 4 0 1 2 1 4 6 3 0 4 1 0 47
7th 0 0 1 0 0 0 0 1 0 0 0 3 0 1 0 0 0 2 0 8
8th 0 1 18 5 11 1 1 22 0 3 8 3 3 25 0 0 9 3 0 113
9th 0 0 0 20 51 0 0 17 0 12 10 0 0 6 0 0 9 0 0 125
worst 0 0 1 2 1 0 0 0 0 2 1 0 1 4 1 0 10 0 0 23

Total 3 18 35 39 64 4 18 54 10 22 26 16 24 47 14 0 33 6 53 486

Table 1: Cluster Analysis and Investment Styles Statistics. For each decile of the distribution of Shape ratio, this table reports
the results of the cluster analysis and the number of mutual funds in each of the Lipper investment objectives. We have a total
of 3,273 US Domestic Equity Mutual Funds over the time period from July 2003 to March 2007. All deciles are classified into
two fund segments. All the abbreviations are reported in Table 2.
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Figure 3: Fund’s management fee and investor’s invested amount in the mutual
fund as a function of the expected return on the mutual fund, with all other
parameters being kept constant. The parameters are: r̄i = 0.08, σi = 0.10,
σm = 0.15, ρ = 0.7 and f0 = 0.
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Figure 4: Cluster Analysis of deciles 2 and 3 for the US Domestic Equity Mutual
funds from July 2003 to March 2007. The details of the regression can be found
in table 5.
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Figure 5: Cluster Analysis of the deciles 4 and 5 for the US Domestic Equity
Mutual funds from July 2003 to March 2007. The details of the regression can
be found in table 5.
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Figure 6: Cluster Analysis of the deciles 6 and 8 for the US Domestic Equity
Mutual funds from July 2003 to March 2007. The details of the regression can
be found in table 5.
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Figure 7: Cluster Analysis of the two bottom deciles for the US Domestic Equity
Mutual funds from July 2003 to March 2007. The details of the regression can
be found in table 5.
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Figure 8: Fitting equation (59) using the methodology of Dupuis and Morgen-
thaler (2002). The red line presents the parameter estimates with intercept
α = 0.0743 and slope β = 0.2252 corresponding to x = 0.9038 and a = 4.3176,
respectively. The funds with red crosses are assigned a weighted below 100%.
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2.3 Discussion & Perspective

To be useful, the presented as well as the CAPM model have the problem that
both have to be calibrated on future expectation. Of course, the problem is
that these expectations can not be directly observed (latent variable). It is only
possible to proxy them by past returns, i.e. basically assuming that the history
repeats itself (see Pettengill et al. (1995) for a technical discussion). This is
a common assumption in finance, nevertheless this assumption seems not very
natural. Moreover, an intrinsic problem is that the fair value itsself is unobservable.

Starting around 1995, scientists from natural science and in particular physics
increasingly stimulated the field of finance. They bring in new methods to the
field of finance; for instance the analysis of massive data sets (developed originally
for particle physics) or the use of statistical mechanics. “A market is a system of
extremely many dynamically coupled variables. Theoretically, it is not obvious
that such a system would have a stationary solution. For example, the system
could behave periodic, quasi-periodic, chaotic, or turbulent [ . . . ]. In all these
cases, there would be no convergence to a stationary solution” (Helbing, 2012).

Special attention should be drawn that econophysics is less concerned with giving
an axiomatic explanation which is later verified with data. Rather, econophysics
tries to describe and quantify phenomena observed in the data itself. For this
reasons, it was partly ignored by economists, partly heavily criticized. Gallegati
et al. (2006) for example point out, that econophysicists apply their model too
often blindly, neither understanding the actual data nor giving an explanatory
insight of the underlying interactions.

In his reply, McCauley (2006) argues that economists put to much emphasis on
nice assumptions to keep model analytical tractable, for example assuming normal
distributed noise, although it is well known from empirical observation that this
is unrealistic. McCauley further criticizes that economist postulate models, even
if they know that the assumptions are violated in reality, just because of the lack
of any alternatives. In addition, even if classical finance can successfully model
and explain historical relations, too often these relations can not be exploited
for policy making; as soon as a policy maker tries to invoke a policy based on
historical observations, they are no longer usable as they become expected or
even manipulated. The former is known as Lucas critique (see Lucas, 1976),
whereas the latter is known as Goodhart’s law (Goodhart, 1975). Moreover,
even Markowitz seminal paper was criticized to follow new paths and for not
contributing to economics (Markowitz, 1990), however he was awarded a Nobel
price in 1990.

Last, but not least, the current “financial crisis” is also a crisis of finance and
economics. “We no longer know what things are worth. This is an advance on
the previous situation, where we wrongly supposed they were worth whatever
markets – or actuaries – told us they were. But for both financial folk and policy
makers, it threatens paralysis.” (Jackson, 2012). Financial theory did not only
fail to predict the crisis, it seems also to miss solutions to solve it. Hence, the
paper presented in the next chapter will use a more applied approach.



3
Super-exponential Bubbles in

Lab Experiments: Evidence for
Anchoring over-optimistic

Expectations on Price

I can calculate the movement of the stars, but not the madness of men.
—Isaac Newton

3.1 Introductory comments

In this chapter, we use a more applied approach to describe prices during a
bubble period. This reduces the hassle of financial modeling, and defining the
expectations of our agents. Nevertheless, we will see later in the discussion and
literature section of the paper that although the model has first and foremost
only descriptive character, it can be motivated by well known models. We start
by giving a short introduction to financial bubbles.

Bubbles have been with humans since a long time. Gisler and Sornette (2010
(available at http://ssrn.com/abstract=1590816) even argue that bubbles are the
fundamental driving force of human development. Famous historical bubbles have
been the tulip mania (1637) and the south sea bubble (1720), both induced by
over-optimism of a new paradigm (see for example Garber, 2001). It is interesting
to note that to some degree history indeed repeats itself. In every bubble, people
tend to expect that “this time is different” (Reinhart and Rogoff, 2009), but after
the initial euphoria, conventional valuation can not be completely overturned.
Nobel laureate Shiller wrote an informative book about “Irrational exuberance”
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(Shiller, 2005) discussing the psychological factors of bubbles.

Initially, all these bubbles are fueled by expectations in exogenous factors (new
discoveries of better and more efficient technologies, etc.). However, as time
progresses (and uncertainty in future prospect reduces), investors continue to
jump on the bandwagon of rising prices. Prices continue to grow, but caused by
endogenous factors; agents are not willing to adopt and preserve their expectations
to the changed situation. The paper presented in the next section describes the
dynamics relating to this second phase.

Many excellent reviews about bubbles have been written – including Brunner-
meier (2008) and Brunnermeier and Oehmke (2012) which have a more classic stand
point, and Kaizoji and Sornette (2010 (long version at http://arXiv.org/abs/0812.2449)
a review with a broader perspective. Finally, the paper presented in the next
section also contains an overview of the relevant literature of experimental bubbles
which we do not want to replicate here.

For the last part of this section we focus on the dynamics of returns. In the
most simple setting, returns are often modeled to be normal distributed (which is
consistent with the weak form of the efficient market hypothesis). However, more
complicated distributions are possible.

An interesting empirical pattern is the so called cobweb cycle or “hog cycle”,
first described by Harlow (1960) in which prices alternatively over- and undershoot
the equilibrium price. Depending on the shape of the supply and demand curve,
it is possible that the prices converges to an equilibrium, oscillates around the
equilibrium, diverges or behave chaotic. The mispricing is generally the higher,
the greater the confusion is about the pricing mechanism (Kirchler et al., 2012).
Figure 1 shows an example where the cobweb will converge over time (the equi-
librium price is where supply meets demand). Hommes (2006) presents agents
based model where dynamics are chaotic.

D

S
P

QQ1

P3

P1

Q3

P2

Q2

Fig. 1: Reproduced from https://en.wikipedia.org/wiki/Cobweb_model. Supply price (S)

and demand price (d) are plotted as a function of quantity (Q) and price (P).

https://en.wikipedia.org/wiki/Cobweb_model
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For the research paper presented in this chapter, Cars Hommes (which also
co-authored the paper) kindly provided us with data from a laboratory market
(please refer to the paper presented in the next section for more details). We
find an interesting signature in the phase when a bubble is building up: Plotting
returns rt versus the previous period return rt−1 reveals the following pattern;
although the fair price (which would be an equilibrium price) is already exceeded,
returns rt stay not only positive, they continue to grow, see Figure 2.
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Fig. 2: Returns rt versus previous period returns rt−1. Reproduced from Hüsler et al. (2012).

Note that the growing growth rate implies faster than exponential price acceleration.

Classical finance struggles to find an explanation for such a pattern. Prices in
models should not deviate systematically from the equilibrium price. Phenomeno-
logical approaches have it easier: in physics and psychology such patterns are well
known and can be explained by positive feedback or herding.

3.2 Paper

On the following pages, we present the paper in full length. The paper is available
as:

A. Hüsler, D. Sornette, and C. H. Hommes. Super-exponential bubbles
in lab experiments: evidence for anchoring over-optimistic expectations on
price. May 2012
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Abstract

We analyze a controlled price formation experiment in the laboratory that shows evidence for
bubbles. We calibrate two models that demonstrate with high statistical significance that these
laboratory bubbles have a tendency to grow faster than exponential due to positive feedback. We
show that the positive feedback operates by traders continuously upgrading their over-optimistic
expectations of future returns based on past prices rather than on realized returns.

Keywords: rational expectations; financial bubbles; speculation; anchoring; laboratory experiments;
behavioral model; super-exponential growth; positive feedback; behavioral expectations

JEL: C92; D84; G12

Highlights:

• We offer an interpretation of lab experiments that exhibit financial bubbles.

• We show that bubbles in controlled experiments can grow faster than exponential.

• We find traders anchor expectations more on price than on returns in these bubbles.

1 Introduction

Bubbles, defined as significant persistent deviations from fundamental value, express one of the most
paradoxical behaviors of real financial markets. Here, we analyze the dynamics of bubbles in a laboratory
market (Hommes et al. (2008)) and focus on the regimes of strong deviations from the known fundamental
values, which we refer to as the bubble regimes. Because this data is from a controlled environment,
we can exclude exogenous influences such as news or private information. We show that a model with
exponential growth, corresponding to a constant rate of returns, cannot account for the observed transient
explosive price increases. Models that incorporate positive feedback leading to faster-than-exponential
growth are found to better describe the data.

Research on financial bubbles has a rich literature (see e.g. Kaizoji and Sornette (2010) for a recent
review) aiming at explaining the origin of bubbles, their persistence and other properties. The theoretical
literature has classified different type of bubbles. For instance, Blanchard (1979) and Blanchard and
Watson (1982) introduced rational expectation (RE) bubbles, i.e., bubbles that appear in the presence
of rational investors who are willing to earn the large returns offered during the duration of the bubble as a
remuneration for the risk that the bubble ends in a crash. Tirole (1982) argued that heterogeneous beliefs
among traders is necessary for bubbles to develop. de Long et al. (1990) demonstrated that introducing
noise traders in a universe of rational speculators can amplify the size and duration of bubbles. Brock
and Hommes (1998) showed that endogenous switching between heterogeneous expectations rules, driven
by their recent relative performance, generates bubble and crash dynamics of asset prices. Abreu and
Brunnermeier (2003) explained the persistence of bubbles by the heterogeneous diagnostics of rational
agents concerning the start time of the bubble, which leads to a lack of synchronization of their shorting

1
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of the underlying asset, and therefore prevents them from stopping the bubble to blossom. Lux and
Sornette (2002) showed that the multiplicative stochastic process proposed by Blanchard and Watson
(1982), together with the no-arbitrage condition, predicts a tail exponent of the distribution of returns
smaller than 1, which is incompatible with empirical observations. Johansen et al. (1999) and Johansen
et al. (2000) thus extended the Blanchard-Watson (1982) model of RE bubbles by proposing models for
the crash hazard rate that exhibit critical bifurcation points reflecting the imitation and herding behavior
of the noise traders. Gallegati et al. (2011) presented a model of bubbles and crashes, where crashes
occur after a period of financial distress. Hommes (2006) reviewed behavioral models of bubbles with
fundamentalists trading against chartists.

Jarrow et al. (2007), Jarrow et al. (2010) and Jarrow et al. (2011) developed local martingale models
of bubbles within the arbitrage-free martingale pricing technology that underlies option pricing theory,
based on the assumption that bubbles come together with (or are defined by) a volatility growing faster
than linearly with the underlying price. But Andersen and Sornette (2004), among others, have shown
that some (and perhaps most) bubbles are not associated with an increase in volatility. In particular,Bates
(1991) documented that the famous worldwide October 1987 crash occurred at a minimum of the implied
volatility, at least in the US. Gürkaynak (2008) surveyed econometric tests of asset price bubbles and
showed that the econometric detection of asset price bubbles cannot be achieved with a satisfactory
degree of certainty: for each paper that finds evidence of bubbles, there is another one that fits the data
equally well without allowing for a bubble.

The present paper represents the first detailed quantitative calibration of simple models with positive
feedback that unambiguously demonstrates the existence of positive feedback mechanisms and super-
exponential bubbles in the price formation process. It thus provides support within controlled laboratory
set-ups for the empirical evidence presented by Sornette et al. on historical financial bubbles (see Jiang
et al. (2010) and Kaizoji and Sornette (2010)1 and references therein for an overview).

2 Material and methods

In the experiment of Hommes et al. (2008), participants (“traders”) were asked to forecast the price of
a single asset in every turn. The price of the asset evolves with the equation,

pt =
1

1 + r

[
1

H

H∑

h=1

pht+1 +D

]
, (1)

where the market price pt at time t is given as an average of the H = 6 traders discounted price
expectations; r = 5% is the interest rate, pht+1 is the estimate of trader h for the price for period t + 1
based on information up to time t−1 and D = 3.00 is the dividend. Hence, today’s price pt is simply the
average of the current value of the traders’ expectations for tomorrow pht+1. Note that the traders have
to make a two period forecast; for their forecast pht+1, only the prices up to time t−1 are available.

Traders are given the parameters above (but not the price forming Equation 1 itself) and are rewarded
according to their prediction accuracy2. The fundamental/equilibrium price pf (which traders could
calculate) is 603. In our analysis, we focus on the realized price pt and not on the traders’ individual
estimates pht .

Notwithstanding the existence of a clearly defined market price formula, this experiment is remarkable
in reporting realized prices that are quite loosely tied to the fundamental value, because traders are
rewarded more by correctly foreseeing the other traders’ forecasts than by correctly calculating the
fundamental price pf . Moreover, traders are allowed to estimate the asset value in a large price range
between 0 and 1000 (where the upper bound is more than 16× the fundamental value pf ).

1An extended version is available at http://arxiv.org/abs/0812.2449
2The reward is proportional to the quadratic scoring rule max

{
(1300− 1300/49(pt − pht ))

2, 0
}

3pf = D/r = 3.00/5% = 60

2
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3 Theory/calculation

3.1 Rational Bubble

Hommes et al. (2008) discussed the rational bubble

pt = (1 + r̂)ta1 + b1 , (2)

where a1 is a positive constant. This process fulfills the “self-confirming” nature of rational expectations
if the assumed interest rate r̂ equals the interest rate r from Equation 1 and b1 equals the fundamental
value of pf = 604. In fact, Hommes et al. (2008) found that traders do use an interest rate r̂ significantly
larger than r in four of the six groups and hence their expectations are no longer rational (see section 4).
Furthermore, the growth rate r̂ is not constant, but is increasing as we will see later.

Todd and Gigerenzer (2000) argued that “decision-making agents in the real world must arrive at their
inferences using realistic amounts of time, information, and computational resources. [..] The most im-
portant aspects of an agent’s environment are often created by the other agents it interacts with.” More-
over, Tversky and Kahneman (1974) presented three heuristics that are employed in making judgments
under uncertainty. For our purposes, the heuristic that is relevant to interpret the groups’ behaviors is
the “adjustment from an anchor, which is usually employed in numerical prediction when a relevant value
is available. These heuristics are highly economical and usually effective, but they lead to systematic
and predictable errors.” (Emphasis is ours).

In the rest of this section, we are presenting two models in which traders anchor their forecasts on (1)
price or (2) return. Both models have in common that they can generate price growth that is significantly
faster than exponential (as observed in the data) and generalize the rational bubble of Equation 2.

3.2 Anchoring on Price

Generalizing the constant growth generated by Equation 2, we specify a model which allows faster or
slower than exponential growth. The growth rate log(p̄t/p̄t−1) can be explained by the excess price
p̄t−1 (which is the difference between the observed price pt and the fundamental price pf ) plus a con-
stant:

log

(
p̄t

p̄t−1

)
= a2 + b2p̄t−1. (3)

a2 > 0 and b2 > 0 would imply faster than exponential growth i.e. the growth rate grows itself. For
b2 = 0, we recover the exponential growth (equivalent to the rational bubble Equation 2 with r = r̂).
We will see below that b2 is typically significantly larger than zero, indicating faster than exponential
growth and positive feedback on the price.

One justification for the functional form (Equation 3) is that anchoring on price is commonly used in
technical trading. One of many patterns used are support and resistance levels which is nothing else but
anchoring on price. Although in violation with the efficient markets hypothesis, Lo et al. (2000) studied
technical trading rules and found “practical value” for such technical rules.

3.3 Anchoring on Return

Alternatively, we check if the growth rate can be explained by the excess log-return log(p̄t/p̄t−1) following
the following process

log

(
p̄t+1

p̄t

)
= a3 + b3 log

(
p̄t

p̄t−1

)
. (4)

The conditions that a3 > 0 and b3 > 0 implies again faster than exponential growth of the excess price
p̄t and positive feedback from past returns. This model can be interpreted as a second order iteration or
adaptive form of the exponential growth.

4For a rational bubble, we have Et[pt+1 +D] = c(1 + r)t+1 + pf (1 + r) = (1 + r)pt.
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4 Results

In this section, we estimate the parameters of the two processes and check for the statistical significance
of b2 and b3 that express a positive feedback of price (Equation 3) or of return (Equation 4) onto future
returns. In particular, we are interested in the lower 95% confidence interval for the null hypothesis
that b2 and b3 are zero, to check for significant deviations that can confirm or not that price growth is
indeed significantly faster than exponential (which is the situation corresponding to b2 and b3 greater
than zero). As the two models can be run over a multitude of different start and end points, we present
the results in graphical form instead of tables to provide better insight.

Hommes et al. (2008) identified bubbles in five out of the six groups. Group one shows a somehow erratic
price trajectory and no bubbles. Groups five and six show some tendency towards bubbles, but the time
horizon is too short for our analysis to get significant results. Moreover, Hommes et al. (2008) found that
the bubble in group five is compatible with the hypothesis of a rational bubble (Equation 2). Hence, we
focus on group number two, three and four.

[Table 1 about here.]

4.1 Group 2

The bubble period identified by Hommes et al. (2008) runs from 7 – 26. Figure 1 shows that the
price becomes larger than the fundamental value pf at t = 7. Checking the returns vs. past returns in
Figure 2, we see that the bubble initially grows approximately exponentially (rt ≈ rt−1) as confirmed by
the positions of the points along the diagonal. Later, at around t = 14, the returns become monotonous
increasing (i.e. prices become faster than exponential growth) and are plotted above the diagonal. This
is also confirmed by Figure 3 where, for low starting and ending values of the analyzing time window, the
parameters estimated for Equation 3 are not distinguishable from exponential growth since the parameter
b2 is not significantly different from zero. However, towards the middle and the end of the bubble, the
growth rate accelerates (b2 becomes significantly larger then zero) before the bubble finally bursts. The
parameter a2 is positive over the whole analysis window (lower left panel) and almost always significantly
larger than zero (lower right panel). The upper panels shows that b2 (for low start and ending values)
is not significant different from zero, but, later in the bubble, b2 becomes positive (top left panel) and
even significant positive (upper right panel).

Checking for the existence of feedback from past returns in Figure 4, we find that Equation 4 describes
less accurately the experimental results; although the parameters a3 and b3 are both positive (left panels),
the time windows where the parameters are both significantly positive (right panels) is relatively small
(only for starting values t = 7 and t = 8).

Hence, in summary, the bubble in group 2 does not only grow significantly faster then exponential in the
end phase, but traders seem to anchor their expectations more on price rather than on return.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

4.2 Group 3

Group 3 (over the time horizon from 7 – 29) is the longest bubble among the six groups. From Figure 5
(which is plotted on log scale), the bubble seems to grow initially only exponentially (visible as a straight
line in the plot), which is also confirmed by Figure 6, which shows that the growth rate is initially
constant. At around t = 20, growth accelerates. This observation is also confirmed by the analysis of
Equation 3, where a2 is significant for almost all analysis windows. But, the positive feedback of the price
on the growth rate embodied by b2 becomes only significant in the later phase of the bubble. Analyzing
this group for the possible existence of anchoring on return (Equation 4) in Figure 8, we find that the
results are less clear cut: although a3 and b3 are positive, a3 is not significantly different form zero for

4



70 Chapter 3. Super-exponential Bubbles in Lab Experiments: Evidence for Anchoring. . .

starting values after t = 10. Hence, we conclude that Equation 4 does not appropriately describe the
price and traders tend to anchor their expectations on price rather than on return.

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]

[Figure 8 about here.]

4.3 Group 4

As can be seen from Figure 9, the bubble formed over the time window 7 – 29 is briefly disrupted by
the intervention of trader number 65. This can also be seen in Figure 6 where we plot the returns.
Between t = 7 and t = 13, we have more or less a cobweb and then, starting with t = 14, the growth
rate increases and a bubble is formed. For anchoring on price, we see in Figure 11 very strong evidence
for faster then exponential growth; a2 and b2 are both significantly positive. Again, for very early and
small analysis windows, only a2 is positive, indicating exponential growth in the initial phase of the
bubble. The analysis for Equation 4 in Figure 12 is less clear, but the signal for jointly positive a3 and
b3 is relatively small (only for two smallest starting values), indicating that traders prefer to anchor their
predictions on price and not on return.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]

[Figure 12 about here.]

5 Discussion

It is remarkable that we find many time windows where we can clearly reject the hypothesis of exponential
growth and find evidence for faster than exponential growth. This is even more remarkable when taking
into account that the data suffers some limitations which make detection of faster than exponential
growth more difficult.

Price ceiling: Although the price is allowed to fluctuate over a relatively large range, it is capped at a
maximum value of 1000. Because traders know and can anticipate this, we would expect traders
to level off their price expectation much before reaching this upper bound. This turns out not to
be the case.

Stable equilibrium price: The pricing formula Equation 1 assumes a fundamental value of 60 and
thus biases the price towards this value. Even if all traders give an estimate of 1000, the realized
market price from Equation 1 would be (1000 + 3)/1.05 ≈ 955, i.e. the price is artificially deflated
by almost 45 monetary units.

Mis-trades: There seems to be a few instances where trades’ estimates are off by an order magnitude
(i.e. some traders seem to fail to place the decimal point at the correct digit at some times).

Short data horizon: Although the experiments run over a time horizon of 50 time-steps; the bubbles
appear in much shorter time, leaving relatively few points to estimate tight confidence intervals.

Heemeijer et al. (2009) ran a comparable experiment with a slightly different price forming mechanisms
and focusing on the traders’ individual price forecasts. Further, agents’ predictions had to lie in a rela-
tively narrow range (0 – 100) allowing relatively small deviations from the fundamental price compared
to the data that we have analyzed here. In contrast to Heemeijer et al. (2009) who analyzed the data
along the dimensions of trend following, fundamentalism and obstinacy, we focus on non-linear feedback

5The prediction of trader number six at time point t = 10 seems to be off by an order of magnitude as he has misplaced
the decimal.

5



3.2. Paper 71

of realized price and return on the price growth rate. Anufriev and Hommes (2012) have fitted a heuris-
tics switching model to a positive feedback asset pricing experiment in the presence of a fundamental
robot trader, whose trading drives the price back towards its fundamental value. As a consequence, long
lasting bubbles do not arise in that setting, but rather asset prices oscillate around the fundamental
and individuals switch between different simple forecasting heuristics such as adaptive expectations and
trend following rules.

Tirole (1982) noted that “[..] speculation relies on inconsistent plans and is ruled out by rational ex-
pectations.” However, in the experiments of Hommes et al. (2008) that we analyze here, traders are
rewarded, not on the basis of how well they predict the fundamental value of the assets they buy but
rather, on the accuracy of their prediction of the realized price itself, similarly to real financial markets.
Traders also do not need to invest their wealth into an asset, they do not worry about price fluctuations
or care about supply & demand, which lead them to “ride the bubble” (see Abreu and Brunnermeier
(2003), de Long et al. (1990) and De Long et al. (1990)). They rather give a forecast as in a Keynesian
beauty contest Keynes (1936), where traders need to synchronize their beliefs. Such self-confirming pre-
dictions can easily lead to herding, in particular in situations where the fundamental value is not directly
observable or when strong disagreement on the fundamentals between the traders occurs, such as in the
dot-com bubbles, see Shiller (2005) for instance.

6 Conclusions

There have been many reports of super-exponential behavior in financial markets in a literature inspired
by the dynamics of positive feedback leading to finite-time singularities in natural and physical systems
(see for instance Johansen and Sornette (2001) and Sornette (2004) and references therein). However,
the challenge has been and is still to confirm with more and more statistical evidence that the very noisy
financial returns do contain a significant positive feedback component during some bubbles regimes. In
the present paper, by analyzing a controlled experiments in the laboratory, we have the luxury of working
with a low noise data set. With this advantage, we have presented the first detailed quantitative calibra-
tion of simple models with positive feedback that unambiguously demonstrate the existence of positive
feedback mechanisms in the price formation process of controlled experimental financial markets.

6
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Appendix

Faster than exponential growth means that there is a positive feedback loop, or as Andreassen and Kraus
(1990) noted that “[..] subjects were more likely [..] to buy as prices rose [..]”. The table down-below
illustrates the difference between constant growth and positive feedback. Note that the prices in the two
bubbles can be indistinguishable in the early phase of the bubble.

[Table 2 about here.]

[Figure 13 about here.]
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Figure 1: Price and traders’ estimate over time for group 2. Note that traders’ estimates ph are for time
t+ 1 and are used to form the price pt at time t, i.e. pt = 1/H(

∑
h p

h
t+1 +D)/(1 + r).
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Figure 3: Parameter estimate of Equation 3 over the time interval [start, end] for group 2. The x-axis
corresponds to the start point and the y-axis to the end point of the analyzed time window. The bar
on the right gives the values of the parameters in color code, according to the indicated scale. aLower
and bLower correspond to the lower 95% confidence level of a2 and b2 respectively of Equation 3. Note
that b2 is around 0 for small starting and end values implying exponential growth in the initial phase of
the bubble. We observe a rather large domain in the parameter range describing the start time and end
time of the window of calibration for which the parameter b2 is positive at the 95% confidence level.
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Figure 4: Parameter estimate of Equation 4 over the time interval [time, start] for group 2. The x-axis
corresponds to the start point and the y-axis to the end point of the analyzed time window. aLower
and bLower correspond to the lower 95% confidence level for a3 and b3 respectively of Equation 4. Note
that the domain where a3 and b3 are both significantly larger than zero is restricted to the earliest two
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Figure 5: Price and traders’ estimate over time for group 3. Same representation as Figure 1.
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Figure 7: Parameter estimate of Equation 3 over the time interval [start, end] for group 3. Same
representation as Figure 3.
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Figure 8: Parameter estimate of Equation 4 over the time interval [time, start] for group 3. Same
representation as Figure 4.
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Figure 9: Price and traders’ estimate over time for group 4. Same representation as Figure 1.

18



84 Chapter 3. Super-exponential Bubbles in Lab Experiments: Evidence for Anchoring. . .

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

$r_{t−1}$

$r
_t

$

7

8

9

10

1112
13

14 15
16

17

18

19

20

21

Figure 10: Next period returns rt+1 versus current returns rt for group 4. Same representation as
Figure 2.

19



3.2. Paper 85

start

en
d

12

14

16

18

20

8 10 12 14 16

a aLower

b

8 10 12 14 16

12

14

16

18

20

bLower

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 11: Parameter estimate of Equation 3 over the time interval [start, end] for group 4. Same
representation as Figure 3.

20



86 Chapter 3. Super-exponential Bubbles in Lab Experiments: Evidence for Anchoring. . .

start

en
d

12

14

16

18

20

8 10 12 14 16

a aLower

b

8 10 12 14 16

12

14

16

18

20

bLower

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 12: Parameter estimate of Equation 4 over the time interval [time, start] for group 4. Same
representation as Figure 4.

21



3.2. Paper 87

����	�


 � � �  � � � � � �
 �� �� �� � �� �� �� �� �� �
 �� �� ��


�



�

�



�

�



�

�





�



�

�



�

�



�

�



�

�



���

�����

� � �  � � � � � �
 �� �� �� � �� �� �� �� �� �
 �� �� ��


�

��

�

��

��

�
�

���

��

���

���

���	���	

�����	���	

Figure 13: Graphical representation of Table 2. Top panel: prices. Bottom panel: returns.
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Group Time window Description Classification
1 NA erratic price trajectory —
2 7 – 26 speculative bubble anchoring on price
3 7 – 29 speculative bubble anchoring on price
4 7 – 21 speculative bubble anchoring on price
5 29 – 37 rational bubble —
6 23 – 29 speculative bubble (too short for analysis)

Table 1: Overview of bubbles reproduced from Hommes et al. (2008) with our own classification.
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log(p̄t/p̄t−1) = a1 log(p̄t/p̄t−1) = a2 + b2p̄t−1

t p̄t % p̄t %
0 60.00 – 60.00 –
1 66.00 10% 65.79 10%
2 72.60 10% 72.19 10%
3 79.86 10% 79.26 10%
4 87.85 10% 87.08 10%
5 96.63 10% 95.74 10%
6 106.29 10% 105.36 10%
7 116.92 10% 116.06 10%
8 128.62 10% 127.99 10%
9 141.48 10% 141.30 10%
10 155.62 10% 156.21 11%
11 171.19 10% 172.95 11%
12 188.31 10% 191.80 11%
13 207.14 10% 213.11 11%
14 227.85 10% 237.30 11%
15 250.63 10% 264.87 12%
16 275.70 10% 296.45 12%
17 303.27 10% 332.86 12%
18 333.60 10% 375.09 13%
19 366.95 10% 424.48 13%
20 403.65 10% 482.74 14%
21 444.01 10% 552.22 14%
22 488.42 10% 636.09 15%
23 537.26 10% 738.87 16%

Table 2: Table illustrating the difference between exponential growth (a1 = log(1.1) ≈ 0.095, second
column) and positive feedback by price on future returns (a2 = log(1.09) ≈ 0.086, b2 = 0.0001, fourth
column). We let the bubbles start at p̄t = 60 = 120 − 60 = pt − pf . With the parameter above,
the excess price p̄t grows initially at around 10% at each time step. In the early phase, the prices grow
approximately exponentially (the exponential growth is actually slightly faster). At time step t = 10, the
bubble with positive feedback of the price on future returns overtakes the exponential growth benchmark
and the growth rate start to accelerate.
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3.3 Discussion & Perspective

As pointed out in the paper, this is one of the first studies, confirming super-
exponential price growth in laboratory experiments. The presented laboratory
experiments give us the luxury to rule out exogenous effects like news, moreover,
the noise component in the signal is very small. The simplest model producing
super exponential growth is a simple power-law:

p(t) = A+B(tc − t)β. (3.1)

This model will be discussed in more detail in the next chapter. In the remainder
of this chapter we briefly discuss two classes of models which generate super-
exponential growth.

One of the remarkable models exploiting faster than exponential growth is
Corsi and Sornette (2011) which extends the GARCH family with a finite time
singularity. The model is such that as soon as the price component grows faster
than exponential, an unsustainable state is identified and a crash alarm is issued,
see Figure 3 for an illustration.

Fig. 3: FTS-GARCH model. As soon as prices are identified to grow significantly faster than

exponential (latent state = 1), the FTS-GARCH model identifies and unsustainable state.

Reprinted from Corsi and Sornette (2011).

Another class are the LPPL (log-periodic power law) models which consists of
power-law decorated with log-periodic oscillation:

p(t) = A+B(tc − t)β + C(tc − t)β cos(ω ln(tc − t)− φ) . (3.2)

The application and quality of these models are extensively studied by Sornette
et. al, see for example Sornette (2002) and in particular Sornette (2006) for
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a discussion of the technical underling concepts like fractals, phase transition,
renormalization, etc. As pointed out in a case study (Sornette and Johansen, 2001),
the model describes very accurately the hongkongese Hang-Seng Index (Figure 4).
More recent experimental studies include the “Financial Bubble experiment”
Sornette and Woodard (2010); Sornette et al. (2010). Finally, Sornette et al.
(2011) discusses some of the caveats of the LPPL models.

100

1000

10000

Date

H
a

n
g

-S
e

n
g

 I
n

d
e

x
 (

H
S

I)

Hang-Seng Composite Index

Average exponential growth

End of superexponential growth

following by a crash

1970 1975 1980 1985 1990 1995 2000

Fig. 4: Reprinted from Sornette and Johansen (2001). Note that the straight line would correspond

to exponential growth. The shown time period illustrates that the Hang-Seng has a

tendency to grow faster than exponential for some time (bubble phase) and then crashes.

3.4 Supplement: An Information Theory Approach

Heretofore, we have ignored one difficulty; in contrast to the standard financial
literature, equation 3 in the previous presented paper, as well as in Sornette
et. al’s papers published on the calibration of financial bubbles, are calibrated
on prices instead of returns. To understand why this difference is important,
we have to understand that if returns are for example normally distributed (a
standard assumption in finance), then the corresponding price trajectory follows a
geometric Brownian motion. However, if the price follows a Brownian motion, the
mean and standard deviation of the price diverge (they explode for progressing
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time). Hence, financial models are almost always calibrated on returns which are
assumed to be stationary.

A Ft distributed time series Xt is defined as stationary if for an arbitrary τ ,
Xt+τ ∼ Ft, which means that the distribution of Xt is the same as the distribution
of Xt+τ , for any τ (for a comprehensive discussion, see Hamilton, 1993). Yule
(1926) was among the first to point out “nonsense-correlations” between non-
stationary time-series. The Nobel Prize laureates Engle and Granger (1987)
illustrate the problem with the case of “spurious regression”.

In this section, we will borrow some methods from information theory, with
which we hoped to overcome some limitations in the estimation of parameters
in non-stationary processes. Shannon (1948) laid the foundation of information
theory just after World War II with his seminal paper: “A Mathematical Theory
of Communication”. At first sight, (Shannon) entropy,

H(X) := −
∑

x∈X
p(x) log p(x), (3.3)

seems nothing else than a weighted average of the logarithm probability distribu-
tion. Further, mutual information is defined as

I(X,Y ) = H(X) +H(Y )−H(X,Y ), (3.4)

where the mutual entropy H(X,Y ) is defined as

H(X,Y ) := −
∑

x∈X,y∈Y
p(x, y) log p(x, y), (3.5)

see Pierce (1980) and Cover and Thomas (2006) for more details.
Duncan (1970) presents the following theorem, which we tried to exploit in

the parameter estimation for non-stationary time-series: Let Y and Z be two
stochastic processes as follows:

dYt = Ztdt+ dBt, (3.6)

where Bt denotes the Brownian motion, t ∈ [0, 1] and

∫ ∫
Z2
t dPdt <∞. (3.7)

Then, the mutual information between the two processes can be calculated with
the following equation:

I(Y, Z) =
1

2
E

∫ 1

0
(Zu − Ẑu)2du (3.8)

where Ẑt := E [Zt|Yu, 0 ≤ u ≤ t].
Parameters are very often fitted by minimizing the least square (LQ) error. The

right-hand-side of Equation 3.8 can be interpreted as sum of square errors. Hence,
under the conditions of the theorem (Equation 3.6 and Equation 3.7) minimizing



3.4. Supplement: An Information Theory Approach 93

the sum of square errors is equivalent to minimizing the mutual information
(Equation 3.8). The question arises whether mutual information can be used as an
alternative to LQ to estimate parameters even in the non-stationary case. Can we
induce a more general principle and estimate parameters by mutual information
even if the conditions above are not necessarily fulfilled?

As an example, we have examined the time series

Xt := a+ bXt−1 + εt, (3.9)

with X0 := 0 and εt i.i.d. Gaussian noise. Our goal is to estimate the parameters
a and b.

The “classical” least square (LQ) estimator for the parameters a and b has a
closed form solution,

b̂ = cov(Xt+1, Xt)/var(Xt), (3.10)

â =
∑

t=2,...,T−1
(Xt+1 −Xtb̂)/T. (3.11)

Note that the process Xt is only stationary for a certain range of parameters, for
example when |b| < 1, we have an auto-regressive process. If the parameters do
not lie in this range, the time series is no longer stationary and many problems in
the estimation of the parameters arise; for example the variance (Equation 3.10)
that we use to calculate b̂ can not be defined in the limit of large times.

Can we estimate the parameters more reliably by minimizing the mutual
information as in Equation 3.8? We set

Zt :=(â+ b̂Xt−1)−Xt =: −ε̂t, (3.12)

Yt :=Xt. (3.13)

Our study has shown that minimizing the mutual information between Equa-
tion 3.12 and Equation 3.13, i.e.

{â, b̂} = argminã,b̃I(Xt, ε̂(ã, b̃)) (3.14)

yields similar results to minimizing the sum of square errors to estimate a and b
as long as the time series is stationary (i.e. when |b| < 1 for a long enough time
series). It is slightly less efficient than the least square estimator (Equation 3.11
and Equation 3.11) because a good estimate of the mutual information requires
more data points. Note also that Equation 3.7 in Duncan’s theorem is fulfilled
with Zt = −ε̂t (Equation 3.12). However, the specification of Zt and Yt Duncan’s
theorem is not fulfilled (Equation 3.12 and Equation 3.13 can not be brought in
form Equation 3.6). However, for two normal distributed variables V and W with
correlation r, the mutual information can be rewritten as

I(V,W ) = −1

2
log(1− r2) (3.15)

(Kraskov et al., 2004). Hence, minimizing the mutual information in our example
(Equation 3.14) is equivalent to minimizing the correlation between X and ε̂
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which is almost equivalent to the LQ estimator 1. However, for non-stationary
time-series (i.e. for |b| ≥ 1 in Equation 3.9) our estimator fails like (or performs
even worse) than LQ estimator. Hence, a “mutual information” estimator works
in principle when the time series is stationary, but fails in the more interesting
case when the time series is non-stationary; it is not a valuable alternative to the
least square estimator.

In our study, we have used the Kozachenko-Leonenko method (Kozachenko and
Leonenko, 1987) to estimate mutual information, which uses the kNN (k nearest
neighbors) approach to estimate the density of the empirical distribution function.
By using the kNN methodology, we can be assured that the estimator is consistent
(Devroye and Wagner, 1977) and unbiased (Kraskov et al., 2004; Luenberger and
Woehrmann, 2007). In particular, we have used k =

√
T (where T is the sample

size) neighbors as suggested in Luenberger and Woehrmann (2007) for fastest
possible convergence. We have used the implementation by Sales and Romualdi
(2011), which is not only fast, but also considers the concerns by Kraskov et al..

Although our attempt has not worked, information theory has its place in
applied finance; Darbellay and Wuertz (2000) demonstrate for example that the
volatility is not helpful to predict returns in FX time series employing information
theory. Maasoumi and Racine (2002) identify time pockets where systematic
trading rules can be applied using entropy.

1For the LQ estimator, cor(ε̂t, X̂t) = 0 holds because ε̂t ⊥ X̂t.



4
Evidence for

super-exponentially
Accelerating Atmospheric
Carbon Dioxide Growth

Prediction is very difficult, especially if it’s about the future.
—Niels Bohr

4.1 Introductory comments

In the previous chapter, we have discussed some of the advantage and disadvantage
of econophysics and how they can describe complex systems. In the paper presented
in this chapter, we will use this methodology to describe the interaction between
carbon dioxide content in the atmosphere and population. We find that carbon
dioxide content in the atmosphere is growing faster than exponential, and are
modeling this process with expressions of the form (tc − t)θ (i.e. a process with a
singularity). The use of an applied approach seems natural as “phenomena such
as catastrophes or phase transition (‘system shifts’) cannot be well understood
within a linear modeling framework” (Helbing, 2012).

The “carrying capacity” of Earth and how many humans our planet can sustain is
a long debated issue. Starting with Malthus (1798), scientists were most concerned
with population growth and availability of resources. Malthus extrapolated that
population will continue to increases exponentially, while resources, for example
food production, did not. Verhulst (1838) refined the concept of Malthus; in
his model, the logistic function, he extends the Malthusian model with a term
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accounting for finite carrying capacity avoiding unbounded population growth.

Verhulst’s model can very accurately described the growth of, for example,
bacteria. However, it is too simplistic to describe growth of human population;
the actual carrying capacity of Earth is unknown and is thought to be limited
rather by the absorptions of emissions than an absolute number of inhabitants.
Further, the convergence does not need to be monotonously, and population might
first overshoot and then undershoots an “idealized” carrying capacity.

Recently, less focus it put on population or carrying capacity itself, but on the
interplay between population and resources, or pollution and absorbing capacity of
Earth. A Nature paper “Approaching a state shift in Earth’s biosphere” (Barnosky
et al., 2012) has caught much attention and shows a myriad of illustrative examples
on how to model the ecological system as complex systems, including population
growth, ecosystems and climate change. Depending on the system, one can use
phase transitions, singularities, bifurcations, etc; a comprehensive list can be
found in Scheffer et al. (2009).

However, although Barnosky et al. (2012) call to forecast state shifts in order
to prevent them, our ambition is not to make a faithful model about future
developments. In the paper presented in the next section, we rather want to
illustrate the interaction of non-linear processes, namely carbon dioxide and
population.

4.2 Paper

On the following pages, we present the paper in full length. The paper is available
as:

A. D. Hüsler and D. Sornette. Evidence for super-exponentially accelerating
atmospheric carbon dioxide growth. July 2012
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ETH Zurich, Kreuzplatz 5, CH-8032 Zurich, Switzerland

July 18, 2012

Abstract

We analyze the growth rates of atmospheric carbon dioxide and
human population by comparing the relative merits of two benchmark
models, the exponential law and the finite-time-singular (FTS) power
law. The later results from positive feedbacks, either direct or mediated
by other dynamical variables, as shown in our presentation of a simple
endogenous macroeconomic dynamical growth model. Our empirical
calibrations confirm that the growth rate of human population has de-
celerated from super-exponential through 1960 to “just” exponential
since, but with no sign of more deceleration. As for atmospheric carbon
dioxide content, we find that it is at least exponentially increasing and
most likely is characterized by an accelerating growth rate as of 2011,
consistent with an unsustainable FTS power law regime announcing a
drastic change of regime. The coexistence of quasi-exponential growth
of human population with super-exponential growth of carbon dioxide
content in the atmosphere is a diagnostic that, until now, improve-
ments in carbon efficiency per unit of production worldwide has been
dramatically insufficient.

1 Introduction

Today humanity uses the equivalent of 1.5 planets to provide the resources we
use and absorb our waste. This means it now takes the Earth one year and
six months to regenerate what we use in a year.1 — Is humanity inevitably
doomed?

During the 1960s, leaders were most concerned about human population
growth (see for instance von Foerster et al. [1960]) and about depletion
of energy resources (see for example the first report by the Club of Rome
(Meadows [1972]) and its recent reassessment by Hall and Day [2009]). The

1http://www.footprintnetwork.org/en/index.php/GFN/page/world_footprint/

1
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growth rate2 of human population peaked in the late 1960s and although
population is still growing, it is no longer the prime concern of policy leaders.
This may be ill-advised as we show below that population growth is no
longer decelerating anymore, but instead is on an exponential (proportional)
growth trajectory.

More recently, scientists and politicians became aware of global warming
(see Weart [2008] for a historic overview) due to or augmented by anthro-
pogenic effects. We focus here on the undisputed fact that, due to the
massive use of fossil energies the world economy emits, among many other
products, large amounts of carbon dioxide go into the atmosphere. Part of
this carbon dioxide is later absorbed by the oceans and plants. The fraction
of carbon dioxide found in the atmosphere is currently around 50% of the
total anthropogenic emissions, with a slight upward trend (Raupach et al.
[2008]). Once in the atmosphere, this CO2 is thought to play a pivotal role
in global warming. In a recent Nature issue, Rockstrom et al. [2009] identify
climate change due to CO2 emissions as one of the most pressing problems
that mankind needs to address.

Waggoner and Ausubel [2002] discusses the IPAT identity, which par-
titions factors that are believed to drive carbon dioxide emissions. They
contribute carbon dioxide emissions to three factors

I = P ·A′ · T, (1)

where I (impact) denotes the carbon dioxide emissions, P is human pop-
ulation, A′ represents the affluence (measured as gross world product per
capita) and T is technology.

The IPAT identity is useful to help thinking about the contributions
of different variables and has been extensively used and discussed in the
literature (see for instance Chertow [2000]) and will be used as a starting
point. However, because one deals fundamentally with a complex dynamical
system driven by entangled feedback loops with delays, the IPAT identity
falls short, in our opinion, of providing the framework to understand the
inter-relationships among the dynamical variables. It is especially important
to develop a dynamical framework with delays, when studying the time-
evolution of global variables such as atmospheric carbon dioxide content
and human population.

Motivated by a dynamical view of the human-Earth system, we present
here a framework borrowing from the theory of endogenous macroeconomic

2The growth rate r of the human population (or of any other variable) is defined
by expression (2). Thus, a constant growth rate corresponds to a population growing
exponentially, with a doubling time given by (log 2)/r. As the present growth rate is
r(2011) ≈ 1.0% per year, this gives a present doubling time of 69 years. If nothing
changes, the present 7 billion people (passed in the last quarter of 2011) will be more
than 14 billion in 2080. This is in contradiction with projections of OECD for instance
and other international organizations, which optimistically expect human population to
stabilize around 9 to 10 billion individuals.

2
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growth (Kremer [1993], Romer [2000]), whose feedback loops are shown to
generate robust regimes of super-exponential growth. Mathematically, these
regimes can be described by simple equations, whose solutions exhibit finite-
time singular (FTS) power law behaviors. The interest in such solutions is
that they point to changes of regime (see also Johansen and Sornette [2001],
Sammis and Sornette [2002], Gluzman and Sornette [2002]).

Accelerating atmospheric carbon dioxide growth due to industrial ac-
tivity has been previously reported by Canadell et al. [2007]. In contrast
to Canadell et al. [2007], the present paper focuses on the interplay between
and positive feedbacks on carbon-dioxide growth due to population and tech-
nology in a global macroeconomic model. Garrett [2011] develops global
circulation model based on thermal conservation equations. It is interesting
to note that, in such a model, energy consumption is super-exponential as
well.

The article is organized as follows. We present a simple mathematical
framework to model growth, first for a single variable like population in
the presence of positive feedback, and then with several coupled variables,
such as population, capital and technology. Two benchmark models, the
exponential law and the FTS power law, are obtained as limiting cases of
the theoretical framework. Then we describe the results of the calibration
of these two models to some of the most extensive data sources on human
population and atmospheric CO2 content in the last two centuries up to
present. The final section concludes.

2 Model

The benchmark for population growth is the Malthus model, which postu-
lates that population growth is proportional to the population itself, cap-
turing the simple idea that the number of children is proportional to the
number of parents:

dp

dt
= r · p(t) . (2)

The solution of equation (2) is the exponential function

p(t) = a′ exp(r · t) + c′ , (3)

where c′ is usually set to zero for population analysis.
Historically, equation (2) has been improved by Verhulst (see Verhulst

[1845] and Verhulst [1847]) into the logistic equation to account for the
competition for scarce resources between individuals. This competition can
be embodied into the quadratic term −r[p(t)]2/K, where K is the carrying
capacity. This negative feedback of the population on the growth rate r →
r(1− p(t))/K leads to a cross over from the exponential growth for p(t)�
K to a saturation of the population at long times, which asymptotically

3
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converges to K. Verhulst thought that Malthus was wrong (and therefore
over-pessimistic when comparing human growth with food resources) not to
take into account the negative feedbacks embodied in the quadratic term
−r[p(t)]2/K, that would lead naturally to an equilibrium.

But, the human population at the time of Verhulst and until around 1960
followed neither his specification, nor the Malthusian exponential growth.
As reviewed in Johansen and Sornette [2001], Korotayev [2005] and Akaev
et al. [2012] (and references therein), the human population grew faster than
exponential, with the growth rate r itself growing.

The simplest generalization of equation (2) that accounts for this obser-
vation assumes that the growth rate r becomes r · [p(t)/p(0)]δ, where δ > 0
and p0 is some reference population. The positivity of δ captures the pos-
itive feedback of population on the growth rate: the larger the population,
the larger the growth rate. Equation (2) then transforms into

dp

dt
= R · p(t)1+δ , (4)

where R = r/pδ0. The solution of equation (4) reads

p(t) =
p0

(1− (t/tc))1/δ
if δ > 0 , with tc =

1

R

1

δ

1

pδ0
, (5)

As can be seen, the critical time tc at which the solution diverges is deter-
mined from the parameters of equation (4) and the initial population p0 at
time t = 0. For δ → 0, we recover the exponential solution (3), since

p(t) = p0 exp

[
−1

δ
ln(1− (t/tc))

]
≈ p0 exp

[
t

δtc

]
→ p0 e

Rt , for δ → 0 .

(6)
The standard exponential growth can thus be seen as the limit of a finite-
time-singularity (FTS) power law with positive feedback exponent δ tend-
ing to zero. The singular solution (5) was first discussed by von Foerster
et al. [1960] (see Umpleby [1990] for assessments of the relative merits of the
“natural science” versus the “demographic” approach, Kremer [1993] for an
economic underpinning that we explore later, and Johansen and Sornette
[2001], Korotayev et al. [2006] for extensive generalizations). In ecology, the
positive correlation between population density and the per capita popu-
lation growth rate at the origin of the FTS behavior (5) is known as the
Allee effect (Stephens et al. [1999]). More generally, Allee discovered the
existence of an often present positive relationship between some component
of individual fitness and either numbers or density of conspecifics. The Allee
effect is usually used to refer to the self-reinforcing feedbacks that promote
accelerated extinction of species and that can be modeled by finite-time
crossing of zero (see Yukalov et al. [2009, 2012b] for detailed mathemati-
cal formulations). Finally, Goriely [2000] provides a rigorous mathematical

4
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framework with a generalized version of equation (4), where the right hand
side is replaced by an arbitrary polynomial of p(t).

The use of the mathematics of FTS to describe and diagnose changes of
regime is not new. For instance, we refer to Johansen and Sornette [2001],
Sornette [2003] for population dynamics and financial markets, Sammis and
Sornette [2002] for applications to engineering failures and earthquakes, Sor-
nette [2002, 2006] for a large variety of systems, Dakos et al. [2008] for
climate systems, and Scheffer et al. [2009], Biggs et al. [2009], Drake and
Griffen [2010] for environmental systems. These authors applied the con-
cept of dynamical phase transitions and FTS behavior to different systems
exhibiting a bifurcation, crisis, catastrophe or tipping point by showing how
specific signatures can be used for advance warnings.

One can generalize (4) to take into account positive feedbacks of the
growth rate d ln p/dt on its rate of change d2 ln p/dt2 (see Ide and Sornette
[2002]), to arrive at solutions that exhibit FTS not in the variable p(t), but
in its derivative dp/dt. We will thus use the slightly more general expression
encompassing these cases:

ppower(t) = a(tc − t)−1/δ + c . (7)

A FTS in dp/dt and not in p(t) corresponds to −∞ < δ < −1 such that 0 <
−1/δ < 1, together with a < 0 for an increase up to the value ppower(tc) = c.
Here, the meaning of the exponent δ is different from its use in equation (4).

We shall use the exponential model (3) and the power law model (7), as
our two competing hypotheses. The essential difference between the expo-
nential model and the power law model is that the former is defined for all
times, while the later is valid only up to a finite time, the critical time tc
beyond which the solution ceases to exist. The singular behavior at tc is not
meant to predict a genuine divergence but only, as already stressed, that the
system is exhibiting a transition to a qualitatively new regime.

Heated discussions among demographers greeted the publication of von
Foerster et al. [1960] concerning the singular solution (5): the demographers
criticized the use of mathematical models such as (4) as perhaps the clear-
est illustration of how bad use of mathematics may yield senseless results;
actually, what the demographers missed was that the FTS should not be
taken at face value, but as the signature of a transition to a new regime.
Singularities do not exist in natural and social systems, but the singularities
of our mathematical models, which are approximate representations of real-
ity, are usually very good diagnostics of the changes of regime that occur in
these systems [Sornette, 2002]. The perhaps clearest examples are the phase
transitions between different states of matter (solid-liquid-gas-plasma, mag-
netized to non-magnetized, and so on) that statistical physics describes so
well with its classification involving the nature of the singularity exhibited
by the free energy of the system [Goldenfeld, 1992].

5
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Figure 1: Illustration of the qualitatively different behaviors of the expo-
nential model (3), the power law model (5) and a linear model, in different
standard plot representations. For each of the four plots, the linear function
0.5t + 3.25 is compared with the exponential function e0.5t + 2.5 and with
the power law (2.2− t)−0.5 + 2.5. (a) is linear-linear, (b) is linear-log, (c) is
log-log and (d) is log-log referenced to the singularity. The constant c is
set to 2.5. The relative vertical positions of the three curves are arbitrar-
ily chosen (from the above values) for the sake of a clear visualization (see
Appendix for further discussion).

As t approaches tc from below, two regimes can be observed for the
power law model:

δ < 0: (tc − t)−1/δ goes to zero for t→ tc and ppower(t)→ c.

δ > 0: (tc − t)−1/δ goes to infinity for t→ tc and ppower(t)→ sign(a) · ∞.

Figure 1 illustrates the qualitatively different behaviors allowing one to
distinguish between the linear growth model (dp(t)/dt ∼ t), the exponential
model (3) and the power law model (7), in different standard plot represen-
tations.

Up to now, we have postulated the form (4) to capture the possible ex-
istence of a positive feedback of population on the population growth rate.
Such a simplified ansatz leaves two issues unresolved. First, the positive
feedback of population on growth rate may not be direct, but mediated by
other variables via indirect mechanisms. Second, the consequences on the
dynamics of carbon dioxide emissions are not clear. We thus address these
two issues using an economic framework developed by Kremer [1993], fol-
lowing the approach of Johansen and Sornette [2001]. The following deriva-
tion is not intended to represent a faithful economic growth model that we

6
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would like to promote, but is offered to illustrate the importance of indi-
rect mechanisms in growth processes. In particular, we would like to stress
the fact that faster-than-exponential growth is a robust outcome of multi-
dimensional loop processes. Even when each feedback process individually
leads to an exponential or even a subdued sub-exponential growth, the over-
all dynamics can be super-exponential.

In economics, population p(t) translates into labor force L(t), which
is assumed to be proportional to population. In addition to population
represented by the labor force, we consider the effect of technology level
A(t) and of the amount K(t) of available capital. In the presence of labor
and capital, with a given technology level, the economy is going to produce
an output Y (t), for instance proxied by GDP. In the macroeconomics of
endogenous growth (Romer [2000]), it is common to use the Cobb-Douglas
equation (originally developed in Cobb and Douglas [1928] and extensively
discussed in Romer [2000]) to relate the total output to labor, capital and
technology as follows3:

Y (t) = K(t)α(A(t)L(t))1−α ,with 0 < α < 1 . (8)

Furthermore, we use the assumption by Solow that a constant fraction s of
the economy goes to savings, i.e. capital grows according to

dK

dt
= sY (t) . (9)

Following Kremer [1993], we assume that, as already mentioned, labor is
proportional to capital

K(t) ∼ L(t) . (10)

We further assume that technology change is depending on capital, labor
and current level of technology according to

dA

dt
= dK(t)η × L(t)γ ×A(t)θ , (11)

where the exponents η, γ and θ are all positive, expressing a positive feedback
effect of each of the variables on the growth of technology. Putting together
all these ingredients, we can rewrite the Kremer (10) and Solow (9) equations
as a system of two coupled ordinary differential equations:

dA

dt
= eL(t)η+γ ×A(t)θ, (12)

dL

dt
= fL(t)×A(t)1−α . , (13)

3A′ in the IPAT equations stands for gross world product per capita, whereas in the
Cobb-Douglas equation A stands for technology. Further, the IPAT equation uses T
instead of A to denote technology. Similar, the macro-economists refer to L as labor,
whereas P in the IPAT equality stands for population. We will not distinguish between
labor L and population P and use the terms interchangeably.

7
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where e and f are two positive constants. Equation (13) basically states that
labor (and thus population) is growing exponentially, holding technology
constant. In other words, the growth rate of population is controlled by a
nonlinear function of technology. Here, this nonlinear function is a power law
with exponent 0 < 1− α < 1, which embodies the benefits that technology
brings in decreasing death rates, for instance via improvement in health
care, or in feeding more mouths. Invoking these mechanisms is standard in
demographic research.

We look for solutions exhibiting a FTS of the form

A(t) = A0(tc − t)−1/µ , (14)

L(t) = L0(tc − t)−1/κ . (15)

Note that the critical time tc of the singularity, if it exists, is necessarily
the same for both variables, as seen from inspection of the two coupled
equations (12,13). Inserting this ansatz in equations (12,13), we obtain a
system of linear equations for the unknown inverse exponents 1/µ and 1/κ,
whose solutions read

µ = 1− α , (16)

κ =
η + γ

2− θ − α(1− α) . (17)

The condition for the solutions (14,15) to hold is that µ and κ be strictly
positive. This implies 0 < α < 1 and α < 2−θ. If θ ≤ 1, then the conditions
are always satisfied in the regime where the Cobb-Douglas equation holds.
The case θ ≤ 1 is particularly interesting because it corresponds to a sub-
exponential growth of technology, for a fixed labor force. In other words,
for a fixed population level, equation (12) gives a long-time growth of the

form A(t) ∼ t
1

1−θ , which is sub-exponential (slower than exponential) for
θ < 1 and exactly exponential for θ = 1. It is the coupling between a
sub-exponential growth of A(t) and an exponential growth of population
L(t) mediated by nonlinear feedback loops that create the super-exponential
finite-time singularity. This behavior underlines the possible traps of single
variable analysis.

These results can be translated into a prediction of carbon dioxide emis-
sion via the following simple assumption. Assuming that carbon dioxide
emissions are proportional to production divided by some power of technol-
ogy ξ, we have

dCO2

dt
= a

Y (t)

A(t)ξ
= h(tc − t)−1/ϕ, (18)

where ϕ = (1/κ − ξ/µ + 1)−1 (see appendix for details of the derivation)
and CO2 stands for the total carbon dioxide content in the atmosphere. The
constant a absorbs the dimensional relations between the different variables.

8



4.2. Paper 105

The introduction of a non-zero exponent ξ accounts for the common obser-
vation that more developed countries tend to have a lower footprint and
smaller carbon emissions per unit of output, due to the progressive adop-
tion of more efficient technologies and the increasing importance of a clean
environment in the utility functions of consumers.

Let us thus stress the main result of this exercise. We have dA
dt ∼ A(t)θ

at fixed labor with θ < 1 and dL
dt ∼ L(t) at fixed technology. Thus, there is

no way to get a faster-than-exponential growth in any of these two variables
alone. However, when coupling them via the feedback of labor on technol-
ogy and that of technology on labor, the FTS power law solutions (14,15)
emerge. Hence, a finite-time singularity can be created from the interplay of
several growing variables resulting in a non-trivial behavior: the interplay
between different quantities may produce an “explosion” in the population
even though the individual dynamics do not!

Of course, infinities do not exist on a finite Earth! These singularities
should not be interpreted as the prediction of real “blow-ups”. They can be
however faithful description of the transient dynamics up to a neighborhood
of the predicted critical time tc. Around tc, new mechanisms kick in and
produce a change of regime.

To illustrate the above point, let us go through a detailed scenario where
the individual processes stay finite in finite time, but the combination via
feedback can lead to finite time singularities. Consider the following param-
eters

α = 1
4 : as in the seminal paper by Cobb and Douglas [1928].

θ = 1: Linear feedback from technology A on itself. Holding all other factors
constant, technology will grow exponentially (see equation (11)).

η + γ = 1: The simplest possible, non-trivial, assumption.

With these numbers, we obtain the two exponents µ = 3/4 and κ = 1 for
the equations (14) and (15), respectively, and the value 1/ϕ = 5/3 for the
rate of carbon dioxide emission given by equation (18), assuming carbon
dioxide emission per capita technology is as efficient as general technology
A, i.e. α = ξ = 1/4. Although, we have only assumed exponential growth of
all individual factors, carbon dioxide emission is predicted in this example
to grow faster than exponential, leading to a mathematical FTS which is
the signature of a non-sustainable regime towards a new behavior (see Fig-
ure 2). We refer to Yukalov et al. [2009, 2012b,a] for detailed classifications
of possible regimes.

Even less stringent conditions for a FTS to occur are needed when the
description of the dynamics of the system in terms of two coupled equations
(12,13) is augmented to take into account the dynamics of additional cou-
pled variables, leading to systems of three or four coupled equations. Such

9
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Figure 2: Numerical solution of equations (12) and (13) with α = 1
4 , η+γ =

1, θ = 1 and tc = 10. The initial conditions are A(0) = 1.1 and L(0) = 0.8.
We assume without loss of generality e = f = 1, as these coefficients can be
absorbed in the units of A and L respectively. L(t) and A(t) grow super-
exponentially towards a singularity occurring at the same time as a result
of their coupling. A(t) and L(t) are plotted on a semi-log plot as function
of time. The upward curvatures and approaches to the singular vertical
asymptote exemplify the super-exponential growth.
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additional positive feedback loops include nonlinear lagged dependencies of
capital on labor (thus extending Kremer’s simplifying assumption (10)).

3 Results

Figure 3 shows that the growth rate of the world population was a strongly
increasing function of time till the late 1950s. A sharp decrease of the growth
rate occurred, then followed by resumed acceleration until its peak in 1964,
from which a slow decrease can be observed.

The first regime until about 1960 is incompatible with the exponential
model, which corresponds to a constant growth rate. Figure 4 shows that,
over the time period 1850 to 1965, the exponential model is greatly inferior
to the FTS power law model. Using model (4), we estimate that the growth
exponent δ is approximately equal to 2, that is, even larger than the value
1 estimated in von Foerster et al. [1960]: clearly, population growth over
this time period was faster than exponential and the FTS power law model
accounts parsimoniously for the data.

Figure 5 shows that, over the time period from 1970 to 2010, the expo-
nential model (3) and the FTS power law model (7) are indistinguishable.

Figure 6 plots the carbon dioxide content in the atmosphere since 1000
CE. The dramatic acceleration due to anthropogenic forcing since the 1800s
is clearly observed.

We calibrate the exponential model (3) and the power law model (7)
separately to two time periods: (i) from 1850 to 1954 (Figure 7), for which
the data originates from ice drill cores and (ii) from 1959 to 2011 (Figure 8),
for which the data originates from air samples. The quality of the fits by the
two models, as quantified by the sum of squared errors between theory and
data, is practically equivalent. Therefore, we cannot reject the hypothesis
that the exponential model is sufficient to explain the data for each time
window separately.

However, the growth rate r calibrated with the exponential model (see
equation (3) has more than doubled from the first period 1850 – 1954 (r =
0.0066) to the second period 1959 – 2011 (r = 0.016). While being not
fully warranted given the heterogeneity of the data sources, we have fitted
the two models to the whole period from 1850 to 2009. We find that the
FTS power law is the clear winner (see Figure 9) which, together with the
more than doubling of the growth rate r from the first to the second time
intervals, suggests the existence indeed of a faster-than-exponential growth
of the atmospheric content of carbon dioxide.

We now attempt to be more precise on the nature and evolution of the
faster-than-exponential growth by estimating the exponent δ of equations
(7) applied to the time series of carbon dioxide atmospheric content. We use
the monthly data from the Mauna Loa site, as it is considered to be one of
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Figure 3: Annualized world population growth rate from year 1800 – 2010.
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Figure 4: Population data represented by the empty circles (where “esti-
mate” refers to the empirical estimation of the population) fitted over the
time window from 1850 – 1965 by the FTS power-law (7) and the expo-
nential model (3) with c′ set to zero. The fitted parameters are δ = 2 and
tc = 1988 for the power-law and r = 0.011 for the exponential fit.
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Figure 5: Population data fitted over the time window from 1970 – 2010 by
the FTS power-law (7) and the exponential model (3) with c′ set to zero.
The fitted parameters are δ = 4.6 and tc = 4312 for the power-law and
r = 0.015 for the exponential fit.
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Figure 6: Atmospheric carbon dioxide since 1000 CE to present. The data
shown combines ice core and air measurements from different sources. See
data section for more details.
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Figure 7: Carbon dioxide data fitted over the time window from 1850 –
1954 by the FTS power-law (7) and the exponential model (3). The fitted
parameters are δ = 0.65 and tc = 2304 for the power-law and r = 0.0066 for
the exponential fit.
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Figure 8: Carbon dioxide data fitted over the time window from 1959 –
2011 by the FTS power-law (7) and the exponential model (3). The fitted
parameters are δ = 0.71 and tc = 2141 for the power-law and r = 0.016 for
the exponential fit.
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Figure 9: Carbon dioxide data fitted over the time window from 1850 –
2011 by the FTS power-law (7) and the exponential model (3). The fitted
parameters are δ = 0.25 and tc = 2167 for the power-law and r = 0.024 for
the exponential fit. The ratio of squared errors between the power-law and
the exponential-fit is 0.92.
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the most reliable and longest time-series. Before calibrating equation (7) to
various time intervals [t1, t2], we smooth the data by using a Gaussian kernel
with a width of 10 years. Then, we estimate δ, with t1 being scanned from
1958 to 2006 and t2 being scanned from 1960 to 2010 as shown in Figure 10.

Two main results are obtained. First, the exponent δ is found almost
always larger than or equal to 1, implying a growth significantly faster than
exponential (which is recovered for δ → 0). Second, one can observe a sys-
tematic trend. For time intervals starting earlier (i.e., for t1 in the late 1950s
and in the 1960s), the exponent δ tends to be closer to 1, while for larger t1,
δ is significantly larger than 1. This leads to the conclusion that the carbon
dioxide content in the Earth atmosphere is growing at least exponentially
and probably faster-than-exponentially, with no sign of abating. The latest
time intervals are characterized by the largest exponents δ’s, significantly
above the lower bound 0 that would correspond to an exponential growth.
We thus conclude that the content of carbon dioxide in the atmosphere is
accelerating super-exponentially.

4 Discussion

The previous empirical evidence suggests that the human population on
Earth is growing now just exponentially, while there is suggestive evidence
that the content of carbon dioxide in the atmosphere is accelerating super-
exponentially. How are these two different behaviors compatible with the
solutions (14,15) for A(t) and L(t) of equations (12,13)?

We consider two possible explanations. The first one would argue that
until the 1960s both population and atmospheric carbon dioxide content
were super-exponentially accelerating in accordance with expressions (14,15).
Then, the slowing down from super-exponential to just exponential growth
of the human population could be interpreted as a finite-size effect that is
starting to be felt for this variable only, as physical limits are more stringent
for the human carrying capacity and the response of human birth and death
rates to policies than they are for carbon dioxide emissions.

The second explanation is that the two different behaviors of A(t) and
L(t) may be resolved within the mathematical structure developed in equa-
tions (14) and (15). Indeed, let us assume that the growth of the human
population is following solution (15), but with a small value of the expo-
nent κ. For all practical purpose, a FTS power law with a small exponent
is indistinguishable from an exponential growth over a finite time interval.
This interpretation is reasonable in so far that human population growth
has been unambiguously super-exponential until the 1960s, and it is only
recently that this growth has somewhat abated.

Let us now turn to the dynamics of CO2 content. The conditions for a
super-exponential growth of the content of carbon dioxide in the atmosphere
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Figure 10: Estimates of the exponent δ of equation (7) on the monthly
Mauna Loa carbon dioxide data obtained from air measurements in different
intervals [t1, t2]. Each line corresponds to a specific start time t1, as shown
in the legend. The ending point t2 is the variable on the abscissa.
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are compounded by many complex processes involving, in addition to the
emissions, the sequestrations of CO2 by, and dynamics of, the ocean and
biosphere. As a rough rule of thumb, we assume that the anthropogenic
carbon dioxide in the atmosphere at time t is simply proportional to (but
likely less than) the cumulative release of anthropogenic CO2 until time t.
In other words, CO2 content is estimated as a finite fraction of the solution
of equation (18). Under these assumptions, in order for CO2 content to
exhibit a FTS power law behavior, it is necessary and sufficient that the
exponent 1/ϕ in (18) be larger than 1. Indeed, by integration, CO2(t) re-
mains of the same form (tc − t)−1/δ, with 1/δ = (1/ϕ) − 1 > 0, where δ
is defined as in equation (7). This condition translates into the condition
ξ < µ/κ. As we have assumed that κ is small, corresponding to the closeness
of the population dynamics to an exponential growth, this condition does
not provide a strong constraint for ξ: CO2 content can exhibit an (accel-
erated) FTS dynamics even if ξ is large, corresponding to a more efficient
economy. If 1−α is close to 0, corresponding to output mainly controlled by
availability of capital, then ξ should be small. Small values of ξ correspond
to the situation in which, taken globally over the whole Earth, the tech-
nological advances have not yet significantly abated carbon emission per
unit of output. This statement may appear shocking and counter-factual
for developed countries. But, at the scale of the whole planet, one can ob-
serve that improvement in carbon emissions in the developed countries are
counteracted by the increases of carbon emissions in some major developing
countries (Pielke et al. [2008]), such as China, India and Brazil, which use
carbon emission inefficient technologies (for instance heavily based on coal
burning).

In summary, we find a very robust FTS behavior for CO2 over a broad
and realistic range of parameters, which makes it difficult to constrain the
impact of the advance of technology on production efficiency.

5 Conclusion

We have analyzed the growth of atmospheric carbon dioxide and of what
constitutes arguably its most important underlying driving variable, namely
human population. Our empirical calibrations suggest that human popula-
tion has decelerated from its previous super-exponential growth until 1960
to “just” an exponential growth. As for atmospheric CO2 content, we find
that it is at least exponentially increasing and more probably exhibiting an
accelerating growth rate, consistent with a FTS (finite-time singular) power
law regime.

We have proposed a simple framework to think about these dynamics,
based on endogenous economic growth theory. We showed that the positive
feedback loops between several variables, such as population, technology and
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capital can give rise to the observed FTS behavior, notwithstanding the fact
that the dynamics of each variable would be stable or at most exponential,
conditional on the stationarity of the other variables. It is the joint growth
of the coupled variables that may give rise to the enormous acceleration
characterized by the FTS behavior both in the equation and in the carbon
dioxide content in the atmosphere.

Overall, the evidence presented here does not augur well for the future.

• The human population is still growing at an unsustainable rate and
there is no sign the population will stabilize anytime soon. Many
argue that economic developments and education of women will lead
to a decreased growth rate and an eventual stabilization of human
population. This is not yet observed in the population dynamics,
when integrated worldwide. Let us hope that the stabilization of the
human population will occur endogenously by self-regulation, rather
than by more stringent finite carrying capacity constraints that can
be expected to lead to severe strains on a significant fraction of the
population.

• Notwithstanding a lot of discussions, international meetings and preva-
lence in the media, atmospheric CO2 content growth continues un-
abated with a clear faster-than-exponential behavior. On the face of
this evidence using data until 2011, stabilizing atmospheric carbon
dioxide emissions at levels reached in 1990 for instance seems very
ambitious, if not utterly unrealistic. We are not pessimistic. We think
that only evidence-based decision making can lead to progress. The
present evidence gives some measure of the enormous challenges to
control our carbon dioxide emissions to acceptable levels.

The International Energy Agency (IEA) has released its flagship publication
of the year on the World energy outlook (see Organisation for Economic Co-
operation and Development [2011]). The IEA reports that carbon dioxide
emissions jumped by 5.3% last year to the record 30.4 gigatons, due mainly
to increasing demand for coal in particular by China and India. The IEA
raised its forecast for primary energy demand by a third between 2010 and
2035. The IEA report writes that, if there is no stringent new action by
2017, the energy related infrastructure in place would generate all the CO2

emissions allowed up to 2035 for the World to meet its target of a maximum
temperature increase of 2C. These conclusions are in line with the evidence
presented here.

6 Data

Population data was obtained from the website of the United Nations (http:
//www.un.org/esa/population/publications/sixbillion/sixbilpart1.
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pdf) and the website of U.S. Census Bureau (http://www.census.gov/
population/international/data/idb/worldpoptotal.php).

Carbon dioxide data was collected from different sources: from the Car-
bon Dioxide Information Analysis Center (CDIAC) (http://cdiac.esd.
ornl.gov/ftp/trends/co2/siple2.013, http://cdiac.ornl.gov/ftp/trends/
co2/lawdome.combined.dat), the National Oceanic and Atmospheric Ad-
ministration (NOAA) (ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_
annmean_mlo.txt, ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/
antarctica/maud/edml-co2-2005.txt, ftp://ftp.cmdl.noaa.gov/ccg/

co2/trends/co2_mm_mlo.txt) and from Barnola et al. [1995]4.
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A Discussion of exponential growth / FTS power-
law

Depending on the scale of the abscissa and the ordinate, exponential growth
and FTS power-law growth can look very different (see also Figure 1):

(a) the linear-linear plot shows the dual property of the FTS power law
function, which is to both grow initially slower than the two other
models, and then to catch up explosively.

(b) In this linear-log plot, by construction, the exponential function is a
straight-line, thus a linear dependence in this representation qualifies
an exponential growth. The linear model is concave (slower growth)
and the power law FTS model is convex (faster growth).

(c) The log-log plot would qualify a power law tβ as a straight line whose
slope is the exponent β. Hence the linear function is also linear in this
representation with slope 1. Both the exponential and FTS power law
model exhibit an upward convex shape. It is important not to confuse
a power law and a FTS power law: the former is proportional to a
power of t and thus exists for all times, while the later is proportional
to a power of tc − t and is only defined for t < tc.

(d) In this log-log plot in the variable tc−t, by construction, the FTS power
law is qualified by a straight line behavior, with a slope equal to the
exponent −1/δ. Both linear and exponential models are associated
with concave curves, characterizing a slower growth in the vicinity of
tc. Note that time t increases from right to left.

B Exact Solution of the ODE system

This appendix provides the exact derivation of the system of equations (12)
and (13), thus justifying the ansatz (14) and (15) used.

First, we combine equations (12) and (13) into a single equation:

dA

dt
L(t)−η−γA(t)−θ − dL

dt
L(t)−1A(t)−1+α = 0 . (19)

Without loss of generality, we can set e = f = 1 by defining appropriately
the units of A and L. Separating the variables and integrating lead to

1

2− α− θA(t)2−α−θ − 1

η + γ
L(t)η+γ = c′ . (20)

Looking for the large time asymptotic regime for which L(T ) and A(t)
(which are assumed to be monotonously increasing) become much larger
that the constant c′, we can solve for A(t) and L(t) as follows.
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• Hence,

L(t) =

[
1

2− α− θA(t)2−α−θ(η + γ)

]1/(η+γ)
(21)

= c2A(t)
2−α−θ
η+γ . (22)

Plugging this into equation (12) leads to

dA

dt
= c2A(t)2−α . (23)

By separating variables and subsequently integrating, we get:

A(t)α−2dA = c2dt , (24)

1

α− 1
A(t)α−1 = c2t+ c′2 , (25)

A(t) =

[
(1− α)c2(

−c′2
c2
− t)

]−1/(1−α)
(26)

⇔ A(t) = A0(tc − t)−1/µ , (27)

with µ = 1− α.

• Similarly, we find the solution for L(t):

A(t) =

[
1

η + γ
L(t)η+γ

]1/(2−α−θ)
(28)

= c3L(t)
η+γ

2−α−θ . (29)

Plugging this into equation (13) leads to

dL

dt
= c′3L(t)

(η+γ)(1−α)
2−α−θ

+1 (30)

=: c′3L(t)κ+1 where κ :=
(η + γ)(1− α)

2− α− θ . (31)

As before, we separate variables and integrate

L(t)−κ−1dL = c′3dt , (32)

1

−κL(t)−κ = c′3t+ c′′3 , (33)

L(t) =

[
κc′3(
−c′′3
c′3
− t)

]−1/κ
(34)

⇔ L(t) = L0(tc − t)−1/κ , (35)

with κ = η+γ
2−α−θ (1− α).
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Of course, the solution for L(t) could be directly obtained using (22) and
(27), and reciprocally.

For a general mathematical rigorous theory of ordinary differential equa-
tions exhibiting finite-time singular behaviors, see Goriely [2000].

C Calculation of the exponent ϕ

Let us give some intermediate steps towards the solution of equation (18).

Y (t)

A(t)ξ
=(8) K(t)α(A(t)L(t))1−α

A(t)ξ
(36)

=(10) L(t)A(t)1−α−ξ (37)

=(14,15) L0(tc − t)−1/κ
[
A0(tc − t)−1/µ

]1−α−ξ
(38)

= L0A0(tc − t)−1/κ−(1−α−ξ)/µ (39)

=! C0(tc − t)−1/ϕ . (40)

Hence,

ϕ =
1

1/κ− ξ/µ+ 1
, (41)

using µ = 1− α given by (16).

30



4.3. Discussion & Perspective 127

4.3 Discussion & Perspective

The “Club of Rome” was founded 1968 as a “structured responses to growing
world-wide complexities and uncertainties”. In their “World 3” model, Meadows
et al. (1972) simulate the planet as complex system with various positive and
negative feedback loops, for example like in Figure 5. Of course this simulation is
so complex that it is no longer analytically traceable and has to be solved with
the help of a computer.

Fig. 5: Reproduced from Meadows et al. (1972) showing the different feedback loops used in the

original world 3 model.

The report was published as “Limits to Growth” by Meadows et al. (1972) and
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was an wake-up call for many politicians. Interestingly, Turner (2008) assessed
the model 30 years later and finds that the “standard run” describes reality quite
accurately. Further, Turner (2008) discusses some interesting prejudice about
what Meadows et al. (1972) actually did not predict (for instance “peak oil”).
Although the club has lost a lot of publicity and visibility in the last years, it
continues to refine and update its forecasts (Randers, 2012).

It is interesting to note that efforts to reduce pollution in general and carbon
dioxide emission in particular have weakened (The Economist, 2012). Politicians
seem to be too over optimistic on the impact of new technologies (Pielke et al.,
2008). Moreover, even stringent criteria like anchoring emissions on the 1990
level (at least for industrial nations), a 2◦C global warming limit or 350ppm
atmospheric CO2limit (which is already exceeded as atmospheric CO2 is currently
at over 390ppm1) are not sufficient; even if these limits are maintained, they
“[ . . . ] increase the risk of irreversible climate change, such as the loss of major
ice sheets, accelerated sea-level rise and abrupt shifts in forest and agricultural
systems” (Rockstrom et al., 2009). In addition, the current financial crisis shifts
priorities away from environmental issues.

In contrast to Meadows et al. (1972) and our research paper presented in the
previous section, Sanyal (2011) argues that world population growth (one of the
most important drivers of pollution) has slowed and population will peak as early
as 2050 and fertility falls below the reproduction level as early as 2030. However,
the fertility rates are no longer as important, because population growth has
be driven by increased life expectancy in the developed countries. This trend
is now also visible in emerging countries; Brazil life expectancy has increased
almost 50% over the last sixty years and now is at 74, for example (Sanyal, 2011).
Moreover, Sanyal argues for example that China, the most populous country, has
implemented a very effective “one-child policy”. However, China’s one child-policy
is no longer strictly enforced; minorities are already granted generous exemptions,
in addition some provinces push for a suspension (The Economist, 2011). Further,
the latest official projections by UN experts expect 2.17 children per woman in
the base line scenario. The high growth scenario assumes even exponential growth
for the foreseeable future. And even for a very optimistic low growth scenario,
“[ . . . ] population growth until 2050 is inevitable (United Nations, 2011)”. In
summary, the assumption that population grows exponentially seem realistic to
us, at least for the next 20 years.

One inherent problem with forecasts is that sometimes not even the present
value is well known and is clouded by uncertainty. One example is the prediction
of economic growth measured as GDP growth. It is very common that predictions
have to be revised and even the base for the current prediction is only known
with uncertainty, see Figure 6 for an illustration.

1http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html

http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
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Fig. 6: GDP growth estimates can be subject to heavy revision. The chart above shows Germany’s

GDP estimates (one color corresponds to a specific year) vs. the issue time of the respective

estimates. I.e., the beige colored line in the lower right of the chart shows the evolution

of the GDP growth estimate for the year 2009. In spring and autumn of 2008 (2008A

and 2008B, respectively), the growth was predicted to be positive. However, in the year

2009, the estimate was revised down to -5% to -6%. Ex-post, the GDP growth for 2009

has been several times restated (even 3 years later in 2012), but is now believed to be

around -5.1%. Own work with data obtained from the “Center for Economic Studies”

(www.cesifo-group.de).

www.cesifo-group.de




5
Conclusions

In this thesis, we presented three research papers. In the first, we started wtih
assumptions about the behavior of individual agents and how they compose their
portfolios. Based on these assumptions, we formulated a mathematical framework
and derived structural properties. Finally, by comparing the derived properties
to actual data, we concluded that investors are over-optimistic regarding the
performance of mutual funds or they overpay mutual fund mangers. In the
second paper, we analyzed data from a laboratory stock market where a virtual
asset is traded. We quantified the observed increase in price, interpreted as a
bubble and found faster-than-exponential growth due to traders anchoring their
expectations on past prices. In the final paper, we presented two competing
models of atmospheric carbon dioxide growth, motivated by a simple economic
model. We found that the atmospheric carbon dioxide content seems to grows
than exponential. Further, we developed a scenario to project what could happen
if the past trend continues.

In all three papers, the results depend crucially on expectations: the expectations
of the representative agent, the expectations of the future price of the laboratory
traders and the expectation that the present trend persists.

The concept of rationality is different in the three papers. In the first paper,
the model assumes perfectly rational agents, however, we find in the data used
to calibrate the model that the investors deviate from this ideal. In the second
paper, agents, even if they make a rational decision, are forced to adapt to the
non-rational agents as they drive the price upwards. Finally, in the third paper,
we extrapolated the current trend of carbon dioxide and human population on
Earth into the future, inferring a collective behavior using macro-level equations.

The problem is that each individual in the three discussed themes acts rationally
for himself (even he is over-optimistic), but for the community as a whole, it would
be more beneficial if they would behave also on a global scale rationally to allocate
the resources more efficiently. This failure to coordinate is a well-known problem
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associated with the aggregation of preferences and calls for the introduction of
regulations and policies (or specific incentives and structural designs) that may
help coordinate the choices of the decision makers. In the case of mutual funds
or more generally for investments, investors seem to inefficiently allocate their
capital because they are over-optimistic and correspondingly simply overpay their
managers. Regulations need to be adapted so that investors can make more
rational decisions in their own interest, either by obtaining better information
and transparency, or through better education. For bubbles, we find that traders
try to adapt to the increasing growth rate and hence push the bubble to grow
even faster. From the community’s standpoint, it would be more desirable to
mitigate bubbles, as very often the government has to step in at the end of bubbles
and assume financial responsibilities. Hence, policies and incentives should be
changed to encourage more fundamental investing and less momentum trading.
Finally in the last paper, most nations are unable or unwilling to follow the
recommendations by the IPCC (UN Intergovernmental Panel on Climate Change)
to reduce carbon dioxide emissions to a sustainable level. A consensus between
nations with very optimistic views (which believe Earth can absorb even higher
levels of carbon dioxide and see no indication for climate change), and nations
with pessimistic views (which are heavily exposed to potential climate change
and/or make respective costly investments in technology to cut their emissions)
has to be found.

In the end, it is a question of trading the short term interest of the individuals
against the long-term well-being of all.
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A. D. Hüsler and D. Sornette. Evidence for super-exponentially accelerating
atmospheric carbon dioxide growth. July 2012.

T. Jackson. Financial theory crisis persists. Technical report, FT, May 2012.

D. Kahneman. Choices, values, and frames. Russell Sage [u.a.], 2002. ISBN
9780521621724.

T. Kaizoji and D. Sornette. Bubbles and Crashes. In R. Cont, editor, Encyclo-
pedia of Quantitative Finance. John Wiley & Sons, Ltd, 2010 (long version at
http://arXiv.org/abs/0812.2449). doi: 10.1002/9780470061602.eqf01018.

J. M. Keynes. The General Theory of Employment, Interest and Money. Atlantic
Publishers & Distributors (P) Ltd., July 1937. ISBN 8126905913.

M. Kirchler, J. Huber, and T. Stockl. Thar She Bursts: Reducing Confusion
Reduces Bubbles. American Economic Review, 102(2):865–83, 2012.

F. H. Knight. Risk, Uncertainty and Profit. Bookseller, Apr. 1964. ISBN
1587981262.

L. F. Kozachenko and N. N. Leonenko. Sample estimate of the entropy of a
random vector. Probl. Inf. Transm., 23(1-2):95–101, 1987.
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