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Abstract
In this thesis we include papers using an interdisciplinary approach to
study the complex financial systems and social networks. The papers are
linked by an identical goal: to better understand the financial systems and
social networks, and develop and test news models to predict statistically
the future asset prices in the financial systems and predict the emergent
phenomena in the social networks.

In the “Can media moods predict stock prices during and after the 2008
financial crisis?” paper we extract media moods from the Reuters US
news using computational linguistics methods and study the relationships
between these media moods and the S&P500 returns from January 1, 2007
to June 6, 2012. We report three major findings. First, negative moods
Granger cause S&P500 returns with a negative coefficient. Second, the
S&P500 returns Granger cause the negative moods also with a negative
coefficient, showing the existence of a positive feedback loop between
them. Third, we find that trading strategies based on media moods can
generate both statistically significant and economically significant returns,
and the extra returns cannot be explained by the Fama-French factors. The
corresponding extracted α’s (excess risk-adjusted returns unexplained by
the Fama-French factors) are impressively high, in the range 0.1 − 0.2%
per day and thus dominate typical transaction costs and implementation
slippage. This suggests that financial markets are not informationally
efficient over the studied time period and that this results from the
existence of the mutually reinforcing feedbacks between negative moods
and negative S&P500 returns, which have been and are still present over
this time period characterized by a very serious financial crisis and its on-
going development.

In the “Reverse engineering stock markets with mixed games and alpha
generation” paper we construct virtual financial markets populated by
artificial agents, who make decisions according four classes of backward-
looking decision functions, with the goal of testing the weak form of the
efficient market hypothesis (EMH). Our agent-based models (ABM) are
populated by agents with bounded rationality and heterogeneous beliefs,
which can be represented by the decision functions defining respectively
the minority game, the majority game, the $-game and the delayed
minority game. We extend a previous methodology and provide the main
structural parameters, the specific trading strategies used by the agents,
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as well as the fractions of agents playing the four different games. This
genuine reverse-engineered reconstruction of the real financial markets
is applied to the 10-year time series of the S&P500, Dow Jones Industrial
Average and Nasdaq 100 indexes from 1982 to 2012 in 700 experiments
associated with different time windows. Our empirical results provide
evidence that our ABM’s can describe the behavior of a large proportion
of investors in a real market. This is supported by (i) our finding that
654 out of 700 reverse engineering experiments with on three main U.S
indexes predict the future return signs with statistically significant success
rates, (ii) trades based on these predictions can generate statistically and
economically significant returns, and (iii) there are statistically significant
relations between market regimes and the corresponding parameters of
reverse-engineered ABM’s.

In the “Empirical test of the origin of Zipf’s law in growing social
networks” paper we report a detailed analysis of a burgeoning network of
social groups, in which all ingredients needed for Zipf’s law to apply are
verifiable and verified. A recently developed theory predicts that Zipf’s law
corresponds to systems that are growing according to a maximally sustain-
able path in the presence of random proportional growth, stochastic birth
and death processes. We estimate empirically the average growth r and
its standard deviation σ as well as the death rate h and predict without
adjustable parameters the exponent µ of the power law distribution P(s)
of the group sizes s. Using numerical simulations of the underlying growth
model, we demonstrate that the empirical stability of Zipf’s law over the
whole lifetime of the social network can be attributed to the interplay
between a finite lifetime effect and a large σ value. Our analysis and the
corresponding results demonstrate that Zipf’s law can be observed with a
good precision even when the balanced growth condition is not realized, if
the random proportional growth has a strong stochastic component and is
acting on young systems under development.

All these results show that our approach is able to disentangle the
financial systems and social networks from the complexity in terms of both
understanding the underlying mechanisms of the systems and predicting
them. We shall carry on this approach in the future with more theoretical
and practical problems.



Zusammenfassung
Diese Arbeit umfasst wissenschaftliche Artikel, die einen interdiszipli-
nären Ansatz zum Studium von komplexen Finanzsystemen und sozialen
Netzwerken verwenden. Ein roter Faden durchzieht und verbindet alle
Artikel miteinander: Es werden Modelle zur Medienanalyse entwickelt und
getestet, sowohl um die Entwicklung von Anlagepreisen statistisch vorher-
zusagen als auch um emergente Phänomene in sozialen Netzwerken zu
antizipieren.

In dem Artikel „Can media moods predict stock prices during and
after the 2008 financial crisis?“ extrahieren wir die Stimmung in den
Medien, repräsentiert durch Reuters US News, mithilfe von Methoden
der rechnergestützen Linguistik und untersuchen die Beziehung zwischen
der Stimmung in den Medien und den S&P 500 Renditen zwischen
1. Januar 2007 und 6. Juni 2012. Wir stellen dabei drei wesentliche Resultate
fest. Erstens zeigen Tests, dass eine signifikante Granger-Kausalität zwi-
schen negativen Stimmungen und S&P 500 Renditen besteht, mit einem
negativen Koeffizienten. Zweitens zeigen Tests, dass eine signifikante
Granger-Kausalität zwischen S&P 500 Renditen und negativen Meinungen
besteht, ebenfalls mit einem negativen Koeffizienten. Zusammengenom-
men deutet dies auf die Existenz einer positiven Rückkopplung zwi-
schen beiden Grössen hin. Drittens können Handelsstrategien, die auf den
festgehaltenen Medienstimmungen basieren, statistisch wie ökonomisch
signifikante Renditen generieren, die dabei nicht auf die Fama-French-
Faktoren zurückzuführen sind. Die Alphas (Überschussrenditen, die nicht
durch die Fama-French-Faktoren erklärt werden) sind dabei mit 0.1%–0.2%
pro Tag beeindruckend hoch und dominieren typische Transaktionskosten
und Implementierungsschlupf. Wir schliessen daraus, dass die Finanz-
märkte über die betrachtete Zeitperiode, die von einer ernsten Finanzkrise
gezeichnet war, nicht informationseffizient waren und dass der Grund
hierfür in Rückkopplungsmechanismen zwischen negativer Stimmung und
negativen S&P 500 Renditen zu suchen ist.

In dem Artikel „Reverse engineering stock markets with mixed games
and alpha generation“ konstruieren wir virtuelle Finanzmärkte, die von
künstlichen Agenten bevölkert sind, welche ihre Anlage- und Handels-
entscheidungen anhand von vier Klassen rückwärtsblickender Entschei-
dungsfunktionen treffen, mit dem Ziel, die schwache Form der Hypothese
effizienter Märkte zu testen. Unsere agentenbasierten Modelle (ABMs)
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sind bevölkert von Agenten beschränkter Rationalität und mit heterogenen
Meinungen; ihre Zielfunktionen bilden respektive das Minority Game, das
Majority Game, das $-Game und das verzögerte Minority Game ab. Wir
erweitern eine frühere Methodologie und berechnen die wesentlichen
strukturellen Parameter, die spezifischen Handelsstrategien, die von den
Agenten benutzt werden, sowie den Anteil der Agenten, die die vier
Spiele spielen. Diese rückentwickelte (reverse-engineering) Rekonstruktion
realer Finanzmärkte wird auf 10-Jahres-Zeitreihen vom S&P500, Dow
Jones Industrial Average and Nasdaq 100 zwischen 1982 und 2012 in 700
Experimenten mit verschieden positionierten Zeitfenstern angewendet.
Die Ergebnisse zeigen, dass unsere ABMs das Verhalten eines grossen
Anteils von Anlegern in einem echten Markt beschreiben können. Wir
zeigen, dass (1) 654 von 700 Rückentwicklungsexperimenten auf den
drei grossen US Indizes zukünftige Renditen mit statistisch signifikantem
Erfolg vorhersagen können, (2) Transaktionen basierend auf diesen Pro-
gnosen statistisch wie ökonomisch signifikante Renditen generieren und
(3) statistisch signifikante Beziehungen zwischen Marktregimen und den
zugehörigen Parameterwerten der rückentwickelten ABMs bestehen.

In dem Artikel „Empirical test of the origin of Zipf’s law in growing social
networks“ berichten wir über eine detaillierte Analyse eines wachsenden
Netzwerks sozialer Gruppen, in dem alle Komponenten enthalten sind,
die es braucht, um das Zipf-Gesetz zum Tragen zu bringen. Eine kürzlich
entwickelte Theorie sagt voraus, dass das Zipf-Gesetz Systeme kennzeich-
net, die angesichts stochastischer Wachstums-, Geburten- und Sterberaten
auf dem maximal nachhaltigen Pfad wachsen. Wir schätzen empirisch
die durchschnittliche Wachstumsrate r und deren Standardabweichung
σ sowie die Sterberate h und sagen ohne verstellbare Parameter den
Exponenten µ des Potenzgesetzes P(s) über den Gruppengrössen s voraus.
Mithilfe numerischer Simulationen des zugrundeliegenden Wachstums-
modells demonstrieren wir, dass die empirische Stabilität des Zipf-Gesetzes
über die gesamte Lebenszeit des sozialen Netzwerks auf das Zusammen-
spiel zwischen einem Effekt endlicher Lebenszeit und einem grossen σ-
Wert zurückzuführen ist. Unsere Analyse und die zugehörigen Resultate
demonstrieren, dass das Zipf-Gesetz selbst dann beobachtet werden kann,
wenn die Bedingung balancierten Wachstums nicht gegeben ist, solange
die stochastischen Wachstumsraten eine starke Zufallskomponente haben
und auf ein junges System, das sich noch in Entwicklung befindet, Anwen-
dung finden.

All diese Ergebnisse zeigen, dass unser Ansatz es vermag, die Komple-
xität von Finanzsystemen und sozialen Netzwerken herunterzubrechen,
sowohl was das Verständnis des jeweils zugrundeliegenden Mechanismus
angeht sowie was dessen Vorhersage betrifft. Wir werden diesen Ansatz
in der Zukunft an weiteren Problemstellungen aus der Theorie wie Praxis
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weiterverfolgen.
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1
Introduction

We have just witnessed the devastating power of the global financial
crisis in 2008 (Shiller, 2008; Kolb, 2011) whose aftershocks are still shaking
the world economy; the European sovereign debt crisis (Wonders, 2010),
possibly triggered by it, followed only about one year later and as of
this writing (Jan. 2013), European countries are still stuck in it. Preceding
these two most recent events, there have been a number of financial and
economic crises in the last 100 years (Kobrak and Wilkins, 2012; Galbraith,
1994; Kindleberger and Aliber, 2011), including the Great Depression (1929-
1939) (Bernanke, 2004; Eichengreen and Temin, 2000; Rothbard, 2000;
Robbins, 2009). And not only in the financial and economic domains. Crises
also happened in the social domain: there were the great world wars in the
last century, and there are still wars going on right now as well as political
and geopolitical tensions in many areas of the world. A recent example of
a critical transition in society is the “Arab Spring” revolution, a big surprise
triggered by a rather small event (Anderson, 2011; Gelvin, 2012).

Crises generally surprise people as they usually strike without explicit
warning signs. For instance, during the early phase of the global financial
crisis, forecasters were predicting only a mild recession (Mishkin, 2011).
Another example is that “stock market crashes are often unforeseen for
most people, especially economists” (Sornette, 2003). Indeed, forecasting
financial and economic crises is so difficult that economists are rethinking
their theories and models in sometimes fundamental ways. Rogoff
(2010) provides a good perspective on the development of economic
theory. The difficulty of forecasting crises comes from the fact that both
financial systems and social networks are complex: They are comprised of
many individuals that interact, and due to this interaction the aggregate
cannot be treated as simply the sum of its components – “more is
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different” (Anderson, 1972). For instance, symmetry of behaviour of
individual investors who trade a stock may lead to a random walk of the
stock’s returns, but the symmetry could be broken by investors mimicking
each other, leading to new phenomena such as bubbles (if the majority of
the investors buy) and crises (if the majority of the investors sell) would
emerge – phenomena which are unlikely to happen under the random
walk assumption that the stock market is informationally efficient. In
complex systems, there are many “new” features, such as positive feedback
loops, non-linearity, power laws, critical states, phase transitions, and so on,
which cannot be treated in a linear way. We need new theories and models
to forecast crises in financial, economic, and social systems, monitor
systemic risks, and possibly even prevent future crises from happening.
This motivates us to apply an interdisciplinary approach with concepts and
tools developed in diverse fields, including financial economics, statistical
physics, and computer science.

In this thesis we focus on several concrete and important problems, so
it includes papers on different but closely linked subjects. In the paper
“Can media moods predict stock prices during and after the 2008 financial
crisis?” we study if the stock market is predictable in terms of publicly
available information. We find that in the period we study, negative news
and negative returns reinforce each other, and that one can make profits
by trading on news information. The results thus challenge the semi-
strong form of the Efficient Market Hypothesis (EMH) (Fama, 1970). In the
paper “Reverse engineering stock markets with mixed games and alpha
generation”, we use agent-based models (ABMs) to study the underlying
mechanism of stock markets and use the resulting configuration to predict
future stock prices. Tests show that our reverse-engineered ABMs can
predict the sign of future returns with statistically significant success
rates, and that one can trade profitably with these ABM-based strategies.
We also find a relationship between the parameters of our reverse-
engineered ABMs and historical regimes of the U.S. stock market. The
results challenge the weak form of EMH and show that stock markets
are predictable based on historical price information. In these two papers
we study the informational efficiency of the stock markets and develop
prediction tools from different points of view. But the strategy we apply
are the same. We incorporate interdisciplinary concepts, methods and
tools into our studies to disentangle systems from their complexity, by
understanding the underlying mechanisms and predicting them. In the
third paper, “Empirical test of the origin of Zipf’s law in growing social
networks”, we apply the same strategy to complex social networks. As
the model (Malevergne et al., 2010) predicts, Zipf’s law of group sizes on
a website emerges from gradients including i) the proportional growth of
groups and ii) the birth of new groups as well as the death of existing ones.
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The results thus show that we can predict phenomena in complex social
networks if we understand the underlying interactions and have enough
data.

To sum up, the papers in this thesis are linked by one identical goal:
to develop and test new models and methods in order to understand
complex financial and social systems and predict future asset prices and
emergent phenomena. This thesis is organized as follows. The first chapter
is the concise introduction of different papers, including their goals and
methodology. The second chapter is the paper “Can media moods predict
stock prices during and after the 2008 financial crisis?”. The third chapter is
the paper “Reverse engineering stock markets with mixed games and alpha
generation”. The fourth chapter is the paper “Empirical test of the origin of
Zipf’s law in growing social networks”. The last chapter concludes.

1.1 Goals and Methodology
1.1.1 Can media moods predict stock prices during and after

the 2008 financial crisis?
The efficient market hypothesis (EMH) (Fama, 1970) in finance theory
asserts that financial markets are informationally efficient. In the spirit
of the EMH, an “efficient markets model” commonly used by economists
and market analysts to value stocks states that “real stock prices equal
the present value of rationally expected or optimally forecasted future real
dividends discounted by a constant real discount rate” or by a variable but
stable real discount rate (Shiller, 1981). For stock valuation, therefore, it is
very important to test the EMH.

There exists a rich literature using event study methods to test the
EMH (Eckbo, 2007). The event study methods test whether stock returns
change significantly when there are exogenous shocks in the form of news.
Most researchers use daily stock prices and check abnormal returns only
in 2 or 3 days around some peculiar class of news impacts, and their
results tend to support the EMH (Antweiler and Frank, 2006). Nevertheless,
increasing evidence in the behavioural finance literatures challenges the
EMH. Subrahmanyam (2008) provides a good review and synthesis of this
literature.

Our goal in this study is to test if a piece of new information about stock
markets will be quickly incorporated into prices so that no one can profit
from it, because the traditional opinion is that any arbitrage opportunity
embedded in the information will disappear immediately if many investors
try to exploit it. Our hypothesis, however, is that the arbitrage opportunity
may not always disappear, because there could be a positive feedback



4 Chapter 1. Introduction

loop in the relationships between news and stock prices: when bad news
pushes stock prices down, the markets may not go to a new equilibrium
state as the traditional point of view predicts, but further deviate from
the equilibrium state as the sell actions cause more bad news in turn.
We would especially like to test this hypothesis during a financial crisis.
Furthermore, we would like to test if we can predict future stock prices
based on news.

We use Reuters daily news downloaded from the Reuters US web-
site Reuters.com (2012) between 2007 and 2012 to do our analysis. There
are thousands of news stories everyday, mainly business and financial
news, as well as breaking US and international news. It can be seen as a
complete library of important events happening in the US and the world,
and thus it is an ideal resource to study relationships between news and
US stock prices. We use natural language processing (NLP) methods to
perform a sentiment analysis in a coarse grained manner: we classify daily
news articles as positive, neutral, or negative, and calculate the respective
fractions of positive, neutral, and negative news for any given trading day.
We then use econometric methods to study the linear relations between
sentiments and US stock index returns, and we also construct (non-linear)
trading strategies based on news sentiments to test the predictability of
sentiments on US stock indexes returns. For stock prices data, we use daily
stock prices, as downloaded from Yahoo Finance Yahoo.com (2012).

1.1.2 Reverse engineering stock markets with mixed games
and alpha generation

The goal of reverse engineering stock markets is to understand the
mechanism underlying them and predict future price changes based on
it. To this end, we apply ABMs, which are well suited for describing
the interactions between bounded rational agents. This bottom-up
approach is based on two ideas. The first is to use ABMs to capture the
decision-making processes of investors at the micro-level and aggregate
the collective behaviour to price series at the macro level; the second is to
search for configurations of ABMs that generate the best fit to real price
series and then use these ABMs to predict future price changes.

In other words, we calibrate virtual stock markets by reverse-engineering
historical stock price movements. A virtual stock market is comprised of
N agents, each trading in the virtual stock market in a finite time span.
During each period, normally a trading day, the agents decide to buy or sell.
The agents make decisions based on historical information. Each agent has
a limited memory length m and a limited number s of trading strategies
to predict future price changes from an m-day price history. The agents
assess the success rate of their trading strategies in the past T days. If the



1.1. Goals and Methodology 5

success rate of an agent’s best trading strategy (the trading strategy with
the highest success rate) is lower than a threshold τ, the agent will not be
confident enough to trade. Here, the success rate means the percentage of
correct price change directions a trading strategy would predict.

The agents interact with each other by playing four kinds of games:
the minority game (Challet et al., 2005), the majority game (Challet et al.,
2005), the $-game (Andersen and Sornette, 2003), and the delayed minority
game (Wiesinger et al., 2012). On each trading day, an agent checks her
best trading strategy and decides to buy, sell, or do nothing if she is not
confident enough; the collective buy and sell actions then change the
stock price on that day; at last, the agents update the performance of
their trading strategies by comparing the predicted direction of the price
movement with the realized one. In this manner, the agents will generate
an artificial price time series.

To calibrate our artificial stock markets, we use a genetic algorithm (GA)
to let the parameters of our artificial stock market evolve and find the
configuration which generates the best match between the artificial and
the real time series. We thus get a calibrated ABM with optimal parameters
in terms of reproducing the real time series. This configuration will then be
used to predict future stock price movements and market regimes.

We use two methods to test the predictive power of the ABMs. First,
we use them to predict the signs of future returns, and we prove that the
success rates of these predictions are statistically significant, compared to
random strategies. Second, we use ABM-based strategies to trade, and
show that they can generate significantly positive abnormal returns using
various statistical tests.

1.1.3 Empirical test of the origin of Zipf’s law in growing social
networks

Power law distributions (equation (4.1)) are ubiquitous characteristics
of many natural and social systems. The function p(s) is the density
associated with the probability P(s) = Pr{S > s} that the value S of some
stochastic variable, usually a size or frequency, is greater than s. Among
power law distributions, Zipf’s law states that µ = 1, i.e., P(s) ∼ s−1 for
large s. Zipf’s law has been reported for many systems (Saichev et al.,
2009), including word frequencies (Zipf, 1949), firm sizes (Axtell, 2001),
city sizes (Gabaix, 1999), connections between Web pages (Kong et al.,
2008) and between open source software packages (Maillart et al., 2008),
Internet traffic characteristics (Adamic and Huberman, 2000), abundance
of expressed genes in yeast, nematodes and human tissues (Furusawa and
Kaneko, 2003) and so on. The apparent ubiquity and universality of Zipf’s
law has triggered numerous efforts to explain its validity. It is also essential
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to understand the origin(s) of Zipf’s law.
We use a database from Amazee.com, which is a Web-based platform

of collaboration. Using Amazee’s Web-platform, anyone with an idea for a
collaborative project can sign in and use the website to gather followers,
who will together help the project owner to accomplish the project. An
Amazee project can be of any type of activities, such as arts and culture,
environment and nature, politics and beliefs, science and innovation, social
and philanthropic, sports and leisure, and so on. Most of the projects are
public, for instance, “build a strong community of Internet entrepreneurs
in Switzerland to exchange information and have fun” (Web Monday
Zurich), “connect all women working in the Swiss ICT industry” (Tech Girls
Switzerland), “to provide fresh running water to each home in the small
African village of Dixie” (Water for Dixie), and so on. Amazee.com provides
a set of features covering the entire lifetime of a typical project, such as
project planning, participants recruiting, fund raising, events and meetings
hosting, communication, files archiving, and so on. Users join Amazee.com
by either creating a new project, or participating in projects created by
others. The Amazee data we analyze contains the complete recording in
time of the activities of all users creating and joining all the projects in
existence between February 2008 and April 2011.

With the Amazee data we empirically estimate the power law distribu-
tions of project sizes, as well as parameters such as the average project
growth rate, the standard deviation of growth rates, and the hazard
rate of projects existing from the website, and use a newly developed
model (Malevergne et al., 2010) to predict the power law exponent with
these estimated parameters, thus testing empirically the theory about the
origin of the Zipf’s law.

1.2 Abstracts of scientific papers
1.2.1 Can media moods predict stock prices during and after

the 2008 financial crisis?
We extract media moods from the Reuters US news using computational
linguistics methods and study the relationships between these media
moods and the S&P500 returns from January 1, 2007 to June 6, 2012. We
report three major findings. First, negative moods Granger cause S&P500
returns with a negative coefficient. Second, the S&P500 returns Granger
cause the negative moods also with a negative coefficient, showing the
existence of a positive feedback loop between them. Third, we find that
trading strategies based on media moods can generate both statistically
significant and economically significant returns, and the extra returns
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cannot be explained by the Fama-French factors. The corresponding
extracted α’s (excess risk-adjusted returns unexplained by the Fama-French
factors) are impressively high, in the range 0.1 − 0.2% per day and thus
dominate typical transaction costs and implementation slippage. This
suggests that financial markets are not informationally efficient over
the studied time period and that this results from the existence of the
mutually reinforcing feedbacks between negative moods and negative
S&P500 returns, which have been and are still present over this time
period characterized by a very serious financial crisis and its on-going
development.

1.2.2 Reverse engineering stock markets with mixed games
and alpha generation

We construct virtual financial markets populated by artificial agents,
who make decisions according four classes of backward-looking decision
functions, with the goal of testing the weak form of the efficient market
hypothesis (EMH). Our agent-based models (ABM) are populated by agents
with bounded rationality and heterogeneous beliefs, which can be repre-
sented by the decision functions defining respectively the minority game,
the majority game, the $-game and the delayed minority game. We extend
a previous methodology and provide the main structural parameters, the
specific trading strategies used by the agents, as well as the fractions of
agents playing the four different games. This genuine reverse-engineered
reconstruction of the real financial markets is applied to the 10-year time
series of the S&P500, Dow Jones Industrial Average and Nasdaq 100
indexes from 1982 to 2012 in 700 experiments associated with different
time windows. Our empirical results provide evidence that our ABM’s can
describe the behavior of a large proportion of investors in a real market.
This is supported by (i) our finding that 654 out of 700 reverse engineering
experiments with on three main U.S indexes predict the future return
signs with statistically significant success rates, (ii) trades based on these
predictions can generate statistically and economically significant returns,
and (iii) there are statistically significant relations between market regimes
and the corresponding parameters of reverse-engineered ABM’s.

1.2.3 Empirical test of the origin of Zipf’s law in growing social
networks

Zipf’s power law is a general empirical regularity found in many systems.
We report a detailed analysis of a burgeoning network of social groups,
in which all ingredients needed for Zipf’s law to apply are verifiable and
verified. A recently developed theory predicts that Zipf’s law corresponds
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to systems that are growing according to a maximally sustainable path in
the presence of random proportional growth, stochastic birth and death
processes. We estimate empirically the average growth r and its standard
deviation σ as well as the death rate h and predict without adjustable
parameters the exponent µ of the power law distribution P(s) of the
group sizes s. Using numerical simulations of the underlying growth
model, we demonstrate that the empirical stability of Zipf’s law over the
whole lifetime of the social network can be attributed to the interplay
between a finite lifetime effect and a large σ value. Our analysis and the
corresponding results demonstrate that Zipf’s law can be observed with a
good precision even when the balanced growth condition is not realized, if
the random proportional growth has a strong stochastic component and is
acting on young systems under development.

1.3 Contributions of the Ph.D. candidate to the pa-
pers

1. Can media moods predict stock prices during and after the 2008
financial crisis? Co-authored by Qunzhi Zhang and Didier Sornette.
Qunzhi Zhang and Didier Sornette design the research. Qunzhi
Zhang collects data and analyzes data. Qunzhi Zhang and Didier
Sornette write the paper.

2. Reverse engineering stock markets with mixed games and alpha
generation. Co-authored by Qunzhi Zhang, Didier Sornette and
Jeffrey Satinover. Didier Sornette, Jeffrey Satinover and Qunzhi Zhang
design the research. Qunzhi Zhang writes the reverse engineering
software, and does the simulations and data analysis. Qunzhi Zhang
and Didier Sornette write the paper.

3. Empirical test of the origin of Zipf’s law in growing social networks.
Co-authored by Qunzhi Zhang and Didier Sornette. Qunzhi Zhang
and Didier Sornette design the research. Qunzhi Zhang analyzes the
data. Qunzhi Zhang and Didier Sornette write the paper.
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Can media moods predict stock

prices during and after the 2008
financial crisis?

2.1 Introduction
Our main contribution is to present a novel methodology to test for
market informational inefficiency, when using massive news data that are
publicly available. Building investment strategies using mood indicators
constructed on the news data allows us to demonstrate the presence of
highly statistically significant excess risk-adjusted returns. Our results
suggest the existence of positive feedback loops in the investors’ mood
dynamics produced by the flow of news, the investment decisions them-
selves influencing news and moods via their impact of prices through a
procyclical process. This type of positive feedback loops is totally different
from the standard negative feedbacks associated with the exploitation
of anomalies, which make them to be arbitraged away, as described by
the Efficient Market Hypothesis (EMH). Our empirical results thus bring
new insights into the EMH, a cornerstone of financial economics, and
provide more precise information on the formation mechanism of financial
bubbles and crises.

On 20 September, 2012, the news title “Apple klaut Bahnhofs-Uhr der
SBB” (Apple steals the Swiss Federal Railways station clock) by Rotzinger
and Benkö (2012) was published in the German language on the website of
Blick, a local newspaper in Zurich, Switzerland. In the early morning of 21
September, 2012, a similar title (posted as lydia_emyeu (2012)) appeared in
Chinese on a website in China called “Weiphone”. Following this posting,
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this same piece of news has been cited by many main news channels in
China on the same day. Meanwhile, hundreds of news articles telling the
same story spread on the Internet in English, published by different news
media.

This example illustrates how quickly language and geographical barriers
are overcome nowadays for the propagation of news, be they economic,
financial, business or political news. For financial investors, this suggests
that public information spreads so fast on the web and in the media that
it should not be possible to gain by investing on the basis of news that
everyone can have access to so quickly. In other words, stock markets have
become even more informationally efficient, since never before have news
stories spread so rapidly around the World following the emergence of the
Internet.

The importance of news and their relationship with financial markets
have a long history. Indeed, financial markets can be considered essentially
as the engines that transform information into prices and provide both
funding channels for firms and investment opportunities for all. According
to the “efficient market hypothesis” (EMH), which was introduced by
? and Samuelson (1965, 1973), price movements are almost perfect
instantaneous reactions to the information flow. The emphasis on the
claim that stock prices fully reflect all publicly available information is
called the semi-strong form of the EMH (?). Accordingly, whatever the
internal structure of financial markets, according to the semi-strong form
of the EMH, price changes just reflect exogenous news. Being of all
possible types (geopolitical, environmental, social, financial, economic
and so on), these news lead investors to continuously reassess their
expectations of the cash flows that firms and investment projects could
generate in the future. These reassessments are translated into readjusted
demand/supply functions, which then push prices up or down as a function
of their impact in the order books. As a consequence, observed prices
are considered the best embodiments of present values. The EMH is
based on arbitrage arguments, according to which any possible arbitrage
opportunity contained in a piece of news will disappear fast as more and
more investors start to exploit it, leading to its incorporation in the asset
price. Therefore, in such informationally efficient stock markets, it is almost
impossible to gain extra returns by exploiting public information, and in
particular as provided by news.

There is a lot of empirical support for the EMH, embodied by the
statements that the dynamics of price is well described by the random walk
model and that returns are very poorly predicted by available academic
models (Rubinstein, 2001; Welch and Goyal, 2008). However, few works
have tested how the media moods, which is publicly available to all
investors, affect stock prices. We hypothesize that media moods about
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the stock markets, either positive or negative, may act as a global external
influence that affects the general behaviors of investors. If the amplitude
of this external influence is strong enough, the stochastic actions of
the investors may be unified or coordinated to some extent by the
common mood, similarly to spins in a magnet aligning towards an
external magnetic field. This could happen especially strongly during the
development of a bubble and its subsequent crash phase (?Harras and
Sornette, 2011). Therefore, the investors could be driven solely by the media
moods relating to the stock markets, even in the absence of any new
information. Contrary to the arbitrage opportunities contained in news
information that tend to be removed by the collective actions of profit
maximizing investors, we hypothesize that the effects of media moods
may not be eliminated but could in fact be enhanced by the collective
reaction of the investors to them. For instance, negative media moods
may drive the investors to sell, while more sells depress market prices and
lead to even more negative moods, leading to a self-reinforcing downward
spiral. Unlike the negative feedbacks associated with the exploitation of
arbitrage opportunities contained in a news piece, the positive feedback
loops produced by the media moods could be responsible for a kind of
market informational inefficiency.

The development of computational linguistics methods and the avail-
ability of huge amount of financial data, including both stock prices
and news information, make it possible to test the following hypotheses
against each other:

H0: The market is always semi-strongly efficient.

H1: The market is not semi-strongly efficient in the sense that there are
arbitrage opportunities when using the media moods extracted from
large information feeds, such as Reuters.

Thanks to the wide use of the Internet, news articles are publicly
accessible, such as those on the Reuters website that covers the period
from 1st January 2007 to present, which are rich in content, with all kinds
of information on a daily basis, including economic news, financial news,
business news, politics news, and so on. We will use this source to extract
media moods, with the help of text analysis algorithms. Our methodology
consists in finding trading strategies based on media moods extracted
from the Reuters news that provide abnormal risk-adjusted returns. If we
can find such a trading strategy that generates statistically significantly
excess positive returns based on the media moods, we shall reject H0 and
accept H1; otherwise, we shall reject H1 and accept H0.

Our results show clearly that it is possible to construct such a trading
strategy and gain statistically significantly positive excess returns based on
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the media moods, so that our main conclusion is that H0 is rejected in favor
of H1, which is accepted.

It is however not clear if this kind of market informational inefficiency
occurs only temporarily during or shortly after the serious financial crisis,
due to the fact that our testing period (January 1, 2007 to June 6, 2012)
overlaps strongly with the duration of the crisis. In the most restricted
understanding, one would consider the financial crisis as just lasting over
the official duration of the recession in the U.S., which began in December
2007 and ended in June 2009, according to the U.S. National Bureau
of Economic Research. But, other measures support a more extensive
duration, starting with the revelations of really significant problems that
could affect stock markets, which occurred in the summer of 2007. This
was followed by marked global economic declines in December 2007,
which accelerated particularly sharply downward in September 2008 with
Lehman Brothers’ bankruptcy and AIG’s bailout. The crisis may be argued
to have continued and to be still ongoing at the time of writing, as gauged
for instance by the drastic remedies in place, such as the open-ended
Quantitative Easing policies decided by the Federal Reserve in September
2012. Thus, we cannot exclude the fact that the failure of H0 could be due
to the abnormal regime of the economy and financial markets, and thus
could be transitory in nature.

Even if this is the case, our findings still have a significant impact
in providing a novel metric for market inefficiencies, whether they are
intrinsic or associated with a special era with strong central bank and
political interventions. To our knowledge, there have been no similar
studies reporting this kind of market informational inefficiency that uses
massive news data.

The rest of the paper is organized as follows. In the second section,
we briefly review previous works studying the relationships between news
and asset prices. The third section introduces the news data extraction
method we have employed in this study and present the stock prices data
used for our tests. The fourth section explains our data analysis method
and presents our main results. The fifth section discusses the results and
concludes.

2.2 Previous works
There is a rich literature examining the relations between price changes
and news. A first important observation is that prices move much too
much compared with what would be expected from the EMH (the so-
called “excess volatility puzzle”) (?LeRoy and Porter, 1981; LeRoy, 2008). This
suggests that there is more to price dynamics than just the direct impact
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of exogenous news (e.g. the dynamics of dividends). There have also been
many attempts to relate price changes to news, using the “event study”
approach, from long time scales (Cutler et al., 1987; McQueen and Roley,
1993) to high frequency trading time scales (Fleming and Remolona, 1997;
Fair, 2002; Joulin et al., 2008; Erdogan and Yezegel, 2009). The “event study”
method consists in testing if individual news events lead to abnormal
returns occurring at times around the release times of the news events. In
an excellent introduction and summary of the event study method, Kotharj
and Warner (2007) count more than 500 event studies papers appearing
in the leading financial and business journals from 1974 to 2000 and the
number continues to grow. Here, we cannot give credit to this enormous
literature but only focus on the most relevant works to our own study.

As already mentioned, event studies can be roughly divided into two sets,
those that are concerned with short time horizons and those investigating
event impacts on long time scales. The latter generally applies to time
windows of one year or more, while the former applies to much shorter
event windows, down to the smallest tick time scale. For time scales of
days to weeks (“short time” scales at this epoch), Fama (1991) concluded
that, on average, stock prices adjust quickly to publicly available corporate
information, such as investment decisions, dividend changes, changes
in capital structure and corporate-control transactions. Moreover, Fama
(1998) pointed out that market efficiency has been able to survive the
challenge from the literature investigating abnormal returns generated
by news-based strategies, by concluding that the so-called abnormal
returns are essentially due to luck. In sum, most results of event
studies have supported the EMH, which holds that markets react very
fast to new information and any arbitrage opportunities disappear almost
immediately after the information is available publicly.

The use of large news databases available electronically is now casting
some doubts on this claim of the EMH. By classifying according to topic
some 245,420 Wall Street Journal corporate news stories from 1973 to
2001 with the help of computational linguistics methods, Antweiler and
Frank (2006) found that statistically significant abnormal returns can be
observed for many days after the release of public information. They
document that the pre-event and post-event abnormal returns have on
average opposite signs, suggesting under-estimation before the event and
over-shooting after the event. The results are found to be sensitive to the
duration of the events and the average news impacts are stronger in a
recession than in an expansion. New results have been recently obtained
using computational linguistics methods that enable financial economists
not only to classify news stories according to topic, but also to extract
semantic meanings from financial documents. Tetlock et al. (2008) found
that words carrying negative sentiment can be used to predict individual
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firm’s accounting earnings and stock returns. Loughran and Mcdonald
(2011) studied 10-K filings and developed a method to extract negative
sentiments from financial documents. For this, they construct a word list
sorted in terms of their positive, negative, uncertainty, litigious, strong
modal and weak modal characters. The use of a term weighting scheme
enabled them to lower the noise resulting from word misclassification.
Statistical tests showed that the word lists are significantly related to
announcement returns. These results suggest that textual analysis can
contribute to the ability of financial economists to understand the impact
of information on stock returns.

More than financial documents, Internet stock message boards and
Twitter messages have also been studied in the financial literature. There
are numerous reports on the existence of correlations between financial
activity, proxied e.g. by transaction volume or price volatility, and news,
sentiment indices, mood indicators, search volume and other measures
of social activity. These studies are not directly relevant to the question
that we revisit here in a novel form, namely of the existence of market
price predictability and of arbitrage opportunities. More relevant is the
study of Antweiler and Frank (2004) on how Internet stock message boards
are related to stock market price moves. Using simple Bayesian methods
to extract information from 1.5 million messages, Antweiler and Frank
(2004) found that stock messages help predict market volatility, and the
impact of the stock messages on stock returns is statistically significant,
but economically small. Bollen et al. (2011) used a computational linguistics
method to extract public mood from Twitter messages and found that
Twitter mood helps predict stock market price moves. Da et al. (2011)
proposed a new and direct measure of investor attention using search
frequency in Google and showed that it has some predictability for stock
price moves.

While these results are certainly enticing, they however suffer from
a lack of precision on what is meant by predicting stock price moves,
in particular in relation with the EMH and the possible existence of
arbitrage. Indeed, the proponents of the EMH do not claim an absolute
absence of predictability but only that any residual predictability cannot
in general be exploited to enjoy statistically significant abnormal risk-
adjusted gains. As an illustration, it is well known that financial returns
exhibit auto-correlations over time scales than can go down to the tick-by-
tick level, depending of the level of liquidity and transaction costs. With
such auto-correlations, it would in principle be possible to develop very
profitable trading strategies using the simple Wiener filter predictor, if only
transaction costs were absent or much smaller. In other words, the level
of auto-correlation at short time scales is just the one that is marginally
too costly to arbitrage away by any reasonable trading strategy. This
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does not contradict in any way the EMH. Actually, Grossman and Stiglitz
(1980) proved that a perfect informationally efficient market is impossible,
since the informed investors would not be remunerated by trading and
would not be motivated to translate their information into the prices.
Therefore, financial markets need to fluctuate in some sense close to an
efficient frontier but not exactly on it, in order to entice traders to reveal
their information by their profitable investment activities. In this sense,
much more than just predictability is needed to demonstrate an abnormal
or puzzling behavior of financial markets. It is our goal in the present
work to present a rigorous and systematic investigation of the possibility
to use news to develop abnormal risk-adjusted returns. In particular,
we demonstrate that financial markets are not anymore efficient in the
semi-strong form, notably due to the presence of the growing number
of electronic news outlets. It seems that investors as a whole have
not had time to “digest” the technology to remove significant arbitrage
opportunities. This is probably due to the arm race between the on-
going explosive growth of electronic based news, the active development
of ever more sophisticated machine learning algorithms and the technical
challenges to develop operational implementations for arbitraging. This
implies that the message of Grossman and Stiglitz (1980) is now more
relevant than ever in our changing accelerating electronic world. Based
on our results, we conjecture that, paradoxically, financial markets may be
further away from perfect equilibrium than before the dominance of the
recent era of electronic news and algorithm trading.

The study closest to ours is by Matthias W. Uhl (2011), who used
sentiment classified news rated by Thomson Reuters at a very coarse level
and at the monthly scale. Matthias W. Uhl (2011) showed that the Reuters
sentiment index explains the Dow Jones Industrial Average returns better
than macroeconomic news.

2.3 Data
2.3.1 Extracting media moods from Reuters news stories
Reuters makes all its US news stories from January 1, 2007 to present
available online for readers and researchers. For instance, Reuters’ 2007
news archives can be found at Reuters.com (2012). From January 1, 2007
to June 6, 2012, there are 5,255,784 news stories, covering most of the
important events in the U.S. and in the World, in the fields of economics,
business, finance, politics, technology, entertainment, and so on.

In principle, one could get a precise understanding about the evolution
of the global media sentiment about the U.S. stock market, either positive
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or negative, by reading all the news stories. This is, however, almost
impossible for human researchers, as there are on average more than 2500
news stories each day, which implies that one would need more than five
years to read all the texts generated in the period from January 1, 2007 to
June 2012, even if one could survey two stories per minute.

Fortunately, computational linguistic methods can help us quantify the
massive text data and extract media moods more efficiently than in a
manual way. Hopkins and King (2010) introduced an excellent method for
extracting media moods from massive text documents, and showed that
this automatic way can be additionally more reliable than the manual
way of human beings. Unlike human beings, who need many years of
training to understand and appreciate the subtleties about whether a news
story reflects a positive or negative view with respect to the stock market,
computer programs using statistical language models to categorize news
stories can be trained and learn over a very short time. While human beings
get tired after long hours of work and make mistakes, computers do not
have these limitations.

The key idea is to categorize daily news stories into three categories,
positive, neutral and negative, according to the sentiments related to the
stock market. The media moods are thus represented by the fractions of
positive and negative sentiments. For instance, if most of the news stories
in one day express a negative (respectively positive) view of the stock
market, the feeling of a reader of the news stories would be pessimistic
(respectively optimistic). The investment strategy that we propose is based
on the hypothesis is that one would buy stocks when the investor feels
optimistic media moods, or would sell when she feels pessimistic media
moods. In this way, the investor’s decisions drive the market even more
optimistically or pessimistically, through a self-reinforcing loop, leading to
a new kind of informational market inefficiency, which has been neglected
in financial economics.

The categorizing algorithm introduced in Hopkins and King (2010) works
as follows. Let us denote the positive, neutral and negative news categories
as Dl(l = 1, 2, 3), respectively. A news story is nothing else than a list
of words. Thus, for a combination of all possible word stems W =
{w1,w2, . . . ,wK}, we can summarize a news story i as a word stem profile
Si = {Si1,Si2, . . . ,SiK}, with Sik = 1(k = 1, 2, . . . ,K) if the word stem wk has
been used in the news story, or Sik = 0 if not. The total number of words in
the considered dictionary is K. Then, the law of total probability reads

P(Si) =

3∑
l=1

P(Si|Dl)P(Dl) (2.1)

where P(Si) is the probability of the word stem profile i occurring within
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the news population, P(Si|Dl) is the probability of the word stem profile
i occurring within the news in the category l, for instance, the negative
news, and P(Dl) is the probability of a specific news category l, namely the
fraction of news in category l, for instance, the fraction of daily negative
news. Let us denote S as the set {Si, i = 1, 2, . . . , 2K

}, and D as {D1,D2,D3},
then equation 2.1 can be rewritten as an equivalent matrix expression:

P(S)
2K×1

= P(S|D)
2K×3

P(D)
3×1

(2.2)

To estimate P(D) with the equation 2.2, we must first know P(S) and
P(S|D). The former can be directly obtained from the daily news, while the
latter has to be estimated from the training set, which is a collection of
hand coded news. According to Hopkins and King (2010), the hand coded
news can be either randomly sampled or not. For the training set, we can
write down an equation similar to equation 2.2:

P̃(S)
2K×1

= P̃(S|D)
2K×3

P̃(D)
3×1

(2.3)

where P̃(S) is the probabilities of word stem profiles S occurring within the
training set, P̃(S|D) is the probabilities of word stem profiles S occurring
within the news in categories D in the training set, and P̃(D) is the fractions
of news in categories D in the training set. Since the training set is hand
coded, P̃(D) is already known. Moreover, P̃(S) can be estimated by counting
the occurrence frequency of each Si, (i = 1, 2, . . . , 2K) in S. Thus, with
equation 2.3 we can eventually obtain P̃(S|D).

The underlying hypothesis of Hopkins and King (2010) is the following
equation:

P(S|D) = P̃(S|D) (2.4)

which indicates that the probability of every word stem profile Si, (i =
1, 2, . . . , 2K) occurring within any news category Dl(l = 1, 2, 3) in the test
set is the same as in the training set. This hypothesis is reasonable as long
as the training set is thought to be representative of the test set.

Using equation (2.4) in equation (2.2) leads to

P(S)
2K×1

= P̃(S|D)
2K×3

P(D)
3×1

(2.5)

As we have mentioned, P(S) can be estimated directly from the daily
news by counting the occurrence frequency of each word stem profile
Si, (i = 1, 2, . . . , 2K). P(S), along with P̃(S|D) obtained from the training set,
make equation 2.5 equivalent to a linear regression equation. Thus, linear
methods can be used to estimate P(D), namely the fractions of positive,
neutral, and negative news, which is our ultimate target.



18 Chapter 2. Can media moods predict stock prices during and after the 2008 financial crisis?

If the number K of words in our dictionary is too big, 2K becomes too
large for any standard computer to handle. Therefore, only subsets of S will
be used to estimate P(D).

As said above, we must estimate P̃(S|D) from a training set. The size
of the training set recommended by Hopkins and King (2010) is 500. We
follow this advise and our training set size is taken exactly equal to 500.

The 500 news stories are chosen randomly from the Reuters website
Reuters.com (2012), and sample different years, months, and days. We use
the following main criteria for collecting the training set. The first one is
length. If a story is too short, containing only one or two sentences, it
will not be chosen. The second one is purity. If a story contains complex
sentiments, for instance, both positive and negative, it will not be chosen.
The third one is language: only news in English will be chosen. Once a
news story has been chosen, we copy and save its content into a text file,
and code it immediately with one of the values 1, 0, -1, denoting positive,
neutral, and negative, respectively, based on how the news story is related
to the stock market. The coded results are also saved into a text file called
the control file.

Hopkins and King (2010) have implemented the above algorithm in their
software “Readme” (Hopkins et al., 2012). In this study, we apply the
“Readme” software on the Reuters daily news by feeding it with the daily
news and the control file. Its final output is the fractions of positive, neutral
and negative news on each day.

2.3.2 Stock prices data
Our media moods data aggregates all publicly available information. To
test how it is related to the stock market, a good proxy is the S&P500 index,
because it aggregates and represents all the prices information of 500 top
publicly traded American companies. Using an index including more firms
provides a better representation of the US market than the other indices
containing a smaller number of companies. The daily high, low, open and
close prices data of the S&P500 index from January 1, 2007 to June 6, 2012
are collected from the Yahoo! Finance website( Yahoo.com (2012)).

2.4 Data analysis methods and empirical results
2.4.1 Descriptive statistics of data and relationships between

positive and negative media moods
The “Readme” software applied to the Reuters daily news stories provides
the fractions of positive, neutral and negative news for every day from



2.4. Data analysis methods and empirical results 19

January 1, 2007 to June 6, 2012. In the following, we refer to the fraction of
positive news as the “positive moods” and to the fraction of negative news
as “negative moods”, putting the neutral news aside. The dynamics of the
media moods, as well as the S&P500 index, are shown in figure 1. Table 1
lists the descriptive statistics of the positive and negative moods and of the
daily returns of the S&P500 index.

One can observe in figure 1 three main regimes characterizing the
relations between the positive moods and negative moods over the period
from January 1, 2007 to June 1, 2012.

1. Before September 2007, the positive moods level is higher than that
of the negative moods. This reflects the still buoyant U.S. stock
market that peaked in October 2007.

2. On September 2007, there is a transition with a large drop in positive
moods and a steady increase of negative moods, so that the level
of negative moods quickly exceeds that of positive moods. This
transition roughly coincides with the first serious news released
during the summer of 2007 about serious valuation and redemption
problems facing majors funds trading collaterized debt obligations
and other securities associated with credits on the U.S. real estate
market. After September 2007, the level of the positive moods has
never recovered in the sense of overpassing that of negative moods.
Two hills in the positive moods level occur in early 2009 and in the
spring of 2010, probably related to the policies of the Federal Reserve
and U.S. Treasury and the so-called “quantitative easing” actions. But
these hills are rather short-lived and insufficient to overcome the
negative moods.

3. In mid-2010, there is a second transition towards a third regime
characterized by an even larger gap between the dominant negative
moods and the positive moods.

The Elliott, Rothenberg and Stock unit root test (Elliott et al., 1996)
applied to the positive and to the negative media moods show that they
have no unit roots and can thus be considered stationary. Visual inspection
of Figure 1 suggests that the media moods are trend stationary: the
positive moods have a downward trend, while the negative moods have
an upward trend. We regress both the positive and negative moods with
respect to time, and find that the positive moods have a statistically
significant daily trend of −0.000078 per day while the negative moods
have a statistically significant daily trend of +0.000053, consistent with
the visual observation. We thus de-trend the media moods time series
by subtracting their temporal trends, and all the analyses hereinafter are
performed on the de-trended media moods time series.
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Fig. 1: The upper plot shows the dynamics of both positive (blue dashed line) and
negative moods (red continuous line) extracted from the Reuters daily news from
January 1, 2007 to June 6, 2012. The positive (respectively negative) mood for
a given day is defined as the fraction of positive (respectively negative) news
among all news articles provided by Reuters on that day. The lower plot shows
the dynamics of the S&P500 index from January 1, 2007 to June 6, 2012.
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Tab. 1: Descriptive statistics of the media moods and of the returns of the S&P500 index
shown in figure 1 from January 1, 2007 to June 6, 2012.

Positive moods Negative moods S&P500 returns
Number of Samples 1360 1360 1359

Mean value 0.3763 0.4586 -0.0000547

Minimum value 0.2485 0.0581 -0.0947

Maximum value 0.5671 0.5863 0.110

Median value 0.3722 0.4657 0.000817

Standard deviation 0.0533 0.0513 0.0163

The positive and negative moods are found to exhibit a significant
negative correlation coefficient of −0.61. Moreover, by applying a VAR(p)
model (Vector autoregression model with lag number p, see detailed
description e.g. in (Hamilton, 1994)), we find that both the positive and the
negative moods are not only autocorrelated but each time series Granger
causes the other one, namely each time series can be used to improve the
prediction of the other one. The best value p of the VAR(p) model is found
equal to 10 for both the positive and negative moods, as detected by using
the AIC (Akaike information criterion) (Akaike, 1974). The VAR(10) model
reads

mt = β0 +

10∑
i=1

βimt−i + εt , (2.6)

where mt = (pt,nt)′ is the media moods vector containing both the positive
moods pt and the negative mood nt at time t. The coefficient vectors
β0, β1, . . . , β10 are the parameters to estimate and εt denotes the white noise
vector at time t.

Table 2 reports the results of the estimation of model (2.6), which shows
that both the positive and negative moods are autocorrelated up to lag
10 days, and the lagged positive moods can alleviate the negative moods.
Granger causality tests confirm that the positive moods Granger causes the
negative moods, and the negative moods also Granger causes the positive
moods. The orthogonal impulse response function plots shown in figure 2
constructed from model (2.6) present the relationships more intuitively:
both the positive moods and the negative moods are self-enforcing, and
the lagged positive moods alleviate the negative moods, but the lagged
negative moods have little effect on the positive moods.
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Fig. 2: The four plots display the orthogonal impulse response functions (IRF) of the
media moods. The upper-left plot shows the response function of the positive
moods receiving impulses from the positive moods; the upper-right plot shows
the response function of the negative moods receiving impulses from the positive
moods; the lower-left plot shows the response function of the positive moods
receiving impulses from the negative moods; and the lower-right plot shows the
response function of the negative moods receiving impulses from the negative
moods. The solid blue lines in the plots are the orthogonal impulse response
functions, the dash-dotted black lines are the 95% confidence intervals of the
impulse response functions, and the red dashed lines indicate the 0 levels.
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2.4.2 Detection of linear relationships between the media
moods and the stock prices, as well as positive feedback
loops

Since the positive moods and the negative moods are correlated, we cannot
use the VAR model to study the relationships between the S&P500 returns
and both positive and negative moods all together, as it would bias the
parameter estimation. Therefore, we study the relationships between the
returns and the positive moods, and the relationships between the returns
and the negative moods, separately. For the positive moods, however, we
find that it is not statistically significantly related to the returns so that, in
this section, we shall discuss only the results concerning the relationships
between returns and negative moods.

To study the linear relationships between returns and negative moods,
we use again the VAR model. Based on the AIC and considering the
simplicity of the model, we apply a VAR(3) model at this time, which reads

xt = β0 + β1xt−1 + β2xt−2 + β3xt−3 + εt , (2.7)

where xt = (rt,nt)′, rt denotes the S&P500 return on day t, and pt

denotes the negative mood on day t. The parameters β0, β1, β2, and β3

are the coefficient vectors of the independent variables at lags 1, 2, and
3, respectively, and εt is the white noise vector.

Table 3 reports the estimation results of model (2.7), and the plots
in figure 3 constructed from model (2.7) show the orthogonal impulse
response functions of the S&P500 returns and the negative moods. Table 3
shows that the negative moods at lag 3 statistically significantly decreases
the S&P500 returns at lag 0. And we have verified that the negative moods
at lag 3 Granger causes the S&P500 returns at lag 0, namely that the
negative moods at lag 3 help predict the S&P500 returns at lag 0. The
results are statistically significant, though not economically significant,
because the adjusted R2 is only 0.021. Correspondingly, the lower-left plot
in figure 3 shows how the S&P500 returns respond to changes in the
negative moods. One can observe that the negative moods at lag 3 pushes
down the returns at lag 0. The effects at lag 1 and 2 seem to be of the
opposite (positive) sign, but the effects are not statistically significant, as
shown in table 3.

We also use returns of the Dow Jones Index and the Nasdaq Index to
estimate model (2.7), and get similar results. The relationships between the
media moods and the index returns disappear, however, when we use the
Korea Composite Stock Price Index (aka KOSPI) or the All-Ordinaries Stock
Index. The phenomena is reasonable that both the Down Jones and the
Nasdaq are U.S. indices, while the KOSPI and the All-Ordinaries are relatively
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independent of the U.S. stock market. All these results are shown in table 4.
The results prove that the relationships between the media moods and the
U.S. stock markets are robust. As we have mentioned before, since the
S&P500 Index has 500 component stocks of leading companies publicly
traded in the U.S stock market, much more than the other indices, we take
it as the best representation of the U.S. stock market. In this paper we thus
present only results with the S&P500 Index.

The above results state that increasing negative moods can predict that
returns will be decreasing three days later. In turn, we find a feedback
of the decreasing returns that increase the level of the negative moods,
as shown from both table 3 and figure 3. Thus, there is a positive (or
mutually reinforcing) feedback loop existing between the S&P500 returns
and the negative moods. Along with the self-enforcing behavior of the
negative moods, this raises the question: Is this positive feedback loop
revealing of investors’ irrational decisions, in the sense that investors
follow too faithfully the media moods and thus create market information
inefficiencies? In the next section, we shall study and answer this question.

The linear relationships between the daily S&P500 returns and the
negative moods found here can be used in principle to predict future
S&P500 returns. But this may not be feasible in practice because of the
small obtained adjusted R2. However, the results are significantly improved
by increasing the time scale from daily to monthly returns, as shown
in Table 5. The estimated parameters of a VAR(1) model are shown in
Table 5, which reveals statistically significant linear relationships between
the monthly average S&P500 returns and the monthly average negative
moods. While the linear relationship is stronger, we find that the positive
feedback loop disappears at the monthly scale.

Because we strive to get as much power as possible in order to test
hypotheses H0 versus H1, we will use daily returns in the following in order
to have much more statistics. The cost for this is more noise, as shown
above. We address this issue by turning to nonlinear models.

2.4.3 Constructing trading strategies with a non-linear model
of media moods

In order to test hypotheses H0 versus H1 as formulated above, we need to
construct a trading strategy based on the media moods extracted from the
Reuters news stories that trades on the S&P500 index and apply standard
tests to decide whether it generates excess returns that are statistically
significant on a risk-adjusted basis.

The linear models in the previous section provide statistically significant
relationships between the S&P500 returns and the media moods but, as
already mentioned, the results are not economically significant. To test if
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Fig. 3: The group of plots display the orthogonal impulse response functions of the
S&P500 returns and the negative moods. The upper-left plot shows the response
function of the S&P500 returns receiving impulses from the S&P500 returns, the
upper-right plot shows the response function of the negative moods receiving
impulses from the S&P500 returns, the lower-left plot shows the response
function of the S&P500 returns receiving impulses from the negative moods, and
the lower-right plot shows the response function of the negative moods receiving
impulses from the negative moods. The solid blue lines in the plots are the
orthogonal impulse response functions, the dash-dotted black lines are the 95%
confidence intervals of the impulse response functions, and the red dashed lines
indicate the 0 levels.
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the positive feedback loop reflect the fact that investors make irrational
decisions and thus create market informational inefficiency, we turn to
non-linear models, namely, we use the Radial-Basis-Function (RBF) network
to predict the S&P500 returns with the media moods. The RBF network
is a kind of artificial neural network, and it has been proved (Park and
Sandberg, 1991) that RBF networks having one hidden layer are capable of
universal approximations. The RBF networks are thus strong potential tools
to predict time series.

While we did not find statistically significant linear relationships be-
tween the positive moods and the S&P500 returns, we include the positive
moods in the non-linear model, because they can affect the negative
moods, and thus may affect the S&P500 returns non-linearly and indirectly
through the negative moods. For simplicity and following the results of
the linear models, we use lags of up to 3 days for the positive and negative
moods to predict daily S&P500 returns.

The trading strategy works in the following way.
First, we train RBF networks with in-sample data. On each day in the in-

sample period, we input into the RBF networks the positive and negative
moods of the previous 3 days, and also the return on that day. Here, returns
are calculated differently than in the previous section, where a return on a
given day was defined as the difference of the log close prices of the day
and its previous day. In the present section, a return on a given day is the
difference of the log close price and the log open price. The justification for
this definition is to align the target return (open to close) with the flow of
media news, also occurring from open to close.

Second, we use the trained RBF networks to predict the out-of-sample
returns. In the out-of-sample periods, if a predicted return is positive, we
buy at the market open and sell at the market close; otherwise we short sell
at the market open and buy back at the market close. We do not consider
transaction costs in our trading strategy.

Third and last, the whole S&P500 index time series from January 1, 2007
to June 6, 2012 is split into blocks. The first block is an in-sample block,
and the remain part is split into many out-of-sample blocks with the same
length. Each out-of-sample block will be predicted by a RBF network trained
with the in-sample data right before them. The length of the in-sample
data and the length of the out-of-sample data are both fixed, but they can
either be the same or different. The in-sample data window is moving,
always followed by the out-of-sample block. Therefore, we can predict the
return and trade everyday between January 1, 2007 and June 6, 2012, except
in the first in-sample window starting from January 1, 2007.

Denote the length of the in-sample data by Tin, and the length of the
out-sample data by Tout, we look for combinations of (Tin,Tout) such that
the above trading strategy can generate statistically significantly positive
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risk-adjusted returns that are not due to chance. An important criterion
to minimize data-snooping is that there should be many such winning
combinations. This turns out to be the case. We shall report the results
obtained for (Tin = 180,Tout = 40), which are representative of many other
combinations. In particular, results remain robust when changing Tin and
Tout in a neighborhood of these two values (Tin = 180,Tout = 40).

Figure 4 shows the cumulative Profit and Loss generated by the above
strategy from September 20, 2007 to June 6, 2012, without considering
the transaction costs. This corresponds to the entire time period between
January 1, 2007 and June 6, 2012, minus the first Tin = 180 in-sample
days. Comparing with the buy-and-hold as well as with the short-and-
hold strategies, the strategy based on media moods generates a quite
impressive cumulative returns.

2.4.4 Statistical tests of the trading strategy based on media
moods

In order to assess the real value of our investment strategy, it is very useful
to compare it with strategies that keep all its characteristics except the
timing skills (Daniel et al., 2009). We thus refer to these benchmarks as
“random strategies”. The advantage in using them is that they are applied
to the same data set, under the exactly same conditions, so that explicit or
implicit factors that may conjure to promote abnormal returns in our initial
strategy are also present for the random strategies. If present, these factors
will translate into abnormal returns also visible in the random strategies. A
given random strategy thus makes one and only one trade per day, either
buying at the open and selling at the close or short selling at the open and
buying back at close. The difference between random strategies and our’s
is that the trading decisions of the former are made randomly, not based
on the media moods information.

Because there are two kinds of actions, long and short for each day,
we consider an exhaustive set of random strategies classified according to
their “long ratio” r`, defined as the fraction of long to short positions that
the random strategy takes. In other words, each day, the random strategy
chooses randomly to go long at the open (and sell at the close) with a
probability equal r` and vice-versa with the complementary probability
1 − r`. We test all possible values for r` from 0 to 1 with a discrete step of
0.01. The limit value r` = 1 corresponds to the buy-and-strategy, except
for the overnight exit. The other limit value r` = 0 corresponds to the
sell-and-hold strategy, again except for the overnight exit. Each of the
remaining other 99 classes of random strategies indexed by their r` value
{0.01, 0.02, 0.03, . . . , 0.97, 0.98, 0.99} is sampled by generating 1000 random
strategies with that specific r`. This allows us to obtain the percentile rank
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of the total cumulative return (denoted by τr) and the percentile rank of the
Sharpe ratio (denoted by τsr) of our trading strategy based on the media
moods within the population of the 1000 random trading results sampled
for a given long ratio r`. Here, the ranks are ordered from the worst to the
best performers, i.e., rank 1 (respectively 1000) corresponds to the worst
(respectively best) random strategy in terms of the corresponding variable
(cumulative return or Sharpe ratio). With the 99 possible values of the long
ratios (excluding 0 and 1), we obtain 99 such τr’s and τsr’s. We then pick the
smallest τr and τsr among the values generated from the 99 testing long
ratios. This corresponds to matching our strategy against the best possible
random strategies according to their long ratio r`, which in a sense already
gives some skills ex-post to the so-called random strategies. We can thus
consider this procedure as disadvantageous for our strategy. This implies
that a good performance of our strategy in such context where we bias the
dice, so to speak, in favor of the random strategies, should be considered as
really meaningful.

The results of these horse races in different time windows [Ts,Te] are
reported in table 6, which shows that the percentile ranks of our strategy
are higher than 97.5% for four periods among the total five periods. Only
when considering the early period from September 20, 2007 to December
31, 2008, do we find a slightly smaller percentile rank of 92.5%, probably due
to the very turbulent dynamics associated with the developing financial
crisis, Lehman Brothers default and so on. But notwithstanding such
turbulence and associated wild uncertainties in this time period, our
strategy performs very well, when compared with the random strategies
as well as with the buy-and-hold strategy or the S%P500 index. Thus,
we conclude that our trading strategy based on the media moods has in
general a probability less that 2.5% of being due to chance, suggesting
strong support to accept hypothesis H1 and reject H0.

We perform another standard test, namely we try to remove the effects
of the Fama-French factors (Fama and French, 1993) from our trading
results based on the media moods. Regressing our time series of returns
onto the Fama-French 3 factors model, we test if our trading strategy
based on the media moods can generate statistically significantly positive
α, i.e., if there is some abnormal positive return that cannot be explained
by the Fama-French factors and that could thus be attributed to a new
factor associate with the media moods information. We use the daily
Fama-French factors data from the French (2012) website. Table 7 reports
all the α’s for the periods presented in table 6. We find that all α’s are
statistically significantly positive, with excess risk-adjusted daily returns
between 0.109% and 0.203%. Here, “excess” means that these additional
returns cannot be explained by the Fama-French factors. As a side remark,
given the average daily values of the excess returns, it is clear that the
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reported effects remain valid in the presence of transaction costs and
of implementation slippage, given the fact that our strategy trades only
once per day (enter-exit) and transaction costs are a small fraction of the
reported returns when strategies are implemented by large institutions,
hedge-funds or through ETFs.

These results suggest that the media moods can generate both statisti-
cally significant and economically significant excess returns, which cannot
be explained by the Fama-French factors. Therefore, there exists some
market informational inefficiency related to the media moods. It seems
that some market informational inefficiency does exist, at least during or
shortly after a serious financial crisis, and this inefficiency is related to the
positive feedback loop we have documented in the relationships between
the stock prices and the media moods.

2.5 Conclusions
We have extracted daily positive and negative media moods from the
Reuters US news archives from January 1, 2007 to June 6, 2012 by applying
computational linguistics methods. We found that the positive and
negative moods are negatively correlated. Both the positive and negative
moods are autocorrelated, and more specifically self-enforcing. Moreover,
the positive moods can alleviate the level of the next day negative moods,
while the negative moods have no statistically significant effects on the
next day positive moods.

We have analyzed the relationships between the S&P500 index and the
media moods by first using linear models and have found that the negative
moods with three days lag in the past predict a decrease of the S&P500
daily returns at lag 0, and the S&P500 daily returns at lag 1 in the past are
negatively related to the level of the negative moods at lag 0. Thus, there
exists a positive feedback loop in the relationships between the S&P500
daily returns and the negative moods. When using the monthly average
returns of the S&P500 index and the monthly average negative moods,
the positive feedback loop disappears, but the monthly average negative
moods at lag 1 Granger cause the monthly average returns at lag 0 with a
negative coefficient. The relationships between the positive moods and the
S&P500 returns are however unclear, given the empirical data we extracted
from the Reuters US news.

Although the linear relationships between the negative moods and the
S&P500 daily returns are statistically significant, they are economically
small. To test it is possible to use the media moods to predict the S&P500
daily returns, we constructed a trading strategy with Radial-Basis-Function
(RBF) networks, which are a type of neural networks. Trained with in-
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Fig. 4: P&L (cumulative return) without considering the transaction costs obtained by the
strategy described in the text, which is based on the media moods (blue thick line),
over the entire time period between January 1, 2007 and June 6, 2012, minus the
first Tin = 180 in-sample days. The buy and hold strategy is represented by the thin
green dashed line. The sell and hold (and buy back) strategy, consisting in shorting
the S&P500 index at the beginning and holding until the end when the buy back
occurs, is shown as the thin red dotted-dashed line.
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sample data, the RBF networks have allowed us to predict the returns
of out-of-sample data. We found that the trading results based on the
predictions of the RBF networks are both statistically and economically
significant. The chance for a trader to generate the same results as our
trading strategy by using random trading strategies that we devised in a
way to bias them favorably is statistically significantly very small. Moreover,
by applying the Fama-French three factors model, we find that our trading
strategy based on the media moods generates statistically significantly
positive excess returns, which cannot be explained by the Fama-French
factors. The corresponding extracted α’s are impressively high, in the
range 0.1 − 0.2% per day and thus dominate typical transaction costs and
implementation slippage. Since the RBF networks have been trained with
a three day history of media moods of each present trading time, this
suggests that there exists some market informational inefficiency, at least
during or shortly after a serious financial crisis.

The contribution of our paper is to identify a novel example of market
informational inefficiency. The mainstream view is that the market is
informationally efficient because an arbitrage opportunity contained in a
piece of new information will disappear almost immediately as soon as
sufficiently many investors start to exploit it. However, we find that there
are cases when the stock market is not informationally efficient because
the exogenous forces such as the media moods can generate positive
feedback loops: the negative moods make the returns go down, and the
decreasing returns further increase the negative moods. In those cases,
one could exploit the arbitrage opportunities by short selling. However, the
short sells will likely aggravate the negative returns and thus the negative
moods - so the arbitrage opportunities will not disappear but be self-
enforcing.

With the available empirical data, we have been unable to detect similar
positive feedback loop in the relationships between the positive moods and
the stock returns. The question is thus still open as to whether there are
positive feedback loops in the relationships between the media moods,
both positive and negative, and the stock returns, during non-crisis time.
If such positive feedback loops could still be observed, this would suggest
that there is fundamentally informational inefficiency in the stock markets.
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Tab. 2: Results of the estimation of the VAR(10) model 2.6 on the positive and negative
moods. The rows labeled by β0, β1, . . . , β10 list the estimated parameters, where the
values in the parentheses are the standard errors of the corresponding parameters,
the “Adj. R2” row lists the adjusted R2 of the two linear models embedded in
model 2.6, and the “F-stat” row lists the F statistics of the two linear models, where
the values in the parentheses are the corresponding p-values. The pt (respectively
nt) column list the results of the linear model whose dependent variable is the
positive (respectively negative) moods at lag 0. Moreover, “*” indicates that the
marked parameter is statistically significant with a p-value less than 0.1, “**”
indicates a p-value less than 0.05, “***” indicates a p-value less than 0.01, and “****”
indicates a p-value less than 0.001.

pt nt

β0 0.107∗∗ (0.046) 0.143∗∗∗ (0.049)

β1
pt−1 0.150∗∗∗∗ (0.036) 0.047 (0.037)
nt−1 −0.047 (0.032) 0.182∗∗∗∗ (0.034)

β2
pt−2 0.063∗ (0.035) −0.107∗∗∗ (0.037)
nt−2 −0.050 (0.032) −0.016 (0.034)

β3
pt−3 0.052 (0.035) −0.029 (0.038)
nt−3 0.008 (0.032) −0.015 (0.035)

β4
pt−4 0.127∗∗∗∗ (0.035) −0.013 (0.038)
nt−4 0.013 (0.032) 0.135∗∗∗ (0.034)

β5
pt−5 0.223∗∗∗ (0.035) 0.013 (0.038)
nt−5 0.099 (0.033) 0.018∗∗∗∗ (0.035)

β6
pt−6 0.012∗∗∗ (0.035) −0.014 (0.038)
nt−6 0.017 (0.033) 0.001 (0.035)

β7
pt−7 0.080∗∗ (0.035) −0.128∗∗∗∗ (0.037)
nt−7 −0.010 (0.032) −0.043 (0.035)

β8
pt−8 −0.009 (0.035) 0.009 (0.037)
nt−8 −0.015 (0.032) 0.000 (0.034)

β9
pt−9 −0.003 (0.035) 0.104∗∗∗ (0.037)
nt−9 −0.019 (0.032) 0.112∗∗∗ (0.034)

β10
pt−10 0.083∗∗ (0.034) 0.055 (0.037)
nt−10 −0.026 (0.032) 0.187∗∗∗∗ (0.034)

Adj. R2 0.271 0.274
F-stat. 26.1 (0.000) 26.47 (0.000)
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Tab. 3: Results of the estimation of the VAR(3) model (2.7) using the S&P500 returns.
The rows labeled β0, β1, . . . , β10 list the estimated parameters, where the values
in parentheses are the standard errors of the corresponding parameters. The “Adj.
R2” row lists the adjusted R2 of the two linear models embedded in model (2.7).
The “F-stat” row lists the F statistics of the two linear models, where the values in
the parentheses are the corresponding p-values. The rt (respectively nt) column
lists the results of the linear model whose dependent variable is the returns
(respectively negative moods) at lag 0. Moreover, “*” indicates that the marked
parameter is statistically significant with a p-value less than 0.1, “**” indicates a
p-value less than 0.05, “***” indicates a p-value less than 0.01, and “****” indicates a
p-value less than 0.001.

rt nt

β0 0.001 (0.006) 0.252∗∗∗∗ (0.015)

β1
rt−1 −0.130∗∗∗∗ (0.036) −0.144∗ (0.074)
nt−1 0.009 (0.010) 0.277∗∗∗∗ (0.027)

β2
rt−2 −0.074∗∗∗ (0.027) −0.048 (0.075)
nt−2 0.006 (0.010) 0.043 (0.028)

β3
rt−3 0.028 (0.027) −0.010 (0.074)
nt−3 −0.018∗ (0.010) 0.083∗∗∗ (0.027)

Adj. R2 0.021 0.102
F-stat. 5.862∗∗∗∗ (0.000) 26.58∗∗∗∗ (0.000)
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Tab. 4: Results of the estimation of the VAR(3) model (2.7) using different indices other
than the S&P500. The rows labeled β0, β1, . . . , β10 list the estimated parameters,
where the values in parentheses are the standard errors of the corresponding
parameters. The “Adj. R2” rows lists the adjusted R2 of the two linear models
embedded in model (2.7). The “F-stat” rows lists the F statistics of the two linear
models, where the values in the parentheses are the corresponding p-values. The
rt (respectively nt) columns list the results of the linear model whose dependent
variable is the returns of the corresponding index (respectively negative moods) at
lag 0. Moreover, “*” indicates that the marked parameter is statistically significant
with a p-value less than 0.1, “**” indicates a p-value less than 0.05, “***” indicates a
p-value less than 0.01, and “****” indicates a p-value less than 0.001.

Indices Dow Jones Nasdaq
rt nt rt nt

β0 0.015 (0.013) 0.438∗∗∗∗ (0.039) 0.018 (0.015) 0.438∗∗∗∗ (0.039)

β1
rt−1 −0.129∗∗∗∗ (0.027) −0.139∗ (0.080) −0.107∗∗∗∗ (0.027) −0.123∗ (0.070)
nt−1 0.007 (0.011) 0.294∗∗∗∗ (0.033) 0.005 (0.013) 0.293∗∗∗∗ (0.033)

β2
rt−2 −0.075∗∗∗ (0.027) −0.092 (0.081) −0.064∗∗ (0.027) −0.084 (0.070)
nt−2 −0.001 (0.012) −0.082∗∗ (0.034) 0.000 (0.013) −0.083∗∗ (0.034)

β3
rt−3 0.041 (0.027) −0.030 (0.080) 0.036 (0.027) 0.007 (0.070)
nt−3 −0.025∗∗ (0.011) 0.023 (0.033) −0.028∗∗ (0.013) 0.024 (0.033)

Adj. R2 0.021 0.139 0.014 0.140

F-stat. 3.938∗∗∗∗ (0.000) 22.96∗∗∗∗ (0.000) 2.957∗∗∗ (0.001) 23.00∗∗∗∗ (0.000)
Indices KOSPI All-Ordinaries

rt nt rt nt

β0 0.016 (0.015) 0.439∗∗∗∗ (0.039) 0.021∗ (0.012) 0.436∗∗∗∗ (0.038)

β1
rt−1 0.015 (0.028) −0.094 (0.073) −0.017 (0.027) −0.075 (0.088)
nt−1 −0.014 (0.013) 0.250∗∗∗∗ (0.034) −0.026∗∗ (0.010) 0.303∗∗∗∗ (0.033)

β2
rt−2 0.001 (0.028) −0.018 (0.073) 0.008 (0.027) −0.160∗ (0.088)
nt−2 0.010 (0.013) −0.058∗ (0.035) 0.014 (0.011) −0.105∗∗∗ (0.034)

β3
rt−3 −0.006 (0.028) −0.031 (0.073) −0.071∗∗∗ (0.027) −0.006 (0.088)
nt−3 −0.016 (0.013) 0.031 (0.034) −0.015 (0.010) 0.030 (0.033)

Adj. R2 -0.002 0.119 0.004 0.139

F-stat. 0.693 (0.732) 18.95∗∗∗∗ (0.000) 1.534 (0.121) 22.94∗∗∗∗ (0.000)
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Tab. 5: Linear relationships between the monthly average S&P500 returns and the
monthly average negative moods modeled by a VAR(1) model. The “Const.” row
lists the values of the constant parameter in the linear models. The r̄t−1 row
lists the coefficients of the monthly average returns at lag 1. The n̄t−1 row lists
the coefficients of the monthly average negative moods at lag 1. In the above
rows, the values in the parentheses are the standard errors of the corresponding
coefficients. The “Adj. R2” row lists the adjusted R2 of the linear models. The F-
stat. row lists the F statistics of the linear models, where the parentheses give
the p-values. The r̄t column contains the estimation results of the linear model
whose dependent variable is the monthly average returns at lag 0. The n̄t column
contains the estimation results of the linear model whose dependent variable
is the monthly average negative moods at lag 0. Moreover, “*” indicates that
the marked parameter is statistically significant with a p-value less than 0.1, “**”
indicates a p-value less than 0.05, “***” indicates a p-value less than 0.01, and “****”
indicates a p-value less than 0.001.

r̄t n̄t

Const. 0.011∗∗ (0.005) 0.200∗∗∗∗ (0.044)
r̄t−1 0.095 (0.122) −0.866 (0.992)
n̄t−1 −0.027∗∗ (0.013) 0.528∗∗∗∗ (0.105)

Adj. R2 0.053 0.286
F-stat. 2.819 (0.067) 14.01 (0.000)

Tab. 6: Performance of our strategy based on the media moods and comparison with
random strategies. We consider five different time periods starting with different
starting times Ts and ending times Te. All dates are given in the “year-month-day”
format. The rt column lists the total returns of the trades over the corresponding
time interval [Ts,Te]. The r̄ column lists the average annual returns of our strategy
for each time window and the sr column lists the annualized Sharpe ratios (using
zero risk-free interest rate). The τr column lists the percentile rank of the total
returns of our strategy compared with random strategies, as explained in the
text. The τsr column lists the percentile rank of the Sharpe ratios of our strategy
compared with random strategies, as explained in the text.
No. Ts Te rt r̄ sr τr τsr

1 2007-01-01 2008-12-31 95.04% 58.38% 1.659 92.5% 92.5%
2 2007-01-01 2009-12-31 171.1% 49.50% 1.570 97.5% 97.5%
3 2007-01-01 2010-12-31 304.1% 47.50% 1.708 97.5% 97.5%
4 2007-01-01 2012-06-06 351.8% 35.77% 1.398 97.5% 97.5%
5 2008-04-16 2012-06-06 137.6% 27.89% 1.351 95.0% 95.0%
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Tab. 7: List of the α’s of our trading strategy based on the media moods obtained for
the five periods shown in table 6. The α’s are obtained as the intercepts of the
regression of the time series of returns of our strategy in each time window
as a function of the three Fama-French factors model. The parentheses give
the standard errors of the corresponding α’s. “*” indicates that the marked α is
statistically significant with a p-value less than 0.1, “**” indicates a p-value less
than 0.05, and “***” indicates a p-value less than 0.01.

No. α

1 0.203∗ (0.120)
2 0.187∗∗ (0.084)
3 0.185∗∗∗ (0.062)
4 0.140∗∗∗ (0.047)
5 0.109∗∗ (0.045)



3
Reverse engineering stock markets

with mixed games and alpha
generation

3.1 Introduction
The efficient market hypothesis (EMH) (Fama, 1970) is the basis of the
neoclassic financial economic theory. Its weak form states that all the
information on the history of asset prices has been incorporated into their
current prices, so one cannot profit from using them in excess of the
expected risk-adjusted return based on the market risk factor. The semi-
strong and strong forms of EMH extend this statement to all publicly
available and to private information, respectively. A rich behavioral finance
literature has provided numerous pieces of evidence that challenge the
semi-strong form and the strong form of EMH (see (Subrahmanyam,
2008) for a detailed review of this literature). The weak form of EMH,
however, is generally considered to be more robust (Fama, 1991, 1998).
Nevertheless, the occurrence of the recent financial crisis of 2007 - 2008,
ensuing “great recession” and the on-going European sovereign debt crisis,
accompanied by strong bullish markets suggest the existence of significant
anomalies occurring in financial markets. In particular, asset returns may
exhibit transient dependence structures that are incompatible with the
no-arbitrage principle. This motivates us to develop a new set of tools
to probe the anomalies that can develop in financial markets, and devise
better predicting methods for assets prices. For this, we develop an
interdisciplinary approach with concepts and tools developed in diverse
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fields, including financial economics, statistical physics and computer
science.

Our main tool is agent-based modeling (aka ABM’s), also known as
agent-based computational economics (ACE). ABM provides a possible
alternative to equilibrium models, because it relaxes some of their restric-
tive assumptions by adopting a bounded rationality framework (Simon,
1955b; Rubinstein, 1997). By taking into account the heterogeneity of the
preferences and skills exhibited by different agents, by allowing deviations
from equilibrium and by embracing a fundamental out-of-equilibrium
dynamical view of the world, ABM offers the possibility to account for
financial bubbles, market instabilities and crises as well as regime shifts
modeled with an endogenous approach. By their structure, ABM is an
ideal tool to study complex interactions between agents as occurs in stock
markets. We refer to (Hommes, 2006; Hommes and Wagener, 2009;
Chiarella et al., 2009; Evstigneev et al., 2009) for authoritative reviews
on agent-based models from different perspectives. The method that we
develop and present below is inspired by works of statistical physicists and
financial economists, including Arthur (1994); Challet and Zhang (1997);
Challet et al. (2000); Jefferies et al. (2001); Andersen and Sornette (2003);
Wiesinger et al. (2012).

We consider four classes of ABM that have been studied separately in
the literature and mix them in what we will refer to as mixed games.
These four types of ABM are respectively the minority game, the delayed
minority game, the majority game and the $-game. In the minority and
delayed minority games Challet and Zhang (1997); Challet et al. (2000);
Jefferies et al. (2001), agents are rewards by playing strategies whose
outcome follow the minority choice. This class of rewards emphasize
situations encountered in entry situations, when an investor needs to get
the best price when buying or selling ahead of the crowd. Minority games
capture some of the mechanisms associated with changes of regimes.
The majority and the $ games (Andersen and Sornette, 2003; Wiesinger
et al., 2012) describe agents who are prone to herding by the mechanism
of rewards given to follow the majority. This creates positive feedback
loops, thus providing the possibility for bubbles and crashes to develop. Our
accompanying paper (Zhang et al., 2013) shows that the interplay between
these four ABM in our mixed games reproduces the most important
stylized facts of stock returns.

The main contribution of our paper is to extend the calibration of our
mixed games to real financial time series, along the lines of Andersen and
Sornette (2005); Wiesinger et al. (2012), using a more flexible and powerful
methodology, with much larger time series. We call this calibration process
“reverse engineering”, because we not only determine the parameters
of the models (such as number of agents, fraction of agents in each
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game, memory length, number of strategies per agent, and so on), but
also determine the set of specific strategies used by each of our virtual
agent so that their aggregate behavior best match the realized time
series of financial returns. In this way, our ABM’s disclose some of the
microscopic mechanisms at work in stock markets and use this knowledge
to predict their aggregate macroscopic behaviors. To address the criticism
that “Prediction is a thorn in the side of ABM” (Elsenbroich, 2011), we
use our ABM’s to predict the future return signs, and construct trading
strategies based on the predictions of future returns. We also investigate
the relations between market regimes and the parameters of our calibrated
ABM’s. We find that our ABM’s have statistically significant prediction
power and generate robust positive alpha’s, as tested with both the three
factor Fama-French model and the four factor Carhart-Fama-French model.
Moreover, the relations between market regimes and the parameters of
ABM’s provides novel ABM-based diagnostics of market regimes and their
switching phases. Taken together, these results challenge the weak form
of the EMH, since the predictions made by our ABM’s are based only on the
price history.

The remaining parts of this paper are organized as follows. In the next
section 3.2, we present the agent-based models and the methodology. In
section 3.3, we introduce the ABM calibrating method, and report the main
results obtained on predicting future return signs, trading based on the
predictions, and studying the relations between market regimes and the
calibrated parameters of the ABM’s. The last section concludes.

3.2 The ABM’s
3.2.1 General definitions
We model stock markets within a bottom-up approach in which inter-
actions between investors at the microscopic level are aggregated to
generate the macroscopic dynamics of stock prices. The agents are
abstractions of humain investors, living in the virtual digital world and
interacting with each other by buying or selling shares of virtual stocks.
The collective actions of the agents form the dynamics of the stock prices
in the virtual stock markets. Specifically, we build virtual stock markets
containing only one asset and a fixed number N agents who trade over
Z discrete time periods. At any given time t ∈ {1, . . . ,Z} in a virtual stock
market, each agent makes her decision to buy one share of the asset, to sell
one share of the stock or to do nothing (short selling is allowed). When all
the agents have made their actions, the imbalance between the amounts
of shares to buy or sell by the agents determines the return rt of the virtual



40 Chapter 3. Reverse engineering stock markets with mixed games and alpha generation

asset at time t. Thus, from t = 1 to t = Z the virtual market generates a
return time series r := {r1, . . . , rZ} of length Z.

Next, we discuss how agents in our virtual stock markets form the stock
prices, and show how the pricing mechanism in our virtual stock markets
is linked to the real stock markets.

3.2.2 Agent decision making rules
Agents in our ABM’s are boundedly rational, they “satisfice” rather than
“optimize”, as Simon (1956) argued. Following the concept of bounded
rationality, we assume that agents have both limited knowledge about
the virtual asset prices and limited computation capacity, so that they
are not able to maximize their utility functions even if they had full
knowledge of it. Our bounded rational agents therefore make trading
decisions based on history prices data of the virtual asset. In contrast with
fully informed perfectly rational agents, the beliefs formed by our agents
could turn out to be wrong. Moreover, our agents need only to know
qualitative characteristics of their utility functions in order to calculate
their preferences concerning their trading decisions.

To be specific on the characteristics of our boundedly rational agents,
we borrow from the literatures on the minority game, the $-game and
the majority game (Challet and Zhang, 1997; Challet et al., 2000; Jefferies
et al., 2001; Andersen and Sornette, 2003; Wiesinger et al., 2012). In this
approach, the behaviors of agents are sufficiently simplified to allow for
extensive simulations on modern CPU cores, though the computations
remain intensive, especially for the reverse-engineering of the ABM on long
real financial time series.

We now describe the decision making process of a typical agent. This
agent records the history of the asset price change, namely the positive
and negative signs of the returns over only m time steps back from present.
In other words, the memory of the agent is of length m, and is the same
for all agents. The information that an agent uses to form her decision can
thus be represented as a binary vector of length m, in which 1 indicates a
positive return and 0 a negative return.

We assume that all agents have sufficient wealth so that, even if they
underperform, they can still continue to play the investment game until
the end of the Z time period. The decision of each agent is chosen in the
triplet {+1, 0,−1}, where +1 corresponds to buying one share of the virtual
asset, 0 means that the agent does nothing and−1 represents that she sells
one share of the virtual asset. To reduce the complexity in our ABM’s, we
let the agents buy or sell exactly one share every time she decides to trade.

Agents make decisions using their trading strategies, which are based
on the history of the asset price and embody their beliefs. We denote µt



3.2. The ABM’s 41

the history information that each agent holds at time t, before she makes
her decision. Thus, µt is a binary vector of length m, containing the stock
price change directions from t − m to t − 1. The agents use naive trading
strategies to map the input information to their actions, denoted by f (µt) :
{0, 1}m → {+1,−1}. The size of the trading strategy space, denoted by F :=
{ f |∀ f : {0, 1}m → {+1,−1}}, is thus 22m . Due to the limited capacity of the
agents, we assume that they cannot remember and track the performance
of all these 22m trading strategies, but only a few of them. We denote by s
the number of trading strategies of each agent, with s << 22m . This number
s is the same for all agents, while the specific used strategies are different
from agent to agent, with possible overlaps. The trading strategy set of a
given i agent is denoted by Fi := { f 1

i , f 2
i , . . . , f s

i }, and obviously Fi ⊂ F.

The decision problem of an agent is now reduced to that of choosing
the best trading strategy at time t, ‘best’ in some sense to be specified.
To satisfice herself, we posit that the agent always chooses the trading
strategy that is most probably generating positive returns among the
s trading strategies from her trading strategy set. She does not know
ex-ante what trading results a given trading strategy can produce at
time t. The best she can do is to learn from the history performance
of all her s trading strategies. The four games used here assume that
the agent chooses the trading strategy with the highest performance
recorded in the last m time steps. This is a backward-looking and myopic
approach, embodying the behaviors documented in real financial traders
and investors, who tend to look at past recent returns as a predictors
of future ones (Hommes, 2006; Hommes and Wagener, 2009; Chiarella
et al., 2009; Evstigneev et al., 2009). Note that this class of strategies is
diametrically different from the forward-looking strategies of fully rational
agents with forward expectations (Blanchard, 1979). In our ABM’s, we
define a simple performance assessment function for each trading strategy
of a given agent i, which is the sum of the history payoffs of the trading
strategy:

U( f j
i , t) =

t−1∑
ζ=1

π( f j
i (µζ)) , (3.1)

where U( f j
i , t) denotes the performance assessment function of trading

strategy j, ∀ j = 1, . . . , s, of the agent i, ∀i = 1, . . . ,N, at time t, and π is the
payoff function of the agents’ trading strategies, which returns a positive
value if the trading strategy f j

i has predicted an action consistent with the
realized market behavior, or a negative value if the prediction of the trading
strategy f j

i is not correct as expected. For instance, if a trading strategy of a
trend follower returns a “buy” action at time t, and most agents really buy
at that time and thus push the price up, the payoff will be positive because
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the trading strategy has made a successful prediction; otherwise the payoff
will be negative. This performance assessment function thus models the
learning process of the agent from the history data, based on her belief.
The best trading strategy of the agent at time t is defined as

f ∗i = argmax f j
i
U( f j

i , t) , (3.2)

indicating the preference of the agent over her trading strategies at any
time t.

A trading strategy always predicts a buy or a sell action. But an agent can
choose to do nothing when she is not confident enough with the success
rate of the best trading strategy. This idea was introduced by Jefferies
et al. (2001), and this ingredient can help model the liquidity in the real
stock markets. Without this ingredient, there is always enough liquidity in
our ABM’s, while this is not always the case in for real financial markets.
This observation is captured in virtual stock markets equipped with this
ingredient, which can lead at some times to a drying up of liquidity when
a large fraction of agents are uncertain on the performance of their s
strategies and do not trade.

The success rate of a trading strategy during a time period of length T
is defined as the ratio of the number of times that the trading strategy
generates positive payoffs to the number of period lengthT:

sr( f j
i ) =

1
T

t−1∑
ζ=t−T

1R+(π( f j
i (µζ))) , (3.3)

where 1R+ is an indicator function, which is equal to 1 when the payoff is
positive and 0 otherwise. The agent chooses to do nothing when sr( f ∗i ) <
τ, where τ is a threshold for the agent to take actions according to the
predictions of the best trading strategy. Thus, the agent’s choice at

i(µt) at
t can be summarized by

at
i(µt) =

{
f ∗i (µt) if sr( f ∗i ) ≥ τ
0 if sr( f ∗i ) < τ ∀t ∈ {1, . . . ,Z} (3.4)

To sum up, our ABMs use the following ingredients.

1. N bounded rational agents trade a single virtual asset.

2. The agents are endowed with sufficient initial wealth so that they
will not go bankrupt and trade until the end of the game, i.e., over Z
discrete time periods.

3. The agents make trading decisions based on the history of price
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change directions.

4. The agents have a limited memory of length m, which is the same for
all agents.

5. The agents use trading strategies to make decisions. Each agent has
the same number s of trading strategies, but different agents have in
general different trading strategies.

6. The agents make decisions by learning from the historical perfor-
mance of their trading strategies. They assess the performance of
their trading strategies by using equation (3.1), and choose the best
trading strategies according to equation (3.2).

7. The agents further check the success rates of the best trading
strategies, and decide to trade or not based on equation (3.4).

The parameters N,m, s, τ,T, as well as the trading strategy sets of the
agents are thus the key parameters of our ABM’s that we will be aiming
at estimating.

3.2.3 Price formation from the collective actions of agents
The aggregate actions over all agents in the virtual market is defined as

At =

N∑
i=1

at
i(µt) . (3.5)

If At is positive, there are more buyers than sellers and the price will go up
and the opposite when At is negative. We use a linear response function of
the return as a function of the aggregate variable At:

rt =
At

λ
, (3.6)

where λ is a normalization factor called liquidity. There are some theoreti-
cal justification for such a linear relation (Kyle, 1985; Farmer, 2002) together
with an on going debate on its precise validity versus the existence of
nonlinear impact functions (Lillo et al., 2003; Almgren, 2003; Bouchaud
et al., 2006; Farmer et al., 2012). For our purpose, we stay out of this debate
and stick to the simple linear impact function (3.6).

3.2.4 Beliefs of agents: mixing of the 4 games
We use a mixture of four games to model the heterogeneous beliefs
among the agents: the minority game, the majority game, the $-game,
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and the delayed minority game. We assume each agent holds an invariant
belief, though the agents can have different beliefs. The fraction of agents
holding one of the four beliefs, i.e. making their choices based on one of
the four payoff functions, is assumed to be fixed during the whole lifetime
of a given virtual stock market.

The four games are characterized by four different payoffs.

1. Minority game: the payoff function of trading strategies for agents
obeying the minority game rule is proportional to minus the product
of their actions and of the aggregate actions of all agents:

πmg( f j
i (µt)) = −κ f j

i (µt)At , (3.7)

where κ > 0 is a normalization constant. Equation (3.7) means that
if the j-th trading strategy of the agent i at time t makes a trading
decision that is different from the collective actions of all agents,
the payoff of that trading strategy is positive; otherwise, the payoff
is negative. Hereinafter, we use the suffix mg to denote variables
related to the minority game.

2. Delayed minority game: It is a one-time step delayed minority
game. Minority game players can be considered as moderate
fundamentalists, while the delayed minority game players are more
radical: a delayed minority game player expects that the choice of
the majority at time t + 1 will be opposite to her choice at time t, i.e.
she believes that the majority will push the stock price away from its
fundamental value at time t + 1. The corresponding scoring function
of trading strategies of a delayed minority game playing agent is

πdmg( f j
i (µt)) = −κ f j

i (µt)At+1 . (3.8)

Hereafter, we use the suffix dmg to denote variables related to the
delayed minority game.

3. The majority game: An agent playing the majority game believes that
she can profit from an upward or a downward trend in stock prices.
She mimics the behavior of the majority. The corresponding payoff
function of trading strategies of an agent i playing the majority game
is

πmajg( f j
i (µt)) = κ f j

i (µt)At , (3.9)

which is the exact opposite to the payoff (3.7) for the minority game.
Hereafter, we use the suffix majg to denote variables and expressions
related to the majority game.
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4. The $-game: it is a one time-step delayed majority game. The $-game
players are smarter trend followers than the majority game players,
as the latter mimic decisions of the majority blindly. Instead of
expecting they are among the majority at time t, the $-game playing
agents anticipate that at time t + 1 the majority will make the same
decision as they have made at time t, i.e. they want to predict trends.
The corresponding scoring function for a $-game playing agent is

πdg( f j
i (µt)) = κ f j

i (µt)At+1 . (3.10)

In the following, we use the suffix dg to denote variables related to
the $-game.

3.3 Calibrating ABM’s and empirical results
3.3.1 Calibrating ABM’s
In an accompanying paper (Zhang et al., 2013), we show that the mixed-
game virtual stock markets constructed by combining the four ABM are
able to reproduce the main stylized facts of real financial markets (Cont,
2001; Chakraborti et al., 2011). This is encouraging because not many
models are able to account for not just one but many distinct empirical
traits of financial returns. Indeed, explaining empirical observations is a
first requirement for any model aiming at providing insights on the inner
mechanisms of financial markets. Most models stop at this level however,
content to provide some story on the reported anomalies or paradoxes
(Hommes, 2002; Sornette and Zhou, 2006; Parisi et al., 2013). However,
as explained in an ambitious research carried out in Los Alamos National
Laboratories aimed at validating the US nuclear stewardship program
(Sornette et al., 2007, 2008), a truly convincing validation approach needs
to include a systematic and continuous process of developing new tests
and new predictions on phenomena as different as possible from the
stylized facts that have been tested in a first phase. The present paper
follows this strategy by using the mixed-game virtual stock markets to
reverse-engineer financial systems and, in this way, diagnose and predict
both different regimes and financial returns.

Our approach to calibrate our ABM’s with real time series extends that
developed by Wiesinger et al. (2012), which itself extended (Andersen
and Sornette, 2005). We improve on these previous works in particular
by including in the estimation procedure the four fractions of players
that are active in each of the four constitutive games, while Wiesinger
et al. (2012) postulated fixed values. Indeed, there is a lot of evidence
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supporting the hypothesis that financial markets are characterized by
regime shifts, with changing types of investment styles as a function of
the central bank monetary policy (increasing or decreasing interest rates)
and macroeconomic conditions. For ABM, we refer in particular to Lux
and Marchesi (1999) who stressed first the importance of including time
varying fractions of investing styles in order to account for the stylized facts
of financial returns. Another important improvement of our present study
compared with previous ones is to work with much larger data sets, so that
our results are much more statistically robust.

To reverse-engineer financial markets with our mixed-game virtual stock
markets, we proceed as follows. First, the input is chosen as a time series of
returns, here the daily returns of several well known financial indexes. The
descriptive statistics of the time series we reverse engineer are presented
in table 8. For a given financial time series, we select an arbitrary window
of length Wis that we refer to as the in-sample window, and calibrate the
mixed-game virtual stock market model to the returns in that window. The
calibration is performed by solving the following optimization problem:

minimize:
Wis∑
t=0

(rr
t − rabm

t )2 , (3.11)

where the minimization is performed over the set of five parameters
(number of agents N ∈ {3, . . . , 103}, memory length m ∈ {2, . . . , 8}, number
of strategies per agent s ∈ {1, . . . , 16}, threshold for action τ ∈ [0, 1] and
duration of scoring counter T ∈ {1, . . . , 25}) and over the set of all strategies
defined within the four games (minority, delayed minority, majority and
dollar games). In expression (3.11), rr

t is the return of the input real financial
index at time t and rabm

t is the return of the mixed ABM at the same time
t. The optimization (3.11) amounts to find the mixed game model that
best replicates the returns of the real stock markets, given the same price
information history within the in-sample window.

The technical procedure to solve the optimization problem (3.11) is
explained in (Wiesinger et al., 2012). Since the problem is highly under-
constrained and a priori ill-conditioned, such a fitting exercise will always
return good fits, but with no insurance that the calibrated parameters
and strategies provide any real value or insight. Therefore, it is essential
to complement the optimization step (3.11) in the in-sample window with
out-of-sample tests. Specifically, we use the parameters and strategies
determined in the in-sample window to run the mixed game and predict
the returns in the out-of-sample window just following the in-sample
window, which we choose of length Wos = 16 days. The results reported
below do not change significantly when changing the duration Wos of the
out-of-sample window, as long as it is not too large. This value Wos = 16
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days is a compromise between (i) having sufficient daily returns in the out-
of-sample window to get statistically significant results and (ii) be not too
far away from the in-sample window so that the parameters and strategies
are still relevant. This second requirement is dictated by the fact that there
is no hope that our mixed-game model could be the genuine generating
process of the real financial time series. It can only be an approximation
or imperfect representation, like a local tangent projective approximation
of the complex unknown generating process. Such local tangent projective
representation requires a periodic re-calibration of the model, in the same
way that the tangent to a nonlinear curve evolves with the position on
the curve. The tangent provides a useful informative representation in
the neighborhood of the point of estimation (here a trend) but fails to
extrapolate non-locally. Our mixed-game model is arguably better than
just a linear model, accounting for the highly nonlinear strategies used by
agents, but the general argument still holds that even the best nonlinear
model has to be calibrated again beyond a certain horizon of validity.

Finally, we apply the above procedure to many in-sample windows and
their associated out-of-sample windows within the chosen time series.
For each time series in table 8, we perform 100 reverse engineering
experiments. The in-sample window lengths Wis are changing from 40 to
400 days, with a step of 20 days, while the out-of-sample window length
Wos is fixed to 16 days. This defines 700 experiments in total, in which every
specific in-sample data window length appears twice. The value of the
whole calibration process of our mixed-game models is quantified by how
well are predicted the returns in the out-of-sample windows. We present
several statistical tests to ascertain the value of this procedure, which are
presented in the sequel.

3.3.2 Success rates in predicting the direction of future price
changes

Our first statistical test compares the signs of the predicted returns with
the signs of the realized returns in the out-of-sample windows. For this, we
define the ‘success rate’ as the ratio of the correctly predicted return signs
to the total number of realized returns (which is the same as the duration
measured in days) in all out-of-sample windows. Notwithstanding the
slight boundary effect introduced by the first in-sample window, the ‘suc-
cess rate’ is essentially the fraction of return signs successfully predicted by
our mixed game.

In order to interpret how good are our ‘success rates’, we compare them
with those obtained by 1000 random strategies for each out-of-sample
window. A given random strategy is defined as follows. It predicts a
positive return with probability f+ and a negative return with probability
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Tab. 8: Descriptive statistics of the time series used in our reverse engineering process.
The “Start time” and “End time” use the “Year-Month-Day” format, the “Mean”
column gives the average returns, the “Sd” column lists the standard deviations of
returns, the “Median” column shows the median values of the returns, the “Min”
column gives the minimum returns, and the “Max” column lists the maximum
returns.

Index Start time End time Mean Sd Median Min Max
S&P500 1992-01-02 2001-12-31 0.0004 0.0100 0.0004 -0.0711 0.0499
S&P500 2002-01-02 2011-12-30 0.0001 0.0140 0.0008 -0.0947 0.1096
Nasdaq 1992-01-02 2001-12-31 0.0004 0.0255 0.0015 -0.7001 0.1720
Nasdaq 2002-01-02 2011-12-30 0.0004 0.0151 0.0011 -0.1111 0.1185
Dow Jones 1982-01-04 1991-12-31 0.0005 0.0117 0.0004 -0.2563 0.0967
Dow Jones 1992-01-02 2001-12-31 0.0004 0.0099 0.0006 -0.0745 0.0486
Dow Jones 2002-01-02 2011-12-30 0.0001 0.0130 0.0005 -0.0820 0.1051

1 − f+, where f+ is the observed fraction of days with positive returns in
the corresponding real financial time series. Note that, while the random
strategies toss random coins, they are actually endowed with the hindsight
of using the realized value of f+ for the whole time series, an information
that is not available in the real-time forecasting set-up implemented in
our truly out-of-sample causal prediction scheme. Therefore, the result
presented below that our mixed-game predictions are significantly better
than most random strategies can be considered as conservative. In other
words, the reported p-values (fractions of random strategies performing
better than our mixed game) can be considered as upper bounds.

We have run 700 different experiments, 100 for each of the seven 10
year long financial time series shown in table 9. Each experiment is
defined by its in-sample window and corresponding 16-days out-of-sample
window where return predictions are compared with realized returns. Out
of the 700 experiments, we find that only 46 of them (6.6%) have p-values
larger than 0.1. In addition, except for the daily returns of the Dow Jones
index from 1982 to 1991 and from 1992 to 2001, the other five indices
have no more than 5% of their experiments underperforming the random
strategies at the 90% confidence level. Table 9 shows the number (“Count”)
of experiments out of 100 of them for each financial time series with
insignificant prediction power at the 90% confidence level. Note that half
of the experiments with insignificant prediction power occur for the Dow
Jones index from 1982 to 1991, for reasons unknown to us.

Another result is that, in 109 out of the 700 experiments (15.6% of all
the experiments), the success rate is higher than the ratio f+ of positive
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Tab. 9: Numbers of experiments (“Count”) with insignificant prediction power at the
90% confidence level. For each of the seven indices, 100 experiments have been
performed and their corresponding ‘success ratios’ have been compared with
those of 1000 random strategies. See main text for explanations.

Index Start time End time Count
S&P500 1992-01-02 2001-12-31 4
S&P500 2002-01-02 2011-12-30 0
Nasdaq 1992-01-02 2001-12-31 3
Nasdaq 2002-01-02 2011-12-30 5
Dow Jones 1982-01-04 1991-12-31 23
Dow Jones 1992-01-02 2001-12-31 7
Dow Jones 2002-01-02 2011-12-30 4

returns in the real time series used to implement the random strategies.
This success rate may be considered as a natural benchmark, since it is
obtained by construction by the static buy-and-hold strategy. Since the buy
or sell decision of the random strategies for any given day is independent
of the sign of the return on that day, the theoretical average success rate of
random strategies is equal to f 2

+ , which is of the order of 0.30 for the typical
values f+ ≈ 0.55 observed in the studied financial time series, as seen in
table 10. No random strategy in our sample of thousands of trials can
achieve a success rate of f+ or larger, as found in 15.6% of our experiments.

There are many other tests that we have performed that confirm the
significance of the predictive power of the mixed games. Table 10 presents
a subset of the results by showing the results of 25 experiments.

In summary, these different results suggest that our reverse-engineered
mixed-games have true predictive power, much beyond what can be
attributed to chance.

3.3.3 Trading strategies based on the ABM’s
Strategies can achieve statistically abnormally large success rates, while
still not being in contradiction with the no-arbitrage principle and the
efficient market hypothesis, if these strategies fail to provide a positive
abnormal risk-adjusted return. We thus investigate the profits-and-losses
(P&L) properties of our strategy based on buying (respectively selling) at
the open of a given day when our method predicts a positive (respectively
negative) return for the day, and closing the position at the end of the
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day. We compare the P&L of our strategy with that of random strategies
that buy (respectively sell) at the opening of each day randomly with
a probability b (respectively with a probability 1 − b), and close their
positions at the end of the day. We scan b uniformly between 0 and
1. For each time window, we generate 100 different b’s (b1, . . . , b100) and
generate 3000 random strategies for each b, leading to a total of 300,000
random strategies. This generalizes the random strategies considered in
the previous subsection on the success rates, by including both the buy-
and-hold (b = 1) and the sell-and-hold (b = 0) strategies, as well as a
continuum of intermediate strategies. Transaction costs are not included.

We compare our strategy constructed from the 700 experiments with
the random strategies in terms of two indicators of performance: the total
P&L and the Sharpe ratio (with zero risk-free interest rate). We find that
more than 15% of the 700 experiments can generate good total P&L, in
the sense that none of these P&L values can be achieved by 90% of the
random strategies. Similarly, 15% of the experiments can create significant
Sharpe ratios, which cannot be achieved by 90% of the random strategies.
In the same way, if we set the significance level to 95%, we find 6.78%
of the 700 experiments outperform the random strategies, and when we
set the significance level to 99%, we find 1.6% of the 700 experiments
outperform the random strategies. These fractions are higher than can be
achieved using random strategies. For instance, at the significance level
90%, we should find only 10% random strategies that are better than our
ABM based strategies compare with the fraction 15% found among our 700
experiments.

The question is then whether the fractions 15% versus 10%, or 6.78%
versus 5% or 1.6% versus 1% are due to statistical fluctuations or not. To
answer this question, we construct a statistical test based on the null
hypothesis that the 700 experiments perform on average identically to the
random strategies. The corresponding alternative hypothesis is that the
ABM based strategies perform better. If the null hypothesis is true, for a
given significance level 1−α+ the number of the ABM based strategies that
outperform the random strategies is a binomial distribution B(700, α+). Let
α+ = 0.1. The p-value associated with the observation that 15% of the
experiments outperform the random strategies is 0. For α+ = 0.05, the p-
value of getting 6.78% better strategies is 0.023, and the p-value of getting
1.6% better strategies for α+ = 0.01 is 0.066. These p-values suggest
that we can reject the null hypothesis, and we thus accept the alternative
hypothesis that the 700 experiments on average perform better than the
random strategies.

To ascertain further the statistical significance of our results, we perform
other tests. We regress the time series of returns generated by our strategy
on the three Fama-French factor model (Fama and French, 1993), to test
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for the existence of significant abnormal positive return α (defined as the
intercept). We find that 21 out of the 700 experiments have significant
positive α. This proportion seems to be very small but actually hides
a genuine skill as we now explain. The returns of the indices that the
strategies trade (going “long” or “short” on them) are well explained by the
three factor model taken from (Fama and French, 1993):

R(t) − RF(t) = a + b[RM(t) − RF(t)] + sSMB(t) + hHML(t) + e(t) (3.12)

In this equation (3.12), the intercept a is the α quantifying, if positive. the
excess performance. Our ABM based strategies are usually long or short
the indices roughly 50% of the time. Calling fl the fraction of time where
one of our strategy is long an index and 1 − fl the fraction of time where
that strategy is short the index, the average return of that strategy, if no
skill is present, should be given by

E(RABM(t) − RF(t)) = (2 fl − 1)a + (2 fl − 2)E(RF(t))
+ (2 fl − 1)bE[RM(t) − RF(t)] (3.13)
+ (2 fl − 1)sE(SMB(t)) + (2 fl − 1)hE(HML(t)) .

Because fl ≤ 1 and actually close to 0.5 in general, 2 fi − 1 is quite
smaller than 1, which would thus even tend to reduce significantly the
strategy’s α below that of the indices. Actually, the story becomes even
more interesting when one realizes that S&P500 and Dow Jones Indices
have significant negative α’s (ranging from about -0.009% to -0.02% for
daily return in the data we use for this paper). Launching 20,000 random
strategies for each of our 700 experiments, we find that only less than 0.1%
of them can achieve the same or slightly better results than 3% of our ABM
bases strategies (the 21 out of of the 700). Thus, while small, the finding
that 21 out of the 700 experiments have significant positive α is highly
significant. We note that this line of reasoning is similar to the ensemble
approaches of Romano and Wolf (2005) and Barras et al. (2010).

Table 11 summarizes our results for representative trading strategies,
each based on trading signals from a single reverse engineering experi-
ment and without considering the transaction costs. These representative
trading strategies are among the 15% that outperform the random strate-
gies at the significance level 90%.

Table 11 shows that the strategies can generate not only statistically
significant but economically significant returns. The excess fractions of
such strategies in the 700 experiments thus give us a way to arbitrage.
Since the strategies we test are obtained by a reverse-engineering of mixed
games using only financial market returns, i.e., history price information,
our results suggest a rejection of the weak form of the efficient market
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hypothesis.

3.3.4 Structures of ABM’s and market regimes

Our mixed-game virtual stock market dynamics are generated by the
interplay between four types of agents, obeying respectively minority,
delayed minority, majority and dollar games. As the relative proportion
of agents of different types changes, the nature of the resulting price
dynamics will also exhibit distinct properties. For instance, if most agents
in a mixed-game virtual stock market play the majority game or the $-
game, the chance that the mixed-game virtual stock market generates
a bubble or a crash will be high, because majority trading captures the
tendency for traders to herd. Changing the threshold τ for trading has also
a significant impact on the properties of the generated price dynamics.

If, as suggested by the previous results, our mixed-game virtual stock
markets constructed by combining the four ABM are good models of
real financial market returns, there should be a relationship between
the parameters characterizing the mixed-game models and the realized
financial returns. In other words, the calibration of our mixed-game virtual
stock market models to the real data offers the possibility of identifying
the existence of distinct market regimes, the switching times between
them, and their characteristics in terms of the key parameters defining the
mixed-games. In addition, deterministic relations between the real returns
and the parameters of the reverse-engineered virtual stock markets would
provide further evidence supporting the relevance of the ABM and shed
light on the main mechanisms at work during different market regimes.

Specifically, following exactly the same procedure of reverse engineering
calibration of our ABM on real financial time series as explained above, we
regress the real returns in the out-of-sample data window on the calibrated
parameters of the mixed-game virtual stock market. The linear regression
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models read

r̂ = a0 + a1 f̂ ract + ε , (3.14)
. . . ,

r̂ = a0 + a6 f̂ r
dmg

+ ε , (3.15)
r̂ = a0 + a1 f̂ ract + a2τ̂ + ε , (3.16)
r̂ = a0 + a1 f̂ ract + a3 f̂ r

mg
+ ε , (3.17)

. . . ,

r̂ = a0 + a1 f̂ ract + a6 f̂ r
dmg

+ ε , (3.18)
. . . ,

. . . ,

r̂ = a0 + a1 f̂ ract + a2τ̂ + a3 f̂ r
mg

+ a4 f̂ r
majg

+ a5 f̂ r
dg

+ ε , (3.19)
. . . ,

r̂ = a0 + a1 f̂ ract + a2τ̂ + a4 f̂ r
majg

+ a5 f̂ r
dg

+ a6 f̂ r
dmg

+ ε , (3.20)

where r̂ is the average return in an out-of-sample window or multiple out-
of-sample windows, f̂ ract is the average fractions of active agents1, τ̂ is
the average τ, and f̂ r

mg
, f̂ r

majg
, f̂ r

dg
and f̂ r

dmg
are the average fractions

of agents who play the minority game, the majority game and the $-
game and the minority game, respectively. The parameters to estimate
are the coefficients ai’s, and ε is a white noise. Because the fractions f̂ r

mg
,

f̂ r
majg

, f̂ r
dg

and f̂ r
dmg

are linearly correlated, we actually use a variant
of the regressions (3.16-3.20) with residuals of the mutual regressions
between the fraction variables f̂ r

mg
, f̂ r

majg
, f̂ r

dg
and f̂ r

dmg
themselves used

as the independent variables. The use of an average τ and of average
agent fractions is associated with the fact that, in many cases, we regress
also the returns averaged over multiple out-of-sample windows. The
regressions (3.14-3.20) use the variables f̂ ract, τ̂, f̂ r

mg
, f̂ r

majg
, f̂ r

dg
and f̂ r

dmg

because they are most relevant and also because they are found to be
stationary within each in-sample window. Because we do not know ex-
ante which independent variables can better explain the average returns,
we include all combinations of variables in regressions (3.14-3.20) and
choose the best ones according to the estimation results.

We use the AIC criteria Akaike (1974) to determine the best model among
regressions (3.14-3.20). Estimating the parameters of these regressions
for the 700 reverse engineering experiments, we find a lot of statistically

1with a positive τ, not all agents will trade, so that the reverse engineering approach
allows determines the fraction of active agents.
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significant results. Since it is impossible to report all the results here and
because it is difficult to distinguish clear trends in such a massive set
of regressions, we apply a coarse-grained method by using averages of
multiple out-of-sample windows and stack all 100 experiments performed
on the same index together. Moreover, we divide the time series of
the indexes from 1982 to 2012 into 6 different regimes, and report the
estimation results of the best models among regressions (3.14-3.20) in the
coarse-grained representation for each of the market regime separately.
Specifically, we classify six major regimes from 1982 to 2012 2 within which
we analyze the performance of the ABM based strategies:

1. 1982 - Oct. 1987. Overall decreasing Fed rates from a very high level
to fight the inflation era of the 1970s to a low around 4.75% in 1993,
punctuated by two spikes. The second of these spike was an attempt
by the Fed to slow down the bubble developing from 1982 to Oct 1987,
date at which a great worldwide crash occurred, with the US markets
specifically crashing on black Monday 19 Oct 1987.

2. Oct. 1987 - 1993. Post bubble regime.

3. 1993 - 2000. Flat or increasing Fed rate and the growth of the dot-com
bubble.

4. 2000 - 2003. Aggressive decrease of the Fed rate to fight the recession
associated with the burst of the dot-com and biotech bubble.

5. 2003 - Oct. 2007. Flat followed by slow increase of the Fed
rate, jointly with the development of a set of co-inflating bubbles
occurring in many different asset classes, including real-estate, oil,
soft commodities, stock markets and financial derivatives. This global
leverage bubble has prepared the economy for the “great recession"
(Sornette and Woodard, 2010; Sornette and Cauwels, 2012).

6. End 2007 - Present. Lowered Fed rate and stabilization at almost
zero value, occurrence of the great recession and successive phases
of quantitative easing (QE1, QE2, Twist and QE-infinity).

Table 12 presents the results of the estimation of the best models
among regressions (3.14-3.20). The dependent variable, namely the average
returns, are calculated from 16 adjacent out-of-sample data windows, i.e.
corresponds to averages over 256 data points. The independent variables
are also calculated from 16 mixed-game virtual stock markets, which
are calibrated in 16 in-sample data windows and used to predict the 16
out-of-sample windows. The independent and dependent variables of

2as a reference, figure 5 shows the prices dynamics of the indexes.
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the 100 reverse engineering experiments performed for each given index
time series are stacked together to estimate the regressions (3.14-3.20) for
each given market regime, when the corresponding market regime indeed
occurs within the considered experiment. Some cells of table 12 remain
empty, which means that the corresponding variable is not included in the
estimation. One can observe that variable f̂ r

dmg
has never been selected as

being significant by the AIC criterion.
The very small p-values of the F tests presented in table 12 indicate

the high statistical significance of the estimated coefficients of regression
(3.14-3.20). For each market regime, we find highly significant linear
relationships between the real returns and the calibrated ABM parameters.
Moreover, the R2’s show that the parameters of ABM’s can explain between
approximately 10 to 30 percent of the variances of index returns. Concern-
ing the threshold variable τ̂, we find that it is significant during the bubble
regimes, while it is insignificant after crashes. Accordingly, the variable f̂ ract
is usually significant and positively related to index returns during a bubble
regime, while it is usually insignificant or negatively related to indexes after
crashes. However, we cannot verify the causal relationships between the
dependent and independent variables from these results, because they are
averages over multiple out-of-sample windows. Nevertheless, these two
variables can still be diagnostic variables of market regimes.

Another interesting result is that the linear relations between index
returns and the variables f̂ r

majg
and f̂ r

dg
are stronger than those between

index returns and the variable f̂ r
mg

. This can be rationalized by the fact that
the majority game and the $-game capture very well the mechanism of
herding, usually associated with bubbles and crashes. These two variables,
however, cannot tell us what they will bring, bubbles or crashes. In future
studies, it would be interesting to investigate more deeply the trading
strategies of agents playing those two games and check the possibilities
that they either create bubbles or crashes.
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Fig. 5: Prices dynamics of the S&P500, Dow Jones Industrial Average, and Nasdaq 100
indexes from 1982 to 2012.
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Tab. 10: Results of 25 experiments, using the reverse-engineered mixed games to predict
the sign of future returns in out-of-sample windows of 16 trading days. Index lists
the names of the indexes, Start year lists the start year of the corresponding time
series, End year lists the end year of the time series, Data points list the numbers of
data points predicted by the ABM’s, Positive ratio lists the ratio of positive returns
in the real time series, Wis lists the in-sample window sizes of the experiments,
Success rate lists the total success rates of the ABM’s, and p-value lists the p-values
of the prediction power tests. In all experiments, the out-of-sample window sizes
of the experiments is fixed at Wos = 16 days. For all experiments, the p-values are
much smaller than 0.001.

Index Start year End year Data Points Positive ratio Wis Success rate
S&P500 2002 2011 2080 0.550 380 0.556
Nasdaq 1992 2001 2352 0.546 120 0.556
Nasdaq 1992 2001 2144 0.549 320 0.555
S&P500 2002 2011 2224 0.552 240 0.554
S&P500 2002 2011 2256 0.550 200 0.553
Nasdaq 1992 2001 2304 0.545 160 0.553
S&P500 2002 2011 2288 0.548 180 0.552
S&P500 2002 2011 2144 0.551 320 0.552
S&P500 2002 2011 2128 0.553 340 0.552
S&P500 2002 2011 2240 0.550 220 0.552
S&P500 2002 2011 2176 0.551 280 0.551
S&P500 2002 2011 2336 0.547 120 0.551
S&P500 2002 2011 2160 0.552 300 0.550
Nasdaq 1992 2001 2064 0.548 400 0.550
Nasdaq 2002 2011 2176 0.547 280 0.550
S&P500 2002 2011 2208 0.552 260 0.549
Nasdaq 2002 2011 2176 0.547 280 0.549
Nasdaq 1992 2001 2304 0.545 160 0.549
S&P500 2002 2011 2240 0.550 220 0.549
Nasdaq 2002 2011 2224 0.547 240 0.549
Nasdaq 1992 2001 2240 0.543 220 0.548
Dow Jones 2002 2011 2208 0.538 260 0.548
S&P500 2002 2011 2160 0.552 300 0.547
S&P500 2002 2011 2224 0.552 240 0.547
Nasdaq 2002 2011 2144 0.546 320 0.547
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Tab. 11: Summary performance of trading strategies constructed on trading signals from
a single reverse engineering experiment and without considering the transaction
costs. Index’s are the names of the indexes, Start year’s are the start year of the
corresponding time series, End year’s are the end year of the time series, Data
points’s are the numbers of data points used in the ABM prediction process, Wis’s
are the in-sample window sizes of the experiments, Total returns’s and Sharpe
ratios’s are the total returns (P&L) and annualized Sharpe ratios of the ABM’s based
trading strategies respectively, PVr’s and PVshr’s are the p-values of testing the
returns and Sharpe ratios of the ABM’s based trading strategies against those of
the random trading strategies respectively, Annual return’s are the annual returns
of the ABM’s based trading strategies (for instance, 0.601 corresponds to an annual
return of 60.1%) , and the α’s are obtained as the intercepts of the regression of the
time series of returns of the ABM’s based trading strategies as a function of the
three Fama-French factors model. For all experiments, the out-of-sample window
size is fixed to Wos = 16 days. The parentheses give the standard errors of the
corresponding α’s. “*” indicates that the marked α is statistically significant with
a p-value less than 0.1, “**” indicates a p-value less than 0.05, and “***” indicates a
p-value less than 0.01.
Index Start year End year Data points Wis Total return Sharpe ratio PVr PVshr Annual return α

S&P500 1992 2001 2128 340 5.117 1.287 0.00 0.00 0.601 0.045(0.018)**
S&P500 1992 2001 2112 360 4.869 1.254 0.00 0.00 0.576 0.043(0.018)**
S&P500 1992 2001 2112 360 4.159 1.178 0.00 0.00 0.492 0.047(0.021)**
S&P500 1992 2001 2192 280 4.284 1.151 0.00 0.01 0.489 0.028(0.013)**
S&P500 1992 2001 2192 280 4.027 1.132 0.00 0.01 0.459 0.040(0.017)**
Dow Jones 1982 1991 2416 60 5.726 1.064 0.00 0.02 0.592 0.043(0.022)**
S&P500 1992 2001 2144 320 3.431 1.056 0.00 0.01 0.400 0.023(0.014)*
Dow Jones 1982 1991 2384 80 5.227 1.027 0.00 0.02 0.548 0.048(0.023)**
Nasdaq 1992 2001 2352 120 44.041 0.999 0.00 0.00 4.681 0.137(0.051)***
Dow Jones 1982 1991 2256 220 4.192 0.998 0.00 0.02 0.465 0.040(0.022)*
Nasdaq 1992 2001 2400 60 39.265 0.953 0.00 0.00 4.090 0.126(0.051)**
Nasdaq 1992 2001 2128 340 23.586 0.884 0.00 0.01 2.771 0.116(0.057)**
Nasdaq 2002 2011 2176 280 4.482 0.818 0.00 0.02 0.515 0.054(0.027)**
S&P500 2002 2011 2160 300 3.491 0.813 0.00 0.01 0.404 0.049(0.024)**
Nasdaq 1992 2001 2304 160 18.265 0.783 0.00 0.02 1.982 0.103(0.053)*
S&P500 2002 2011 2288 180 3.212 0.739 0.00 0.02 0.351 0.040(0.024)*
S&P500 2002 2011 2288 180 2.819 0.689 0.00 0.03 0.308 0.038(0.022)*
Nasdaq 2002 2011 2416 40 4.226 0.664 0.00 0.04 0.437 0.053(0.032)*
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3.4 Conclusions

We have constructed virtual financial markets populated by artificial
agents, who make decisions according four classes of backward-looking
decision functions, with the goal of testing the weak form of the efficient
market hypothesis (EMH). Our agent-based models (ABM) are populated
by agents with bounded rationality and heterogeneous beliefs, which can
be represented by the decision functions defining respectively the minority
game, the majority game, the $-game and the delayed minority game.
Zhang et al. (2013) have shown that the players using the reward functions
of the minority and delayed minority games behave approximately as
fundamentalists, as they tend to minimize the imbalance between their
buy and sell actions. In contrast, the majority game and the $-game players
behave as trend followers. The mixed-game virtual stock markets that we
have constructed combine agents playing all of the four games, leading
to realistic price dynamics exhibiting the standard stylized facts, including
the transient existence of bubbles and crashes (this is reported in the
accompanying paper (Zhang et al., 2013)). Using the mixed-games, we
have calibrated our ABM’s to 10 year long real financial index returns. We
have extended a previous methodology and provide the main structural
parameters,N,m, s, τ,T, the specific trading strategies used by the N agents
, as well as the fractions of agents playing the four different games. This
gives a genuine reverse-engineered reconstruction of the real financial
markets. Using these calibrated mixed games on the 10-year time series of
the S&P500, Dow Jones Industrial Average and Nasdaq 100 indexes from
1982 to 2012 in 700 experiments, we have assessed the performance of
their predictions on future daily returns in out-of-sample time windows of
16 days. We found that 654 out of the 700 reverse engineering experiments
generate statistically significant success rates of predicting the future
return signs. We then developed trading strategies implementing the
predictions of future return signs and found that many such strategies are
both statistically significant and economically significant. The probability
that one get the same number of such strategies randomly is 0. Random
strategies, even when using the information on the fraction of positive
returns, fail to account for our performance. Regression 21 time series of
the returns generated by our strategies on the three factor Fama-French
model and on the four factor Carhart-Fama-French show statistically
significantly positive abnormal risk-adjusted returns α’s. Regressing the
returns generated by our strategies on the calibrated parameters of the
ABM shows that the threshold parameter τ is significantly and positively
related to indexes returns during bubble regimes, while the relation is
insignificant after crashes. The fractions of active agents are also related to
index returns in a similar way. The fractions of the majority game and the $-



3.4. Conclusions 61

game players are more obviously related to index returns than the fractions
of the minority games. The relation between the delayed minority game
and index returns is always insignificant. These results suggest that the
calibrated parameters of our ABM’s can help us diagnose market regimes.

In conclusion, our results challenge the weak form of the efficient market
hypothesis. Transient deviations from efficiency are mostly due to the
role of trend followers as captured by the majority game and the $-game
players. The behavior of these trend followers create positive feedback
loops that have been shown elsewhere to be the engine of bubbles and
crashes (Sornette and Zhou, 2006; Sornette, 2003).





4
Empirical test of the origin of Zipf’s

law in growing social networks

4.1 Introduction

Power law distributions,
p(s) ∼ 1/s1+µ , (4.1)

are ubiquitous characteristics of many natural and social systems. The
function p(s) is the density associated with the probability P(s) = Pr{S > s}
that the value S of some stochastic variable, usually a size or frequency, is
greater than s. Among power law distributions, Zipf’s law states that µ = 1,
i.e., P(s) ∼ s−1 for large s. Zipf’s law has been reported for many systems
(Saichev et al., 2009), including word frequencies (Zipf, 1949), firm sizes
(Axtell, 2001), city sizes (Gabaix, 1999), connections between Web pages
(Kong et al., 2008) and between open source software packages (Maillart
et al., 2008), Internet traffic characteristics (Adamic and Huberman, 2000),
abundance of expressed genes in yeast, nematodes and human tissues
(Furusawa and Kaneko, 2003) and so on. The apparent ubiquity and
universality of Zipf’s law has triggered numerous efforts to explain its
validity. It is also essential to understand the origin(s) of Zipf’s law.

Since H. Simon’s pioneering work (Simon, 1955a, 1960; Ijri and Simon,
1977), a crucial ingredient in the generating mechanism of Zipf’s law is
understood to be Gibrat’s rule of proportional growth (Gibrat, 1931), more
recently rediscovered under the name of “preferential attachment” in the
context of networks (Barabasi and Albert, 1999). Expressed in continuous
time in terms of the size S(t) of a firm, a city or, more generally, a social
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group, Gibrat’s rule corresponds to the geometric Brownian motion

dS(t) = S(t) (r dt + σ dW(t)) , (4.2)

where the stochastic growth rate r+σdW/dt is decomposed into its average
r and its fluctuation part σdW/dt with an amplitude determined by the
standard deviation σ, while W(t) is a standard Wiener process. Gibrat’s
rule alone cannot produce (4.1), since the solution of equation (4.2) has a
(non-stationary) log-normal distribution. Simon and many other authors
invoked an addition ingredient, corresponding to various modifications of
the multiplicative process when S(t) becomes small. Then, under very
general conditions, the distribution of S becomes a power law, with an
exponent µ that is a function of the distribution of the multiplicative
factors (Kesten, 1973; Sornette, 1998).

The fact that the exponent µ is often found close to 1 requires another
crucial ingredient. One particularly intriguing proposition is that Zipf’s
law corresponds to systems that are growing according to a maximally
sustainable path (Gabaix, 1999; Malevergne et al., 2010). In other words,
the set of stochastically growing entities {Si(t), i = 1, 2, ...,n, ..} is delicately
poised at a dynamical critical growth point. Within a general framework
in which (i) entities are born at random times, (ii) grow stochastically
according to (4.2), and (iii) can disappear or die according to various
stochastic processes with some hazard rate h, the explicit calculation of the
exponent µ confirms the above optimal growth condition associated with
Zipf’s law (µ = 1) (Malevergne et al., 2010).

Here, we present an empirical test of the optimal growth condition for
Zipf’s law by testing the formula for exponent µ (see below) on a unique
database obtained from a Web platform of collaborative social projects
(Amazee.com). In this dataset, we verify empirically that proportional
growth holds, we measure the parameters r, σ and h independently, and
determine the exponent µ of the power law distribution of project sizes.
We show that the theory leading to the maximum sustainable growth
principle explains remarkably well the empirical value, with no adjustable
parameters.

4.2 Theory and data
4.2.1 Summary of theoretical predictions
The theory is based on the following assumptions (Gabaix, 1999; Saichev
et al., 2009; Malevergne et al., 2010). Consider a population of social groups
(firms, cities, projects, and so on), which can take different forms and can
be applied in many different contexts.
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1. There is a flow of group entries, i.e., a sequence of births of new
groups. The times {t1, t2, ..., ti < ...} of entries of new groups follow
a Poisson process with constant intensity (generalizations do not
modify the key result (Saichev et al., 2009)).

2. At time ti, i ∈ N , the initial size of the new entrant group i is a random
variable s0,i. The sequence

{
s0,i

}
i∈N is the result of independent

and identically distributed random draws from a common random
variable s̃0. All the draws are independent of the entry dates of the
groups.

3. Gibrat’s rule of proportional growth holds. This means that, in
the continuous time limit, the size Si(t) of the ith group at time
t ≥ ti, conditional on its initial size si

0, is solution to the stochastic
differential equation (4.2), where the drift r and the volatility σ are the
same for all groups but the Wiener process Wi(t) is specific to each
project i.

4. Groups can exit (disappear) at random, with constant hazard rate h ≥
0, which is independent of the size and age of the group.

Under these conditions, the central result of Malevergne et al. (2010)
reads as follows.

Proposition 1: Defining

µ :=
1
2

(1 − 2 ·
r
σ2

)
+

√(
1 − 2 ·

r
σ2

)2

+ 8 ·
h
σ2

 , (4.3)

provided that E
[
s̃µ0

]
< ∞, and for times much larger than

ttransient =

(r − σ2

2

)2

+ 2σ2h

−1/2

, (4.4)

the average distribution of project’s sizes follows an asymptotic power law
with tail index µ given by (4.3), in the following sense: the average number
of projects with size larger than s is proportional to s−µ as s→∞.

The condition E
[
s̃µ0

]
< ∞ just means that the initial random sizes of

entrant groups are drawn from a distribution with a tail thinner than a
power law with exponent µ. It could be a power law with an exponent
larger than µ or any distribution decaying faster than power laws for large
s̃0 values.
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Following Proposition 1, we can state the following

Corollary 1: The exponent µ of the distribution of sizes takes the value 1
corresponding to Zipf’s law, if and only if r = h.

In order to understand the meaning of Corollary 1, notice that r − h
represents the average growth rate of an incumbent group. Indeed,
considering a group present at time t, during the next instant dt, it will
either exit with probability h · dt (and therefore its size declines by a factor
−100%) or grow at an average rate equal to r · dt, with probability (1 − h ·
dt). The coefficient r is therefore the conditional growth rate of projects,
conditioned on not having died yet. Then, the unconditional expected
growth rate over the small time increment dt of an incumbent group is
(r − h) · dt + O

(
dt2). The statistically stationary regime, in the presence

of a stationary population of group forming individuals, corresponds to
condition r = h. Malevergne et al. (Malevergne et al., 2010) showed that
this condition can be easily generalized to the case where the population
of group forming individuals grows itself with some exponential rate, as is
the minimal viable group size (Malevergne et al., 2010). Then, this condition
translates into that for the maximum sustainable growth of the universe
of groups, as mentioned above.

4.2.2 Strategy to test the theory and description of our data
set

Our strategy is to find an empirical dataset in which (i) all ingredients of
the theory can be verified explicitly, (ii) all parameters r, σ and h measured
directly and (iii) the empirical distribution of group sizes can be compared
with to prediction (4.1) with (4.3).

We have found such a database, with Amazee.com, which is a Web-
based platform of collaboration. Using Amazee’s Web-platform, anyone
with an idea for a collaborative project can sign in and use the website to
gather followers, who will together help the project owner to accomplish
the project. An Amazee project can be of any type of activities, such as
arts and culture, environment and nature, politics and beliefs, science and
innovation, social and philanthropic, sports and leisure, and so on. Most of
the projects are public, for instance, “build a strong community of Internet
entrepreneurs in Switzerland to exchange information and have fun” (Web
Monday Zurich), “connect all women working in the Swiss ICT industry”
(Tech Girls Switzerland), “to provide fresh running water to each home in
the small African village of Dixie” (Water for Dixie), and so on. Amazee.com
provides a set of features covering the entire lifetime of a typical project,
such as project planning, participants recruiting, fund raising, events and
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meetings hosting, communication, files archiving, and so on. Users join
Amazee.com by either creating a new project, or participating in projects
created by others. The Amazee data we analyze contains the complete
recording in time of the activities of all users creating and joining all the
projects in existence from February 2008 till April 2011.

Projects can be seen as proxies of many naturally occurring entities,
such as social groups, firms, cities, investment vehicles, and so on, each
driven by some goal, competition, and interaction within social networks.
The detailed knowledge of the activity of the participants of all projects
provides a remarkable opportunity to dissect and understand the dynamics
of such systems. In the present study, we restrict our attention to the
simplest measure of size, namely the number Si of members of project i.

4.3 Data analysis and results
4.3.1 Empirical estimation of the power law distributions of

project sizes
Amazee’s platform started in February, 2008, which can be taken as the
birthday of the ecology of projects. We analyze nine snapshots of the
database, one for approximately every four months from October 2008
to April 2011. The first snapshot is eight months after the birth of the
operations on Amazee.com. With the parameter values for r, σ and h
determined below, formula (4.4) predicts a transient of 50-400 days.
Therefore, we should observe a reasonable convergence to the expected
power law distribution in each snapshot.

Table 13 and Fig 6 confirm that the distributions of project sizes obtained
for these nine snapshots are power laws (4.1). Indeed, two kinds of
statistical tests we use all validate these power laws. The two tests are
(i) the parametric bootstrap based Kolmogorov-Smirnov (K-S) test and (ii)
the uniformly most powerful unbiased (UMPU) test of Pareto against the
lognormal distributions (Malevergne et al., 2011). Parametric bootstrap
based K-S tests must be used in our case because the parameter µ in (4.1)
is not known but is estimated in the calibration procedure. All the p-values
for the K-S test applied to the nine snapshots are found larger than 0.05,
indicating that one cannot reject the null hypothesis that the upper tails
of the distributions of project sizes in all the nine snapshots are power
laws. The second test, the UMPU test, compares the power law family as
the null hypothesis with the lognormal distribution family as an alternative
hypothesis. Lognormal distributions are often very hard to distinguish from
power laws. Therefore, comparing their explanatory power relative to that
of the power law family is natural. We find that all the p-values of the
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Tab. 13: Descriptive statistics of the sizes of Amazee’s projects at different times, showing
that most projects have a size of just a few individuals while a few projects
have hundreds to more than one thousand members. Dates are in format
day/month/year.

Date Projects Mean Minimum Maximum Median
Number Size Size Size Size

01/10/2008 451 6 1 227 3
24/01/2009 864 11 1 1106 2
20/05/2009 1125 10 1 1114 2
13/09/2009 1275 9 1 1115 2
07/01/2010 1403 9 1 1117 2
03/05/2010 1579 9 1 1120 2
27/08/2010 1749 9 1 1121 2
21/12/2010 2033 9 1 1123 2
16/04/2011 2231 9 1 1126 2

UMPU tests applied to the nine snapshots are found larger than 0.05. One
can thus accept the null hypothesis of power laws in the UMPU test and
reject the alternative hypothesis of lognormal distributions.

Because the numbers of project members are integers, the exponents µ
corresponding to the empirical distributions shown in Fig 6 are estimated
using the maximum likelihood method (ML) with the normalized discrete
version of (4.1), p(s) = s−(1+µ)

ζ(1+µ) , where ζ(x) is the Riemann zeta function:
ζ(x) =

∑
∞

s=1 s−x. The exponents are found around 1.0, with confidence
intervals always including 1.0. We check the robustness of this conclusion
by estimating the exponents µ for the nine snapshots as a function of a
lower threshold above which the MLE is performed. For all the snapshots,
we find stable estimations, with the 95% confidence intervals including the
value 1, as shown in Table 14. We can thus conclude that Zipf’s law always
holds in this dataset.

4.3.2 Empirical test of Gibrat’s law of proportional growth
We now test formula (4.3) and its underlying model. For this, we test if
model (4.2) holds and proceed to estimate the parameters r, σ and h. The
proportional growth model posits that, for sufficiently small time intervals
∆t, the mean E[∆S] and the standard deviation σ∆S of the increment of
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the size S of a given project should both be proportional to S. To test
this proposition, we extract all the (Si(t), ∆Si(t)) pairs, where i = 1, 2, ...,N
denotes all the projects in the dataset that has totally N projects, and
t = 1, 2, ...,T denotes the time from the first day 1 to the last day T in the
dataset, and all these data pairs are pooled together in 100 size intervals
over all nine snapshots. For each of the 100 size intervals, Figure 7 plots the
average daily increase of project sizes (E[∆S]) and its standard deviation
σ∆S as a function of S. Linear regressions give very high R2’s larger than
0.995, confirming that Gibrat’s law holds. Note that σ∆S is much larger than
E[∆S], i.e., the stochastic component of the proportional growth clearly
dominates (an essential condition for a power law to emerge in the model
(Saichev et al., 2009)). After verifying the Gibrat’s law, we then estimate
r and σ using the Maximum likelihood method, and the results are in
Table 14.

4.3.3 Empirical analysis of the birth and death processes of
amazee.com projects

Next, we find that the rate of birth of new projects on amazee.com is
approximately described by a Poisson process, such that the probability
that n projects are born in a given day is given by

Pr{n} =
λn

n!
e−λ , (4.5)

whereλ ≈ 2.4 is the mean number of new born projects per day. Numerical
analysis shows that the deviation of the real birth process from a Poisson
process brings very small errors into the exponents predicted by (4.3). The
sensitivity of (4.3) to the distribution of either the birth process or the
death process, as well as the convergence of the power law exponents
discussed below, explored by numerical analysis and simulation, has been
investigated by Saichev et al. (Saichev et al., 2009).

Many projects eventually stop growing, when they have reached their
goals or in the presence of operational problems, and thus are inaccessible
from the Amazee website. To the users, this means that the projects do
not exist any more. We find that the distribution of project lifetimes ` (the
lifetime of a project is the number of days between its birthday and the
day it disappears from the Amazee website) is very well approximated by
the exponential law

Pr{` ≥ T} = e−hT , (4.6)

where h is the death hazard rate, whose maximum likelihood estimations
are reported in Table 14 for the nine snapshots of Amazee’s database.
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4.3.4 Comparison between theoretical and empirical values
of the power law exponents

Using the empirically determined values of r, σ and h, we are now in
position to test the theoretical prediction (4.3) for the exponents µ of the
proportional growth model in the presence of stochastic birth and death
process.

As reported above, the empirically determined values of the power
law exponent µ are, within statistical fluctuation, close to 1, the value
corresponding to Zipf’s law. However, as shown in Table 14, r is always
larger than h. Therefore, the presence of Zipf’s law we have observed in the
nine snapshots cannot be explained by Corollary 1, which requires r = h.
We therefore consider the following two possible mechanisms, which can
also explains the presence of Zipf’s law in the empirical distributions.

1. In a growing social system where r > h, the theory predicts that
one should observe a power law with µ < 1. However, it usually
takes a long time for the exponent to converge to the stationary
value predicted by expression (4.3). Since a system with a finite
lifetime tends to underpopulate large groups, the effective power
law exponent tends to be larger in the transient establishment of
the population as it slowly evolves to its stationarity distribution. An
approximate Zipf’s law can thus emerge as a compensation between
this transient effect of a cross-over from a short-term transient
thin-tailed distribution to a very heavy distribution with exponent
smaller than 1. This suggests that Zipf’s law can be observed in the
early stages of the social system, although the measured power law
exponent will converge to the value predicted by (4.3) in the long run.

2. If σ2 is large enough such that σ2
� h and σ2

� r, Zipf’s law will hold
approximately according to the prediction of expression (4.3). This
case could happen in an “old” system, in which σ2 grows to very large
values.

In order to understand how an approximate Zipf’s law could be obtained
as observed empirically, we have performed numerical simulations of
artificial world of projects that follow the laws of random Poisson birth-
proportional growth-random deaths, which are the ingredients of the
theoretical predictions as explained before. Our simulations confirm that
it takes a very long time for the power law exponents to converge to
the predicted values listed in the µ (TH) column of Table 14 (this is all
the more true when these asymptotic values are smaller than 1). In
order to understand quantitatively the impact of a finite lifetime of the
ecology of Amazee projects, we simulate the model underlying (4.3),
using the empirical parameters λ, r, σ, h estimated empirically. We
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then record the distributions of simulated project sizes at finite times
corresponding to the nine snapshots used for the empirical analysis. We
then analyze the distributions for these nine snapshots in our synthetic
universe following exactly the same procedure as done for the empirical
data. The corresponding power law exponents are reported under the
name µ (SIM) in Table 14. One can observe the excellent agreement
between the empirical exponents µ (MLE) and the theoretical values µ
(SIM) that take into account the finite lifetime of the Amazee system and
for the values of the parameters found empirically. Specifically, almost all
empirical exponents lie in the 95% confidence interval of the simulated
exponents, with no adjustable parameters!

Our simulations thus make clear that the the deviations between
empirical exponents and asymptotic values (4.3) may be in significant part
explained by a finite lifetime effect. However, the second mechanism of a
large σ2 also contributed, especially at later times after August 2010, when
the value of σ grew tremendously, so that σ2 is much larger than both r and
h.

In summary, at early times, the value of the empirical power law
exponent close to 1 is mainly due to a finite lifetime effect. At later times,
the exponent converges better and better to its asymptotic theoretical
value, but the later tends to grow towards 1 as σ2 grows correspondingly.
The interplay between these two mechanisms explains well the observed
stability of the empirical distributions, which are very close to Zipf’s law
over much of the history of Amazee.

4.4 Conclusions
The detailed empirical analysis of the burgeoning social networks on
Amazee has provided a unique set-up to test the origin of Zipf’s law
in a system in which all ingredients needed for Zipf’s law to apply are
verifiable and verified. Indeed, the Amazee system underwent different
regimes, from a relatively small standard deviation σ of the relative
project size growth rates to large values, although all the nine snapshots
show the same approximate Zipf’s law. Using numerical simulations of
the underlying growth model, we have demonstrated that the empirical
stability of Zipf’s law over the whole lifetime of the Amazee world can be
attributed to a quite subtle interplay between a finite lifetime effect and a
large σ value. Our analysis and the corresponding results demonstrate that
Zipf’s law can be observed with a good precision even when the balanced
growth condition (r = h) is not realized, if the random proportional growth
has a strong stochastic component and is acting on young systems under
development.
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Our analysis provides a novel validation of the underlying model of
(4.3). In spite of the complex dynamics in the network of Amazee projects,
the model predicts correctly Zipf’s law at different times. More than the
ubiquitous presence of Zipf’s law or of power laws, our analysis reveals
more information relevant to the evolution the system. These ingredients
(random Poisson birth-proportional growth-random deaths) provide the
basis for possible predictions of the future evolution of the system.

There are situations where Zipf’s law holds for some sets and not for
other sets with seemingly similar population and for some measures of
sizes and not for others. For instance, Podobnik et al. (Podobnik et al., 2010)
has documented Zipf’s law for stock equity and market capitalization of
NASDAQ companies. However, they have found that Zipf’s law does not
hold for NYSE firms. In addition, alternative measures of sizes, such as debt
and assets, have been found to be generally power-law distributed but not
necessarily with the exponent corresponding to Zipf’s law. This implies
that the mechanism of proportional growth has to be refined to take into
account the multidimensional nature of firms and their interactions in
their complex networks.
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5
Conclusions

The papers in this thesis deliver two main messages: i) complex financial
and social systems cannot be treated as simply the sum of their individual
components, as the non-linearity of the systems can lead to surprises; ii)
nevertheless, we can disentangle these systems from the complexity by
understanding the underlying interactions and coarse-graining.

The first two papers challenge both the weak form and the semi-
strong form of EMH. In “Can media moods predict stock prices during and
after the 2008 financial crisis?”, we identify a positive feedback loop in
the relationships between negative news and negative returns by using
coarse-grained news data. This strongly hints in the direction of the
likely formation mechanism of financial bubbles and crashes. Moreover,
our empirical results show that one can generate both statistically and
economically significant returns based on newsflows and that the extra
returns are not explained by the Fama-French factors. In “Reverse engi-
neering stock markets with mixed games and alpha generation”, we find
that ABMs have statistically significant success rates of predicting the
sign of future returns. Using ABM-based strategies, one can generate
statistically significant positive returns. In addition to those returns, we
also find linear relationships between the ABMs parameters and historical
stock market regimes. The former paper uses coarse-grained data, and the
latter paper models the interaction between agents. Both papers apply
economic insights and methods yet at the same time incorporate ideas
from complexity theory in statistical physics. Combining these ideas with
tools from data collection, big data analysis, and scientific computing, we
are able to disentangle the systems from the complexity and show that
asset prices are to some extent statistically predictable. Following the same



78 Chapter 5. Conclusions

approach, in “Empirical test of the origin of Zipf’s law in growing social
networks” we predict the exponents of the power law size distributions
of groups on a website by calculating the growth rates and standard
deviations of the groups, as well as their birth and hazard rates, at different
times. The ubiquitous Zipf’s law, an emergent phenomenon, is thus
successfully explained by the microscopic behaviour of the groups. The
results again evidence the predictive power of our approach.

The contributions of these papers are thus important. The first paper
discloses that negative news is not digested by investors immediately but
affects the investors for a longer time than predicted by EMH because of
the positive feedback loop between negative news and negative returns.
The second paper models how investors trade based on historical price
information. Because of the existence of trend-followers, modelled by
majority game and $-game players, stock markets are not informationally
efficient. Both papers present methods to predict stock prices. In the
future, we can combine the methods in these two papers to better model
the regime switching of the stock markets. The third paper verifies Zipf’s
law empirically. The methodology applied therein can be applied to many
other systems.

Our interdisciplinary approach has made successful predictions in both
financial systems and social networks. It reveals the importance of
combining insights from financial economics, concepts from statistical
physics, and tools from computer science. In the future, we shall apply this
approach to more problems, both theoretical and practical.
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