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Résumé 

Dans le cadre de la tectonique des plaques, la déformation 
induite par le mouvement relatif de deux plaques se produit le long 
de discontinuités de déplacement dans la croûte terrestre appelées 
zones de failles. Les zones de failles actives ont un lien causal 
direct avec les tremblements de terre, qui relâchent soudainement 
les contraintes tectoniques dans un intervalle de temps très court. 
Réciproquement, les zones de failles grandissent lentement par 
accumulation de déplacement dû aux séismes, par 
endommagement croissant à leurs extrémités, ainsi que par des 
processus de branchement ou de connexion entre failles 
préexistantes de diverses tailles. Dans les dernières décennies, la 
connaissance de la phénoménologie et de la mécanique des failles 
et séismes individuels a énormément progressé, mais il manque 
encore une compréhension profonde de leurs liens et interactions. 
Un des principaux problèmes est notre incapacité à attribuer avec 
certitude un séisme donné à sa faille causale. Utilisant une 
approche de reconnaissance de forme, mon but est d’examiner la 
relation entre séismes et failles en développant une méthode de 
reconstruction automatique d’un réseau de failles, en utilisant des 
catalogues de données de haute résolution à des échelles très 
différentes et tenant compte des incertitudes de localisation propres 
à chaque événement. 

Dans cette thèse, j’introduiso une méthode, baptisée Anisotropic 
Clustering of Location Uncertainty Distributions (ACLUD), afin de 



Résumé 
 

 2 

reconstruire les réseaux de failles actifs en utilisant les localisations 
de séismes et leurs incertitudes individuelles. Cette méthode 
consiste à ajuster un ensemble donné d’hypocentres avec un 
nombre croissant de segments de plans jusqu’à ce que l’écart 
résiduel soit comparable aux incertitudes de localisation. Après une 
recherche massive dans l’espace des solutions possibles, j’applique 
six procédures différentes de validation afin de sélectionner le 
meilleur réseau correspondant. Deux des étapes de validation (par 
validation croisée et critère d’information Bayésien (BIC)) traitent 
les résidus de l’ajustement, alors que les quatre autres cherchent les 
solutions les plus en adéquation avec les mécanismes au foyer 
observés indépendamment. Les méthodes d’ajustement et de 
validation sont testées avec succès sur des exemples synthétiques. 
La méthode ACLUD fournit des solutions proches de celles 
attendues, spécialement dans le cas de la validation par BIC ou par 
les mécanismes au foyer. Dans le cas de la présence d’un taux 
significatif de sismicité non corrélée, de bonnes solutions sont 
obtenues en utilisant  une validation basée sur les mécanismes au 
foyer. 

Cette nouvelle méthode de reconnaissance de forme étant 
capable d’intégrer la plus grande partie de l’information contenue 
dans les catalogues de sismicité modernes, j’évalue de quelle 
manière la géométrie du réseau de stations sismographiques local 
améliore, ou altère, la reconstruction du réseau de failles sous-
jacent. Je montre cela en utilisant les données les plus fiables 
(selon des critères relatifs au réseau de stations), qui permettent 
d’obtenir une reconstruction des failles de meilleur qualité et plus 
précise. Utiliser des données de qualité plus médiocre peut 
conduire à des reconstructions instables et non fiables, en 
particulier dans les régions où le réseau de failles possède une 
structure complexe. Nos résultats mettent en lumière la nécessité 
d’une évaluation méticuleuse de la qualité et de la fiabilité des 
réseaux de failles reconstruits pour des applications sur des 
données réelles qui, inévitablement, impliquent l’ajustement 
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d’ensembles de données de qualités hétérogènes. A partir de tests 
réalistes sur des réseaux de failles synthétiques, les résultats 
montrent également la nécessité de prendre en compte les 
structures à petite échelle qui sont mal échantillonnées par la 
sismicité, ainsi que l’hétérogénéité spatiale des incertitudes de 
localisation des événements. 

J’applique cette méthode de reconstruction à deux exemples 
naturels concernant deux échelles spatiales très différentes : la 
séquence de séismes suivant le choc de Landers (1992, Californie 
du Sud, M=7) et la sismicité induite à Bâle (Suisse). Les deux cas, 
j’obtiens des réseaux de failles raisonnablement comparables à des 
données indépendantes de géologie structurale. Ceci suggère 
l’existence de structures faillées complexes dans chaque cas, à 
l’échelle de Landers (couvrant un volume d’environ 70,000km3) et 
à celle de Bâle (pour un volume d’environ 1km3). Cette complexité 
des réseaux de failles reconstruits implique que les méthodes de 
reconstruction automatique de réseaux de failles pourraient, dans le 
futur, être utilisées afin d’obtenir de meilleures prévisions de la 
distribution spatiale des événements au sein des séquences 
sismiques. 

 

 





 

 

 

Abstract 

Within the framework of plate tectonics, the deformation that 
arises from the relative movement of two plates occurs across 
discontinuities in the earth’s crust, labeled as faults zones. Active 
fault zones are the causal locations of most earthquake, which 
suddenly release tectonic stresses within a very short time. In 
return, fault zones slowly grow by accumulating slip due to such 
earthquakes by cumulated damage at their tips, and by branching or 
linking between pre-existing faults of various sizes. Over the last 
decades, a large amount of knowledge has been acquired about the 
overall phenomenology and mechanics of individual faults and 
earthquakes, but a deep physical and mechanical understanding of 
the links and interactions between and among them is still missing. 
One of the main issues lies in our failure to always succeed in 
assigning an earthquake to its causative fault. Using approaches 
based in pattern recognition theory, I aim to gain more insight in 
the relationship between earthquakes and fault structure by 
developing an automatic fault network  reconstruction approach 
using high resolution earthquake data sets at largely different scales 
and considering individual event uncertainties.   

In this thesis, I introduce the Anisotropic Clustering of Location 
Uncertainty Distributions (ACLUD) method to reconstruct active 
fault networks on the basis of both earthquake locations and their 
estimated individual uncertainties. This method consists in fitting a 
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given set of hypocenters with an increasing amount of finite planes 
until the residuals of the fit compare with location uncertainties. 
After a massive search through the large solution space of possible 
reconstructed fault networks, I apply six different validation 
procedures in order to select the corresponding best fault network. 
Two of the validation steps (cross-validation and Bayesian 
Information Criterion (BIC) process the fit residuals, while the four 
others look for solutions that provide the best agreement with 
independently observed focal mechanisms. Tests on synthetic 
catalogs allow us to qualify the performance of the fitting method 
and of the various validation procedures. The ACLUD method is 
able to provide solutions that are close to the expected ones, 
especially for the BIC and focal mechanism-based techniques. The 
clustering method complemented by the validation step based on 
focal mechanisms provides good solutions even in the presence of 
a significant spatial background seismicity rate.  

As the new clustering method is able to deal with most of the 
information contained in modern earthquake catalogs, I assess how 
the geometry of the local station network may improve or alter the 
reconstruction of the underlying fault system. I illustrate this by 
using the highest-quality data selected by station network criteria 
which results in reconstructed fault planes of higher quality and 
accuracy. Using lower-quality data can lead to unstable and 
unreliable fault networks and may introduce artifacts, in particular 
in regions of a complex fault structure. The results highlight the 
need to carefully assess the quality and reliability of reconstructed 
fault networks from real data that unavoidably involve clustering of 
data of heterogeneous qualities. Based on realistic tests with 
synthetic fault network structures, the results also stress the 
importance of accounting for under-sampled sub-fault structures as 
well as for the spatially inhomogeneous location uncertainties. 

I apply the fault reconstruction method to two real datasets at 
two very different spatial scales, i.e. the 1992 Landers M7 
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earthquake sequence in Southern California, and the Basel 
(Switzerland) induced seismicity sequence. In both case studies, I 
find reasonable fault network results compared to independent 
structural analysis data, suggesting highly complex fault structures 
on both, at the scale of the Landers earthquake covering a volume 
of about 70,000km3 and in the volume of the Basel induced 
seismicity sequence contained in a 1km3 cube. This complexity of 
reconstructed fault network implies that the application of 
automatic network reconstruction methods may be added in the 
future to better forecast the spatial distribution of earthquakes 
within such sequences.   
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Introduction 
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Within the framework of plate tectonics, the deformation that 
arises from the relative movement of two plates occurs across 
displacement discontinuities labeled as faults. Different style of 
faulting develop as a function of boundary conditions: divergence 
is dominated by normal faults (the most spectacular examples 
being the mid-ocean ridges of the Baïkal Lake in a continental 
setting); convergence is dominated by thrust faults (as in 
subduction zone or within the India-Asian collision zone); strike-
slip setting is dominated mostly by vertical fault with slip vector 
along the horizontal plane (well-known and studied examples are 
the San Andreas fault system, California, USA, and the North 
Anatolian Fault system, Turkey). Tectonic deformation 
encompasses a very wide spectrum of scales, both in spatial and 
temporal dimensions. Fault-like structures are observed at scales 
ranging from a few centimeters (in the field or laboratory 
experiments), to hundreds of meters (as for example within mines 
or domains hosting induced seismicity experiments), to several 
hundreds of kilometers. Active fault zones are the causal locations 
of most earthquakes, which stand as a brutal process of releasing 
tectonic stresses. In return, faults slowly grow by accumulation of 
slip due to such earthquakes (which also induce damage processes 
such as gouge formation within the fault zone), by cumulated 
damage at their tips, and by branching or linking between pre-
existing faults of various sizes. Over the last decades, a large 
amount of knowledge has been acquired about the overall 
phenomenology and mechanics of individual faults and 
earthquakes (Passchier and Trouw 2005; Scholz 2002; Stirling et al. 
1996), but a deep physical and mechanical understanding of the 
links and interactions between and among them is still missing. 

One of the main issues lies in our failure to always succeed in 
assigning a given earthquakes to its causative fault. A recent effort 
for such an assignment in the San Francisco Bay area showed 
significant discrepancies that arose from the simplified geometry of 
fault zones at depth and the amount and direction of systematic 
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biases in the calculation of earthquake hypocenters (Wesson et al. 
2003). Plotting the fraction of earthquakes inside a swath around 
each of the fault segments in the Southern California Community 
Fault Model as a function of distance and magnitude suggests that 
events with larger magnitudes tend to occur closer to the mapped 
fault. This observation may however be tempered by the fact that 
hypocenter locations of events with smaller magnitudes are less 
well constrained due to the lower number of stations detecting 
them. In the other hand, smaller events could also occur on 
subsidiary or buried faults, which are not accounted for by 
assuming simple large scale fault system geometries.	  

The detection of linear and planar structures in seismotectonics 
has a long history. From the early years of instrumental seismology, 
the main method to identify faults from earthquakes has been 
simply visual inspection. The geometry of an active fault zone is 
often constrained by mapping the surface trace; the dip angle at 
depth and depth extent are either constrained by results of 
controlled source seismology (if available), the distribution of 
hypocenter locations, or they are just extrapolated using 
geometrical constraints, if seismological ones are not available. For 
example, one of the most sophisticated fault models available, the 
Community Fault Model (CFM) of the Southern California 
Earthquake Center (SCEC), combines all available information on 
observed surface traces, seismicity, seismic reflection profiles, 
borehole data, and other subsurface imaging techniques to provide 
three-dimensional representations of major strike-slip, blind-thrust, 
and oblique-reverse faults of southern California (Plesch et al. 
2007). Each fault is then represented by a triangulated surface in a 
precise geographic reference frame. However, the representation of 
a fault by such a simple surface cannot reflect the fine-detailed 
structure observed in the field within extinct fault zones or in 
drilling experiments across active faults (Faulkner et al. 2003; 
Scholz 2002). These results suggest that fault zones actually 
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consist of narrow earthquake-generating cores, possibly 
accompanied by a complex set of small subsidiary faults. 

Very few efforts have been devoted to the automatic digital 
detection of linear or planar spatial features in earthquake catalogs. 
Ouillon et al. (2008) introduced the three-dimensional optimal 
anisotropic dynamic clustering method (OADC) in order to 
quantitatively estimate the geometrical properties of brittle 
structures incorporating the uncertainties of the earthquake 
locations. In a nutshell, OADC is an iterative method that 
progressively fits a hypocenter data set by introducing an 
increasing number of finite planes whose positions, sizes and 
orientations are optimized by minimizing event-to-fault distances. 
It logically stops when the standard deviation of the events’ 
location across each associated plane is smaller than the assumed 
location uncertainty. The way the algorithm adds new planes in the 
system follows a stochastic scheme so that different solutions for 
the same dataset are obtained for different runs. This ensures to 
explore more or less randomly the solution space. 

Despite providing encouraging results when applied to the 
Landers 1992 earthquake sequence (Ouillon et al. 2008), or more 
recently to the Shoreline Fault, Central California (Hardebeck 
2013), the main flaws of OADC are: 

1. Earthquake location uncertainties are assumed to be 
isotropic and identical for all events. This value in 
return totally controls the overall resolution below 
which the fitting process is stopped. 

2. There is no automated validation procedure of the 
obtained solutions. Ouillon et al. (2008) simply choose 
the most frequent solution and notice that it is also the 
most similar to the independent fault traces maps 
provided by the CFM in the Landers area. It ignores 
other prior available information, such as the focal 
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mechanisms of the events that stand as natural 
candidates to validate or reject a solution. 

However, Bondár et al. (2004) show that earthquake location 
uncertainty in the direction of focal depth is generally several times 
larger than in the epicentral plane. Moreover, even within a single 
catalog, location uncertainties vary significantly with space and 
time due to differences in the station coverage, phase picking 
quality, velocity model quality, and so on. The strong assumption 
underpinning OADC can thus hardly be met in real catalogs.  

We shall then first introduce a new fault network reconstruction 
method (see Chapter 2) that improves OADC by incorporating the 
full set of uncertainties as given by the PDF of the location 
problem. The new method will consist of two main steps:  

1) A training phase, which performs the fit of a given data set or 
subset;  

2) A validation phase, which quantifies the ability of the fit 
solution to explain another set or subset of independent data.  

In the training phase, the new method will take account of the 
detailed and individual location uncertainties of each event, which 
control both the fitting process, through the use of the Expected 
Square Distance (ESD) between an event and a fault, and the 
space-varying resolution at which the fit stops. As the training 
process is strongly nonlinear, so that different runs generally 
converge towards different local minima of the residuals, the new 
method will dynamically generate many different solutions. In 
order to find the “optimal” one, we shall submit them to a series of 
different validation processes, each coming with its own specific 
criterion: two of them are based on the residuals of the fit, and four 
others are based on the compatibility of the fault networks with 
known focal mechanisms. The latter consist in checking the 
agreement between the reconstructed fault planes and the observed 
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potential failure planes deduced from double-couple source 
solutions. Numerous synthetic examples will be presented in this 
chapter as well as in the related Appendix. 

As the new clustering method will be able to deal with most of 
the information contained within modern earthquake catalogs, we 
may question, in return, the influence of the quality of the catalogs 
on the performance of the clustering scheme, and on the 
significance of its outputs. Following Bondár et al. (2004) who 
showed that the seismic network geometry information can be used 
to qualify earthquake epicenter location accuracy, in Chapter 3, we 
will revisit seismic network criteria to assess earthquake location 
quality for local networks based on a nonlinear earthquake location 
scheme. We shall then get one step further by assessing how the 
geometry of the local station network may improve or alter the 
reconstruction of the underlying fault system. Those investigations 
will be presented in Chapter 3 and will outline the rules that one 
should follow to select a high quality dataset. An application to the 
case of the Landers area will demonstrate the power of such an 
approach on a synthetic example with a realistic station network 
geometry. 

This integrated approach will also be applied to two real 
datasets concerning two very different spatial scales. The first one 
(see Chapter 2) is part of the sequence that followed the 1992 
Landers M7 earthquake in Southern California. It appears as a 
natural candidate, as a lot of literature has been published about it 
and it can allow for comparison with the work of Ouillon et al 
(2008). The second one (see Chapter 4) concerns a much smaller 
scale of a 1km3 volume featuring seismic events induced by fluid 
injection during the Basel Enhanced Geothermal System (EGS) 
Project. It will allow us to check if the fault network complexity we 
observe in our reconstruction strongly depends on scale or not. 
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2.1 Abstract 

We introduce the Anisotropic Clustering of Location 
Uncertainty Distributions (ACLUD) method to reconstruct active 
fault networks on the basis of both earthquake locations and their 
estimated individual uncertainties. After a massive search through 
the large solution space of possible reconstructed fault networks, 
we apply six different validation procedures in order to select the 
corresponding best fault network. Two of the validation steps 
(cross-validation and Bayesian Information Criterion (BIC) process 
the fit residuals, while the four others look for solutions that 
provide the best agreement with independently observed focal 
mechanisms. Tests on synthetic catalogs allow us to qualify the 
performance of the fitting method and of the various validation 
procedures. The ACLUD method is able to provide solutions that 
are close to the expected ones, especially for the BIC and focal 
mechanism-based techniques. The clustering method 
complemented by the validation step based on focal mechanisms 
provides good solutions even in the presence of a significant spatial 
background seismicity rate. Our new fault reconstruction method is 
then applied to the Landers area in Southern California and 
compared with previous clustering methods. The results stress the 
importance of taking into account undersampled sub-fault 
structures as well as of the spatially inhomogeneous location 
uncertainties. 

2.2 Introduction 

Earthquake forecasts should ultimately be founded on the 
premise that seismicity and faulting are intimately interwoven: 
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earthquakes occur on faults and faults grow and organize in 
complex networks through accumulation of earthquakes. The 
obvious character and the power of this well-established fact are 
obfuscated by serious difficulties in exploiting it for a better 
science of earthquakes and their prediction. Indeed, an intrinsic 
limitation of present efforts to forecast earthquakes lies in the fact 
that only a limited part of the full fault network has been revealed, 
notwithstanding the best efforts combining geological, geodetic 
and geophysical methods (see Mace and Keranen (2012), for 
instance) together with past seismicity to illuminate fault structures 
(Plesch et al. 2007; Basili R. et al. 2013). Nevertheless, these 
studies suggest that fault networks display multiscaling hierarchical 
properties (Cowie et al. 1995), which are intimately associated with 
the modes of tensorial deformations accommodating large scale 
tectonic driving forces (Sornette 1991; Sornette and Virieux 1992). 
Neglecting the information from fault networks constitutes a major 
gap in the understanding of the spatial-temporal organization of 
earthquakes (see however early attempts by Cowie et al. (1995); 
Cowie et al. (1993); and Sornette et al. (1994)), thus limiting the 
quality and efficiency of most current earthquake forecasting 
methods. Including more realistic geometries and tensorial strain 
information associated with the underlying reconstructed fault 
networks will in the long-term improve present attempts to develop 
better space-time models of earthquake triggering, which still lack 
information on fault localization by assuming diffuse seismicity 
unrelated to faults or assume very simplified structures (Woessner 
et al. 2010; Ogata and Zhuang 2006; Gerstenberger et al. 2005). A 
reliable association of earthquakes and faults is an important 
constraint to determine the spatial decay of earthquakes in 
aftershock sequences, which provides insights into the triggering 
mechanisms of earthquakes (Stein 1999) and improves estimates of 
where aftershock hypocenters are located in comparison to the 
main shock properties (Woessner et al. 2006; Hauksson 2010; 
Powers and Jordan 2010). 
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Earthquake forecasting must issue statements about the likely 
spatial location of upcoming events. In an ideal case, we would like 
to forecast the set of faults or fault segments about to break in the 
near future. This would help predicting the expected ground 
motions due to radiated seismic waves, as well as anticipating 
problems due to surface faulting prone to cause damage on 
infrastructures. This goal is addressed with current fault-based 
approaches that use catalogs of mapped faults such as the 
Community Fault Model (CFM) in Southern California (Basili R. 
et al. 2013; Plesch et al. 2007); which however lack the small-scale 
structures that may contribute significantly to short and 
intermediate-term hazards. Moreover, as illustrated by the Mw 6.7 
Northridge, 1994 earthquake, a significant number of large 
earthquakes continue to occur on faults that were not yet mapped 
and were only revealed by the earthquake itself. In the case of 
Northern California, most of the seismicity remains unexplained by 
the set of mapped faults as shown for example in Wesson et al. 
(2003), where most events are labeled under 'BKGD', for 
'background', whereas they seem to occur on well-defined fault 
structures. Moreover, such extensive fault catalogs do not 
necessarily exist in other parts of the world exposed to intense 
seismic hazard.  

Using the magnitude of recorded events to determine 
empirically their contribution to the amount of slip over each fault 
patch, an improved knowledge of the underlying fault network may 
allow one to infer average slip rates on each fault at geological 
time scales and convert them into long-term average seismicity 
rates (Gabrielov et al. 1996), possibly considering the information 
given by paleoseismological studies (see for example the National 
Seismic Hazard Mapping Program; Frankel et al. (2002);  the 
Uniform California Earthquake Rupture Forecast model; Petersen 
et al. (2007); Field (2008)). This approach is used to provide long-
term time-dependent or time-independent forecasts. 
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The usual, and necessary, trick used in existing earthquake 
forecasting methods thus consists in smoothing the spatial structure 
of the earthquake catalog, in order to approximate the geological 
complexity of the local fault network. Only recently, forecast 
models were proposed that attempt to combine both seismicity and 
fault data sets in a common approach, yet blurring the knowledge 
of the fault structure by smoothing techniques (Hiemer et al. 2013; 
Rhoades and Stirling 2012). Smoothing is performed using only 
the 2D set of epicenters (and not the 3D set of hypocenters), and 
this process always involves a set of arbitrary choices or 
parameters. The simplest smoothing consists in superimposing a 
regular grid onto the target area, thus coarse-graining the fault 
network at a homogeneous (and arbitrary) spatial resolution. A 
softer method consists in smoothing the set of declustered events 
with Gaussian kernels, whose bandwidths are adapted to optimize 
the quality of smoothing according to some metric (Zechar and 
Jordan 2010), by using adaptive kernels or those respecting the 
distance to their closest neighbors (Hiemer et al. 2013). In general, 
events are simply replaced by kernels that are added up over the 
whole space and normalized so that the integral of the spatial 
density of events is equal to the number of events in the catalog. In 
many implementations, a smoothing is considered as optimal when 
it maximizes the score of the forecasts on an independent dataset. It 
follows that the smoothing parameters do not stem from 
independent geological or physical knowledge. They thus look 
more like hidden parameters of the forecasting technique as a 
whole. Moreover, the use of square cells or isotropic kernels is 
totally opposite to what could be expected to best approximate a set 
of plane segments, whose orientations vary in space (see for 
example Gaillot et al. (2002) and Courjault-Radé et al. (2009), for 
the spatial analysis of sets of epicenters using anisotropic wavelets, 
inspired by a methodology initially developed by Ouillon et al. 
(1996); Ouillon et al. (1995) for maps of fault or joint traces). In 
some cases, the bandwidth of the kernels may also depend on the 
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size of the local events or on their spatial density: the larger the 
latter, the finer the resolution.  

The well-documented multiscale organization of earthquakes 
and faults precludes any objective choice of the most appropriate 
spatial resolution to study their dynamics. The only characteristic 
scales in such systems are the size of the system itself (at large 
scales), and the scale below which scale invariance breaks down 
without producing bonus information; typically, this is the smallest 
distance between pairs of events, or the size of the smallest fault, or 
the width of geological and rheologically different layers (Ouillon 
et al. 1996). From a statistical physics point of view, one may 
argue that taking account of the numerous 'microscopic' spatial 
details of the seismicity process may only deteriorate our ability to 
model their dynamics and provide efficient forecasts, which is then 
a good reason to perform a smoothing. Another obvious reason is 
that events are always spatially located up to some finite 
uncertainties. However, Werner et al. (2011) brought into the 
debate new interesting elements by noticing that accounting for 
small magnitude earthquakes (down to M = 2) in the input data set 
increased the likelihood of the forecasts. As increasing the number 
of small-scale earthquakes allows one to take account of smaller-
scale details of the fault network, it follows that the smoothed 
seismicity rate of Werner et al. (2011) closely reflects the best 
possible approximation of the fault network they could hope to get. 
This result echoes the conclusion of Zechar and Jordan (2008) and 
(Woessner et al. 2011) who suggest that future seismicity-based 
techniques should also use this set of faults as a data input.  

No independent and accurate geophysical technique exists that 
provides a detailed and complete 3D map of active fault networks. 
As a consequence, we rely in this approach on seismicity itself as 
the best proxy to image the current fault network. Continuous and 
recent progress in earthquake location techniques now allow the 
manipulation of rather precise spatial data. For example, as 
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absolute locations used to feature uncertainties of the order of a 
few kilometers in Southern California are now re-estimated using 
relative location algorithms, the (relative) uncertainties are now 
shrinking down to only a few tens of meters (Waldhauser and 
Schaff 2008; Hauksson et al. 2012). Nonlinear location algorithms 
(Lomax et al. 2009; Husen et al. 2007; Husen et al. 2003) even 
allow the direct sampling of the full probability density function 
(hereafter pdf) of the location of each event. It follows that 
seismologists now have the opportunity to access to the detailed 
topology of the active part of the fault network, provided they have 
the tools to estimate the position, size and orientation of fault 
segments from the precise location of events listed in earthquake 
catalogs, i.e. to extract the full value from these golden data. 

Ouillon et al. (2008) recently proposed a new method of pattern 
recognition that reconstructs the active part of a fault network from 
the spatial location of earthquake hypocenters. It is inspired from 
the seminal k-means method (MacQueen 1967), which partitions a 
given dataset into a set of (a priori isotropic) clusters by 
minimizing the global variance of the partition. Ouillon et al. 
(2008) generalized this method to the anisotropic case with a new 
algorithm, which, in a nutshell, fits the spatial structure of the set of 
events with a set of finite-size plane segments. The number of 
segments used is increased until the residuals of the fit become 
comparable to the average hypocenters location uncertainty. One 
can then estimate the position, size and orientation of each plane 
segment. Ouillon et al. (2008) applied this algorithm to synthetic 
datasets as well as to the aftershock cloud of the Landers, 1992 
event, in Southern California, for which they showed that 16 planes 
were necessary to provide a fit compatible with the average 
location errors. Moreover, extrapolating the set of plane segments 
to the free surface, the predicted fault traces showed a good 
agreement with observed fault traces of the Southern California 
Community Fault Model (CFM) and also allowed to map faults of 
significant size that are not reported in the CFM.  
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The main shortcoming of the Ouillon et al. (2008) clustering 
method is its rough account of location uncertainties, assumed to 
be constant for the whole catalog. In this paper, we improve on this 
method by taking account of the detailed and individual location 
uncertainties of each event, which control both the fit through the 
use of the Expected Squared Distance (ESD) between an event and 
a plane and the resolution at which the latter is performed. As the 
fitting method is still strongly nonlinear, different runs generally 
converge towards different local minima of the residuals. We thus 
introduce new methodologies to validate the obtained solutions, as 
systematic and automatic comparison with existing fault maps, if 
existent, is a very difficult exercise, in particular because it lacks a 
precise metric. We thus present six validation schemes: two of 
them based on the residuals of the fit, and four others based on the 
compatibility of the fault networks with known focal mechanisms. 
The new method is then tested on simple and more complex 
synthetic fault networks, as well as on a new catalog of the Landers 
area. 

2.3 The optimal anisotropic data clustering 
(OADC) method  

The new clustering method proposed here is based on a pattern 
recognition technique called k-means, shortly described in Ouillon 
et al. (2008) and in more details in Bishop (2006), Duda et al. 
(2001) and MacQueen (1967). This technique makes no 
assumption about the shape of the individual clusters. In that sense, 
it can be viewed as an ‘isotropic’ processing of data. When dealing 
with earthquakes, it is desirable to cluster data within structures 
that can be identified as faults. In that case, the minimum a priori 
information that may help to constrain the pattern recognition 
process is that the clusters we look for should be highly anisotropic, 
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i.e. that their thicknesses should be very small compared to their 
other dimensions.  

The OADC method of Ouillon et al. (2008) provides an attempt 
to reconstruct fault networks using solely the information 
contained within seismicity catalogs. Compared with other 
strategies, e.g. the Community Fault Model (CFM) of the Southern 
California Earthquake Center (SCEC), it defines a general method 
that can identify active fault segments without taking into account 
direct observations such as maps of fault surface traces and/or 
subsurface borehole data, nor indirect observations like seismic 
reflection profiles to map deeper structures. Ouillon et al. (2008) 
also provide a discussion of other seismicity clustering techniques. 

The OADC method is directly inspired from the original 
definition of the k-means method, yet generalizes it to strongly 
anisotropic clusters, whose thicknesses are assumed to be very 
small. Each fault segment is thus approximated by a finite 
rectangular plane, characterized by its dimension (length and 
width), orientation (strike and dip) and position of its center. 
Earthquakes are handled as pure data points, while a uniform and 
isotropic location uncertainty  is assumed to hold for all events. 

The general algorithm of the method is the following: 

1. Initialize N0 planes with randomly chosen center 
positions, orientations and dimensions. 

2. For each earthquake O in the catalog, compute the 
distance from it to each plane C, determine the closest 
plane, and associate the former to the latter. Earthquake 
locations are treated as points, and Euclidean distances 
to the finite planes are computed. This first partition 
provides us a set of N0 clusters of events. 

3. For each cluster, perform a spatial principal component 
analysis (PCA), and use the eigenvalues and 

ε
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eigenvectors to define their new dimensions, 
orientations, and center positions. The thickness of each 
cluster is given by the square root of the smallest 
eigenvalue. The two other eigenvalues provide the 
length and width of the cluster (see Ouillon et al. (2008) 
for details). 

4. Assuming a uniform catalog spatial location uncertainty 
, the computation stops if the thickness of each 

cluster is smaller than , as the dispersion of events 
across each plane can be fully explained by location 
errors. If there is at least one cluster for which the 
thickness is larger than , then proceed to step 5. 

5. Split randomly the plane associated to the thickest 
cluster into m sub-planes, increase N0 accordingly by 
m-1, and go back to step 2. 

This procedure, which is nothing but a nonlinear fitting 
technique, ensures that events will be partitioned into clusters with 
negligible thickness (up to location uncertainties), i.e. plane-like 
structures, which are the assumed a priori model for faults. 

Similarly to the classical k-means method, the OADC method 
may converge to a local minimum of the global clusters fit residual. 
One can solve this problem by running the clustering procedure 
several times, with different initial conditions, in order to explore 
the solution space and select the fault network model that achieves 
a genuine global minimum. However, as the method itself ensures 
that all fit residuals are smaller than location uncertainties, all 
solutions are therefore statistically equivalent. Picking one of them 
as the best one thus requires an independent validation process. 
Due to computational limitations, Ouillon et al. (2008) provided 
only ten runs on the Landers aftershocks dataset, yet noticed that 
the method converged more often to one of the solutions than to 
any other (thus suggesting a validation based on the most 

ε
ε
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frequently selected solution). For each solution, extrapolating all 
the planes they obtained to the free surface, thus generating the 
corresponding predicted surface fault traces, they noticed that the 
most frequent solution was also the one that fits best the observed 
natural fault traces in this area. While offering a validation 
procedure on an independent dataset, this approach would prove 
cumbersome when dealing with much larger areas, or with zones 
where no such fault traces maps or incomplete ones are available. 
Another drawback is the subjectivity of the comparison, which is 
not based on any quantitative metric. The systematic validation of 
the obtained solutions is thus still an open problem. 

Another obvious limitation of the OADC method is the 
assumption made about location uncertainties, which are 
considered to be uniform and isotropic. This hypothesis is 
unrealistic since focal depth is often less well constrained than the 
epicentral location. Moreover, location uncertainty is strongly 
influenced by the velocity model error, the quality of waveform 
pickings, the station network geometry, etc., and is thus very 
heterogeneous in space and time (e.g. Husen and Hardebeck 
(2010)). It thus follows that the clustering process should be more 
detailed in some areas and sparser in some others. The clustering 
method should take this heterogeneity into account. 

2.4 Anisotropic clustering of location 
uncertainty distributions (ACLUD) 

The original k-means method assumes that the uncertainty of 
the spatial location of data points is negligible. In the case of real 
physical systems, the story is different. For earthquakes, location 
uncertainty is an inherent property due to wave arrival time 
inaccuracy, velocity model errors, station network geometry, or 
outdated data sources like historical seismicity catalogs. When 
taking uncertainty into account, data can no longer be described as 
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a point-process, but as a more or less complex probability density 
function (hereafter pdf). Chau et al. (2006) claim that uncertainties 
can significantly affect the results provided by clustering 
techniques such as k-means. They thus introduce the uk-means 
algorithm (where ‘u’ stands for ‘uncertain’, see electronic 
supplement), which incorporates uncertainty information and 
provides, when considering synthetic samples, more satisfying 
results than the standard algorithm. 

We now show how to extend the uk-means method of Chau et 
al. (2006) to the case where the cluster model  is a plane, in the 
spirit of Ouillon et al. (2008), and the object to cluster  is the pdf 
of an earthquake location. We term the new method the 
“anisotropic clustering of location uncertainty distributions” 
(ACLUD). 

Chau et al. (2006) suggest using the expected squared distance 
(hereafter ESD), which, in our case, is defined as: 
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where f(x) is the pdf of the earthquake location. While this 
distance is easily estimated in the case of an infinite plane , we 
also propose computationally efficient approximations in the case 
of a finite-size plane. 

2.4.1 Expected square distance (ESD) between a 

probability density function and an infinite plane 

We consider an infinite plane within a Euclidean three-
dimensional space. The coordinate system is chosen such that its 
origin is located on the plane, whose orientation is given by two of 
the basis vectors, the third one being normal to it. Then, Eq. (2.1) 
can be rewritten as: 
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where  is the third component of point . Noticing that: 

   x3
2 = x3 − k3 + k3( )2

= x3 − k3( )2
+ k3

2 + 2 x3 − k3( ) ⋅ k3    (2.3) 

with  being the third component of the centroid of , and 
given that the contribution of the last right-hand term of Eq. (2.3) 
to the integral is zero, Eq. (2.2) becomes: 
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The first term in the right-hand side is simply the squared 
distance between the centroid of  and the infinite plane, while the 
second term is simply the variance of  in the direction normal to 
the plane (which can be deduced from the pdf of  and its 
covariance matrix). This is nothing but the variance decomposition 
theorem. 

2.4.2 Expected square distance (ESD) between a 

probability density function and an infinite line or a point  

Following a similar procedure when  is a line, we can choose 
a coordinate system so that  lies on the first axis. Then we get: 
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When  is a point, we can choose a coordinate system so that 
 lies at the origin. Then we get: 
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The interpretation of Eq. (2.5) and (2.6) is the same as for Eq. 
(2.4) except that we now compute the distance between the 
centroid and a line and use the relevant dimension for the variance 
decomposition. This last set of equations will prove very useful 
when approximating the distance between a pdf and a finite plane. 
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2.4.3 Expected square distance (ESD) between a 

probability density function (pdf) and a finite plane 

The anisotropic clustering of location uncertainty distributions 
(ACLUD) method we propose still assumes that active fault 
segments can be modeled as rectangular finite planes. If it proves 
rather easy to compute the Euclidean distance between a point and 
a finite plane, the problem is a bit more difficult when observations 
are given through their pdf’s. Indeed, we shall see that, using the 
variance decomposition theorem, we can only provide theoretical 
approximations to the expected squared distance between a pdf and 
a finite plane.  

Figure 2.1 illustrates the problem. The grey rectangle area 
represents a finite plane . Events may be located anywhere in the 
full 3D space that surrounds it. We now consider any object  in 
the 3D space and its projection  along the direction normal to  
onto the infinite plane containing . The object  will be located 
within one or more of the nine sectors defined in Figure 2.1, each 
sector being indexed in roman numbers from I to III as shown in 
the figure. The object  can overlap several sectors depending on 
the shape of the support of its pdf. 

If  is completely included within sector III, then the ESD 
between  and  can be computed using Eq. (2.4), as the infinite 
plane assumption is valid. If  is completely included within a 
sector labeled (II), the ESD is computed using Eq. (2.5) (after an 
appropriate change of coordinates) as the infinite line assumption is 
valid. If  is completely included within a sector labeled (I), the 
ESD should be computed between the pdf and the closest corner of 
the finite plane, using Eq. (2.6). Indeed, a similar approach has 
been used in Ouillon et al. (2008) to compute the Euclidean 
distance between a given hypocenter and a given finite plane. 

In our case, the general problem is much more complex as we 
implicitly have to consider the distance between the finite plane 
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and every point where the pdf of  is defined. This implies that 
the projection  is characterized by a pdf that may overlap several 
distinct sectors, so that none of the above simple formulae (2.4), 
(2.5) and (2.6) can be used anymore. In that case, only a direct 
Monte Carlo approach provides an accurate estimate of the ESD. 
As it would prove computationally too heavy when handling large 
catalogs and sets of faults, we propose a simplification: we first 
consider only the centroid of  and its own projection. If the latter 
is contained within sector III, we use formula (2.4) as an 
approximation to the ESD. If it is contained within a sector labeled 
(II), we use formula (2.5). If it is contained within a sector labeled 
(I), we use formula (2.6). This approximation is obviously wrong 
when the size of the finite plane is much smaller than the spatial 
extent of the domain where the pdf of  is defined. However, in 
practice we found that for most of cases, location uncertainties are 
much smaller than the size of potential fitting fault plane we can 
resolve.  

2.4.4 Anisotropic clustering of location uncertainty 

distributions algorithm 

Assume that an earthquake catalog provides the location of each 
event with a pdf. We can characterize the location with its centroid 
(hereafter, the hypocenter) and its covariance matrix. The new 
clustering algorithm we propose is the following: 

1. Split randomly the earthquake catalog into 2 distinct 
subsets: the training set (which is the one to be fitted) 
and the validation set (which is the one used to qualify 
or discriminate different clustering models). 

2. Initialize a number of N0 faults with random positions, 
orientations and dimensions. 

3. For each earthquake in the training subset, associate the 
earthquake to the closest plane according to the ESD. 
We thus get a partition of events into a set of N0 clusters. 
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4. For each cluster i, compute the covariance matrix of the 
locations of its associated hypocenters, and find its 
eigenvalues and eigenvectors. By doing so, the 
dimensions and orientations of each cluster can be 
computed. The smallest eigenvalue λi ,3  provides the 
thickness of the corresponding cluster.  

5. For each cluster, compute the average individual 
variance εi of the hypocenters’ location pdf in the 
direction normal to the cluster.  

6. For each cluster, compare its thickness λi ,3  with the 
average location uncertainty εi  of its associated events. 
If εi ≥ λi ,3  for all clusters, the computation stops, as 
location errors alone can explain the finite thickness of 
each cluster. We then proceed to step 8. If there is at 
least one cluster for which εi < λi ,3 , then we proceed to 
step 7 as we need more planes to explain the data.  

7. We split randomly the thickest cluster into m other 
planes, and go back to step 3 (increasing N0 accordingly 
by m-1). 

8. We compute the residual of the fit of the validation data 
set conditioned on the fault network model of the 
training data set (from step 6). 

9. We repeat steps 1-8 many times (typically several 
thousands) and rank all models according to their 
validation fit residuals obtained in step 8. 

For this study, in step 7 we use m=2. The proposed algorithm 
accounts for individual event location uncertainties, both in the 
computation of the ESD between an event and the planes and in the 
criterion used to continue or stop the fitting process. The stopping 
criterion thus doesn’t assume a spatially uniform location 
uncertainty, but is adapted to the case of space-dependent location 
quality. This property is particularly welcome in the case of 
earthquakes for which location uncertainties heavily depend on the 
spatial structure of the stations networks.  
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One should also be aware that the full three-dimensional 
confidence interval is different from the confidence interval in 1D. 
In order to compute the variance of the pdf in the direction normal 
to the plane, we have to project the 68% three-dimensional 
confidence ellipsoid onto that normal direction. Yet, after the 
projection, the confidence level increases to higher levels so that 
the correct quantiles have to be estimated (Press et al. (2007) , page 
811, figure 15.6.3). 

By subdividing the data set, we implement a cross-validation 
technique to the predictive skill of the clustering approach. Our 
procedure separates randomly the full dataset into two independent 
subsets, generates the fault model that fits the training dataset and 
evaluates it by estimating how well it predicts the independent 
validation set. The process is repeated several times, each trial 
corresponding to different training and validation sets, and we 
select the one with the best validation result. How to generate the 
training and validation data sets is a question in itself. On the one 
hand, if there are not enough earthquakes in the training set, it will 
lead to a spurious fit with a very bad validation score; on the other 
hand, if there are not enough earthquakes in the validation set, 
residuals may fluctuate and depend strongly on the particular 
choice of the validation set. Using 95% of the data as the training 
set and 5% as the validation set are standard values used in pattern 
recognition algorithms (Bishop 2006). Yet, from synthetic tests 
where the original fault networks are known, we checked that it 
generally provides robust results.  

The main assumption of this algorithm is that the hypocenter 
corresponds to the expectation hypocenter location (Lomax et al. 
2000). In the framework of probabilistic earthquake location the 
hypocenter location is usually associated with the maximum 
likelihood point (Tarantola and Valette 1982). The assumption that 
the hypocenter is not very different from the maximum likelihood 
point would be valid if and only if the pdf of the location of the 
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event is compact, i.e. small in size, which has no a priori reason to 
be true. We shall discuss later the conditions for which this 
assumption might be approximately valid in the case of natural 
earthquakes catalogs. 

2.4.5  Validation strategies 

The new clustering method automatically explores a very large 
solution space. In order to find the “best” solution, we follow a 
purely statistical strategy, i.e. cross validation. However, other 
validation strategies might be more appropriate. In the following, 
we will introduce three other criteria:  one residuals-based 
statistical strategy called Bayesian Information Criterion (BIC, see 
Schwarz (1978)), and two metrics based on observed focal 
mechanisms.  

2.4.5.1 Bayesian Information Criterion 

BIC is a commonly used statistical criterion for model selection 
that takes both the likelihood function and model complexity into 
consideration. During clustering, it is possible to increase the 
likelihood by adding more faults, at the cost of increasing the 
complexity of the model. By adding a penalty term for the number 
of faults, the BIC merges the likelihood and complexity of the 
solution together. Assuming that the distribution of earthquakes 
across the fitting planes is a normal distribution, the BIC can be 
expressed as: 

                         BIC = n ⋅ ln( σ) + k ⋅ ln(n)                        (2.7) 

where is the number of events used for the fit,  is the 
unbiased variance estimation of the earthquake distribution across 
the fitting planes, and  is the number of faults in the tested model. 
Thus, by minimizing the BIC, we may find the best network from 
the solution space that provides both a large likelihood and a 
simple model structure. The difference with the cross validation 
scheme is that the latter is performed using the validation dataset, 
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whereas the BIC uses the training dataset. It is also important to 
notice that, during the clustering process, we randomly partition the 
whole data set into training and validation sets. It means that, for 
each clustering run, the training set changes so that the computed 
BIC is not strictly derived from the same training set. However, 
considering that we deal with large datasets among which 95% of 
each single one is used as training sets, the BIC remains a robust 
estimator.  

2.4.5.2 Focal mechanism µ -metrics 

The focal mechanism of an earthquake describes the potential 
orientations of the rupture plane and slip vector. If events are 
clustered together on a given fault plane, we may expect them to be 
characterized by similar focal mechanisms, the latter being also 
consistent with the orientation of the fitting plane. This provides a 
mechanical approach to validation. At the end of each fit, we thus 
adopt the following procedure: 

1. For each cluster, select the available focal mechanisms 
of events. 

2. For each focal mechanism, compute the normal vector 
to each of the two nodal planes. 

3. For each nodal normal vector, compute its dot product 
with the vector normal to the cluster (defined as 
pointing upwards). If one of the dot products is negative, 
replace the nodal normal vector by its opposite and 
change the sign of the dot product. 

4. From both nodal normal vectors, choose the one that 
maximizes the dot product. 

5. Once steps (2)-(4) have been fulfilled for each event of 
the cluster, stack all the selected nodal normal vectors, 
and compute the angle µ between the resultant and the 
normal vector to the cluster. 
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Step (5) is performed after weighting each selected nodal 
normal vector according to the magnitude M of the corresponding 
event. The weight is taken as 10aM. If a=0, then all events have the 
same weight and the measured angular discrepancy is mainly 
controlled by the smallest events. If a=1/2, then each event is 
weighted proportionally to its empirically assumed slip amount, 
while it is weighted by its energy or moment if we set a=3/2 (and 
in that case the angular discrepancy is controlled by the largest 
event in the cluster). As the plane segments we infer from our 
network reconstruction are, among other parameters, characterized 
by a size (i.e. an area) and a direction, it thus makes sense to 
compare them with the average direction of rupture events 
weighted by their individual rupture area. This is why we choose to 
set a=1. Moreover, if the local Gutenberg-Richter b-value is close 
to 1, each magnitude range contributes equally to the estimated 
angular discrepancy, yet, it is not a necessary assumption of the 
methodology. 

We first define a weighted average normal vector to the selected 
nodal plane of events on fault plane  as: 

                                

 


VEi =

1
vEi ,k ⋅10

a⋅Mi,k

k=1

m(i )

∑
vEi ,k ⋅10

a⋅Mi,k

k=1

m(i )

∑           (2.8) 

where: 

• = the number of events in fault plane ; 
• 

 
vEi ,− = the normal vector to the selected nodal plane of a 

given event on fault plane ; 

We then define a global angular discrepancy of the full set of 
planes as the  measure. It is formally expressed as: 
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where: 

• = the number of fault planes; 
•  

VFi = the normal vector to fault plane ; 

The weighting strategy of Eq. (2.9) implies that we simply 
compute an average angular misfit over all faults (hence the 
associated subscript on the left-hand side). Similarly, we can also 
perform the average over all events. We obtain: 
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Minimizing both estimators will select networks where the 
orientation of inverted fault planes is the closest to the average 
orientation of the focal mechanisms. In summary, the µ-metric 
measures the magnitude weighted average direction of the normal 
vectors of the “observed” focal mechanisms to the normal vector of 
the fault plane derived within the clustering approach. 

2.4.5.3 Focal mechanism σ -metrics 

Events grouped together by our fitting procedure may also 
feature roughly similar focal mechanisms, whose orientation may 
be different from the one of the fitting plane (see sketch in Figure 
2.2 and explanations below). Following the same procedure as 
above from step (1) to (4), we change step (5) as: 

6. Once steps (2)-(4) have been fulfilled for each event, 
stack all the selected nodal normal vectors, and 

n
Fi
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compute the average angle between each individual 
selected nodal vector and the resultant stacked vector. 

The associated measures are defined and , 
depending on the way they are averaged. They are similar to 
standard deviation in statistics, yet we compute them using the L-1 
norm (and not the L-2 norm). The reason is that, in the case when 
the distribution of angles is not Gaussian but fatter tailed, using the 
L-1 norm provides results less sensitive to large outliers. Using the 
same notations as above, the mathematical expressions are: 
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 measures the angular difference from each single normal 
vector to the fault plane from the clustering approach and then 
averages, which results in a quite different metric. 

Figure 2.2 shows examples of applying  and  measures. On 
each plot, the black line indicates the trend of the fault zone, while 
the gray lines indicate the potential orientations of shorter 
individual ruptures within the fault zone, all events being clustered 
in the same macroscopic fault zone (see Section 6 for a further 
discussion of the influence of the fault zone complexity on the 
results of clustering). When the rupture planes are quasi-colinear 
with the fault trend, then both  and  values are small (Fig. 2a). 
Figure 2.2b shows a series of planes for which orientations 
oscillate around the trend of the fault. In that case, the  value is 
still small while the  value is larger. Figure 2.2c shows the case 
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of an en-échelon distribution of rupture segments, which will 
provide a finite and possibly large  value and a very small  
value. The last example (Fig. 2d) shows a series of alternating 
conjugate rupture planes, which will be associated with large 
values of both  and . These two measures derived from focal 
mechanisms can quantify the degree of agreement of the 
reconstructed fault network with local focal mechanisms. They 
provide tools in model selection with consideration of tectonic 
knowledge compared to pure statistical approaches such as cross-
validation or BIC.  

2.5 Tests of the ACLUD  method on 
synthetic catalogs featuring location 
uncertainties 

The previous section has introduced a new clustering scheme to 
automatically reconstruct fault structures from seismicity catalogs 
including location uncertainty information. We apply the approach 
to synthetic catalogs to understand its sensitivity to different 
structural complexities. 

2.5.1 Generation of datasets 

Locating earthquakes results in a posterior probability density 
function of an event location (Moser et al. 1992; Tarantola and 
Valette 1982; Wittlinger et al. 1993). The pdf may possess any 
arbitrary shape and may be visualized using scatter density plots, 
which are obtained by drawing samples from the posterior pdf with 
their number being proportional to the probability (Lomax et al. 
2000; Husen et al. 2003). From these samples, the 68% confidence 
ellipsoid can be computed by a singular value decomposition of the 
corresponding covariance matrix, and consists in a rough 
approximation of the spatial uncertainty of the location estimate. 
The expectation hypocenter is at the center of the confidence 

µ σ

µ σ
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ellipsoid, and the maximum likelihood hypocenter will always be 
located within the densest part of the pdf, so that both locations do 
not necessarily coincide.  

In this section, we generate synthetic earthquake catalogs using 
the NonLinLoc software package (Lomax et al. (2000), Version 5.2, 
http://alomax.free.fr/nlloc/). Compared to traditional, linearized 
approaches, NonLinLoc is superior in that it computes the posterior 
pdf using nonlinear, global searching techniques. The general 
method we use to generate a synthetic earthquake catalog is the 
following. We first impose the geometry of the original fault 
network, which consists in a collection of rectangular planes with 
variable locations, sizes and orientations. We then assume that all 
earthquakes occur exactly on those planes and generate P-waves. 
We then randomly distribute a given number of earthquakes on 
those planes. For each event, we randomly choose a set of 11 
stations which constitute a set of observations. For a given velocity 
model, theoretical travel times between the true hypocenters and a 
set of given stations are computed. Random perturbations are 
added to the arrival times mimicking the uncertainty in picking 
waveform onset, which allows us to proceed to the inverse problem 
of computing the location of the events as well as their 
uncertainties by using NonLinLoc. 

To generate the set of associated synthetic focal mechanisms, 
we first assume that the rake of the slip vector on each plane is zero. 
For each event, the strike and dip are assumed to be identical to the 
ones of the input plane to which it belongs. We then add an 
independent Gaussian random perturbation respectively to the 
strike, dip and rake of the event. Those perturbed angles are then 
used to compute the strike and dip of the auxiliary plane, thus 
providing a complete focal mechanism.  

Note that we did not take account of the possible errors on the 
velocity model, which would provide systematic errors on both 
locations and focal mechanisms. 
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The catalog of relocated hypocenter locations including their 
scatter density clouds is then fitted with a set of finite planes, using 
the ACLUD algorithm as defined in the previous section. The best 
solution which depends on the validation technique is then 
compared to the original input fault network.  

As a first test, we generated a very simple synthetic dataset 
consisting in three vertical faults featuring 4,000 events in all (thus 
similar to the one studied in Ouillon et al. (2008)) and 
characterized by their full pdf. The new clustering technique we 
propose successfully reconstructed the fault network whatever the 
validation criterion we used (see electronic supplement). We shall 
now test it on a more realistic and complex case. 

2.5.2 Synthetic catalog with complex geometry inspired 

from Ouillon et al. 

This synthetic dataset outlines a more complex and realistic 
case. Figure 2.3a shows the structure of the reconstructed fault 
network in the area of the 1992 MW 7.3 Landers earthquake by 
Ouillon et al. (2008). It features 13 planes with a dip larger than 
45° (the three other planes, dipping less than 45°, have been 
removed as they certainly are spurious planes – see Ouillon et al. 
(2008)). The original catalog used in Ouillon et al. (2008) includes 
3,103 events, which we now assume to occur randomly and 
uniformly on those planes. We define a virtual station network, 
similar to the simpler one used in the example shown in the 
electronic supplement, in order to compute theoretical wave travel 
times to 11 randomly chosen stations, and add Gaussian errors with 
a standard deviation of 0.1 s to simulate picking errors. Figure 2.3b 
shows the spatial distribution of the relocated 3,103 events. To 
generate the set of synthetic focal mechanisms, we add an 
independent Gaussian random perturbation respectively to the 
strike, dip and rake of each event with a standard deviation of 10°. 
Those perturbed angles are then used to compute the strike and dip 
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of the auxiliary plane, thus providing a complete focal mechanism. 
For a 80° dipping fault, we performed a Monte Carlo simulation in 
order to compute the angular difference between the normal 
vectors of the correct and perturbed mechanisms. We found that 
the mean value of the angular difference is 11.5°, which is 
comparable with the quality Class A and B focal mechanisms 
computed by the HASH approach (Hardebeck and Shearer 2002). 
As focal mechanisms are characterized by a 3D orientation, their 
statistics is very different from linear variables. Our approach is 
thus a simplified procedure to simulate uncertainties. Kagan (2005) 
introduces a more rigorous way to randomly rotate double-couple 
focal mechanisms in 3D, which one has to use if simulating 
broader distributions than ours.  

Note that, in Section 3.5, we defined two statistical measures 
derived from focal mechanisms, which can be used to evaluate 
each reconstructed fault network. We can also assess the individual 
contribution of each cluster with respect to those global measures. 
We then similarly define for each cluster two individual measures 
of focal mechanism consistency,  and : 
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A large  value indicates that the average focal mechanism 
rupture plane deviates significantly from the fitted fault plane. A 
large  value indicates a significant dispersion of the 
orientations of focal mechanisms within the cluster. 

We performed 6,000 runs with different initial conditions of the 
random number generator which controls the fault splitting step, 
and obtained as many solutions. We now discuss the results 
obtained using the six validation techniques discussed in Section 
3.5. 

Cross validation: Figure 2.4a shows the selected reconstructed 
network, featuring 14 planes. One can notice that two faults in the 
northern end are merged into a single plane. This is due to the fact 
that locations quality in this region is deteriorated due to a poor 
station coverage at the northern end. Such a poor coverage also 
occurs for the southern end, where the two crossing faults are 
reconstructed as a set of three faults. This kind of local overfitting 
is often observed in such situations, and is due to the splitting step 
of the clustering process.  

BIC: Figure 2.4b shows the selected reconstructed network, 
featuring 15 planes, which is different from the one selected by 
cross-validation. Whereas the structure is now correctly inverted in 
the northern part, one can observe a small fault in the middle 
region pointed by the arrow, whose orientation is clearly rotated 
clockwise compared to the original synthetic network (Figure 2.3a). 
The reason is that the BIC gives more weight to the fault planes 
featuring more events. The density of events on this fault is the 
smallest among all 15 faults (for which this parameter ranges from 
0.6/km2  to 5.0/km2). The reconstruction of such low event density 
faults can be unstable as their weight in the global criterion is very 
small. We also noticed that its individual value is the largest 
(for which this parameter ranges from 12° to 29°), indicating that 
the focal mechanisms of events clustered on this fault are very 
scattered.  
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µ  metrics: both  and  metrics select the same 
solution, shown in Figure 2.4c, featuring 14 planes. One can 
observe that two faults in the northern middle region have been 
merged into a single one (indicated by a small arrow). The 
distribution of and values of all 14 planes range from 1° to 
43° and 12° to 23°, respectively. The individual value and 
value of this merged fault are both the largest over all 14 faults. 
This indicates that the focal mechanisms of the events clustered on 
this fault are neither consistent with each other nor with the 
orientation of the fitting plane. This thus makes the fault suspicious. 
More runs would be necessary to sufficiently sample the solution 
space and get a fully correct solution.  

 metrics: Figure 2.4d shows the reconstructed network 
chosen by both  and  metrics, featuring 13 planes. 
Three faults in the central region are merged into a single large 
fault (see the arrow). This comes from the fact that the orientations 
of those three faults are very similar. The individual  and  
values of this merged fault are close to the average of the values 
obtained on the other planes. We thus have no way to diagnose this 
cluster as abnormal. This may stem from the fact that the faults that 
generate those events are located close to each other and feature 
orientation differences less that the uncertainties on the focal 
mechanisms orientations. 

Figure 2.5 shows the stereo plots of the original input faults and 
of the four solutions favored by the six different criteria. Plots in 
the left column indicate the orientations of fault traces. Dots in the 
right column indicate the directions of the normal vectors to the 
fault planes. Qualitatively, there is a nice agreement between all 
the reconstructed networks and the true network (first row of 
Figure 2.5).  

This little example shows that inverting a complex but realistic 
structure, given realistic location uncertainty estimates, is not an 
easy task. However, the inverted networks, if not identical to the 
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original one, are very similar to the original synthetic ones using 
the selection criteria. All validation criteria feature reasonable 
solutions: none of them is particularly better or worse than any of 
the others and the selections based on pure statistical techniques 
give similar fault networks as those based on tectonic constraints. 

2.5.3 Comparison of the ACLUD method with the OADC 

method. 

The OADC method uses a single, uniform and isotropic 
location uncertainty for the whole catalog as the clustering 
stopping criterion. For the synthetic Landers catalog, we computed 
an average location uncertainty of 1.10 km. Using this value as the 
stopping threshold, we performed 6,000 runs using the code of 
Ouillon et al. (2008). The OADC method does not feature the cross 
validation procedure, so that all events are used as the training data 
set. However, we can still rank all 6,000 solutions based on their 
final clustering global residuals. Figure 2.6 shows the four 
solutions chosen by the six following criteria: best global clustering 
residual, BIC, and the four focal mechanism criteria previously 
defined. All those four solutions selected from different criteria 
clearly miss the small-scale structure of the network. Obviously, 
clustering has been forced to end too early due to using an 
inappropriate average location uncertainty estimate, especially in 
the central region. As location uncertainties in the central region 
are smaller than close to the northern and southern edges (due to a 
better station coverage), the stopping criterion, that resembles the 
location uncertainty, should be smaller in the central region than in 
the edge regions. Clustering thus stopped too early in the central 
region and made the structure coarser. Comparing with our new 
method, we thus clearly see the advantage of using the true 
location uncertainty of each event. Comparing the four solutions, 
we notice that the three of them chosen by focal mechanism criteria 
are superior to the ones chosen by both the global clustering 
residuals and the BIC criteria (see Figure 2.6). These three 
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solutions cover most of the input fault planes, yet do not include 
planes sampled by a small numbers of events. However, despite its 
simplicity, the main advantage of OADC is its fast convergence.  

2.5.4 Synthetic data with background events. 

The previous section showed that our technique is able to 
reasonably reconstruct the structure of the synthetic fault network. 
We now test a new assumption where the catalog of events consists 
in the same set as before, but now we add background events. In 
nature, such events also occur on faults but the latter are, for our 
approach, undersampled by seismicity; thus a clustering technique 
cannot reconstruct the structure. Specifically, we add another 20% 
background events to the synthetic data set uniformly distributed in 
the 3D space (see Figure 2.7). The latitude, longitude and depth 
ranges are identical to the ones of the fault-related events, 
providing a total number of 3,724 events. For the sake of simplicity, 
their focal mechanism is chosen randomly among the set of the 
original 3,103 events.  

Our new clustering technique follows the same approach as the 
OADC method to detect and remove background events. The 
detection is based on a local density criterion, as well as on the 
impossibility to associate an event with a given cluster without 
increasing too much its thickness. However, background events are 
not removed from the dataset if they are located close to a fault, as 
they are then undistinguishable from other events. 

Results obtained using the different selection procedures are 
shown in Figure 2.8, after 6,000 runs. Both purely statistical 
criteria (cross validation and BIC) select models with clearly 
spurious faults. For example, for cross validation, we observe a 
large nearly horizontal plane in the northern area while, in the 
southern region, original planes are divided into many small planes. 
Similarly, for the solution selected by the BIC, a large nearly 
horizontal plane is generated at latitudes 46.0° - 46.2°. Those low-
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dipping planes are indicated by numbers on Figure 2.8 and Figure 
2.9. The best results emerge when using models selected by criteria 
based on focal mechanisms. Looking at the properties of each 
cluster (see Figure 2.9), we notice that the reconstructed horizontal 
faults marked 1 and 2 have very large  values. This suggests 
that these shallow-dipping planes disagree with their associated 
focal mechanisms. Results chosen by cross validation and BIC 
clearly show the effect of these nearby background events, which 
distort the inverted network and require to introduce spurious 
shallow-dipping faults to decrease the variance of the fit. In 
contrast, due to the fact that background events come mostly with 
arbitrary mechanisms, the validation criteria based on focal 
mechanisms detect more efficiently the associated inconsistencies, 
and favor more realistic solutions.  

2.5.5 Summary of synthetic tests	  

The synthetic tests show that our new ACLUD method 
successfully reconstructs fault networks, both in the case of simple 
or more realistic and complex structures. The tests show that, due 
to location uncertainties, faults that are close in space and 
orientation may merge into a single structure. Comparing with the 
previous OADC method proposed by Ouillon et al. (2008), the new 
method improves the results by considering location uncertainties 
of each individual event, thus allowing us to invert the structure 
more finely within areas benefiting from a better station coverage. 
The new method also improved the validation step, as we 
automated the computation of six criteria, two of them being purely 
statistical indices of the fit (cross validation and BIC), the four 
others being based on the comparison between the inverted 
network and the observed focal mechanisms. While all those 
criteria provide reasonable selected models in the absence of 
background events, criteria based on focal mechanisms outperform 
the others when such background events are present. We even 
obtain better solutions when including background events, which 
may be due to a different exploration of the solution space. For real 
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datasets, this implies performing an extensive simulation effort to 
reconstruct a fault network, similar to larger scale Monte-Carlo 
simulations. The multiple selection criteria and their characteristics 
also suggest that the technique does not allow us to pinpoint single 
best solutions but rather emphasize that possible solution groups 
exist, which is likely a result of undersampling of the structures 
with earthquakes. 

2.6 Application to the Landers aftershock 
series 

We now apply our new clustering technique to a real dataset in 
the area of the 1992 Mw 7.3 Landers earthquake, already studied by 
Ouillon et al. (2008); this allows for a comparison of results. The 
catalog we used has not been published by the Southern California 
Earthquake data center (SCEDC) and we obtained the permission 
to use this data set by E. Hauksson (California Institute of 
Technology, personal communication). The catalog has been 
located using the NonLinLoc-method described in the electronic 
supplement. It contains 20 years of data from 1984 to 2004, with 
depth ranging from 1.37 km to 26.99 km. This catalog neither 
features the complete description of the original pdf of event 
locations, nor the corresponding covariance matrices that we need 
to input into our clustering scheme. Uncertainty is simply 
characterized by the lengths and orientations of the axes of the 68% 
confidence ellipsoid. Note that the corresponding derivation of the 
covariance matrix can be rigorously achieved only when the 
location pdf is Gaussian, a condition which generally holds only in 
areas well covered by a dense network of stations (Husen and 
Hardebeck 2010; Lomax et al. 2009). We assume that this is the 
case in the Landers area, due to the presence of numerous stations 
belonging to the permanent Southern California network, as well as 
due to the set of temporary stations installed during the Joshua-
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Tree-Landers earthquake sequence. This is also the reason why we 
selected a subset of events that are most likely to be located with 
Gaussian uncertainties, i.e. those whose locations are particularly 
well constrained according to the criteria we defined in a 
companion work (Wang et al. 2013a). We finally retained only 
events located using more than 11 stations, with local magnitude 
M≥2, and located within an area well-covered by the station 
network (primary azimuthal gap smaller than 180°, ratio of the 
epicentral distance to the closest station over focal depth smaller 
than 1.5, see Bondár et al. (2004)), yielding a final subset of 3360 
events (see Figure 2.10), comparable in size with our most 
complex synthetic example.  

The focal mechanism catalog we used is computed by the 
HASH-method, using the locations derived by waveform cross-
correlation and a 3D-velocity model (Hauksson et al. 2012; Yang 
et al. 2012). We only used the quality Class A and B focal 
mechanisms that show to about 60% focal mechanism errors of up 
to  20° (Hardebeck and Shearer 2002). Note, that we used  
locations from the unpublished catalog derived with NonLinLoc to 
for clustering; we associated the focal mechanisms using the event 
IDs to apply the validation metrics. The focal mechanism error 
provided is an average of the uncertainties in strike, dip and rake, 
mainly governed by the uncertainty of the rake angle. Given that 
the solutions are provided by using first motions polarities and S-
wave amplitude ratios, we assume that the actual uncertainties of 
the strike and dip, which are important for our measures µ and σ, 
may be smaller. 

As the clustering technique can be considered itself partly as a 
stochastic process, we performed 30,000 different runs in order to 
reasonably sample the complex landscape of the solution space. 
Figure 2.11 shows the fault networks corresponding to the best 
solutions selected from the six validation procedures. Plots present 
the horizontal projection of the fitting plane segments, as well as 
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the epicenters of their associated events. For the sake of clarity, the 
clusters obtained for each fit are split into 2 subsets depending on 
their dip: clusters with dip larger than 50° (left plot) and clusters 
with dip smaller than 50° (right plot). As the Landers area is 
dominated by strike slip faulting on nearly vertical faults, we think, 
in the spirit of Ouillon et al. (2008), that the large-dip clusters may 
represent genuine underlying faults, while the low-dip clusters 
mainly represent spurious structures artificially introduced in order 
to decrease the local residual of the fit in areas of diffuse seismicity.  

Each of the validation techniques yields a different solution. 
Clearly, there is a large number of events that are clustered on low-
dip faults (dip < 50°) in the model selected by cross-validation. 
Looking at the properties of each cluster, we notice that there is a 
clear decrease of value with increasing dip, suggesting that 
low-dip planes disagree with their associated focal mechanisms. 
Thus, the solution selected by cross validation seems not to be 
realistic. The other validation processes yield solutions that offer a 
nice agreement in the northern part of the network (which can then 
be considered as reasonably well inverted), yet significant 
differences occur at other locations. If we leave aside the BIC 
solution for reasons explained in the section dealing with synthetic 
examples, we are left with four solutions that all agree well with 
focal mechanisms, and among which no definitive and objective 
choice can be made. 

The fact that these validation techniques yield different selected 
solutions may come from the interplay of two main factors: the 
multiscale structure of individual faults and the spatial extent of 
earthquakes location uncertainties. Many studies show that faults 
feature a complex inner structure consisting of a complex 
subnetwork of sub-faults and secondary brittle structures 
(Tchalenko 1970; Tchalenko and Ambraseys 1970). If the time 
span of the catalog is much shorter than the typical time scale 
necessary to activate rupture on every substructure, then most of 
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the sub-faults will feature very few events, precluding their 
detailed reconstruction. Furthermore, if location uncertainties are 
larger than the typical spacing of sub-faults, the solution to the fit 
of the full network is not unique either and different validation 
techniques will favor different solutions.  

Following the same approach as Ouillon et al. (2008), we also 
computed the predicted surface traces of the reconstructed faults 
for each selected model. The idea is to prolong fault planes to the 
surface and compare them with the observed traces compiled by 
the CFM (see Figure 2.12). None of the six predicted trace maps 
fully agrees with the observed surface fault traces. It may stem 
from the fact that the catalog we used is only 20 years long, 
whereas surface fault traces derive from millions of years of 
tectonic deformation. The active part of this network is thus 
necessarily a subset of the full network, so that the correspondence 
between both sets of fault traces is necessarily imperfect. 
Surprisingly, Ouillon et al. (2008) obtained a solution with a more 
realistic predicted map of fault traces in the same area.  

2.7 Discussion and Conclusions 

2.7.1 Summary of the results 

In this paper, we introduced a new technique (the ACLUD 
method) to reconstruct active fault networks which improves on the 
method of Ouillon et al. (2008) as it uses both earthquake locations 
and their estimated individual uncertainties. After a massive, yet 
non-exhaustive search through the very large solution space, the 
full set of potential solutions is submitted to six different validation 
procedures in order to select the corresponding best solutions. Two 
of the validation steps (cross-validation and BIC) process the fit 
residuals, while the four others look for solutions that provide the 
best agreement with independently observed focal mechanisms. 
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Tests on synthetic catalogs allowed us to qualify the performance 
of the fitting method and of the various validation procedures. The 
method is able to provide exact reconstructions in the case of very 
simple structures, yet is not able to find the input network when 
structures display more complexity and realistic location 
uncertainties. However, the solutions provided by each validation 
step are close to the expected one, especially for the BIC and focal 
mechanism-based techniques. Adding a uniform spatial 
background seismicity rate, both validation techniques based on fit 
residuals fail, while the ones based on focal mechanisms 
consistency show a much better agreement with the expected 
solution. The use of a uniform background density is compatible 
with a total lack of prior assumption about its spatial structure. 
Moreover, background events are generally spatially isolated as 
their magnitude is too small to trigger a sufficient number of close 
aftershocks (which would help in defining a local structure). Those 
low magnitude events are thus, naturally, prone to larger location 
uncertainties, which randomize their structure even more. Using 
more complex distributions, like fractal or multifractal ones, which 
should also be anisotropic, would require to define more arbitrary 
parameters. 

We compared the results obtained by our new ACLUD 
technique with the ones obtained on the same dataset using the 
OADC code developed by Ouillon et al. (2008). Despite a slight 
difference in the nature of one of the validation procedures, we 
showed that the new method improves significantly on the OADC 
method, because accounting for individual location uncertainties of 
events allowed a more detailed fit of faults in areas where such 
uncertainties were small. It also showed that the results provided 
by the OADC method also improved when using validation steps 
based on focal mechanisms consistency. This last observation thus 
suggests the systematic use of such validation tools, whatever the 
underlying clustering technique. This also suggests that including 
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focal mechanisms into the clustering scheme itself will provide a 
more consistent and efficient exploration of the solution space. 

The technique has also been applied to a real data set, namely 
the Landers area. This study confirms that cross-validation 
provides a poor quality solution, as the network features a 
significant number of planes with a very low dip, at odds with the 
prior structural knowledge we have about the nature of faulting in 
that area. The obtained fault networks also show a poor agreement 
with focal mechanisms. Comparing the predicted map of fault 
traces for each of the six selected solutions to the actually observed 
map did not allow us to draw any conclusion. The reason why 
Ouillon et al. (2008) obtained a solution with a more realistic 
predicted map of fault traces in the same area remains unclear, as 
they did not use the same catalog. The latter may have been of 
lower quality than ours, which in turn allowed them to fit correctly 
the gross features of the network. In our case, a better assessment 
of locations and uncertainties may better reveal the genuine small-
scale complexity of the network, which may in turn impact on the 
quality of the fit, for various reasons that we explain below. 

2.7.2 Under-sampled multiscale faults 

Many field observations suggest that faults feature a complex 
inner structure (Klinger et al. 2005; Tchalenko and Ambraseys 
1970), consisting of a complex network of sub-faults and 
secondary brittle structures (like Riedel shears or flower structures, 
for instance). Some of the substructures may themselves feature a 
complex inner zone, which thus replicates itself in a more or less 
self-similar manner. This process necessarily holds down to a 
lower cutoff scale, which might be of the order of a few rock grain 
sizes, so that the full fault should ideally be modeled as a closely 
packed array of a very large number of potentially seismically 
active subfeatures. This view has been one of the arguments raised 
by Ouillon and Sornette (2011) to justify the use of a Gaussian 
mixture approach to cluster earthquakes. If we now assume that we 
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can compile a catalog of all events occurring on such a fault, 
whatever their size and over a very long period of time, with 
vanishing location uncertainties, then our method would invert 
correctly the full underlying structure. If the time span of the 
catalog is much shorter than the typical time scale necessary to 
activate rupture on every substructure, then the sub-faults will be 
undersampled by the seismicity process, as most of them would 
feature very few events, if any. In that case, any method will fail to 
retrieve the correct structure of the fault zone, and our method 
would only provide a coarse-grained solution, which may not be 
necessarily unique. If we now add location uncertainties that are 
larger than the typical spacing of sub-faults, and sometimes 
comparable to the spacing of the macro faults, the coarse-graining 
problem will be transferred to even larger scales, so that the 
solution to the fit of the full network will not be unique either: 
different validation techniques will provide different preferred 
solutions. 

In order to illustrate this reasoning, we extended the complexity 
of the synthetic Landers network of Section 4 down to smaller 
scales, using an algorithm inspired from the theory of Iterated 
Function Systems (Barnsley 1988; Hutchinson 1981), a popular 
technique used to build synthetic fractal sets. In a nutshell, this 
technique consists in replicating a given fault into another set of 
randomly rotated and scaled down copies of itself. The set of 
copies is then used to replace the original fault. The copies are 
themselves replaced by a similar set of rotated and scaled down 
copies as well, and so on, down to a given fine-scale resolution. 
For the sake of simplicity, this segmentation is imposed along the 
strike of the fault, each sub-plane extending to the same depth as 
the original fault. An example is shown in Figure 2.13, and features 
220 sub-faults (instead of the 13 original planes). The small-scale 
structure appears to be very complex, yet the large scale structure 
is similar to the one presented in Figure 2.3. We then distribute the 
same set of 3,103 events over this new set of sub-faults. The 
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network has been generated so that there is, on average, between 
10 to 20 events on each segment, but some sub-faults may feature 
only one or two of them. (Details are given in the electronic 
supplement). 

Using the same method as in Section 4, we generate a new 
catalog of events providing both their expected locations and their 
uncertainties. Focal mechanisms are first chosen as fully 
compatible with the orientation of the sub-fault to which the event 
is attributed, before we add a 10° uncertainty on strike, dip and 
rake. This catalog is then processed by our nonlinear fitting method, 
using 6,000 runs. This smaller number of runs is a consequence of 
the much larger duration of individual inversions due to the larger 
complexity of the dataset, which necessitates a longer time to 
explore the space of models. 

Figure 2.14 shows the solutions selected by the six validation 
methods. None of them is able to reconstruct the full set of 220 
planes, as expected. All proposed networks feature only 17 to 19 
faults, as undersampled sub-faults are indeed merged into simpler 
structures in order to cluster a sufficient number of events (at least 
4, as we imposed). None of the solutions are identical, reflecting 
the non-uniqueness of the solution provided by the different criteria. 

2.7.3 Overfitting, underfitting and validation techniques 

The two validation tools based on residuals, i.e. cross validation 
and BIC, were used in order to avoid problems of overfitting. 
However, we showed in the previous section that we primarily face 
a problem of underfitting. This observation necessarily questions 
the use of such validation strategies for clustering techniques. We 
also showed that both cross validation and BIC were unable to 
select the correct solution when a set of background events is 
superimposed over the more correlated set of earthquakes. This 
thus leads us to conclude that the use of such criteria is certainly 
much less adapted to the selection of the correct solution than the 
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use of focal mechanisms, which bring their share of information 
about the dynamics of the network. Up to now, we only use part of 
the information contained within focal mechanisms, as we only 
checked the consistency of the orientation of one of the nodal 
planes and of the fitting planes. We thus deliberately forgot the 
rake. In the future, this observation should be included as well in 
order to better constrain solutions, thus providing a coherent set of 
slip vectors within the same fault.  

2.7.4 Future developments 

Our unsupervised clustering technique uses only the spatial 
information contained within seismicity catalogs. We showed that 
the model validation criteria derived from focal mechanisms are in 
better agreement with the true model when dealing with synthetics. 
A natural idea is then to include more prior seismic information 
into the clustering procedure itself, like waveform correlation 
coefficients, focal mechanisms similarities, and so on. However, 
the design of a cost function able to take account of all those 
different data necessitates defining a proper weighting strategy. We 
rather suggest using this extra knowledge to make decisions at 
decisive steps of the clustering process. 

Despite the fact that earthquakes catalogs depict events as point 
processes, those events indeed define a collection of stress tensors 
(and their time histories during the rupture process), distributed 
over a set of finite planar, subplanar or fractal structures. 
Earthquakes define stress and strain singularities, which obviously 
interact through stress transmission: earthquakes are triggered by 
the accumulation of stress at plates’ boundaries as well as by stress 
fluctuations induced by previous events. Earthquakes are also 
increments of deformation that reveal the development and growth 
of faults. In return, earthquakes are constrained to occur on such 
faults. The geometry of the set of events is thus governed both by 
the applied boundary conditions and the mechanical interactions 
between events. The overall orientation of faults is mainly 
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governed by the principal directions of the applied boundary stress 
tensor, while the inner structure and complexity of faults is mainly 
dominated by interactions between events. 

These interactions may propagate over very large distances and 
time scales, through cascades of domino-effects. Indeed, faults are 
complex geological structures that are often considered as self-
affine surfaces or self-similar aggregates of smaller scale planar 
features. This means that such objects are significantly correlated 
over a substantial range of spatial scales. The basic idea we have in 
mind is that such a correlation must also translate into the 
dynamical signature of faulting, i.e. the dynamics of the associated 
earthquakes. Here, we do not use the term ‘dynamic’ as associated 
to the temporal distribution of individual events (that is also given 
in earthquakes catalogs), but to the rupture process of individual 
events. The idea is that if two events occur within a short spatial 
distance and belong to the same fault, then there is a ‘large’ 
probability that their rupture processes will be similar (which is the 
basic meaning of correlation). This similarity should, on average, 
decrease with the distance between events. As all the information 
we have about the dynamics of faulting is contained within the 
recorded waveforms, it is thus reasonable to assume that events 
belonging to the same fault segment will radiate, on average, 
similar waveforms. Indeed, this similarity is observed and 
exploited for source model inversion and strong ground motion 
modeling in using small events as empirical Green’s functions (e.g. 
Woessner et al. (2002)).  

The most critical and arbitrary step of the clustering algorithm 
is the one where the locally worst cluster is split into two sub-
clusters in order to improve the fit. The chosen cluster is the one 
with the largest thickness (so that it relies on arguments based on 
local fit residuals), and the split process is purely random. We 
suggest that, for a given number of clusters, we may first assess the 

and  values for all individual faults. The one(s) with the µF σF
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largest values may then be the chosen ones to be split when 
increasing the number of planes, so that the splitting is now based 
on more mechanical grounds. We may also separate those clusters 
from the rest of the catalog, fit them separately, and put them back 
into the whole dataset. This would allow fitting separately less 
complex structures within smaller solution spaces, converging 
more quickly to a reliable solution. The randomness of the splitting 
may also be questioned, as we know that the standard k-means 
algorithm is very sensitive to initial conditions (i.e. the locations of 
the initial seeds), and that some of them are more optimal than 
others. In our case, the location, size and orientation of the new 
planes generated by splitting certainly have a large impact on the 
reliability of the final solution. Recently, both the k-means++ 
(Arthur and Vassilvitskii 2007) and the k-means|| (Bahmani et al. 
2012) have been proposed in order to provide better initial 
conditions to k-means. In k-means++, the first seed is chosen 
randomly among the data points. All the other seeds are then 
chosen sequentially from the remaining data points with a 
probability proportional to their distance squared to the closest 
previous seed. The k-means|| is an improvement of k-means++ to 
deal with large datasets. This technique thus allows one to generate 
a more or less uniform set of seeds. 

The most important obstacle to such clustering techniques is 
certainly the size of the catalogs to be processed. Up to now, we 
only considered sets of a few thousands of events, but the full 
California catalog for instance features up to half a million data 
points. Processing such large datasets is clearly out of reach of our 
current algorithm. We may improve it by parallelizing some steps 
(such as the computations of distances), and also by choosing more 
efficiently the initial conditions (as outlined above with the k-
means++ approach). This limitation to process very large catalogs 
also holds for other clustering techniques, such as the Gaussian 
mixture expectation-maximization (EM) approach of Ouillon and 
Sornette (2011). In the latter paper, a catalog is approximated as a 
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superposition of Gaussian kernels, whose optimal number is 
determined through a cross-validation strategy. A set of 4,000 
events occurring in the Mount Lewis area necessitated about 100 
Gaussian kernels for fitting. This large number of objects to fit the 
data is explained by the fact that the fitting procedure is very 
sensitive to density fluctuations along a given fault – whereas this 
is not in the case when fitting with planes. Such a fault, fitted by 
one single plane following our approach, may require several 
kernels in the EM approach, which increases the necessary 
computational resources. We would thus rather use our k-means-
based approach to first fit the main faults, then switch to an EM 
approach to infer more precisely the structure of the fault zones, in 
the spirit of Ouillon and Sornette (2011), who were able to provide 
a typical segmentation scale – an information of prime importance 
to model high-frequency ground shaking. 

The proposed clustering algorithm accounts for the full location 
pdf of each event and the full covariance matrix of the location 
errors, implemented as the stopping criterion. Four solution 
selection criteria based on focal mechanisms are used to find the 
optimal solutions. It implies that (1) location catalogs should 
contain detailed location error information, (2) focal mechanisms 
are known in great number, and with sufficient accuracy. The 
prerequisits currently limit the scope of this method to only a few 
suitable regions. Indeed, our method calls for increased efforts to 
generate catalogs that provide a more detailed description of the 
uncertainties as quantitative pattern recognition methods can now 
handle them – this is nothing else than is required by users of 
earthquake catalogs, ranging from earthquake forecasting to 
seismic hazard assessment. We used, for example, NonLinLoc 
(Lomax et al. 2000) to perform relocations as this method is able to 
provide the full description of possible locations, and it is an 
accepted method. This can be implemented for any network and 
may become a standard method in the future. Similarly, there are 
more and more methods to better describe the uncertainties of focal 
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mechanisms. Yang et al. (2012) is only one example using the 
HASH-method from Hardebeck and Shearer (2002). Another 
example for better constraining focal mechanism uncertainties is 
using a Bayesian approach by Arnold and Townend (2007) and 
Lund and Townend (2007). We are convinced that this is not a 
limit of the method, but rather defines quality requirements for 
future studies. 

Both OADC and ACLUD assume that faults can be modeled as 
perfectly planar objects with a vanishingly small thickness, so that 
each event can be attributed with certainty (i.e. unit probability) to 
the closest plane. It implies that location uncertainties alone 
explain the fit discrepancies. Instead of using planes, Ouillon and 
Sornette (2011) use an expectation-maximization scheme featuring 
Gaussian kernels to fit the data. Generalizing to fractal (or self-
affine) fault models would necessitate to extend the method to 
stable laws (such as Cauchy or Lévy laws), which display power-
law tails. Yet, no simple implementation of such kernels exists, 
even in 1D. 

The proposed clustering approach retains the potential to 
improve the spatial forecasting skills of current forecast models, 
especially those that attempt short-term near real-time forecasts 
and are prone to be used for operational earthquake forecasting. 
Forecast models such as the Short-Term Earthquake Probability 
(STEP) model (Gerstenberger et al. 2005; Woessner et al. 2010) or 
the class of epidemic-type earthquake forecast (ETES) models 
(Helmstetter et al. 2006; Ogata and Zhuang 2006) have been shown 
to be mostly limited in their spatial predictive skill (Woessner et al. 
2011). Thus, we expect that including the proposed method will 
improve the forecast skills at least during strong aftershock 
sequences and may help to improve current efforts to provide 
meaningful operation earthquake forecasting (Jordan et al. 2011).  
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Figure 2.1: Partition of the 3D space in order to compute the expected 
square distance of a pdf and a finite plane (shown in grey). The roman 

indices I, II and III correspond to various approximations of the ESD (see 
main text, Section 3.3).  
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Figure 2.2: Examples of micro- and macro-structure relationships in fault 
zones to justify the use of different criteria based on focal mechanisms 

(see main text, Sections 3.5.2 and 3.5.3). Thick black line denotes general 
orientation of the fault zone (macro structure); thin gray lines indicate 

orientation of shorter individual fault planes within the fault zone (micro 
structure). 
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Figure 2.3: Synthetic data derived from the analysis of (Ouillon et al. 
2008) on the Landers fault network. a) Fault network consisting of 13 

faults. b) Epicenter map of the synthetic relocated 3,103 events. 
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Figure 2.4: Result of our clustering method applied to the synthetic data 
consisting of 13 original fault planes and 3,103 events presented in Figure 
3. Planes pointed by arrows are spurious faults discussed in Section 4.2. 
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Figure 2.5: Stereo plots of the original input network and solutions chosen 
by the six validation criteria. Curves in the left column indicate the 

orientations of fault traces. Dots in the right column show directions of 
the normal poles of fault planes. 
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Figure 2.6: Result of the OADC clustering method of (Ouillon et al. 2008) 
on a synthetic dataset consisting of 13 original faults and 3,103 events. 
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Figure 2.7: Epicentral map of the synthetic dataset with 20% background 
events, giving a total of 3,724 events. 
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Figure 2.8: Result of our clustering method applied to the synthetic data 
set consisting 13 original faults with background seismicity. Solutions 

chosen by cross validation and BIC feature horizontal planes pointed by 
numbers are discussed in the text. 
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Figure 2.9: value as a function of dip of each reconstructed fault for 
solutions chosen by different validation criteria. The synthetic data set 

consists of 13 original faults with background seismicity. Solutions 
chosen by cross validation and BIC feature horizontal planes with large 

values pointed by numbers and are discussed in the text. 
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Figure 2.10: Epicentral seismicity map of the Landers area, 1984-2004. 
3360 events were chosen with magnitude>2, with more than 11 

observations, located within an area well-covered by the station network 
(primary azimuthal gap smaller than 180°, and ratio of the epicentral 

distance to the closest station over focal depth smaller than 1.5). 
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Figure 2.11: Results of our clustering method applied to the Landers area 
using the six validation criteria. Results are presented separately for small 
dipping faults (dip < 50°, left) and large dipping faults (dip >= 50°, right). 
We assume the solutions using cross-validation and BIC as unrealistic due 

to the many low-dipping faults in comparison to the tectonically 
motivated validation measures. 
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Figure 2.12: Observed surface traces and seismicity of the Landers area 
(left plot), and predicted sets of fault traces for each selected 

reconstructed network. 
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Figure 2.13: Synthetic multiscale fault network (left) and seismicity 
(right), consisting respectively of 220 sub-faults and 3,153 events. 
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Figure 2.14: Result of our clustering method applied to the 220 synthetic 
multiscale fault network consisting of 3103 events. Only 17 to 19 planes 

were generated. 
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3.1 Abstract  

We revisit station network criteria to assess earthquake location 
quality for local networks and study their importance in fault 
network reconstructions. Our study, based on a nonlinear 
earthquake location scheme, confirms that network criteria, such as 
number of observations, primary station azimuth gap and distance 
to the closest station are highly valuable to assess location quality. 
If the seismic velocity structure is accurately known, epicenter 
locations are well-constrained if the primary station gap is less than 
180° and well-constrained focal depth estimates require a nearby 
station (distance to the closest station / event focal depth < 1.5). 
The use of classical error ellipsoids to describe location 
uncertainties can be misleading for earthquakes observed at less 
than 11 observations and with a primary station gap of more than 
180°. Using two synthetic data sets for a simple, 45° dipping fault 
and a more complex fault structure derived from real data of the 
1992 Mw=7.2 Landers aftershock sequence, we illustrate that, by 
using the highest-quality data selected by station network criteria, 
we reach better fault reconstructions of those parts of the fault 
structure that are sampled by the data. Using lower-quality data can 
lead to unstable and unreliable fault network reconstructions and 
may introduce artifacts, in particular in regions of a complex fault 
structure. Our results suggest the need for a careful assessment of 
the quality and reliability of reconstructed fault networks for real 
data applications, involving clustering of data sets of different 
qualities and realistic tests with synthetic fault network structures. 
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3.2 Introduction 

Earthquakes define the location of sudden distributed slip on 
fault or fault networks. The interaction of tectonic processes on all 
scales and the myriad of earthquake ruptures cause fault networks 
to grow into complex structures. These complex structures are in 
retrospective illuminated by earthquakes of all sizes. Plotting the 
hypocenters displays a good first order image and together with 
additional seismic, geologic and geomorphologic information, a 
better understanding of the structure and evolution of a fault 
network can be achieved. However, details of fault networks are 
often blurred by observational and technical resolution constraints 
and methodological limitations. For example, random and 
systematic errors in earthquake locations will put limits on the 
detail of interpretation for a given distribution of seismicity (Husen 
and Hardebeck 2010; Waldhauser and Ellsworth 2000). Similarly, 
interpreting seismic reflection and refraction data or analyzing 
structural and tectonic data is limited by their uncertainties. 
Improving techniques to better constrain the geometry of fault 
networks is therefore a challenge of primary interest for earth 
scientists that investigate the structure, the kinematics and the 
dynamics of fault systems. 

Over the last years, multiple initiatives have started to build 
large-scale fault network models compiling all possible 
information. The most prominent compilations are available at the 
USGS National Fault database, the Southern California Earthquake 
Center Community Fault Model (SCEC-CFM, Plesch et al. 2007) 
and more recently the European Database of Seismogenic Faults 
(EDSF, Basili et al. 2013, Giardini et al. 2013). These datasets 
form the base for applications such as seismic hazard assessment 
(Wesson et al. 2003), large scale earthquake rupture simulations, 
modeling fault interactions via stress transfer and so on. They are 
also used for more detailed studies such as comparing aftershock 
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hypocenter locations with main shock properties (Hauksson 2010; 
Powers and Jordan 2010; Woessner et al. 2006) or investigating 
possible recurrence models on single faults (Page et al. 2011). 
However, these large scale models generally address only the gross 
structural features. Moreover, assembling these models requires 
major efforts that need multiple years, resulting in a product that 
depicts smaller geometrical complexity than would be needed for 
other applications, such as earthquake forecasting models 
(Schorlemmer and Wiemer 2005), earthquake rupture simulators 
(e.g. Tullis 2012; Richards-Dinger and Dietrich 2012) or 
understanding the complexity of the crustal stress field (Hardebeck 
and Michael 2006). 

One approach to reconstruct the active part of a fault network 
solely from the spatial location of earthquake hypocenters was 
proposed by Ouillon et al. (2008). In a nutshell, the Optimal 
Anisotropic Dynamic Clustering (OADC) fits the spatial structure 
of a set of events with a set of finite-size plane segments. The 
number of segments used is increased until the residuals of the fit 
become comparable to the average hypocenters location 
uncertainty. One can then estimate the position, size and 
orientation of each plane segment. The main shortcoming of the 
OADC (Ouillon et al. 2008) is its rough account of location 
uncertainties, assumed to be constant for the whole catalog. While 
other methods have been proposed using a kernel approach (e.g. 
Ouillon and Sornette 2011), Wang et al. (2013b) improved the 
OADC method by introducing a new active fault reconstruction 
algorithm: Anisotropic Clustering of Location Uncertainty 
Distributions (ACLUD). ACLUD uses the full location uncertainty 
description as given by the posterior probability density function 
(PDF) of the earthquake location problem (Moser et al. 1992; 
Tarantola and Valette 1982), while OADC only used a mean 
uncertainty value of all events. The spatial resolution of both 
reconstruction methods is thus directly linked to earthquake 
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location uncertainties and we presume that better constrained data 
allows one to pursue higher resolution fault reconstruction result. 

Earthquake location uncertainties are a consequence of 
systematic and random errors in the data used to locate an 
earthquake. The main source for systematic errors is the imperfect 
knowledge of the Earth’s seismic velocity structure (Husen and 
Hardebeck 2010). Since the true velocity structure is unknown 
these systematic errors are difficult to assess. Random errors in 
earthquake locations result from uncertainties in the observations 
(seismic arrival times) and from the imperfect geometry of the 
seismic network that recorded the earthquake (Husen and 
Hardebeck 2010). The latter leads to the well-known problem that 
uncertainties in focal depth are often larger than in epicenter. 
Hence, location uncertainties are rarely isotropic and can vary for 
each earthquake, which contradicts the assumptions used in OADC. 
Since ACLUD, in contrary to OADC, is able to use the full 
uncertainty information as provided by the PDF, we can investigate 
the influence of the location uncertainties on the fault 
reconstruction process and address the following questions: can we 
expect better clustering results if we only use more accurate and 
precise earthquake locations? Which fault structures can be 
resolved when using only high quality locations in comparison to 
all data? 

Since the PDF of the earthquake location problem can be 
complex and multimodal in shape, a visual analysis of each PDF 
would be required to assess earthquake location quality. Obviously, 
this becomes unfeasible for large data sets. Instead, we will use so-
called network criteria to select earthquake locations of different 
qualities. The motivation of establishing a set of network criteria 
follows the idea that the number and geometry of stations that 
record an earthquake determine how well the hypocenter estimate 
is constrained (e.g. Lee and Stewart 1981). Important network 
criteria to consider are: 1. the number of observations (nobs), 2. the 
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primary and secondary azimuthal gap without observation (GAP) 
(Bondár et al. 2004), and 3. the ratio between the distance to the 
closest station and focal depth (DIST). Assessing earthquake 
location errors has a long history (Bondár et al. 2004; Husen and 
Hardebeck 2010). Much of the recent work has been developed 
within the efforts to monitor the Comprehensive Nuclear Test Ban 
Treaty CTBT (e.g. Bondár and McLaughlin 2009a; Bondár et al. 
2004; Yang et al. 2004). These studies are based on high-quality 
ground-truth events with known location accuracies (Bondár and 
McLaughlin 2009b; Bondár et al. 2004) recorded at local, regional 
and teleseismic distances. An important drawback of the CTBT 
studies is that they use global, one-dimensional reference velocity 
models, such as IASPEI91 or ak135, for relocation. While these 
velocity models may be applicable at regional and teleseismic 
distances, their use for local networks is highly questionable. 
Moreover, these studies focused mainly on the accuracy of 
epicenter estimates, which is of primary concern for the monitoring 
efforts of the CTBT. Nevertheless, these studies developed so-
called network criteria to assess the accuracy of local earthquake 
locations.  

In the first part of our study we therefore establish a set of 
network criteria to assess earthquake location quality for local 
networks. We do so by relocating 10,000 earthquakes randomly 
distributed on a simple, single fault with randomly chosen station 
geometries and varying number of stations. For each relocated 
hypocenter, we analyze mislocations (distance between true and 
relocated hypocenter location) as a function of three different 
network criteria, i.e. nobs, primary GAP and DIST, to assess their 
influence on earthquake location quality. We further compute the 
percentage of true hypocenter locations that are located inside the 
68 % confidence ellipsoid as given by the PDF of the earthquake 
location problem to assess the reliability of the computed location 
uncertainties. Our results confirm that network criteria are valuable 
parameters to assess earthquake location quality. For example, 
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epicenter locations are well-constrained if the primary GAP < 180°, 
while focal depth is well-constrained if DIST < 1.5. Our results also 
show that the 68 % confidence ellipsoid is a viable approximation 
of the location uncertainties if nobs ≥ 11. 

In the second part of our study, we then investigate how data 
sets of different earthquake location qualities, as selected by the set 
of network criteria established in the first part, affects fault network 
reconstruction. We do this by generating synthetic data for a simple, 
45° dipping fault and a more complex fault structure derived from 
real data of the 1992 Mw=7.2 Landers aftershock sequence. Subsets 
of different earthquake location qualities are then processed with 
ACLUD and reconstructed fault structures are compared to the true 
fault structures. Our results show that using the highest-quality data 
only leads to a better fault reconstruction of those parts of the fault 
structure that are sampled by the data. Using lower-quality data 
may introduce artifacts, in particular in regions of a complex fault 
structure. 

3.3 Assessing network criteria 

3.3.1 Synthetic data 

We generate synthetic data to assess location uncertainties in 
earthquake catalogues. In contrast to real earthquake catalogues, 
the true locations are known for synthetic data. This allows us to 
assess location precision, i.e., location uncertainties as computed 
by the location program, as well as location accuracy, i.e., the 
difference between the true and relocated hypocenter. For real data, 
location accuracy can only be evaluated using sources with a 
known location, e.g., explosions (Bondár et al. 2004; Husen et al. 
2003), and few such sources exist. Moreover, the use of synthetic 
data enables us to generate data sets with a large range of different 
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GAP and DIST values, which is necessary to analysis how station 
distribution affects earthquake location. 

We generated synthetic data using the following procedure: 

(1) We spatially distributed 10,000 events uniformly on a 
vertical fault plane with a length of 100 km and a width (depth 
extent) of 20 km (Figure 3.1). The strike of the fault is 0° and dip 
90°. Those 10,000 events represent the true locations. 

(2) For each event we randomly selected 6, 8, 11 and 22 stations 
from a regular grid of 88 stations (Figure 3.1). This yielded four 
different data sets (R6, R8, R11, R22), each consisting of 10,000 
events with varying station geometries. By randomly selecting 
stations, we built data sets with strongly varying geometries, 
encompassing a large range of different nobs, GAP and DIST 
values. 

(3) For each observation, we computed synthetic travel times 
using a 1-D velocity model representing a 30 km thick crust (P-
wave velocity of 6.0 km/s) over a mantle (P-wave velocity of 8.0 
km/s) (Table 3.1). We computed synthetic travel-times using a 
finite-difference scheme of the Eikonal equations (Podvin and 
Lecomte 1991). To simulate picking uncertainties, we added 
Gaussian noise with zero mean and a standard deviation of 0.1 s to 
the synthetic travel times. The chosen pick uncertainty corresponds 
to high-quality data, which can be achieved using automated, 
quality-weighted picking algorithms (Diehl et al. 2009). 

(4) We relocated each event using the same velocity model used 
to compute synthetic travel times (Table 3.1).  

In total, we created four data sets of relocated earthquake 
locations, each consisting of 10,000 earthquakes. The varying 
network geometries allow us to comprehensively study the effect 
of network geometry on earthquake location precision and 
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accuracy. We note that our procedure will favor station geometries 
with small GAP values for earthquakes observed at a large number 
of stations (nobs > 11). This is due to the fact that true hypocenter 
locations are located in the center of the regular grid of 88 stations 
(Figure 3.1). We think, however, that such a setup reflects a 
realistic monitoring situation in which stations are distributed 
around the target tectonic structure. 

We relocated earthquakes using the NonLinLoc software 
package (Lomax et al. (2000), Version 5.2, 
http://alomax.free.fr/nlloc/). Compared to traditional linearized 
approaches, NonLinLoc is superior in that it computes the posterior 
probability density function (PDF) using nonlinear, global 
searching techniques. The PDF represents the complete 
probabilistic solution to the earthquake location problems, 
including comprehensive information on uncertainty and resolution 
(Moser et al. 1992; Tarantola and Valette 1982). 

In the work of (Tarantola and Valette 1982), a priori 
information on data and model uncertainties are assumed to be 
Gaussian. For NonLinLoc, data uncertainties are described by a 
Gaussian distribution with a standard deviation corresponding to 
the estimated arrival time uncertainty. We arbitrarily model data 
uncertainties with mean of zero and a standard deviation of 0.1 s, 
since the same velocity model is used for relocation model 
uncertainties. 

For each location estimate, uncertainties are described by the 
posterior PDF with no a priori assumption of their shape. They can 
be visualized using scatter density plots, which are obtained by 
drawing samples from the posterior PDF with their number being 
proportional to the probability (Husen et al. 2003; Lomax et al. 
2000). From these samples, the 68 % confidence ellipsoid can be 
computed by singular value decomposition of the corresponding 
covariance matrix. The 68 % confidence ellipsoid describes the 
location uncertainties as computed by linearized location 
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algorithms such as HypoEllipse (Lahr 1989). It forms a compact 
approximation of the spatial uncertainty of the location estimate. 
The expectation hypocenter is at the center of the confidence 
ellipsoid, and the maximum likelihood hypocenter will always fall 
within the densest part of the PDF. Figure 3.2 shows the scatter 
density plot and corresponding 68% error ellipsoid of one event of 
the data set located with six randomly drawn stations. In this 
example, the GAP is 128° and DIST is 3.8. 

3.3.2 Results 

We present our results in terms of mislocation (the difference 
between the true and relocated hypocenter) in both epicenter and 
focal depth direction, and location uncertainties as computed by the 
68 % confidence ellipsoid. The former is related to the accuracy of 
an earthquake location estimate, while the latter characterizes the 
precision of an earthquake location estimate. Since we are 
interested in assessing accuracy and precision in terms of network 
criteria, we further group the results using a combination of three 
network criteria, including nobs, primary GAP, and DIST. We did 
not use the secondary GAP as suggested by (Bondár et al. 2004) 
since it is often not computed for earthquake bulletins. Since the 
primary GAP and DIST depend on the hypocenter location, they 
were computed using true hypocenter locations. This ensures that 
each group contains the same events for all data sets (R6, R8, R11, 
and R22). The primary GAP is directly related to network 
geometry and provides a quantitative measure of how well an event 
is surrounded by stations (Bondár et al. 2004). For example, events 
with a primary GAP < 180° are usually considered to be well-
locatable (Kissling 1988). The DIST criterion is considered to be 
important to constrain estimates of focal depth. For example, one 
observation from a station at an epicentral distance less than the 
focal depth is often required to constrain estimates of focal depth 
(Chatelain et al. 1980; Gomberg et al. 1990; Husen et al. 2003). 
We present epicenter mislocations in Table 3.2 and focal depth 
mislocations in Table 3.3. We analyze the performance of each 



  
 

 87 

group and data set by computing cumulative density functions 
(CDF) for mislocation in epicenter and focal depth (Figure 3.3). 
From these CDFs, we choose mislocation values at the 90th 
percentile to discuss the effect of nobs, GAP and DIST on 
earthquake location accuracy for the different synthetic data sets. 
In this paper, we use Δepi90 and Δdepth90  as notations for epicenter 
and focal depth mislocation at the 90th percentile, respectively. We 
chose the 90th percentile since the relatively low number of 
earthquakes for some groups does not allow a homogeneous 
sampling of the CDF at higher percentile levels (see Figure 3.3). 
To analyze earthquake location precision, we compute the number 
of events for which the true hypocenter is not within the bounds of 
the 68 % confidence ellipsoid (Table 3.4). Theoretically, this 
number should correspond to 32 % of the total number of events. 
Any significant deviation from this value could suggest that it may 
not be appropriate to use the 68 % confidence ellipsoid to assess 
earthquake location precision. 

3.3.2.1 Epicenter mislocation 

Table 3.2 shows Δepi90  for each data set obtained by randomly 
selecting station networks (R6, R8, R11 and R22) grouped by 
different network criteria. The corresponding CDF plots are shown 
in Figure 3.3. For all of these data sets, having more observations 
leads to smaller epicenter mislocations. The smallest epicenter 
mislocations are obtained for those events with smallest GAP (0° ≤ 
GAP < 90°). There exists, however, a significant increase in 
epicenter mislocation for events with GAP ≥ 180°. While the 
increase in Δepi90 is only moderate for earthquakes grouped by 0° ≤ 
GAP < 90° and DIST < 1.5 to earthquake grouped by 90° ≤ GAP < 
180° and DIST < 1.5 (e.g. 0.8 km to 1.0 km for data set R8 in Table 
3.2), Δepi90 increases by nearly a factor of two for earthquake 
grouped by 180° ≤ GAP < 270° and DIST < 1.5 (1.8 km for data set 
R8 in Table 3.2). This suggests that a GAP < 180° is important to 
constrain epicenter estimates. No significant differences in Δepi90 
are found between events with a nearby station (DIST < 1.5) and 
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with no nearby station (DIST ≥ 1.5). Compare, for example, Δepi90  

for events of data set R8 grouped by 90° ≤ GAP < 180° and DIST < 
1.5 (1.0 km) and grouped by 90° ≤ GAP < 180° and DIST ≥ 1.5 
(0.9 km) in Table 3.2. This implies that the distance to the closest 
station is not important to constrain the epicenter estimate if the 
correct velocity model is used for relocation.  

Our observations that the primary GAP is mainly controlling 
mislocation in epicenter is consistent with the findings that, if an 
earthquake occurs outside of a network, it is difficult to constrain 
its epicenter (Lee and Stewart 1981). This is linked to the 
properties of the Jacobian matrix of the linearized earthquake 
location problem, which contains the partial derivatives of the 
travel times with respect to the epicenter coordinates and focal 
depth. From linear algebra, it is known that, if a matrix has a 
column that is nearly a multiple of another column, it is a rank-
defective matrix with a very small singular value. In this case, the 
Jacobian matrix is difficult to invert and, hence, the earthquake 
location problem is ill-conditioned or poorly constrained. If an 
earthquake occurs outside of a network, it is likely that the columns 
of the Jacobian matrix containing the partial derivatives with 
respect to the epicenter coordinates are nearly proportional to each 
other (Lee and Stewart 1981). Consequently, the earthquake 
location problem becomes ill-conditioned and the epicenter is 
poorly constrained. 

3.3.2.2 Focal depth mislocation 

Table 3.3 shows Δdepth90 for each data set obtained by 
randomly selecting station networks (R6, R8, R11 and R22) 
grouped by different network criteria. The corresponding CDF 
plots are shown in Figure 3.3. Similar to the results obtained for 
epicenter mislocation, we observe smaller mislocations with 
increasing number of observations. On the contrary, only a 
moderate increase in focal depth mislocation is observed for 
earthquakes with GAP ≥ 180°. For example, Δdepth90 is equal (1.3 
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km) for earthquakes of data set R11 grouped by 90° ≤ GAP < 180° 
and DIST < 1.5, and by 180° ≤ GAP < 270° and DIST < 1.5 (Table 
3.3). This suggests that GAP is not a critical parameter to constrain 
estimates of focal depth if the correct velocity model is used for 
relocation. Focal depth mislocations, however, strongly depend on 
the distance to the closest station if the correct velocity model is 
used for relocation. Δdepth90 is about four times smaller if a station 
nearby (i.e. DIST < 1.5) observed the event than if not (Table 3.3). 
Interestingly, Δdepth90 is comparable for events of data set R22 
grouped by 90° ≤ GAP < 180° and DIST ≥ 1.5 (3.6 km) to events 
of data set R6 grouped by 90° ≤ GAP < 180° and DIST < 1.5 (2.3 
km) (Table 3.3). This suggests that the lack of a nearby station can 
be partly compensated by a large number of stations if the correct 
velocity model is used. 

Our observations that the distance to the closest station, as 
described by the DIST parameter, is important to constrain focal 
depth is in agreement with previous studies, which have shown that 
stations within a focal depth’s distance are important to constrain 
focal depth (Chatelain et al. 1980; Gomberg et al. 1990; Husen et 
al. 2003). Similarly to the situation where an earthquake occurs 
outside the network, the Jacobian matrix of the linearized 
earthquake location problem becomes ill-conditioned if no nearby 
station observes the earthquake (i.e. DIST > 1.5). In this case, the 
partial derivatives of the travel times with respect to focal depth 
become similar, and, consequently, the corresponding column of 
the Jacobian matrix becomes a multiple of the first column, which 
contains only ones (Gomberg et al. 1990; Lee and Stewart 1981). 
Following this logic, the observation that a lack of a nearby station 
can be partly compensated by a large number of stations can be 
explained by an improved range of epicentral distances, which 
yields larger variations of the partial derivatives with respect to 
focal depth. For a larger number of stations, chances are higher in 
our synthetic data that a more distant station will be selected.  
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3.3.2.3 Location precision 

To assess the reliability of location uncertainties, we computed 
the number of events for each data set, for which the true location 
is not covered by the 68 % confidence ellipsoid (Table 3.4). This 
number should be close to 32 % if the 68 % confidence ellipsoid 
presents a reliable approximation to the true location uncertainties. 
From Table 3.4, we notice that the number of events for which the 
true locations are not covered by 68 % confidence ellipsoid 
decreases gradually with increasing number of observations. Only 
for data set R22, the number is close to the expected value of 32 %. 
This suggests that the 68 % confidence ellipsoid is not an 
appropriate approximation of the true location uncertainties for a 
significant number of events in data sets R6 and R8. 

The observed deviations from the expected 32 % may appear 
small; however, with a simple, rigorous hypothesis test using a 
binomial distribution (Stegman 1989), we can show the 
significance of the deviations. The null hypothesis is that the 68 % 
confidence ellipsoid is a correct error approximation. Given the n = 
10,000 event relocations, we expect with a probability of 0.5 that, 
for a given event, the true hypocenter is located inside the 68 % 
confidence ellipsoid; in other words, we expect with a 50-50 
chance that for 6800 events the true hypocenter location falls 
within the confidence ellipsoid. Observing a much smaller or 
higher number of events leads to reject the null hypothesis. For 
data set R22, we observe 6700 events with the true hypocenter 
location located inside the 68 % confidence ellipsoid. The 
probability to observe this number based on the binomial test is 
0.016. The probabilities decrease dramatically to 9.3 x 10-11 (R11, 
35 %), 4.6 x 10-37 (R8, 38 %) and 8.85 x 10-64 (R6, 40 %), leading 
to reject the null hypothesis for these data sets. This implies that, 
for a significant number of events in data sets R6, R8 and R11, the 
68 % confidence ellipsoid is not an appropriate approximation of 
the location uncertainties. For data set R22, we can expect a few 
events for which the confidence ellipsoid may not be appropriate. 
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For earthquakes observed at few stations, the PDF can have a 
non-ellipsoidal shape and, hence, the confidence ellipsoid is not a 
good approximation of the true location uncertainties (Husen and 
Hardebeck 2010; Lomax et al. 2000). The difference between the 
maximum likelihood and the expectation hypocenter location can 
be used as a measure to identify PDFs that are non-ellipsoidal, 
which usually requires visual inspection of a large number of 
earthquake locations (Husen and Smith 2004). We therefore check 
whether earthquakes observed at few stations show a larger number 
of PDFs that are non-ellipsoidal. For each data set (R6, R8, R11 
and R22), we computed CDFs of the difference between maximum 
likelihood location and expectation location in both epicenter and 
focal depth (Figure 3.4). For each data set, we analysed the PDF 
for those events for which the difference between maximum 
likelihood and expectation hypocenter location in both directions 
was larger than the 99th percentiles of the corresponding CDF. We 
found that, for data sets R6 and R8, 10 out of 10 and 8 of 13 events, 
respectively, showed PDFs that were non-ellipsoidal. In contrast, 
the corresponding numbers for data sets R11 and R22 were 1 out of 
16 and 0 out of 12. This confirms that there are many events in data 
sets R6 and R8 for which the PDF is non-ellipsoidal in shape. 

3.4 Application to fault network 
reconstruction 

We will now investigate how data quality impacts fault network 
reconstruction. We do this by using two synthetic fault structures: 
i) a simple 45° dipping fault plane, and ii) a complex fault network 
for the Landers area in southern California consisting of 13 planes 
with dips > 45°. For each fault structure, we compute synthetic 
earthquake catalogs including location uncertainties. Different 
subsets are selected by applying different selection criteria: i) no 
selection criterion (i.e. full data set), ii) GAP < 180°, termed soft 
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selection criterion in the following, and iii) GAP < 180°, nobs ≥ 11, 
DIST ≤ 1.5, termed stringent selection criterion in the following. 
Each subset is clustered using the fault reconstruction method 
ACLUD (Wang et al. 2013b) and reconstructed fault networks are 
compared against true (input) fault structures. 

3.4.1 Anisotropic clustering of location uncertainty 

distributions (ACLUD) 

Ouillon et al. (2008) proposed the optimal anisotropic data 
clustering (OADC) method to reconstruct the active part of a fault 
network from the spatial location of earthquake hypocenters. It 
is inspired from the seminal k-means method (MacQueen 1967), 
which partitions a given dataset into a set of (a priori isotropic) 
clusters by minimizing the global variance of the partition. Ouillon 
et al. (2008) generalized this method to the anisotropic case with a 
new algorithm, which, in a nutshell, fits the spatial structure of the 
set of events with a set of finite-size plane segments. The number 
of segments used increases until the residuals of the fit become 
comparable to the average hypocenters location uncertainty. One 
can then estimate the position, size and orientation of each plane 
segment. More details on the OADC method can be found in 
Ouillon et al. (2008). 

The main shortcoming of the OADC method is the implicit 
assumption that location uncertainties are uniform and isotropic for 
the whole catalog. This implies that location uncertainties are equal 
in all directions and identical for all earthquakes in a catalog. 
Obviously, this assumption is rather unrealistic since location 
uncertainties depend strongly, due to picking and velocity model 
errors, on station network geometry (see section 2). To improve on 
the OADC method, Wang et al. (2013b) introduced the anisotropic 
clustering of location uncertainty distribution (ACLUD) method to 
reconstruct active fault networks. The ACLUD method extends the 
OADC method by taking into account the detailed and individual 
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location uncertainties of each event. This is achieved by 
introducing the expected squared distance between a probability 
density function and a finite plane to associate earthquake locations 
as described by the probability density function and the closest 
plane (Wang et al. 2013b). Furthermore, the ACLUD method 
introduces a dynamic stopping criterion that links the average 
location uncertainty in the direction normal to a given earthquake 
cluster and the thickness of that cluster. This allows one to adapt 
locally the resolution of the fit to the location uncertainties.  

Another advantage of the ACLUD method is that it allows for a 
massive search through the entire solution space of possible 
reconstructed fault networks (Wang et al. 2013b). This is achieved 
by computing a large number of solutions. Since search for 
solution is a stochastic process, thus different runs converge to 
different solutions. The full set of potential solutions is submitted 
to six different validation procedures in order to select optimal 
solutions (Wang et al. 2013b). Two of the validation steps (cross-
validation and Bayesian Information Criteria (BIC)) are purely 
statistical approaches that process the data fit of all solutions. The 
four other validation procedures use independent information from 
observed focal mechanisms to identify solutions that provide the 
best agreement. Wang et al. (2013b) show that, compared to cross-
validation, BIC shows stronger stability, especially when the 
earthquake catalog contains spatial background seismicity, i.e. 
events that cannot be clustered and are automatically removed from 
the plane fitting procedure. Accordingly, we will use the BIC to 
select the optimal solution since we will focus on synthetic data 
that do not contain focal mechanisms. 

3.4.2 Synthetic data 

In order to analyze the effect of data selection criteria on fault 
reconstruction, we focus on tests with synthetic data that allow us 
to compare the reconstructed solutions with the original input. Two 
synthetic fault structures are used. The first simulates a simple fault 
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structure consisting of a 45° dipping fault. The second is more 
complex and uses the synthetic fault structure in the area of the 
1992 Mw 7.3 Landers earthquake (Ouillon et al. 2008). It features 
13 planes with dips larger than 45° (Figure 3.5). For each synthetic 
fault structure, we generated synthetic earthquake catalogs 
including location uncertainties as described in the following. 

Following the same approach we applied in section 2, a 45° 
dipping fault was placed in the middle of the station grid shown in 
Figure 3.1. We then uniformly distributed 2000 events on the fault. 
Synthetic travel times were computed for each of the 2000 events 
to all stations using a simple two-layer model (Table 3.1). Gaussian 
distributed errors with a mean of 0.1 s were added to simulate 
realistic picking errors. Out of this set of synthetic travel times, we 
randomly chose 6, 8, 11 or 22 stations for each event for relocation. 
Earthquakes were relocated using the same simple two-layer 
velocity model (Table 3.1) and a non-linear probabilistic 
earthquake location technique (NonLinLoc) as described in section 
2. As a result, we obtained a set of 2000 relocated earthquakes 
including a full description of location uncertainties as given by 
their scatter density clouds. These data served as input to the 
ACLUD method. 

The aim of the second synthetic fault structure was not only to 
use a complex fault network but also to use a realistic station 
network to compute synthetic travel times. The geometry of the 13 
fault planes was based on clustering results obtained using a set of 
3103 earthquakes observed within two weeks following the 1992 
Mw 7.3 Lander mainshock at stations of the Southern California 
Seismic Network (Ouillon et al. 2008). For the synthetic fault 
structure, however, we assume that these 3103 earthquakes occur 
randomly and uniformly on the 13 fault planes (Wang et al. 2013b). 
As a consequence, we lose the original information about which 
earthquake was observed at which station. Instead, we had to use 
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the following approach to select a set of stations for each 
earthquake: 

1. For each of the 71 real stations that were operational in 
our study region, we computed the number of events it 
observed from the 3103 earthquakes used in the study 
of Ouillon et al. (2008). From these numbers, we 
computed an observation hash table that represents the 
fraction of events observed at each station (Figure 3.5). 

2. For each synthetic earthquake location, we randomly 
chose 6, 8, or 11 or 22 stations. The probability of a 
station to be chosen was proportional to the numbers 
given in the observation hash table. Hence, stations that 
observed a higher fraction of the original 3103 
earthquakes had a higher probability to be chosen. 

3. For each selected station, we computed synthetic travel 
times using a simple two-layer model (Table 3.1). 
Gaussian distributed errors with a mean of 0.1 s were 
added to simulate realistic picking errors. 

The goal of our approach was to create synthetic travel time 
data that showed distributions in nobs, DIST, and GAP as close as 
possible as for the real data. Following our standard procedure, we 
relocated all 3103 synthetic earthquakes using the same simple 
two-layer velocity model (Table 3.1) and a non-linear probabilistic 
earthquake location technique (NonLinLoc) as described in section 
2. As a result, we obtained a set of relocated earthquakes including 
a full description of location uncertainties as given by their scatter 
density clouds. 

As we discussed in Section 2, network criteria nobs, GAP, and 
DIST can be used to select well-constrained hypocenter locations. 
In order to test the effects of applying network criteria in fault 
network reconstruction, we created three different earthquake 
catalogs for each synthetic fault network. The first catalog is 
simply using all data without applying any selection criteria. The 
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second catalog is generated by applying what we call a soft 
selection criterion, i.e. GAP < 180°. For the third catalog, we apply 
what we call a stringent selection criterion, i.e. GAP < 180°, DIST 
≤ 1.5 and nobs ≥ 11. By applying ACLUD to all three earthquake 
catalogs, we can analyze whether applying different selection 
criteria will lead to different fault network reconstructions. 

3.4.3 Results 

3.4.3.1 Simple fault structure 

Our simple fault structure consists of one fault plane dipping at 
an angle of 45°. From the original 2000 earthquakes distributed 
uniformly on the fault plane, we are left with 1732 earthquakes and 
259 earthquakes when applying soft and stringent selection criteria, 
respectively (Table 3.5). Each earthquake catalog is processed with 
ACLUD, computing 1000 solutions for each catalog with different 
initial conditions of the random number generator that controls the 
fault splitting step (Wang et al. 2013b). One solution thereby 
corresponds to one fault reconstruction result. We first analyzed 
the number of reconstructed faults for all 1000 solutions for each 
catalog (Figure 3.6). As can be inferred from Figure 3.6, more than 
90 % of the solutions converge to more than five faults if either no 
selection criteria (full catalog) or the soft selection criterion are 
applied. If the stringent selection criterion is applied, more than 
90 % of the solutions converge to one, two or three faults. Given 
the original number of one fault, apparently most of the solutions 
are overfitting, no matter how we selected the data. However, using 
the stringent data selection criterion clearly reduces the over fitting 
problem. 

Among all 1000 solutions, we selected the best solution 
according to BIC. They are shown in Figure 3.7 for each 
earthquake catalog. There are seven and six faults generated if no 
selection criterion and the soft selection criterion are applied, 
respectively. Both solutions feature one large fault plane and 
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several smaller fault planes (Figure 3.7b,c). Strike and dip of the 
large fault plane are in good agreement with the original input, i.e. 
strike = 180°, dip = 45°. The smaller fault planes are likely 
generated to cover events that were offset from the main fault plane 
by the relocation process. If the stringent selection criterion is 
applied, the best solution according to BIC features two faults 
(Figure 3.7d). Note that, due to the constraint of DIST ≤ 1.5, most 
of the shallow events are removed in this subset, thus only the 
deeper part of the fault is reconstructed. However, compared to the 
two previous results, the reconstructed fault structure is simpler 
and agrees better with the true structure of one dipping fault, 
although a significantly smaller number of earthquakes has been 
used. 

As discussed in section 2, different selection criteria have 
different effects on location quality. Earthquakes that pass our soft 
selection criterion (i.e. GAP < 180°) have well constrained 
epicenter locations but uncertainty in focal depth can be large. In 
order to obtain well constrained focal depths, a sufficient number 
of observations (nobs ≥ 11) and a station nearby are needed (i.e. 
DIST ≤ 1.5). These criteria correspond to our stringent selection 
criterion. It becomes obvious that, in order to resolve a dipping 
fault structure, hypocenter locations need to be well constrained in 
epicenter and focal depth. Hence, it can be expected that 
reconstruction of a low dipping fault becomes more stable only if 
earthquakes are used that pass our stringent selection criterion, 
which is what we observe. The fact that earthquakes that pass our 
stringent selection criterion are well constrained in epicenter and 
focal depth is supported by the observation that, on average, they 
show smaller shifts after relocation, compared to the original 
location, and they exhibit smaller volumes of the 68 % confidence 
ellipsoids (Table 3.6). It is interesting to note that, even with well-
constrained hypocenter locations, we are not able to fully recover 
the simple structure of a 45° dipping fault. Our best result, 
according to BIC, using best data (stringent selection criterion) 
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shows two fault planes. As we use an error-free velocity model and 
Gaussian picking errors, the precision of fault reconstruction result 
is mainly controlled by the geometry of the station network. This 
suggests that the current station network setup does not allow us to 
perfectly resolve the one 45° dipping fault. 

3.4.3.2 Complex fault structure 

Our synthetic complex fault structure consists of 13 planes with 
a dip larger than 45° (Figure 3.5a). Earthquakes are distributed 
uniformly on each plane. With no selection criterion applied, the 
earthquake catalog consists of 3103 events. Applying soft and 
stringent selection criteria leaves 2257 and 400 events, respectively 
(Figure 3.8). Each earthquake catalog was processed with ACLUD, 
computing 6000 solutions for each catalog with different initial 
conditions of the random number generator (Wang et al. 2013b). 
One solution thereby corresponds to one fault reconstruction result. 
Similar to the results for a simple structure, we first analyzed the 
number of reconstructed faults for all solutions (Figure 3.9). Using 
all data (i.e. no selection criterion applied), the majority of 
solutions (about 90 %) show five or less fault planes, which is 
significantly lower than the true number of 13 faults. Applying the 
soft selection criterion, we obtain a bi-modal distribution with 
about 45 % of the solutions showing 5 or less faults and 40 % of 
the solutions showing more than 15 faults (Figure 3.9). About 80 % 
of the solutions show 10, 11 or 12 faults if the stringent selection 
criterion is applied. Our interpretation is that clustering results 
become more stable and closer to the true number of faults if only 
well-constrained hypocenter locations are used (i.e. when using the 
stringent selection criterion), although only a fraction of the 
original number of events are used. Interestingly, using all 
earthquakes (no selection criterion applied) also yields stable 
clustering results but the recovered structure seems oversimplified, 
given that about 90 % of the solutions show five or less fault planes.  
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For each earthquake catalog, Figure 3.10 shows the best 
solution as defined by the BIC. For all three solutions, large 
dipping faults are more or less correctly recovered when using the 
constrained earthquake data. Discrepancies between the different 
solutions, however, exist in the northern and southern parts, and for 
shallow dipping faults. For example, a spurious NNW-SSE striking, 
shallow dipping fault is introduced in the northern part (marked 
with an arrow in Figure 3.10a) when all earthquakes are used. This 
fault is not introduced if the soft or stringent selection criterion is 
applied. In the southern part, our synthetic fault structure shows 
two shallow dipping fault planes, which are not correctly recovered 
if the full earthquake catalog is used or the soft selection criterion 
is applied; if the stringent selection criterion is applied, two 
shallow dipping fault planes are introduced but strike and size of 
these planes are slightly different compared to the original fault 
planes (Figure 3.10). These observations suggest that earthquake 
locations, which are poorly constrained in focal depth, contaminate 
well constrained hypocenter locations in these regions, introducing 
spurious, mainly large dipping fault planes. This is consistent with 
our observations in the previous section, which demonstrated that 
well constrained hypocenter locations in epicenter and focal depth 
are needed to correctly recover dipping fault structures. 
Interestingly, the small fault in the central part (marked with an 
arrow in Figure 3.10a) is reconstructed when clustering the full 
catalog but not when using the better quality catalogs. We also 
notice that some solutions recovered this small fault if the soft 
criterion is used. Due to the low event density on this fault and the 
complex structure (overlapping), the reconstruction is highly 
unstable (for more discussion, see Wang et al. 2013b). 

Applying our stringent selection criterion, only a fraction of all 
earthquake locations can be used for fault network reconstruction 
(Figure 3.8). In particular, the earthquake distribution becomes 
sparse at latitudes 34.4° N - 34.5° N due to a gap in the station 
distribution in this region (Figure 3.5). Consequently, no fault 



3 Assessing fault network reconstruction using seismic network 
criteria  

 100 

planes are reconstructed if the stringent selection criterion is 
applied. In the remaining regions, the original fault network is 
quite well recovered despite a significantly lower number of events. 
It is interesting to note that the original fault network at latitudes 
34.4° N - 34.5° N is quite well recovered if the full earthquake 
catalog is used or the soft selection criterion is applied (Figure 
3.10). This is likely due to the relatively simple structure of the 
fault network in this region, which consists of large, non-
overlapping fault planes. South of 34.1° N, where the original fault 
network is more complex with overlapping fault planes at different 
dips, the fault network reconstruction is significantly worse if the 
earthquake catalog is used or the soft selection criterion is applied 
(Figure 3.10). Overall, our results demonstrate that the original 
fault network is more reliably reconstructed if well constrained 
hypocenter locations are used, i.e., data is selected using our 
stringent selection criterion. This effect becomes particularly 
important for complex fault structures with overlapping fault 
planes at different dips. It should be noted, though, that in certain 
regions where station distribution becomes sparse, no information 
on the original fault network can be recovered. 

3.5 Discussion 

3.5.1 Network criteria 

In the first part of our manuscript, we assessed how network 
criteria (nobs, GAP, DIST) can be used to select well-constrained 
hypocenter locations. Our results show that well-constrained 
epicenter locations can be obtained if the following network 
criteria are met: nobs ≥ 11 and GAP < 180o; a nearby station is not 
needed to constrain epicenter locations. Well-constrained 
hypocenter locations can be obtained if the following network 
criteria are met: nobs ≥ 11, GAP < 180o, and DIST ≤ 1.5. The 
motivation for establishing a set of network criteria to select well-
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constrained hypocenter locations follows the idea that the number 
and geometry of stations that record an earthquake determine how 
well the hypocenter estimate is constrained (Lee and Stewart 1981). 
This idea has a long history in seismology and much of the recent 
work in the literature has been developed within the efforts to 
monitor the Comprehensive Nuclear Test Ban Treaty CTBT 
(Bondár and McLaughlin 2009a; Bondár et al. 2004; Yang et al. 
2004). As already mentioned, these studies are based on high-
quality ground-truth events with known location accuracies 
(Bondár and McLaughlin 2009b; Bondár et al. 2004) recorded at 
local, regional and teleseismic distances. We have already stressed 
that an important drawback of the CTBT studies is that they use 
global, one-dimensional reference velocity models, such as 
IASPEI91 or ak135, for relocation. While these velocity models 
may be applicable at regional and teleseismic distances, their use 
for local networks is highly questionable. Moreover, these studies 
focused mainly on the accuracy of epicenter estimates, which is of 
primary concern for the monitoring efforts of the CTBT. 
Nevertheless, these studies developed so-called network criteria to 
assess the accuracy of local earthquake locations. For example, 
using Monte Carlo simulations of network geometries for two 
explosions, (Bondár et al. 2004) found that epicenter locations of 
local networks are accurate to within 5 km with a 95 % confidence 
level if the following network criteria are met: (1) nobs > 10, all 
within 250 km, (2) primary GAP < 1100, (3) secondary GAP < 1600 
and (4) at least one station within 30 km. In a more recent study, 
these criteria were updated using data from 47 GT0 explosions, of 
which 35 were located at the Nevada Test Site (Bondár and 
McLaughlin 2009b). The new results revealed that epicenter 
locations of local networks are accurate to within 5 km with a 95 % 
confidence level if the following network criteria are met: (1) nobs 
> 10, all within 150 km, (2) Δu < 0.35, (3) secondary GAP < 160°, 
and (4) at least one station within 10 km, where Δu describes the 
absolute deviation between the best-fitting uniformly distributed 
network of stations and the actual network (Bondár and 
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McLaughlin 2009b). The latter two constraints also ensure that 
focal depth is resolved with an accuracy of 7 km at the 95 % 
confidence level. Compared to these findings, our criteria seem less 
stringent. This could be explained by the fact that these studies 
used global velocity models and blasts located at the surface. 
Sources located close to the surface are difficult to relocate due to 
expected near-surface velocity heterogeneity (Husen et al. 2003). 
Global velocity models have no resolving power at shallow depth, 
and thus introduce significant velocity model errors. Due to the 
inherent coupling of seismic velocities and hypocenter locations, 
these errors will affect hypocenter locations as well (Pavlis 1986; 
Thurber 1992). In our study, we avoid this by using the same 
velocity model to compute synthetic travel times and to relocate 
the earthquakes. The main motivation for doing so is that, for fault 
network reconstruction, earthquake location precision is more 
important than accuracy. Due to their systematic nature, velocity 
model errors will mainly affect absolute locations but not 
necessarily relative locations between a set of earthquakes (Pavlis 
1986), which are important to constrain fault networks. 

Our results suggest that the 68 % confidence ellipsoid is not an 
appropriate approximation of the location uncertainties if 
earthquakes are observed at less than 11 stations (i.e. data sets R6 
and R8). For these data sets, a significant number of events did not 
contain the true hypocenter locations within the bounds of the 68 % 
confidence ellipsoids (Table 3.4). If an earthquake is observed at 
only a few stations, the PDF can have a non-ellipsoidal shape and, 
hence, the confidence ellipsoid is not a good approximation of the 
true location uncertainties (Husen and Hardebeck 2010; Lomax et 
al. 2000). Visual inspections of some of these events revealed that 
they often suffer from poor control on focal depth (i.e. DIST > 1.5), 
which in all cases yield elongated PDFs. In order to check whether 
earthquakes with poor control on focal depth are more likely to 
show non-ellipsoidal PDFs, we randomly chose 40 events from 
data set R11. Out of these, 28 events showed non-ellipsoidal PDFs, 
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of which 16 events had poor control on focal depth (DIST > 1.5). 
This suggests that events with poor control on focal depth are more 
likely to show non-ellipsoidal PDFs. Following the same approach, 
we found no evidence that the earthquakes with a primary GAP > 
180° are more likely to have non-ellipsoidal PDFs. It should be 
noted that the conclusion on whether a PDF has an ellipsoidal 
shape or not is somewhat subjective. As discussed in section 2.2.3, 
the difference between the maximum likelihood and expectation 
hypocenter location can be used as a measure to identify PDFs that 
are non-ellipsoidal. Nevertheless, a universal threshold does not 
exist since the shape of the PDF depends non-linearly on station 
geometry and parameterization of the velocity model (layered 
model or gradient model).  

Our results have important consequences if earthquakes are 
only observed at a few stations. For these earthquakes, location 
uncertainties, as computed by linearized location methods such as 
HYPOELLIPSE (Lahr 1989), become unreliable since they assume 
location uncertainties to be ellipsoidal in shape, which follows out 
of the underlying Chi-square or F-statistics (Boyd and Snoke 
1984). It should be noted as well that our results do not account for 
errors in the velocity model. It has been shown however that, in the 
presence of these errors, formal uncertainties as computed by the 
location programs can be misleading (Pavlis 1986). This is due to 
the systematic nature of these errors, which does not obey the 
underlying assumption of Gaussian distributed measurement and 
model errors. 

3.5.2 Application to fault network reconstruction 

In the second part of this paper, we showed the effect of 
applying different data selection criteria on fault network 
reconstruction. We found fault reconstruction can be highly 
unstable and unreliable if no selection criterion or the soft selection 
criterion are applied, even in the case of a single 45° dipping fault 
plane. We showed that even the optimal results selected from the 
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solution space contain several spurious faults. These faults are 
likely introduced to fit hypocenter locations shifted by a larger 
distance in the relocation process. It should be expected that these 
hypocenter locations are associated with larger uncertainties, which 
in principle should allow ACLUD to assign them to the correct 
plane fault. Instead of using all samples of the scatter density cloud 
for a given earthquake location PDF, ACLUD uses the covariance 
matrix and the associated 68 % confidence ellipsoid to compute the 
expected square distance between the PDF and a given fault plane 
and to compare the size of the average confidence ellipsoid in the 
direction normal to the cluster with the thickness of each cluster 
(Wang et al. 2013b). By computing the number of events, for 
which the 68 % confidence ellipsoid does not contain the true 
hypocenter location, we found in section 2 that the number of 
events with a non-ellipsoidal shaped PDF increases for earthquakes 
observed at less than 11 stations. For these events, the 68 % 
confidence ellipsoid is likely not a good approximation of the true 
uncertainties (see also the discussion in section 4.1). In our tests 
with synthetic data shown in section 3, 50 % of the events are 
observed at less than 11 stations if no or the soft selection criterion 
are applied; only if the stringent selection criterion is applied, we 
find that events are observed at 11 or more stations. Consequently, 
when no or the soft selection criterion are applied, we can expect 
that a larger number of events show a non-ellipsoidal shaped PDF. 
For these events, the 68 % confidence ellipsoid, as used in ACLUD, 
is not a good approximation of the true uncertainties, which may 
lead to the observed introduction of additional or spurious fault 
planes. Only if the stringent selection criterion is applied, does the 
vast majority of events show an ellipsoidal shaped PDF and 
reconstructed fault networks become closer to the true structure. 

For our synthetic data, only 10 % of the events are retained if 
the stringent selection criterion is applied. For the single fault 
structure, we still have a sufficient amount of data for the fault 
reconstruction. In contrast, the network reconstruction does not 



  
 

 105 

resolve certain regions for the Lander fault network (e.g. region 
between 34.40 N and 34.50 N in Figure 3.10). In these regions, the 
station network is not as dense, leading to less well-constrained 
hypocenter locations in these regions. Nevertheless, poorer quality 
data does recover the true fault network in this region relatively 
well, which is likely due to the simple fault structure in this region 
(i.e. large, non-overlapping faults). This poses the question of how 
to perform fault network reconstruction for real data, where the 
true fault network is unknown and data selection may significantly 
reduce the number of usable events. One approach could consist of 
first using highest-quality data (e.g. applying the stringent selection 
criterion) in fault network reconstruction. This would outline so-
called well-resolved regions, where data quality is high, and, hence, 
fault network reconstruction is reliable. Data of lower quality can 
then be used for the remaining regions but care should be exercised 
in interpreting the obtained results, as artifacts are likely. Moreover, 
fault networks in these regions should clearly be labeled as poorly 
or only fairly-well resolved. For real data applications, our results 
also demonstrate the usefulness of tests with synthetic fault 
networks, which allows one to identify regions where data quality 
and fault network reconstruction can be problematic. In order to 
utilize the power of these tests, they need to be as realistic as 
possible, e.g. the real station network should be used to compute 
synthetic travel times. Overall, the identification of well- and 
poorly-resolved regions in fault network reconstruction is similar 
to the situation in seismic tomography, where the heterogenous 
distribution of sources (earthquakes) and receivers (stations) 
demands a careful assessment of the quality or resolution of the 
obtained model (Husen et al. 2000; Thurber et al. 2007). 

3.6 Conclusions 

We have used synthetic data and a nonlinear probabilistic 
earthquake location technique (NonLinLoc) to comprehensively 
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assess the influence of the number and distribution of stations on 
the accuracy and precision of local earthquake location estimates. 
Our study confirms that network criteria, such as nobs, primary 
GAP, DIST, are highly valuable to assess location quality. 
Epicenter locations are well-constrained if the primary GAP < 180° 
and well-constrained focal depth estimates require a nearby station 
(DIST < 1.5). It should be noted that these results only apply if the 
seismic velocity structure is accurately known. Moreover, our 
results imply that the use of classical error ellipsoids to describe 
location uncertainties can be misleading for earthquakes observed 
at a low number of stations (nobs < 11) and with a primary GAP of 
more than 180°.  

Investigating two synthetic datasets computed for a simple fault 
structure (i.e. a single, 45° dipping fault) and for a complex fault 
structure derived from a real data application to the 1992 Mw 7.3 
Landers aftershock sequence (Ouillon et al. 2008; Wang et al. 
2013b), we have illustrated the influence of earthquake data quality 
on fault network reconstruction. By applying three different data 
selection criteria, we found that fault network reconstruction can be 
unstable and unreliable when using poorly constrained location 
data. In turn, this implies that using high-quality data selected by 
the proposed network criteria leads to high-quality fault network 
reconstruction results. Our results thus suggest the need for a 
careful assessment of the quality and reliability of reconstructed 
fault networks, involving clustering of data sets of different 
qualities and realistic tests with synthetic fault network structures. 

Based on the assessment of hypocenter location quality, we 
have illustrated its influence on one application: reconstructing 
fault networks. This forms an example for many other studies that 
use earthquake catalogs as essential input data. The lesson learned 
in this study should be investigated in multiple other applications, 
such as detailed mapping of earthquake parameters (Mignan et al. 
2011; Schorlemmer et al. 2004; Woessner and Wiemer 2005), 
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building earthquake forecast models (e.g. Hainzl et al, 2010. 
Zhuang et al. 2011, Zhuang et al. 2012 and reference therein), 
or studies that evaluate earthquake forecasting models (e.g. 
Woessner et al. 2011; Zechar et al. 2013 and references therein). 
The conclusion from our results is simple, but nicely illustrated: 
higher quality input data serves to develop better constrained 
images of faults structures within the crust and its related processes. 
Low quality or heterogeneous quality data sets often blur the true 
resolvable results. 
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Table 3.1: P-wave velocity model used to compute synthetic travel times 
and to relocate synthetic data. 

Depth (km) P-wave velocity (km/s) 

0.0 6.0 

30.0 8.0 
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Table 3.4: Percentage of events for which true locations are not covered 
by the 68 % error ellipsoid. Percentages were computed using all 10,000 
events in each data set. Observed deviations from the theoretical value of 

32 % are caused by a significant number of events for which the 68 % 
error ellipsoid is an unreliable description of the true error. 

 

Data set Percentage of events 

R6 40% 

R8 38% 

R11 35% 

R22 33% 
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Table 3.5: Number of events under three different data selection criteria. 

 No selection Soft selection Stringent selection 

One 45° dipping fault 2000 1732 259 

Synthetic Landers 3103 2257 400 
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Table 3.6: Average mislocation in epicenter and in focal depth, and 
average volumes of the 68 % confidence ellipsoids for earthquake catalog 

under three different data selection criteria. 

 No selection Soft selection Stringent selection 

Mislocation in epicenter 0.54 0.44 0.31 

Mislocation in focal depth 1.62 1.59 0.59 

Volume of 68% con. ellipsoid 10.71 7.29 1.29 
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Figure 3.1: Network design, fault location and earthquake distribution to 
compute synthetic data: a) Map view: Triangles represent stations (88 in 

total, 20 km spacing). The black line indicates the fault surface trace 
along which earthquakes were distributed. b) Vertical cross-section (y-z-

section). Dots represent location of 10,000 earthquakes uniformly 
distributed along the fault plane. c) Same as b) but along X-axis. d) 
Synthetic one-dimensional (1-D) velocity model used to compute 

synthetic travel times. 
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Figure 3.2: Density scatter plot drawn from the posterior PDF (red dots) 
as computed with NonLinLoc for an earthquake observed at six randomly 

chosen stations (data set R6). Map view (upper left) and vertical cross 
sections (upper right and lower left) are shown together with location 

network (lower right). Ellipses represent projection of the 68 % 
confidence error ellipsoid. Square represents the true location. Maximum 
likelihood location (star) and expectation location (circle) show difference 

to true location. Network criteria are as indicated. 
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Figure 3.3: Cumulative Density Functions (CDF) of mislocation in 
epicenter (left) and focal depth (right). CDF were computed for 10,000 

events of data sets a) R6, b) R8, c) R11, and d) R22 grouped by different 
network criteria (GAP, DIST) as indicated. The 90th percentiles are 

computed for each sub-group and are listed in Tables 2.2 and 2.3. At the 
90th percentile, 90 % of the events show a mislocation that is equal or 

lower than the corresponding value.  
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Figure 3.4: Cumulative Density Functions (CDF) of absolute difference 
between maximum likelihood and expectation hypocenter locations in a) 
epicenter and b) focal depth for data sets R6, R8, R11, R22 as indicated. 

Since hypocenter locations with fewer observations are less well-
constrained, differences between maximum likelihood and expectation 

hypocenter locations increase with decreasing number of observations. In 
addition, focal depth is commonly less well-constrained than epicenter, 
yielding larger differences in focal depth between maximum likelihood 

and expectation hypocenter locations. 
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Figure 3.5: Synthetic Landers fault network with real station network. a) 
Active stations in the region with longitude as [-117.4°, -115.4°] and 

latitude as [33.25°, 35.25°] during 2 weeks span after the main shock on 
28.06.1992. b) Synthetic Landers fault network from (Ouillon et al. 2008) 

consisting of 13 faults.  
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Figure 3.6: Cumulative Distribution Function (CDF) of the number of 
clustered planes for one 45° dipping fault structure. The clustering 
method was applied to three data sets under different data selection 

criterion. The whole dataset contains 2000 events. There are 1732 events 
under the soft criterion (GAP <= 180°). There are 259 events under the 

stringent criterion (GAP <= 180°, DIST <= 1.5 and nobs >= 11). 
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Figure 3.7: Result chosen by the BIC of the clustering method applied to 
the synthetic data consisting of one 45° dipping fault 2000 events. With 

no data selection criterion, 7 planes were generated. Under the soft 
selection criterion, 6 planes were clustered. Under the stringent criterion, 

2 planes were generated. 
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Figure 3.8: Synthetic data derived from the Landers fault network of 
(Ouillon et al. 2008) and real station network. a) 3103 events in the whole 

data set. b) 2257 events under the soft data selection criterion. c) 400 
events under the stringent data selection criterion. 
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Figure 3.9: Cumulative Distribution Function (CDF) of the number of 
clustered planes for the synthetic Landers data set consisting of 13 faults 

and 3103 events. The clustering method was applied to three data sets 
under different data selection criterion.  
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Figure 3.10: Result chosen by the BIC of the clustering method applied to 
the synthetic Landers data consisting of 13 faults. With no data selection 
criterion, 15 planes were generated. Under the soft selection criterion, 18 

planes were clustered. Under the stringent criterion, 10 planes were 
generated.
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Chapter 4  

Fault network reconstruction and 
event-size distributions analysis of the 
Basel induced seismicity sequence  
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4.1 Introduction 

For the Deep Heat Mining project, a private/public consortium 
stimulated the reservoir in Basel, Switzerland, to establish an 
Enhanced Geothermal System (EGS) with the aim to supply the 
region with an alternative source of energy.  From  December 2nd 
to 8th, 2006, approximately 11500 m3 of water were injected into a 
5km deep well at the site of Kleinhüningen (Häring et al. 2008). 
The	  experiment	  in	  Basel	  was	  closely	  monitored	  by	  a	  six-‐sensor	  
borehole	  array	  which	  recorded	  more	  than	  11,000	  events	  of	  which	  
over	  3,500	  could	  be	  located	  (Deichmann	  and	  Giardini	  2009;	  Häring	  et	  
al.	  2008).	  The	  located	  events	  range	  from	  moment	  magnitudes	  Mw	  0.1	  
to	  3.2,	  with	  three	  events	  above	  Mw	  3. 	  
 
Enhanced Geothermal Systems generally use and injection and an 
extraction borehole to circulate the water through the reservoir. 
Thus, the first stimulation facilitates the definition of the site of the 
second borehole. The induced seismicity is thought to indicate the 
direction of the fluid-flow as earthquakes occur along the cracks or 
fault planes that cannot resist the applied stresses anymore because 
of normal stress reduction by increasing pore pressure. Anyway, if 
planes that are favorably oriented compared to the background 
stress field are certainly prone to activation, the role of pore 
pressure diffusion in the rupture along misoriented planes is still a 
matter of debate.  

Due to the close monitoring of the seismicity with the borehole 
array, high-quality hypocenter locations (T. Kraft, pers. 
Communication) that include detailed uncertainty information and 
a well-defined focal mechanism dataset exist (Deichmann and 
Ernst 2009). With these datasets, Deichmann et al. (2013) attempt 
to define active fault planes using their location and clustering 
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techniques, as well as their expertise on the tectonic setting of the 
Basel volume. Despite the logic procedure Deichmann et al. (2013) 
followed, the result is depending on the personal expertise and a 
process that involves detailed hands-on analysis without objective 
criteria. In contrary, Wang et al. (2013b) proposed the Anisotropic 
Clustering of Location Uncertainty Distribution (ACLUD) method 
to reconstruct fault networks from high-quality datasets, 
considering the individual hypocenter uncertainties as described by 
a probability density function or a scatter density cloud. The 
method has been tested on synthetic and real datasets on the scale 
of a M7-type earthquake, using also network quality criteria to 
investigate the influence of poorly located events on the resulting 
reconstructed fault network (Wang et al. 2013a).   

The Basel induced seismicity sequence provides for this method a 
unique dataset to apply the fault network reconstruction method at 
a scale of a 1km3 volume, thus on a scale that is by a factor of 
10,000 smaller than the volume that was investigated before. With 
this new application, we address various questions: Does the 
automatic fault network reconstruction lead to a network solution 
that is compatible with pre-existing natural fractures? Does the 
method allow to reproduce the complexity of the detailed analysis 
by a hands-on approach as performed by Deichmann et al. (2013)? 
Is the approach able to indicate the principle directions and does it 
also resolve active planes that are not oriented preferentially to a 
homogeneous background stress field?  

Provided that the method generates fault networks that resemble 
the current physical and mechanical understanding of reservoirs, 
we further investigate the b-value of the Gutenberg-Richter relation 
(Gutenberg and Richter 1944) for each fault plane. The b-value is 
one of the important parameters within the seismic hazard 
assessment in Geothermal systems. We thus want to check whether 
we find a similar pattern as Bachmann et al. (2012), who find a 
radial decrease of b-values from the well-head where fluids are 
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injected, to the outer parts of the volume, so that the largest events 
all occur on the outer boundary of the seismicity cloud where the 
b-value is closer to the usual tectonic b-value. 

In this chapter, we first describe the datasets and then shortly 
review the Anisotropic Clustering of Location Uncertainty 
Distribution (ACLUD) method. We then present the results of the 
clustering technique and interpret them through the frequency-
magnitude size distribution parameter b, discussing the possible 
implications and further use of the applied method.  

4.2 Data description 

We use the high-precision earthquake catalog of T. Kraft (ETH 
Zurich, personal communication) to automatically reconstruct the 
fault network in the stimulated reservoir. The catalog has been 
obained by first identifying clusters of events with highly similar 
waveforms. In a second step master events of each cluster were 
relocated relative to each other using a double-difference relocation 
technique (Waldhauser and Ellsworth 2000). Finally, events within 
each clusters were relocated using a master-event relocation 
technique (Console and Digiovambattista 1987; Deichmann and 
Garciafernandez 1992). Arrival times for all observations were 
improved by using cross-correlation measurements (Rowe et al. 
2002). The combination of cross-correlation measurements and 
relative relocation techniques yields high-precision earthquake 
locations with associated uncertainties of a few meters (Richards et 
al. 2006). In total the earthquake catalog contains 1,915 events in 
the period December 2nd 2006 to March 30th 2007, out of the about 
10,500 events initially located (Deichmann and Giardini 2009; 
Häring et al. 2008).  

Location uncertainties where computed using a Monte-Carlo 
approach using picking uncertainties of between 1 ms and 2 ms. 
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We represent location uncertainties by means of density scatter 
clouds, as needed for the ACLUD method. As we discussed in 
Chapter 2, ACLUD uses the covariance matrix and the associated 
68% confidence ellipsoid derived from the scatter density cloud to 
compute the expected square distance between the location 
uncertainty probability density function (PDF) and a fault plane, 
and to compare the size of the average confidence ellipsoid in the 
direction normal to the cluster with the thickness of each cluster. 
Average location uncertainty, as computed by taken the mean of all 
three half-axes of the 68 % confidence ellipsoid, is about 4 m 
(Figure 4.2). This is comparable to the results from Deichmann et 
al. (2013). 

The 68% confidence ellipsoid is a viable approximation of the 
location uncertainty only if the PDF is linear in shape (Wang et al. 
2013a). We, therefore, selected only events that were recorded by 
all six borehole stations of the Basel network operated by 
Geothermal Explorers Ltd. (Häring et al. 2008). In order to have an 
optimal station configuration we required as well a P- and a S-
wave observation at each station. Thus, we only selected 
earthquakes with a total of 12 observations. This selection yields a 
subset of 1100 events (see Figure 4.1). There are three events with 
Mw≥2.0 marked as circles, i.e. one Mw=2.0 on 2006-12-06, one 
Mw=2.1 and one Mw=2.2 on 2006-12-08. The largest magnitude 
events of the entire sequence do not remain within the catalog as 
these did not fulfill the stringent cross-correlation coefficients 
required by the relocation procedure, i.e. they did not belong to any 
of the earthquakes clusters. 

We used the focal mechanism catalog by Deichmann et al. 
(2013) for the validation procedures of the reconstructed fault 
networks by ACLUD. Focal mechanisms were determined by first-
motion polarities targeting events (0.7<=ML<=3.4) that were 
recorded not only by the six borehole stations but also at the local 
surface station network to ensure high-quality solutions with a 
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small azimuthal gap (see also Deichmann and Ernst 2009). The 
focal mechanism catalog contains only 185 events, not sufficient to 
apply the clustering approach to this dataset. Thus we decided to 
only use this as an independent validation dataset. It should be 
noted that only 49 events out of the 185 events were also in the 
earthquake catalog of T. Kraft. Hence, we had a set of 49 events 
with focal mechanisms to calculate the validation metrics.   

4.3 Anisotropic clustering of location 
uncertainty distributions (ACLUD) 

Ouillon et al. (2008) proposed the optimal anisotropic data 
clustering (OADC) method to reconstruct the active part of a fault 
network from the spatial location of earthquake hypocenters. It 
is inspired from the seminal k-means method (MacQueen 1967), 
which partitions a given dataset into a set of (a priori isotropic) 
clusters by minimizing the global variance of the partition. Ouillon 
et al. (2008) generalized this method to the anisotropic case with a 
new algorithm, which, in a nutshell, fits the spatial structure of the 
set of events with a set of finite-size plane segments. The number 
of segments used increases until the residuals of the fit become 
comparable to the average hypocenters location uncertainty. One 
can then estimate the position, size and orientation of each plane 
segment. More details on the OADC method can be found in 
Ouillon et al. (2008). 

The main shortcoming of the OADC method is the implicit 
assumption that location uncertainties are uniform and isotropic for 
the whole catalog. This implies that location uncertainties are equal 
in all directions and identical for all earthquakes in a catalog. 
Obviously, this assumption is rather unrealistic since location 
uncertainties depend strongly, due to picking and velocity model 
errors, on station network geometry (Wang et al. 2013a). To 
improve on the OADC method, Wang et al. (2013b) introduced the 
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anisotropic clustering of location uncertainty distribution 
(ACLUD) method to reconstruct active fault networks. The 
ACLUD method extends the OADC method by taking into account 
the detailed and individual location uncertainties of each event. 
This is achieved by introducing the expected squared distance 
between a probability density function and a finite plane to 
associate earthquake locations as described by the probability 
density function and the closest plane (Wang et al. 2013b). 
Furthermore, the ACLUD method introduces a dynamic stopping 
criterion that links the average location uncertainty in the direction 
normal to a given earthquake cluster and the thickness of that 
cluster. This allows one to adapt locally the resolution of the fit to 
the location uncertainties.  

Another advantage of the ACLUD method is that it allows for a 
massive search through the entire solution space of possible 
reconstructed fault networks (Wang et al. 2013b). This is achieved 
by computing a large number of solutions. Since search for 
solution is a stochastic process, thus different runs converge to 
different solutions. The full set of potential solutions is submitted 
to six different validation procedures in order to select optimal 
solutions (Wang et al. 2013b). Two of the validation steps (cross-
validation and Bayesian Information Criteria (BIC)) are purely 
statistical approaches that process the data fit of all solutions. The 
four other validation procedures use independent information from 
observed focal mechanisms to identify solutions that provide the 
best agreement.  

4.4 Event size distribution  

The cumulative number of earthquakes, N, in a given volume 
generally follows a power law distribution and can be expressed as  
 

 log10 N(M ) = a − bM
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where a and b are constants that describe the productivity and the 
relative size distribution, respectively (Gutenberg and Richter 
1944). Higher b-values indicate more small events relative to larger 
events, and vice-versa.  
We estimate the b-value with the maximum-likelihood technique  

b = log10 (e)

M − (Mc −
ΔMbin

2 )
⎡
⎣⎢

⎤
⎦⎥

 

with M  being the mean magnitude of the sample, ∆Mbin the bin 
width and Mc the magnitude of completeness. The completeness is 
estimated from the data sample using the MAXC-approach by 
Woessner and Wiemer (2005), adding a 0.2 increment to the 
algorithmic solution as the MAXC approach often tends to slightly 
underestimate the actual completeness level. 

4.5 Clustering result 

Automatic fault network reconstruction with the ACLUD-
method is a stochastic fitting procedure that depends on the initial 
conditions. Depending on the initial condition and due to the highly 
non-linear process, the fault network evolves by adding complexity 
to the network when the dynamic stopping criteria are reached. 
Increasing complexity refers to adding more fault planes to the 
system and reassessing the overall fit. We performed 6,000 runs in 
order to sample the complex solution space, with each solution 
corresponding to one reconstructed fault network.  

The reconstructed fault networks converge to a number of three-
to-thirteen faults planes (Figure 4.3) to explain the hypocenter 
distribution. This result indicates that automatic fault plane 
reconstruction leads to stable results within a non-unique solution 
space and sample the possible complexity, with the most likely 
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networks (90%) being constituted by six-to-nine individual fault 
planes. Using the six validation procedures, we selected the best 
solutions for each of those (Figure 4.4 and Figure 4.5). Fault planes 
and the events that formed the cluster to which a plane was fitted 
are colored correspondingly, with the fault planes made transparent 
to be able to view the seismicity. The colors correspond to 
estimated b-values of the events cluster of each fault plane. Cold 
colors indicate high b-values, hot colors indicate low b-values. 
Three events with MW ≥ 2.0 are marked with larger circles (not on 
scale) on all solutions except for the solution selected with the 
Bayesian Information Criterion (BIC) – obtained by selecting 5% 
of the data as the validation dataset. In this case, the best solution is 
found for a subset of data that does only contain two of the larger 
events.  

At first, we focus on the geometry of the solutions. The six best 
solutions show quite diverse orientations resembling the 
complexity of the underlying fault network. The orientation of the 
fault planes is visualized in map-view (Figure 4.5) and by plotting 
the planes on stereonet projection as well as with the normal 
vectors to the fault planes, to illustrate the strike and dip of the 
faults, colored again according to the b-values. (Figure 4.6, Faults 
with unreliable b-values are black).  It is not a surprise to obtain 
diverse networks: (i) considering the variety of natural planar 
structures in the crystalline basement of the area (see Figure 3, in 
Häring et al. 2008), and (ii) given the validation criteria that weight 
different properties of the data set. The solutions indicate, however, 
a consistent picture of steeply dipping faults (see Table 4.1-4.6) 
and the majority of fault planes oriented in a NNW-SSE direction. 
This corresponds to the orientation of the maximum compressive 
stress axis (SHmax =144° ± 14°) of the background tectonic stress 
field in this area.  

Compared to the solution of Deichmann et al. (2013), the 
automatic solution samples the same diversity of orientations. The 
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philosophically closest validation scheme to the approach by 
Deichmann et al. (2013) is the σfault solution which provides a 
measure of fault mechanisms homogeneity averaged over all faults. 
However, it corresponds to a complex solution featuring 12 planes 
and very few events per plane. We therefore rather prefer the 
solution with the σevent validation scheme, as this weights equally 
the focal mechanisms throughout the entire cloud, resulting in only 
6 faults to fit the seismicity. 

4.6 Analysis of event-size distribution 

Studies of micro-earthquakes on faults (Schorlemmer and 
Wiemer 2005) have shown that the b-value, when mapped with 
high quality data at high resolution, varies in the Earth’s crust over 
distances of a few kilometers or less. These studies, combined with 
the analysis of regional and global focal mechanism data (Gulia 
and Wiemer 2010; Schorlemmer et al. 2005) as well as laboratory 
work (Amitrano 2003) indicate that the b-value is inversely 
proportional to the differential stress σD and thus may qualitatively 
be used as a stress meter at depth in the Earth’s crust, where 
generally no direct measurements are possible. In particular, 
Bachmann et al. (2012) studied the distribution of the Basel 
seismicity cloud and inferred that there are high b-values (up to 2) 
close to the borehole, decaying toward the outside down to values 
more around 1, a value that is expected within general tectonic 
settings, implying that larger magnitude events are relatively more 
likely to occur on the edges of the stimulated reservoir rather than 
at the locations with the highest fluid-pressures.  

Using the reconstructed fault network, we investigate the event-
size distribution per plane to understand the characteristics of our 
approach in terms of a possible relationship to the underlying 
physics and its implications for seismic hazard due to an Enhanced 
Geothermal systems.  
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The entire seismicity cloud contains 1110 events after selecting 
only the high quality data. Each final solution contains a subset of 
this, with mainly around 1040 events, thus about 50 events are not 
clustered. As one example and to define a base average event-size 
distribution, we selected the final data used in the clustering 
procedure for the σevent validation scheme, finding an average b-
value of b=1.91 ± 0.11 (Figure 4.7). The b-values of the singles 
planes range overall between 1.05 ≤ b ≤ 6.2 (Figure 4.8), with a 
concentration of b-values around 1.9. The figure separates the 
validation criteria on the y-axis and plots the planes according to 
their b-value. The standard deviation of the maximum likelihood 
estimate of the b-values are plotted in the y-direction, on scale with 
the b-values on the x-axis, only for a better visualization. Some of 
the b-values and standard deviations are large, as many of the fault 
planes have only a few number of events above the completeness 
magnitude threshold to fit the power-law. Therefore, we show the 
same plot as a function of the number of complete events used for 
the b-value fit (Figure 4.9). Few data results in large uncertainties, 
thus many of the b-values computed are not reliable. Based on 
previous studies on synthetic catalogs, we assume that about 50 
events lead to reasonably stable results. We find that the highest 
and lowest results arise from very small clusters of events – thus 
these are not reliable. For clusters that have more than 50 events to 
fit, the values all range around b=1.9.  

As we discussed before, we colored the fault planes according 
to the estimated b-values (Figure 4.6), excluding all those planes 
featuring less than 50 events above the completeness threshold as 
the quality criterion. We find that most of the reliable values 
indicate b-values around 1.9, thus do not show large variability 
throughout the cloud. All these planes are generally oriented 
NNW-SSE with some variations. Planes with very different 
orientations have in general to few events to estimate reliable b-
values. Thus, we find that most of the events according to our 
results occur on planes that are oriented favorably within an 
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assumed homogeneous background stress field and that most of the 
ruptures occur on such fault, yet with an event-size distribution that 
is strongly influenced by the fluid-pressures. 

4.7 Discussion and Conclusion 

In this chapter, we have applied the automatic fault network 
reconstruction method (ACLUD) to one of the available datasets of 
the Basel induced seismicity cloud. Similarly to the result from 
Wang et al. (2013b), each of the six validation techniques yields a 
different solution. The fact that these validation techniques yield 
different selected solutions may come from the interplay of two 
main factors: the multiscale structure of individual faults and the 
spatial extent of earthquakes location uncertainties. Many studies 
show that faults feature a complex inner structure consisting of a 
complex subnetwork of sub-faults and secondary brittle structures 
(Tchalenko 1970; Tchalenko and Ambraseys 1970). If the time 
span of the catalog is much shorter than the typical time scale 
necessary to activate rupture on every substructure, then most of 
the sub-faults will feature very few events, precluding their 
detailed reconstruction. Furthermore, if location uncertainties are 
larger than the typical spacing of sub-faults, the solution to the fit 
of the full network is not unique either and different validation 
techniques will favor different solutions (more discussion, see 
Wang et al. 2013b). 

In this chapter, we showed that the method can handle datasets 
at very different scales, given that high-quality data in terms of 
location and uncertainty description is given. In an exercise not 
described in this chapter, we arbitrarily increased the uncertainty 
information by a factor of 10 and thus found generally only one 
plane per validation scheme. With the high-quality data, the 
method reproduces the actual complexity of the fault network on 
the scale of a 1km3 volume in a relatively fast manner. The results 



   
 

 139 

are comparable to those obtained by Deichmann et al. (2013). 
However, since the latter are based on expert inference, these are 
not comparable quantitatively.  

Given the six validation schemes, we favor the σevent validation 
scheme as this reproduces the major orientation of the fault 
structure knowing the overall homogeneous background stress field 
orientation (Häring et al. 2008). However, since there is strong 
evidence of local stress heterogeneities, the other networks 
resemble equally likely solutions and we are not able to falsify any 
of the solutions.  

Our results imply that fast automatic fault network 
reconstruction need to rely on high-quality, cross-correlation 
located data with an adequate uncertainty description. We have 
used only events with 6 P-wave and 6 S-wave picks for which the 
locations can be computed with high accuracy. Only with such data, 
it is possible to resolve small-scale structures. The complexity of 
the fault network is very likely sampled by all the validation 
schemes, and there is independent evidence from Deichmann et al. 
(2013) and as well by the mapping of natural fractures (Häring et al. 
2008) that the complexity is real. We show, however, that major 
orientations are sampled and can be resolved automatically which 
might indicate industrial use for siting an extraction borehole. 

Using the hypothesis that b-values can be used as stressmeters, 
we mapped the b-values on the fault planes. Many of the faults 
have too few events to reliably compute this value, however, 
setting a threshold of at least 50 events to be fit, we find that the 
values range around 1.9. The structures on which the b-values can 
be computed are generally oriented favorably to the background 
stress field. In contrast to Bachmann et al. (2012), we do not find 
strong variations with distance to the injection well head. This is 
however, not unexpected since our sampling technique on the 
faults cross-cut along the entire seismicity cloud, while Bachmann 
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et al. (2012) use a technique to sample the local events and separate 
largely distant events. Fault planes that are not favorably oriented 
to the assumed homogeneous background stress-field seem to show 
different b-values, however, the number of events that could be 
used within the clustering approach is not large enough to provide 
a conclusive statement and to make inferences on the stress-field 
on a solid ground. 

Within this analysis, we also faced some major drawbacks due 
to the available data: the catalog by T. Kraft is genuine as it 
contains high-quality hypocenter locations due to the strong 
requirements in the cross-correlation approach, the full pick 
information and hypocenter location uncertainty information. 
However, due to the cross-correlation constrains, many events are 
missing and not included in the data set, e.g. the three largest 
magnitude events that caused the termination of the project. 
Combining the Kraft-catalog with the Deichmann-catalog 
(Deichmann et al, 2013) would result in a catalog with different 
quality locations, so this is not an option. We only did this for the 
focal mechanisms by using the event IDs. For our type of analysis, 
we would desire a catalog that is located relative to the well-head, 
and then use a cross-correlation technique with possible additional 
secondary master events that include as much as possible events. 
One could even use multiple of such dataset that are produced with 
varying constraints on the waveform cross-correlation 
requirements to understand this as quality measure for the 
reconstructed networks. 

One of the major questions for EGSs arise due to the related 
seismic hazard: Bachmann et al. (2011) proposed a method to 
estimate hazard in a one-dimensional approach. However, the 
clustering approach outlines a pathway to implement a more 
complex structure as it samples activated structures. Combining all 
solutions in a Bayesian Framework (Marzocchi et al. 2012) might 
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provide a better spatial resolution of the associated hazard and help 
to mitigate the seismic hazard for future EGS projects.





  

 

Table 4.1: Matrix of strike and dip value for solution favored by BIC, b-
value, standard deviation, number of events. 

 Plane Strike(°) Dip(°) b-value std-b Nr. events 

BIC 

1 351 70 2.70 0.31 95 
2 158 82 1.85 0.13 399 
3 95 56 5.21 1.32 13 
4 151 79 2.04 0.16 264 
5 211 45 1.83 0.57 14 
6 181 80 1.69 0.17 158 
7 31 79 1.55 0.16 106 

 

Table 4.2: Matrix of strike and dip value for solution favored by cross 
validation, b-value, standard deviation, number of events. 

 Plane Strike(°) Dip(°) b-value std-b Nr. events 

Cross 
validation 

1 336 80 1.94 0.18 165 
2 206 84 1.75 0.21 62 
3 149 83 1.52 0.16 98 
4 153 83 1.85 0.12 372 
5 160 78 2.00 0.20 258 
6 353 66 1.67 0.25 100 

 

Table 4.3: Matrix of strike and dip value for solution favored by , 
b-value, standard deviation, number of events. 

 Plane Strike(°) Dip(°) b-value std-b Nr. events 

 

1 145 89 1.42 0.24 77 
2 95 56 5.21 1.32 13 
3 159 77 1.81 0.09 643 
4 321 78 2.05 0.23 135 
5 154 83 1.55 0.17 82 
6 179 39 3.23 0.37 91 

µevent

µevent



4 Fault network reconstruction of the Basel seismicity sequence 

 144 

Table 4.4: Matrix of strike and dip value for solution favored by , 

b-value, standard deviation, number of events. 

 Plane Strike(°) Dip(°) b-value std-b Nr. events 

 

1 164 89 1.41 0.22 55 
2 137 75 2.27 0.33 25 
3 166 82 1.64 0.21 112 
4 151 85 1.81 0.09 569 
5 266 41 1.61 0.21 60 
6 321 88 2.04 0.65 12 
7 213 55 5.21 1.32 12 
8 172 59 2.22 0.22 196 
9 14 45 1.89 0.45 20 

 

Table 4.5: Matrix of strike and dip value for solution favored by , 
b-value, standard deviation, number of events. 

 Plane Strike(°) Dip(°) b-value std-b Nr. events 

 

1 4 41 1.87 0.38 58 
2 15 64 1.70 0.21 147 
3 154 86 1.93 1.26 21 
4 154 80 1.91 0.15 267 
5 171 83 1.46 0.25 41 
6 335 81 2.03 0.19 171 
7 148 82 1.77 0.35 35 
8 151 80 2.38 0.26 168 
9 168 55 2.12 0.21 95 

10 326 86 1.48 0.36 48 
 

  

µ fault

µ fault

σ event

σ event
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Table 4.6: Matrix of strike and dip value for solution favored by , 

b-value, standard deviation, number of events. 

 Plane Strike(°) Dip(°) b-value Std-b Nr. events 

 

1 253 50 6.20 1.77 12 
2 25 53 2.13 0.48 34 
3 189 81 1.85 0.26 89 
4 153 77 2.06 0.16 235 
5 148 81 1.73 0.11 424 
6 309 90 2.90 0.81 14 
7 312 23 3.58 1.24 26 
8 348 77 2.07 0.18 90 
9 180 86 1.47 0.36 23 

10 300 45 1.06 0.16 36 
11 162 63 2.21 0.52 23 
12 146 59 1.28 0.20 33 

 

  

σ fault

σ fault
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Figure 4.1: 1110 events observed by all 6 borehole stations with both P 
phases and S phases. Three large events (Mw>=2.0) are marked in circles, 
one Mw=2.0 on 2006-12-06, one Mw=2.1 and one Mw=2.2 on 2006-12-

08. 
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Figure 4.2: Histogram of location error for 1110 events used in this study. 
Assuming location uncertainty isotropic, one sphere and its radius are 
used to approximate the 68% confidence ellipsoid and overall location 

error for each event.  
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Figure 4.3: Histogram of the number of clustered faults. 
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Figure 4.4: 3D-view of the reconstructed fault networks per validation 
procedure. Faults and their assigned events are colored correspondingly to 

b value in Figure 4.8. Events with Mw≥2 are indicated as large circles. 
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Figure 4.5: Map-view of the reconstructed fault networks per validation 
procedure. Faults and their assigned events are colored correspondingly to 

b value in Figure 4.8. Events with MW≥2 are indicated as large circles. 
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Figure 4.6: Stereo plots of the fault network from Deichmann et al. (2013) 
and solutions favored by six validation criteria. Curves in the left column 

indicate the orientation of fault traces. Dots in the right column show 
directions of the normal poles of fault planes. Faults with >= 50 events are 

colored corresponding to b value in Figure 4.8.  
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Figure 4.7: b-value for the solution of sigma_event for the entire 
seismicity.   
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Figure 4.8: b-value of each fault plane for all solutions chosen by six 
validation criteria. Uncertainty of b-value is presented in vertical 

direction. Color corresponds to b-value. 

  

1 2 3 4 5 6 7
 

BIC

CrossVal

muEvent

muFault,

sigmaEvent

sigmaFault

 

b−value

Va
lid

at
io

n 
A

pp
ro

ac
h



   
 

 157 

 

 

Figure 4.9: Number of events in each fault plane for all solutions chosen 
by six validation criteria. Color corresponds to Figure 4.8. 
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In this thesis, I introduced a new anisotropic statistical 
clustering technique, the Anisotropic Clustering of Location 
Uncertainty Distributions (ACLUD) method, to reconstruct active 
fault networks from observed seismicity. This method significantly 
improves the Optimal Anisotropic Data Clustering method 
(OADC) previously developed by Ouillon et al. (2008) by utilizing 
the location uncertainty information within the clustering and 
hence the fault reconstruction procedure. Due to its dependence on 
the location uncertainty information, I investigated the influence of 
hypocenter location accuracy and precision on the reconstruction 
result in detail, based on the analysis of seismic network quality 
criteria. At the same time, I refined the seismic network criteria 
definition for seismic networks that locate events within the extent 
of the network. I applied the method to multiple synthetic datasets 
on the scale of an M7-type earthquake, i.e. choosing the 1992 
Landers (CA) earthquake in Southern California, and on the much 
smaller scale of a 1km3 volume due to induced seismicity during 
the Basel Enhanced Geothermal System (EGS) Project. In all cases, 
I find complex fault networks as the result of the approach, that 
indicate possible solutions depending on the validation scheme. 

I achieved major improvements compared to OADC in both, the 
training phase, i.e. when performing the fit of a given dataset or 
subset, and the validation phase, i.e. when quantifying the ability of 
the solution to explain another set or subset of independent data. In 
the training phase, the new method accounts for individual location 
uncertainties of each event through their expectation and 
covariance matrix. This allows us to elegantly compute a distance 
between a given event and a given plane (or rather its expected 
squared value), so that each event can be associated to one plane; 
this also allows for full control over the local quality of the 
reconstruction as the method automatically generates more 
complex fault network structures wherever the local residuals of 
the fit becomes larger than the locally estimated location 
uncertainties. A more complex structure in this sense implies to 
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introduce more fault planes to fit the observed seismicity. Keeping 
its inner k-means computation dynamics and stochastic scheme, the 
fitting method is strongly nonlinear, thus different runs generally 
converge towards different local minima of the residuals.  

This observation resembles the well-known influence of human 
subjectivity when interpreting purely geometrical datasets in 
geosciences. I thus found it necessary to introduce six different 
validation schemes in order to select the best solution: two of them 
based on the residuals of the fit, a simple cross validation scheme 
and a Bayesian information criterion: the four others are based on 
the compatibility of the fault network with observed focal 
mechanisms, checking for consistency when comparing the 
reconstructed fault planes with the observed potential failure planes 
deduced from double-couple source solutions.  

Testing the method itself on synthetic examples led us to 
develop a fresh and integrated approach that, I believe, should be 
implemented more generally when dealing with the statistics of 
seismicity in the spatial domain. Our approach indeed incorporates 
the process of earthquake data acquisition and its potential 
influence on the results of the data clustering scheme. I thus 
investigated in detail the station network criteria in order to assess 
the quality of earthquake location for local networks, and their 
importance in fault network reconstructions. Our results confirm 
that network criteria, such as the number of observations, the 
primary station azimuth gap and the distance to the closest station, 
are highly valuable to assess location quality. Epicenter locations 
are well-constrained if the primary station azimuth gap is smaller 
than 180°, whereas well-constrained focal depth estimates require a 
nearby station with a distance less than 1.5 times the focal depth. It 
should be noted that these results only apply if the seismic velocity 
structure is accurately known; I show that these results do not hold 
when the velocity model is systematically different. Though the 
latter might not be true for the currently used velocity models in 
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earthquake location, and as I am only using P-phases for the 
relocation in the exercise, this result is not immediately valid for 
current location procedures, it is however notable that locations are 
inherently mislocated even with a very good station coverage. I 
additionally show that the use of classical error ellipsoids to 
describe location uncertainties can be misleading for earthquakes 
observed at a low number of stations and with a primary station 
azimuth gap of more than 180°. One consequence of this is that the 
location errors are often underestimated and within applications, 
the influence of location uncertainty again is underestimated for 
other applications. 

Investigating synthetic datasets displaying different degrees of 
complexity clearly showed that the effect on fault reconstruction is 
fundamental: using high-quality subsets of data selected by the 
proposed network criteria leads to high-quality fault network 
reconstruction results. On the contrary, using lower-quality data 
can lead to unstable and unreliable fault network reconstructions 
(even in the simplest cases) and may introduce artifacts, 
particularly within regions featuring a complex fault structure. I 
believe that such a detailed study of the dependence of statistical 
outcomes as a function of data quality remains to be done in 
various other domains such as detailed mapping of earthquake 
parameters (Mignan et al. 2011; Schorlemmer et al. 2004; 
Woessner and Wiemer 2005), building earthquake forecast models 
(e.g. Hainzl et al. 2010. Zhuang et al. 2011, Zhuang et al. 2012 and 
reference therein), or studies that evaluate earthquake forecasting 
models (e.g. Woessner et al. 2011; Zechar et al. 2013 and 
references therein). 

The data selection criteria and clustering technique have then 
been applied to the Landers 1992 event area, which had previously 
been studied by Ouillon et al. (2008) and benefited both from a 
high quality local seismic network and a large amount of 
geophysical observations and field investigations. It turns out that 
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the six validation schemes provide six different solutions. I 
interpret this variability as resulting from the scale-invariant 
complexity of fault networks; the major implication is that the 
smallest scales within a given network are necessarily 
undersampled by a finite set of seismic events. If location 
uncertainties are smaller than the typical scale defined by the actual 
sampling rate of each substructure, then the resulting best solution 
becomes non-unique and depends on the criterion we use.  

I then investigated the performance of ACLUD on a very 
different scale, applying the method to seismicity observed during 
the Basel Enhanced Geothermal System Project. The volume 
samples a comparable number of events, however, on a much 
smaller spatial domain. The Landers volume is on the scale of a 
120km long fault system, using a 10km wide swath of seismicity 
that reaches to a depth of about 25km crustal thickness, with 
earthquake magnitudes between 2 to 7.3. The Basel dataset in 
comparison remained within a volume of 1km3, with magnitudes 
between 0 and 3.2. The results for the latter again show a 
variability of the obtained solution with the validation criterion, 
suggesting that the multi-scale mechanical segmentation process of 
faults (and its associated sampling problematic) still holds within 
the upper crust down to very small scales. Using the hypothesis 
that b-values can be used as stressmeters, I mapped the b-values on 
the fault planes. Many of the faults have too few events to reliably 
compute this value, however, setting a threshold of at least 50 
events to be fit, I find that the values range around 1.9. The 
structures on which the b-values can be computed are generally 
oriented favorably to the background stress field. 

On a more technical aspect, the ACLUD method features a 
dynamic stopping criterion which consists in comparing the local 
variance of the fit with data location uncertainty within each 
cluster: clustering stops once the variance is comparable to the 
uncertainty. In other words, the dynamic stopping criterion is 
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minimizing the Type I errors in statistics. However, in practice, the 
effort to reduce one type of error generally results in increasing the 
other type of error. If we define an index as 0 when there is no fault, 
and 1 when there is a fault, we then can describe Type I error and 
Type II error as shown in Table 5.1. For both cases where 
(Reality=0, Reconstruction=0) and (Reality=1, Reconstruction=1), 
the decisions made by ACLUD are correct. However, if Reality=0 
but Reconstruction=1, i.e. in reality there is no fault but ACLUD 
reconstructs one, ACLUD makes a Type I error. On the contrary, if 
Reality=1 but Reconstruction=0, i.e. in reality there is a fault but 
ACLUD fails to reconstruct it, ACLUD makes a Type II error. The 
dynamic stopping criterion minimizes the Type I errors by 
terminating clustering once variance is comparable with 
uncertainty. However, by doing so, it may result in increasing the 
Type II errors, i.e. ACLUD failing to reconstruct an existing fault 
due to data quality reason. Given a fixed number of data, there is 
no simple way to reduce both types of error.  

In cases of poorly located data, one may get a too coarse fault 
network solution. Inspired by what we discussed above, we may 
want to relax the dynamic stopping criterion and allow the 
algorithm to further explore the potential fault reconstruction 
solution space by comparing the variance of the fit with a 
predefined value, e.g. 60th quantile of the local data uncertainty. 
Indeed, by doing so, it would result in increasing the Type I errors 
due to over-fitting data and reducing the Type II errors, which 
allows one to reconstruct the potentially existing faults. Thus a 
careful assessment of the quality and reliability of the reconstructed 
fault networks, involving a comparison with a prior model (coming 
from structural geology investigations, for instance), is needed.  

The latter comment suggests some further improvements of the 
method by incorporating external geological or geophysical 
knowledge within the training phase, whereas we currently take it 
into account in the validation phase only. For instance, during the 
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inversion, the complexification step may be still be controlled by 
the local variance of the fit and location uncertainties, but also by 
the dispersion of orientations of the observed focal mechanisms, 
maybe also helped by criteria based on the similarity of waveforms 
recorded at nearby stations or the orientation of nearby faults 
compiled in catalogs such as the California Fault Model. This 
would open new doors within the field of pattern recognition 
techniques, as we would use genuine physical parameters to 
identify more directly the singularities of the strain field within the 
complex rheological medium that is the Earth’s crust. 

There are several potential applications of the outcomes of the 
proposed fault reconstruction algorithm. Once a satisfying fault 
network is selected, we may use its architecture to quantify the 
spatial and temporal statistical properties of earthquakes and 
clusters. A first track consists in investigating the correlations of 
seismic activity at the fault scale to better understand the 
mechanics of the network as a whole. The fault network can be 
taken as a natural candidate to partition the data in order to analyze 
the spatial and temporal variations of seismicity parameters. We 
may then study quantities such as  

• the Gutenberg-Richter b-value and the productivity 
term (Schorlemmer and Wiemer 2005; Wiemer and 
Wyss 2002) and their dependence on the styles of 
faulting as performed for the data set of the Basel EGS-
project;  

• the statistical estimation of the tails of the size 
distribution based on extreme value theory (Pisarenko 
et al. 2008; Pisarenko and Sornette 2003)	  ;	  	  

• the size of the possible largest event (i.e. characteristic 
earthquake) that may occur on a given fault segment. 

Another potential application is the modeling of fault-to-fault 
interactions that control the overall dynamics of a fault network, 
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contributing to a clearer picture of the intimately interwoven 
dynamics of earthquakes and faults. For example, there is a 
growing awareness and an intense research activity based on the 
fact that a significant fraction of earthquakes are at least triggered 
by preceding events. A better understanding of the links between 
earthquakes and faults will allow us to improve on the purely 
statistical models of triggered seismicity such as the ETAS model 
(Ogata 1988) by including more realistic geometries and tensorial 
information associated with the reconstructed fault networks. This 
will improve present attempts to develop better space-time models 
of earthquake triggering, which still lack information on fault 
localization by assuming diffuse seismicity patterns unrelated to 
faults (Ogata and Zhuang 2006) and their irreversible nucleation 
and growth processes. More mechanically based approaches may 
also be used together with the available focal mechanisms that 
provide precious insight into the slip patterns on each plane. Those 
patterns may in return be used to compute more precisely fault-
fault interactions through the estimation of stress transfer among 
faults. This will allow improving the validation schemes of the 
forecasting techniques based on Coulomb stress interactions by 
incorporating even the smallest events of a catalog as their failure 
planes will be known at higher confidence levels. 

Reality=0 
Reconstruction=0 

Reality=1 
Reconstruction=0 
(Type II error) 

Reality=0 
Reconstruction=1 
(Type I error) 

Reality=1 
Reconstruction=1 

Table 5.1: Type I error and Type II error. 
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A.1 k-means including location 
uncertainties (uk-means) 

The k-means method assumes that the uncertainty of the spatial 
location of data points is negligible. This assumption holds in 
disciplines such as image analysis, where the coordinates of the 
data points are given by red, blue and green color contents at each 
pixel of a picture. In the case of real physical systems, the story is 
different. For earthquakes, location uncertainty is an inherent 
property due to wave arrival time inaccuracy, velocity model errors, 
station network geometry, or outdated data sources (historical 
seismicity catalogs, for instance). When taking uncertainty into 
account, data can no longer be described by a point-process, but by 
a more or less complex probability distribution function (hereafter 
pdf). 

Chau et al. (2006) claim that location uncertainties can 
significantly affect the results provided by clustering techniques 
such as k-means. They thus introduce the uk-means algorithm 
(where the ‘u’ letter stands for ‘uncertain’), which incorporates 
uncertainty information and provides, when considering synthetic 
samples, more satisfying results than the standard algorithm. 

For the general case of a set of objects  {O


1,  O


2 ,  ...,  O


n}  within 
an m-dimensional space and a set of cluster  {C


1,  C


2 ,  ...,  C


k} , k-
means assigns each object to the “closest” cluster barycenter 
according to the Euclidean distance measure  d(O


i ,C


j ) : 
 

m ×m →  , where i = 1,...,n  and j = 1,...k . However, when 
  O


i  is no longer a point but a pdf, the distance must be estimated 
differently. Chau et al. (2006) propose to use the expected squared 
distance  ESD(O


,C

) , defined as the integral of the weighted square 

norm 
   
Oi


− C j

 2
 over the whole probability space of   O


i . Denoting 

the pdf of   O


i  as f (⋅) , we have: 
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∀x

∈Oi


,  f (x


) ≥ 0

f (x


)d x

= 1

x

∈Oi

∫
 (A1) 

Then, we define (Lee et al. 2007): 

 
   
ESD(Oi


,C


j ) = x

− c j

 2
f (x


)d x


x

∈Oi

∫  (A2) 

Where   c


j  is the barycenter of the cluster   C


j . Monte Carlo 

techniques prove to be too heavy to compute    ESD(O


i ,C


j )  
empirically, especially when dealing with large datasets. A simpler 
technique consists in using the simple theorem of variance 
decomposition. Lee et al. (2007) thus rewrite Eq. (A2) as: 

 

   

ESD(Oi


,C


j ) = x

− ki

 2
f (x


)d x


x

∈Oi

∫ + ki


− c j

 2

= ESD(Oi


,ki


) + ki


− c j

 2
 (A3) 

where   ki


∈m  is the centroid of the spatial distribution of the 

uncertain object   O


i  and is defined as 
   
ki


= x


f (x


)d x


x

∈Oi

∫ . By 

definition,    ESD(O


i ,k


i )  is simply the variance of that spatial 
distribution and can be easily computed once for all from its pdf. 
The second term in the right hand side in Eq. (A3) is simply the 
square of the distance between two points in a Euclidean space. 
Using this new distance definition and following the same 
procedure as standard k-means, data featuring uncertainty 
information can be processed easily. 
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Note that when observations come without uncertainties, all 
pdfs variances are set to 0, so that we recover the classical version 
of k-means. 

A.2 Generating synthetic catalogs with a 
simple geometry with 3 vertical planes 

The general method we propose to generate a synthetic 
earthquake catalog is the following: we first impose the geometry 
of the original fault network, which consists in a collection of 
rectangular planes with variable locations, sizes and orientations. 
We then assume that all earthquakes occur exactly on those planes 
and generate P waves. We then compute, assuming a given 
velocity model, the theoretical travel times between the true 
hypocenters and a set of stations which locations have been 
predefined. Random perturbations are added to the waves’ arrival 
times, allowing proceeding to the inverse problem: computing the 
location of the events as well as their uncertainties. To generate the 
associated synthetic focal mechanisms, we first assume that the 
rake of the slip vector on each plane is zero. For each event, the 
strike and dip are assumed to be identical to the ones of the input 
plane to which it belongs. We then add a Gaussian random 
perturbation to the strike, dip and rake of the event with a standard 
deviation of 10°. Those perturbed angles are then used to compute 
the strike and dip of the auxiliary plane, thus providing a complete 
focal mechanism. The inverted location catalog is then fitted with a 
set of finite planes, using our algorithm for 1,000 clustering runs.  

Earthquakes are located using the NonLinLoc software package 
(Lomax et al. (2000), Version 5.2, http://alomax.free.fr/nlloc/). 
Compared to traditional, linearized approaches, NonLinLoc is 
superior in that it computes the posterior probability density 
function (PDF) using nonlinear, global searching techniques. The 
PDF represents the complete probabilistic solution to the 
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earthquake location problem, including comprehensive information 
on uncertainty and resolution (Moser et al. 1992; Tarantola and 
Valette 1982; Wittlinger et al. 1993). 

The best solution (which may depend on the validation 
technique) is then compared to the original input fault network. 
Note that in real catalogs, the origin of the location uncertainties 
also lies in the uncertainties about the real velocity model – an 
ingredient that we neglect here: the sole uncertainties stem from 
the wave picking process and the geometry of the stations network 
(Bondár et al. 2004). 

The first synthetic dataset consists in 4,000 events, uniformly 
distributed over a network featuring three vertical planes (see 
Figure A2). Faults A and C have a length (along strike) of 40 km, a 
width (along dip) of 20 km, and feature 1,000 events each. They 
share a common strike of 90°E and a common dip of 90°. Fault B 
has a length of 100 km, a width of 20 km, and features 2,000 
events. Its strike is 0°E and its dip is 90°.  

We distributed a set of 88 stations on a regular grid with a 
spatial extent of 240 km by 180 km and a cell size of 20km. For 
each event, we randomly selected 11 stations out of the complete 
set of 88 stations as observations, and computed the theoretical 
arrival times, to which a Gaussian error with a standard deviation 
of 0.1 s was added to simulate real pickings. A simple 1-D layered 
velocity model was used. Using NonLinLoc, we generate a 
synthetic earthquake catalog consisting of 4,000 events 
characterized by their full pdf.  

Figure A2a shows the distribution of the 4,000 relocated 
earthquakes, which are slightly shifted away from the original fault 
planes. As we use an error-free velocity model and Gaussian 
picking errors, location uncertainties are mainly controlled by the 
geometry of the stations network. Events located with a better 
station network coverage are likely to be characterized by a better 



A  Supplementary Material for Chapter 2 

 172 

location quality. Using the relocated data set, with our clustering 
technique we generated 1,000 reconstruction solutions.  

The solutions are chosen by cross validation, using both µ  and 
σevent  measures, and consist of three planes with similar structure, 
which are shown in Figure A2b. Table A1 lists the parameters of 
the true and the reconstructed faults. All those solutions show a 
nice agreement with the true fault network. Figure A2c shows the 
solution chosen by BIC. Fault B is divided into two sub-faults at 
the intersection with fault C. From other tests we performed, we 
also noticed that, when faults cross each other, our model has 
difficulties in deciding which plane one event belongs to. Yet, the 
structure is still nicely inverted. Figure A2d displays the solution 
chosen by σ fault . One small fault is generated at the northern edge 
of fault B. This comes from the fact that locations quality close to 
the northern and southern edges is not as good as in other parts due 
to a poorer station coverage. We also performed similar tests on 
catalogs generated with different numbers of observations and 
different Gaussian picking errors, and obtained similar results. 

A.3 Generating multiscale synthetic fault 
catalogs 

The method we use to generate multiscale fault networks is 
largely borrowed from the concept of Iterated Function Systems 
(hereafter IFS), proposed by Hutchinson (1981) and popularized by 
Barnsley (1988), which provide a basic algorithm to generate 
deterministic fractal objects. IFS consist in replacing a given large 
scale Euclidean object by a series of replications of itself at smaller 
and smaller scales. In our case, this consists in segmenting the fault 
at smaller and smaller resolutions. 

We shall first consider a vertical fault, over which events are 
distributed. The case of a fault with arbitrary strike and dip is 
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solved by simply performing the necessary rotations of such a 
vertical fault. The fault is chosen such that its length is 1. The 
general case is solved by a simple scaling up (or down) to the real 
length of the fault. 

We first consider only the trace of the fault, which is its 
intersection with the free surface, and will perform the 
segmentation along its strike. The x axis is chosen to stand along 
the fault’s strike, the y axis is normal to the fault, and the z axis is 
pointing downwards. 

STEP 1 

Consider a fault L1 with length 1 which extremities are [0,0] and 
[1,0]. 

STEP 2 

Define a group of linear applications, for example 10 different 
functions Fi, with i=1,2,...10. Fi

 is a linear transformation function 
which reads: 

x' = Ai x – Bi y + Ci 
y' = Bi x + Ai y + Di 
with Ai 2+Bi 2=Qi 2. 

The coefficients A, B, C and D are chosen such that this 
application transform a given fault segment into a downscaled, 
slightly rotated and offset copy of itself (so that Q < 1). The 
various parameters of the set of functions may be chosen by hand 
or randomly. 

STEP 3 

i. Choose randomly one of the N functions Fi previously 
defined and apply it to L1 so that one gets a new 
segment S1 and its extremities 



A  Supplementary Material for Chapter 2 

 174 

ii. Repeat step (i) a few times (p times, for instance, with p 
small). Doing so, a set of new small segments Sj, with 
j=1,…,p, is generated. Store the coordinates of their 
extremities. Remove the original, large scale segment Li. 

iii. The new dataset now consists in the set [Sj]. Apply 
steps (i-ii) to each of its members. 

iv. Iterate step (iii) a few times so that, at each iteration, the 
full set of newly created segments [Sj] replaces the 
previous one. The total number of segments thus 
increases after each iteration while their sizes decrease. 

STEP 4 

Rescale the final lengths of the segments so that the extent of the 
set fits within [0;1] along its average direction. 

STEP 5 

Apply steps 1 to 4 to generate a different segmented fault for each 
fault of the catalog. Rotate the segmented fault accordingly so that 
its average strike and dip fit with the original one. 

The previous algorithm thus provides a segmentation of the 
original fault along its strike, but not along its dip where we leave 
its structure intact. But a similar process can be implemented along 
that direction too. Alternatively, for the sake of simplicity, we can 
achieve a 3D structure by extending each subplane to the same 
depth as the original fault. Their knowledge allows one to locate 
some events on those segments and build their focal mechanisms. 
If the total number of events generated on the whole fault is very 
large, then each segment will feature enough events to be fully 
identifiable from them. If the number of events is too small, each 
segment will be undersampled by the synthetic seismicity catalog, 
resulting in a noisy multiscale subnetwork. 
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Figure A3 shows an example to generate synthetic multiscale 
synthetic faults following the approach we discussed above. The 
original fault shown in Figure A3a is a structure with strike=172°, 
dip=81° and dimensions 28km×3km. There are 446 events located 
on it. In order to generate the set of multiscale synthetic faults, we 
randomly generated at each iteration 2 linear transformation 
functions to build smaller scale segments. We constrain the linear 
transformations so that the distribution of small faults is still along 
the strike direction. After 5 iterations, we finally generated a 
multiscale set of 32 fault segments. The number of events located 
on each small fault depends on its size and ranges from 4 to 71. 
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Table A1: Parameters of the true and the reconstructed fault networks 
discussed in the text. 

 



   
 

 177 

 

Figure A1: Map view of network design, fault location and earthquake 
distribution to compute synthetic data. Triangles represent stations (88 in 

total, 20 km spacing). For each earthquake 11 stations were picked 
randomly as observations. The lines indicate the fault surface traces along 

which earthquakes were distributed.  

A

B

C
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Figure A2: a) Distribution of 4,000 relocated hypocenters located on three 
vertical faults A, B and C. b) Reconstructed structures from cross 

validation, using both µ  and σevent  measures. Three vertical faults are 
clustered. c) Result from BIC: Fault B is divided into two faults in the 

southern part. d) Result using σ fault . One small fault is generated at the 
northern edge of fault B.  
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Figure A3: The original fault shown on the left has a strike=172°, dip=81° 
structure with dimension 28km×3km. Based on it, the multiscale faults 

structure consisting of 32 small segments (right) was generated following 
the approach discussed in the text. There are 446 events in total located on 

the original fault (left). For the multiscale faults, the number of events 
located on each fault ranges from 4 to 71 events.
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