
DISS. ETH NO.:

AGENT-BASED MODELS TO UNDERSTAND, EXPLOIT AND
PREVENT FINANCIAL BUBBLES

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH
(Dr. sc. ETH Zurich)

presented by

REBECCA WESTPHAL

MSc UZH ETH in Quantitative Finance

born on 19.08.1993

citizen of Germany

accepted on the recommendation of

Prof. Dr. Didier Sornette

Prof. Dr. Thorsten Hens

2021





Abstract

Financial crashes that follow the formation of bubbles are widely recognized as disruptive events
with severe negative consequences for the economy and society. Therefore, this cumulative disser-
tation studies financial markets comprising bubbles and crashes. Specifically, the aim of this thesis
is to study the diagnostic of financial bubbles and the predictability of crashes as well as the market
impact of strategies that utilize this information to either exploit bubbles or prevent them. Real-
istic agent-based models provide the framework to simulate endogenous bubbles and to quantify
the market impact of various agents. In addition, agent-based models of multi-asset markets are
developed to understand how bubbles emerge across multiple assets.

The first part of the thesis endows an investor with the ability to diagnose bubbles and predict
the time of the crash better than chance. The trader uses this information to arbitrage bubbles
and maximize his wealth. Using an agent-based model with fundamentalists and noise traders,
we find that the arbitrageur can outperform the other traders in the market. In small numbers, the
arbitrageurs reduce market inefficiencies and stabilise the market. However, a large number of
arbitrageurs in the market tends to destabilise the asset price, because their diagnostics of bubbles
become increasingly self-referencing, leading to volatile fluctuations that are further amplified by
the noise traders.

The second part of the thesis investigates the intended and unintended consequences of an agent
who uses a bubble diagnostic with the goal to prevent bubbles and crashes. This agent represents a
policy maker, such as a central bank, that uses open market intervention to fight market exuberance.
Using the agent-based model with fundamentalists and noise traders, we find that the policy maker
succeeds at preventing bubbles and crashes using countercyclical market interventions. In the agent-
based model, the policy maker improves all analysed market return metrics, volatility, skewness,
kurtosis and Value-at-Risk (VaR), without affecting the long-term growth of the asset price. Even
for substantially miscalibrated long-term expected returns, the results are robust.

The third part of the thesis presents two generalizations of the previous agent-based model
both containing multiple assets. A Fixed Income Market model is introduced that includes a stock
and multiple bonds with different maturities. The prices are defined by supply and demand and
the model can reproduce several empirical characteristics observed in Fixed Income Markets. The
second market model consists of several stocks and one risk-free asset that are traded by fundamen-
talists and noise traders. The models can reproduce several stylized facts of financial markets, such
as volatility clustering and fat-tails of the return distribution. The noise traders’ opinion dynamics
are implemented as anO(n) model allowing for an accurate mathematical description of the emerg-
ing phenomena. The extended market model can explain the emergence of synchronization among
financial bubbles.
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Kurzfassung

Finanzcrashs, die auf die Bildung von Spekulationsblasen folgen, werden weithin als unerwünschte
Ereignisse mit schwerwiegenden negativen Folgen für Wirtschaft und Gesellschaft gesehen. Daher
untersucht diese kumulative Dissertation Finanzmärkte, die Finanzblasen und Crashs aufweisen.
Konkret geht es um die Diagnostik von Finanzblasen und die Vorhersehbarkeit von Crashs, sowie
die Marktauswirkungen von Strategien, die diese Informationen nutzen, um Blasen entweder fi-
nanziell auszunutzen oder sie zu verhindern. Realistische agentenbasierte Modelle bieten den Rah-
men, um endogene Blasen zu simulieren und die Marktauswirkungen verschiedener Marktakteure
zu quantifizieren. Um zu verstehen, wie Finanzblasen über mehrere Vermögenswerte hinweg entste-
hen, werden agentenbasierte Modelle von Märkten mit mehreren Assets entwickelt.

Der erste Teil der Arbeit stattet einen Investor mit der Fähigkeit aus, Finanzblasen zu diagnos-
tizieren und den Zeitpunkt des Crashs besser vorherzusagen als durch Zufall. Der Anleger nutzt
diese Informationen, um Blasen auszunutzen und sein Vermögen zu maximieren. Unter Verwen-
dung eines agentenbasierten Modells mit Fundamental- und Noise-Tradern stellen wir fest, dass
der Arbitrageur die anderen Investoren auf dem Markt übertreffen kann. In geringer Anzahl re-
duzieren die Arbitrageure Marktineffizienzen und stabilisieren den Markt. Eine große Anzahl von
Arbitrageuren auf dem Markt tendiert jedoch dazu, den Preis zu destabilisieren, da ihre Diagnostik
der Blasen zunehmend selbstbezogen wird. Dies führt zu volatilen Schwankungen, die durch die
Noise-Trader weiter verstärkt werden.

Der zweite Teil der Arbeit untersucht die beabsichtigten und unbeabsichtigten Folgen eines
Agenten, der die Diagnostik von Finanzblasen mit dem Ziel einsetzt, Blasen und Crashs zu ver-
hindern. Dieser Agent repräsentiert einen politischen Entscheidungsträger, z.B. eine Zentralbank,
der Marktinterventionen zur Bekämpfung von Marktüberhitzung einsetzt. Mit Hilfe des agenten-
basierten Modells mit Fundamental- und Noise-Tradern stellen wir fest, dass es dem politischen
Entscheidungsträger gelingt, durch antizyklische Marktinterventionen Finanzblasen und Crashs zu
verhindern. Im agentenbasierten Modell verbessert der politische Entscheidungsträger alle analysierten
Renditeeigenschaften, Volatilität, Schiefe, Kurtosis und Value-at-Risk, ohne das langfristige Wachs-
tum des Preises zu beeinflussen. Selbst bei erheblich fehlkalibrierten langfristigen Renditeerwartun-
gen sind die Ergebnisse robust.

Im dritten Teil der Arbeit werden zwei Verallgemeinerungen des bisherigen agentenbasierten
Modells vorgestellt, die beide mehrere Vermögenswerte enthalten. Es wird ein Marktmodell vorgestellt,
das eine Aktie und mehrere Anleihen mit unterschiedlichen Laufzeiten enthält. Die Preise wer-
den durch Angebot und Nachfrage definiert und das Modell kann mehrere empirische Merkmale
reproduzieren, die auf Anleihemärkten beobachtet wurden. Das zweite Marktmodell besteht aus
mehreren Aktien und einem risikofreien Vermögenswert, die von Fundamental- und Noise-Tradern
gehandelt werden. Die Modelle können mehrere stilisierte Fakten der Finanzmärkte reproduzieren,
wie z.B. Volatilitätsclusterbildung und Fattails der Renditeverteilung. Die Meinungsbildung der
Noise-Trader wird als ein O(n)-Modell implementiert, das eine genaue mathematische Beschrei-
bung der aufkommenden Phänomene ermöglicht. Das erweiterte Marktmodell kann das Entstehen
einer Synchronisation zwischen Finanzblasen beschreiben.
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Chapter 1

Introduction

1.1 Motivation

Financial markets such as stock, bond, commodity or foreign exchange markets, which provide the
opportunity to trade financial assets, play a key role in our economy and society. Well functioning
financial markets are essential to facilitate the flow of money by determining the value of invest-
ments via supply and demand. This ensures that money is directed towards where it creates most
economic value and leads to an efficient allocation of resources. Companies can raise capital for
example by publicly issuing shares at a stock market to position themselves for future economical
and technological developments. The access to capital fosters innovations and helps companies to
develop products, hire employees, grow their business and invest into plants and equipment. Fi-
nancial markets also allow to share the risk a company faces between multiple investors. On the
other hand, individuals who invest in the stock market can accumulate wealth, which may result in
an increase of their consumption and a larger economic activity. The wealth effect describes the
increase in an investor’s consumption if the perceived wealth in terms of the market price of their
asset grows. The additional spending attributed to capital gains in corporate equities is estimated
to be up to 19 cents per dollar (Juster et al., 2006). This is advantageous for society by fueling
economic growth.

While well-functioning financial markets are beneficial for the economy, malfunctioning finan-
cial markets can create serious harm. For example, financial bubbles and especially the consecutive
crashes can severely threaten the economy. Historical examples of stock market crashes such as the
great depression following the Wall Street Crash in October 1929 show that societies potentially
suffer over years from the negative consequences of a stock market crash. In the four years after
the crash, the stock market value decreased by 90% and one fifth of the U.S. banks had failed due
to banking panics when many depositors simultaneously demanded their money back after loosing
confidence in the solvency of the bank (Romer, 2003). The negative consequences provoked by the
crash propagated far beyond the banking sector. The industrial production in the U.S. declined by
46.8% and GDP declined by 30% (Romer, 2003). Consequently, the unemployment rate increased
from 3.2% of the civilian labor force in 1929 to 24.9% in 1933 (Lebergott, 1957). It took more than
a decade until the economy fully recovered to its pre-crisis level (Bernstein, 1987). This example
reveals the potentially devastating impact of financial bubbles and crashes and how important it is
to mitigate the consequences and possibly prevent them. While the economic consequences of the
more recent stock market crashes have been less severe than the above-mentioned example, there
has been an increasing number of market turbulences in the last decades. This shows that the origin
of bubbles is still not fully understood.

The main goal of this thesis is to contribute to a better understanding of financial bubbles,
bubble diagnostic and the possibility to exploit or prevent them. More specifically, the following
questions will be addressed: What are the mechanisms behind financial bubbles and which proper-
ties of financial markets or investors facilitate the emergence of bubbles? How do bubbles spread
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Chapter 1. Introduction

across different assets? Can we diagnose bubbles and predict crashes? Assuming that investors
can diagnose bubbles: What is the market impact of traders exploiting this information? Can we
design policy measures that actively intervene in the market to prevent bubbles and crashes? These
questions are approached using agent-based models (ABMs) of different financial markets such
as a market consisting of a bond and a stock, a market with multiple stocks and one bond, and a
Fixed Income market. Heterogeneous traders invest into these assets and define the assets’ prices
endogenously via demand and supply. The herding and momentum following of some traders cre-
ates bubbles in the asset prices. In general, ABMs describe complex systems by specifying the
interactions and characteristics of heterogeneous agents at the micro level. Thus, ABMs provide
the means to approach a realistic description of real economic and financial systems by allowing
the introduction of arbitrary levels of complexity and heterogeneity. They are not constrained to
stationary conditions and can therefore describe transient dynamics such as bubbles and crashes
(Sornette, 2014). These properties distinguish ABMs as suitable testing environment to quantify
the dynamics of an inherently nonlinear impact of trading strategies or a policy in the presence of
complex feedback loops. In practice, monetary policies cannot be tested on a small sample of the
population before they are introduced. Thus, despite their huge impact on the economy, it is not
clear how individuals and institutions react to it. Realistic ABMs provide the opportunity to test
and compare policies in an experimental set-up.

The following two subsections provide an overview of financial bubbles and ABMs, the two
essential components of this thesis.

1.2 Financial bubbles

The diagnostic of financial bubbles is a controversial topic and it is frequently deemed impossi-
ble. Alan Greenspan famously said at a symposium sponsored by the Federal Reserve Bank of
Kansas City: “As events evolved, we recognized that, despite our suspicions, it was very difficult to
definitively identify a bubble until after the fact–that is, when its bursting confirmed its existence”
(Greenspan, 2004). Similarly, Kindleberger and Aliber (2011) define a financial bubbles as “an up-
ward price movement over an extended range that then implodes”. Thus, they determine the bubble
by the collapse following a spectacular growth. However, in order to provide the opportunity to
react timely and appropriately to a bubble, it is necessary to identify a bubble before it bursts.

Bubbles are also frequently defined as a deviation of the asset price from its fundamental value,
which is the intrinsic or “true” value of the investment. In this sense, bubbles are for example
defined as a “price not equal to its market fundamentals for some period of time for reasons other
than random shocks” (Rosser, 2000) or as “the part of asset price movement that is unexplainable
based on fundamentals” (Garber, 1990). However, these definitions only shift the problem from
defining a bubble to defining the fundamental value or defining a threshold that qualifies for example
as “large deviation”. A large variety of bubble definitions is available, but the definitions are often
inconsistent. Gürkaynak (2008) concludes a review of different econometric tests for a bubble with
the observation that these definitions are in fact often contradicting. The problem with most of
these definitions is that bubbles are defined as an abnormal behavior compared to a normal one.
However, neither the “abnormal” nor the “normal” is clearly defined and often set arbitrarily. Since
financial bubbles occur in very different assets and markets, it is difficult to distinguish bubbles
from time-varying fundamentals (Gürkaynak, 2008). In order to outline typical characteristics that
are common among financial bubbles, the following section provides an overview of some of the
largest and most famous bubbles in history.

One of the first well documented bubbles is the Dutch Tulip Bubble also known as the Dutch
tulipmania. Originally imported to the Netherlands as a gift from the Sultan of the Ottoman Empire,
a few particular types of tulips became very popular in the Netherlands and its neighboring coun-
tries. Tulip bulbs became the fourth most important good for export for the Netherlands (Ayres,
2020) and over decades people made money trading tulip bulbs. However, the increasing value
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1.2. Financial bubbles

of the currency together with the increasingly prosperous Dutch economy made investors overly
confident that the prices of tulip bulbs would continue to increase (Sornette, 2003). The hight of
the tulipmania was reached from mid-1626 to February 1637. The trading of tulip bulbs had shifted
from professionals to non-professionals and forward contracts were traded instead of the actual
bulbs which had to stay in the ground during winter. At the peak of the bubble rare bulbs such as
the Semper Augustus were sold at a price of 5500 guilders corresponding to a price of approxi-
mately $66000 today and even the price of common bulbs increased 20 times before returning to
the original price after the crash (Garber, 1989).

The South Sea Bubble emerged around an international trading company in the 18th century.
The South Sea Company was equipped with special trading rights in the South Sea by the British
government. After the executives spread rumors about excessive prospective returns of the com-
pany due to the trade monopoly in combination with monetary expansion, the share price increased
far above the economic value of the company in the years between 1716 and 1720 (Kindleberger &
Aliber, 2011). The rise in the share price was accompanied by rising share prices of similar compa-
nies and a speculative mania in the whole country. Simultaneous to the build-up of the South Sea
Bubble in Britain, the Mississippi bubble around the Mississippi Company evolved in France. Both
bubbles crashed resulting in an economic crisis (Kindleberger & Aliber, 2011). South Sea Company
itself was saved by the bank of England and continued to be profitable for the next hundred years
(Ayres, 2020).

Two bubbles that occurred fifty years apart, but were similar in many aspects, are the canal
bubble (1793-1795) and the railway bubble (1835-1850) in the U.K.. Both of these bubbles accom-
panied advancements in infrastructure development and were fueled by hopes that the revolutionary
way of transport would open new markets and spectacular profits. The first canals were build by the
merchants or mine owners who actually wanted to ship goods. However, the exaggerated expecta-
tions on profits lured speculators in as well. For example the share price of Grand Junction Canal
increased from £100 to £472 within one month (Ayres, 2020). Most of the invested money was
lost and some canals were never completed, but in the long term the country benefited from those
canals that were finished. During the railway mania, a large number of new railway companies
formed and the expected profits made many investors from the middle class invest for the first time
which further pumped up the share prices. The crash was triggered by a poor harvest creating fear
of a famine. The downward tilt of the prices in combination with concerns about the extend of new
railway promotions by the government created a fear among investors and a downward spiral of the
prices (G. Campbell & Turner, 2010).

A type of bubbles that existed at different times and at different places all around the world are
real estate bubbles. An early example is the Florida housing bubble between 1900 and 1926. The
construction of the Florida East Coast Railway in combination with the creation of new land by
“draining the everglades” and newly built luxury hotels convinces many people from the north to
travel or move to Florida (Ayres, 2020). The hype around Florida eventually faded and real estate
prices began to fall after a combination of negative events in 1926 such as a railway embargo, a ship
sinking in Miami harbor and a hurricane (Ayres, 2020).

In the “roaring twenties” following the first world war, the economy boomed due to the develop-
ment of mass production and the spread of new technologies such as the car and the radio. However,
the stock market exaggerated the economic growth because of the assumption of many that it would
continue to grow forever (Gordon, 2005). The Wallstreet crash in 1929 triggering the great depres-
sion was one of the sharpest and most abrupt collapses of the stock market as described in section
1.1. Besides the initial stock market crash, the tight monetary policy of the Federal Reserve Board
pushed the economy further into a recession (F. S. Mishkin & White, 2002).

The largest stock market drop within a single day occurred on October 19, 1987, the so-called
Black Monday. Within a single day, the Dow Jones dropped by 22.6%. The crash occurred after
an overall acceleration of the price return between 1985 and 1987. In the nine months before the
crash stock prices in the U.S. increased by 31.4% (Sornette, 2003). Many possible reasons for
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Chapter 1. Introduction

the stock market crash, such as computer trading, portfolio insurances, derivatives, illiquidity or
overvaluation have been broad up, but Barro and Kamphuis (1988) concluded in their systematic
analysis that there is no clear cause of the crash. This suggests that the crash had an endogenous
origin rather than an external cause. The acceleration of stock prices that emerge from collective
“crowd” behavior of many interacting agents was accompanied by systematic oscillatory-like cor-
rections implying discrete scale invariance in the trading structure (Sornette & Johansen, 1997).
The acceleration eventually resulted in a critical point at which the crash occurred.

The dot-com bubble growing in the late 1990s on the enthusiasm about the development of the
world wide web shows many parallels to the bubble in the 1920s. The invention of new technology
created expectations of future profits and in combination with a low inflation stimulated investments
that became excessive and unsustainable over the years (Gordon, 2005). The share prices of com-
panies related to the Internet, software, telecommunication or computer hardware diverged from
the share prices of companies in the so-called “Old Economy”. While the share price of stocks in
the S&P’s technology sector quadrupled over the years 1998 and 1999, the S&P 500 index only
increased by 50% (Sornette, 2003). The NASDAQ composite index reached a high of 5133 on
March 10, 2000, and crashed to 3300 a month later (Sornette, 2003). Both, the fast acceleration of
price growth in the winter of 2000 as well as the crash in the consecutive year occurred without any
substantial positive or negative fundamental news (De Long & Magin, 2006). Thus, the burst of the
speculative bubble is rather the natural end of the boom (Sornette, 2003).

In an attempt to reduce the impact of the crash of the dot-com bubble, the Fed rate was reduced
from 6.5% in 2000 to 1% in 2003 (Sornette & Woodard, 2010). The easy access to money together
with the belief that home prices could never fall and the invention of new financial products, so
called Collateralized Debt Obligations (CDOs) fueled a real estate bubble in the U.S. (R. J. Shiller,
2012). So called Mortgage-backed securities (MBS) allowed banks to sell tranches of real estate
loans to investors similar to a bond passing over the risk of default. However, Sornette and Woodard
(2010) and Sornette and Cauwels (2014) point out that the root of the speculation is much deeper
than the real estate bubble in the U.S.. The accumulation and mutual reinforcement of multiple
bubbles in the preceding decades created an illusion of a “perpetual money machine” resulting in
an unsustainable and artificial growth of the stock market detached from economic growth that is
based on productivity and innovation. The default of some house owners to repay their debt created
a chain reaction of falling real estate prices and default on mortgages. With the bankruptcy of
Lehman Brothers in September 2008, at that time the fourth-largest investment bank by asset size,
a wave of asset sales was triggered that resulted in a global financial crisis (F. S. Mishkin, 2011).
The fact that the relatively mild financial disruption from the housing market could transform into
a global financial crisis exposed the large level of systemic risk embedded in the financial system in
2008 (F. S. Mishkin, 2011).

Timing the growing distrust in the banking system, a white paper was published in 2008 by
the pseudonym author Satoshi Nakamoto to introduce Bitcoin, a crypto-currency, as a peer-to-peer
payment system depicting an alternative to the traditional banking system (Nakamoto, 2019). As
the price and popularity of Bitcoin increased, plenty of crypto-currencies based on the innovative
blockchain technology were created. The super-exponential price growth was accompanied by
bubbles and crashes as well as intensive debates about the intrinsic value of the currency. Some
believed it would eventually drop to zero, while others believed in the enormous potential of the
technology to replace our financial system and revolutionize our working lives. Wheatley et al.
(2019) quantified the value of Bitcoin based on the number of users by applying the generalized
Metcalfe’s Law and found that the Bitcoin price heavily exceeded the calculated price on multiple
occasions. Studies of the Bitcoin price and social dynamics such as web search queries or topic
modeling of Bitcoin forum posts suggest that Bitcoin buyers have substantially been influenced by
the fast increase of prices as well as news and social media (Gerlach et al., 2019). The Bitcoin
bubble crashed in December 2017 from $20000 to $6000 in July 2018 (Wheatley et al., 2019).
However, at the time of writing the Bitcoin price has re-build to $19000, approaching its all-time
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high. Three years after the last crash the value of Bitcoin and other crypto-currencies is controversial
and still debated.

The historical overview of financial bubbles shows that there are many common characteristics
among bubbles. Typically, bubbles are initialized by a new opportunity such as an invention or
development that sparks well-founded expectations for future profits. Early investments create
a first price appreciation. Then, the investors develop an enthusiasm that becomes self-fulfilling
(Sornette, 2003). They extrapolate the price growth into the future and expect it to continue to
rise, imitate others who already realized profits and follow the crowd by reacting to news and
social influence. The price growth accelerates due to the positive feedback until the asset becomes
severely overvalued. In this unsustainable regime, it is only a question of time until the smallest
trigger creates a crash. Any tiny negative event or news that would have been ignored in the upwards
movement creates a downward spiral, in which investors become fearful and want to sell the asset
quickly before the price can drop even further.

The realization that each bubble seems unique at the time when it is happening, but the under-
lying mechanisms among the bubbles are similar, brings us back to the question whether bubbles
can be diagnosed in real time before they burst and whether the time of the crash can be forecasted
significantly better than chance. In order to approach these questions, the Chair of Entrepreneurial
Risk at ETH Zürich launched the Financial Crisis Observatory (FCO) in August 2008, which issues
forecasts on bubbles and crashes for individual stocks as well as sectors, indices and commodities
(https://er.ethz.ch/financial-crisis-observatory.html). The FCO uses the
LPPLS model (Log-Periodic Power Law Singularity) to detect financial bubbles. The concept was
introduced by Sornette et al. (1996) and elaborated in Johansen et al. (1999) among others. It
describes that bubbles grow faster than exponentially due to positive feedback mechanisms of im-
itation and herding of investors. The price growth is accompanied by accelerating log-periodic
oscillations describing the increased long-term volatility as the bubble grows, and the price increase
results in a finite time singularity at which the bubble bursts. The track record of the FCO as well
as several empirical publications suggests that bubbles can be identified before the crash (Zhou &
Sornette, 2003; Jiang et al., 2010; Demirer et al., 2019; Forró et al., 2015). However, the FCO
cannot answer the question what happens if investors exploit the knowledge about a crash in the
near future to increase their wealth. There could be severe unintended consequences such as the
amplification of bubbles or market turbulences. On the other hand, identifying a bubble in real-time
provides the opportunity to intervene in the market to prevent the further built-up and crash of the
bubble. However, these interventions could be ineffective or could threaten the long-term growth of
the market. In order to test the market impact of different types of agents, it is necessary to describe
the financial market by a model. The next section describes how this testing environment can be
implemented.

1.3 Agent-based models in finance

During the financial crisis of 2007-2008, agent-based models (ABMs) became apparent as an es-
sential tool to understand and describe financial markets. Traditional economic theory simplifies
the complex structure of financial markets by modeling the market participants as if they were ra-
tional and had homogeneous beliefs. This concept can describe many market phenomena, but fails
to describe systems close to bifurcation and phase transitions such as financial bubbles and crashes
(Sornette, 2003). Bouchaud (2008) argues that a more realistic representation of financial markets,
which takes into account behavioral aspects and empirical data, needs to replace the focus on ax-
ioms such as market efficiency, because these have no framework to explain “wild” markets. This
framework can be provided by agent-based models (ABMs) which are a “bottom-up” approach to
describe out-of-equilibrium phenomena taking heterogeneity and behavioral aspects into account.
They belong to the broader class of computational economic models and simulate the dynamic
interactions and individual characteristics of multiple agents. Thus, they can incorporate heteroge-
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neous beliefs and non perfectly rational agents without being constrained to stationarity conditions.
Consequently, they are well suited to describe out-of-equilibrium market regimes, such as financial
bubbles. The agents’ interactions at the micro level can naturally lead to a complex structure and
emerging phenomena at the macro level including phase transitions and tipping points. With these
features, ABMs are not only useful to model financial markets. As Axelrod (2006) states, they
address problems that are fundamental to many disciplines and especially useful when the math
describing the interaction of many agents is otherwise intractable. Regarding financial markets,
Lux and Westerhoff (2009) emphasize the importance of modeling economic interactions, because
most economic problems of the globalized financial markets are emerging phenomena of complex
societies. They further argue that microeconomic regularities observed in behavioral economics
and strong interactions should build the foundation of more methodological flexible models for a
systemic perspective on globalized economic systems. Furthermore, J. D. Farmer and Foley (2009)
highlight that ABMs are necessary to provide a quantitative description of how the economy is
likely to react to government policies under different scenarios. Thus, they can guide economic
decision makers by testing policies in controlled and repeated simulations.

Historically, the development of ABMs is strongly linked to the development of computers and
became broadly adapted in the 1990s when the widespread availability of computers allowed to
run complex simulations. However, already in the late 1940s, Sakoda (1949) developed a model
of racial segregation in his PhD thesis that consists of agents located in cells on a grid using coins.
The model was later adopted in Sakoda (1971) and Schelling (1971) as described by Hegselmann
(2017). They showed that a small preference to be surrounded by neighbours of the same type
leads to a highly segregated society over time. One of the first simulations of financial markets was
developed by Stigler (1964). He tested the impact of regulating the Security Exchange Commission
on the American stock market based on empirical data and an artificial order book, in which the
orders are random variables. Later, Kyle (1985) and Black (1986) developed ABMs of financial
markets with traders that focus on trends and price patterns instead of the fundamental value of an
asset and coined the term noise trader.

The first ABMs describing the interplay between rational fundamentalists and boundedly ratio-
nal chartists were developed to understand specific market phenomena such as bubbles and crashes.
Fundamentalists aim at inferring the fundamental value of the asset while chartists look for pat-
terns in the price path or are influenced by the opinion of other traders. An early example is the
ABM of Frankel and Froot (1986), which was developed to understand the dollar bubble in the
early 80s. Motivated by the U.S. stock market crash in 1987, Kim and Markowitz (1989) devel-
oped a microstructure market model in which portfolio insurers and rebalancers invest in a stock or
in cash. They demonstrate that the portfolio insurance strategies can destabilize the stock market
and thereby provide a framework to explain the crash in 1987. However, later time-series analyses
showed that the resulting time-series of these models cannot reproduce typical characteristics of fi-
nancial markets. In a more elaborate version of the model by Frankel and Froot (1986), De Grauwe
et al. (1995) showed that the interaction of fundamentalists and noise traders can lead to chaotic
behavior of exchange markets.

Simultaneously to these first ABMs of financial markets, the closely related field of minority
games evolved. The idea is based on the El Farol Bar Problem by Arthur (1994) in which each
individual enjoys to go to a bar when there are less than 60% of the population otherwise they
prefer to stay at home. However, they all have to decide simultaneously without knowing how
many people will be at the bar. More generally, the minority game was formulated by Challet and
Zhang (1997). Each player makes a binary choice and players who choose the same as the minority
of players win. The agents have access to a shared memory of the outcome of the last few time-
steps and build their own inductive strategies based on that information. The basic minority game
was generalized to include Darwinian selection, in which inferior strategies are replaced by new
ones over time (Challet & Zhang, 1997, 1998), and evolution including random mutations (Li et al.,
2000a, 2000b). Satinover and Sornette (2007) use minority games to demonstrate the “Illusion of
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control”, which means that agents who optimize their strategy based on the available information
may perform worse than random strategies . A thorough mathematical analysis of various strategy
types for different extensions of the minority game can be found in Coolen (2005). Minority games
were developed in order to reproduce stylized facts of financial markets based on simple rules. The
class of models based on minority games can be granularly adopted to imitate the behavior of real
markets or other complex systems. However, it turned out that they fail to reproduce some important
stylized facts (Chakraborti et al., 2011). On the other hand, they became a useful tool to understand
the physics of disordered systems (Cavagna et al., 1999) or crowd versus anti-crowd movements
(Johnson et al., 1999).

A famous ABM in which traders forecast future returns using a combination of classifiers is the
Santa Fe stock market by Arthur et al. (1996). The classifiers are subject to genetic modifications
such as mutations and over time the successful strategies are maintained whereas the unsuccessful
ones are replaced. The related research on “adaptive rational equilibrium dynamics” describes in a
broader sense the interaction of agents with heterogeneous beliefs about the future asset price. In
Brock and Hommes (1997) traders switch between predictors of the future return based on the past
performance of these predictors.

De Long et al. (1990, 2007) describe one of the first ABMs in which financial bubbles are
created by the noise traders’ positive feedback on the asset price. They show that the presence of
noise traders can explain several financial anomalies such as excess volatility. This model was later
adopted by Duffy and Ünver (2006) to generate asset prices with bubbles and crashes reproducing
the features of laboratory asset markets as the one described in V. L. Smith et al. (1988). It was
adopted by Haruvy and Noussair (2006) to reproduce and explain the effect of short selling on
bubbles and crashes observed in experimental asset markets.

Lux and Marchesi (2000) propose another ABM in which noise traders and fundamentalists co-
exist. However, these noise traders switch their opinion between an optimistic and pessimistic view
of the market influenced by the other traders’ opinions. Furthermore, the traders switch between
being fundamentalists and noise traders by comparing the expected returns of the strategies. Due
to the noise traders’ herding behavior and the switching between strategies, the model can repro-
duce some of the stylized facts of financial markets such as excess kurtosis and volatility clustering.
However, critics claim that the large number of parameters and complicated transition rules make
the identification of the sources of the phenomena intractable (Chakraborti et al., 2011). The inter-
action of fundamentalists and this type of noise traders is further analysed by Wyart and Bouchaud
(2007), who observe that fundamentalists tend to stabilize the market, while noise traders destabi-
lize it. The binary choice of the noise traders builds on the analogy with spins in an Ising model
that switch their state influenced by their neighbors’ states and an external field. Ising models, orig-
inally introduced as a mathematical description of ferromagnetism, have a widespread application
in social sciences. The simple representation of interacting elements with a finite number of possi-
ble states, is useful to represent social interactions and especially opinion dynamics. In the 1970s,
Weidlich (1971) described decision making within social groups and the polarization of their opin-
ion as a physical ensemble of interacting spins. Another famous Ising-based decision model is the
voter model by Holley and Liggett (1975), in which the opinion of an agent is a binary variable
stochastically changing under the influence of its neighbors’ opinions. The Ising model was further
used for example to represent the opinion dynamics of a strike process in a plant containing satis-
fied and dissatisfied workers (Galam et al., 1982). More advanced versions were developed to take
into account for example the spacial location of individuals on a complex network (Grabowski &
Kosiński, 2006). Reviews of statistical physics as a tool to represent social dynamics can be found
in Castellano et al. (2009) and specifically for finance in Sornette (2014).

More recently, Kaizoji et al. (2015) developed an ABM with fundamentalists and noise traders
that is prone to develop bubbles that grow super-exponentially. Furthermore, the ABM can repro-
duce the most important stylized facts of financial markets such as volatility clustering and fat tails
of returns. The fundamentalists invest such that they maximise the expected utility of their future
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wealth. The noise traders are influenced by social imitation and momentum following. Similar
ABMs with fundamentalists who optimize an expected utility have been developed for example by
Xu et al. (2014) or in a multi-asset setting by Chiarella et al. (2009). However, the model by Kaizoji
et al. (2015) differs in the definition of the noise traders. The noise traders’ opinions towards the
risky or risk-free asset are represented by spins in an Ising model. This allows one to have realistic
dynamics of opinion formation as well as a mathematical description of the emerging phenomena.

1.4 Detailed overview of the thesis

This cumulative thesis is based on published work and working papers. All of the described projects
are joint work with Prof. Didier Sornette. Chapter 2 is based on the first-authored publication
Westphal and Sornette (2020b) and chapter 3 is based on the first-authored preprint Westphal and
Sornette (2020a). Chapter 4 is a compilation of working papers. The first one is second-authored
with Antoine Kopp as first author. The second one is realized as joint first author with Davide
Cividino. The two projects were initialized as master theses. My contributions are the guidance
throughout the development of the models and analyses, providing the primary code for the model
implementation as well as writing substantial parts of the working papers and creating some of the
figures.

1.4.1 Market impact and performance of arbitrageurs of financial bubbles in an
agent-based model

This chapter analyses the consequences of predicting and exploiting financial bubbles in an ABM.
The ABM consists of a risky and a risk-free asset as well as three different trader types: fundamen-
talists, noise traders and “dragon riders” (DRs). The DRs exploit their ability to diagnose financial
bubbles from the endogenous price history to determine optimal entry and exit trading times. We
study the DRs’ market impact as a function of their wealth fraction. With a proportion of up to
10%, DRs are found to have a beneficial effect, reducing the volatility, value-at-risk and average
bubble peak amplitudes. They thus reduce inefficiencies and stabilise the market by arbitraging
the bubbles. At larger proportions, DRs tend to destabilise prices, as their diagnostics of bubbles
become increasingly self-referencing, leading to volatility amplification by the noise traders, which
destroy the bubble characteristics that would have allowed them to predict bubbles at lower fraction
of wealth. Concomitantly, bubble-based arbitrage opportunities disappear with a large fraction of
DRs in the population of traders.

1.4.2 How market intervention can prevent bubbles and crashes

Using the previously validated ABM with fundamentalists and chartists, this chapter investigates
the usefulness and impact of direct market intervention. The policy maker diagnoses bubbles by
forming an expectation of the future returns, then invests in burgeoning bubbles and sells coun-
tercyclically the overpriced asset to fight market exuberance. Preventing bubbles and crashes, this
market intervention improves all analysed market return metrics, volatility, skewness, kurtosis and
Value-at-Risk (VaR), without affecting long-term growth. This increases the Sharpe ratios of noise
traders and of fundamentalists by approximately 28% and 45% respectively. The results are robust
even for substantially miscalibrated long-term expected returns.

1.4.3 Agent-based models of multi-asset markets

This chapter derives two different generalizations of the original ABM with fundamentalists and
noise traders. First, it derives an extension that is modified to describe a Fixed Income market con-
taining bonds of different maturities and a stock treated as perpetual bond. Second, a market model
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with one risk-free and multiple risky assets is derived. The noise traders’ opinion dynamics are im-
plemented as anO(n) model and the extended model can explain the emergence of synchronization
among financial bubbles.

Agent-based model generating stylized facts of Fixed Income Markets

This section develops an agent-based model (ABM) of a financial market with multiple assets be-
longing either to the Fixed Income or to the Equity asset class. The aim is to reproduce main stylized
facts of Fixed Income markets with regards to the emerging dynamics of the yield curves. The re-
search is rooted in the market model proposed by Kaizoji et al. (2015) considering two types of
traders: the rational and risk-averse investor referred to as the fundamentalist and the noise traders
who invest under the influence of social imitation and price momentum. The investors involved
in the present market model diversify their investments between a preferred stock equivalent to a
perpetual bond and multiple bonds of selected maturities. Among these assets, a zero-coupon bond
provides a constant rate of return, while the remaining coupon-paying bonds’ prices are determined
at each time step by establishing the equilibrium between the investors’ demands and supplies. As
a result, the market model provides an evolving yield curve impacted by the investments of the
aggregated traders of each type. It is moreover capable of reproducing transient turbulent periods in
the prices’ time series and a humped term structure of volatility. Ultimately, the comparison of the
emerging dynamics arising from different processes governing the evolution of the risk-free rate
with those of the historical U.S. treasury market enables to distinguish the capacity of the setup
implementing Vasicek’s model of interest rates to reproduce the surface of autocorrelation of the
individual bonds’ yields’ volatilities.

Multi-asset financial bubbles in an agent-based model with noise traders’ herding described
by an n-vector Ising model

This section introduces a multi-asset model of a financial market in which rational fundamental-
ists and trend following noise traders co-exist. The interactions and opinion formation of the noise
traders are described by an O(n) model. The n components of the generalized Ising model rep-
resent the different assets in which the traders can invest. Rejection-free transition probabilities
are derived to describe realistic investment decisions at the “micro” level. The agent-based model
is validated by testing for several characteristics of financial markets such as volatility clustering
and fat-tails of the distribution of returns. Furthermore, the model is prone to develop bubbles and
crashes. We distinguish three different regimes depending on the inverse temperature that controls
the traders’ propensity to herd and imitate others. In the subcritical regime, the traders’ opinions
are idiosyncratic and no bubbles emerge. Around the critical value, partially synchronised bubbles
emerge, triggered by an actual phase transition of the underlying O(n) model. Above the critical
value, synchronous bubbles emerge controlled by the time-varying external field representing the
price momenta of the risky assets.
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Chapter 2

Market impact and performance of
arbitrageurs of financial bubbles in an
agent-based model

This chapter analyses the consequences of predicting and exploiting financial bubbles in an agent-
based model, with a risky and a risk-free asset and three different trader types: fundamentalists,
noise traders and “dragon riders” (DR). The DR exploit their ability to diagnose financial bubbles
from the endogenous price history to determine optimal entry and exit trading times. We study the
DR market impact as a function of their wealth fraction. With a proportion of up to 10%, DR are
found to have a beneficial effect, reducing the volatility, value-at-risk and average bubble peak am-
plitudes. They thus reduce inefficiencies and stabilise the market by arbitraging the bubbles. At
larger proportions, DR tend to destabilise prices, as their diagnostics of bubbles become increas-
ingly self-referencing, leading to volatility amplification by the noise traders, which destroy the
bubble characteristics that would have allowed them to predict bubbles at lower fraction of wealth.
Concomitantly, bubble-based arbitrage opportunities disappear with large fraction of DR in the
population of traders.

Based on Westphal, R., & Sornette, D. (2020). Market impact and performance of arbitrageurs
of financial bubbles in an agent-based model. Journal of Economic Behavior & Organization, 171,
1-23.

2.1 Introduction

What if a group of investors could develop reliable diagnostic tools to identify financial bubbles
in the making and predict the likely time for their blow up? If successful, the obtained investment
strategies would certainly flourish and could become progressively prevalent. How would this affect
the financial markets? Would this lead to more efficient markets, with no more exuberant and
breakdown phases? Or on the contrary, could this make markets more unstable? We investigate
these questions with an agent-based model designed to generate endogenous bubbles and crashes
from the interplay of fundamental value investors and noise traders who herd and follow price
momentum. We introduce a third type of investors, called “dragon riders”, who are endowed with
ex-ante superior abilities to diagnose and to time bubbles and their bursts. By varying their market
impact, and controlling for all properties of investors and of the price formation process, we run
counterfactual experiments to answer these questions.

These questions are motivated by the research of the second author since 1996 (Sornette et
al., 1996) and his group (see e.g. Sornette and Johansen (2001); Johansen and Sornette (2010);

11



Chapter 2. Market impact and performance of arbitrageurs of financial bubbles in an agent-based
model

Gerlach et al. (2019)), who have developed a research agenda to systematically test ex-ante the hy-
pothesis that financial bubbles may be predictable (http://www.er.ethz.ch/financial
-crisis-observatory.html). Given the interest from practitioners (obtained from private
communications at professional financial investment conferences and workshops over the years), a
natural question arises as to what could be the gains as well as unintended consequences on market
properties of a wider adoption of bubble diagnostic techniques.

In an attempt to mimic real financial markets, we endow our dragon riders with an algorithm
that tests for the presence of bubbles using a method called “log-periodic power law singularity”
(LPPLS) (see e.g. Sornette (2003); Sornette and Cauwels (2015a) for pedagogical presentations),
which has been widely tested on empirical data as mentioned above. The name “dragon rider”
(DR) is based on the empirical observation that crashes that follow bubbles are exceptional events,
outliers of strong significance (Johansen & Sornette, 2002, 2010), that the second author has pro-
posed to name “dragon-kings” to emphasise their special status and specific amplifying mechanisms
(Sornette, 2009) (for a pedagogical introduction, see https://en.wikipedia.org/wiki/
Dragon King Theory). Thus, using calibrations of prices with a standard LPPLS methodology,
the DR can sometimes obtain a diagnostic of the presence of a bubble and use this information to
“ride” the ascending price bubble and they also exit the risky asset when they assess that the burst is
close. In this way, they strive to maximize their risk-adjusted return by exploiting financial bubbles.

This present paper can be embedded in a broader literature, motivated by the global financial cri-
sis in 2007-2008. In its wake, many financial professionals and researchers have realized the need
to anticipate crises and have been working on the development of early warning signals. There
are now a number of papers proposing early warning indicators of financial crisis. For instance,
Drehmann and Juselius (2014) evaluate early warning indicators of banking crisis on a national
level to define time-varying policy measures. Dawood et al. (2017) define an econometric model
to predict sovereign debt crisis, and Shin (2013) compares early warning indicators based on mar-
ket prices, normalized measure of total credit, and based on liabilities of financial intermediaries.
However, while the focus of this research trend is on finding optimal warning signals, it remains an
open question how trading and hedging according to additional knowledge, and exploiting bubbles
and crashes impacts the occurrence and predictability of bubbles and crashes, and the stability of
the market. This question is especially important when a large number of investors are using these
early warning signals.

Traditional economic theory describes economic agents as if they were rational and had homo-
geneous beliefs. While this approach is able to describe many phenomena, it cannot describe sys-
tems close to bifurcation and phase transitions (Sornette, 2003). These phenomena can be described
using agent-based models (ABMs). ABMs are computational economic models that simulate the in-
dividual operations and interactions of multiple agents. The first ABMs were developed by Sakoda
(1949, 1971) and Schelling (1971) describing racial segregation of agents located in cells on a
grid (Hegselmann, 2017). ABMs can incorporate heterogeneous beliefs and non perfectly rational
agents and have a long tradition in economics, see Kirman (2012) for an overview. Thus, ABMs are
not constrained to stationarity conditions and are well suited to describe out-of-equilibrium market
regimes, such as financial bubbles. Simple interactions at the micro level can generate a complex
structure at the macro level, as observed in real financial markets. The interaction of agents can
naturally lead to regime shifts or tipping points, which makes this approach suitable for modeling
extreme events in financial markets such as bubbles and crashes. Early ABMs of financial markets
were discussed by Kyle (1985) and Black (1986). They describe agent-based models in finance that
try to capture the behavior of traders who are more influenced by trends and price patterns than by
the fundamental value of assets. The first model that uses the positive feedback caused by noise
traders to create a market with financial bubbles was developed by De Long et al. (1990, 2007).
Duffy and Ünver (2006) adopted the model by De Long et al. (1990) to generate asset prices with
bubbles and crashes with the same features as in laboratory asset markets such as the one described
in V. L. Smith et al. (1988). Haruvy and Noussair (2006) use a similar ABM to reproduce and
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explain the effect of short selling on bubbles and crashes observed in experimental asset markets.
Baghestanian et al. (2015) developed an ABM to identify different types of traders in experimental
data and explain how the interplay of fundamental, speculative and noise traders creates bubbles in
simulated and experimental data. Samanidou et al. (2007), Dieci and He (2018), and C. Hommes
and LeBaron (2018) provide reviews of ABMs of financial markets. Recently, Kaizoji et al. (2015)
developed an ABM consisting of both noise traders and fundamentalists, which is able to create a
market with bubbles and also reproduces the main stylized facts of financial markets. The present
paper is based on a modified version of this ABM, which is in particular extended to three different
trader types, with the goal to analyse the impact that predictions of bubbles and crashes can have
on financial markets.

Starting from the general framework of irrational bubbles (Schatz & Sornette, 2019), we study
the market impact of bubble-based trading strategies. A specific model within this framework uses
the concept of LPPLS (log-periodic power law singularities) as introduced by Sornette et al. (1996)
and elaborated into a rational expectation model of bubbles in Johansen et al. (1999). Here, the
expectation of the log-price is described as a log-periodic power law oscillations during a bubble.
The pattern of log-periodic power law oscillations is taken as a clear indication of a bubble when
it can be found with sufficiently strong statistical confidence (Sornette & Cauwels, 2015a). This
framework focuses on price dynamics instead of financial ratios and provides the possibility of
analyzing the consequences of trading with additional knowledge about bubbles and crashes. As
already mentioned, the predictive power of LPPLS fits has been shown in a number of successful
real time diagnostics of bubbles, such as the UK real estate bubble (Zhou & Sornette, 2003) and US
real estate bubble (Zhou & Sornette, 2006), and the Chinese stock market bubble in 2005-2007 and
2008-2009 (Jiang et al., 2010). Furthermore, ex-post analyses of S&P500 index finds that LPPLS
framework is able to capture some of the prominent bubbles, such as the Black Monday, Dot-com,
and Subprime Crisis periods across different time scales (Demirer et al., 2019). A first approach to
verify the predictive power of LPPLS fits in trading showed that LPPLS trading strategies outper-
form random strategies (Forró et al., 2015).

The next section defines the market model and trader types. Section 3 presents an evaluation
of the comparative performance of the different trader types based on thousands of realisations of
long time series of the price and traders’ wealth. Section 4 analyses in details the market impact of
the trading strategy of DR that predicts and exploits financial bubbles. We determine how the DR
strategy affects the structure of the market in terms of the frequency and sizes of bubbles as well as
in terms of different risk measures. Section 5 concludes. Three appendices complement the main
text.

2.2 The market model

In order to analyse the impact of exploiting financial bubbles, the agent-based model (ABM) we
use consists of two assets and three types of traders. The assets are a risky asset that pays dividends
and a risk-free asset that pays a fixed interest rate. The model is an extension to three traders
of a modified version of the ABM developed by Kaizoji et al. (2015). The model can reproduce
stylized facts of financial markets such as fat-tails of the distribution of absolute returns, fast decay
of the auto-correlation of signed returns, and slow decay of the auto-correlation function of absolute
returns. Furthermore, it creates endogenous super-exponential bubbles (Kaizoji et al., 2015). We
thus focus on this last characteristic for the present study and do not revisit the stylized facts.

The three trader types are noise traders (n), fundamentalists (f) and a novel third trader type that
we refer to as “dragon riders” (DR) for reasons that become clear below. The noise traders make
their investment decisions based on price momentum and social imitation. The fundamentalists are
risk-averse rational investors, who maximize their constant relative risk aversion (CRRA) utility
function. The dragon riders are fundamentalists equipped with some additional knowledge about
bubbles, obtained using a methodology (LPPLS calibration) aimed at detecting local price accel-
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eration, assumed to reflect transient unsustainable positive feedback loops. This methodology has
been tested abundantly on empirical financial bubbles and is here applied for the first time on an
ABM to study its market impact.

2.2.1 Set-up of the investment universe (assets)

Following Kaizoji et al. (2015), the investment universe available to the traders is made of a risk-free
and a risky asset. In each time step the traders decide individually how they allocate their wealth
between the two assets. The risk-free asset, which can be interpreted as a risk-free government bond
or bank account with perfectly elastic supply, pays a fixed interest rate Rf in each time-step. The
risky asset represents an index or risky investment fund, which pays a dividend dt in each time-step.
Its price is defined by the matching of demand and supply, as described below.

The dividend process dt is a standard stochastic growth process, which reads

dt = dt−1

(
1 + rdt

)
, (2.1)

where the growth rate rdt is a Gaussian process with mean value rd > 0 and variance σ2
d,

rdt = rd + σdut, (2.2)

with ut
iid∼ N (0, 1). This specification is different from that of (Kaizoji et al., 2015), in which the

dividend price ratio was fixed, leading to a dependence of the dividend on the asset price, and the
fundamentalists investing a constant fraction of their wealth in the risky asset.

2.2.2 Fundamentalists

The fundamentalists invest the fraction xft of their wealth W f
t in the risky asset and invest the

remaining part of their wealth in the risk-free asset in order to maximize their expected utility in each
time-step. This follows (Chiarella et al., 2006), C. H. Hommes and Wagener (2009), and Kaizoji et
al. (2015). The fundamentalists are endowed with a constant relative risk aversion (CRRA) utility
function with risk aversion parameter γ. This utility function is defined as (Ljungqvist & Sargent,
2018):

U(W ) =

{
log(W ) for γ = 1
W 1−γ

1−γ for γ 6= 1
(2.3)

The difference between the return of the risky asset and the risk-free asset is the excess return.
It is defined as the sum of the capital return Rt := Pt

Pt−1
− 1 where Pt is the price of the risky asset

at time t and of the return from the dividend dt of the risky asset minus the risk-free rate Rf :

Rexcess,t = Rt +
dt−1 · (1 + rdt )

Pt−1
−Rf , with Rt :=

Pt
Pt−1

− 1 . (2.4)

We obtain

Et−1[Rexcess,t] = ERt +
dt−1 · (1 + rd)

Pt−1
−Rf , (2.5)

where

ERt := Et−1[Rt] (2.6)

is the fundamentalists’ expected return of the risky asset. We take ERt as an exogenous variable,
considered to derive from a secular view formed, for instance, from a long-term historical perspec-
tive on the long term growth of stock markets and of the underlying economy (Lera & Sornette,

14



2.2. The market model

2017). Thus, rationally, ERt should be equal to the long-term growth rate of prices. Consequently,
the Fundamentalists’ estimation of the fundamental value of the risky asset at time t is

P ft = P0 · (1 + ERt)
t . (2.7)

In our simulations, we verify that the long-term growth rate of prices is equal to the average
growth rate rd of dividends, as defined in expression (2.2). Figure 2.1 shows the long-term growth
rate of the risky asset calculated as frac1T − t log PT

Pt
for values of rd between 2% per year and

10% per year. Each value is calculated as the average over 1000 simulations with different random
seeds and for two different processes for the parameter κ characterising the dynamics of noise
traders: see below equation (2.16) for the definition of κ and expression (2.17) of the definition of
the Ornstein-Uhlenbeck (OU) process for κ. The linear fit of the growth rate as a function of rd has
the slope 0.999±0.002 for both OU κ, and constant κ. This confirms that the risky asset grows with
the same rate as the dividend. In the sequel, ERt will thus be equated to rd, which is a parameter of
the model.

0.02 0.04 0.06 0.08 0.10
rd

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

gr
ow

th
 ra

te

OU kappa

0.02 0.04 0.06 0.08 0.10
rd

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

gr
ow

th
 ra

te

C kappa
Risky asset growth rate as a function of the dividend growth rate

linear fit
rd

Figure 2.1: Growth rate of the risky asset as a function of the dividend growth rate rd. The values
are calculated over 240000 time-steps and averaged over 1000 simulations with different random
seeds. The error bars indicate one standard deviation. The linear fit has slope 0.999 ± 0.002 for
OU κ and constant κ (see below equation (2.16) for the definition of κ and expression (2.17) of the
definition of the Ornstein-Uhlenbeck (OU) process for κ).

Fundamentalists are assumed to be identical, so that their cumulative behavior can be considered
as one representative fundamental trader. The fraction of wealth invested in the risky asset with
CRRA coefficient γ is in first order approximation and assuming dt � Pt

xft−1 =
1

γ

Et−1[Rexcess,t]

V art−1[Rexcess,t]
=
ERt + dt−1

Pt−1
(1 + rd)−Rf

γ(σ2 +
d2t−1·σ2

r

P 2
t−1

)
≈
ERt + dt−1

Pt−1
(1 + rd)−Rf
γσ2

(2.8)

The wealth gain from time t− 1 to t by investing xft−1 in the risky and 1− xft−1 in the risk-free
asset is

W f
t −W

f
t−1 =

(
Rt +

dt
Pt−1

)
xft−1W

f
t−1 + (1− xft−1)W f

t−1Rf . (2.9)
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Therefore, the wealth in time-step t can be written as

W f
t =

(
Rt +

dt
Pt−1

−Rf
)
xft−1W

f
t−1 +W f

t−1(1 +Rf ) . (2.10)

Using the previous definitions and denoting the number of shares invested in the risky asset by

nft :=
xftW

f
t

Pt
, the excess demand of the fundamentalists for the risky asset is described by the

following equation:

∆Dt−1→t :=nft Pt − n
f
t−1Pt

=xftW
f
t − x

f
t−1W

f
t−1

Pt
Pt−1

(2.11)

=W f
t−1

(
xft

[
1 +Rf + xft−1

(
Rt +

dt
Pt−1

−Rf
)]
− xft−1

Pt
Pt−1

)
together with (2.6) and (2.8).

2.2.3 Noise traders

The noise traders define their strategy based on the opinion of other noise traders and the analysis
of the price path. Each individual noise trader is polarized, in the sense that they do not diversify
their portfolio and are fully invested in either the risky or the risk-free asset. Noise traders decide
independently and probabilistically on their investment strategy. The probability of investing for
each trader is influenced by the opinion of the other traders and the price momentum. With the
number of traders N+

t invested in the risky asset and the number of traders N−t invested in the
risk-free asset, the opinion index st is defined as

st =
N+
t −N

−
t

N+
t +N−t

∈ [−1, 1]. (2.12)

The price momentumHt is defined as the exponential moving average of the historical price returns
defined in (2.4)

Ht = θHt−1 + (1− θ)Rt, (2.13)

where 0 ≤ θ ≤ 1 controls the duration ∼ 1/(1− θ) of the noise traders’ memory.
Aggregating the independent investment decisions over all noise traders amounts to an equiv-

alent representative noise trader who decides on the fraction xnt of his wealth invested in the risky
asset given by

xnt =
N+
t

N+
t +N−t

∈ [0, 1]. (2.14)

Thus, putting together (2.12) and (2.14), we have

st = 2xnt − 1. (2.15)

The probability at time-step t for a noise trader who is invested in the risky asset to switch his
position to the risk-free asset is denoted as p+

t . Respectively, the switching probability of a trader,
who is invested in the risk-free asset, is denoted as p−t . These probabilities are given by

p±t =
p±
2

(1∓ κt(st +Ht)) , (2.16)

where the constants p+ and p− control the average holding time of each asset type. The time-
dependent parameter κt determines the strength of social imitation and momentum following, which
are assumed here to have the same quantitative impact.
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One of the most important properties of financial markets is the existence of distinct regimes
and of the switches between them. For instance, momentum-based investment strategies are known
to perform very well in some periods of time and then to strongly underperform, and so on, in an
irregular sequence (Lempérière et al., 2014; Taylor, 2014; Hwang & Rubesam, 2015). Similarly,
financial markets are characterised by periods of exuberance alternating with periods of pessimistic
mood (R. J. Shiller, 2006; Sornette, 2003). We propose to account for the existence of different
regimes and for the random switches between them by allowing the noise traders to shift between
periods when they have a large tendency to herd and when they have more heterogenous opinions.
Thus, their susceptibility to herding is regime dependent. This incorporates the influence of ex-
ogenous factors such as economic and geopolitical regimes in the model. We account for these
characteristics by allowing the coupling strength κt to be time-dependent according to a discretized
Ornstein-Uhlenbeck process

κt = κt−1 + ηκ(µκ − κt−1) + σκvt. (2.17)

where ηκ is the strength of mean reversion that controls the persistence time ∼ 1/ηκ of deviations

from the mean µκ, driven by fluctuations with standard deviation σκ with vt
iid∼ N (0, 1). The

expected value of the Ornstein-Uhlenbeck process κt starting at an initial value κ0 is

E[κt] = κ0 · exp(−ηκ · t) + µκ(1− exp(−ηκ · t)). (2.18)

Thus, the estimated time to revert from a value κ0 > κc to a value κc > µκ is

∆T =
1

η
log

(
κ0 − µκ
κc − µκ

)
. (2.19)

The aggregate wealth fraction of the noise traders invested in the risky asset then evolves as

xnt =
1

N+
t +N−t

N+
t−1∑
k=1

(
1− ξk(p+

t−1)
)

+
1

N+
t +N−t

N−t−1∑
l=1

ξl(p
−
t−1), (2.20)

where ξ(p) are Bernoulli random numbers. The corresponding aggregated wealth equation has the
same structure as (2.10):

Wn
t =

(
Rt +

dt
Pt−1

−Rf
)
xnt−1W

n
t−1 +Wn

t−1 (1 +Rf ) . (2.21)

Combining the previous equations, the resulting aggregated excess demand from the noise traders
for the risky asset is described by the following equation:

∆Dn
t−1→t = Wn

t−1

(
xnt

[
xnt−1

(
Rt +

dt
Pt−1

−Rf
)

+Rf + 1

]
− xnt−1

Pt
Pt−1

)
(2.22)

together with equations (2.20) and (2.16) with (2.15) and (2.17).

2.2.4 Dragon riders (DR)

The above description of the demand functions of the fundamentalists and noise traders is essen-
tially just a slightly modified version of the ABM developed by (Kaizoji et al., 2015), with only an
improved specification of the dividend process, as described above. The main novelty of the present
paper is the addition of a third type of investors, the dragon riders, who are a kind of improved fun-
damentalists. Starting from their anchoring on the demand function (2.11) of the fundamentalists,
the dragon riders attempt to obtain some additional knowledge about the market, by using bub-
ble diagnostic tools. Because transient bubble-like behaviour has been documented in this ABM
(Kaizoji et al., 2015) that mirrors quite well empirical financial bubbles, the ability to identify incip-
ient bubbles with some success may provide a significant investment advantage, a kind of statistical
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arbitrage, which in turn may modify the properties of the market as a result of the market impact of
these investment strategies.

Specifically, our DR behave as fundamentalists as long as they do not have a good enough
diagnostic or when they diagnose that the market is not in an exploitable bubble. Only when they
infer that the market is in the early stage of a bubble, do they deviate from the fundamentalist
strategy by buying more of the risky asset in order to “ride” the bubble. When they conclude that
the bubble is close to burst, they sell the risky asset (no short positions are allowed). Quantitatively,
the DR perform LPPLS calibrations at each time step and decide on how much to allocate to the
risky asset depending on the result of the calibrations. The specific procedure controlling their
investment decision is summarised in the flowchart shown in figure 2.2. and the following four
steps correspond to the right branch of the flowchart (t > tmin).

Step 1 (LPPLS-fits): At any time-step t, the DR perform LPPLS fits over time windows [t1, t]
where the largest fitting window is 500 time steps and the smallest window size is 20 steps and
every i-th window size is considered. Afterwards, a filter F1, which is given in Table 2.3, is applied
to the fit parameters to determine for each fit if it diagnoses a bubble. See 2.5.1 for a description of
the LPPLS fits and the filtering.
Step 2 (Determining the beginning of the bubble): The beginning at time t∗1 of the bubble is
determined using the Lagrange regularization approach introduced by (Demos & Sornette, 2019)
and further tested by (Gerlach et al., 2019) on crypto-currency price time series. The goal is to
find the fitting window with the most distinct LPPLS characteristics, while taking overfitting into
account. This fitting window is determined by calculating the sum of squared residuals for each
fit, performing a linear regression as a function of window size and subtracting the trend of this
regression. The fit that minimizes this is the optimal fitting window, whose starting point is taken
as being the beginning t∗1 of the bubble. The fits with fitting windows starting before the beginning
t∗1 of the bubble are deleted.
Step 3 (Investment decision): The investment decision of DR is based on the fit starting at t∗1 and
the confidence level of the other fits for shorter windows starting at later times until the smallest
fitting window starting at t − 20. The confidence level is the fraction of fits that qualify a bubble.
Depending on the fitted parameters, the DR determine if they are in the early state of a bubble, in
the late state of a bubble, or not in a bubble. The confidence level was introduced by (Sornette et
al., 2015) and elaborated in (Zhang, Sornette, et al., 2016) and (Zhang, Zhang, & Sornette, 2016).
After the calibration, the DR decide on their desired position Vt at the time-step t. This means they
decide if they just follow the fundamental strategy (Vt = xft−1), buy (Vt = 1), or sell (Vt = 0) the
risky asset. They want to buy the risky asset, if the fit starting at t∗1 qualifies a bubble, the confidence
level is above the threshold confThresh1, and an additional parameter confirms the quality of the
fit (the damping factor defined in Table 2.3 should be larger than dampThresh1, which measures
the relative strength of the price acceleration with respect to a low-frequency measure of volatility).
The DR sell the asset when the fit starting at t∗1 qualifies a bubble, the confidence level is above
confThresh2, and the damping factor is above dampThresh2. In any other cases, they behave
as fundamentalists. The confidence thresholds prevent the DR from investing to much based on
spurious signals. Note that the damping threshold indicates the early and late stage of the bubbles.
Step 4 (Order execution): After a DR decides on his desired position Vt ∈ {xft−1, 1, 0}, he exe-
cutes his order linearly in time, with an execution rate s(Vt) depending on the confidence level of
the calibrations, and with a minimum order execution time τ so as to avoid too much market impact.
When the DR diagnose a bubble, the rate s(Vt) of the order execution is the previously described
confidence level of the fits. This means that the DR execute their order faster when they are more
confident about being in a bubble and execute their order slower when they are less certain. When
they do not see a bubble, s(Vt) is one minus the confidence level of the fits, because the confidence
level indicates how certain the trader is to be in a bubble and in this case they want to execute their
order faster when they are more certain not to be in a bubble. Thus, s(Vt) describes the confidence
that the DR have in their diagnostic.
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In summary, the fraction of the wealth of DR invested in the risky asset at time t is given by

xDRt = xDRt−1 +
Vt − xDRt−1

τ
· s(Vt) . (2.23)

2.2.5 Price setting via equilibrium of supply and demand

The market clearing condition equilibrates supply and demand, which means that the market price
is set according to Walras’ theory of general equilibrium (Walras, 1954). Each trader formulates
their excess demand for the next time-step and the price is calculated as the equilibrium in which
supply equals demand. This is formulated as:

0 =
∑
i

∆DDRi

t−1→t + ∆Dn
t−1→t + ∆Df

t−1→t (2.24)

where
∑

i ∆DDRi
t−1→t is the sum over the excess demand of the types i of the DR strategy that are

included in the market. Next, the explicit formulations of the demand from (2.11), (2.22) and the
demand of the DR obtained from the decision tree shown in figure 2.2 are inserted into the market
clearing condition (2.24). This yields a quadratic equation for the price Pt. The positive solution of
this equation is the price in the next time-step. The derivation and resulting price equation is given
in 2.6.

2.2.6 Parameters and initial values

The parameters and initial values used in the simulations are derived in (Kaizoji et al., 2015) and
reported in Table 2.4. The parameters are in particular set such that one time-step in the ABM
represents approximatively one trading day. By this, we mean that the volatility (standard deviation
of one time-step returns) matches approximately the daily volatility of typical developed financial
markets, namely 1-2%. The details of this correspondence are given in (Kaizoji et al., 2015), which
serves at the basis of the present work.
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2.3 Properties of the market and performance of fundamentalists, noise
traders and dragon riders

2.3.1 Properties of the price and wealth dynamics

Using the parameters given in table 2.4 in Appendix A3, figures 2.3 and 2.4 show typical realisations
of the price process, presenting the time evolution of the risky asset price (top panels), the fraction
of wealth invested in the risky asset by the three types of traders (middle panels) and their wealths,
this for two types of processes controlling the social imitation strength κ defined in equation (2.16):
constant κ (figure 2.3) and varying κ(t) according to an Ornstein-Uhlenbeck process such that the
mean of κ(t) is equal to the constant value of the first case (figure 2.4). 2000 time-steps are shown,
which are sufficiently far in time after the burning period so that possible transient effects in the
dynamics have decayed. Recall that the chosen parameters are such that one time-step corresponds
approximately to one calendar day for a real market.

As shown in (Harras et al., 2012) and (Kaizoji et al., 2015), the dynamics of noise traders of the
type presented in section 2.2.3 corresponds to a generalisation of standard Ising models, whose main
characteristics is to present a phase transition or bifurcation that separates a disordered phase, where
noise traders exhibit a large heterogeneity in their decisions to buy or to sell, leading to an average
vanishing demand, from an ordered regime in which a majority opinion dominates, which can be
either a strong net excess buy or sell demand. The presence of an Ising phase transition is important
because it embodies the main property resulting from the spontaneous collective organisation of
individuals who interact repeatedly. For instance, in these models, excess volatility results from the
existence and proximity to such a critical phase transition (Harras et al., 2012).

Denoting κc, the critical value corresponding to the underlying Ising critical point of the noise
trader dynamics, figure 2.3 has been generated with a constant κ = 0.98κc, which is sufficiently
close to the critical point so that the collective decisions of noise traders can lead to bursts of
volatility. Figure 2.4 had been constructed with a κ(t) that fluctuates according to an Ornstein-
Uhlenbeck process (AR(1) process in discrete time), around the same value 0.98κc, with a standard
deviation of the residuals sufficiently large so that κ(t) wanders above κc in the organised phase
of strong collective majority opinions among the noise traders. The parameter values are given in
table 2.4.

In both cases, one can observe in the top panels of the two figures the development of bursts
of volatility in the return time series. However, there is a striking difference between the two price
trajectories, with structures, only present in figure 2.4, that are reminiscent of bubbles, with transient
accelerated price growth followed by sharp drawdowns. The amplitude of these bubbles is typically
of the order of 100%, with over-pricing and their correction developing over 100 time steps or less
for the parameters used in this simulation. The development of these bubbles can be attributed to the
emergence of a collective organisation of the noise traders that tend to buy or sell together, when the
imitation strength becomes critical or super-critical for the generalised Ising model underlying the
demand function of the noise traders (Kaizoji et al., 2015). For certain parameters, the model gives
rise to bimodality in the distribution of the mispricing measured by the logarithm of the ratio of price
to fundamental value. Similar bimodality has been observed in real data (Schmitt & Westerhoff,
2017; Majewski et al., 2020).

Comparing the middle panels, the noise traders are much more willing to buy the risky asset
than fundamentalists, in both figures. The main difference lies in the exposure of the DR to the
risky asset shown in figure 2.4, which is mostly in synchrony with the development of the bubbles.
In contrast, in figure 2.3, the excess DR exposure to the risky asset above the value chosen by
fundamentalists is either noisy or absent.

In the bottom panel of figure 2.3, the wealths of the DR and fundamentalists are growing almost
equally, with small variations in the DR wealth around that of the fundamentalists. In contrast, the
noise traders are over-reacting and either over-perform quite substantially or under-perform badly.
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Figure 2.3: The simulation shown here has been generated with a constant κ = 0.98κc close but
below the critical value κc at which the interactions between noise traders lead to an Ising phase
transition, as explained in the text. The upper panel shows a price path over 2000 time-steps, each
time-step corresponding approximately to one trading day. The black continuous line shows the
fundamental value of the risky asset given by expression (2.7) with ERt = rd. The middle panel
shows the fraction of their wealth that each trader type invests in the risky asset. The lower plot
shows the wealth of each trader normalized to their value at the beginning of the time-interval and
relative to the fundamentalists’ wealth at each time-step t. The wealth given to the DR is very small
so that their market impact is negligible.

At the end of the 2000 time steps, corresponding approximately to 8 years of trading, the noise
traders find their wealth slightly below the fundamentalists and DR, notwithstanding having lived
through periods with strong over-performance, which were followed by large drawdowns in their
strategy. Their imitation and momentum-based investment generates a large wealth volatility. The
lower panel of figure 2.4 demonstrates the existence of wild swings in the wealth of the noise traders,
essentially in synchrony with the bubbles and crashes. In contrast, the wealth of fundamentalists
is much smoother due to the more moderate exposition to the risky asset. Given their ability to
diagnose the birth and death of bubbles, DR have a much better performance, with an almost steady
and substantial growth compared to the fundamentalists. And they over-perform the noise traders
significantly while exhibiting a much smaller volatility.
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Figure 2.4: Same plots as figure 2.3 generated for κ(t) that now depends on time according to
an Ornstein-Uhlenbeck process fluctuating around 0.98κc with standard deviation of the residuals
equal to σκ = 0.01 and the mean reversion of the social coupling strength ηκ = 0.11. Following
expression (2.19), this process reverts within ∆T = 20 time-steps from two standard deviation
above µκ to the subcritical regime.

2.3.2 Performance of fundamentalists, noise traders and dragon riders

Performance when DR have negligible market impact

The performance of the three types of traders is quantified by the Sharpe ratio of their investment
strategies, both in mean and in distribution over a large number of statistical realisations, and for
different sets of parameters of the model. We study how these performances change (and degrade
for the DR, notably) as the fraction of wealth held by the DR increases so that their market impact
becomes important. We also compare the wealth dynamics of the fundamentalists and of the DR,
both in terms of the mean and standard deviation over a large number of statistical realisations, at
fixed model parameters.

The Sharpe ratio of an investment strategy, which is an average risk-adjusted return, is defined
as (Sharpe, 1994)

Si =
1
T

∑
t r
i
t − rf√

var(rit − rf )
, (2.25)

where rit is the return of the trader type i from time t−1 to t, rf is the constant risk-free rate, and T
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is the length of the time interval over which the Sharpe ratio is calculated. The Sharpe ratios in the
analysis are calculated from t = 500 to t = 50000. The first time-steps are not included to remove
the effect of the transient behavior at the beginning of the time-series. For each set of parameters
and conditions, we generate a statistical ensemble of 1000 time series from 1000 different random
seeds.

Figure 2.5 shows the Sharpe ratio of strategies of the DR for constant social coupling κ =
0.98κc and for the OU social coupling strength κ(t), as a function of six parameters of the DR
strategy. In each panel, one parameter is varied while the other parameters are fixed to default
values given in Table 2.1. These Sharpe ratios for DR are compared to the Sharpe ratio of the
fundamentalists. The noise traders have much smaller Sharpe ratios and are not shown.
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Figure 2.5: Sharpe ratio of strategies of the fundamentalists (blue) and of the DR (red) for constant
social coupling κ = 0.98κc (dashed lines) and for the OU social coupling strength κ(t) (solid line),
as a function of six parameters of the DR strategy. We do not show the Sharpe ratio of the noise
traders, as it is much smaller: mean value of 0.241 for OU κ and 0.265 for constant κ. The Sharpe
ratios shown here are obtained by averaging over 1000 simulations with different random seeds
calculated over approximately 50000 time steps each. In these simulations, the initial wealth of the
DR is an infinitesimal fraction of the total initial wealth, so that the market impact of the DR demand
function is negligible. In each panel, only one parameter is varied, while the other parameters are
fixed at the default values given in Table 2.1.

For constant social coupling κ = 0.98κc, since there are no bubbles and crashes to exploit,
the DR are better off not trying to be smarter than the fundamentalists, as they can be misled in
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wrongly diagnosing a bubble and then being hurt by over-weighting their portfolio on the risky
asset. Hence, all the panels confirm that the DR always underperform the fundamentalists, and
asymptotically reach the same performance when using parameters that amount to prevent them
from diagnosing bubbles. This corresponds to have short execution time and large thresholds.

For OU social coupling strength κ(t), the performance of the DR depends significantly on the
minimal execution time, confidence threshold 1, and damping threshold 2. The Sharpe ratio is
quite stable with respect to the other three parameters. In all analyzed parameter sets, except for
a minimal execution time smaller than 2 time steps, the DR strategy significantly outperforms the
fundamentalists. This clearly demonstrates that the DR strategy can exploit bubbles and crashes
over a wide range of parameters and the specific strategy that they use is not at all essential.

Parameter name Explanation Value
twait Minimum waiting time after exiting the strategy 10
τ Minimal time for order execution 15
confThresh1 Confidence threshold for investing 0.95
confThresh2 Confidence threshold for late phase of bubble 0.95
dampThresh1 Damping threshold for early phase of bubble 0.2
dampThresh2 Damping threshold for late phase of bubble 1.0

Table 2.1: Default parameters used to defined the DR strategy, as described in section 2.2.4 and
figure 2.2.

Figure 2.6 complements figure 2.5 by showing the distribution of Sharpe ratios of the three
agent types in the two set-ups of a constant κ and OU κ(t). The parameters defining the DR strat-
egy are set at their default values given in Table 2.1. For constant κ, the fundamentalists are the
winners, just slightly better than the DR, and well above the noise traders. In the absence of bub-
bles, the slight underperformance of the DR with respect to the fundamentalists stems from the few
false diagnostics of bubbles, leading the DR in these instances to mostly overweight the risky asset
in their portfolio. For the OU κ(t) case, for which bubbles and large drawdowns often flourish, the
DR perform well above the fundamentalists (and even more above the noise traders), both in dis-
tribution and for each specific realisation: in each of the 1000 simulations, the DR outperform the
fundamentalists (and the noise traders of course) in terms of Sharpe ratios. This confirms the previ-
ous conclusion that the DR strategy can exploit bubbles and crashes, adding significant performance
over the fundamentalist strategy.

In order to obtain credible asymptotic results, the Sharpe ratios in figures 2.5 and 2.6 are calcu-
lated over 49500 time steps, which corresponds to approximately 200 years. It is interesting to also
compare the performance of the strategies of the DR and fundamentalists over time scales more in
line with the typical time horizons used by investors to assess the quality of their investment. For
this, figure 2.7 shows the time dependence of the mean value and standard deviation of the cumu-
lative excess return of the DR with respect to the fundamentalists, calculated over 1000 realisations
with parameters given in Table 2.1. This figure shows that, even for constant κ, the DR tend to over-
perform the fundamentalists, in terms of their cumulative return. This is because they sometimes
misdiagnose a short-lived upward price fluctuation for a burgeoning bubble, which makes them in-
vest more into the risky asset in the hope of “surfing” the bubble during its ascent. Notwithstanding
the absence of bubble, the risky asset offers a higher average return than the risk-free rate, by con-
struction. Hence, buying more of it gives over the long term a higher return, equal to the long-term
rate rd defined by equation (2.2). This comes however at the cost of a much larger volatility, hence
the slight underperformance in terms of risk-adjusted return measured by the Sharpe ratio of the DR
with respect to the fundamentalists for the prices generated with a constant κ, as shown previously
in figures 2.5 and 2.6.

Figure 2.7 provides a complementary method to compare DR and fundamentalists. Indeed, as
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Figure 2.6: Distribution of the Sharpe ratios obtained from 1000 simulations with constant (left)
and OU (right) social coupling strength κ and different random seeds for the three trader types.
The mean Sharpe ratios for constant κ are respectively 0.265 for the noise traders, 0.472 for the
fundamentalists and 0.466 for the DR. The mean Sharpe ratios for OU κ are respectively 0.241 for
the noise trader, 0.495 for the fundamentalists, and the 0.616 for the DR.

reviewed in details in (Sornette et al., 2019), the value of an investment characterised by its mean
return µ and standard deviation σ per time step can be assessed via the typical time Tc ≈ (σ/µ)2

needed to decide whether an observed positive cumulative return is due to the positive systematic
drift term µ (a proxy for skill) or to a lucky set of innovations for the random component with
standard deviation σ. For constant κ, we find Tc = 25733, corresponding to about 100 years. This
very long decision time confirms that the DR strategy for constant κ is more risky, and provides
inferior value for an investor, on a risk-adjusted basis. For OU κ for which bubbles and crashes
are defining attributes of the dynamics of prices, the cumulative excess return of DR with respect
to fundamentalists grows much faster and Tc = 1796, corresponding to about 7 years. While still
rather long, this time is typical of the time scale over which skill can be clearly distinguished from
luck in real financial markets (we refer to (Sornette et al., 2019) and references therein for a detailed
exposition and the relevant references).

Performance when DR have increasing market impact

All previous results have been obtained with a total wealth held by DR that is negligible compared
to that of fundamentalists and noise traders. Hence, the results presented above have been obtained
under the condition that the DR have no impact on the price. In other words, their decision to
exploit bubbles and to sell the risky asset when they think a crash is coming does not have any
impact on the price. This is realistic as long as the DR strategy is adopted only by a minority of
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Figure 2.7: Mean value and standard deviation of the cumulative excess return of the DR with
respect to the fundamentalists as a function of time, over 1000 realisations with parameters given in
Table 2.1. The mean values and standard deviations are calculated over the set of 1000 simulations
with OU and constant κ = 0.98κc, respectively. The vertical lines indicate the time Tc beyond
which the mean of the cumulative return becomes larger than its standard deviation. Tc is evaluated
by measuring the time when mean and standard deviation are equal, and subtracting to it 480 days,
which is the length of the largest LPPLS fitting window that DR use in their algorithm to diagnose
bubbles. Thus, from the measurement that mean and standard deviations become equal at t = 26213
for a constant κ, we obtain Tc = 26213− 480 = 25733. i.e. about 100 years. Similarly, for OU κ,
t = 2276 leads to Tc = 2276− 480 = 1796, i.e about 7 years.

the fundamentalists. But, as the DR strategy is quite successful and over-performs significantly
the fundamentalists (and even more the noise traders) for the OU κ case, it is likely that, in a
real market populated by learning and adaptive agents, it would be progressively adopted. This is
always the concern of those who invent a novel winning strategy: initially, it is known and used by a
marginal number of investors; as its success becomes more and more visible, more and more traders
adopt it, and the total size of buy and sell orders associated with the strategy become substantial,
thus increasingly influencing the price dynamics. In general, this tends to decrease the value of
the strategy, eventually resulting in its demise (J. Farmer, 2002). It is common lore in financial
markets that the superiority of new trading strategies typically last only a few years at best, until
the widespread adoption leads to the arbitrage of the anomalies that they exploit. This arbitrage
mechanism is at the core of the efficient market hypothesis (Fama, 1970, 1991), which pushes to
the extreme the logic that arbitrageurs remove exploitable features by using them in their strategies,
which then change the nature of the price dynamics. This opens up two questions that we now
investigate in turn in this subsection and in the next section: (i) how does the performance of DR
change when their wealth fraction increases? (ii) how does the structure of the market evolve as the
DR wealth fraction increases? In other words, do DR tend to decrease or increase the frequency
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and/or size of bubbles and crashes?
To be concrete, we endow fundamentalists and noise traders each with an initial wealth of 109

monetary units (MU). With an initial price of P0 = 1.0 MU and an initial fraction of wealth of
30% invested in the risky asset, this implies that the total number of shares is 6 · 108. The total
number of shares remains constant throughout the simulation. With a fraction of wealth invested in
the risky asset about twice as large as the fundamentalists risky fraction, the noise traders typically
own 4 · 108 shares, while the fundamentalists typically own 2 · 108 shares.

In the first treatment, referred to as the 0% DR case, we provide the DR with an initial wealth
of just 100 MU. Hence, they can buy at most 50 shares when the price is 2, which is completely
negligible compared to the size of the portfolios of the fundamentalists and noise traders. In the
following treatments, we keep the wealth fraction of noise traders constant at 50%, i.e. their initial
wealth remains 109 MU, while the other 109 MU are divided among the fundamentalists and the
DR. This is logically motivated by the fact that the DR use the fundamentalists’ strategy by default
when no bubble or crash is diagnosed. We vary the initial wealth of DR from 100 MU to 109− 100
MU (and accordingly the fundamentalists have from 109 − 100 MU to 100 MU).

The dependence of the Sharpe ratios of the three trader types as a function of the fraction of
wealth held by DR is shown in figure 2.8, both for the constant κ and OU κ cases. As expected, the
performance of the DR decreases with their market size, in both cases. In the constant κ case, the
Sharpe ratio of DR decreases steadily from just below that of the fundamentalists at 0% fraction to
just above that of the noise traders for their maximum fraction at 50%. In the OU κ case, the DR
Sharpe ratio remains above that of the fundamentalists up to a wealth fraction approximately equal
to 7%, beyond which they underperform, while always remaining better than the noise traders. The
Sharpe ratio of DR in the OU κ case parallels the Sharpe ratio of DR in the constant κ case for more
than 20% wealth fraction given to the DR. In contrast, the average Sharpe ratios of fundamentalists’
and noise traders’ strategies do not change much over the full range of DR wealth fraction, varying
between 0.48 and 0.52 for the fundamentalists and between 0.23 and 0.25 for the noise traders.

In sum, as expected, the DR perform best when they have a negligible fraction of the total initial
wealth and therefore no market impact. They profit from diagnosing the price patterns associated to
bubbles and crashes, which are created by the noise traders. But, when their market size becomes a
significant fraction of the total market, their market impact modifies the very patterns that they are
supposed to be good at detecting, leading to strong price distortions and progressive removal of the
useful (for them) bubble signals.

To clarify the nature of the market impact of the DR, the next section analyses in details the
characteristics of the alterations of the price patterns induced by the DR, for different values of their
initial wealth fraction.
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Figure 2.8: Sharpe ratios of the three trader types with an increasing fraction of DR for OU κ (solid
lines) and constant κ (dashed lines). The error bars indicate one standard deviation calculated
over 1000 realisations with different random seeds and over approximately 50000 time steps. The
distributions of Sharpe ratios for negligible DR fraction (referred to as 0%) is shown in Figure 2.6.

2.4 Impact of Dragon Rider strategy on the market price properties

In this section, we analyse the impact of DR from the view point of a regulator or an external
investor, who are interested in whether the addition of DR strategies is beneficial or harmful for
the financial market. This question is investigated in two ways. The first one focuses on the effect
of DR on the frequency and sizes of bubbles (subsection 2.4.1). The second one characterises the
modifications brought to the markets by the DR in terms of expected return and standard deviation
of the risky asset (subsection 2.4.2). As in subsection 2.3.2, we vary the wealth fraction of DR from
0% to 50% of the total wealth at inception of the market, with the fundamentalists’ wealth fraction
correspondingly decreasing from 50% to 0%, so that the sum of the two remains constant, ensuring
also a constant 50% share of the initial wealth held by the noise traders.

2.4.1 Impact on frequency and size of bubbles

To study the impact of the DR on the frequency and sizes of bubbles, we first describe our method-
ology to diagnose bubbles ex-post and measure their sizes.

Identification of peaks and valleys and calculation of drawdowns

Different from the DR who attempt to diagnose bubbles in real time, here we have a much simpler
task in identifying bubbles, because we can use the whole time series, so that a bubble can be
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Figure 2.9: Example of a typical price path for the OU κ case over 5000 trading time steps (cor-
responding to 20 calendar years) with peaks (red filled triangles) and troughs (black inverted trian-
gles). The minimum distance between peaks is chosen equal to k = 250. The lengths of the vertical
line segments starting from the peaks represent the amplitude of the drawdowns, i.e., losses from
peaks to valleys. The algorithm used to identify the peaks and troughs is described in subsection
2.4.1.

identified from both its abnormal rise and subsequent extreme drawdown.
The first step is to detect peaks and troughs in the price time series. A peak at time scale k in

the price path occurs at time-step ti if

Pti ≥ Ptj ∀tj ∈ [ti − k, ti + k], (2.26)

where Pt is the price at time t and k is the minimum distance between two peaks. Thus, a peak
occurs at a given time if the price at this time is larger than the price at the k previous and consecutive
times. In this analysis, the minimum distance between to time-steps is chosen to be k = 250 trading
days, which corresponds to approximately one calendar year.

The valley is defined as the time at which the price is minimal between two consecutive peaks.
The size of a drawdown dti is defined as the difference between the log-price at the time of the peak
(ti) and the log-price at the time of the consecutive valley

dti = log(Ptpeak=ti)− log(Ptvalley). (2.27)

The detected peaks, valleys and drawdowns for a realisation of the price path with OU κ are shown
in Figure 2.9. In this figure, we choose k = 250 trading days, which corresponds approximately
to one calendar year. For this value k = 250 of the minimum distance between two peaks, all
peak-to-valley drawdowns are at least 40% and often much larger, which makes them reasonable
candidates for the typical sizes of corrections / crashes after bubbles. Hence, we take as a measure
of frequency of bubbles simply the frequency of the peaks defined by (2.26) with k = 250. And
the drawdowns are quantified as equal to the peak-to-valley amplitudes following these peaks, as
shown by the vertical segments starting from the peaks.

Dependence of frequency of bubbles and drawdown sizes on DR’s wealth fraction

The impact of the DR strategy on the average number of peaks for OU and constant kappa is shown
in Figure 2.10.

For constant κ, apart from a slight decrease of the average peak-to-valley drawdown sizes from
0% to 5%, increasing the fraction of wealth held by DR has clearly an overall negative impact as
both the numbers of peaks and their subsequent drawdowns, which proxy for bursts-and-busts and
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Figure 2.10: Number of peaks and average peak-to-valley drawdown in simulations with different
DR wealth fractions. The DR wealth fractions vary between 0% and 50% as indicated on the curves,
and each scenario is simulated 1000 times over T=50000 time-steps. The values are calculated for
OU kappa (red) and constant kappa (blue). The error bars indicate the standard deviation of the
number of peaks and peak-to-valley drawdown calculated over the 1000 realizations. With about
75 to 80 peaks occurring over 50000 time steps, this corresponds to one peak about every 2.5 years
on average, quite larger than the minimum interval k = 250 time steps (= 1 calendar year) used to
define the peaks, as shown in figure 2.9.
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thus excess price movements, increase significantly. And the decrease in the number of peaks for
the DR wealth fraction going from 40% to 50% is more than compensated by a huge increase in the
average drawdown size from 55% to 95%. This is in line with the fact that the the DR misdiagnose
the market fluctuations for the presence of bubbles, which lead them to overweight the risk asset and
thus push its price even larger. Being non-sustainable, this is followed by a crash, and the process
repeats.

In contrast, for the OU κ scenarios, for which real bubbles are created by sufficiently large
herding and momentum following noise traders, the increasing weight of DR is beneficial for the
market, at least up to about 10% wealth fraction, in decreasing significantly the amplitude of their
subsequent drawdowns (up to 14%), however at the expense of a slight increase (2%) in the number
of bubbles. When DR have more than 10% of the total wealth, their impact becomes detrimental
in the sense of both increasing the number of bubbles and the amplitude of their subsequent draw-
downs. When DR have completely replaced the fundamentalists (wealth fraction equal to 50%),
this creates huge bubbles and crashes.

2.4.2 Impact of DR on the stability of the market

This subsection analyses how the initial wealth fraction of DR in the market influences the moments
of the daily return (variance, skewness, excess kurtosis) as well as the value-at-risk (VaR), a measure
of tail risks.

Figures 2.11 and 2.12 show typical realisations of the price process and the corresponding
fractions of wealth invested in the risky asset for the three trader types, for different wealth fractions
of DR from 0% to 50%. To be comparable, we use the same random number seed in all six shown
simulations. Using the same random number seed allows us to perform counterfactual analyses
of how a given market development would unfold in the presence of different fractions of DR,
everything else, including the specific random numbers encoding the history of dividends as well
as the decision of the noise traders, being exactly the same.

In the case of constant κ (Figure 2.11) with 0% DR, as already noted, the DR strategy only
temporarily deviates from the fundamentalist strategy and returns quickly to the fundamentalist
strategy after short-lived incorrect diagnostic of bubbles. As the fraction of DR increases, the typical
length of the time intervals in which the DR strategy deviates from the fundamentalist strategy
increases. The trading (buy and sell) of the DR in excess to that of fundamentalists leads to larger
fluctuations in the price path, which has an amplification effect on the activity level of the DR
strategy, through a positive feedback mechanism. The price trajectories become visually more
volatile and bursty with larger DR wealth fractions.

Figure 2.12 shows the impact of the DR strategy in simulations with OU κ. Since the activity
of the DR strategy is now more in tune with the detection of genuine bubbles, the impact of the DR
strategy on the price trajectory can become beneficial. This is particularly visible for a DR wealth
fraction of 20%, for which the large bubble and drawdown at time t ∼ 1200 in the absence of
DR impact has been essentially eliminated. For a DR wealth fraction of 10%, the amplitudes of the
bubble and drawdown is decreased slightly but the DR create a second large bubble that did not exist
in their absence. This reveals the stochastic nature of the interventions of DR, whose sometimes
incorrect diagnostics or bad timing of bubbles may lead to create the very events they are supposed
to arbitrage. For larger DR wealth fractions, the price dynamics develops some bubbles that do not
have clear relations with the one in their absence. Eventually, for the largest fractions of 50% of
DR, the price dynamics becomes very bursty as the positive feedback mechanism resulting from
the impact of the actions of the DR completely dominates.

Table 2.2 quantifies the impact of the DR strategy with different metrics derived from the dis-
tribution of the returns in a market with OU and constant κ. We report (i) the variance, which is
the second centered moment; (ii) the skewness, which is the third normalised centered moment and
describes the asymmetry of the return distribution; (iii) the excess kurtosis, which is the normalised
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Figure 2.11: Section of a price path and the corresponding fractions invested in the risky asset for
the three trader types. Each pair of panels shows a different DR wealth fraction in the market, from
0% (top left) to 50% (bottom right). The social coupling strength κ is constant.

0% DR 5% DR 10% DR 20% DR 30% DR 40% DR 50% DR
Constant kappa
Variance (×10−4) 2.03(±0.11) 2.01(±0.11) 2.04(±0.11) 2.25(±0.12) 2.65(±0.12) 3.44(±0.13) 9.67(±0.38)
Skewness 0.04(±0.01) 0.05(±0.01) 0.08(±0.02) 0.23(±0.04) 0.51(±0.08) 0.92(±0.12) 1.65(±0.12)
Excess kurtosis 0.23(±0.06) 0.26(±0.07) 0.33(±0.08) 0.84(±0.17) 2.14(±0.40) 4.47(±0.73) 7.19(±0.78)
1%-VaR 0.033(±0.001) 0.033(±0.001) 0.033(±0.001) 0.034(±0.001) 0.037(±0.001) 0.042(±0.001) 0.068(±0.002)

OU kappa
Variance (×10−4) 2.07(±0.18) 1.84(±0.14) 1.88(±0.15) 2.14(±0.15) 2.61(±0.17) 3.47(±0.21) 11.76(±0.59)
Skewness −0.25(±0.09) −0.13(±0.10) 0.05(±0.12) 0.47(±0.14) 0.99(±0.19) 1.59(±0.22) 2.31(±0.14)
Excess kurtosis 4.58(±1.78) 4.56(±1.90) 4.50(±1.87) 5.86(±1.79) 9.01(±2.33) 13.45(±3.14) 13.60(±2.09)
1%-VaR 0.037(±0.002) 0.034(±0.002) 0.034(±0.002) 0.035(±0.002) 0.038(±0.002) 0.044(±0.001) 0.080(±0.002)

Table 2.2: Dependence as a function of DR wealth fractions of different metrics of the risky asset
returns in markets with constant and Ornstein-Uhlenbeck social coupling strength κ. Each case is
simulated 1000 times over 50000 time-steps. The values in brackets indicate the standard deviation
over 1000 realisations. Bold values indicate values smaller than in the realisations with DR with
0% market impact.

fourth order cumulant minus 3 and is a measure of the distance from the normal distribution espe-
cially in the tails (a positive excess kurtosis is called leptokurtic and has fatter tails than a normal
distribution); (iv) the value-at-risk (VaR), which is calculated in order to analyze the risk of loss
in the distribution of the returns. The VaR describes the maximum possible loss, which is not ex-
ceeded with the probability (1 − α), thus it is the (1 − α)-quantile of the distribution of returns.
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Figure 2.12: Same as figure 2.11 for OU κ processes.

Here, we report the VaRα=1% of the daily returns. The mean values and the standard deviations (in
parentheses) of these metrics are estimated over 1000 simulations for each market scenario.

The upper half of table 2.2 corresponds to the constant κ scenarios. The skew and excess
kurtosis increase monotonically with the wealth fraction of DRs in the market. As the skew of the
return increases, the distribution of returns becomes more right-skewed and the positive tails are
getting fatter. Thus, there are more positive extremes than negative extremes. Without DR, the
excess kurtosis is 0.23, which means the tails are only slightly fatter than the normal distribution.
In contrast, with 50% DR, the excess kurtosis reaches 7.19. The variance and VaR1% decrease
slightly when a small fraction of DRs is included in the market and increase monotonically with
the fraction of DRs for fractions of DR larger than 5%. Since both measures can be interpreted as
quantifying the risks of the asset, a small fraction of DR slightly reduces the riskiness of the asset,
while a larger fraction of DR increases the riskiness. This result is consistent with the observations
in Section 2.4.1 that a small fraction of DR in the market reduces the average peak size, while a
larger fraction of DR increases the average peak size.

For OU κ scenarios shown in the lower half of table 2.2, the averages of the variance, excess
kurtosis, and VaR1% calculated over 1000 simulations with 50000 time-steps decrease as the wealth
fraction of DR in the market increases, up a wealth fraction of DRs 5% for the variance and 10% for
the excess kurtosis and VaR1%. Beyond these wealth fraction of DR, these risk measures increase
with larger fractions of DR. Thus, similarly to the simulations without bubbles for constant κ, there
is an optimal fraction of DR in the market that reduces the riskiness of the asset in terms of the
variance and VaR1%. However, when the fraction of DR in the market is larger than the optimum,
the riskiness of the asset increases significantly. Since the Noise traders and DR often buy the risky

34



2.5. Conclusion

asset at a similar time, when the price increases, the presence of a large fraction of DR accelerates
the price increase. Since the DR aim at selling shortly before the peak, they also trigger an earlier
crash of the bubbles. Furthermore, the decreasing influence of the fundamentalist traders who have
a stabilizing effect, amplifies the fluctuations in the price path. Thus, replacing too much of the
fundamentalists by DR has a destabilizing impact on the market.

(Patzelt & Pawelzik, 2012) demonstrated in a simple ABM that the same mechanism that leads
to market efficiency can also lead to market instabilities. Analogously, the action of the DR can
have a stabilizing and a destabilizing effect on the market. A small fraction of DR in the markets
and their actions to exploit the information about bubbles tend to stabilise the market. However, it
becomes increasingly difficult for the DR to distinguish noise from information as the market gets
closer to efficiency. This makes the DR to overreact on noise and destabilize the market with their
actions. In the simulations with OU κ, there is initially more information to exploit. Therefore, a
larger fraction of DR remains beneficial in stabilizing the market than in the simulations without
bubbles for constant κ, where the information about bubbles that the DR receive from their LPPLS
fits is mostly spurious.

2.5 Conclusion

We have built on a previous agent-based model (ABM) developed by (Kaizoji et al., 2015), which
is characterised by the spontaneous formations of bubbles and drawdowns as the result of the in-
teraction between fundamentalists and noise traders. The noise traders invest based on herding and
momentum, according to a social imitation strength that can vary with time. We have extended this
ABM in two ways: (i) we have proposed a more realistic dividend process driving the fundamental
value of the risky asset; (ii) we have introduced a third type of agents, called “dragon riders” (DR),
who are endowed with some ability in diagnosing incipient bubbles and in timing their end.

The goal of this work has been to provide a first analysis of the performance and impact of the
DR. We have found that the DR strategy can successfully exploit the bubbles, which lead them to
outperform the other traders on a risk-adjusted basis. The DR achieve a significantly higher average
Sharpe ratio than the two other trader types in markets with bubbles created by noise traders in the
presence of a social coupling strength κ(t) following an Ornstein-Uhlenbeck process. For constant
social coupling strength κ for which no clear bubble appears, the DR perform only slightly worse
than the fundamentalists and much better than the noise traders. The DR can thus exploit the
additional information about the emergence of bubbles and crashes using a methodology (called
LPPLS calibration) designed to identify transient faster-than-exponential price growth, which has
been amply documented in real markets. The DR can thus increase their wealth by predicting
the time of the crash better than chance. We also find that, by exploiting the bubbles, the DR
tend to destroy the characteristics of the bubbles and therefore progressively eliminate the arbitrage
opportunity associated with the bubbles and crashes. In markets with a large fraction of DR, their
strategy based on exploiting bubbles and crashes performs worse than the fundamentalist strategy,
due to their larger number of false positive bubble detections.

In contrast, the presence of a small fraction of DR in the ABM market reduces the average
bubble size, and can even in some cases completely suppress bubbles. This is due to the market
impact associated with the early exit of the DR diagnosing a coming bubble burst. When the wealth
fraction of DR increases too much, the average size of peaks and the fluctuations in the price path
increase, as a result of false positive bubble diagnostics and the impact of their strategy on the risky
asset. In turn, the noise traders react by herding more, further amplifying the price fluctuations, in
a positive feedback loop increasingly destroying the bubble characteristics and thus worsening the
bubble properties that the DR are skilled to detect. The presence of a large fraction of DR in the
market also increases the variance of the return and the value-at-risk. Furthermore, the distribution
of returns has a larger positive skew and fatter tails, the larger is the proportion of DR.

In sum, in our set-up, there is an optimal fraction of DR in the market that reduces the riskiness
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of the asset, while a larger fraction of DR in the market increases the riskiness of the asset beyond
the level in their absence. The optimal fraction of DR in markets without bubbles (constant κ) is
approximately 5%, and it is 10% in the presence of bubbles (Ornstein-Uhlenbeck κ).

Acknowledgements: We are thankful to Ralf Kohrt for help in a first part of the research.

Appendix

2.5.1 LPPLS fits

Here, to endow the dragon riders (DR) with bubble detection skills, we follow the model of finan-
cial bubbles and crashes introduced by Johansen et al. (1999) (JLS model). This model describes
the evolution of the log-price trajectory during bubbles as log-periodic power law singularities (LP-
PLS). The key idea is that, trend following and herding of traders lead to super-exponential growth
(Sornette & Cauwels, 2015a), while social hierarchies of the traders (Zhou et al., 2005), as well as
the combination of inertia, nonlinear trend following and nonlinear mean-reversal (Ide & Sornette,
2002), lead to log-periodic oscillations of the price with decreasing amplitudes. According to the
JLS model, the expectation of the log-price can be written as follows (Johansen et al., 1999):

E[logPt] = A+B(tc − t)m + C(tc − t)m · cos(ω log(tc − t)− φ) (2.28)

The parameter A is the terminal log-price at tc, B controls the amplitude of the power law accel-
eration, tc is the critical time (the most probably time for the end of the bubble), m controls the
convexity of the hyperbolic growth of the price, C is the amplitude of the log-periodic oscillations,
ω is their angular log-frequency and φ is a phase constant, which embodies a characteristic time
scale of reference.

The price structure described by (2.28) is a clear indication of a bubble when it can be found with
sufficiently strong statistical confidence (Jiang et al., 2010; Johansen & Sornette, 2010; Sornette &
Cauwels, 2015a). Therefore, the equation can be used to diagnose bubbles before the crash occurs.
Thus, we endow our DR with the ability to fit (2.28) to the price path over different time-windows.
The fitting procedure that our DR follow was introduced in Filimonov and Sornette (2013). The
fitting corresponds to determining the vector of 7 parameters Φ∗ = {A,B,C, φ,m, ω, tc} that
minimizes the sum of squared residuals between the price realization and expression (2.28).

After each fit, the obtained parameters are compared to parameter values that have been doc-
umented to be typically associated with a bubble regime, gathered from empirical investigation of
previous bubbles (Zhou & Sornette, 2003; Sornette et al., 2015; Zhang, Sornette, et al., 2016). The
fits that fulfil the criteria given in Table 2.3 are considered as valid fits, the other fits are discarded.
The qualified fits are used by the DR to diagnose bubbles, as explained in the text.

Parameter name Filter Bounds
Amplitude of the log-oscillations |C| < 1
Power law exponent m [0.1, 0.9]
Log-periodic Frequency ω [2, 25]

Damping D = m|B|
ω|C| ≥ dampThresh1

Table 2.3: Filtering conditions for the LPPLS parameters. dampThresh1 is discussed in the text.
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2.6 The Equilibrium Market Price

The market clearing condition states an equilibrium between supply and demand. This means that
the market price is defined following Walras’ theory of general equilibrium (Walras, 1954). Each
trader formulates their excess demand for the next time step and the price is calculated as the
equilibrium in which supply equals demand. This is formulated as:

0 =
∑
i

∆DDRi

t−1→t + ∆Dn
t−1→t + ∆Df

t−1→t (2.29)

where
∑

i ∆DDRi
t−1→t is the sum over the excess demand of the types i of the Dragon Rider (DR)

strategy that are included in the market. Furthermore, the risky fraction of the DR is split up into
a fraction kt that is invested as fundamentalist (price maker) and a fraction lt that is invested as
a price taker. In the strategy used by DR in the present study, it is either (kt = 1, lt = 0) or
(kt = 0, lt = 1). Next, the explicit formulations of the demand from (2.11), (2.22) and the demand
of the DR obtained from a decision tree presented in the main text are inserted into the market
clearing condition (2.24):
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Finally, the equation is multiplied by Pt, the return Rt := Pt
Pt−1

− 1 is inserted and formula is
organised in powers of Pt to obtain
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Next, some definitions are made to simplify the equation.

v1 :=
ERt−1 −Rf

γσ2
(2.30)

v2 :=
dt
Pt−1

−Rf − 1 (2.31)

v3 := Rf + 1 (2.32)

v4 :=
dt(1 + r)

γσ2
(2.33)
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The resulting equation is given in the following:
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Equation (2.34) is a quadratic equation of the form atP

2
t + btPt + ct = 0 where
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The equation has the following two solutions:

P 1,2
t =

−bt ±
√
b2t − 4atct

2at
(2.40)

The positive solution of this equation is the price in the next time-step.
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2.7 Table with parameter values

Parameter name Explanation Value
Market
T Simulation length 50000
seed Random seed 6 digit number
Assets
rf Risk free interest rate 0.01/250=0.00004
d0 Initial dividend 0.04/250=0.00016
rd Expected growth rate of the dividend 0.04/250=0.00016
σd Expected standard deviation of the dividend growth rate 0.000016
P0 Initial price of the risky asset 1
σr Expected standard deviation of the risky asset price

√
0.10/250 = 0.02

N r Number of risky assets 1
Noise traders
xno Initial fraction of the risky asset held by the noise traders 0.3
Wn

0 Initial wealth of the noise traders 109

cH Momentum weight 1
cs Opinion index weight 1
p+ Switching probability when holding the risky asset 0.199375
p− Switching probability when not holding the risky asset 0.200625
θ Memory parameter 0.95
H0 Initial momentum 0.00016
Nn Number of noise traders 1000
Fundamentalists
xf0 Initial fraction of the risky asset held by the fundamentalists 0.3
W f

0 Initial wealth of the fundamentalists 0 to 109

ERt Expected return of the risky asset = rd 0.00016
DR
WDR

0 Initial wealth of the DR 100 to 109

xDR0 Initial fraction of the risky asset held by the DR 0.3
ERt Expected return of the risky asset = rd 0.00016
LPPLS fits
t1 Starting time of LPPLS fits 480
t2 End of LPPLS fits 1500 or 5000
kmax Maximal size of the LPPLS fitting window 480
kmin Minimal size of the LPPLS fitting window 10
Social coupling strength
κ0 Initial social coupling strength 0.98 · 0.199375
µκ Mean of the OU social coupling strength 0.98 · 0.199375
ηκ Mean reversion of the OU social coupling strength 0.11
σκ Standard deviation of the OU social coupling strength 0.01

Table 2.4: Parameters characterising the model financial markets and used in the simulations. Div-
idends, interest rates and standard deviations are given as daily values (per time-step).
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Chapter 3

How market intervention can prevent
bubbles and crashes

Using a previously validated agent-based model with fundamentalists and chartists, this chapter
investigates the usefulness and impact of direct market intervention. The policy maker diagnoses
bubbles by forming an expectation of the future returns, then invests in burgeoning bubbles and sells
countercyclically the overpriced asset to fight market exuberance. Preventing bubbles and crashes,
this market intervention improves all analysed market return metrics, volatility, skewness, kurtosis
and VaR, without affecting long-term growth. This increases the Sharpe ratios of noise traders and
of fundamentalists by approximately 28% and 45% respectively. The results are robust even for
substantially miscalibrated long-term expected returns.

Based on Westphal, R., & Sornette, D. (2020). How market intervention can prevent bubbles
and crashes. Swiss Finance Institute Research Paper, (12-74).

3.1 Introduction

Policy makers aim for well functioning financial markets, because of the key roles financial mar-
kets have for a society. They are essential financing tools catalysing the development of enterprises
and fostering innovation. Price setting by the equilibrium between supply and demand of multi-
ple investors with varied sources of information usually ensures the “correct” valuation, allowing
an efficient and rational allocation of resources to the different sectors of the economy. Because
investors allocate funds to firms with promising future standing and/or growth prospects, financial
markets are inherently forward looking. In other terms, they are predictors of future economic
growth. Financial markets also provide storage of value. The wealth effect of investors feeling
richer upon stock market appreciation is well documented to boost consumption in a virtuous circle
of economic expansion.

This ideal description flies in the face of a more complex reality in which excess volatility phases
(R. Shiller, 1981) are the norm more than the exception, and exuberant market regimes (R. J. Shiller,
2006) are sometimes followed by crashes (Johansen & Sornette, 2002; Sornette, 2003). These
turbulences have increasingly characterised financial markets in the last three decades, with the dot-
com bubble that crashed in 2000, the bubble on real-estate and financial securitisation of mortgages
that crashed in 2008, the market boom fuelled by quantitative easing that ended in 2018-Q1, the
short-lived market exuberance of 2019 ending with the Covid-19 triggered market crash in March
2020 (see e.g. (Sornette & Cauwels, 2015a, 2015b)).

Arguably, policy makers should have a strong interest in stabilizing financial markets by de-
creasing excess volatility and damping market turbulences such as bubbles and crashes, but without
sacrificing economic growth. Biswas et al. (2020) even show that the burst of a bubble can re-
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sult in persistent aggregate economic activity below the pre-bubble trend, thus reducing the ex-ante
welfare. However, in practice, the stance of most policy makers seems to be summed up by the
remarks by Chairman Alan Greenspan at a symposium sponsored by the Federal Reserve Bank of
Kansas City, Jackson Hole, Wyoming (August 30, 2002): “As events evolved, we recognized that,
despite our suspicions, it was very difficult to definitively identify a bubble until after the fact–that
is, when its bursting confirmed its existence.” Greenspan further confirmed that “instead of trying
to contain a putative bubble by drastic actions with largely unpredictable consequences, we chose,
as we noted in our mid-1999 congressional testimony, to focus on policies to mitigate the fallout
when it occurs and, hopefully, ease the transition to the next expansion” (Greenspan, 2004). Acting
to prick a bubble when the bubble is on its way up is generally considered impossible or ill-advised
for fear of false positives and the danger that the remedy might be worse than the disease. Apart
from some exceptions, the attitude of central banks has thus been in general to act vigorously only
after a crash occurred, to provide liquidity as well as cheaper access to credit in the form of lower
interest rates.

On the other side of the debate, Cecchetti et al. (2000) and Cecchetti et al. (2002) develop a
number of arguments for how asset price misalignments should be used to guide central bank policy.
In particular, they show that interest rates should respond to stock price bubbles in order to dampen
the overall volatility in economic activity. The theoretical work by B. Bernanke and Gertler (2000);
B. S. Bernanke and Gertler (2001) finds that direct asset price targeting might have undesirable side-
effects, but changes in the asset price can help to forecast inflationary or deflationary pressure and
a flexible inflation-targeting provides macroeconomic and financial stability. In his review of six
general arguments favoring monetary targeting of asset bubbles, Roubini (2006) suggested that the
standard arguments against policy intervention to thwart bubbles do not hold on close scrutiny. In
particular, in the case of endogenous bubbles (defined by their susceptibility to monetary policies),
optimal monetary policy calls for attempting to control the bubble. Wadhwani (2008) reviews
the justifications for “leaning against the wind”, using a number of indicators such as loan-to-
value ratios, growth of the value of bank assets and so on. F. Mishkin (2011) argues that policy
intervention should monitor credit market conditions and use macroprudential measures to restrain
over-exuberance in credit markets as well as financial imbalances. Ikeda (2019) develops a dynamic
model with rational bubbles in which bubble-led boom reduces firms’ borrowing constraints and
keeps inflation from rising. Ramsey-optimal monetary policy is shown to call for tightening to curb
the boom. Gali et al. (2020) study the relationship between interest rate policy and bubble dynamics
in the laboratory and show in their setting that “leaning against the wind” by increasing interest
rates in response to asset price increases reduces the price of the asset bubble on the short term
but tends to exacerbate asset price bubbles on the longer term. They also stress that expectations
are backward-looking, with adaptive and trend extrapolating elements, rather than rational. Blot et
al. (2018) assess the dynamic impact of monetary policy shocks on a new bubble indicator based
on a principal component analysis to extract the common pattern of structural, econometric and
statistical empirical approaches. Their main result based on their chosen examples is that restrictive
monetary policy (“leaning against the wind”) cannot help deflating stock or housing price bubbles.

Here, we complement these burgeoning theoretical, empirical and experimental approaches
by deploying a realistic agent-based model (ABM) that supports transient endogenous “super-
exponential” bubbles followed by crashes, in order to test the consequences of direct policy inter-
vention on the overall financial market and the risk-adjusted performance of the investors. ABMs
belong to the broader class of computational economic models and simulate individual operations
and interactions of multiple agents. ABMs can incorporate heterogeneous beliefs and have be-
come more widely used in economics in recent years (Kirman, 2012). In principle, ABMs have the
great advantage of allowing for the introduction of arbitrary levels of complexity and heterogene-
ity among a large population of economic agents, thus providing the means to approach a realistic
description of real economic and financial systems. ABMs are well suited to represent out-of-
equilibrium phenomena such as financial bubbles and are not constrained to stationary conditions.
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They can describe transient dynamics, including convergence to or deviations from equilibrium
(Sornette, 2014). Consequently, they can be used to test the dynamics of an inherently nonlinear
impact of a policy in the presence of complex feedback loops. Kyle (1985) and Black (1986) were
among the first who developed ABMs of financial markets that consider the behavior of traders who
are influenced by trends and price patterns instead of only the fundamental value of an asset. Later,
De Long et al. (1990, 2007) developed an ABM in which financial bubbles emerge from positive
feedback caused by noise traders. Extensive reviews of ABMs of financial markets can be found in
Samanidou et al. (2007), and more recently in Dieci and He (2018) and C. Hommes and LeBaron
(2018).

In the present paper, we build on the ABM consisting of fundamentalists and noise traders
developed by Kaizoji et al. (2015) and extended by Westphal and Sornette (2020b). It features
realistically looking bubbles and crashes, while reproducing the most important stylized facts of
financial markets. The set-up can incorporate the feedbacks of policy decisions on the market and
on the other traders. Thus, this market model is used to analyse the impact and consequences of
policy intervention on the overall market and to explore the existence of trade-off between economic
growth and financial stability objectives.

Previous research (Westphal & Sornette, 2020b) investigated the impact of a “dragon-rider”,
i.e. a third class of investors in addition to fundamentalists and noise traders, who exploit their
ability to diagnose financial bubbles from the endogenous price history to determine optimal entry
and exit trading times. The name “dragon-rider” is based on the empirical observation that crashes
that follow bubbles are exceptional events, outliers of strong significance (Johansen & Sornette,
2002, 2010), which are named “dragon-kings” to emphasise their special status and specific ampli-
fying mechanisms (Sornette, 2009; Sornette & Ouillon, 2012) (for a pedagogical introduction, see
https://en.wikipedia.org/wiki/Dragon King Theory). Using calibrations of the
price dynamics with models of bubbles viewed as transient super-exponential episodes, the dragon-
riders obtain a diagnostic of the presence or absence of a bubble and use this information to “ride”
the ascending price bubble that they exit when they assess that the burst is close.

Here, we consider the different situation where yet another class of investors are introduced
in addition to fundamentalists and noise traders, the “dragon-slayers”. As the name implies, the
dragon-slayers are taken to represent policy makers whose goal is to prevent the development of
bubbles, and thus avert the ensuing crashes. While dragon-riders strive to maximize their risk-
adjusted return by exploiting financial bubbles, dragon-slayers aim at reducing or even suppressing
bubbles and their subsequent damaging crashes. Their metric of success is not necessarily a risk-
adjusted return but how much they calm the markets and prevent the big swings of bubbles and
crashes. The analysis followed by our dragon-slayers to decide how to intervene can be decomposed
into three components: an estimation of the long-term growth rate of the asset, a diagnostic of a
growing bubble, and the anticipation of the crash. The later two are quantified by a crash probability
that is estimated via a logistic function whose argument is a measure of the realised excess return
over the expected return of the asset. Equipped with their diagnostic, the dragon-slayers invest to
increase their allocation to the stock market when they detect a small incipient positive bubble so
as to pile up assets that they are then able to sell countercyclically when they diagnose too much
exuberance. They follow the opposite strategy for negative bubbles (see e.g. (Sornette & Cauwels,
2015a) for a definition). We investigate the intended and possible unintended consequences of these
interventions and quantify the trade-off between financial stability and economic growth.

We find that the policy maker succeeds in preventing bubbles and crashes in our ABM. In sim-
ulations without bubbles, the policy maker behaves similarly to the fundamentalists and his impact
is negligible, following the principle of “Primum non nocere”. In simulations where bubbles form
spontaneously as a result of the noise traders’s strategies, the policy maker’s intervention reduces
the average drawdown by a factor of two when his market impact becomes significant. We find that
the policy maker intervention improves all analysed metrics of market returns, including volatility,
skewness, kurtosis and VaR, making the market less turbulent and more stable. The combination of
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fewer bubbles and crashes, lower market risks and the stability of the long-term growth rate make
the policy maker intervention to improve the performance of all investors as measured by their risk-
adjusted return, increasing the Sharpe ratios from approximately 0.3 to 0.5 for noise traders, from
0.6 to 0.8 for fundamentalists as the market impact of the policy maker increases to the level of the
fundamentalists. We also test the sensitivity of these results to variations of the key parameters of
the strategy of the policy maker and find very robust outcomes. In particular, the conclusions are
unchanged even under very large miscalibrated long-term expected returns of the risky asset.

In the financial literature, the dragon-slayers’ interventions are called open market interventions
and have become one of the favoured tools of central banks, completing more standard monetary
policies via interest rate guidance. Open market operations usually involve buying or selling gov-
ernment bonds in the open markets. Market intervention in the form of stock purchases is a more
recent phenomenon, which seems to develop in importance as the severity of economic and market
stresses has been mounting. Stock purchases have been documented as a policy measure to end a
crash and help the economy to recover, for example in Hong Kong in 1998 and in China in 2015
(Su et al., 2002; Huang et al., 2019). In Hong Kong, the government purchased stocks that are
constituants of the Hang Seng Index to restore investors’ confidence. The total investment of HK
$118 billion (or US $15 billion) in the 33 constituent stocks of the Hang Seng made the govern-
ment one of the largest shareholders, owning between 2.49% and 12.28% of the outstanding shares
of the individual companies. The purchases reversed the trend of declining stock prices, and the
higher stock prices persisted even after the intervention period ended (Su et al., 2002). After the
crash in the Chinese stock market in mid-June 2015, the government directly and indirectly pur-
chased stocks of more than 1000 firms between July and September. These purchases increased
stock demand, reduced default probabilities, and increased liquidity. This increased the value of a
subsample of the firms by about RMB 206 billion (Huang et al., 2019). Between 2008 and 2011,
the Swiss franc appreciated from 1.6 CHF/EUR to less than 1.1 CHF/EUR. As a response to this
massive “over-valuation” and in order to maintain price stability, the Swiss National Bank (SNB)
has been intervening in the foreign exchange market, building reserve assets becoming larger than
Switzerland’s GDP in 2016. As a consequence of its interventions, the SNB became a large public
investor globally: in its latest 13F SEC filing for Q2 2020, the Swiss National Bank has disclosed
2,437 total holdings and a US stock portfolio valuation of about 118 billion USD. Following the
burst of Japan’s asset price bubble in 1990, the Bank of Japan has been taking an ever expanding
role in its fight against deflation. After having exhausted the orthodox policy arsenal, the Bank of
Japan started buying equity ETFs in 2010. By April 2019, it has become a top ten shareholder of
more than 50% of publicly traded companies. As a reaction of the March 2020 market crash, on
March 16, Governor Haruhiko Kuroda announced that the central bank would double the pace of
its equity purchases to $113 billion per year.

The paper is structured as follows. Section 2 presents the ABM consisting of fundamentalists
and noise traders, which is used to test the policy interventions, and describes how the strategy of the
dragon-slayer (policy maker) is constructed. Section 3 describes the influence of the dragon-slayer
on the price dynamics and analyses the consequences on price peaks and drawdowns. In section 4,
the impact of the dragon-slayer’s intervention on the risk-adjusted return of the traders is analysed
together with the quantification of the fraction of wealth accumulated by the dragon-slayer. The
observed improvement on market risk properties resulting from the dragon-slayer’s intervention is
appraised with respect to parameter miscalibration risks. This is done by varying the parameters
controlling the strategy of the dragon-slayer. Section 4 concludes.

3.2 The market model

The market in the ABM consists of two types of assets: a risky asset, which is a dividend paying
stock, and a risk-free asset, which pays a constant return in each time-step and represents a risk-free
government bond or a bank account. These assets are traded by three types of investors, funda-
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mentalists (f), noise traders (n), and a dragon-slayer (d). Fundamentalists are rational risk-averse
investors who invest by maximizing their expected utility under a constant relative risk aversion
(CRRA) utility function in each time-step. The noise traders invest based on the price momentum
and social imitation. The dragon-slayer trades with the objective to prevent bubbles and crashes
in the price of the risky asset. The set-up of the model follows the ABM developed by Kaizoji et
al. (2015) and modified by Westphal and Sornette (2020b) to introduce dragon-riders as mentioned
in the introduction. The present version of the model replaces the dragon-riders of Westphal and
Sornette (2020b) by dragon-slayers.

3.2.1 Market set-up

The traders decide in each time-step how to allocate their wealth between the two assets. The risk-
free asset has perfect elastic supply and pays a constant return rf . In contrast, the price Pt of the
risky asset is defined endogenously by demand and supply. The asset pays a dividend dt in each
time-step. The dividend process is a discrete stochastic growth process following Westphal and
Sornette (2020b). It is defined as

dt = dt−1

(
1 + rdt

)
, (3.1)

where the growth rate rdt is a Gaussian process with mean value rd > 0 and variance σ2
d,

rdt = rd + σdut, (3.2)

with ut
iid∼ N (0, 1).

The difference between the return of the risky asset and the risk-free asset is called excess return.
It is defined as the sum of the capital return rt = Pt

Pt−1
− 1, where Pt is the price of the risky asset

at time t, and of the return from the dividend dt of the risky asset minus the risk-free rate rf :

rexcess,t = rt +
dt−1 · (1 + rdt )

Pt−1
− rf . (3.3)

3.2.2 Fundamentalist strategy

At each time-step, fundamentalists invest a fraction xft of their wealth in the risky asset and the
remaining fraction into the risk-free asset, such that they maximize their expected utility with a
constant relative risk aversion (CRRA) utility function over one-period. In other words, they are
myopic investors who update at each time step their investment decision based on the new infor-
mation on the risky asset price and its dividend that is obtained at the end of each period. The
one-period optimisation is chosen because it quite realistically captures the bounded rationality of
real human investors and it allows us to keep the mathematical formulation simple. In that, we
follow the tradition of previous investigations, such as Chiarella et al. (2006), C. H. Hommes and
Wagener (2009), Kaizoji et al. (2015), and Westphal and Sornette (2020b). Moreover, in the ab-
sence of transaction cost (and other limitations on trading), a greedy strategy that only considers
one period at a time is optimal, since performance for the current period does not depend on previ-
ous holdings (Boyd et al., 2016). Since most of the efforts in developing a good trading algorithm
goes into forming good forecasts of the expected return (J. Y. Campbell et al., 1998; Grinold &
Kahn, 2000), and given the large noise and difficulties inherent in the one-period return prediction,
a multi-period approach to forecast returns would be difficult to justify at the concrete operational
level.

Each fundamentalist is equipped with the same information and utility function. Therefore,
each fundamentalist decides on the same optimal allocation of their wealth. Thus, the fundamen-
talists’ investment can be considered at the aggregate level as the optimization problem of one
representative agent who invests a fraction xft of the cumulative wealth W f

t in the risky asset.
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The CRRA utility function with risk aversion parameter γ is defined as (Ljungqvist & Sargent,
2018):

U(W ) =

{
log(W ) for γ = 1
W 1−γ

1−γ for γ 6= 1
(3.4)

In each time-step, the fundamentalists solve the maximization problem

max
xft

Et−1

[
U(W f

t )
]
. (3.5)

The wealth W f
t evolves as a function of xft . This evolution consists of the wealth W f

t−1 · x
f
t−1

invested in the risky asset, which enjoys the return rt on the risky asset and the dividend payment
dt per share, plus the wealth W f

t−1 · (1 − x
f
t−1) invested in the risk-free asset paying an interest at

the risk-free interest rate rf :

W f
t = W f

t−1

(
1 + xft−1 ·

(
rt +

dt
Pt−1

)
+ (1− xft−1) · rf

)
= W f

t−1 ·
(

1 + xft−1 · rexcess,t + rf

)
, (3.6)

where rexcess,t is defined by expression (3.3). In first order approximation and assuming dt �
Pt (Kaizoji et al., 2015), the resulting fraction of wealth invested in the risky asset with CRRA
coefficient γ is given by

xft−1 =
1

γ

Et−1[rexcess,t]

V art−1[rexcess,t]
=
Efrt + dt−1

Pt−1
(1 + rd)− rf

γ(σ2 +
d2t−1·σ2

r

P 2
t−1

)
≈
Efrt + dt−1

Pt−1
(1 + rd)− rf
γσ2

(3.7)

where Efrt is the fundamentalists’ expectation of the return of the risky asset and σ2 is its expected
variance. Thus, the first order approximation reduces the CRRA optimisation to a mean-variance

optimisation. Denoting the number of shares invested in the risky asset by nft :=
xftW

f
t

Pt
, the excess

demand of the fundamentalists for the risky asset is described by the following equation:

∆Dt−1→t :=nft Pt − n
f
t−1Pt

=xftW
f
t − x

f
t−1W

f
t−1

Pt
Pt−1

(3.8)

=W f
t−1

(
xft

[
xft−1

(
rt +

dt
Pt−1

− rf
)

+ rf + 1

]
− xft−1

Pt
Pt−1

)
together with (3.7).

3.2.3 Noise trader strategy

The noise traders’ investment strategy is based on the analysis of the assets historical price returns
and on the opinion of other noise traders. Analogous to Kaizoji et al. (2015) and Westphal and
Sornette (2020b), each individual noise trader is either invested in the risky asset or in the risk-free
asset and does not diversify their portfolio. In each time-step, the noise traders decide indepen-
dently and probabilistically to keep their current position or switch their strategy to the other asset.
The switching probability is influenced by the opinion of the other noise traders and the price mo-
mentum. The price momentum Ht is defined as the exponential moving average of the return of the
risky asset

Ht = θHt−1 + (1− θ)rt, (3.9)
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where 0 ≤ θ ≤ 1 controls the time-span ∼ 1/(1− θ) of the noise traders’ memory.
The number of noise traders invested in the risky asset is denoted as N+

t , the number of noise
traders invested in the risk-free asset is N−t , and the total number of noise traders is Nn = N+

t +
N−t . This total number of noise traders is kept constant during the simulations. The opinion index
st describes the collective opinion towards the risky asset compared to the risk-free asset in each
time-step. It is defined as

st =
N+
t −N

−
t

Nn
∈ [−1, 1]. (3.10)

The probability at time-step t for a noise trader who is invested in the risky asset to switch his
investment position to the risk-free asset is denoted as p+

t . Respectively, the switching probability
of a trader, who is invested in the risk-free asset, is denoted as p−t . These probabilities are given by

p±t =
p

2
(1∓ κt(st +Ht)) , (3.11)

where the constant p control the average holding time of each asset type.
The time-dependent parameter κt determines the strength of social imitation and momentum

following, which are assumed here to be controlled by the same parameter. Financial markets
are characterised by periods of exuberance alternating with periods of pessimistic mood (Sornette,
2003; R. J. Shiller, 2006). We propose to account for the existence of different regimes and for
the random switches between them by allowing the noise traders to shift between periods when
they have a large tendency to herd and when they have more heterogenous opinions. Thus, their
susceptibility to herding is regime dependent. This incorporates the influence of exogenous factors
such as economic and geopolitical regimes in the model. We account for these characteristics
by allowing the coupling strength κt to be time-dependent according to a discretized Ornstein-
Uhlenbeck process

κt = κt−1 + ηκ(µκ − κt−1) + σκvt, (3.12)

where ηκ is the strength of mean reversion that controls the persistence time ∼ 1/ηκ of deviations

from the mean µκ, driven by fluctuations with standard deviation σκ with vt
iid∼ N (0, 1). The

expected value of the Ornstein-Uhlenbeck process κt starting at an initial value κ0 is

E[κt] = κ0 · exp(−ηκ · t) + µκ(1− exp(−ηκ · t)). (3.13)

Thus, the estimated time to revert from a value κ0 > κc to a value κc > µκ is

∆T =
1

η
log

(
κ0 − µκ
κc − µκ

)
. (3.14)

Aggregating the independent investment decisions over all noise traders amounts to considering
an equivalent representative noise trader who decides on the fraction xnt of his wealth invested in
the risky asset. The risky fraction is then given by

xnt =
N+
t

Nn
∈ [0, 1]. (3.15)

The fraction of wealth invested in the risky asset then evolves as

xnt =
1

Nn

N+
t−1∑
k=1

(
1− ξk(p+

t−1)
)

+

N−t−1∑
l=1

ξl(p
−
t−1)

 , (3.16)

where ξ(p) are Bernoulli random numbers. The drawing of a Bernoulli random number corresponds
to the decision of each individual noise trader to switch to the other asset or to stay invested as in
the previous time-step.
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The corresponding aggregated wealth equation has the same structure as (3.6):

Wn
t = Wn

t−1 ·
(

1 + xnt−1 ·
(
rt +

dt
Pt−1

)
+ (1− xnt−1) · rf

)
. (3.17)

Combining the previous equations, the resulting aggregated excess demand from the noise traders
for the risky asset is described by the following equation:

∆Dn
t−1→t = Wn

t−1

(
xnt

[
xnt−1

(
rt +

dt
Pt−1

− rf
)

+ rf + 1

]
− xnt−1

Pt
Pt−1

)
(3.18)

together with equations (3.16) and (3.11).

3.2.4 Dragon-slayer strategy

The dragon-slayer’s objective is to prevent bubbles and crashes by predicting them and trading the
risky asset. He builds an expectation of the future return based on his diagnostic of the bubble,
his anticipation of the drawdown that is expected to result from the burst of the bubble and his
expectation of the long-term growth rate. Using this expected return, he maximizes his expected
utility similarly to the fundamentalists. First, he calculates the excess return momentum yt above
the long-term return r̄ in units of daily return as an exponential moving average with memory
parameter a:

yt = a · yt−1 + (1− a) · (rt−1 − r̄). (3.19)

Note that yt is knowable by the dragon-slayer at time t − 1 when rt−1 is observed. The index t of
yt is used to indicate that the excess return momentum yt is used by the dragon-slayer to decide on
his allocation on the risky asset over the period from t− 1 to t.

Using yt, the dragon-slayer estimates the probability that the overpricing will result in a crash
according to the logistic function:

λt = 1/(1 + e−(|yt|−ly)/s) (3.20)

The threshold ly describes the level of overpricing that the dragon-slayer defines as excessive and
s quantifies the confidence of the dragon-slayer in the existence of overpricing. The dragon-slayer
invests in the risky asset when he detects a small deviation of the return from the long-term growth
rate in order to construct an inventory that he will be able to draw from later to fight a possible future
market exuberance. Then, when this deviation between the current growth rate and the long-term
growth rate exceeds the dragon-slayer’s tolerance level, he starts to sell the risky asset, that he has
accumulated earlier, to fight against future price increase.

The dragon-slayer’s main objective is to prevent bubbles and crashes. However, as a policy
maker, he is also obligated not to squander the wealth (or money creation power) he is entrusted
with and to invest it in a way that ensures a reasonable amount of risk-adjusted return. Therefore,
the dragon-slayer’s strategy is embedded in the same framework as the fundamentalist strategy,
maximizing the expected utility with the same risk-aversion parameter γ. The only difference
between pure fundamentalists and dragon-slayers lies in the way they form their expectation of the
future return. The inclusion of bubble and crash forecasts in the expected return of the risky asset by
the dragon-slayer implicitly results in the desired counter-cyclical investment strategy, as we shall
see. Moreover, this formulation ensures that the strategy of the dragon-slayer converges towards
that of the fundamentalists in the absence of bubbles.

At time t− 1, the dragon-slayer forms an expectation of the risky asset return according to the
following expression

Edrt =

(I)︷ ︸︸ ︷
(1− λt) · wy · yt−

(II)︷ ︸︸ ︷
λt · sign(yt) · wy · ly +

(III)︷︸︸︷
r̄ (3.21)
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with wy being the weight that the dragon-slayer gives to his bubble diagnostic. This expected return
Edrt is time-dependent and is performed over a time horizon proportional to 1/(1− a) as seen from
expression (3.19).

Term (I) in (3.21) corresponds to the diagnostic by the dragon-slayer of the degree with which
the risky asset can deliver a return above the long term value. This occurs when the excess return
momentum yt becomes positive but not too large so that the crash probability λt remains small.
This corresponds to −ly ≤ yt ≤ ly.

Term (II) captures the impact on the expected return Edrt stemming from the anticipation of the
drawdown. This part is proportional to the threshold ly that is tolerated in the price momentum,
which is also the expected amplitude of the drawdown. Furthermore, sign(yt) incorporates the
direction of the bubble. Term (II) is significant when the estimated probability λt that the bubble is
going to crash is close to 1, which corresponds to |yt| > ly.

Term (III) is the long-term growth rate of the risky asset, which is equal to the fundamentalists’
expectation of the future return and is equal to the dividend growth rate rd (Westphal & Sornette,
2020b). This term is not influenced by the bubble diagnostic of the dragon-slayer. When the excess
return momentum yt → 0, Edrt −→ r̄, which means that the investment allocation of the dragon-
slayer converges towards that of the fundamentalists.

After building his expectation of the return of the risky asset according to (3.21) at time t−1, the
dragon-slayer chooses to allocate the fraction xdt−1 of his wealth to the risky asset, which is given by
expression (3.22). This fraction xdt−1 holds from t−1 to t, at which time the dragon-slayer observes
rt and recalculates the new value of the excess return momentum yt+1 cascading into a new value
Edrt+1

and thus of his allocation xdt , and so on. To determine xdt−1, the dragon-slayer uses the same
maximisation process as the fundamentalist, using a CRRA utility with a risk aversion level γ. The
difference with eq. (3.7) is the use of Edrt rather than r̄ = rd for the one-period expected return of
the risky asset. This yields

xdt−1 =
Edrt + dt−1

Pt−1
(1 + rd)− rf
γσ2

(3.22)

The dragon-slayer decides on a level ly of mispricing that seems unreasonable (or unsustainable)
to him. This means that, whenever this level is exceeded, the dragon-slayer thinks the asset is in a
bubble and is going to crash soon. For any 0 < yt < ly, the dragon-slayer expects the asset to grow
further and his estimation of the expected return of the risky asset for the near future is larger than
rd. However, when yt > ly, he expects a crash, which leads to his reduced expected return below
rd as a result of the drawdown anticipated to burst the bubble. For a negative bubble corresponding
to an underpricing of the risky asset, the above reasoning applies ceteris paribus by changing yt into
|yt|.

Figure 3.1 shows the risky fraction of the dragon-slayer given by (3.22) with (3.21) as a function
of the excess return momentum yt. If the dragon-slayer does not detect any overpricing (or under-
pricing) (yt = 0), the expected return is equal to that of the fundamentalists. The future expected
return increases with yt as the dragon-slayer expects the bubble to grow further, until yt becomes
too large and he expects a crash.

Analogously to the fundamentalists, the dragon-slayer’s excess demand for the risky asset is

∆Dt−1→t = W d
t−1

(
xdt

[
xdt−1

(
rt +

dt
Pt−1

− rf
)

+ rf + 1

]
− xft−1

Pt
Pt−1

)
(3.23)

with eq. (3.22).
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Figure 3.1: The dragon-slayer’s risky fraction (3.22) as a function of the excess return momentum
yt. The parameters are wy = 0.035, ly = 0.008, r̄ = 0.00016. Three values of s are shown,
where s defined in expression (3.20) quantifies the confidence of the dragon-slayer in the existence
of overpricing. Positive (resp. negative) values of yt correspond to positive (resp. negative) bubble
regimes, namely overpricing (resp. underpricing) of the risky asset.

3.2.5 Market clearing and price equation

As presented for the fundamentalists, noise traders and dragon-slayer above, each trader decides on
his excess demand for the next time-step according to eq. (3.8), (3.18), and (3.23) respectively. The
price is obtained from the market clearing condition, which balances demand and supply according
to Walras’ theory of general equilibrium (Walras, 1954):

0 = ∆Dd
t−1→t + ∆Dn

t−1→t + ∆Df
t−1→t . (3.24)

This yields a quadratic equation of the price at the next time-step, which has a unique positive so-
lution giving the price Pt. The full equations and resulting price equation can be found in appendix
3.6.1.

3.3 Impact of the dragon-slayer on the price dynamics

3.3.1 General conditions of the simulations

The market parameters that are used in all simulations are listed in table 3.2. They are chosen such
that each time-step corresponds to approximately one trading day.

We investigate two classes of markets:

• markets with bubbles obtained with time varying social imitation strength κ following an
Ornstein-Uhlenbeck (OU) process (3.12) shown in figure 3.2;

• markets without bubbles obtained for constant κ shown in figure 3.3.
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These figures plot the time evolution of realisations of the price path Pt, the risky fractions xit
invested by the three trader types, the excess return momentum yt, and the wealth of the three trader
types. The price trajectory Pt exhibits bubbles and crashes in the simulation with OU κ. The noise
traders’ risky fraction and wealth increases during the bubble regimes, but crashes together with the
price. The fundamentalists’ risky fraction fluctuates less than the other traders’ risky fraction and
they decrease their exposure to the risky asset during the bubble regime by investing proportionally
to the dividend-price ratio. Therefore, their wealth is smaller than the noise traders’ wealth during
bubbles, but exceeds their wealth in the long-term. In the absence of bubbles, the dragon-slayer’s
risky fraction is the same as that of the fundamentalists. However, during bubbles, the excess
return yt increases and the dragon-slayer strategy deviates from the fundamentalist strategy. His
risky fraction increases until yt exceeds the threshold ly, which triggers the dragon-slayer to sell
the risky asset. In the simulations with constant κ, which represents markets without bubbles, the
dragon-slayer strategy fluctuates around the fundamentalists’ strategy.

The Ising-like structure of the noise traders’ decision making (Kaizoji et al., 2015; Westphal &
Sornette, 2020b) allows for in a phase transition between a disordered and an ordered regime. In the
disordered regime, the noise traders’ opinions are heterogeneous, in the ordered regime the noise
traders polarize, which leads to an increased demand for one of the two assets. This is reflected
in the price time-series as a positive or negative bubble. In the simulations with constant κ, we
choose its value in the subcritical regime, at 0.98% of the critical value κc. In simulations with
OU κ, the parameter has the same mean value 0.98κc, but fluctuates around it according to a mean
reverting OU process. Thus, there are transient regimes in which κ is larger than the critical value.
This describes regimes where the noise traders tend to polarize their decisions, as a result of the
spontaneous collective organisation of individuals who interact repeatedly and sufficiently strongly.

3.3.2 Dragon-slayers with negligible market impact

In our ex-post analysis, we are interested in characterising how well does the dragon-slayer diagnose
bubbles and predict crashes. As a preliminary analysis, we need to identify the price peaks, which
can be considered to be the target proxies of the dragon-slayers. We thus define that a price peak
occurs at time scale k at time-step ti if

Pti ≥ Ptj ∀tj ∈ [ti − k, ti + k], (3.25)

where Pt is the price at time t and k is the minimum distance between two peaks. Thus, a peak
occurs at a given time if the price at this time is larger than the price at the k previous and consecutive
times. In this analysis, the minimum distance between two peaks is chosen to be k = 250 trading
days, which corresponds to approximately one calendar year.

Figure 3.4 shows how the dragon-slayer’s bubble diagnostics correlate with the price trajectory,
its peaks and subsequent drawdowns. Figure 3.4 shows a simulated price path and its major peaks
and the crash probability λ(yt) estimated by the dragon-slayer according to expression (3.20). The
black dotted lines and black triangles characterise the occurence times and price heights of the peaks
identified ex post for comparison.

In this example, among the 7 peaks diagnosed according to (3.25), 5 are correctly predicted
(true positives) by the condition that λt exhibits a well-defined peak, while only 3 are correctly
predicted if the condition is more stringent, for instance that λt should be larger than 0.2. Two
peaks, at t ≈ 1000 and t ≈ 4000, are not detected by the dragon-slayers (false negatives), because
they occur rather close to previous peaks and are relatively smaller than their close predecessors.

It is possible optimise the prediction performance in terms of sensitivity and specificity, for
instance, by varying the parameters a, ly, s, wy involved in the definition of the dragon-slayer strat-
egy. We refrain from such optimisation in order to focus on the robustness of our conclusions. We
examine below how the properties of the price dynamics of the risky asset and the wealth dynamics
of the three trader types change upon varying the model and strategy parameters.
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3.3.3 Dragon-slayers with significant market impact

We analyse the impact of the dragon-slayer on the price time-series of the risky asset by increasing
his initial wealth from 0% to 50% of the total initial wealth of the three trader types. The ABM is
simulated with 15 different initial fractions of the total wealth allocated to the dragon-slayer (0%,
1%, 2%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 48%, 49%, 50%). The initial wealth
of the noise traders is kept constant, the initial wealth of the fundamentalists decreases by the same
amount that the initial wealth of the dragon-slayer increases. This ensures that the impact on the
price is due to the increase of the dragon-slayer’s wealth and not due to the decrease of the noise
traders presence in the market. Each scenario is simulated for the same 1000 random seeds and
the same set of parameters. If not denoted otherwise, the dragon-slayer parameters are a = 0.98,
ly = 0.008, r̄ = 0.00016 and s = 0.0005. The total simulation duration is T = 25000.

First, the impact of the dragon-slayer’s wealth is shown qualitatively by comparing the price
paths with different fractions of the dragon-slayer’s wealth in Figure 3.5. Then, Figure 3.6 shows
the impact of the dragon-slayer’s wealth on the number and amplitudes of the peaks and drawdowns
in the price of the risky asset, Table 3.1 quantifies the impact of the dragon-slayer’s wealth on the
long-term growth of the market, while Figure 3.7 illustrates the impact of the dragon-slayer’s wealth
on the return distribution of the risky asset.

Figure 3.5 shows sections of a price path and the corresponding fractions invested by the three
trader types for OU κ (3.12), the corresponding figure with the same random seed is shown for con-
stant κ in Appendix 3.10. In this example, the price of the risky asset exhibits a large bubble around
t = 1250 in the simulation where the dragon-slayer impact is negligible. This peak disappears in
the simulations performed under the same conditions, except for the initial wealth fraction of the
dragon-slayer being 20% or larger. In the cases with 10% and 30%, the main bubble is slightly de-
creased in amplitude while some secondary peaks appear in the case of 30%. In the 40% and 50%
cases, the price trajectory becomes very similar to those obtained with constant κ. In the price path
with 20%, all bubbles are eliminated. This shows that the effect of the dragon-slayer impact is not
deterministically monotonous as a function of the dragon-slayer wealth fraction and needs to be de-
fined probabilistically as it depends on the specific random realisation of the prices process created
by the noise traders. We thus need to perform detailed statistical analysis over many realisations to
obtain meaningful conclusions. This analysis is developed below.

In the right panels in figure 3.5, the risky fraction of the dragon-slayer is more volatile for small
initial wealth fractions. However, as his initial wealth increases, his strategy becomes more similar
to the fundamentalist strategy and the risky fraction fluctuates closely around the fundamentalists
risky fraction. By investing proportionally to the dividend-price ratio, the fundamentalist strategy
has a stabilizing effect on the market. Despite the absence of bubbles, the noise trader risky fraction
fluctuates a lot. This is different from the simulations with constant κ, where the noise trader risky
fraction remains between 0.3 and 0.7 most of the time. The fundamentalists’ risky fraction is not
affected significantly by the change of initial wealth of the dragon-slayer. In the simulations with
constant κ, the impact of increasing the initial wealth of the dragon-slayer is much smaller. The
price path and risky fractions seem similar to the reference simulation without the dragon-slayer in
all six scenarios.

With the ex post identification of peaks given in eq. (3.25), figure 3.6 presents a quantitative de-
scription of the dragon-slayer’s impact on bubbles and crashes in terms of two metrics: the number
of price peaks and the average amplitude of the peak-to-valley drawdown (referred to as the aver-
age peak size). The valley following a peak occurs at the time when the price takes its minimum
value between two consecutive peaks. The corresponding size of a drawdown dti is defined as the
difference between the log-price at the time of the peak (ti) and the log-price at the time of the
consecutive valley

dti = log(Ptpeak=ti)− log(Ptvalley). (3.26)

Figure 3.6 shows the average number of peaks calculated over 1000 simulations with 1000 different
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random number seeds as a function of the initial dragon-slayer wealth fraction. The number of
peaks is calculated over 12500 time-steps, which corresponds to approximately 50 years, and for
a minimum distance k = 250 between price peaks (see definition (3.25)). The figure shows that
for, OU κ, the average number of peaks does decrease by 5.7% when increasing the dragon-slayer’s
wealth fraction from 0% to 50%. In contrast, for constant κ, the average number of peaks remains
approximately constant. This result is not necessarily bad news as it is not surprising that peaks
subsist in random price trajectories and we should not expect a strong effect for this metric. In
contrast, the average peak size is significantly reduced by the dragon-slayer, almost by a factor
2. For OU κ, it decreases from 57% in absence of dragon-slayer to 33% when the dragon-slayer
completely replaces all fundamentalists. Thus, we can conclude that the dragon-slayer has a very
strong impact in essentially eliminating all bubbles in the dynamics of the risky asset. Figures
3.11 and 3.12 show that the dragon-slayer with a shorter memory length (a = 0.95) as defined in
expression (3.19) prevents even more bubbles and reduces further the size of the drawdowns more
efficiently than the dragon-slayer with slower reactions characterised by a = 0.99.

dragon-slayer Growth-rate Growth-rate
fraction OU κ Constant κ
0% 3.87%± 0.45% 3.89%± 0.26%
5% 3.95%± 0.38% 3.89%± 0.26%
10% 3.94%± 0.35% 3.89%± 0.26%
20% 3.93%± 0.34% 3.91%± 0.26%
30% 3.97%± 0.31% 3.91%± 0.26%
40% 3.98%± 0.30% 3.91%± 0.26%
50% 3.98%± 0.29% 3.90%± 0.26%

Table 3.1: Annualized growth rate of the price of the risky asset estimated from t = 5000 to
t = 25000 and averaged over 1000 simulations with different random seed for each initial wealth
fraction of the dragon-slayer. The dragon-slayer parameters are a = 0.98, wy = 0.035, ly = 0.004,
r̄ = 0.00016, and s = 0.0005. The theoretical value of the growth rate of the price of the risky
asset is 4%.

While the dragon-slayer prevents bubbles and crashes, one could worry that this would come
at the cost of impacting the long-term average return of the risky asset. By presenting the average
return and its standard deviation calculated over 1000 simulations with different random seeds,
Table 3.1 shows that this is not the case. Each value is the annualized growth-rate ra between
t = 5000 and t = 25000 calculated as

ra =
250

25000− 5000
log

(
P25000

P5000

)
. (3.27)

The first 5000 time-steps are removed to avoid the influence of transients at the beginning of the
simulations. The simulations have been performed with rd = 0.00016 per time step (day), which
corresponds to an annualised growth rate of dividends of 4%. Thus, theoretically, the long-term
growth rate of the risky asset should also be equal to 4% (Westphal & Sornette, 2020b). For all
scenarios with different dragon-slayer fractions, we find that the empirical mean value of the return
of the risky asset is less than one standard deviation away from the theoretical value. Thus, one can
conclude that the dragon-slayer does not change the long-term growth rate of the risky asset.

Figure 3.7 shows with box plots how the distribution of returns of the risky asset is influenced
by the dragon-slayer fraction for OU κ. Figure 3.7 shows the median, quartiles and range of the
variance, skew, excess kurtosis and VaR1% calculated over 1000 simulations with different random
seeds. As observed in the analysis above, the impact on simulations with constant κ is very small,
the corresponding figure can be found in Appendix 3.13. For OU κ, the first panel shows that the

53



Chapter 3. How market intervention can prevent bubbles and crashes

median of the variance of the return decreases from 1.47 · 10−4 to 0.56 · 10−4 (almost a factor
3) in the presence of the dragon-slayer. Already a fraction of 5% of initial wealth owned by the
dragon-slayer decreases the variance by 28%. The skewness of the return is pushed closer to zero
as the impact of the dragon-slayer increases. Without the dragon-slayer, the median skewness of the
return is -0.081 while, with 50% dragon-slayer, the skewness is -0.037. The median excess kurtosis
decreases by 71.1% from 1.50 to 0.43 when the dragon-slayer’s wealth fraction increases from 0
to 50%. The median of the absolute value of the 1%-VaR decreases from 0.0294 to 0.0180 for the
same change of the dragon-slayer’s wealth fraction. The interquartile ranges of all four measures
also decrease with the increase of the dragon-slayer’s wealth fraction in the market. In particular,
the decrease of the variance and of the absolute value of the 1%-VaR demonstrate clearly that the
dragon-slayer stabilizes the market. A final noteworthy observation is that the beneficial impact
of the dragon-slayer is stronger for small wealth fractions and its marginal effect decreases as its
wealth fraction increases. Thus, already a small initial dragon-slayer’s wealth fraction can stabilize
the market.
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Figure 3.2: Example of a simulated price path Pt with OU κ. The upper panel shows the price Pt
in linear-log scale, the second panel shows the risky fraction invested by the three trader types, the
third panel shows the excess return momentum yt, with the dotted lines indicating the threshold
±ly. The last panel shows the wealth of the three trader types over time. The dragon-slayer has
no market impact in the simulation, i.e. these simulations are performed in the case where their
wealth is negligible compared to that of the other traders. The parameters used in the strategy of
the dragon-slayer are a = 0.98, ly = 0.008, wy = 0.035, and s = 0.0005. The 5000 time steps that
are shown correspond to approximately 20 years, given than one time-step corresponds to 1 trading
day.
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Figure 3.3: Same as figure 3.2, but with constant κ = 0.98κc.
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Figure 3.4: Simulated price path (logarithmic scale on the left axis) with the posterior identified
peaks indicated as triangles (see main text for their definition) and the crash probability λt estimated
by the dragon-slayer and given by expression (3.20) on the right axis. The parameters are a = 0.95,
ly = 0.004, r̄ = 0.00016, and s = 0.0005.
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Figure 3.5: Section of a price path (left) and the corresponding fractions invested in the risky asset
for the three trader types (right). Each row of panels shows a different dragon-slayer wealth fraction
in the market, from 0% (top) to 50% (bottom). The social coupling strength κ follows the OU
process (3.12). The dragon-slayer parameters are a = 0.98, wy = 0.035, ly = 0.008, r̄ = 0.00016,
and s = 0.0005.
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Figure 3.6: Quantification of the impact of the dragon-slayer strategy on the price of the risky
asset. The average number of peaks and the average peak-to-valley-drawdown are shown as a
function of the initial dragon-slayer wealth fraction in the risky asset. The average quantities are
calculated over 1000 simulations with 1000 different random seeds. The error bars represent one
standard deviation. Each quantity is calculated over price realisations occurring between t = 5000
and t = 17500, which corresponds to approximately 50 years. The dragon-slayer parameters are
a = 0.98, wy = 0.035, ly = 0.008, r̄ = 0.00016, and s = 0.0005.
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Figure 3.7: Boxplots of the dragon-slayer’s impact on the statistics of returns of the risky asset
for OU κ, calculated over 1000 simulations with different random seeds for each dragon-slayer
fraction. The red lines show the median, the bottom and top of the boxes correspond to the 25%
and 75% quartiles and the whiskers indicate the largest and lowest observed value within 1.5 times
the interquartile range. The four panels show the variance, skewness, excess kurtosis, and 1%- VaR
of the return of the risky asset. For each simulation, the parameters are calculated over the time
interval from t = 5000 to t = 17500. The dragon-slayer parameters are a = 0.98, wy = 0.035,
ly = 0.008, r̄ = 0.00016, and s = 0.0005.
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3.4 Impact of the dragon-slayer on the traders’ performance

The previous section showed how the dragon-slayer removes bubbles from the risky asset price and
decreases its volatility without influencing the long-term growth rate of the asset. Here, we focus
on how his presence affects the performance of the three types of traders present in the market.

Figure 3.8 shows the average Sharpe ratio of the three trader types, calculated over 1000 sim-
ulations with different random seeds, as a function of the initial dragon-slayer’s wealth fraction in
the market. The corresponding figures for a = 0.95 and a = 0.99 can be found in Appendix 3.14
and 3.15. The Sharpe ratio is calculated over the interval t ∈ [5000, 17500], which corresponds to
50 years. Figure 3.8 shows that, for OU κ for which bubbles emerge naturally from the strategies
of the noise traders, the risk-adjusted return of all three trader types increases with increasing ini-
tial wealth fraction of the dragon-slayer. The increases of the Sharpe ratios are economically very
significant, from approximately 0.3 to 0.5 for noise traders, from 0.6 to 0.8 for fundamentalists and
from 0.8 to close to 1 for the dragon-slayer, as his wealth fraction increases from 0 to 50%. In
contrast, for constant κ, the Sharpe ratios remains approximately constant. This is consistent with
the observation from figure 3.3, that shows very little impact of the dragon-slayer on the price dy-
namics of the risky asset for constant κ for which bubbles do not appear. This comes from the fact
that, in absence of bubbles, the dragon-slayer’s strategy reduces to that of the fundamentalists. This
leads to conclude that, in absence of bubbles, the performance of traders remains unchanged when
increasing the wealth of the dragon-slayer while it improves significantly when the dragon-slayer
removes bubbles that were otherwise present.
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Figure 3.8: Average Sharpe ratios of the three trader types as a function of the dragon-slayer’s
wealth fraction for OU κ (solid lines) and constant κ (dashed lines) calculated over 1000 realisations
with different random seeds and over approximately 12500 time steps. The error bars represent
one standard deviation. The dragon-slayer parameters are a = 0.98, wy = 0.035, ly = 0.008,
r̄ = 0.00016, and s = 0.0005.

While figure 3.8 provides an in-depth analysis of one specific dragon-slayer strategy corre-
sponding to a specific set of parameters, figure 3.9 analyses the sensitivity of the traders’ Sharpe
ratio to four parameters of the dragon-slayer strategy and to the average growth rate r̄ of the risky
asset. The three top panels (resp. bottom panel) show the average annualized Sharpe ratios of the
traders with OU (solid line) and constant κ (dotted line) as a function of one of the dragon-slayer
strategy parameters (resp. r̄).
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Each scenario is simulated 1000 times with different random seeds, the filled circles indicate
the mean value of the Sharpe ratios, each calculated from t = 5000 to t = 17500. The error bars
represent one standard deviation. The dragon-slayer is endowed with 10% of the initial wealth and
this is fixed over all simulations when varying the parameters. The Sharpe ratios with 0% dragon-
slayer are included as reference values. The first panel shows the sensitivity of the Sharpe ratios to
variations in the dragon-slayer’s memory parameter a used in the estimation by the dragon-slayer of
the excess return momentum yt (3.19). We scan the values a ∈ [0.9, 0.95, 0.98, 0.99, 0.996]. This
means the memory length 1/(1−a) is varied between 10 trading days and 250 trading days. For OU
κ, the fundamentalists and noise traders performances are better in the presence of a dragon-slayer
with small a, corresponding to a short memory. The performance is found to be best for a = 0.95,
which corresponds to a memory of 20 trading days. For all analysed values of a, the presence of
the dragon-slayer is always beneficial. The noise traders also enjoy improved performance when
the dragon-slayer is present for all a except for a = 0.996 (250 days), where their Sharpe ratio
is slightly below the reference value. As expected, the impact of the dragon-slayer is small for
constant κ, as the Sharpe ratios are very close to the reference Sharpe ratios for all analyzed memory
parameters. For constant κ, for both fundamentalists and noise traders, the Sharpe ratio in the
presence of the dragon-slayer is slightly above the reference value for a ≤ 0.95 and slightly below
it for a > 0.95. In general, the dragon-slayer with a shorter memory length can react faster to
changes in the momentum, performs better and is more beneficial to the market.

The second panel of figure 3.9 shows the Sharpe ratios of the three trader types with 10%
dragon-slayer as a function of the overpricing threshold ly ∈ [0.00016, 0.0008, 0.0032, 0.008, 0.016].
With the long-term daily growth rate rd = 0.00016 (4% annualised), this is equivalent to an excess
return threshold between rd and 100 · rd. We find that the risk-adjusted return of the three traders
is larger with the larger thresholds ly. With small ly’s, the dragon-slayer tends to overreact to small
deviations of the risky asset price from the long term trend controlled by the average return rd.
Thus, for ly = 0.0032, the dragon-slayer performs even worse than the other traders. The funda-
mentalists average Sharpe ratio slightly decreases to 0.5342 when a dragon-slayer with ly = 0.0032
is present in the market. The threshold ly = 0.0032 means that the dragon-slayer considers a persis-
tent excess return of 0.32% per day to be unsustainable. While this is 50 times the long-term growth
rate, it is significantly smaller than the expected daily volatility which is approximately 1%. Thus,
the dragon-slayer jumps between buying and selling the risky asset that are illustrated in Figure
3.1 outside of the dotted lines representing the threshold levels. These rapid portfolio reallocations
result in a destabilisation of the market. For thresholds that are larger than 0.5%, the presence of the
dragon-slayer improves the performance of the other traders. The conclusion, which should not be
a surprise, is that the dragon-slayer should err on the side of discriminating diagnostics of bubbles
to avoid over-reacting on too many false positives.

The weight wy enters in the determination of the expectation Edrt of the return by the dragon-
slayer in expression (3.21). A dragon-slayer who chooseswy = 0 is identical to the fundamentalists,
while the larger wy is, the more he is concerned with bubbles. Thus, wy controls the amplitude of
the expectation of the dragon-slayer concerning the market return, as shown in figure 3.1. The third
panel of figure 3.9 shows that, for OU κ, a medium weight value between wy = 0.05 and 0.1 is
optimal for all traders. For all analyzed values of wy, the traders obtain better Sharpe ratios than
without the dragon-slayer. However, for constant κ, large weights (wy > 0.05) slightly decrease the
risk-adjusted return of the traders compared to the reference value, because the dragon-slayer uses
less the stabilizing fundamentalist strategy of investing proportionally to the dividend-price ratio.

The parameter s enters in the definition of the probability λt that the overpricing will result in a
crash according to expression (3.20). It controls the reaction to changes in yt near the threshold ly.
As illustrated in figure 3.1, a large s results in a slower and smoother reaction, while a small s results
in an immediate readjustment of the portfolio when the threshold ly is reached. The fourth panel
in figure 3.9 shows that the Sharpe ratios of all traders are monotonously decreasing as a function
of s. Thus, smaller s values are beneficial for all trader types, implying that the traders benefit
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from a dragon-slayer who reacts determinedly to the detected overpricing. The Sharpe ratios for
constant κ are not influenced by a change of s, because yt fluctuates around 0 and only the reaction
to larger deviations is influenced by s. For OU κ, the traders benefit from the presence of the
dragon-slayer for all analyzed values of s. The Sharpe ratios are on average significantly larger
than in the reference simulations without the dragon-slayer.

The last bottom panel of figure 3.9 shows the average Sharpe ratios of all traders as a function of
the expected long-term growth rate r̄ of the risky asset. In the default parameter setting, the dragon-
slayer uses the true long-term growth rate of the market, which is equal to the dividend growth rate
rd. This is identical to the fundamentalist strategy. However, in real markets, it is difficult to have
an accurate estimation of the long-term growth rate of an asset. The figure shows that, even with
a wrong estimation of the true growth rate, the traders benefit from the presence of the dragon-
slayer. When the dragon-slayer underestimate the growth-rate and use 0.00008 (2% annualised) or
0.00012 (3% annualised) instead of the correct 0.00016 (4% annualised), the traders perform even
better than with the true growth rate. When choosing a smaller r̄, the overpricing yt increases by
the difference between r̄ and the real growth rate, because it is defined as the exponential moving
average of the difference between observed return and expected long-term return. However, with
an inaccurate estimation of r̄, the reaction to bubbles is not symmetric anymore. Thus, choosing a
smaller r̄ has the same impact as shifting the threshold ly to the left. In any case, the most important
conclusion in practice from the simulations presented in this bottom panel is that the conclusion
about the beneficial influence of the dragon-slayer is robust with respect to an error of more than
50% (2% to 6% around the true 4%) in the estimation of the long-term growth rate. This is not
surprising given that transient bubbles are characterised by much larger short-term growth rates,
which make their detection robust with respect to a miscalibration of the long-term growth rate.

In summary, figure 3.9 shows that the dragon-slayer strategy improves significantly the perfor-
mance of the other traders over a wide range of strategy parameters. Shorter memory lengths, larger
overpricing thresholds, a medium weight on the bubble and crash diagnostic, and a small expected
long-term growth rate bring exceptional benefit to the three trader types.
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Figure 3.9: Dependence of the Sharpe ratios of the three types of traders as a function of three
parameters of the dragon-slayer’s strategy and of the average growth rate r̄ of the risky asset. The
filled circles represent the mean values over 1000 simulations with different random seeds, with
the error bars representing one standard deviation. The dragon-slayer is given an initial wealth
corresponding to 10% of the total initial wealth over all traders. The solid lines correspond to OU
κ, and the dotted lines correspond to constant κ. The reference Sharpe ratios averaged over 1000
simulations in the absence of the dragon-slayer are shown in blue-grey for the fundamentalists
and green-grey for the noise traders. In each panel, a single parameter is varied, while the other
parameters have the default values from the parameter set a = 0.98, wy = 0.035, ly = 0.008,
r̄ = 0.00016 (corresponding to an annualised return of 4%), and s = 0.0005. The Sharpe ratios
are annualized values calculated over the time interval from t = 5000 to t = 17500. In the bottom
panel, the range of variation of r̄ from 0.00008 to 0.00024 (daily) corresponds to a range from 2%
to 6% annualised.
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3.5 Conclusion

We have presented an extension of a previously studied agent-based model (ABM) originally de-
veloped by Kaizoji et al. (2015), which is characterised by the spontaneous formation of bubbles
and crashes emerging from the interaction between fundamentalists and noise traders. We have
introduced a third type of traders, called dragon-slayer, who represents a policy maker who has the
objective of preventing bubbles and crashes by trading between a risky and a risk-free asset. The
dragon-slayer diagnoses burgeoning bubbles by forming an expectation of the future return of the
risky asset in the form of an exponential moving average of the excess return over the long-term
return. When this excess return momentum exceeds a threshold that the dragon-slayer estimates
as an unsustainable level, he forms a prediction that a crash may happen with a probability given
by a logistic function of the excess return momentum. Equipped with this bubble diagnostic, the
dragon-slayer constructs his trading strategy similarly to the fundamentalists but with the advan-
tage of using a real-time dynamical estimation of a transient expected excess return. Specifically,
the policy maker invests in the risky asset when he detects a small deviation of the return from the
long-term growth rate in order to construct an inventory that he draws upon later to fight future
market exuberance. Then, when this deviation between the current growth rate and the long-term
growth rate exceeds the policy maker’s tolerance level, he starts to sell the risky asset that he has
accumulated earlier, in a countercyclical prevent future price increase.

We have found that the dragon-slayer succeeds in preventing bubbles and crashes in the ABM.
In simulations without bubbles, the dragon-slayer behaves similarly to the fundamentalists and his
impact is negligible. This is a good property in the sense of that any cure should first follow
the principle of “Primum non nocere” (first, do no harm). In simulations where bubbles form
spontaneously as a result of the noise traders’s strategies, the average drawdown is decreased from
57% in absence of the dragon-slayer to 33% when the dragon-slayer is initialized with 50% of the
total wealth so that his market impact is very significant. Concomitantly, the average number of
peaks is reduced by 5.7%. The stabilising effect of the intervening policy maker is also reflected in
the return dynamics of the risky asset. An initial wealth fraction of just 5% for the dragon-slayer
reduces the variance of the return by 28%. A larger wealth fraction reduces the variance up to 62%.
Furthermore, the skewness of the returns is pushed closer to zero, and the dragon-slayer decreases
significantly the excess kurtosis and the absolute value of the 1%-VaR.

While removing bubbles, we find that the dragon-slayer strategy does not affect the long-term
growth rate of the risky asset. For all analyzed scenarios, the growth rate is found close to the
theoretical value, which is determined by the growth rate of the dividend process underlying the
risky asset. This combination of fewer bubbles and crashes, and the stability of the long-term
growth rate, leads the dragon-slayer to provide improved performance for the other traders in terms
of their risk-adjusted return. Thus, the dragon-slayer increases the wealth of all market participants.

Finally, we have tested the sensitivity of these results to variations of the key parameters of
the strategy of the dragon-slayer. We investigated the average Sharpe ratios of fundamentalists
and noise traders with a dragon-slayer possessing a wealth amounting to 10% of the total wealth.
We found that the dragon-slayer strategy is beneficial to the other traders over a wide range of
parameters of his strategy. In general, a faster reacting dragon-slayer with a shorter memory length
provides the largest benefit to the other traders. Furthermore, the traders perform better in the
presence of the dragon-slayer in the whole analysed range of expected growth rates of the risky
asset. Thus, a dragon-slayer who uses a miscalibrated market growth rate that is even larger than
50% off the true growth rate still provides significant increase of the investment performance for all
traders.

In sum, our simulations have shown that direct intervention in the stock market to prevent
bubbles and drawdowns can be very effective and beneficial for all involved traders.
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3.6 Appendix

3.6.1 The Equilibrium Market Price

The market price is defined following Walras’ theory of general equilibrium (Walras, 1954). This
means that each trader formulates their excess demand for the next time step and the price is calcu-
lated as the equilibrium in which supply equals demand. Thus, the market clearing condition states
an equilibrium between supply and demand. This is formulated as:

0 = ∆Dd
t−1→t + ∆Dn

t−1→t + ∆Df
t−1→t (3.28)

Next, the explicit formulations of the demand from (3.23), (3.8), and (3.18) presented in the main
text are inserted into the market clearing condition (3.28):
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Finally, the equation is multiplied by Pt, the return rt := Pt
Pt−1

− 1 is inserted and formula is
organised in powers of Pt to obtain
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Next, we define some auxiliary variables to simplify the equation.
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(3.29)
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The resulting equation is given in the following:
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Equation (3.33) is a quadratic equation of the form atP
2
t + btPt + ct = 0 where
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The equation has the following two solutions:

P 1,2
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−bt ±
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b2t − 4atct

2at
(3.38)

The positive solution of this equation is the price in the next time-step.
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3.6.2 Parameter values

Parameter name Explanation Value
Market
T Simulation length 25000
seed Random seed 6 digit number
Assets
rf Risk free interest rate 0.01/250=0.00004
d0 Initial dividend 0.04/250=0.00016
rd Expected growth rate of the dividend 0.04/250=0.00016
σd Expected standard deviation of the dividend growth rate 0.000016
P0 Initial price of the risky asset 1
σr Expected standard deviation of the risky asset price

√
0.10/250 = 0.02

N r Number of risky assets 1
Noise traders
xno Initial fraction of the risky asset held by the noise traders 0.3
Wn

0 Initial wealth of the noise traders 109

p Switching probability 0.2
θ Memory parameter 0.95
H0 Initial momentum 0.00016
Nn Number of noise traders 1000
Fundamentalists
xf0 Initial fraction of the risky asset held by the fundamentalists 0.3
W f

0 Initial wealth of the fundamentalists 0 to 109

ERt Expected return of the risky asset = rd 0.00016
Social coupling strength
κ0 Initial social coupling strength 0.98
µκ Mean of the OU social coupling strength 0.98
ηκ Mean reversion of the OU social coupling strength 0.11
σκ Standard deviation of the OU social coupling strength 0.01

Table 3.2: Parameters characterising the model financial markets and used in the simulations. Div-
idends, interest rates and standard deviations are given as daily values (per time-step).
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3.6.3 Additional figures

Figure 3.10: Section of a price path (left) and the corresponding fractions invested in the risky asset
for the three trader types (right). Each row of panels shows a different dragon-slayer wealth fraction
in the market, from 0% (top) to 50% (bottom). The social coupling strength κ is constant. The
dragon-slayer parameters are a = 0.98, wy = 0.035, ly = 0.008, r̄ = 0.00016, and s = 0.0005.
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Figure 3.11: The impact of the dragon-slayer strategy on the market. The average number of peaks
and the average peak-to-valley-drawdown is shown as a function of the initial dragon-slayer wealth
fraction in the market. The averages are calculated over 1000 simulations with different random
seeds. The error bars indicate one standard deviation. Each value is calculated between t = 5000
and t = 17500, which corresponds to approximately 50 years. The dragon-slayer parameters are
a = 0.95, wy = 0.035, ly = 0.008, r̄ = 0.00016, and s = 0.0005.
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Figure 3.12: The impact of the dragon-slayer strategy on the market. The average number of peaks
and the average peak-to-valley-drawdown is shown as a function of the initial dragon-slayer wealth
fraction in the market. The averages are calculated over 1000 simulations with different random
seeds. The error bars indicate one standard deviation. Each value is calculated between t = 5000
and t = 17500, which corresponds to approximately 50 years. The dragon-slayer parameters are
a = 0.99, wy = 0.035, ly = 0.004, r̄ = 0.00016, and s = 0.0005.
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Figure 3.13: Boxplots of the dragon-slayer’s impact on the return for constant κ, calculated over
1000 simulations with different random seeds for each dragon-slayer fraction. The red lines show
the median, the box contains half of the values and the whiskers indicate the largest and lowest
observed value within 1.5 times the interquartile range. The four panels show the variance, the
skewness, the excess kurtosis, and the 1%- VaR of the return. For each simulation, the parameters
are calculated over the time-interval t = 5000 to = 17500, the dragon-slayer parameters are a =
0.98, wy = 0.035, ly = 0.008, r̄ = 0.00016, and s = 0.0005.
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Figure 3.14: Average Sharpe ratios of the three trader types with an increasing fraction of the
dragon-slayer’s total wealth for OU κ (solid lines) and constant κ (dashed lines) calculated over
1000 realisations with different random seeds and over approximately 12500 time steps. The error
bars indicate one standard deviation. The dragon-slayer parameters are a = 0.95, wy = 0.035,
ly = 0.008, r̄ = 0.00016, and s = 0.0005.
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Figure 3.15: Average Sharpe ratios of the three trader types with an increasing fraction of the
dragon-slayer’s total wealth for OU κ (solid lines) and constant κ (dashed lines) calculated over
1000 realisations with different random seeds and over approximately 12500 time steps. The error
bars indicate one standard deviation. The dragon-slayer parameters are a = 0.99, wy = 0.035,
ly = 0.008, r̄ = 0.00016, and s = 0.0005.
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Chapter 4

Agent-based models of multi-asset
markets

4.1 Agent-based model generating stylized facts of Fixed Income Mar-
kets

This section develops an agent-based model (ABM) of a financial market with multiple assets be-
longing either to the Fixed Income or to the Equity asset class. The aim is to reproduce main
stylized facts of Fixed Income markets with regards to the emerging dynamics of the yield curves.
The research is rooted in the market model proposed by Kaizoji et al. (2015) introducing two types
of traders: the rational and risk-averse investor referred to as the fundamentalist and the noise
traders who invest under the influence of social imitation and price momentum. The investors in-
volved in the present market model diversify their investments between a preferred stock equivalent
to a perpetual bond and multiple bonds of selected maturities. Among these assets, a zero-coupon
bond provides a constant rate of return, while the remaining coupon-paying bonds’ prices are de-
termined at each time step by establishing the equilibrium between the investors’ demands and sup-
plies. As a result, the market model provides an evolving yield curve impacted by the investments of
the aggregated traders of each type. It is moreover capable to reproduce transient turbulent periods
in the prices’ time series and a humped term structure of volatility. Ultimately, the comparison of
the emerging dynamics arising from different processes governing the evolution of the risk-free rate
with those of the historical U.S. treasury market enables to distinguish the capacity of the setup
implementing Vasicek’s model of interest rates to reproduce the surface of autocorrelation of the
individual bonds’ yields’ volatilities.

Based on the working paper Kopp, A., Westphal, R., & Sornette, D. (2020). Agent-based model
generating stylized facts of Fixed Income Markets.

4.1.1 Introduction

This composition aims at unveiling the potential residing in the creation of agent-based models
(ABMs) considering the Fixed Income asset class and involving fundamentalist and chartist traders.
To the best of the authors’ knowledge, it provides the first ABM of a financial market containing
multiple assets belonging to the latter asset class. The inclination for this type of computational
economic model lies in its capacity to produce transient market phenomena originated by the inter-
actions of the individual agents. As pointed out in Sornette (2014), these models are freed from any
stationary condition and can reproduce such periods of market unrest instigated by prices’ rallies
and their subsequent corrections. Examples of ABMs developed to describe stock markets can be
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found in Kyle (1985), Black (1986) and Samanidou et al. (2007), among others.
The literature provides a significant amount of equilibrium models implemented to analyze the

dynamics of yield curves and to forecast their evolution through the behaviour of the corresponding
forward rates. Such analyses are e.g. found in Nelson and Siegel (1987), Cox et al. (2005), Vasicek
(1977), Duffie and Kan (1996), Dai and Singleton (2002), Duffee (2002) and Heath et al. (1992).
These models have however proven very limited with regards to their capacity to account for out-of
equilibrium conditions corresponding to the ever-recurring extreme transient phenomena observed
in reality. Moreover, they omit to consider the relationship between the Equity and Fixed Income
asset classes. The market model developed below aims at laying a foundation towards the closure
of this gap. The motivation is to propose a new approach to generate stylized facts of Fixed Income
markets by a market model including the two previously mentioned asset classes. As exposed in
Kaldor (1961), stylized facts represent “broad tendencies” understood as empirical truth observed
in the markets of concern. The focus is therefore drawn on the emerging dynamics associated with
the yields to maturity and evolving as a function of the traders’ investments updated at each time
step in conformity with the rules developed in this novel type of ABM.

The present research is based on the market model proposed by Kaizoji et al. (2015) introducing
two types of agents investing in two assets. The risk-free asset provides a constant rate of return and
the remaining asset’s price is subjected to the market clearing process applied at each time step. It
also pays dividends determined from a stochastic multiplicative process. The agents are either fun-
damentalists or noise traders and do not change their strategies in time. This is in contrast to earlier
ABMs in which the traders switch between predictor (Arthur et al., 1996) or between chartist and
fundamentalist strategies (De Grauwe et al., 1995; Brock & Hommes, 1997). The fundamentalist
strategy is as described in Brock and Hommes (1998) and in Chiarella et al. (2009). The chartist
strategy is derived from the developments of Lux and Marchesi (1999). In a nutshell, their invest-
ments are updated probabilistically at each time step under the influence of selected parameters.
These parameters account for the influence of other agents and for the momenta in the prices’ time
series. On the aggregated level, the model proved to be capable to reproduce fat-tail distributions of
returns, slow decaying autocorrelations of absolute returns, fast decaying autocorrelations of signed
returns, volatility clustering and faster-than-exponentially growing prices. A contribution propos-
ing a market model characterized by the interactions of fundamentalist and chartist traders through
the price-vector of dimension higher than two worth mentioning is provided in Xu et al. (2014).
Other models introducing heterogeneous agents investing in a multi-asset market can be found in
Borghesi and Bouchaud (2007), Chiarella et al. (2007), Fedyk et al. (2013) and Eckrot et al. (2016).

The following section 4.1.2 introduces the market framework involving the two asset classes
of concern. The two aggregated trader types investing in this framework are then presented. The
market clearing process is subsequently defined before the unveiling of the parameter selection and
of the initialization of the variables achieved in section 4.1.3. The latter section is concluded with
the analyses of the time series generated in two characteristic simulations. The first is associated
with a quiet market unfolding and the other with a turbulent one. Section 4.1.4 discloses the analyses
comparing the dynamics emerging from the market model with those of the U.S. treasury market
realized between November 1993 and June 2020. The section starts with the implementation of
Vasicek’s model of interest rates in the model to account for varying risk-free rates. It continues
with the presentation of the term structures of volatility and surfaces of autocorrelations of the
yields to maturity associated with each model setup and with the U.S. treasury market. Section 4.2.5
concludes.

4.1.2 Model setup

The market model created contains a stock and multiple bonds of selected maturities. It proposes
endogenous price dynamics instigated by the traders’ investments. One of the bonds represents a
zero-coupon bond providing a constant add-on rate throughout the simulations. The agents belong
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either to a the fundamentalist or to the noise trader type. The fundamentalist formulates expecta-
tions of the future returns as well as of the risk associated with each asset. The fundamentalist’s
investments are ruled by the need to maximise a constant relative risk aversion (CRRA) expected
utility function. The noise traders’ investments are subjected to social imitation, adherence to mo-
mentum trading and to the influence of a discrete time-varying herding propensity parameter. Their
individual investments are updated probabilistically at each time step. Each trader type is repre-
sented by a unique agent expressing the aggregate excess demands for each asset at each time step.
The market clearing condition imposing the equilibrium between the supplies and demands for the
assets is finally at the origin of the endogenous evaluation of the asset prices.

The following developments start with the presentation of the market framework considering
the Fixed Income asset class. The assets’ and wealth dynamics are then exposed. The presentation
of both aggregated traders ensues, starting with the fundamentalist and the associated generalized
optimization problem. The threefold investment process governing the chartist’s investments is
subsequently defined before the presentation of the market clearing achieved by the Walrasian auc-
tioneer, as defined by the eponym author in Walras (1954). The latter process provides the system
of nonlinear equations ruling the updates of the asset prices at each time step. The selection of
the parameter values initializing the market model follows, before the presentation of the time se-
ries generated by a configuration of the market model considering six coupon paying bonds and a
unique preferred stock.

The Fixed Income market framework

The general notion of the passage of time is tackled through the following assumptions to ensure
an ordered unfolding of the market model. The aim is to constrain the model to involve traders
following only “aggressive” investment strategies. The selection of such traders is justified by
their catalyzing effect on the market through the permanent rebalancing of their portfolio. This is
in opposition with passive investors who “freeze” their investments to collect the regular coupon
payments and benefit from the yields offered by their securities. This strategy is known as ”riding
the yield curve”.

• Assumption 1: The times to maturity of the bonds evaluated at t are assumed to stay constant
in [t; t+ ∆t] for ∆t sufficiently small.

• Assumption 2: The investors are supposed to replicate at t the exact same portfolio con-
structed at t − 1 before updating their investments. As soon as ∆t is such that the earlier
approximation does not hold anymore, each aggregated trader sells the corresponding bonds
and buys new ones with the appropriate maturities. This replication has no impact on the
bonds’ prices as the sell orders of an agent replicating her portfolio are assumed to be com-
pensated by the buy orders of another agent doing the same process. The sole impact on
the prices hence results from the excess demands arising from the updated of the agents’
investments.

• Assumption 3: The auctions of the coupon paying bonds take place at each time step and are
ruled by the Walrasian market making process. They are not reopened, have no impact on the
coupon rates and do not distinguish between competitive and non-competitive bidders.

• Assumption 4: The coupon rates are defined by an exogenous stochastic process reflecting
the state of the economy. The dependency between the excess demands for the bonds and the
coupon rates is ensured by the traders’ investment processes.

• Assumption 5: The outstanding of coupon paying bonds remains constant in time.

Table 4.1 below presents the different types of assets involved in the market model and their
corresponding maturities. The preferred stock is granted an infinite maturity and is hence considered
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as a perpetual bond. The model involves M = 8 assets, the first one being the risk-free bond and
the last one the preferred stock.

Asset type Maturity (years) Identifier

Zero-coupon bond 1 A1

Coupon-paying bonds (k − 1)× 5 for k ∈ {2, ...,M − 1} Ak

Preferred stock / perpetual bond ∞ AM

Table 4.1: Asset types and maturities considered in the market model

The following developments introduce the yields to maturity (YTM) before the remaining pa-
rameters involved either in the traders’ investment processes or in the analyses of their aggregated
portfolio characteristics.

1. Yields to maturity. The market model is developed such that the bonds’ yields are derived
from the associated prices. In fact, the prices are updated at each time step through the
market making process, rendering the updates of the corresponding yields necessarily con-
tiguous. The YTMs are defined as internal rates of returns equalizing the present values of
the future cash flows (coupons and principal payments) with the bonds’ prices. They sat-
isfy Equation (4.88) presented in Appendix 4.1.6. Their approximations are exposed below
for each asset Ak with k ∈ {1, ...,M} and where the no-arbitrage prices, times to maturity,
principal and coupon payments are respectively represented by PVk, Nk, FVk and Ck:

YTMk ≈
Ck +

(
FVk−PVk

Nk

)
FVk+PVk

2

. (4.1)

As the time to maturity of AM tends to infinity, the associated yield YTMM is evaluated by:

YTMM ≈ lim
NM→∞

CM +
(

FVM−PVM
NM

)
FVM+PVM

2

=
CM

FVM+PVM
2

. (4.2)

The consideration of the preferred stock as a perpetual bond is further justified by considering
Equation (4.90) provided in Appendix 4.1.6, which emphasizes the fact that the price of the
associated zero-coupon bond vanishes as the time to maturity tends to infinity.

2. Implied spot rates. The implied spot rates (ISR) associated with each bond are introduced
successively and correspond to the holding period returns realized over the entire life of each
bond. They are particular forward rates covering the maturities of the bonds and thus provide
approximations of the yields to maturity with the advantage to allow to omit the consideration
of the rates at which the coupons are reinvested. These rates are evaluated in terms of the
corresponding discount factors, as presented in Appendix 4.1.6.

3. Yield durations and convexities. The market model considers both modified (ModDurkt )
and Macaulay (MacDurkt ) durations associated with each asset. The Macaulay duration is
defined as in Marrison (2002). Equations (4.100) to (4.102) of Appendix 4.1.6 provide the
approximations of these durations as well as of the corresponding convexities (Convkt ).

4. Portfolio yields, durations, convexities and dispersions. The aggregated portfolio statis-
tics are defined successively in Appendix 4.1.6, considering each portfolio as a unique entity
equivalent to a bigger bond paying bundles of cash flows at each time step. Two approaches
are applied to approximate the yields of the traders’ portfolio: the market-value-weighted
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(MV-weighted) and basis-point-value-weighted (BPV-weighted) approaches. The latter re-
places the traders’ wealth fractions by the proportion of each asset’s BPV to the sum of the
BPVs of the assets in which the portfolios are invested. The BPVs are expressed as the
change in market value of each asset originated by a variation of its yield by a basis point, i.e.
by 0.01%. The market-value-weighted average portfolio modified and Macaulay durations,
convexities and dispersions are further defined in the appendix of concern.

This concludes the presentation of the parameters shaping the Fixed Income framework. The
assets’ returns and updates of the traders’ wealth are presented hereafter.

Assets and wealth dynamics

The following developments present the returns associated with each type of assets, allowing to
derive the update of the traders’ wealth levels. A noteworthy mention is provided to tackle the
consideration of the accrued interests in the returns of the coupon-paying bonds of finite maturities.

• Assets’ returns:

– Risk-free asset. As in Kaizoji et al. (2015), the risk-free asset provides a constant rate
of return rf . A1 is further defined as a zero-coupon bond having a maturity of one year.
The “day-count” convention selected defines a year to correspond to 250 time steps.
The issuance price PV1 and face value FV1 of A1 are related by rf as follows:

FV1 = PV1(1 + 250× rf ). (4.3)

– Preferred stock. The preferred stock AM pays periodical dividends to its holders. Its
“one time step” return rMt consists of the sum of the price return PMt

PMt−1
− 1 with the

return provided by the dividend payment dMt :

rMt =
PMt + dMt
PMt−1

− 1 (4.4)

=
PMt + dMt−1(1 + rd + σdu

M
t )

PMt−1

, (4.5)

where rd is the long-term growth rate, σd the standard deviations of the multiplicative
process and uMt ∼ N (0, 1) an i.i.d. random variable.

– Coupon-paying bonds of finite maturities. Assuming the absence of taxation and the
simultaneous payments of the coupons and dividends, the returns realized on each bond
Ak for k ∈ {2, ...,M − 1} are expressed as the sum of the price and coupon returns as
follows:

rkt =
P kt + dkt
P kt−1

− 1. (4.6)

In particular, the coupon payment dkt inherently corresponds to the interest accrued between the
purchase of the bond Ak at t− 1 and its sale at t. This arises from the replication process exposed
earlier and requiring to buy another bond at t having the same maturity as the bond bought at t− 1.
The accrued interests are related to the annual coupon payments of Ckt through: dkt = Ckt ×dt/250,
where the time increment is set to dt = 1. The multiplicative process governing the determination
of the accrued coupon payments is further expressed as:

dkt = (1 + σkνkt )dkt−1, (4.7)

where σk and νkt respectively represent the standard deviation of the process and the associated
i.i.d. random variable ∼ N (0, 1).
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• Wealth dynamics:

The wealth dynamics are expressed in terms of the wealth fractions of the corresponding traders
and of the assets’ returns described above. Let W i

t represent the wealth level of trader i ∈ {f, c}
at time step t. Also, let the number of shares zi,kt of asset k held by the corresponding trader at
t be expressed in terms of the wealth fraction xi,kt : zi,kt = xi,kt W i

t /P
k
t . The wealth of the trader

allocated in this asset is updated as:

∆W i,k
t−1→t = xi,kt−1W

i
t−1

P kt
P kt−1

− xi,kt−1W
i
t−1. (4.8)

Summing over the 7 coupon- and dividend-paying assets, one obtains:

∆W i
t−1→t‖A2,...,AM = W i

t−1

8∑
k=2

xi,kt−1r
k
t . (4.9)

The following trivial conditions are moreover applied on the agents’ wealth fractions due to the
prevention of both borrowing and short selling:{

0 ≤ xi,kt ≤ 1 ∀t,

0 ≤
∑M

k=2 x
i,k
t ≤ 1 ∀t.

(4.10)

The fraction of wealth xi,rft invested in the risk-free asset is thus:

xi,rft = 1−
M∑
k=2

xi,kt . (4.11)

By summing the wealth increments given by Equation (4.9) with the one associated with the risk-
free asset, one can express the overall wealth dynamics between two consecutive time steps as:

∆W i
t−1→t = W i

t−1

[
M∑
k=2

xi,kt−1r
k
t + xi,rft−1rf

]
, (4.12)

which is equivalent to the formulation proposed hereafter, considering the expressions of the total
returns exposed earlier:

W i
t = W i

t−1

[
M∑
k=2

xi,kt−1

(
P kt + dkt
P kt−1

)
+

(
1−

M∑
k=2

xi,kt−1

)
(1 + rf )

]
, (4.13)

where the coupon and dividend payments associated with each asset Ak for k ∈ {2, ..., 8} are:

dkt =

{
(1 + σkνkt )dkt−1 for k = 2, ..., 7,

(1 + rd + σkνt)d
k
t−1 for k = 8.

(4.14)

This concludes the presentation of the wealth updates and leads to the introduction of the funda-
mentalist’s investment strategy.

Fundamentalist trader

The fundamentalist trader is defined in accordance with the descriptions provided in Chiarella et
al. (2009), Kaizoji et al. (2015) and Xu et al. (2014). The trader is granted a constant relative
risk-aversion (CRRA) utility function required to be maximized w.r.t. the wealth allocations. This
objective is represented by a generalized myopic mean-variance optimization problem expressed in
terms of the ex ante expectation of the utility function depending on the asset returns and wealth
allocations introduced previously. Accounting for Equation (4.13), the optimization problem pro-
posed in Kaizoji et al. (2015) is generalized to the multi-asset case hereafter.
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• Generalized optimization problem:

max
xft

Et
[
U(W f

t+1)
]
∀t ∈ [0, T ], (4.15)

where U(W ) ∈ R is the CRRA utility function and xft the vector containing the wealth fractions
associated with each asset at t.

The solution procedure is provided in Appendix 4.1.6 and consists in solving the Hamilton-
Jacobi-Bellman partial differential equation (PDE) associated with the generalized optimization
problem of concern. The equivalent formulation of the optimization problem as a stochastic opti-
mal control problem is proposed below. This is achieved by considering the expression of Equa-
tion (4.13) to define the wealth update in terms of a stochastic differential equation (SDE). To do so,
the individual returns rkt+1 of each asset Ak for k ∈ {2, ..., 8} are expressed as in Xu et al. (2014)

in terms of the expectations Et

[
rkt+1

]
formulated at t of the returns to be realized at t + 1, of the

standard deviations σkt and of the i.i.d. random variables ψkt such that ψkt ∼ N (0, 1):

rkt+1 = Et

[
rkt+1

]
+ σkt ψ

k
t . (4.16)

Considering Equations (4.13) and (4.16), the SDE accounting for the stochasticity of the wealth
level of the fundamentalist is hence expressed as:

dW f
t = W f

t−1

[(
1−

M−1∑
k=1

xf,kt−1

)
rf +

M−1∑
k=1

xf,kt−1Et−1

[
rkt
]]

+W f
t−1

M−1∑
k=1

xf,kt−1σ
k
t−1ψ

k
t−1,

(4.17)

which can be synthesized by the successive formulation proposed in Xu et al. (2014):

dW f
t = µt(W

f )dt+ σt(W
f )Ψt, (4.18)

where µt represents the drift coefficient, σt the standard deviation and Ψt ∼ N (0, 1) an i.i.d.
random variable. Considering the unit vector e ∈ RM−1 and the transpose operator (.)>, one can
further express µt(W f ) and σt(W ) in both scalar and vector notations:

µt(W
f ) = W f

t−1

[(
1−

∑M−1
k=1 xf,kt−1

)
rf +

∑M−1
k=1 xf,kt−1Et−1

[
rkt
]]

= W f
t−1

[(
1− xf

>
t−1e

)
rf + xf

>
t−1Et−1

[
rt
]]
,

(4.19)

σt(W
f ) =

{
W f
t−1

2
[∑M−1

k=1 xf,kt−1

2
σkt−1

2
+
∑M−1

k=1

∑M−1
l=1 xf,kt−1x

f,l
t−1σ

kl
t−1

]} 1
2

= W f
t−1x

f>
t−1σt−1,

(4.20)

where it is required to distinguish σt(W f ) from σt, the former accounting for the diffusion term
of Equation (4.18) and the latter representing the vector containing the standard deviations of the
individual assets’ returns. Combining Equations (4.18), (4.19) and (4.20), the SDE of concern is
given by:

dW f
t = W f

t−1

[(
1− xf

>
t−1e

)
rf + xf

>
t−1Et−1

[
rt
]]
dt+W f

t−1x
f>
t−1σt−1Ψt, (4.21)

where Ψt represents a one-dimensional Brownian motion and where the covariance matrix is ex-
pressed as Σ = σσT ∈ R(M−1)×(M−1). Letting µ ∈ RM−1 account for Et−1

[
rt
]
, one can finally

write:

dW f = W f
[
(1− x>e)rf + x>µ

]
dt+W fx>σΨ. (4.22)
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The cost functional subjected to the previous wealth dynamics is subsequently introduced as fol-
lows:

J (x) = E[U(W f )] ∈ R. (4.23)

The problem hence requires to find the optimal control x ∈ RM−1 maximizing the cost functional
subjected to the wealth defined by the stochastic system of Equation (4.22).

• Generalized stochastic optimal control problem:

J (x∗) = max
x:[0,T ]7→RM−1

J (x). (4.24)

The solution is given by the optimal state trajectory x∗ : [0, T ] 7→ RM−1. Introducing the risk
aversion parameter γ 6= 1 (γ > 0 always holds), the cost-to-go function is given bys:

J (x, t) = E

[
W f (t)1−γ

1− γ

]
. (4.25)

Consequently, the stochastic optimal control problem is expressed as follows, considering the
differential form of the standard Brownian motion Θ(t) ∈ R:

max
x:[0,T ]7→RM−1

E

[
W f (t)1−γ

1− γ

]
(4.26)

subjected to:

dW f = µ(W f )dt+ σ(W f )dΘ

W f (0) = W f
0 .

(4.27)

According to Appendix 4.1.6, the solution of the generalized stochastic optimal control problem
is:

xk
∗ =

1

γ

M−1∑
l=1

Σ−1
kl (µl − rf ) for k ∈ {2, ...,M}. (4.28)

The remaining unknowns consist of the covariance matrix and of the vector containing the
expectations of the future returns. The former matrix Σ = σσ> is defined as diagonal and the in-
dividual variances remain constant. One obtains the following notations introducing the Kronecker
delta δkl:{

Σkl = δklσkl
2,

Σ−1
kl = δkl

σkl2
.

(4.29)

The expectations of the future returns are further considering a constant and a variable term for
each of the yields to maturity and implied spot rates. This enables to account for the trader’s own
opinion about the returns provided by each bond (constant term) while still considering the reality
of the market (variable term). The constant terms consist of the initial values of the parameters. The
variable terms considered are those evaluated at t − 1 as a consequence of the replication process
explained in section 4.1.2. Therefore, for each bond Ak where k ∈ {2, ...,M − 1}, one expresses:

µkt = ω1
1

2

{[
(1 + YTMk

0)
1

250 − 1
]

+
[
(1 + ISRk0)

1
250 − 1

]}
+ ω2

[
(1 + YTMk

t−1)
1

250 − 1
]

+ ω3

[
(1 + ISRkt−1)

1
250 − 1

]
+
dkt
P kt

, (4.30)
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where ω1, ω2 and ω3 are the weights respectively associated with the initial values of the yields
to maturity and implied spot rates as well as with their evaluations at t − 1. As explained in
Appendix 4.1.6, the implied spot rates cannot be computed for the preferred stock. Moreover,
due to the particular identity of the asset, the varying term associated with the yield to maturity is
neglected. For k = M , one hence obtains:

µMt = (1 + YTMM
0 )

1
250 − 1 +

dMt (1 + rd)

PMt
. (4.31)

The wealth fractions of the fundamentalist trader are ultimately expressed as:

xf,kt =
1

γσ2
k

(µkt − rf ) for k ∈ {2, ..,M}, (4.32)

with the boundary condition given by
∑M

i=1 x
f,i
t = 1.

The subsequent developments introduce the investment process of the chartist trader taking the
other side of the trades.

Noise traders

As in Kaizoji et al. (2015), the individual chartist traders do not diversify their allocations but instead
select an individual asset in which they invest their entire wealth. Their investments are updated
probabilistically at each time step through an Ising-like set-up under the influence of the momentum
in the assets’ prices’ time series and the opinion of others. At the aggregated level, the representative
noise trader allocates her wealth proportionally to the number of individual traders invested in the
corresponding assets. This assumption is assumed not to affect the long-term dynamics of the
aggregated chartist’s wealth.

Figure 4.1: Representation of the market by the chartists: differentiation of the two pools of assets
and corresponding steps of the investment process. The arrows guide the transit of the agents’
wealth.

As shown in Figure 4.1, the noise trader identifies two mutually-exclusive pools of assets. The
first one contains all the bonds including the risk-free one and is identified as P . The second one
is solely constituted of the preferred stock AM . Built on this market representation, three distinct
steps are defined below to compose the investment process of the aggregated chartist. Figure 4.1
further illustrates which particular pool is concerned by each of these steps. The first one tackles
the rebalancing of the aggregated chartist’s portfolio between the two asset classes considered. The
second one concerns the update of the investments of the individual agents inside the bonds of
P . The third one finally reconciles the two previous updates simultaneously in order to derive the
wealth fractions of the aggregated trader.

Step 1: Aggregated chartist’s portfolio rebalancing between P and AM :
The first step of the investment process of the aggregated chartist deals with the update of the

allocations in either of the two groups of assets defined previously. It derives an estimate of the
amount of individual traders transiting between the two asset classes. Both social imitation and
adherence to a momentum-following strategy influence the outcome of the present step.
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The number of individual chartists invested in AM is NM and the number of remaining agents
is N1	M−1. The total fraction of wealth invested in AM at t is hence:

xct |AM =
NM
t

NM
t +N1	M−1

t

. (4.33)

Following the definition of Kaizoji et al. (2015), the associated opinion index sct is defined as:

s
step1
t =

NM
t −N1	M−1

t

NM
t +N1	M−1

t

= 2 xct |AM − 1 ∈ [−1, 1]. (4.34)

The parameter accounting for momentum is moreover defined as:

H
step1
t = HM

t −H1	M−1, (4.35)

introducing the momentum associated with the preferred stock:

HM
t = θHM

t−1 + (1− θ)
(
PMt
PMt−1

− 1

)
(4.36)

and the one related to P as:

H1	M−1
t = θH1	M−1

t−1 + (1− θ)
[
(1 + YTMM−1

t )
1

250 − (1 + YTM1
t )

1
250

]
. (4.37)

Equation (4.35) introduces the simple “rule of thumb” followed by the individual chartists to
compare the price returns of the isolated asset with the “term-spreads” provided by P . As shown in
Equation (4.37), this spread is defined as the difference between the yields to maturity of the bonds
situated at the extremities of the yield curve, fitted to the “one-time-step” returns of the preferred
stock. This spread moreover represents a shorthand evaluation of the steepness of the yield curve
giving insights about potential future returns obtainable in excess of those given by the risk-free
bond. Considering the fact that YTM1

t = cst., the higher the yields of the longer-term bond, the
more the aggregated chartist is influenced to allocate her wealth in the Fixed Income asset class.

As exposed in Kaizoji et al. (2015), the herding propensity κt is introduced in order to represent
the noise traders’ susceptibility to herding and their propensity to adhere to a momentum following
strategy. This parameter is either defined to be constant or to follow a stochastic mean-reverting
process and incorporates the alternating regimes of pessimistic mood and exuberance observed in
financial markets, as detailed in R. J. Shiller (2006) and in Sornette (2017).

By definition, the transition probabilities p+
t and p−t are associated with the following actions:

an individual noise trader holding the preferred stock AM at t shifts her investment to P with a
probability of p+

t and another noise trader invested in P at the same moment transits to AM with a
probability of p−t . These probabilities are consequently expressed as:

p±t (s
step1
t , H

step1
t ) =

1

2
p±
[
1∓ κt

(
s

step1
t +H

step1
t

)]
, (4.38)

where p+ = cst. and p− = cst. control the average holding time associated with each group of
assets.setting p− > p+ is further found to imply the fact that an up- or downward increment of
either of Hstep1

t or sstep1
t is not engendering the same reaction of the agents. This is translated by a

favour given to AM to the detriment of P .
Introducing the Bernoulli random variables ξk(p) taking the value of 1 with a probability of p

and 0 otherwise, one can express the subsequent master equations: NM
t =

∑NM
t−1

k=1 [1− ξk(p+
t−1)] +

∑N1	M−1
t−1

k=1 ξk(p
−
t−1),

N1	M−1
t =

∑N1	M−1
t−1

k=1 [1− ξk(p−t−1)] +
∑NM

t−1

k=1 ξk(p
+
t−1).

(4.39)
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The net amount of agents transiting between both pools of assets at t is finally estimated by the
absolute value of the variable ∆N+→−

t defined as:

∣∣∆N+→−
t

∣∣ =

∣∣∣∣∣∣∣
NM
t−1∑
k=1

ξk(p
+
t−1)−

N1	M−1
t−1∑
k=1

ξk(p
−
t−1)

∣∣∣∣∣∣∣ . (4.40)

Step 2: Aggregated chartist’s investments within P:
The second step of the allocation process tackles the allocations of the chartists inside P .

Their updates are achieved independently for each pair of neighbouring assets (Ai, Ai+1) and
(A1, AM−1). Again, both social imitation and adherence to a momentum-following strategy in-
fluence the outcome of these updates. The opinion index associated with the pair (Ai, Ai+1) is
defined below, fitting the variable to the momenta introduced subsequently and introducing N i

t as
the number of chartists invested in Ai at t:

s
step2
t

∣∣∣
i,i+1

=
1

2

N i+1
t −N i

t

N i+1
t +N i

t

. (4.41)

The momentum parameter associated with the same pair of assets is moreover expressed as:

H
step2
t

∣∣∣
i,i+1

= H i+1
t −H i

t , (4.42)

introducing the momentum parameters associated with each asset. These are further expressed in
terms of the sub-parameters accounting for the momenta observed in the yields and in the prices:

H i
t = αH

i,price
t + (1− α)H

i,yield
t , (4.43)

where α ∈ [0, 1]. In particular:

H
i,price
t =

 θH
i,price
t−1 + (1− θ)

(
P it

P iauction
− 1

)
for i = 2, ...,M − 1,

rf for i = 1.
(4.44)

H
i,yield
t = θH

i,yield
t−1 + (1− θ)

[
(1 + YTMi

t−1)
1

250 − (1 + YTMi
t)

1
250

]
, (4.45)

where the yields are fitted to the “one time step” periods over which the price returns are determined.
Equation (4.45) is moreover introducing the consideration of decreasing yields by the chartists.
This enforces the assessment of positive realized price returns and contrasts with the previous step
in which the agents valued higher yields implying higher potential price returns when looking at
the overall market. Once invested inside the Fixed Income asset class, these agents naturally favor
decreasing yields corresponding to positive realized price returns.

In accordance with the formulation of Equation (4.38), the transition probabilities associated
with each pair of consecutive assets are defined as:

pi,i+1
t

±
=
p±

2

[
1∓ κt

(
s

step2
t

∣∣∣
i,i+1

+ H
step2
t

∣∣∣
i,i+1

)]
, (4.46)

where pi,i+1
t

+
quantifies the probability to invest in Ai when starting from Ai+1. Accordingly,

pi,i+1
t

−
accounts for the probability to invest in Ai+1 when starting from Ai.

The amounts of agents transiting between two neighbouring assets in either direction are hence: ∆N i+1→i
t =

∑N i+1
t−1

k=1 ξk
(
pi,i+1
t−1

+)
,

∆N i→i+1
t =

∑N i
t−1

k=1 ξk
(
pi,i+1
t−1

−)
.

(4.47)

85



Chapter 4. Agent-based models of multi-asset markets

Ultimately, the net amount of agents leaving or entering each bond i is expressed as:

∆N
step2
t

∣∣∣
i

= ∆N i−1→i
t −∆N i→i−1

t + ∆N i+1→i
t −∆N i→i+1

t . (4.48)

Step 3: Execution of the update of the aggregated chartist’s investments:
The last step executes the update of the investments on the aggregated level. The following

opinion index is first introduced for each of the M − 1 bonds of fixed maturities:

s
step3
t

∣∣∣
i

=
(M − 1)N i

t −
∑M−1

k=1,k 6=iN
k
t

(M − 1)N i
t +

∑M−1
k=1,k 6=iN

k
t

. (4.49)

The performance indicators accounting for the popularity of each bond and for the trend observed
in their returns are defined as follows, considering the parametersH i

t introduced in Equation (4.43):

Perfit = s
step3
t

∣∣∣
i
+H i

t . (4.50)

Building on these parameters, the categorical probabilities are further defined below:

p
step3
t

∣∣∣
i

=


Perfit−Perfworst

t∑M−1
k=1 (Perfkt−Perfworst

t )
if ∆N+→−

t > 0,

Perfbest
t −Perfit∑M−1

k=1 (Perfbest
t −Perfkt )

if ∆N+→−
t < 0,

(4.51)

where Perfworst
t and Perfbest

t are respectively mini∈{1,...,M−1} Perfit and maxi∈{1,...,M−1} Perfit.
The weights ωit associated with each bond are finally defined as:

ωit =
N i
t p

step3
t

∣∣∣
i∑M−1

k=1 Nk
t p

step3
t

∣∣∣
k

. (4.52)

As a matter of fact, ωit corresponds to the share of the expected value of the Bernoulli trial associated
with Ai and endowed with a probability of success of pstep3

t

∣∣∣
i

over the sum of each of the M − 1

expectations. These weights are introduced to adjust the dispersion of the agents inside P as can be
inferred from the expression of Equation (4.53) presented below.

The number of agents transiting either to or from each bond of P is subsequently introduced
as ∆N

step3
t

∣∣∣
i
. By considering the result of the update achieved in the first step of the allocation

process, one can hence write:

∆N
step3
t

∣∣∣
i

=
⌊
ωit∆N

+→−
t

⌋
, (4.53)

where b.c represents the floor operator dropping the decimal part. Being granted this variable, one
can execute the update of the individual investments considering the outcome of the two previous
steps:

N i
t = N i

t−1 + ∆N
step2
t

∣∣∣
i
+ ∆N

step3
t

∣∣∣
i
≥ 0 ∀t. (4.54)

Accordingly, the updated number of agents invested in the preferred stock is given by:

NM
t = NM

t−1 −
M−1∑
k=1

∆N
step3
t

∣∣∣
i
. (4.55)

As a result, the updated share of wealth of the aggregated chartist trader invested in each asset
Ai for i ∈ {1, ...,M} is ultimately expressed as:

xct |i =
Nk
t∑M

k=1N
k
t

. (4.56)

This concludes the presentation of the aggregated noise trader and leads to the formulation of
the market making process.
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Market clearing process

The present section tackles the market clearing process executed at each time step by the Walrasian
auctioneer. First, the expressions of the excess demands formulated by both aggregated traders
are developed. The system of nonlinear equations resulting from the satisfaction of the Walrasian
equilibrium condition is provided subsequently.

First and foremost, the excess demand of the fundamentalist trader ∆Df,i
t−1→t associated with

each asset Ai for i ∈ {2, ...M} is expressed at each t as:

∆Df,i
t−1→t =W f

t−1

(
Ait +

Bi
t

P it

)[(
1−

M∑
k=2

xf,kt−1

)
(1 + rf )

+

M∑
k=2

xf,kt−1

(
P kt + dkt
P kt−1

)]
− xf,it−1W

f
t−1

P it
P it−1

, (4.57)

whereAit andBi
t are obtained from Equation (4.32) presenting the expression of the wealth fractions

associated with each asset:

Ait =
Ωi
t − rf
γΣii

, (4.58)

Bi
t =


dit
γΣii

for i = 2, ...,M − 1,

dMt (1+rd)
γΣMM

for i = M.

(4.59)

As a reminder and considering Equation (4.30), Ωi
t for i ∈ {2, ...M − 1} is further expressed as:

Ωi
t =ω1

1

2

{[
(1 + YTMi

0)
1

250 − 1
]

+
[
(1 + ISRi0)

1
250 − 1

]}
+ ω2

[
(1 + YTMi

t−1)
1

250 − 1
]

(4.60)

+ ω3

[
(1 + ISRit−1)

1
250 − 1

]
.

And for i = M , ΩM
t is:

ΩM
t = (1 + YTMM

0 )
1

250 − 1. (4.61)

On the other hand, the excess demand of the aggregated chartist trader associated with the same
asset is expressed as:

∆Dc,i
t−1→t = W c

t−1x
c,i
t

[(
1−

M∑
k=2

xc,kt−1

)
(1+rf )+

M∑
k=2

xc,kt−1

(
P kt + dkt
P kt−1

)]
−xc,it−1W

c
t−1

P it
P it−1

.(4.62)

As has been exposed in the second step of the allocation process of the chartist trader presented
in 4.1.2, the price returns of the individualized bonds are evaluated from the auction prices. These
being further set to P iauction = 1, the price return of each bond realized at t is hence P it /P

i
auction−1 =

P it − 1. AM being further exempted from any auction, its price returns are directly evaluated by
PMt /PMt−1. As a consequence, the following rule is applied in Equation (4.62):

P it−1 =

 1 for i ∈ {2, ...,M − 2},

P it−1 for i = M.
(4.63)

For all i ∈ {2, ...,M}, the Walrasian equilibrium condition is finally expressed as:

∆Df,i
t−1→t + ∆Dc,i

t−1→t = 0. (4.64)
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The system of nonlinear equations involving the unknown prices remaining to be evaluated at
each time step is finally obtained by inserting the expressions of Equations (4.57) and (4.62) in
the latter condition. The resulting system is presented below and the developments leading to this
formulation are provided in Appendix 4.1.6.

P it
2
(αii − βi) + P it (ζi + χii) +

M∑
k=2,k 6=i

P kt P
i
tαik +

M∑
k=2,k 6=i

P kt χik + λi = 0, (4.65)

where α ∈ R(M−1)×(M−1), β ∈ RM−1, ζ ∈ RM−1, χ ∈ R(M−1)×(M−1) and λ ∈ RM−1 are
defined as:

αij =
xf,jt−1W

f
t−1A

i
t+x

c,j
t−1W

c
t−1x

c,i
t−1

P jt−1

,

βi =
xf,it−1W

f
t−1+xc,it−1W

c
t−1

P it−1
,

ζi = W f
t−1A

i
t

(
1−

∑M
k=2 x

f,k
t−1

)
(1 + rf ) +W c

t−1x
c,i
t

(
1−

∑M
k=2 x

c,k
t−1

)
(1 + rf )

+
∑M

k=2

[
dkt
Pkt−1

(
xf,kt−1W

f
t−1A

i
t + xc,kt−1W

c
t−1x

c,i
t

)]
,

χij =
xf,jt−1B

i
t

P jt−1

,

λi = W f
t−1B

i
t

[(
1−

∑M
k=2 x

f,k
t−1

)
(1 + rf ) +

∑M
k=2 x

f,k
t−1

dkt
Pkt−1

]
.

(4.66)

Ultimately, this system ofM−1 equations can be synthesized hereafter by the functions f i(t) ∈
R:

f i(P 2
t , .., P

i
t , ..., P

M−1
t ) = 0 for i ∈ {2,M − 1}. (4.67)

An initial guess of the solution is provided by the previously realized prices (P 2
t−1, ..., P

i
t−1, ...P

M−1
t−1 )

and is further refined by the following process introducing P, the vector notation of the prices of
the coupon and dividend paying assets:

P→ P′ = P− J −1f(P), (4.68)

where J is the Jacobian matrix defined by Jij = ∂f i/∂P j . This concludes the presentation of the
market clearing process.

4.1.3 Model dynamics

This section starts by presenting the initialization of the parameters introduced above and is con-
cluded with the analyses of the emerging dynamics observed in typical simulations of the market
model.

The focus is first shed on the herding propensity parameter κt mentioned in 4.1.2. As explained
in Kaizoji et al. (2015), κt represents the strength of the influence that the parameters quantifying
the opinion of other chartists and the trends in asset prices exercise on the update of the chartists’
investments. The consideration of this parameter is justified by the need to account for the non-
stationarity of the environment in which the agents evolve. In the context of this research, this envi-
ronment embodies the economic environment as well as other non-economic aspects. Two distinct
processes are hence ruling the evolution of κt: a constant and a stochastic mean-reverting process,
respectively representing a stationary and a non-stationary market environment. The discrete linear
stochastic mean-reverting process accounting for the varying environment is further defined as:

κt = κt−1 + ηk(µk − κt−1) + σkνt, (4.69)
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where the initial condition is given by κ0 and where νt is an i.i.d. discrete-time white noise process
with a mean of 0 and a standard deviation of 1. The mean-reversion rate is further represented by
ηk, the mean value by µk and the diffusion associated with the Wiener process νt by σk.

Statistics Instantaneous evaluation Long-run evaluation

E[κt] µk − (µk − κ0)e−ηkt limt→∞ E[κt] = µk

Var[κt]
σ2
k

2ηk

(
1− e−2ηkt

)
limt→∞Var[κt] =

σ2
k

2ηk

Table 4.2: Expectation and variance of the herding propensity κt.

The instantaneous and long-run evaluations of the expectation and variance of the herding
propensity are successively given in Table (4.2) above. The process of concern is hence found
to be stationary and normally distributed in the long-run, such that the following expression holds:

κt ∼ N
(
µk,

σ2
k

2ηk

)
. (4.70)

The statistical estimation of the parameters of Equation 4.201 is finally achieved as in Kaizoji et al.
(2015) thrpugh the following expressions:

ηk =
1

∆T
log

(
0.2

1− µk

)
, (4.71)

σk = 0.1
√

2ηk, (4.72)

where ∆T is the time frame during which κt is set to revert when being in the super-critical regime
identified by the bounds located two standard deviations away form the mean.

The initialization of the parameters introduced in the market model is subsequently exposed
hereafter. The analyses of the time series generated in typical simulations ensue.

Parameter selection

The wealth fractions of the aggregated traders are first initialized below, starting with the funda-
mentalist trader. Given the initial wealth fraction xf,M0 , the constant variance σ2

M and the initial
expectation of the future return µM0 = EMr,t + d0(1 + rd)/P0 associated with AM , the constant risk
aversion parameter γ is defined a priori by the following expression:

γ =
µM0 − rf
xf,M0 σ2

M

. (4.73)

The expressions of the initial wealth fractions associated with the coupon paying bonds Ai for
i ∈ {2, ...,M − 1} are obtained accordingly:

xf,i0 =
µi0 − rf
γσ2

i

, (4.74)

by ensuring that the following condition is satisfied:

0 ≤
M∑
k=2

xf,it ≤ 1 for t = 0. (4.75)

The expectations of the future returns µi0 associated with these assets are defined below and the
constant values of the variances σ2

i are provided in Table (4.3).
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On the other hand, the initial wealth fractions of the aggregated chartist are obtained from the
value of xc,M0 through the following expression:

xc,i0 |i6=1,M =
1− xc,M0

M − 1
. (4.76)

Considering the floor operator b.c introduced earlier and the total amount of chartistsN , the amount
of individual agents initially invested in the coupon and dividend paying assets is hence given by:

N i
0 =



1−
∑M

k=2N
k
0 for i = 1,⌊

N
1−xc,M0
M−1

⌋
for i ∈ {2, ...,M − 1},⌊

Nxc,i0

⌋
for i = M.

(4.77)

This further enables to initialize the opinion indices involved in the allocation process governing
the aggregated chartist’s investments:

s
step1
0 = 1− 2xc,M0 , (4.78)

s
step2
0 |i,i+1 =

1

2

N i+1
0 −N i

0

N i+1
0 +N i

0

, (4.79)

s
step3
0 |i =

(M − 1)N i
0 −

∑M−1
k=1,k 6=iN

k
0

(M − 1)N i
0 +

∑M−1
k=1,k 6=iN

k
0

. (4.80)

Table (4.3) above unveils the initialization of the constant parameters as well as of the variables
involved in the market model. The values included in parentheses respectively correspond to each
of the assets in terms of increasing order of maturities.

The annualized yields to maturity are successively initialized as follows:

YTMi
0 =



2×250×rf
2+250×rf for i = 1

di0×250+
FVi−Pi0
N

Pi0+FVi

2

for i ∈ {2, ...,M − 1},

dM0 ×250

PM0
for i = M.

(4.81)

One can hence observe that the initial yield curve is flat as each yield initially equals 2.5%, with
the exception of the yield of the perpetual bond initialized as YTMM

0 = 3%. This precise setup is
justified by the need to analyze the impacts of the agents’ investments on a neutral configuration of
the yield curve. This further explains the selection of the face values of the corresponding assets.

Building on these developments, the evaluations of the initial artificial changes of the market
values, modified and Macaulay durations, convexities, discount factors and implied spot rates of
each coupon-paying bond are straightforward. The according values are presented in Table (4.4) of
Appendix 4.1.6.

Finally, given the previous developments, the expectations of the future returns are initialized
as:

µi0 =


1
2

{[
(1 + YTMi

0)
1

250 − 1
]

+
[
(1 + ISRi0)

1
250 − 1

]}
+

di0
P i0

for i ∈ {2, ...,M − 1},[
(1 + YTMi

0)
1

250 − 1
]

+
dM0
PM0

for i = M.
(4.82)

This concludes the presentation of the initialization of the constant parameters and variables
defined previously and leads to the subsequent analyses of the phenomena emerging from numerical
simulations of the market model.
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Entity Parameter Parameter value Equation

Assets Number of assets M = 8
Risk-free rate rf = 8× 10−5 (4.3)
Face values FV = (1.06667, 1.14286, 1.23077, (4.1) (4.2)

1.33333, 1.45455, 1.60000, n.a.)
Dividend growth rate rd = 1.2× 10−4 (4.14)
Standard deviation of
the dividend processes σd = 1.6× 10−5 (4.14)
Initial prices P0 = (1, 1, 1, 1, 1, 1, 1) (4.4) (4.6)
Initial coupons or dividend d0 = (5, 5, 5, 5, 5, 5, 12)× 10−5 (4.14)
Maturities N = (1, 5, 10, 15, 20, 25, 30,∞) (4.1)

Fundamentalist Initial fraction of wealth
trader invested in AM xf,M0 = 0.3 (4.73)

Initial wealth W f
0 = 106 (4.13)

Standard deviations
of the assets’ returns σ2 ≈ (3, 3, 3, 3, 3, 3, 4)× 10−5 (4.32)
Weights involved in
the expected returns (ω1, ω2, ω3) = (0.9, 0.05, 0.05) (4.30)

Noise traders Initial fraction of wealth
invested in AM xc,M0 = 0.3 (4.76)
Initial wealth W c

0 = 106 (4.13)
Number of chartists N1	M−1

0 +NM
0 = 1500 (4.77)

Initial momentum of AM HM
0 = rd (4.36)

Initial term spread H1	M−1
0 = (1 + YTMM−1

0 )
1

250

−(1 + YTM1
0)

1
250 (4.37)

Memory parameter θ = 0.95 (4.36) (4.37)
(4.44) (4.45)

Initial price and yield
momenta of the bonds of P (H

i,price
0 , H

i,yield
0 ) = (0.0, 0.0) (4.43)

Weight associated with
the latter momenta α = 0.5 (4.43)
Constants involved in
the transition probabilities (p+, p−) = (0.19995, 0.20026) (4.46) (4.38)

Herding Initial value κ0 = µk (4.201)
propensity Long-run average µk = 0.98 (4.201)

Mean-reversion rate ηk = 0.05 (4.201)
Diffusion of the associated
Wiener process σk ≈ 3× 10−2 (4.201)

Table 4.3: Set of constant parameters and initialization of the variables involved in the market
model.
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Figure 4.2: Time dependence of the variables associated with the market model. The simulation
length is set to Tsim = 5000 time steps and the herding propensity remains constant throughout the
simulation.

Time series analyses

The following section specifies the dynamics emerging in typical simulations. Figures 4.2 and 4.3
show representative time-series of the endogenous prices P it , yields to maturity YTMi

t, wealth frac-
tions xf,it and xc,it , transition probabilities p±t (s

step1
t , H

step1
t ), momentumH

step1
t , and three represen-

tative opinion indices sstep2
t |i,i+1 created with a constant and a mean-reverting herding propensity.

The herding propensity κt corresponds to the inverse temperature of the underlying Ising-structure
of the noise traders’ decision process. In the simulations involving a constant κ and where κ < κc,
the noise traders are in the disordered regime. The stochastic mean reverting herding propensity has
the same mean value κµ = 0.98×κc as the constant one, but fluctuates transiently above the critical
value. This results in a polarization of the noise traders’ opinions and can be observed through bub-
bles in the corresponding prices’ time-series. These two different types of simulations are analyzed
hereafter.

The time-series of the asset prices P it show the divergence of the preferred stock’s prices from
those of the bonds. This divergence is governed by the growth rate of rd. The subcritical herding
behaviour caused by the constant nature of the herding propensity only results in subtle deviations
from the average trajectory given by the previous rate. On the other hand, the simulation involving
a varying herding propensity is found to generate periods of extreme transient phenomena during
which the preferred stock’s prices undergo turbulent patterns. Such periods are e.g. observed for t ∈
[1300, 1700]. Analyses of the super-exponential growth characterizing these bubbles are provided
in Kaizoji et al. (2015), among others. Besides their prices, the bonds are characterized by their
yields to maturity YTMi

t. In both simulations, the yields fluctuate around their initial values with
an amplitude related to the maturities of the bonds. These fluctuations reach higher values for
bonds of low maturities. This constitutes an emerging phenomenon referred to as the humped
“term structure of volatility”. Moreover, according to the well known price-yield relationship, the
yields of the perpetual bond reach their lowest values during the peak of the price bubbles, e.g. for
t ∈ [1400, 1700] in Figure 4.3. The reverting of the prices of AM to levels directed by the growth
rate of rd as shown t ∈ [3000, 3100] symmetrically drives the yields back to their initial value of
3%.
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Figure 4.3: Time dependence of the variables associated with the market model. The simulation
length is set to Tsim = 5000 time steps and the herding propensity follows a stochastic mean-
reverting process.

The noise traders switch their investments between the different assets with a probability ex-
pressed in terms of the momentum of the prices of the preferred stock and of the opinion of others.
The dynamics of the momentum HM

t of the preferred stock, of the probabilities p±t (s
step1
t , H

step1
t )

governing the rebalancing between the stock and the Fixed Income portfolio as well as of three
opinion indices sstep2

t |i,i+1 are detailed in the following. Overall, the momentum parameter Hstep1
t

evaluated in terms of the two sub-parameters HM
t and H

step1
t replicates the main trends of the

preferred stock’s prices. This is due to the high amplitudes of the exponentially-weighted moving
average of the returns ofAM in comparison with the stable spreads proposed by the yield curve dur-
ing the simulations. The latter amplitudes are nevertheless found to be of approximately an order
of magnitude lower than those associated with the opinion index sstep1

t . This explains the strong in
influence given to the latter variable in the outcome of the Bernoulli trials. The transition probabil-
ities fluctuate symmetrically around (p+ + p−)/2 and are bounded in [0,≈ 0.15] for the simulation
governed by a constant herding propensity. The smooth fluctuations observed in this simulation fur-
ther explain the lack of abrupt changes in the preferred stock’s price dynamics, as can be expected
from the outcome of the Bernoulli trials involving these probabilities and generating no significant
rebalancing of the aggregated chartist’s portfolio between the two pools of assets. In contrast, the
transition probabilities observed in the simulation involving the stochastic herding propensity in-
creases sharply during the emergence or burst of the bubbles. The noise traders’ opinion formation
is illustrated by the following pairs of assets selected to avoid any redundancy in the analyses and
to assess the integration of A1 in P: (A1, A2), (A7,A1) and (A3,A4). All three indices are found
to fluctuate around a long-run average of zero with the same amplitudes, indicating an equilibrated
dispersion of the agents in P . The risk-free asset is hence not introducing any bias in the allocation
process. This statement is emphasized by the fact that the trends in the fluctuations of the indices
s

step2
t |1,2 and sstep2

t |7,1 replicate each other and are approximately symmetrically mirrored by those
of sstep2

t |3,4. The emphasis is furthermore directed towards the ascertainment of the abrupt satura-
tion of the opinion indices observed during periods of herding towards the preferred stock proposed
by the simulation involving a varying herding propensity. Considering the fact that a bad perform-
ing bond is penalized twice: the first time by the loss of agents transiting to the neighbouring bonds
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Figure 4.4: Time dependence of the variables associated with the market model. The simulation
length is set to Tsim = 5000 time steps and the herding propensity remains constant throughout the
simulation.

and the second time by the outflow of agents towards AM , it appears that a very small amount of
agents remain invested in the bonds during the culmination of the preferred stock’s price bubbles.
As a result, the opinion indices become very sensitive to the transition of agents as dictated by the
outcome of the Bernoulli trials, explaining their abrupt variations at the corresponding time steps.

The transition probabilities define the aggregated noise trader’s investment decisions as they
determinate the update of the number of traders invested each asset. The resulting time-series
of the wealth fraction xct invested in each asset are analysed subsequently. A particular mention
tackles the transient dynamics of xc,Mt occurring in the simulation involving the varying κt. For
t ∈ [2200, 2400], sstep1

t is found to be entirely polarized at the culmination of the corresponding
price bubble. The lock-in effect occurring at this moment is straightforwardly accompanied by
the following observations: xc,Mt = 1 and p+

t (s
step1
t , H

step1
t ) = 0. In this case, the reaching of a

threshold value by the herding propensity satisfies the statement proposed in Sornette (1994) and
granting the responsibility of the “sweeping of an instability” of the latter parameter to instigate a
self-reinforcing loop leading to a gradual feedback between HM

t and sstep1
t provoking an outflow

of agents from P to AM . At the apogee of this phenomenon, no agent is spurred to transit to the
Fixed Income portfolio. This situation is however unsustainable and the flux of agents between the
two asset classes is reversed as soon as p+

t > 0, leading to the inevitable burst of the bubble. The
market model is moreover found to be subjected to an initial phase of auto-regulation occurring
at the beginning of each simulation. The quintessence of this observation lies in the increase of
xc,M from 30% to a stable level of ≈ 50% on the long-run. As a consequence of the resulting
increase of the preferred stock’s price level, xf,M is further reduced at the benefit of xf,1. This
is due to the counter-cyclical reaction of the fundamentalist trader to the evolution of the market.
More generally, this “price taker” characteristic is found to be revealed in the time series of the
corresponding wealth fractions mirroring the fluctuations of the prices of AM .

Figures 4.4 and 4.5 provide a comparison of the fundamentalist’s and aggregated chartist’s
portfolio statistics for simulations respectively involving a constant and a mean-reverting herding
propensity. They show the evolution of the average portfolio yields AvgYieldMVi

t and AvgYieldBPVi
t,

aggregate wealth levels W i
t as well as approximated portfolio modified durations ApproxModDurit,

convexities ApproxConvit and dispersions AvgDispit.
First, the average market-value-weighted and basis-point-value-weighted portfolio yields to ma-

turity (AvgYieldMVi
t and AvgYieldBPVi

t) are analysed. The portfolio yields computed from the
two different approaches provide different assessments of the attractivity of each investment strat-
egy. The MV-weighted yields tend to replicate the patterns of the yields of the preferred stock less
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Figure 4.5: Time dependence of the variables associated with the market model. The simulation
length is set to Tsim = 5000 time steps and the herding propensity follows a stochastic mean-
reverting process throughout the simulation.

than is achieved by the BPV-weighted yields. This is striking for the fundamentalist trader who
constrains her endowments to AM during the simulations. The BPV-weighted yields contrast with
the other yields in accordance to the expression of Equation (4.114). In particular, as the perpetual
bond is granted a much higher duration than the other bonds, its prices are much more sensitive
to variations of its yields, explaining why AM takes a significantly greater share in the sum of the
absolute price variations in the determination of the yields of concern.

The average portfolio modified durations AvgModDurit tend to replicate the dynamics of the
modified durations associated with the traders’ predominant investment. The fundamentalist is
hence found to have an almost stable portfolio modified duration over time with only few excep-
tions arising during the transient market unfolding. As a result, the latter variable is hence fluc-
tuating between 20 and 30 years during periods of quietude. The portfolio modified duration of
the fundamentalist is also more sensitive to increases of the perpetual bond’s duration than to the
according decrease of xf,Mt . This is illustrated by the humps in the time series of the corresponding
variable generated in the simulation involving the varying herding propensity. The present market
model moreover provides a striking observation during periods of extreme transient phenomena
and unveiling the limitation of the well known Fixed Income pricing formula expressed in Equa-
tion (4.103). In fact, the relationship implying, among others, that simultaneous increases of the
duration and decreases of the yields lead to an increase in the corresponding asset’s market value
is found not to hold in turbulent periods for the portfolio of the fundamentalist trader. As one can
observe during any of the price bubbles associated with AM , the wealth of the fundamentalist de-
creases despite the fact that the portfolio modified duration increases and that the portfolio yield
decreases. The convexity is besides found to increase, adding no interference to the previous state-
ment. This sheds lights into the boundedness of the earlier mentioned pricing formula and explains
why one might loose commonly-used landmarks when managing a fundamentalist portfolio during
periods of market unrest. Consequently, surfing partly on the price bubble might help the funda-
mentalist to contain the losses caused by the massive exodus of the chartists from the other assets to
the perpetual bond subjected to the bubbles of concern. Following the tendencies observed for the
portfolio modified durations, the average portfolio convexities AvgConvit and dispersions AvgDispit
propose patterns strikingly sensitive to the dynamics of the perpetual bond’s prices. One can again
observe the fact that the rebalancing executed by the fundamentalist as a reaction to the price devi-
ations of AM is not sufficient to counteract the overall tendencies of the parameters of concern to
follow the dynamics of the latter asset.

The comparison of the normalized wealth levels W f
t of the fundamentalist and W c

t of the ag-
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gregated chartist reveals the fact that the fundamentalist’s strategy outperforms the chartist’s one
irrespectively of the process governing the evolution of the herding propensity. The notion of op-
portunity costs is however crucial to evaluate the reversal of the latter trends on the short-term during
turbulent periods. As a matter of fact, such costs appear to be incurred by the fundamentalist during
the build up of the bubbles of the prices of AM . Nevertheless, the subsequent bursts instigated by
the flee of individual chartists towards P bringing the variable xc,Mt to anterior levels happen to
cancel all the gains of the aggregated chartist, while the fundamentalist kept benefiting from the
constant price return of the risk-free asset. As a result, the decreases of W f observed during the
build up of the price bubbles are adjusted by the still invariable price returns granted by A1 left
unimpaired by the variations of xf,1t and xc,1t . This explains the slight increase of the difference of
the wealth levels of the aggregated traders after each burst of a bubble.

4.1.4 Analyses

Application of the Vasicek model of interest rates

The previous developments introduced a constant risk-free rate provided by the zero-coupon bond
of one year maturity. As a matter of fact, the rates provided by such risk-free assets are not constant
in reality. The solution of the Vasicek model of interest rates developed by the eponym author in
Vasicek (1977) is applied in the market model to provide a varying exogenous arbitrage-free risk-
free rate. As a result, the comparison of the emerging dynamics associated with this new setup with
those of the one considering rf = cst. shall demonstrate the capacity of the new model to reproduce
strikingly similar autocorrelations of the volatilities of the yields to maturity in comparison with
those observed in the U.S. treasury market. The statistical estimation of the parameters involved
in the expression of the varying risk-free rate is first achieved below, before the presentation of
the emerging dynamics arising in typical simulations. The analyses of the autocorrelations are
presented in 4.1.4.

The “one time step” rates are determined from following closed-form expression:

rf,t = rf,t−1e
−λ + θ(1− e−λ) + νt

√
σ2
r (1− e−2λ)

2λ
, (4.83)

where νt is an i.i.d. random variable such such that νt ∼ N (0, 1) and where λ, θ and σr are
estimated in the same way as achieved for the herding propensity. The long-run average of the risk-
free rate is equal to the constant value of the rate applied earlier, namely such that: θ = 8 × 10−5.
The mean-reversion strength is subsequently estimated according to:

λ =
1

∆T
log10

( rmax − θ
rcritic − θ

)
, (4.84)

where rmax = 1×10−4 and rcritic = 9.5×10−5. The value attributed to θ is known and ∆T = 60
time steps. One can hence evaluate the mean-reversion strength as λ ≈ 2 × 10−3. Finally, σr is
obtained as a function of the mean-reversion rate as follows:

σr = 2λVarrf,t , (4.85)

where the variance of the risk-free rate is such that Varrt = 2× 10−5, twice as low as the variance
of the perpetual bond’s returns. The initial value of the risk-free rate is finally set to rf,0 = θ.

Figure 4.6 below presents the time series generated by a typical simulation involving a varying
herding propensity as well as the stochastic process governing the evolution of rf,t. The follow-
ing developments tackle the inputs provided by the mean-reverting nature of rf,t on the emerging
dynamics of the market model. The evolution of the risk-free rate is found to be reflected on xf,1,
while the preferred stock’s prices show a clear symmetrical mirroring of its dynamics. The evolu-
tion of the wealth levels further provides an example of an indirect impact of the varying nature of
the risk-free rate. The reason for the high sensitivity of the fundamentalist’s wealth fractions to the

96



4.1. Agent-based model generating stylized facts of Fixed Income Markets

6

7

8

9

r f,
t

1e 5 Risk-free rate

100

101

Pi t

Prices of the bonds and of the preferred stock
bond 1
bond 2
bond 3

bond 4
bond 5

bond 6
preferred stock

0

2

4

6

YT
M

i t

1e 2 Yields to maturity of the individual assets
bond 1
bond 2

bond 3
bond 4

bond 5
bond 6

preferred stock

0 1000 2000 3000 4000 5000
100

101

W
c t, 

W
f t

Wealth levels normalized at t0 = 0
chartist fundamentalist

0.0

0.1

0.2

p
+ t

, p
t

Transition probabilities of the first rebalancing
p +

t pt

0.25

0.50

0.75

1.00

xf,
i

t

Wealth fractions  of the fundamentalist
preferred stock
bond 6

bond 5
bond 4

bond 3
bond 2

bond 1
risk-free

0.00

0.25

0.50

0.75

1.00

xc,
i

t

Wealth fractions of the chartist / Opinion index sStep1
t

1.0

0.5

0.0

0.5

1.0

sSt
ep

1
t

0 1000 2000 3000 4000 5000

0.15

0.20

0.25

0.30

t,
0

Herding propensity t

t 0  0.196

Figure 4.6: Time dependence of the variables associated with the market model. Tsim = 5000 time
steps and the herding propensity follows a stochastic mean-reverting process. The evolution of the
risk-free rate rf,t is governed by the Vasicek model of interest rates.

variations of rf,t is straightforward when considering Equations (4.31) and (4.32). In this regard,
the fundamentalist’s investments are hence found to have a major impact on the assets’ prices, being
mainly driven by the evolution of the risk-free rate and having a significant impact on the wealth
levels of both aggregated traders. There is however no form of self-reinforcing feedback arising
between the fundamentalist’s investments and the corresponding impacts on the assets’ prices, the
latter agent having no incentive to follow series of positive returns and being predominantly re-
acting to the stochastic variations of the risk-free rate. This further explains why one cannot find
clear trends in the evolution of the difference of both agent’s normalized wealth levels, especially
after the periods of extreme transient phenomena, where the earlier mention about the opportunity
costs is not holding anymore as one is not guaranteed to obtain a stable return in the money market
instrument during the culmination of the preferred stock’s price bubbles.

Dynamics of the Fixed Income parameters

The following developments focus on the emerging dynamics of the yields to maturity, implied spot
rates and discount factors. For the sake of clarity, the l.h.s. (respectively r.h.s.) of each illustration
is associated with the simulation involving the constant herding propensity (respectively varying).

Time dependencies of the Fixed Income parameters
Figures 4.7, 4.8 and 4.9 present the surfaces generated from the time series associated with the

yields to maturity, implied spot rates and discount factors obtained from the two typical simula-
tions presented in 4.2.3. The yields of the perpetual bond are represented separately in Figure 4.7.
Their distinction from the other yields is achieved for the sake of clarity as the corresponding asset
is omitted in the computation of the yield curves. An ensemble of Tsim = 5000 yield curves is
generated in each simulation, i.e. one yield curve per time step. The impacts of the aggregated
agents’ investments are straightforward considering the initial flat and neutral configuration of the
yield curve. The increasing volatile character of the yields to maturity in terms of decreasing matu-
rities is striking in both simulations and further reveals the aptitude of the present market model to
produce a humped term structure of volatility. This paradigm is subsequently tackled in 4.1.4.

The implied spot rates defined according to Equation (4.98) provide accurate approximations
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Figure 4.7: Surface generated from the time dependencies of the yields to maturity of the bonds of
finite maturity. The yields of the perpetual bond are identified separately. The l.h.s. (respectively
r.h.s.) is associated with the simulation involving a constant herding propensity (respectively mean-
reverting).

Figure 4.8: Surface of the implied spot rates of the bonds of finite maturity. The l.h.s. (respectively
r.h.s.) is obtained from aconstant herding propensity (respectively mean-reverting).

Figure 4.9: Surface of the discount factors of the bonds of finite maturity. The l.h.s. (respectively
r.h.s.) is obtained from a constant herding propensity (respectively mean-reverting).

of the yields to maturity. As a result, the surfaces presented in Figure 4.8 are very similar to those
of Figure 4.7. The spikes appearing at t ∈ [2300, 2600] in the former very accurately replicate
those emerging at the same period in the latter illustration. Figure 4.9 finally shows the surfaces
generated by the linear interpolations of the discount factors associated with each of the bonds of
fixed maturities. As one can observe, the disruptions caused by the aggregated chartist’s investments
on the assets’ prices have non-negligible effects on these factors for bonds of high maturities.

This concludes the presentation of the evolution of the yields to maturity, implied spot rates and
discount factors.

98



4.1. Agent-based model generating stylized facts of Fixed Income Markets

Volatilities of the yields to maturity
Figure 4.10 below presents the surfaces of obtained from the volatilities of the yields to maturity.

The volatilities are computed over moving windows of 125 time steps in both simulations. They
are evaluated at each time step from the following definition:

σYTMi,t =
√〈

(YTMi
k − 〈YTMi

k〉)2
〉∣∣∣∣t
k=t−τ

, (4.86)

where the sample average operator is represented by 〈.〉 and the selected moving window by τ =
125.

Figure 4.11 shows the realized volatilities of the yields of U.S. Treasury bonds evaluated be-
tween the 18nth of November 1993 and the 6th of June 2020, considering moving windows of 250
business days. The selection of this moving window is justified by the need to amplify the trends
of the fluctuations of the realized volatilities. Notwithstanding the fact that the volatilities of the
yields of the U.S. Treasury bonds are subjected to the exogenous policies of the Federal Reserve,
the comparison between those realized endogenously in the present model with those of the U.S.
Treasury market enables to assess the capacity of the present market model to account for the main
trends observed in reality.
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Figure 4.10: Surface of the volatilities of the yields to maturity. The l.h.s. (respectively r.h.s.) is
obtained from a constant κt (respectively mean-reverting).

Figure 4.11: Surface of the volatilities of the yields to ma-
turity of the corresponding U.S. treasury bonds realized be-
tween the 18nth of November 1993 and the 6th of June 2020.

The model produces a humped term structure of volatility in both simulations. The term struc-
ture of volatility is further decreasing when considering the bonds of maturities of higher than one
year. Such phenomena are found episodically in the U.S. Treasury market, e.g. between 2004 and
2008, corresponding to t ∈ [3200, 3950] in Figure 4.11. On the other hand, the exogenous im-
position of low discount rates by the Federal Reserve are commonly known to be reflected on the
yields of the U.S. Treasury bonds of low maturities, explaining the boundedness of their volatilities
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during the according time frames (t ∈ [4000, 5500]). The increases of these bounds hence result in
increasing volatilities of the yields of bonds of low maturities. As revealed in Cieslak and Povala
(2016) and Bertocchi et al. (2005), the volatilities of the U.S. Treasury yield curve are found to
be following such a hump-like shape on average, comforting the assertion of the capacity of the
present market model to account for the main trends observed for the volatilities of the yields of
U.S. Treasury bonds.

Autocorrelations of the volatilities of the yields to maturity
Figures 4.12 and 4.13 present the surfaces generated from the coefficients of autocorrelation

of the volatilities of the yields to maturity computed for each bond, excluding the risk-free one
and including the perpetual one. The former and the latter respectively consider the simulations
involving a constant and a varying risk-free rate. The surfaces are generated by computing the
average of the coefficients of autocorrelations from a sample of 300 simulations. The first 500
steps of each simulation are furthermore omitted in the computations due to the auto-regulation
phenomenon commented in 4.2.3. The above-mentioned coefficients are determined for each sim-
ulation from Equation (4.87) below, considering the volatilities σYTMi,t determined earlier and the
lags l ∈ [0, 500]:

ACFl
(
σYTMi

)
=

Cov
[
σYTMi,tσYTMi,t−l

]√
Var
[
σYTMi,t

]
Var
[
σYTMi,t−l

] ,
=

〈
σYTMi,tσYTMi,t−l

〉
−
〈
σ2

YTMi,t

〉
〈
σ2

YTMi,t

〉
−
〈
σYTMi,t

〉2 .

(4.87)
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Figure 4.12: Surface of autocorrelation associated with the simulation involving a constant risk-free
rate and a constant κt on the l.h.s. (respectively mean-reverting κt on the r.h.s.).
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Figure 4.13: Surface of autocorrelation associated with the simulation involving a mean-reverting
risk-free rate and a constant κt on the l.h.s. (respectively mean-reverting κt on the r.h.s.).

The comparison of Figures 4.12 and 4.13 reveals the fact that the surfaces associated with
the market model involving a varying risk-free rate decay much faster than the others in terms of
increasing lags. This emerging phenomenon is hence attributed to the stochastic character of the
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evolution of the risk-free rate. There is moreover no difference on the aggregated level for different
selections of the processes governing the evolution of the herding propensity.

The comparison of the surfaces presented in Figures 4.12 and 4.13 with the surface of autocor-
relation associated with the U.S. treasury market provided in Figure 4.14 and computed from the
earlier-mentioned volatilities further enables to distinguish the capacity of the simulations involv-
ing the varying risk-free rates to replicate the same emerging phenomena as they reproduce similar
autocorrelation coefficients at the corresponding lags. More precisely, the latter simulations are
capable to replicate the steeper gradients of the autocorrelation surfaces until the 250th lag as well
as the milder ones for higher lags directing the surfaces towards null autocorrelations at the 500th

lag. This concludes the presentation of the emerging dynamics of the market model consisting of
the first ABM of a Fixed Income market, to the best of the authors’ knowledge.
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Figure 4.14: Surface of autocorrelation computed on the volatilities of the realized U.S. treasury
yields between the 18nth of November 1993 and the 6th of June 2020.

4.1.5 Conclusion

The market model proposed in this research extended the model proposed in Kaizoji et al. (2015)
by introducing multiple assets, among which several bonds of fixed maturities. The inclusion of
the various Fixed Income parameters allowed to frame the investment processes of both aggregated
traders to the peculiarities of the market in which they evolve. The market setup initialized by a flat
yield curve demonstrated its capacity to reproduce several stylized facts of the U.S. Treasury market.
The simulations involving a varying herding propensity showed that the well known bond-pricing
formula involving the durations, convexities and shifts in yields to maturity does not hold on the
fundamentalist’s portfolio level during periods of market unrest. Subsequently, the implementation
of Vasicek’s model of interest rates to simulate the evolution of the risk-free rate was found to
allow the linearly dependent fundamentalist’s wealth fractions to replicate its dynamics and have
a significant impact on the asset prices. The model endowed with such a varying rate ultimately
prevented to distinguish a better performing investment strategy on the long run among the two
applied in the present research. The analyses of the volatilities of the yields to maturity further
enabled to assess the capacity of the market model to produce a humped term structure of volatility
as has is observed on average in the U.S. Treasury market. Finally, the market model introducing
the mean-reverting process governing the dynamics of the risk-free rate also proved superior to the
one involving rf = cst. with regards to its capacity to reproduce the main characteristics of the
surface of autocorrelation of the volatilities of the yields to maturity of the U.S. Treasury bonds for
selected the time-frame.

4.1.6 Appendix

Parameters of the Fixed Income market model

• Security level:
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The following developments introduce the parameters mentioned in 4.1.2. First and foremost,
the famous relationship between an asset’s no-arbitrage price PV, face value FV, coupon payments
C, time to maturity N and yield to maturity YTM is expressed as:

PV =
C

YTM

[
1− 1

(1 + YTM)N

]
+

FV
(1 + YTM)N

. (4.88)

Representing the discount factor associated with the payments occurring at maturity by δ(N),
the no-arbitrage price can be further expressed a as:

PV =
C

YTM
(1− δ(N)) + δ(N)FV, (4.89)

exacerbating the expression of the bonds’ dirty prices in terms of those of a perpetuity and of a zero
coupon bond as follows:

PV = PVperpetuity(1− δ(N)) + δ(N)PVzero coupon bond. (4.90)

Yields to maturity. Considering the fact that each asset Ai for i ∈ {2, ...,M} pays a coupon
or a dividend of dt at each time step and consisting of the accrued interest associated with dt = 1,
the corresponding yields to maturity are evaluated as:

YTMi
t ≈

250× dit +
(

FVi−PVit
N i

)
FVi+PVit

2

, (4.91)

where the day-count convention defines a year as consisting of 250 trading days. The accrued
interests AIit of each asset Ai are further determined at each time step t by:

AIit = FVi × Ci

FVi
× dt

Tyear
, (4.92)

where Tyear = 250. Accordingly, the running yield of the preferred stock AM is given by:

YTMM
t ≈

2× 250× dMt
FVM + PVM

t

. (4.93)

Discount factors. The discount factors provide a practical bootstrapping technique upon which
the spot rates are determined. The methodology applied to determine the discount factors is detailed
hereafter:

1. Start by determining the discount factor of the risk-free bond:

DF1
t =

PV1
t

FV1 . (4.94)

Setting PV1 = 1 and FV1 = 1 + 250× rf , one obtains:

DF1
t =

1

1 + 250× rf
= cst. ∀t. (4.95)

1. Determinate the remaining DFit in an increasing order of maturities:

DFit =
PVi

t − 250× dit
∑i−1

k=1 DFkt
250× dit + FVi

. (4.96)

As one can observe from the expression of Equation (4.96), discount factors can only be assigned
to bonds of fixed maturities. These factors are further related to the implied spot rates ISRit by:

DFit =
1(

1 +
ISRit
PER

)N×PER , (4.97)
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where the periodicity accounting for semiannual coupon payments is set to PER = 2.
Implied spot rates. The implied spot rates are accordingly isolated by the subsequent expres-

sion:

ISRit =

[(
1

DFit

) 1

Ni×PER
− 1

]
× PER. (4.98)

Variations of market values. Assuming that the prices of each bond are continuous and twice
differentiable w.r.t. to the yields to maturity, one can recall the famous expression:

∆MVi
t ≈

(
∂MVi

t

∂YTMi
t

dYTMi
t

)
+

(
1

2

∂2MVi
t

∂YTMi
t
2 (dYTMi

t)
2

)
, (4.99)

from which the following parameters are introduced, considering only flat variations of the yield
curve.

Durations and convexity.
The Macaulay duration is first expressed as:

MacDurit = − ∂MVi
t

∂YTMi
t

1 + YTMi
t

MVi
t

, (4.100)

followed by the definition of the modified duration:

ModDurit = − ∂MVi
t

∂YTMi
t

1

MVi
t

=
MacDurit

1 + YTMi
t

. (4.101)

The convexity is finally formulated as:

Convit =
∂2MVi

t

∂YTMi
t
2

1

MVi
t

, (4.102)

allowing to express Equation (4.99) in terms of the above-introduced parameters:

dMVi
t

MVi
t

≈ −(ModDurit × dYTMi
t) +

1

2
(Convit × (dYTMi

t)
2). (4.103)

These parameters are further evaluated from to the approximations provided in D. J. Smith
(2014) and are first applied to individual securities before being associated with the aggregated
traders’ portfolios.
The modified duration is approximated by:

ApproxModDurit =
∆MVi

t|YTMi
t↓ −∆MVi

t|YTMi
t↑

2×∆YTMi
t ×MVi

t

, (4.104)

where ∆MVi
t|YTMi

t↓(↑) represents the variation of the bond’s market value resulting from an artificial
decrease (increase) of the yield by −(+)0.001.
The convexity is furthermore approximated by:

ApproxConvit =
∆MVi

t|YTMi
t↓ + ∆MVi

t|YTMi
t↑ − 2×MVi

t

∆YTMi
t
2 ×MVi

t

. (4.105)

In particular, considering the absence of arbitrage, the assets’ market values and their corre-
sponding variations arising from artificial shifts of the yields are determined according to:

MVi
t =

250× dit
YTMi

t

(
1− 1

(1 + YTMi
t)
N

)
+

FVi

(1 + YTMi
t)
N
, (4.106)
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MVi
t|YTMi

t↓ =
250× dit

YTMi
t − 0.001

(
1− 1

(1 + YTMi
t − 0.001)N

)
+

FVi

(1 + YTMi
t − 0.001)N

,(4.107)

MVi
t|YTMi

t↑ =
250× dit

YTMi
t + 0.001

(
1− 1

(1 + YTMi
t + 0.001)N

)
+

FVi

(1 + YTMi
t + 0.001)N

.(4.108)

The Macaulay duration is finally approximated by:

ApproxMacDurit = ApproxModDurit(1 + YTMi
t). (4.109)

• Portfolio level:

Durations and convexity. The market-value-weighted (MV-weighted) average modified port-
folio durations are successively expressed as:

AvgModDurit =

M∑
k=1

xi,kt ×ModDurkt

≈
M∑
k=1

xi,kt × ApproxModDurkt ,

(4.110)

where i ∈ {f, c} depicts the trader of concern. Similarly, the market-value-weighted average
Macaulay portfolio durations are introduced as:

AvgMacDurit =
M∑
k=1

xi,kt ×MacDurkt

≈
M∑
k=1

xi,kt × ApproxMacDurkt .

(4.111)

The average portfolios convexities are further determined as:

AvgConvit =

M∑
k=1

xi,kt × Convkt

≈
M∑
k=1

xi,kt × ApproxConvkt .

(4.112)

Yields to maturity. The market-value-weighted average portfolio yields are evaluated by:

AvgYieldMVi
t =

M∑
k=1

xi,kt × YTMk
t . (4.113)

The basis point values (BPVs) of each asset Ak are determined by each trader i as:

BPVi,k
t = ModDurkt × x

i,k
t ×W i

t × 0.0001

≈ ApproxModDurkt × x
i,k
t ×W i

t × 0.0001.
(4.114)

Hence, the average basis point value-weighted (BPV-weighted) yields of each trader are evaluated
as:

AvgYieldBPVi
t =

∑M
k=1 BPVi,k

t × YTMk
t∑M

k=1 BPVi,k
t

. (4.115)

Dispersion. Ultimately, the average portfolios dispersions are introduced as:

AvgDispit = AvgConvit(1 + AvgYieldBPVi
t)

2 − AvgMacDurit
2 − AvgMacDurit. (4.116)
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Solution of the generalized mean-variance optimization problem

The stochastic optimal control problem assigned to the fundamentalist trader is tackled in the fol-
lowing lines. The optimal feedback solution is derived after the formulation of the well known
Hamilton-Jacobi-Bellman (HJB) equation associated with the problem of concern. The solution is
furthermore given by the optimal control trajectory x̂ : [0, T ] 7→ RM−1 at the origin of the optimal
state trajectory Ŵ f : [0, T ] 7→ R. The former is expressed as:

x̂(t) = x̃(Ŵ f (t),∇W fJ (Ŵ f (t), t), t) for t ∈ [0, T ]. (4.117)

In a nutshell, the control x = x(W f ,JW f ,JW fW f , t) maximizing the r.h.s. of the HJB Equa-
tion (4.118) involving the cost-to-go function J (W f , t) is first sought for. The resulting expression
of the control law is then inserted back into the HJB equation before the resulting PDE expressed
in terms of the cost-to-go function is solved. The expression of J (W f , t) is finally replaced in the
expression of the control parameter x, unveiling the formulation of the optimal control law.

The HJB equation associated with the present framework is expressed as:

Jt + max
x∈RM−1

{
JW fW f

[
rf + x>(µ− erf )

]
+

1

2
JW fW fW f 2

x>σσ>x

}
= 0. (4.118)

Recalling the fact that the covariance matrix associated with the SDE of the wealth update is
expressed as Σ = σσ>, Equation (4.118) can be reduced to:

d

dx

{
JW fW f

[
rf + x>(µ− erf )

]
+

1

2
JW fW fW f 2

x>Σx

}
= 0, (4.119)

which further yields the following expression:

(µ− erf )W fJW f + JW fW fW f 2
Σx = 0. (4.120)

Considering the latter Equation (4.120), one can obtain the formulation of the optimal control law
expressed in terms of the first and second order derivatives of the cost-to-go function w.r.t. W f :

x̂ = − JW f

W fJW fW f

Σ−1(µ− erf ). (4.121)

Inserting the expression of Equation (4.121) into the HJB Equation (4.118), one obtains the
following PDE expressed in terms of the cost-to-go function:

Jt +W frfJW f −
JW f

2

2JW fW f

(µ− erf )>Σ−1(µ− erf ) = 0. (4.122)

The following Ansatz introduces the scalar function h(t) : R 7→ R subjected to the terminal condi-
tion given by h(T ) = 1:

J (W f , t) = h(t)
W f 1−γ

1− γ
. (4.123)

The relevant derivatives of the value function are consequently obtained as:
Jt(W f , t) = ḣ(t)W

f 1−γ

1−γ ,

JW f (W f , t) = h(t)W f−γ ,

JW fW f (W f , t) = −γh(t)W f−(γ+1)
,

(4.124)

allowing to express the solution of the optimization problem ruling the investments of the funda-
mentalist trader as:

x̂ =
1

γ
Σ−1(µ− erf ) (4.125)

This expression is solves the generalized wealth allocation problems faced by any trader sub-
jected to the necessity to maximize an expected CRRA utility function w.r.t. her investments in
M − 1 coupon and dividend paying assets. The rest is allocated in the risk-free asset according to
the boundary condition expressed in Equation (4.75).
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Market clearing process of the extended market model

The developments provided below shed lights into the market clearing process achieved at each time
step by the Walrasian auctioneer. As has been expressed in 4.1.2, Equation (4.64) is the condition
at the origin of the updates of the assets’ prices. The expressions of the excess demands for each
asset Ai with i ∈ {2, ...,M} respectively formulated by the fundamentalist and chartist traders are:

∆Df,i
t−1→t = W f

t−1

(
Ait +

Bi
t

P it

)[(
1−

M∑
k=2

xf,kt−1

)
(1 + rf ) +

M∑
k=2

xf,kt−1

(
P kt + dkt
P kt−1

)]
− xf,it−1W

f
t−1

P it
P it−1

, (4.126)

∆Dc,i
t−1→t = W c

t−1x
c,i
t

[(
1−

M∑
k=2

xc,kt−1

)
(1 + rf ) +

M∑
k=2

xc,kt−1

(
P kt + dkt
P kt−1

)]
− xc,it−1W

c
t−1

P it
P it−1

, (4.127)

where both Ait and Bi
t are defined according to Equations (4.58) and (4.59). For the sake of clarity,

let
(
1−
∑M

k=2 x
f,k
t−1

)
(1+rf ) be represented by Πt−1 and Φt−1 account for

(
1−
∑M

k=2 x
c,k
t−1

)
(1+rf )

. The condition of the Walrasian auctioneer is refined hereafter, considering Equations (4.126)
and (4.127):

W f
t−1

(
Ait +

Bi
t

P it

)[
Πt−1 +

M∑
k=2

xf,kt−1

(
P kt + dkt
P kt−1

)]
− xf,it−1W

f
t−1

P it
P it−1

+W c
t−1x

c,i
t

[
Φt−1 +

M∑
k=2

xc,kt−1

(
P kt + dkt
P kt−1

)]
− xc,it−1W

c
t−1

P it
P it−1

= 0. (4.128)

One can further factorize the terms accounting for the ratios of the prices evaluated at t and t − 1
by isolating Pt as follows:

W f
t−1

(
Ait +

Bi
t

P it

)[
Πt−1 +

M∑
k=2

xf,kt−1

(
P kt + dkt
P kt−1

)]
+W c

t−1x
c,i
t

[
Φt−1 +

M∑
k=2

xc,kt−1

(
P kt + dkt
P kt−1

)]

− P it
(
xc,it−1W

c
t−1 + xf,it−1W

f
t−1

P it−1

)
= 0. (4.129)

Let the parameter βi associated with asset Ai be introduced as:

βi =
xc,it−1W

c
t−1 + xf,it−1W

f
t−1

P it−1

, (4.130)

Equation (4.129) can be consequently expressed as:

W f
t−1

(
P itA

i
t+B

i
t

)[
Πt−1 +

M∑
k=2

xf,kt−1

(
P kt + dkt
P kt−1

)]
+P itW

c
t−1x

c,i
t

[
Φt−1 +

M∑
k=2

xc,kt−1

(
P kt + dkt
P kt−1

)]
− P it

2
βi = 0, (4.131)
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before being arranged in the following form:

P it

[
W f
t−1A

i
tΠt−1 +W c

t−1x
c,i
t Φt−1 +W f

t−1A
i
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2
βi = 0. (4.132)

The parameter αij associated with the pair of assets i and j is introduced as follows:

αij =
xf,jt−1W

f
t−1A

i
t + xc,jt−1W

c
t−1x

c,i
t

P jt−1

(4.133)

and the parameter ζi is defined such that:
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. (4.134)

Equation (4.132) can hence be written in the following compact form:

P it

(
ζi +

M∑
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P kt αik

)
+

M∑
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P kt
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W f
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tx
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t
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)
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2
βi = 0. (4.135)

Successively, let χij be defined as follows:

χij =
W f
t−1B

i
tx
f,k
t−1

P kt−1

(4.136)

and λi be introduced by the subsequent expression:

λi = W f
t−1B

i
tΠt−1 +W f

t−1B
i
t

M∑
k=2

xf,kt−1

(
dkt
P kt−1

)
(4.137)

= W f
t−1B

i
t

[(
1−

M∑
k=2

xf,kt−1

)
(1 + rf ) +

M∑
k=2

xf,kt−1

dkt
P kt−1

]
. (4.138)

Inserting these latter parameters in Equation (4.135) further enables to obtain the following expres-
sion:

P it ζi + P it

M∑
k=2

P kt αik +
M∑
k=2

P kt χik − P it
2
βi + λi = 0. (4.139)
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By isolating the nonzero terms when inserting the Kronecker delta in the summations, one can
finally express Equation (4.139) as:

P it
2(
αii − βi

)
+ P it

(
ζi + χii

) M∑
k=2,k 6=i

P kt P
i
tαik +

M∑
k=2,k 6=i

P kt χik + λi = 0. (4.140)

This concludes the presentation of the solvable set ofM −1 nonlinear equations expressed in terms
of the M − 1 asset prices remaining to be evaluated at each time step of the simulations of the
model.

Initialization of the parameters of the Fixed Income Market

Table (4.4) below introduces the initial values of the parameters associated with the Fixed Income
market framework. As one could anticipate, the initial values of the modified and Macaulay dura-
tions approximate the maturities of the bonds.

Parameter Initial value associated with each asset

YTM0 (0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.025, 0.03)

MV0 (1.00019, 1.00085, 1.00220, 1.000457, 1.00856, 1.01487, 1.02442, 1)

MV0|YTM↑ (0.999214, 0.996099, 0.992972, 0.991099, 0.991015, 0.993365, 0.998971, 0.967742)

MV0|YTM↓ (1.00118, 1.00563, 1.01152, 1.01825, 1.02645, 1.03691, 1.05061, 1.03448)

ApproxModDur0 (0.980583, 4.76207, 9.25537, 13.5134, 17.5685, 21.4533, 25.2023, 33.3704)

ApproxMacDur0 (1, 4.88112, 9.48676, 13.8513, 18.0078, 21.9896, 25.8324, 34.3715)

ApproxConv0 (1.92309, 27.6518, 97.5912, 205.408, 347.599, 521.555, 725.624, 2224.69)

DF0 0.980392, 0.915282, 0.845022, 0.776775, 0.710366, 0.645617, 0.582376, n.a.)

ISR0 0.0199010, 0.0177832, 0.0169104, 0.0169114, 0.0171721, 0.0175788, 0.0181027, n.a.)

Table 4.4: Initialization of the parameters of the Fixed Income market. The values correspond
respectively to each asset in terms of increasing maturities, starting with the one-year zero-coupon
risk free bond and ending with the perpetual bond.
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4.2 Multi-asset financial bubbles in an agent-based model with noise
traders’ herding described by an n-vector Ising model

We introduce a multi-asset model of a financial market in which rational fundamentalists and trend
following noise traders co-exist. The interactions and opinion formation of the noise traders are
described by an O(n) model. The n components of the generalized Ising model represent the dif-
ferent assets in which the traders can invest. Rejection-less transition probabilities are derived to
describe realistic investment decisions at the “micro” level. The agent-based model is validated by
testing for several characteristics of financial markets such as volatility clustering and fat-tails of
the distribution of returns. Furthermore, the model is prone to develop bubbles and crashes. We
distinguish three different regimes depending on the inverse temperature controlling the traders’
propensity to herd and imitate others. In the subcritical regime, the traders’ opinions are idiosyn-
cratic and no bubbles emerge. Around the critical value, asynchronous bubbles emerge, triggered
by an actual phase transition of the underlying O(n) model. Above the critical value, synchronous
bubbles emerge controlled by the time-varying external field representing the price momenta of the
risky assets.

This section is based on the working paper Cividino, D., Westphal, R., & Sornette, D. (2020).
Multi-asset financial bubbles in an agent-based model with noise traders’ herding described by an
n-vector Ising model.

4.2.1 Introduction

One of the most important concepts in complex systems theory is the emergence of highly non-
trivial collective phenomena from the interactions between a large number of agents. The presence
of repetitive interactions is the crucial element governing these phenomena. A clear analogy can
be visualised between the interactions of the spins in a ferromagnetic material which tend to align
their orientations while the temperature tends to push the system towards a disordered state, with
the social imitation between agents which tends to polarize the class of agents towards a common
preference, while stochastic idiosyncratic opinions among agents favor lack of consensus. These
two systems illustrate the ubiquitous fight between order and disorder, be it in a ferromagnetic
material or in a group of investors, which leads to a rich phenomenology and dynamics associated
with phase transitions between different regimes.

In the 1970s, Weidlich (1971) introduced the idea to describe decision making within social
groups and specifically their polarization as a physical ensemble of interacting spins. The idea to
use the Ising model to represent opinion dynamics was further developed for example by Galam et
al. (1982) who applied it to a strike process in a plant containing satisfied and dissatisfied workers
and by Grabowski and Kosiński (2006) who took the spacial location of individuals on a complex
network into account. Another application of Ising-based decision models is the voter model by
Holley and Liggett (1975), in which the opinion of a voter is a binary variable stochastically chang-
ing under the influence of its neighbors’ opinions. Roehner et al. (2004) have shown that, under
partial information, the rational optimization of expected payoffs under a utility function that con-
siders cultural norm, as well as herding, can be described by the Ising model. Many more Ising-like
models have been developed to describe collective behavior of animal and human societies. See
e.g. Sornette (2014) for a review and references therein.

The approaches to model opinion formation in social systems are also useful to understand the
investment decisions of traders in a financial market. Neoclassical economic theory is based on the
assumption of agents’ rationality and helped to describe many macroeconomic phenomena. How-
ever, the assumptions of rational representative agents and general equilibrium are hard pushed to
explain extreme events such as bubbles and crashes. For instance, the dynamical stochastic general
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equilibrium (DSGE) models used by central banks to inform their monetary policies were impotent
during the great financial crisis of 2008, as bubbles and crashes were by construction assumed im-
possible. This realisation has motivated renewed interest in agent-based models (Gualdi, Bouchaud,
et al., 2015; Gualdi, Tarzia, et al., 2015), which emphasise the existence of many interactive deci-
sion makers with bounded rationality and subjected to limited and possibly asymmetric information.
To better understand financial markets, it is crucial to embrace the fact that the world economy is
a constantly evolving multi-agent complex system, that can be studied with agent-based models
(ABM). In ABMs, the asset prices are endogenously defined by the agents’ investment decisions.
De Long et al. (1990, 2007) show that irrational traders with stochastic beliefs, so-called noise
traders, can create endogenous financial bubbles from positive feedback in an ABM. Especially, the
interaction of heterogeneous agents with heterogeneous beliefs can reproduce some of the charac-
teristic features of financial markets known as “stylized facts”. For example, Brock and Hommes
(1997) introduced an ABM in which traders switch between predictors of the future return based on
the past performance of these predictors. In Lux and Marchesi (1999), the traders switch between
being rational fundamentalists and noise traders by comparing the expected returns of the strate-
gies. Furthermore, the noise traders switch between optimistic and pessimistic mood influenced by
the other traders’ opinions. The model can reproduce some of the “stylized facts” such as excess
kurtosis and volatility clustering.

However, the vast majority of ABMs have been concerned with modeling the dynamics of one
risky asset, for instance a financial index or the stock of a firm traded in an organised exchange
market, coexisting with a riskless asset such as a treasury bill. But a fundamental characteristic of
investing is the possibility to diversify one’s wealth among many assets. The typical investor, es-
pecially the large institutional investors, mutual funds, pension funds and the like that dominate the
markets in terms of asset value under management, is mainly focused on optimising his diversified
portfolio. Diversification of investments over the whole universe of assets has led to the rich liter-
ature on asset pricing, starting with the Capital Asset Pricing model, the Arbitrage Pricing Theory,
and the whole “industry” of factor models (R. Campbell et al., 2016).

There are some ABMs that model several assets. Xu et al. (2014) developed an ABM in which
both fundamentalists and noise traders maximise their expected utility under a CRRA utility func-
tion differing only in the construction of the expected return. Similarly, Chiarella et al. (2007)
introduced a model of heterogeneous agents that maximise a CARA utility function and build their
expectation of the future return based on past observations. Here, our goal is to extend this lit-
erature and address some of the limitations of previous works. In the aforementioned ABMs, the
traders individually optimise their investment strategy without considering the other traders’ deci-
sions. However, phenomena such as bubbles and crashes occur due to the imitation of traders. In
order to describe realistic price dynamics, we consider the opinion formation in a group of investors.
In particular, our goal is to derive a multi-asset market model of interacting agents that is prone to
develop bubbles and crashes in order to understand bubble formation among multiple assets. We
are especially interested in the formation of time-synchronous and asynchronous bubbles as the
synchronous emergence of a bubble among multiple assets creates systemic risk and the crash of
one asset can trigger the other assets to crash as well, potentially resulting in a severe crash of the
whole stock market.

Our model is an extension of the ABM with Ising-like characteristics introduced by Kaizoji
et al. (2015). Fundamentalists and noise traders co-exist in this ABM of a financial market with-
out switching between the strategies. The rational fundamentalists maximize their expected utility
whereas the noise traders invest based on momentum following and social imitation. The noise
trader class is implemented as an Ising model in which each spin represents one trader invested ei-
ther in the risky or in the risk-free asset. The noise traders’ decision to switch between the assets is
influenced by the other traders’ opinion, their idiosyncratic opinion, as well as the price momentum,
which plays a role analogous to an external field of the Ising model. The collective opinion of the
noise traders exhibit a phase transition that underpins the emergence of bubbles in the asset’s price.
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Building on the ability of the Agent-based model by Kaizoji et al. (2015) to create endogenous
super-exponential bubbles in one asset, while being able to reproduce the most important features
of financial markets, we present a multi-asset extension in which the social imitation and momen-
tum following of traders are represented by an O(n) model. We propose this formulation of the
interactions between agents deciding to invest among several assets as an O(n) model because it
appears as the most elegant and rich description that naturally generalise the Ising model.

The paper is organised as follows. In the next section, the extension of the original market
model by Kaizoji et al. (2015) to a multi-asset framework consisting of one risk-free and multiple
risky assets is introduced. This includes the generalization of the dividend process, the wealth dy-
namics, and the traders’ decision process. A special emphasis is put on the noise traders’ stochastic
dynamics for the investment derived from an O(n) model. The price equation is derived from the
market-clearing conditions according to Walras’ theory of general equilibrium (Walras, 1954). In
section 4.2.3, the time series resulting from the traders’ interactions are analyzed and the “stylized-
facts” of financial markets are tested. Section 4.2.4 examines the emergence of bubbles among the
risky assets focusing on three different regimes of the noise traders’ underlying O(n) model-like
structure. Section 4.2.5 concludes.

4.2.2 The agent-based market model

The market model evolves according to discrete-time dynamics, where each time-step represents
one trading day, and is constituted of two classes of agents, the fundamentalist and the noise traders.
They invest according to different strategies into one risk-free and n risky assets. Their investment
decisions enter in the price equations, which govern the dynamics of the time-varying prices of
the risky assets. The latter quantities present super-exponential growths, implying the presence of
financial bubbles. In the following, we explain in detail the various components of the model.

The assets and the wealth dynamics

The model features one risk-free asset, representing a zero-coupon government bond with constant
unitary price, yielding a constant rate of return rf , and n risky assets, representing n stocks with
time-varying prices Pk,t, paying stochastic dividends dk,t with k ∈ {1, . . . , n}.

Allowing for possible correlations of their dynamics, we describe their time evolution through
n multiplicative growth processes

d1,t = (1 + rd,1t )d1,t−1

d2,t = (1 + rd,2t )d2,t−1

...
dn,t = (1 + rd,nt )dn,t−1

(4.141)

where the stochastic growth factors follow a multivariate normal distribution

(rd,1t , rd,2t , . . . , rd,nt ) ∼ N (~µ, Σd), (4.142)

with mean ~µ = (rd,1, rd,2, . . . , rd,n) and covariance matrix Σd. The stochastic dividend processes
represent the impact of the real economy on the stocks’ value. Consequently, the covariance matrix
provides a framework to analyze the impact of correlations coming from the real economy on the
price formation mechanism and the synchronization of bubbles. In the following, the variances
and correlations of the dividend processes are small in order to focus on the endogenous dynamics
resulting from the traders’ decisions and interactions. The returns of the risky assets consist of the
dividend yields ~ydt and the price returns ~rt. The dividend yields are defined as

~ydt =

(
d1,t

P1,t−1
, . . . ,

dn,t
Pn,t−1

)
(4.143)
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where Pk,t is the price of risky asset k at time t and the price returns are defined as

~rp,t =

(
P1,t

P1,t−1
− 1, . . . ,

Pn,t
Pn,t−1

− 1

)
. (4.144)

Consequently, the vector containing the total returns of the risky assets is defined as

~rtott = ~ydt + ~rt. (4.145)

The traders’ investment decisions are described in terms of the fraction of their wealth they invest
into each asset. Thus, the portfolio of a trader i is constituted by n risky fractions (xi1,t, . . . , x

i
n,t)

and one risk-free fraction xirf ,t. Borrowing and short-selling are not admitted in the market model,
hence the wealth fractions including the risk-free fraction are constraint to xik,t ∈ [0, 1]. Moreover,
the fractions must sum to one at each time step t

xirf ,t +
n∑
k=1

xik,t = 1. (4.146)

The wealth of trader i evolves according to

W i
t = W i

t−1

[
1 + rf +

n∑
k=1

xik,t−1r
k,excess
t

]
, (4.147)

where the quantity rk,excesst represents the excess return of the risky asset k with respect to the
risk-free return rf

rk,excesst =

(
dk,t
Pk,t−1

+
Pk,t
Pk,t−1

− 1− rf
)
. (4.148)

Fundamentalist traders

The fundamentalists are rational risk-averse traders who at each time-step maximize the expected
constant relative risk aversion (CRRA) utility function of the future wealth in terms of the risky
fractions and for a given level of risk. The derivation of the fundamentalists follows the origi-
nal description for one risky asset in Kaizoji et al. (2015) whereas the multi-asset extension fol-
lows Chiarella et al. (2009). At each time step, each fundamentalist trader constructs its portfolio
(xf1,t, . . . , x

f
n,t) solving the maximization problem

arg max
(xf1,t,...,x

f
n,t)

Et[U(W f
t+1(xf1,t, . . . , x

f
n,t)], (4.149)

where U represents the CRRA utility function with constant risk aversion γ

U(W ) =

{
log(W ) γ = 1
W 1−γ

1−γ γ 6= 1
(4.150)

Each fundamentalist trader solves the same optimization problem. Hence, the investment impact
can be considered at the aggregate level through a representative agent, whose wealth is equal to
the sum of all the fundamentalists’ wealth. The maximization problem (4.149) has been solved in
Xu et al. (2014), here we report the final solution. The fundamentalist portfolio allocation strategy
condenses into the equationx

f
1,t
...

xfn,t

 =
1

γ
Cov−1


Er,1 +

d1,t(1+rd,1)
P1,t

− rf
...

Er,n +
dn,t(1+rd,n)

Pn,t
− rf

 (4.151)
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where Cov−1 is the inverse matrix of the expected covariances of the future price returns estimated
by the fundamentalist traders. Furthermore, the fundamentalists build an expectation (Er,1, . . . , Er,n)
of the price return of the risky assets. These expectations could in principle depend on time, but are
assumed time-independent in the following for simplicity.

Equation (4.151) shows that the mean-variance trade-off present in the original model charac-
terizes also the multi-asset framework.

Noise traders

As in Kaizoji et al. (2015), the noise traders’ intrinsically stochastic investment strategy is driven by
social imitation and trend following, see also Lux and Marchesi (1999). The central feature char-
acterizing the noise traders class is its Ising-like structure which models the competition between
the ordering force of social imitation and the disordering impact of idiosyncratic opinion. This
very Ising-like structure explains the emergence of the bubbles and governs their dynamics. Indeed,
these highly non-trivial collective phenomena emerge through a polarization phenomenon which
constitutes an actual phase transition from a disordered state to an ordered one. The following sec-
tion extends the Ising-like structure of the noise traders class described in Kaizoji et al. (2015) to
a multi-asset framework. Specifically, we introduce an O(n) model on the fully connected graph
with an external field of price momenta to model the noise traders class.

Each of the N noise traders is associated with a spin vector

~Si = (si1, . . . , sin) ∈ Sn−1 (4.152)

representing its portfolio allocation. The positive components of the spin vector represent invest-
ments in the risky assets and the negative components represent investments in the risk-free asset.
More precisely, the risky fraction invested in a, if sia is non-negative is

xia = s2
ia if sia ≥ 0. (4.153)

The sum of all the negative components squared represents at the aggregate level the risk-free
fraction

n∑
a:sia<0

s2
ia = xrf . (4.154)

This definition ensures that the condition of wealth conservation
n∑
a=1

xia = 1. (4.155)

is always satisfied.
Each noise trader, i.e. spin, interacts with all the others. Additionally, a vectorial external field

~H acts on each spin, modeling the trend following attitude of the noise investors. In particular, each
component of the vector ~H corresponds to the price momentum Hk associated with the respective
risky asset k, defined as an exponential moving average of the past price changes, constituting an
indicator of the asset performance

Hk,t = θHk,t−1 + (1− θ)
(

Pk,t
Pk,t−1

− 1

)
, (4.156)

where θ ∈ [0, 1) controls the characteristic time window of memory of the past returns. The model
is characterized by the Hamiltonian

H({~S1, . . . , ~SN}) = − 1

2N

N∑
i6=j=1

~Si · ~Sj −
N∑
i=1

~H · ~Si, (4.157)
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where we assume a uniform constant unit interaction strength.
The standard Boltzmann weight fully describing the statistical properties of the model, is taken

as the equilibrium distribution

P ({~S1, . . . , ~SN}) = e−κH, (4.158)

where the herding propensity parameter κ, first introduced in Kaizoji et al. (2015), corresponds to
the inverse temperature β of the standard O(n) model and governs the relative importance of the
common investment preferences shared by the noise traders class with respect to the idiosyncratic
opinion of each agent.

Derivation of the transition probabilities
We are interested in modeling the investments’ dynamics of the noise traders class and not

just their average properties, hence in the following the transition probabilities characterizing the
stochastic dynamics of the model are derived. Our goal is to construct a Markov-chain Monte Carlo
(MCMC) having (4.158) as its equilibrium distribution (to discuss?), which defines realistic dynam-
ics for the traders’ investments. The latter constitutes a crucial point of the following derivation,
indeed we cannot rely on standard methods to generate a stochastic dynamics for the O(n) model
unless they give rise to a realistic description of the investment strategy of the noise traders from
the finance point of view. No standard method was found that well fitted the task, hence in this and
in the following two sections we derive an original method to generate a stochastic dynamics for
the O(n) model that allows for a realistic investment description from the finance perspective.

Each trading day, each noise trader updates its investment decision based solely on the infor-
mation available up to the previous trading day. We start from the discrete-time master equation
governing the evolution of the time-dependent conditional probability distribution

P (~Stl | {~St−1
1 , . . . , ~St−1

l−1 ,
~St−1
l+1 , . . . ,

~St−1
N }) (4.159)

of a single spin ~Stl given all the others. In the following {~St−1
1 , . . . , ~St−1

l−1 ,
~St−1
l+1 , . . . ,

~St−1
N } will be

considered as fixed parameters, each having a specific value on the (n−1)-sphere Sn−1. To lighten
the notation we denote

P (~Stl = ~A | {~St−1
1 , . . . , ~St−1

l−1 ,
~St−1
l+1 , . . . ,

~St−1
N }) = P ( ~A, t). (4.160)

The discrete-time master equation for the conditional probability to have ~Stl = ~A ∈ Sn−1 reads

P ( ~A, t)− P ( ~A, t−∆t)

∆t
= (4.161)∫

~B∈Sn−1

W ( ~B → ~A)P ( ~B, t−∆t)−W ( ~A→ ~B)P ( ~A, t−∆t),

where we assume a unit time increment ∆t = 1, corresponding to one trading day. In order to
derive the transition rates characterizing the MCMC, we set the stationarity condition using the
standard detailed balance rule. In this case, it reads

W ( ~A→ ~B)

W ( ~B → ~A)
=
P ( ~B)

P ( ~A)
∀ ~A, ~B ∈ Sn−1. (4.162)

Using the definition of conditional probability we can easily switch to the joint probabilities

P ( ~B)

P ( ~A)
=
P (~Sl = ~B | {~S1, . . . , ~Sl−1, ~Sl+1, . . . , ~SN}
P (~Sl = ~A | {~S1, . . . , ~Sl−1, ~Sl+1, . . . , ~SN}

(4.163)

=

P (~Sl= ~B,{~S1,...,~Sl−1,~Sl+1,...,~SN}
P ({~S1,...,~Sl−1,~Sl+1,...,~SN})

P (~Sl= ~A,{~S1,...,~Sl−1,~Sl+1,...,~SN}
P ({~S1,...,~Sl−1,~Sl+1,...,~SN})

.
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Simplifying the denominators we get the ratio between the joint probabilities, which we can explic-
itly compute as

P (~Sl = ~B, {~S1, . . . , ~Sl−1, ~Sl+1, . . . , ~SN}
P (~Sl = ~A, {~S1, . . . , ~Sl−1, ~Sl+1, . . . , ~SN}

(4.164)

=
1
Z e
−κ(− 1

2N

∑
i6=j 6=l

~Si·~Sj− 1
N

∑
i6=l

~Si· ~B−
∑
i6=l

~H·~Si− ~H· ~B)

1
Z e
−κ(− 1

2N

∑
i6=j 6=l

~Si·~Sj− 1
N

∑
i6=l

~Si· ~A−
∑
i6=l

~H·~Si− ~H· ~A)
.

Simplifying the common factors at numerator and denominator we get (minus a constant term of
order 1

N negligible in our case of large N )

P ( ~B)

P ( ~A)
= e−κ(− 1

N

∑
i
~Si· ~B− ~H· ~B+ 1

N

∑
i
~Si· ~A− ~H· ~A) (4.165)

= eκ(
∑
i
~Si·(~B− ~A)

N
+ ~H·( ~B− ~A)).

Hence the ratio of the transition probabilities is

W ( ~A→ ~B)

W ( ~B → ~A)
=
P ( ~B)

P ( ~A)
= eκ(

∑
i
~Si·(~B− ~A)

N
+ ~H·( ~B− ~A)). (4.166)

There are different possibilities to split the expression in two well-defined transition probabilities.
As already mentioned, the probabilities need to define a realistic dynamics. For example the stan-
dard Metropolis-Hastings rule (Metropolis et al., 1953), that assumes the transition probabilities are
composed of a uniform move proposal probability P and a move acceptance probability A

W ( ~A→ ~B) = P( ~A→ ~B)A( ~A→ ~B), (4.167)

would lead to a very bad modeling of the real actions of the traders. Indeed, in our setup the
acceptance probability would read

A( ~A→ ~B) =

1 if (
∑
i
~Si·( ~B− ~A)
N + ~H · ( ~B − ~A)) > 0

eκ(
∑
i
~Si·(~B− ~A)

N
+ ~H·( ~B− ~A)) otherwise.

(4.168)

The uniform proposal probability together with equation (4.168) define a totally unrealistic dynam-
ics where at each time-step, each noise trader chooses at random a new portfolio of investments
to switch to and its trade decision is arbitrarily accepted or rejected according to a probability
A( ~A→ ~B).

In order to obtain a realistic stochastic dynamics we need a rejection-less MCMC. We impose

A( ~A→ ~B) = A( ~B → ~A) = 1 ∀ ~A, ~B ∈ Sn−1. (4.169)

Hence, from the detailed balance condition it follows

P( ~A→ ~B)

P( ~B → ~A)
=
P ( ~B)

P ( ~A)
= eκ

(∑
i
~Si·(~B− ~A)

N
+ ~H·( ~B− ~A)

)
. (4.170)

This condition is satisfied setting

P( ~A→ ~B) = eκt
(∑

i
~Si·~B
N

+ ~H· ~B
)
. (4.171)

Normalizing we finally get the following transition probabilities

W ( ~A→ ~B) =
eκ
(∑

i
~Si·~B
N

+ ~H· ~B
)

∫
~K∈Sn−1 e

κ
(∑

i
~Si· ~K
N

+ ~H· ~K
) . (4.172)

115



Chapter 4. Agent-based models of multi-asset markets

We first notice that the transition probability from state ~A to state ~B is independent of the initial state
~A, a typical property of mean-field models, indeed it can be easily showed that our fully-connected
O(n) model is equivalent to the correspondent mean-field version in the large N regime, in which
we are.

Most important, equation (4.172) defines realistic dynamics from the point of view of the in-
vestment strategy of the noise traders. We show it in the next section, discussing the connection
between the Ising-like model we have constructed for our agents and the framework of decision
theory.

Decision-theoretic interpretation of the transition probabilities The form of the probability
distribution (4.172) coincides with a continuous version of the Logit probability distribution for the
arrival states. The Logit distribution is throughout used and studied in the discrete choice theory.
McFadden has shown in (McFadden, 1981), that the Logit probability distribution actually mod-
els individuals who maximize a utility function which has an implicit random idiosyncratic part.
Indeed, if each agent makes its choice maximizing

s∗ = arg max
s
{βus + ηs}, (4.173)

where s represents the possible choices from a finite set, us is the deterministic part of the util-
ity function, ηs is a random variable and β plays the role of the inverse temperature, McFadden
proved that P (s∗ = s) coincides with the Logit distribution if the random variable ηs is distributed
according to the Gumbel distribution, with cumulative distribution function

Fη(x) = e−e
−x−µ

λ . (4.174)

In our case the space of choices is continuous, the choices live on the hypersphere Sn−1, ~B ∈ Sn−1.
Nonetheless, the result of McFadden has been extended to the the case of continuous space of
choices, see for example Ben-Akiva et al. (1985). Hence, modeling the investment decisions with
the multivariate distribution (4.172), we are actually modeling traders whose decision process boils
down to the solution of the maximization problem

~B∗ = arg max
~B∈Sn−1

{κu ~B + η ~B}, (4.175)

where the deterministic utility function is given by

u ~B =

(∑
i
~Si

N
+ ~H

)
· ~B. (4.176)

Having established the connection between the transition rates characterizing the noise traders’
investment strategy and the Logit distribution we have unveiled the bridge between the present
Ising-like model of the noise traders class and the framework of decision theory in which we can
understand the decision process undertaken by each agent. This is, once again, an example of
the deep connection between the two approaches in modeling social systems, as also discussed in
Sornette (2014).

In light of this, all the modeling of the “macro” noise traders class can be understood starting
from the “micro” stochastic decision process of each noise investor. Due to their herding behavior,
they tend to align their portfolio allocations to the average portfolio allocation of the class.

The herding behavior is modeled by the deterministic part of the utility optimization in equation
(4.176), which can be considered as the rational part of the choice process undertaken by each agent.
In absence of clear information, imitation of others can be the unique rational strategy possible.
The Gumbel random variable instead models the random idiosyncratic part, specific to each trader,
which enters in the decision process.

In particular, formula (4.175) clarifies how the herding propensity κ governs the relative impor-
tance of the deterministic part of the utility function common to all the traders, hence pushing the

116



4.2. Multi-asset financial bubbles in an agent-based model with noise traders’ herding described
by an n-vector Ising model

traders to polarize towards the same investments, with respect to the random part modeled by the
Gumbel distribution representing the importance of the idiosyncratic opinion of each individual.

We utilize this connection to construct an algorithm to simulate the noise traders’ investment
decisions. To generate the dynamics of our model we have to sample realizations of the random
vector ~B = (B1, . . . , Bn) from the multivariate probability distribution (4.172). Unfortunately,
constructing a sampling procedure is difficult due to the high dimensionality of the distribution and
to the non-trivial relation between the components of the random vector,

∑n
k=1B

2
k = 1.

Nevertheless, discretizing the space of choices Sn−1 results in a discrete Logit distribution and
instead of sampling the choices directly from the probability density function we can model each
decision as the discrete version of the maximization problem (4.175).

At the beginning of the simulation, we discretize the space of choices Sn−1 once and for all to
preserve the detailed balance condition. Then at each time-step, the trading decision of each noise
trader, i.e. the reallocation of its portfolio, is generated according to the following algorithm.

Algorithm 1: Simulation of the noise traders’ investments (decision-theoretic approach)

for each noise trader i do
for p ∈ {1, . . . , Npoints} do

generate i.i.d. Gumbel RV ηp;
end
~B∗i = arg max

~Bp

{
κt(

∑
i
~Si

N + ~H) · ~Bp + ηp
}

end

We comment again that the deterministic quantities entering the decision process refer to the
previous trading day and are common to all traders. Unfortunately, despite the intuitive interpreta-
tion of the actual decision process of each agent, the method suffers from the curse of dimensional-
ity. The computational cost of the simulation is exponential in the numberNpoints used to discretize
the hypersphere and clearly a large number of points is needed to have a good discretization and a
realistic simulation. Moreover, the problem aggravates for increasing dimensionality n and we are
interested in building an algorithm well scalable to a large number of risky assets n, in order to have
a realistic description of financial markets.

To overcome the computational problems of the present method, in the next section we derive a
different algorithm to generate the stochastic dynamics of the noise traders’ investments.

Symmetry-based approach
To construct an efficient method to sample from the probability density function (4.172), we

exploit its symmetry property. The method is constituted of two steps. In the first, we sample an
angle theta from a univariate distribution and then in the second we sample uniformly at random
from a particular hypersphere Sn−2, a subset of the original space of choices Sn−1. We start from
the non-normalized form of the transition rates

W ( ~A→ ~B) ∝ eκt
(∑

i
~Si

N
+ ~H
)
· ~B. (4.177)

We explicate the symmetry property of the dot product entering the density function, expressing it
in terms of the angle θ between the vector

~M =

∑
i
~Si

N
+ ~H (4.178)

and the vector ~B. It is always possible to define a unique angle between two vectors in any inner
product space and in particular in the Euclidean space Rn to which our vector belongs to. Hence
we express the dot product as

κt ~M · ~B = κt‖ ~M‖ cos θ, (4.179)
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where we used that the norm of ~B is exactly equal to one. Taking advantage of this result and
discarding a constant factor independent of θ, we can rewrite the probability distribution as

P (θ) ∝ eκt‖ ~M‖ cos θ(sin θ)n−2, (4.180)

which now effectively depends only on one variable

θ ∈ [0, 2π). (4.181)

The sets of equiprobable choices, i.e. equiprobable vectors ~B, are defined by the conditions{
1
‖ ~M‖

~M · ~B = cos θ

‖ ~B‖ = 1
(4.182)

The first condition defines an hyperplane in Rn. In fact it can be written as

m1b1 +m2b2 + . . .+mnbn = cos θ, (4.183)

where m1, . . . ,mn are fixed coefficients. The second condition instead enforces the choice vectors
to belong to the hypersphere Sn−1. We now use the geometric fact that the intersection of a hy-
persphere Sn−1 and a n-dimensional hyperplane, is still a hypersphere, yet of one less dimension.
Indeed, the system (4.182) defines a hypersphere Sn−2 in Rn, with center

~C = cos θ
1

‖ ~M‖
~M (4.184)

and radius

r =
√

1− cos2 θ = sin θ. (4.185)

This fact will be crucial in constructing the sampling algorithm.
First of all, we focus on the angle θ, which represents for a noise trader the reallocation of its

portfolio. Before sampling it, we take into account the status-quo bias which could push the noise
trader to maintain its present portfolio composition through a Bernoulli random variable.

Each trading day, before proceeding with its trading decisions, the noise trader first decides if
to perform any trading moves at all or to just be inactive on the financial market for that day and
hold its previous portfolio allocation position which he considers solid and profitable.

The trader decides to be active in the financial market and modifies its portfolio allocation with
a probability

P (active) = min

{
1,

1

th
eκ‖

~M‖
}
. (4.186)

The probability to be inactive and hold the previous portfolio allocation is clearly

P (holding) = 1− P (active). (4.187)

The parameter th represents the average number of trading days the noise trader keeps its asset in
absence of herding behaviour. In this way, we can directly control the trading frequency and the
intensity of the oscillating behavior of the time series characterizing the resulting market dynamics.

In case the trader decides to be active, we have to sample an angle θ representing its portfolio
reallocation. Since we have proven that the complicated multivariate distribution (4.177) actually
reduces to the univariate distribution (4.180), we can directly sample from the latter with rejection
sampling, having effectively overcome the problem related to the curse of dimensionality. The
rejection sampling method is presented in the following algorithm.
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Algorithm 2: Rejection sampling from the univariate P (θ) distribution

while (u ∗ eκt‖ ~M‖) > eκt‖
~M‖ cos θ(sin θ)n−2 do

θ = Uniform(0, 1) ∗ 2π;
u = Uniform(0, 1);
(the uniform RVs are sampled i.i.d.)

end
return θ;

After having sampled an angle θ, we have to choose a vector uniformly at random from the
equiprobable set defined by that angle. Fortunately, the set is just a hypersphere Sn−2 and we can
rely on an efficient algorithm to perform the sampling. Indeed, due to the spherical symmetry
property of the multivariate normal distribution, the normalized random vector whose components
are sampled in an i.i.d. manner from the standard normal distribution N (0, 1)

~Bunnorm =
(
N1(0, 1), . . . ,Nn−1(0, 1)

)
(4.188)

~B∗n−1 =
~Bunnorm
‖ ~Bunnorm‖

(4.189)

is uniformly distributed on Sn−2. To immerse the vector in Rn we have to add one extra zero
component, for example at the beginning of the vector, effectively increasing its dimensionality by
one. The new vector is

~B∗n =
(
0, ~B∗n−1

)
. (4.190)

Moreover, the hypersphere has to be translated and its radius rescaled according to (4.184) and
(4.185). Finally, in order to correctly represent the intersection between the higher dimensional
Sn−1 hypersphere and the hyperplane, the Sn−2 hypersphere needs to be rotated in such a way that
the unit versor, corresponding to the extra component added in (4.190), is rotated to the direction of
the normalized vector 1

‖ ~M‖
~M .

We have to construct the orthogonal matrix R representing the rotation of the unit versor

~X = (1, 0, 0, . . . , 0), (4.191)

to the direction of the vector 1
‖ ~M‖

~M . The matrix R has to satisfy

1

‖ ~M‖
~M = R ~X. (4.192)

In two or three dimensions, such a rotation is given by the standard matrices containing sine and
cosine functions. In the general case of n dimensions, finding an efficient and numerical stable
algorithm is not an easy task. We use an approach based on Givens rotations and to construct the
rotation we thoroughly refer to Zhelezov (2017).

Eventually, the choice vector ~B sampled from the distribution (4.172), representing the noise
trader’s portfolio reallocation, is given by

~B∗ = sin θR~B∗n + cos θ
1

‖ ~M‖
~M. (4.193)

Summarizing, the sampling algorithm is as follows.
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Algorithm 3: Simulation of the noise traders’ investments (symmetry-based approach)

if Uniform(0, 1) < min
{

1, 1
th
eκ‖

~M‖
}

then
sample angle θ from P (θ) with algorithm 2;
sample uniformly a vector ~B∗n−1 ∈ Sn−2;
~B∗n = (0, ~B∗n−1) ∈ Sn−1;
construct the rotation matrix R following (Zhelezov, 2017);
~B∗ = sin θR~B∗n + cos θ 1

‖ ~M‖
~M ;

else
~B∗ = previous time-step portfolio;

end
return ~B∗;

Market clearing and price equations

The market price is set according to a Walrasian auction, i.e. at each time-step the supply and the
demand must equilibrate (Walras, 1954).

Setting the aggregate excess demand to zero in the original case of only one risky asset leads to
a second-order equation in the unknown Pt. The equation can be solved explicitly giving a unique
physical solution, i.e. a positive price, which represents the new price of the risky asset. Extending
the model to n risky assets, the equilibrium condition has to hold simultaneously for each asset.

Defining the excess demand from time t − 1 to t for each risky asset k for the trader i with
i ∈ {f, n} as

∆Di,k
t−1→t = W i

tx
i
k,t −W i

t−1x
i
k,t−1

Pk,t
Pk,t−1

(4.194)

together with the risky fractions defined in (4.151) for the fundamentalists and in (4.153) for the
noise traders, the equilibrium condition translates into the system

∆Df,1
t−1→t + ∆Dn,1

t−1→t = 0

∆Df,2
t−1→t + ∆Dn,2

t−1→t = 0
...

∆Df,n
t−1→t + ∆Dn,n

t−1→t = 0.

(4.195)

The system (4.195) is a non-linear system in the n unknowns P1,t, . . . , Pn,t, where each equation is
a polynomial equation of degree n+ 1 in all the unknowns. The system is solved numerically with
an iterative method, based on the Hybrid algorithm proposed in Powell (1968) and Powell (1970),
derived from the classical Newton–Raphson algorithm. Using the prices at the previous time-step as
initial condition for the numerical solver, the method consistently converges to the correct physical
solution for a wide range of parameters close to the real market quantities.

Parameters

The market parameters and initial values are chosen such that each time-step represents a typical
trading day. In particular, such that the standard deviation of daily returns resembles the 1-2%
observed in real markets following the derivation in Kaizoji et al. (2015). The complete set of
parameters is reported in table 4.5. All rates such as the risk-free return rf , the initial dividend di,0,
the dividend growth rate rd,i, and the expected returns Er,i, as well as variances are reported as
daily values. Fundamentalists and noise traders are initialized with equal wealth Wn

0 = 109 and the
simulations are conducted over T = 5000 time-steps which corresponds to 20 years assuming that
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Parameters

Assets Nstocks = 4 rf = 4× 10−5

rd,i = 1.6× 10−4 ∀i di,0 = 1.6× 10−4 ∀i
Pi,0 = 1 ∀i Σd

i,i = 1.6× 10−5 ∀i

Fundamentalist W f
0 = 109 Er,i = 1.6× 10−4 ∀i

traders Σf
i,i = 0.0004 ∀i

Noise Wn
0 = 109 N = 1000

traders θ = 0.99 Hi,0 = 1.6× 10−4 ∀i

Market T = 5000

Table 4.5: Set of parameters and initial values used in the simulations.

one year contains approximately 250 trading days. No correlation among the dividend processes is
assumed. Regarding the fundamentalist traders, the expected covariance matrix implementation is
divided into a vector of expected variances and a matrix of expected correlations. The variances are

Σf
i,i = 0.0004 i = 1, . . . , 4 (4.196)

and the correlation matrix is set equal to

Cf =


1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

 (4.197)

The initial investment decisions for fundamentalists and noise traders are as follows

~xf0 = (0.075, 0.075, 0.075, 0.075) (4.198)

~xn0 = (0.125, 0.125, 0.125, 0.125), (4.199)

where each component represents the investment into one of the n = 4 risky assets. The remaining
fraction of each traders’ wealth is invested into the risk-free asset.

Finally, an average holding time of ten trading days is imposed with the parameter th = 10.
The constant risk aversion is endogenously computed at the beginning of the simulation from

the initial conditions as

γ =
Er,1 +

d1,0(1+rd,1)
P1,0

− rf
Cov1,1x

f
1,0 + . . .+ Cov1,nx

f
n,0

, (4.200)

which constitutes a natural generalization of the original model’s formula in Kaizoji et al. (2015),
also adopted in Damiani (2019) and Kopp (2020).

We are interested in analyzing the impact of both constant herding propensity κ and time-
varying κt, in several ranges of values that will be specified from time to time. In particular,
the time-varying herding propensity parameter models the impact of a changing geopolitical and
economical situation on the tendency to herd of the noise traders and is defined by an Ornstein-
Uhlenbeck stochastic process as

κt = κt−1 + ηκ(µκ − κt−1) + σκνt, (4.201)

with νt ∼ N
(
0, 1
)
. The mean reversion strength ηκ and the standard deviation σκ are explicitly

indicated for each different simulation.
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The core of the model is implemented in C++. Each part of the model (e.g. the fundamentalist
traders, the risky assets, the price equations) is implemented by one specific class, following an
object-oriented programming paradigm. To have reproducible results, a pseudo-random number
generator with a random seed specified as a run-time parameter is used. The results of the simulation
are stored in a database using the HDF5 high-performance data software library. Then all the
analysis of the data and the plotting are performed with Python.

4.2.3 Time series analysis and stylized facts of financial markets

Time series analysis

In this section, we present the time series resulting from a simulation characterized by the set of pa-
rameters introduced in the previous section. Figure 4.15 shows characteristic price time series of the
four assets resulting from the traders’ investment decisions. In this simulation, the herding propen-
sity follows an Ornstein-Uhlenbeck process to represent time-varying susceptibility to herding and
momentum following observed empirically. The mean value µk = 0.98 · κc is defined slightly be-
low the critical value κc = 4, such that κt transiently fluctuates into the ordered regime. The mean
reversion strength η = 0.013 and the standard deviation σκ = 0.25κc

√
2η are defined such that

κt returns from two standard deviations above the mean to the subcritical regime in approximately
∆T = 250 time steps, see Kaizoji et al. (2015) for the derivation.

The prices contain volatile and stable regimes while demonstrating a long-term growth rate that
is similar for all four assets. The long-term growth rate is equal to the growth rate of the dividend
process as verified for the two asset model in Westphal and Sornette (2020a). Figure 4.16 exemplary
presents one of the assets in more detail. The comparison of the price time series with the κt process
shows that the noise traders create bubbles by polarizing their opinion when κt is above the critical
value. This is for example the case between t = 4000 and t = 4500 where the increase of the noise
traders’ fraction of wealth invested in the asset results in a bubble that grows over a time interval
of two years. When κt is below the critical value, for example between t = 1000 and t = 1500,
the noise traders’ opinions are disordered, the price is stable and dominated by the growth of the
asset. Furthermore, the return time series contains regimes with a large amplitude and regimes with
a small amplitude of returns. This tendency of large absolute values of the return to cluster together
is known as volatility clustering.

The price momentum used in the noise trader’s investment decision is calculated as the expo-
nential moving average of returns. Thus, it exhibits similar peaks and troughs as the price time
series but lags a few time steps behind. The lag is controlled by the memory length ∼ 1/(1 − θ)
the noise trader uses to calculate the momentum. Similarly, the fraction of wealth the noise trader
invests in the asset contains peaks and valleys. The invested fraction controls the price changes
and the price changes render positive feedback on the risky fraction via the momentum. The fun-
damentalists invest countercyclically by investing proportionally to the dividend-price ratio. This
means that they decrease their wealth fraction invested in the asset during a bubble and return to
their normal risky fraction during the crash. Consequently, the fundamentalists become wealthier
than the noise traders in the long-term. During bubbles, the noise traders’ wealth increases due to
their larger exposure to the risky asset. However, during a crash, they lose most of their transiently
acquired wealth while the fundamentalists are less affected by the crash and can even buy the asset
when it is undervalued.

Stylized facts of the financial markets

Financial time series feature the presence of ubiquitous statistical properties independent of the
details of the series itself (Cont, 2001). These emerging empirical properties have been observed
across a wide range of instruments, markets, and time periods and they constitute the so-called
stylized facts of the financial markets.
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Figure 4.15: Price time series resulting from a simulation with four risky and one risk-free assets
featuring an Ornstein-Uhlenbeck kappa process κt, stochastically fluctuating near the critical value
κc. The simulation parameters are given in table 4.5. Several bubbles are identifiable as super-
exponential growths of the prices.
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Figure 4.16: The figure shows the detailed time series characterizing the risky asset 0. It shows
the price, the actual return and the return expected by the fundamentalists, the price momentum,
the fraction of their wealth that fundamentalists and noise traders invest into the asset, the wealth
ratio of noise traders and fundamentalists over time and the herding propensity kappa. The market
is simulated over T = 5000 time steps with the parameters given in 4.5. For a comparison with the
other assets see figure 4.15.
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Figure 4.17: Log-log plot of the complementary cumulative distribution functions of the absolute
returns of the four risky assets from the simulation presented in figure 4.15. The exponents are found
fitting data from the last 20th percentile of the cumulative distribution, disregarding the largest ten
values.

To test the validity of the time series generated by the simulation of our model, it is important
to check if the model can reproduce some of these stylized facts.

Here we focus in particular on two of them, the fat-tailedness of assets’ absolute returns and the
long memory in the autocorrelation of the same quantities. The time series analyzed are the ones
from the simulation presented in the previous section.

The fat-tailedness of absolute returns
In this section, we compare the decay of the distribution of assets’ absolute returns resulting

from the simulation of the market model to the observed leptokurtic behavior of their empirical
counterparts (Cont, 2001, 2007). This leptokurtic trait can be understood from the point of view
of extreme value theory. Indeed, the empirical distribution of absolute returns has fatter tails with
respect to the Gaussian distribution. This means that rare events, represented by remarkably high or
low returns (trading days characterized by booms or crashes), happen more frequently with respect
to what the standard Normal distribution would predict. The relatively frequent presence of bubbles
and crashes represents one distinctive feature of the financial markets.

The empirical fat-tail decay of the distribution

p(x) ∼ x−1−α (4.202)

is characterized by an exponent α in the range (2, 4). As shown in figure 4.17, the fitted parameter
from the simulated time series shown in figure 4.15 falls in this range of values.

The long memory in the autocorrelation of absolute returns
The daily returns are not independent random variables. In the financial markets periods of

tranquility alternate to periods of high volatility. A common observation characterizing the financial
time series is the concentration of high price’s exuberance in definite time windows (Cont, 2001,
2007).

This clustering phenomenon goes under the name of volatility clustering. Its presence can
be analyzed by looking for patterns in the time evolution of the absolute returns. An effective
tool to accomplish this task is constituted by the autocorrelation function. Indeed, the presence
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Figure 4.18: Autocorrelation function of signed and absolute returns of the four risky assets from
the simulation presented in figure 4.15. The autocorrelation functions are computed for the data
after the 500th trading day in order to exclude possible misleading contributions due to the initial
conditions.

of long memory in the autocorrelation function is an indication of time inhomogeneity in the time
distribution of the returns, characteristic of the volatility clustering phenomenon. The signed returns

~rp,t =

(
P1,t

P1,t−1
− 1, . . . ,

Pn,t
Pn,t−1

− 1

)
. (4.203)

are empirically characterized by a fast-decaying autocorrelation, while the absolute returns |~rp,t|
have instead an autocorrelation with a longer memory. In figure 4.18 we check if our ABM is able
to reproduce this empirical fact. Indeed, the emerging autocorrelation functions present manifestly
this behavior.

4.2.4 Emergence and time synchronization of bubbles among the risky assets

In this section, we employ the extended market model endowed with the O(n) noise traders class
to investigate the phenomenon of the emergence of bubbles and, in particular, their synchronous or
asynchronous character.

Can we understand the mechanism triggering and governing the bubbles in the risky assets’
prices? Will the assets develop faster-than-exponential growths in their prices at the same time
or will the market be dominated by alternating peaks in different risky assets? Is there a correla-
tion in the return time series of different risky assets and, if it exists, can we understand how this
endogenous correlation emerges?

The analysis of the time series shows the presence of three distinct regimes characterizing the
dynamics of the market model. The three regimes depend on the range of values of the herding
propensity κ and are related to the regimes of the underlying O(n) model structure.
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Figure 4.19: The figure presents the time series resulting from a simulation with four risky and one
risk-free assets featuring an Ornstein-Uhlenbeck kappa process κt, characterized by a mean value
µk = 0.98 · 1, far below the critical value κc = 4. The mean reversion strength η = 0.013 and the
standard deviation σκ = 0.25 · 1 ·

√
2η are defined analogously to section 4.2.3, following Kaizoji

et al. (2015). The other parameters coincide with the ones presented in table 4.5. The market is
clearly in the disordered regime dominated by the idiosyncratic opinion. No bubble is present.

The subcritical market regime

The first regime corresponds to small values of κ far from the critical value κc = n. In this
subcritical regime, the market model does not produce super-exponential bubbles, as evident in
figure 4.19. This is true for both constant κ and Ornstein-Uhlenbeck κt processes, provided that the
latter moves stochastically in a range of values far from the critical point.

The reason for this behavior has to be searched in the noise traders class. Indeed small values
of κ correspond to a larger impact of the random component peculiar of each agent, with respect to
the deterministic utility function common to all the traders. This is clear in formula (4.175), which
we report here for convenience

~B∗ = arg max
~B∈Sn−1

{κu ~B + η ~B}. (4.204)

A small herding propensity represents a noise traders class dominated by the random idiosyncratic
opinion, hence the polarization of the class is not present or too small to exert any relevant effect
on the market. There is no emerging collective phenomenon of the investors capable of resulting in
super-exponential growths of the prices.
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Figure 4.20: The figure presents the time series resulting from a simulation with four risky and
one risk-free assets featuring an Ornstein-Uhlenbeck process κt, characterized by a mean value
µk = 0.98κc, with κc = 4. The market is simulated with the same set of parameters used for
the simulation in figure 4.15, see table 4.5 and section 4.2.3. Tranquil periods of steady expo-
nential growth of the prices alternate with volatile periods dominated by the emergence of super-
exponential bubbles, mostly asynchronous in time.

The critical market regime

The second regime corresponds to values of the herding propensity near the critical one κ ≈ κc. In
this regime we observe the emergence of clear bubbles if the simulation is characterized by a time-
varying Ornstein-Uhlenbeck kappa process κt, stochastically fluctuating near the critical threshold,
as presented in figure 4.20.

Phase transition and emergence of bubbles
It is the noise traders class that triggers the emergence of bubbles and governs their dynamics.

The social imitation attitude of these investors is able to trigger a polarization phenomenon of their
investment decisions, constituted by an actual phase transition of the underlying O(n) model. This
also motivates the critical value κc = n, characteristic of a fully connected O(n) model.

Despite the noise traders’ positive feedback on the price momentum and their interaction with
the fundamentalists, their strategy clearly exhibits the underlying statistical properties of the O(n)

model. Figure 4.21 shows that the average opinion
∑
i
~Si

N of the noise traders class presents the
well-known picture of a second-order phase transition, in turn characterizing the O(n) model.

This interaction-driven phase transition is controlled by the time-varying herding propensity
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Figure 4.21: Mean and standard deviation over all the trading days of the average opinion of the

noise traders class (norm of the average spin vector of that trading day ‖
∑
i
~Sti

N ‖). The figure reports
the values from the constant kappa simulations of three different market model characterized by a
different number of risky assets n = 3, 4, 10 and hence by three different O(n) models.

κt, which stochastically enters and exits the ordered regime, triggering the bubbles. This effect is
further amplified by the price momentum Ht.

When the bubbles develop in one or more risky assets, the price momenta of these assets in-
crease following the price dynamics, pushing more and more noise traders to invest into them, hence
creating a self-reinforcing loop.

When the herding propensity reverts to the sub-critical regime, the polarization of the noise
traders class starts to decrease, the idiosyncratic opinion starts to gain back importance and the
noise traders start to move to the other assets. This selling phenomenon decreases the prices of
the assets towards which the investments were polarized, as an effect the respective price momenta
become negative pushing more and more traders to sell the falling prices’ assets. The bubbles burst
and the prices return to their fundamental values or overshoot below the fundamental value before
returning to it. The mechanism just explained characterizes the positive bubbles, nevertheless, in
an analogous way, the noise traders can also polarize towards the risk-free asset, creating a negative
bubble. These alternating regimes of pessimistic and exuberant mood are described for example in
Sornette (2017) and R. J. Shiller (2006).

From this analysis, we can also motivate our choice of the detailed balance condition in deriving
the stochastic dynamics of the noise traders class, in contrast to the more general global balance
rule. Indeed choosing the detailed balance condition corresponds to restricting all the sources of
non-equilibrium to the stochastic wandering of the herding propensity parameter κt. Since we are
interested in the out-of-equilibrium effects deriving from a change in herding propensity κt of the
noise traders, in turns modeling the changes in the geopolitical and economical situation, we assume
the system is constantly pushed out of equilibrium solely by the parameter κt.

The asynchronous bubbles in the critical regime
In this regime, the market model features tranquil periods with subcritical values of κt, where all

the prices stay close to their fundamental values characterized by steady exponential growth. These
alternate with volatile periods with values of the herding propensity above the critical threshold,
which are instead dominated by the emergence of super-exponential bubbles in all the risky assets.
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Figure 4.22: Spearman’s rank correlation coefficients between the prices’ returns from the simula-
tion presented in figure 4.20.

The bubbles originating in the latter periods are mostly asynchronous among the different assets
as observable at a qualitative level from figure 4.20. Moving to the quantitative ground, the lack of
time synchronization is confirmed by the small values of the correlations among the assets’ returns
presented in figure 4.22. We use Spearman’s rank correlation coefficients to quantify the relation
between the returns because it measures the monotonic relationship between the variables. Pearson
correlation coefficients only measure linear relations and are not suitable for random variables with
fat-tails such as the return of this time-series. Neither the fundamentalists’ strategy nor the noise
traders’ one introduces correlation among the asset. In the case of the fundamentalists, this is clear
from the equation governing their portfolio allocation strategy (4.151) and from the fact that in these
simulations we always assume that no correlation is expected between the risky assets by this type
of agents

Cf =


1.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.0
0.0 0.0 0.0 1.0

 (4.205)

Clearly, non-zero values in this matrix would introduce some correlation in the prices. Studying the
impact of the expected correlations by the fundamentalists on the realized correlations constitutes
an interesting further direction of analysis. Nevertheless, here we are mainly interested in the
correlations introduced by the noise traders, hence we always set to zero the non-diagonal elements
of matrix (4.205). For the latter agents, we know that theO(n) model does not introduce correlation
among different components of the spin vector, hence explaining the asynchronous character of the
emergence of the bubble in this regime.

The supercritical market regime

The third and last regime is instead characterized by a large value of the herding propensity, far
above κc. The noise traders class is deeply inside the ordered phase, being dominated by a common
investment preference. Remarkably, also this regime presents bubbles in the prices. The bubbles
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Figure 4.23: The figure presents the time series resulting from a simulation with four risky and
one risk-free assets featuring an Ornstein-Uhlenbeck process κt, characterized by a mean value
µk = 0.98 · 20, far above the critical value κc = 4. The noise traders class is completely polarized.
The mean reversion strength η = 0.013 and the standard deviation σκ = 0.25 · 20 ·

√
2η are defined

analogously to section 4.2.3, following (Kaizoji et al., 2015). The other parameters coincide with
the ones presented in table 4.5. A clear pattern emerges, with a first bubble in one asset’s price
which triggers a cascade of synchronous bubbles in the other prices.
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Figure 4.24: Spearman’s rank correlation coefficients between the prices’ returns from the simula-
tion presented in figure 4.23.

characterizing these large values of herding propensity are of an intrinsically different nature with
respect to the bubbles of the critical regime, these last resulting from the phase transition of the un-
derlying O(n) model. Moreover, at odds with the second regime, we observe synchronous bubbles,
which are mainly driven by the trend-following attitude of the traders.

We present in figure 4.23 the time series from a setup with an Ornstein-Uhlenbeck κt wandering
around a mean reversion level µk = 0.98 · 20, deeply inside the ordered supercritical phase. An
important point is that the phenomena we are going to analyze in this regime do not depend on the
nature of the kappa process. Indeed, both constant kappa and Ornstein-Uhlenbeck one lead to the
same situation, provided κ, being time-varying or not, is always deep inside the ordered phase. At
odds with the critical regime with κt ≈ κc, the time-varying nature of the herding propensity is no
more important being only the supercritical nature of noise traders class the very element governing
this regime.

Two questions arise. First, what is the mechanism governing this type of bubbles since we know
that the explanation formulated for the bubbles near criticality does no longer apply? Second, can
we understand how this mechanism introduces the time synchronization feature in the emergence
of the bubbles?

Mexican hat potential and bubbles in the supercritical regime
The supercritical O(n) model is characterized by the well-known Mexican hat potential. The

continuous phase transition from disorder to order of theO(n) model is characterized by the smooth
deformation of the paraboloid, constituting the subcritical potential of the system, into the Mexican
hat. The single minimum located in the origin for the paraboloid, transform into a degenerate valley
of minima in the supercritical case. This phase transition is the underlying mechanism triggering
and governing the bubbles in the second regime.

In the supercritical regime, the situation is different and it is the very presence of the degenerate
valley of minima to govern the bubbles. Indeed, even if we are far from the critical point, the
system is characterized by a diverging susceptibility in the directions perpendicular to the non-
zero magnetization vector. The noise traders class reacts with a collective behavior in response
to small changes in the external field of price momenta. The price momenta can tilt the common
investments’ preferences of the class at the “macro” level.
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This emerging collective behavior governed by the price momenta is ultimately the mechanism
governing the super-exponential bubbles in this regime. Now it is clear why we stated that in the
critical regime the bubbles are governed by the social imitation attitude, while in the supercritical
one they are dominated by the trend-following attitude. In the first case, it is the transition to the
ordered phase triggering the bubbles, in the second instead the class is already polarized and it
is the tilting effect of the external field to drive them. Indeed, these are fundamentally different
mechanisms. We now move to the second question, why are the resulting bubbles synchronous?

The synchronous bubbles in the supercritical regime
We start presenting in figure 4.24, the realized returns’ correlations from the time series in figure

4.23. The Spearman correlation coefficients are between 0.18 and 0.3, which is significantly larger
than the correlations in the previous section. For each of the three bubbles, the asset that starts to
grow the bubble is not correlated to the others. The remaining three assets are positively correlated
during the bubble. The situation is fundamentally different from the second regime’s. The bubbles
are indeed mainly synchronous and the average positive correlations quantify this behavior.

The synchronous character of their appearance is unexpected. Indeed, on one hand, we know
that the fundamentalists’ strategy cannot introduce correlation among the prices since the expected
correlations are set to zero and hence the system (4.151) defining their allocation strategy is consti-
tuted by independent equations for the different risky fractions. Moreover, we again explicitly state
for clarity that as assumed throughout the present work no correlation has been introduced between
the dividends processes.

Furthermore, we know that the components of the spin vector are uncorrelated, hence neither the
noise traders’ strategy can introduce correlation among the prices. Then, where does the correlation
come from?

There is only one component of the model we have not considered, the price equations. Indeed,
the price equations are a set of non-linear coupled equations for the prices. The correlation can
only come from the coupled character of these equations. Yet, the complex structure of the non-
linear system makes an analytical study of the correlation introduced by the coupling between the
equations unfeasible.

Nonetheless, the large κ regime can give us a clue in understanding the origin of the positive
correlation. Indeed, for large values of the herding propensity, a clear pattern emerges in the time
series, as represented in figure 4.23.

The first bubble develops in one asset, triggered by a stochastic fluctuation and then amplified
by the positive feedback of the momentum. Its price starts to grow super-exponentially. Then on
average the investors, both fundamentalist and noise traders, get richer. Since their strategy leads
to a different response to the bubble event, their increase in wealth is different. The noise traders,
pushed by the social imitation and trend following attitudes, invest more on the asset undergoing the
bubble the more its price rises. The fundamentalist instead decreases their exposition on the asset
the more its price rises and reallocate their wealth to the other assets, following their risk-averse
strategy. Hence is understandable how the noise traders get richer with respect to the fundamentalist
investors during the bubbles. Nevertheless, both the investors get richer when a bubble develops.

Since the traders’ wealth increases, in order for the Walrasian equilibrium to be still satisfied, the
other assets’ prices must increase. This is evident from the market clearing condition characterizing
the Walrasian equilibrium

∆Df,k
t−1→t + ∆Dn,k

t−1→t = 0 ∀k (4.206)

where ∆Df,k
t−1→t and Dn,k

t−1→t represent respectively the aggregate excess demands of each group
for risky asset k. Expressing the equation in a more explicit form

W f
t x

f
k,t −W

f
t−1x

f
k,t−1

Pk,t
Pk,t−1

+Wn
t x

n
k,t −Wn

t−1x
n
k,t−1

Pk,t
Pk,t−1

= 0 (4.207)

and assuming constant all the quantities not explicitly depending on the other assets’ prices, in
particular on the one undergoing the bubble, we observe that the effect of the bubble of a specific
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asset on the other assets’ price equations is constituted solely by an increase of both the wealth of
the fundamentalist and noise traders.

The only effect, emerging from this differential analysis, of a bubble of asset i 6= k on the price
equation (4.207) of any other asset k is an increase of the quantities W f

t and Wn
t . The only way in

which the equilibrium equation could be still satisfied is that the price Pk,t is larger than the previous
time-step’s one Pk,t−1. We have indeed shown that an increase in one price triggers a positively
correlated increase in all the other prices. If the increase is strong enough to have a relevant impact
on the price momenta associated with the other assets, as in the case of a super-exponential bubble
in the supercritical regime, the increase of the price momenta triggers the emergence of synchronous
bubbles in all the other risky assets, through the tilting mechanism explained before.

Summarizing, since the investment strategies of both the classes of traders do not depend on the
magnitude of their total wealth but only on the characteristic of the assets, the increase of wealth
from which the traders benefit during the super-exponential growth of a bubble, cascades into the
synchronous emerging of bubbles in the whole risky assets market.

This explains the pattern in figures 4.23 and constitutes the mechanism at the origin of the
positive correlation among the risky assets.

4.2.5 Conclusion

We derived a market model with two types of agents who trade n risky and one risk-free assets. The
model is a multi-asset extension of an agent-based model with fundamentalists and noise traders
introduced by Kaizoji et al. (2015). The fundamentalists allocate their portfolio according to a
maximization of the expected utility under a CRRA utility function. Tliographyhe noise traders’
investment decision is described by an O(n) model in which the n components represent the dif-
ferent assets in which the traders can invest. This allows us to define realistic stochastic dynamics
while having control over the statistical properties of the model. The price momenta influence the
traders’ investment decisions in the form of the external field. The stochastic dynamics is com-
pletely specified by a discrete-time Markov chain, defined by the possible states, and the transition
rates among them. We derived rejection-less transition probabilities in order to describe a realistic
behavior at the “micro” level of the single investor.

The price at each time-step is defined by the traders’ demand and supply for each of the assets.
The resulting price time series exhibits bubbles and crashes and reproduces several “stylized facts”
of financial markets such as volatility clustering or fat-tails of the return distribution. The bubbles
emerge when the noise traders polarize their opinions towards one or more assets describing an
actual phase transition of the underlying O(n) model.

Furthermore, the model was applied to understand the synchronous and asynchronous emer-
gence of bubbles among multiple assets. Three regimes were found in which the mechanism re-
sponsible for creating bubbles differed. The regimes are defined by the inverse temperature rep-
resenting the traders’ propensity to herd. The critical value of the inverse temperature is n in the
O(n) model. In the disordered regime with a herding propensity smaller than n, no polarization and
consequently no bubbles emerged. Around the critical value, with a herding propensity transiently
fluctuating above the critical value, asynchronous bubbles emerged in various assets when phase
transitions occurred. The bubbles are largely driven by the polarization of the traders’ opinion. In
the third regime, where the herding propensity is far above the critical value and the noise traders
class is already polarized, synchronous bubbles still emerge even if not triggered by an actual phase
transition. They are instead driven by the traders’ momentum following. Small random price fluctu-
ations can trigger the noise traders to herd into that asset. The overall increase in wealth makes the
traders buy more of the other assets even if they keep the fraction invested into each asset constant.
The increase in momentum initiates the noise traders to shift their wealth from the risk-free to the
risky assets creating a time-synchronous bubble in all of the assets. The global trend that emerges
from this analysis is that the synchronization of bubbles increases with the increase of the range of
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value of the herding propensity parameter κt. When the tendency to herd of the investors is large,
the risk of a crash spreads from one asset to all of the other assets by triggering the growth of syn-
chronized bubbles. This creates systemic risk for an economy because the simultaneous crash of a
whole financial market or asset class can severely threaten an economy.

The model can be extended in several directions. In the present work, we focused mostly on
the derivation of the model, with the construction of an efficient algorithm to simulate it, together
with the identification of relevant regimes and the study of the characteristic time series. A deeper
analytical study of the theoretical properties of the model, absent in the present work, is of great
interest. For example in the interesting case of the number of risky assets n → ∞. Moreover,
the more realistic case of non-uniform social imitation strength could be addressed, together with
the exploration of the challenging field of the application of less constrained rules to derive the
stochastic dynamics of the noise traders’ investments from the O(n) model, for example through
the global balance rule (Bouchaud, 2013).

The realistic multi-asset market model that reproduces “stylized facts” of financial markets can
be applied to test the market impact of various portfolio optimization strategies in future research.
Furthermore, the role of contrarian traders modeled by a negative herding propensity in stabilizing
markets or triggering crashes could be analyzed. The market model also provides a framework to
test policies intended to decrease systemic risk or to prevent bubbles and crashes. It can help to
quantify the effect bursting one bubble has on other assets.
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