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Résumé 
Les gens aiment croire qu'ils sont maîtres de leur destin. Mais on comprend mal les cir-
constances dans lesquelles nous pouvons surestimer ou perdre notre capacité à optimiser 
les résultats, surtout lorsqu'ils sont le résultat de l'agrégation de différents produits d'op-
timisation. En utilisant des simulations numériques et des chaînes de Markov, nous mon-
trons que dans le jeu de minorité (MG) à horizon de temps fini (THMG) et dans les jeux 
de Parrondo (PG), des agents qui optimisent sur la base d'informations précédentes ob-
tiennent des performances inférieures à celles d’agents aléatoires. Le résultat inverse est 
obtenu pour les jeux de la majorité et le “dollar game”. De plus, les agents qui déploient 
leur stratégie la moins bonne dans le passé surperforment tous les autres agents dans les 
jeux de la minorité, et sous-performent dans les jeux de la majorité et le dollar-game. 
Ainsi, les stratégies à faible entropie sous-performent dans certaines circonstances, ce qui 
est paradoxal compte-tenue de l'utilisation de l'information existante. Nos résultats per-
mettant de préciser les conditions sous lesquelles le phénomène d'illusion du contrôle 
peut apparaître, et permet de quantifier l'amplitude de l'effet, dans des contextes a priori 
définis pour que l'optimisation apporte un plus. 

Pour aider à comprendre cette dynamique, nous démontrons que des séries chronologi-
ques dans le TH- MG, -MAJG et -$G possèdent des degrés caractéristiques de persistance 
– une mesure de la tendance à répéter des motifs. 

Ces séries peuvent être décomposées en des superpositions spécifiques de cycles déter-
ministes sur des graphes. Ces «taxonomies» conduisent naturellement à des questions 
connexes: Les séries financières peuvent-elles être caractérisées par leur cycle de décom-
positions? Est-il possible de générer des prédicteurs utilisant ces cycles de décomposi-
tion? Nous proposons des réponses en fournissant des exemples tirés des marchés finan-
ciers, où les actifs sont des actions, métaux précieux et taux de change. 
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Abstract 
People like to believe they are in control of their destiny. This ubiquitous trait seems to 
increase motivation and persistence, and is probably evolutionarily adaptive[1, 2]. But 
there is little understanding of when and under what circumstances we may over-
estimate[3] or even lose our ability to optimize outcomes, especially when they are the 
result of aggregations of individual optimization processes.  

Here, we demonstrate analytically using the theory of Markov chains and by numerical 
simulations in four classes of games, the Time-Horizon Minority Game (THMG) [4, 5], 
the Time-Horizon Majority Game (THMAJG), the Time-Horizon Dollar Game (TH$G) 
and the Parrondo Games [6, 7], that agents who optimize their strategy based on past in-
formation sometimes perform worse than non-optimizing agents, and other times better. 
In other words, low-entropy (more informative) strategies may under certain circum-
stances under-perform high-entropy (or random) strategies. Comparing the different re-
sults in different games sharpens the definition of the “illusion of control”—and the dis-
tinction between genuine and illusory control—in set-ups a priori defined to emphasize 
the importance of optimization.  

We demonstrate as well that if, in the Time-Horizon Minority Game, a subset of agents 
deploy what appears to be their worst-performing strategies instead of their best as do 
standard agents, these not only outperform the standard agents, they generate returns for 
themselves that can be absolutely positive. On the other hand, in the THMAJG and 
TH$G this is not true—agents that choose their worst-performing strategies underperform 
those that choose their best. As part of the attempt to understand the peculiarities of these 
dynamics, we demonstrate that the THMG, -MAJG and -$G may all be decomposed into 
a (finite-set) superposition of wholly deterministic cycles on graphs. 

The analysis of Time-Horizon games in these terms leads naturally to related but distinct 
questions: Is it possible to characterize real-world financial series by their cycle decom-
positions? And is it possible to generate working predictors by decomposing real-life 
time-series into a cycle decomposition? We answer by providing toy examples from the 
domain of equities (the NASDAQ Composite Index), of precious metals markets (the 
Philadelphia Exchange Gold and Silver Index) and of high-frequency foreign exchange 
(the former USD/DM exchange rate). 
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termed enlightened ages, are made with equal blindness to the fu-
ture; and nations stumble upon establishments, which are indeed the 
result of human action, but not the execution of any human design.” 

— Adam Ferguson, An Essay on the History of Civil Society (1767): 
Part Third. Section II, p. 122 of the Duncan Forbes edition, Edinburgh 
University Press, 1966. 
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Chapter 1. Introduction 
Human beings like to believe they are in control of their destiny. This ubiquitous trait 
seems to increase motivation and persistence, and is probably evolutionarily adaptive[1, 
2]. But how good really is our ability to control? How successful is our track record in 
these areas? There is little understanding of when and under what circumstances we suc-
cessfully optimize and control outcomes, and when we may over-estimate[3] or even lose 
that ability, especially when outcomes are the result of the aggregations of many individ-
ual optimization processes, i.e. within a complex adaptive system (CAS).  

Using the theory of Markov chains and by numerical simulations in four classes of 
games, the Time-Horizon Minority Game (THMG) [4, 5], the Time-Horizon Majority 
Game (THMAJG), the Time-Horizon Dollar Game (TH$G) and the Parrondo Games [6, 
7], we study analytically how agents who optimize their strategy based on past informa-
tion sometimes perform worse than non-optimizing agents, and other times better. In 
other words, low-entropy (more informative) strategies may under certain circumstances 
under-perform high-entropy (or random) strategies. Comparing the different results in 
different games sharpens the definition of the “illusion of control”—and the distinction 
between genuine and illusory control—in set-ups a priori defined to emphasize the im-
portance of optimization.  

We demonstrate as well that if, in the Time-Horizon Minority Game, a subset of agents 
deploy what appear to be their worst-performing strategies instead of their best, as do 
standard agents, these not only outperform the standard agents, they generate returns for 
themselves that can be absolutely positive. On the other hand, in the THMAJG and 
TH$G this is not true—agents that choose their worst-performing strategies underperform 
those that choose their best. As part of the attempt to understand the peculiarities of these 
dynamics, we demonstrate that the THMG, -MAJG and -$G may all be decomposed into 
a (finite-set) superposition of wholly deterministic cycles on graphs. 

It is further the case that the time-series generated by the THMG are, for a range of pa-
rameters, anti-persistent; the time-series generated by the THMAJG and TH$G are per-
sistent, where “persistence” is a measure of the tendency of a binary sequence to contain 
repeating patterns. 

The analysis of Time-Horizon games in these terms leads naturally to related but distinct 
questions: Is it possible to characterize real-world financial series by their persistence 
and/or cycle decompositions? And is it possible to generate working predictors by utiliz-
ing persistence and decomposing real-life time-series into a cycle decomposition? We 
answer by providing toy examples from the domain of equities (the NASDAQ Composite 
Index), of precious metals markets (the Philadelphia Exchange Gold and Silver Index) 
and of high-frequency foreign exchange (the former USD/DM exchange rate). 

The work presented here explores a very particular set of games that for the most part ex-
emplify “complex adaptive systems” (CAS; not so Parrondo Games). And in particular, 
we draw attention to the fact that the MG and THMG are characterized by anti-
persistence in the generated time-series, whereas series in both the MAJG/THMAJG and 
$G/TH$G are characterized by persistence. Specific as the examples may be, the exten-
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sion to financial markets suggests the more general importance of these games and their 
peculiarities in understanding complex systems both theoretically and in the real world. 

1.1 Plan of the Dissertation 
In Chapter 2. we briefly discuss the question of illusory versus genuine control in com-
plex systems in its historical context. We take from this discussion the motivation for and 
importance of attempting to understand quantitatively and where possible analytically, 
the circumstances under which control may be genuine and when it is likely to be illu-
sory. 

In Chapter 3. we survey and summarize descriptively the main results of the study in the 
market-modeling MG and in the PG. We discuss the important differences, both theoreti-
cal and applied, between the standard MG and its “time-horizon” variant, the THMG.  

In Chapter 4. we survey and summarize descriptively the main results of the study in the 
two other classes of market-modeling games the MAJG and the $G. We discuss the im-
portant differences, both theoretical and applied, between the standard MAJG and $G 
their “time-horizon” variants. We discuss the different results with respect to the illusion 
of control in the MG/THMG versus the MAJG/THMAJG//$G/TH$G.  

In Chapter 5. we present the differences among the main time-series generated by these 
games in terms of persistence/anti-persistence and in terms of their decomposition into 
cycles. The cycle decomposition method is used to analyze the illusion of control in the 
THMG and to illustrate how these games may be understood as perturbed deterministic 
processes. 

In Chapter 6. we present the results of generating real-world predictors based on the cycle 
decomposition method as well as persistence/anti-persistence. 

In Chapter 7. we illustrate certain additional findings and subtleties in these games corol-
lary to the main findings already presented. 

In Chapter 8. we discuss limitations in the present research and suggest further avenues 
of research opened up by the present findings. 

Chapter 9. is a mathematical methods appendix. We present formal analytic expressions 
for all four games. We also present methods for determining the persistence/anti-
persistence of a binary series, for decomposing a given binary series into a superposition 
of cycles on graphs and for obtaining analytically the cycle-decomposition of a known 
Markov transition matrix.  

Chapter 10. is an appendix that describes an alternate prediction method based on neural 
networks. We discuss the results in terms of what they reveal about changes in regime 
(i.e., phase transitions) in real world complex systems. The method illustrates a certain 
degree of predictive control along with many instances of the “illusion of control”. 

1.2 Associated publications 
The contents of five published, submitted and working papers are incorporated in this 
thesis. They are: 
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Chapter 2. The “illusion of control” in historical context: 
from society and the market economy to the physics of 
complex adaptive systems 

2.1 Spontaneous Order in Social and Economic Systems 
In a famous passage from Chapter 18 of Economic Sophisms, Friedrich Bastiat wonders 
why no one ever fears there will be no bread the next morning in Paris[8]:  

Here are a million human beings who would all die in a few days if supplies of all sorts 
did not flow into this great metropolis. … What, then, is the resourceful and secret power 
that governs the amazing regularity of such complicated movements…? [T]he principle 
of free exchange.  

What exactly is meant by “free exchange?” From a physicist’s perspective the answer is 
this: Quantifiable interactions (“exchanges”) that are relatively free (or “free-enough”) 
from globally-imposed (“top down”) rules.  

This is the essential claim of the Austrian School of Economics whose dominant voice 
was Friedrich Hayek: “For Hayek, market institutions are epistemic devices—means 
whereby information that is scattered about society and known in its totality by no one 
can be used by all by being embodied in prices”[9]. “Society and the Market are sponta-
neous orders—results of human action but not of human design” [10]. 

The essence of society and the market economy is cooperativity, which we distinguish 
from cooperation. Cooperativity amongst agents in an economy or citizens in a society 
arises tacitly without the deliberate seeking and coordination of action that constitutes 
cooperation proper. This unseen cooperativity is given literary vivid expression in Leo-
nard Read's “I, Pencil”[11]: 

[M]illions of human beings have had a hand in my creation…. There isn't a single person 
in all these millions, including the president of the pencil company, who contributes no 
more than a tiny, infinitesimal bit of know-how…. Neither... the miner of graphite in 
Ceylon [nor] the logger in Oregon can be dispensed with, any more than can the chemist 
at the factory or the worker in the oil field... There is a fact still more astounding: the ab-
sence of a master mind, of anyone dictating or forcibly directing these countless actions 
which bring me into being. 

Hayek explained this process from an socioeconomic perspective in a 1945 article in the 
American Economic Review, “The Use of Knowledge in Society”[10], at roughly the 
same time that John Von Neumann was beginning to develop the earliest notions of self-
organizing computational systems[12]. These, von Neumann argued, are the foundational 
model for biology and evolution: so called “Cellular Automata” governed exclusively by 
nearest-neighbor interactions, yet which demonstrated development, global self-
organization and self-propagation. Hayek wrote [10]:  

[I]n a system in which the knowledge of the relevant facts is dispersed among many peo-
ple, prices can act to coordinate the separate actions of different people...The whole acts 
as one market… [and] brings about the solution which … might have been arrived at by 
one single mind possessing all the information which is in fact dispersed among all the 
people involved in the process. 
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The mathematical formalization of self-organizing cooperativity began with the founding 
of what is now known as computational neuroscience in particular and the more general 
study of so-called “complex adaptive systems” (CAS).  

Although “complex systems” (CS) and “complex adaptive systems” have became major 
areas of study in the physical, biological and social sciences, no fixed definition of these 
has ever been agreed upon: The essence of what makes a system “complex” (not to be 
confused with merely “complicated”) has proven notoriously elusive. In his famous con-
currence to the court’s opinion in the obscenity case of Jacobellis v. Ohio (1964), United 
States Supreme Court Justice Potter Stewart wrote of pornography that it was “hard to 
define,” but nonetheless, “I know it when I see it.” So, too, with CS/CAS. 

Nonetheless, certain characteristic features of CS/CAS can be identified with fairly wide-
spread agreement. A system may considered complex[13] and is therefore a CS if: 

• It is composed of many interacting units (“agents”) such that… 

• …it demonstrates “emergent” traits, i.e., traits attributable to the system-as-a-
whole that are not characteristic of the constituent units and that do not arise from 
the simple statistical averaging over agents’ quantified traits. 

A CS is adaptive and is therefore a CAS if further: 

• Its agents they respond differentially in systematic fashion to changes in some 
condition of the whole (global state) or part of the whole (i.e., local state which 
need not necessarily be a neighborhood but often is). 

• The differential response of its agents is goal-directed, i.e., there is either an im-
plicit or explicit fitness function that dictates agent response. The fitness function 
may be defined locally, globally or both. 

By these definitions, CS/CAS may be demonstrated in naturally-arising physical systems, 
in living systems, in social systems and in abstract (usually computer-based) models [14]. 
A living terrestrial nervous system composed of neurons is a CAS as is likewise an artifi-
cial neural network whether its processing elements are constructed out of hardware units 
or are software simulations.  

An example of a computer-generated CAS that arises naturally in both an inorganic 
physical system and in a biological system is the so-called “compete-cooperate” cellular 
automaton (CA). Figure 1 shows all three: On the left the CA, in the middle the Belou-
sov-Zhabotinsky chemical reaction in a thin film of liquid (i.e., between two plates), on 
the right a colony on agar of the amoeba species dictyostelium discoideum [15]. All three 
develop the same time-varying but stable pattern: spirals of contrasting value (color) that 
rotate and propagate outward. 

In these instances, how an “agent” (abstract, molecular, single cell organism) responds is 
unrelated to any global measure of the system as a whole. Instead, it responds to the state 
of its nearest neighbors, adopting a like value when the sum of neighborhood values is 
below a certain threshold and a different value when it is above. Thus it incorporates both 
“cooperation” (i.e., imitation) and “competition” (anti-imitation).  
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Figure 1: Spiral wave formation in from left to right: Artificial (software) compete-cooperate cellular 
automaton, thin-film implementation of the Belousov-Zhabotinsky oscillating chemical reaction and colony 
formation on agar of the amoeba dictyostelium discoideum. (With permission [15]) 

In general computational science, the term “Artificial Intelligence” has come exclusively 
to refer to “expert systems” in which a set of predetermined algorithms are prepro-
grammed into a machine. No “adaptive learning” from experience takes place. Interest-
ingly, this definition has become embedded largely under the influence of Marvin Min-
sky at M.I.T., who nonetheless began his career seeking to exploit early discoveries of the 
opposite sort—that is, of what was then called “Perceptrons,” simple versions of artificial 
“neural networks”. Neural networks are machine learning devices modeled on biological 
nervous system tissue that employ trial and error learning to converge bottom-up toward 
solutions on their own. Like society and the market economy, and like John Von Neu-
mann’s “cellular automata”, they are networks of interacting elements that spontaneously 
self-organize. Von Neumann—the “father of the modern computer”—considered this 
biologically-based architecture, not the top-down architecture with which we are so fa-
miliar, to be the vastly superior kind, as it was the one employed to such self-evident as-
tounding versatility by nature. 

Minsky, however, gave up on neural networks in the 1960’s. But in the early 1980’s, a 
Cal Tech physicist named John Hopfield discovered that the mathematics of certain kind 
of combined magnetic and anti-magnetic substances found in nature—so-called “spin-
glasses” exactly mimicked that of a distinct kind of neural network remarkably similar to 
certain biological neural networks. Both provided a model for the spontaneous formation 
and storage of memories, the foundational capacity of intelligence, alternately conceptu-
alized as the global organization of the network as a whole. With his 1982 presentation 
on the subject to National Academy of Sciences[16], computational neuroscience was 
born as a subject of immense challenge and interest. Neural networks quickly became a 
field of massive academic research (initially dominated by physicists with a keen interest 
in spin-glass phenomena) and eventually industrial investment[17]. 

The “Hopfield net” is a certain kind of fully connected neural network mathematically 
identical to a network of spins in a state of matter (“spin glasses”) characterized by com-
petition, “frustration” and multiple equilibria. Both the artificial Hopfield net and the 
naturally-occurring spin glass are capable of evolving spontaneous order characterized by 
the spontaneous (“bottom-up”) formation of associative memories (that is “content ad-
dressable memories”) of the kind the human brain forms during the process of learning—
distinct from the deliberate (“top-down”) embedding by a “teacher” of addressable mem-
ory storage in standard computers.  

Networks of artificial processing elements, either hardware or simulated in software in 
artificial neural networks, networks of biological neurons, networks of interacting spins 
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in physical “spin-glasses” and networks of individuals forming a market economy all 
process information and store memories in related ways. (Related, but not necessarily 
identical as in the example shown in Figure 1) For example, the neurons in brain tissue 
are networked differently than in Hopfield nets: They are far less densely interconnected. 
For a long time it was not understood how they were able to store information as densely 
as a fully-interconnected Hopfield net is (whose memory capacity per neuron is actually 
relatively small compared to other ANN architectures of a kind not known in nature), and 
have essentially the same mathematical behavior. Recently it has been found that a net-
work of oscillating processors, weakly and sparsely interconnected, can display essen-
tially the same characteristics as a fully connected Hopfield net when driven by an exter-
nal pulse generator [18-20]. In the human brain, this pulse generator is the thalamus, 
which serves as a central clearing house for emotions. Thus, a central role of emotion 
from an evolutionary perspective is likely as a means for efficiently inducing different 
kinds of memory formation) They do so not because of any superimposed external rule 
(as when a memory is imposed or “written” into an address in standard “Random Access 
Memory”), but in consequence of a spontaneous order that arises as each element inter-
acts with any other element to which it is connected or related (or, as the case may be, to 
some common data input such as a recent string of thalamic impulses or a recent history 
of prices for a commodity). 

The “knowledge” or “intelligence” or “memories” are not stored in any one location or 
set of discrete locations but rather are tacitly embedded and distributed in the whole—in 
the structure of relations and interactions among the elements. In the discipline of compu-
tational science, such information processing (or intelligence) is called “distributed,” as 
in “distributed processing,” or sometimes, “massively parallel processing” and is charac-
terized by tacit “cooperativity” rather than explicit “cooperation”. Unsurprisingly, just as 
distributed processing can occur within a set of miniature processing elements inside a 
single desktop computer, distributed processing can (and does now) take place among 
worldwide networks of computers, with each individual computer serving as a single 
element within the global network—even if each individual computer is itself a massively 
parallel network of elements at a smaller scale. Likewise, if a human single cortex is un-
derstood as a sheet of neurons engaged in self-organized parallel computation, then a 
group of individuals can plausibly be understood as similarly engaged in massively paral-
lel computation—that is, in a process of problem solving, or of self-organization in which 
solutions to problems arise as a global order which while highly intelligent is the product 
of neither intention nor design, but the inevitable consequence, rather of completely local 
(i.e., individual agent) adaptation and action.  

2.2 The “law of unintended consequences” 
Even if it is now an accepted principle among researchers into “complex systems”, the 
ubiquity of cooperativity in the absence of deliberate coordination is a reality that is not 
merely alien but offensive to “common sense”. We have noted that human beings prefer 
to believe they are in control of their destiny. The commonplace inability to optimize 
while intending to; often to obtain worse results from the attempt; and indeed even to at-
tain the best results from doing that which appears the most counter-intuitive (“anti-
optimization”), is known in sociology and politics as “the law of unintended conse-
quences”. The law is widely described in academic sociology and economic theory (the 
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first formal analysis of this law appeared in an extremely influential 1936 article by soci-
ologist Robert K. Merton: “The Unanticipated Consequences of Purposive Social Ac-
tion”[21].); in politics and practical finance it is as widely ignored. 

The phenomenon of unintended consequences is documented primarily empirically 
through studies that retrospectively show how the social and/or economic consequences 
of a deliberate policy intervention fail to match intentions or even, perversely, worsen a 
condition the intervention was intended to ameliorate. An all-too common example in 
finance is the “whipsaw” phenomenon: During periods of high volatility, traders act emo-
tionally in accord with the immediately preceding market move only to fall victim to its 
reversal at the moment they act.  

Another more complex (and quantitatively analyzed) historical example arose during the 
so-called “Negative Income Tax Experiment (NIT) conducted in the United States be-
tween 1968 and 1980 (at which time a second ten-year study sample was cancelled two 
years in because of the unanticipated pernicious results confirming what was found in the 
first ten-year sample). This real-world controlled experiment in social policy studied 
8,700 individuals. By its termination in 1980 it had generated more than one hundred 
publications. The costs of research and administration were in the many millions at least; 
accurate tallies ultimately were lost track of. 

In brief, the NIT provided payments to individuals whose income fell below a given 
threshold. It was intended to mitigate the detrimental effects of poverty on labor force 
participation, marital stability, family formation, fertility, migration and many other con-
ditions. Numerous sites around the U.S. were selected for experimentation and in each 
region the subject population was randomly split into an experimental group that received 
a NIT and a control group that did not, both groups being matched in advance demog-
raphically. By 1980 it had become clear that its effects in every area were essentially op-
posite to what was intended: By almost every measure, the NIT-receiving group was both 
worse-off and less-contributory to society than the control group.[22-25]. Furthermore, 
the groups with the most detrimental results (e.g., young, male non-heads of families) 
were those with the greatest potential to effect long-term changes on the poverty rate —
either for better or for worse[26]. 

On the other hand, interventions that will surely seem counter-intuitive, if not wholly ir-
rational, can unexpectedly produce a contrary positive result—in the spirit of “reculer 
pour mieux sauter.” The long-standing political argument over whether reducing mar-
ginal tax rates may actually yield higher tax revenues to the taxing entity reflects the be-
lief of a substantial part of the economics profession (albeit far from all of it) that pre-
cisely such a counter-intuitive method yields optimal results. Another example in fi-
nance—not at the level of policy-making and “social engineering”, but at the practical 
level of day to day accounting—is presented in ref.s [27-30]: Accounting tools are meant 
to increase managers’ accuracy in forecasting and budgeting. But the use of these tools 
generates an excessive degree of optimism which is often more than enough to offset the 
tools’ benefits. 
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2.3 The physics of complex systems 
But many such debates in politics, sociology and even economics take place qualitatively 
using history (or anecdote) and arguments from political philosophy. When quantita-
tively, as in economics and sometimes sociology, empirical data must be used that is 
rarely clean and free from confounding variables. (The NIT example above is a rare in-
stance of a controlled—if scarcely double-blind!—socio-economic experiment carried 
out on populations in the real-world.) Ideally, one would like to be able to complement a 
discussion of genuine versus illusory optimization using mathematically definable agent-
based models that map pertinent features of complex systems arising both in nature and 
in society. 

The MG has elicited widespread interest precisely because it has this characteristic and 
yet its rules are remarkably simple. (See the computer pseudo-code in ref. [5].) By con-
trast, many agent-based simulations that have arisen in the sociology literature deploy 
agents that are extremely complex on the assumption that agents able to model the salient 
behavioral features of human beings must necessarily be intrinsically complicated (See 
the computer code in ref. [31].) Systems of such complicated agents are susceptible of 
numerical simulation and statistical review but of very little in the way of analytical ex-
pression. To be fair, it must be said—and the issue will arise in this work—that many 
real-world situations involve CAS where even if an equilibrium state is susceptible of full 
analytic expression, in the real world equilibrium is not attainable—these real-world 
situations involve systems that are always far from equilibrium. In other instances, the 
dynamic of interest is effectively always non-equilibrated. For example, an argument can 
be made that because of the constant introduction of endogenous factors such as innova-
tion in both product per se and trading method; and also because of an ever-shifting array 
(of a very large number) of external influences such as interest-rates, foreign exchange, 
politics and climate, no time-series generated by a real-world market is capable of attain-
ing a steady-state, regardless of the number of time-steps.  

And here we dealing only with a “simple” one-dimensional time-series (price or price-
change). The best work on agent-based sociology is thus inevitably driven to deploy 
agents so complex in their behavior that they are themselves best considered CAS, and 
the CAS arising out of their interactions can be mathematically analyzed only in ap-
proximation. A classic example is that of the relation between ANN and the neural struc-
ture of the brain (i.e. between computational neuroscience and neuroscience proper). The 
rules embedded in individual processing elements in many ANN yield fully analytic ex-
pressions for the nets as a whole. But real world-neurons have a plasticity in function and 
even physical form that make it evident that each is itself a highly complicated CAS 
whose behavior arises out of lower-level biological structures and biochemical signaling. 

The MG thus models the behavior of agents in a market to a remarkable degree consider-
ing its simplicity. In particular it models the phenomenon of agents competing for a lim-
ited resource. This kind of competition arises not only in certain kinds or aspects of fi-
nancial markets, it also models other kinds of human behavior, i.e., competing for the 
fastest lane on a multi-lane road—as soon as a majority of drivers choose the presently 
fastest lane, it becomes instead the slowest. Assuming that all drivers are equally clever 
in the switching strategies, the smartest move would be to simply stay put in any ran-
domly selected lane [32]. Other far more seemingly complex human social behaviors 
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might be well modeled by the MG, and the illusion of control: for example the quest for 
prestige, as exemplified by Groucho Marx: “I refuse to join any club that would have me 
as a member”. 

In that spirit, we demonstrate that if, in the Time-Horizon Minority Game, a subset of 
agents deploy what appears to be their worst-performing strategies instead of their best, 
as do standard optimizing agents, these not only outperform the standard agents, they 
generate returns for themselves that can be absolutely positive. On the other hand, if all 
agents adopt the counter-intuitive method this effect disappears. 

In 1936, when the law of unintended consequences was first formally denoted as such 
and studied, attempts at deliberate social engineering were in their infancy. Nowadays it 
is common, if not universal, for impact studies of social policies to be required prior to 
implementation. (Arguendo: Most of these studies leave much to be desired with respect 
to their accuracy and predictive capacity both because of a-priori political distortions and 
because such accuracy may be simply impossible to attain. When this is so, these studies 
have little value from a scientific perspective and serve primarily to reinforce the political 
considerations.) In the economic domain, complex as it is, a measure of success may 
found: For example, in the very mixed “free” (private) cum “socialized” (Medicare, 
Medicaid) market that characterizes medicine in the United States, arguments on behalf 
of changes in Medicare payments to physicians are now routinely accompanied by analy-
ses of the so-called “behavioral” effect of a change [33]: Decreasing physician compensa-
tion for a certain procedure will to the first order reduce the cost to government of that 
procedure. But it is presumed that if the cost is lower the demand for it will increase 
among patients (elementary pricing theory) and that physicians will both look for plausi-
ble opportunities to increase the procedures use and to substitute alternate procedures to 
protect their income. If the combination of elementary price elasticity plus physician be-
havioral changes result in no net change to physician income, the intended savings will 
be wholly lost. Worse than that, physicians may grow to perceive their Medicare income 
as being routinely subject to arbitrary seeming diktats. They may thus adapt (as a bacte-
rium does to ever-more powerful antibiotics) with ever more sophisticated methods for 
eluding the intended cost-reductions. In the practice of medicine, the balance of time and 
effort devoted by the physician to fiduciary professionalism on the one hand and protec-
tive self-interest on the other may be adversely shifted toward the latter, damaging the 
profession’s collective benefit to society. 

The MG has provided a simple analytic model for studying the incorporation of impact 
on a self-organizing system. If in making their decisions a small subset of agents in the 
THMG take into account their own impact on the system as a whole, they perform sig-
nificantly better than agents that do not. If all agents take into account their impact, the 
system as a whole performs better, but with a caveat: The frustration that makes the MG 
so useful a model for markets (and by extension other social systems) disappears. The 
system settles into a deterministic Nash equilibrium which cannot be said to model typi-
cal complex systems’ behavior. 

Furthermore, the outperformance of a minority of agents that account for their impact is 
not as a great as the outperformance of a same-sized minority that simply “anti-
optimizes”, as we will discuss. 
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Fiske notes that the illusion of control is especially strong under certain circumstances 
[34]: 

• When the choice of action is carefully considered 

• When the choices of action are known 

• When the individual’s actions contribute to the overall state (“involved in the 
situation”, rather than an observer) 

• When the overall state arises from (or is perceived as arising from) a competition 
with other individuals 

He observes that “this perfectly describes the situation of a person deciding whether they 
can get away with a social transgression.” We note that it rather more accurately de-
scribes the situation of an agent in the MG or THMG. These, of course, are “toy markets” 
and the four descriptors above equally-well describe the situation of a trader. Perhaps in 
the reference to “social transgression” we see an example of a common stereotype preva-
lent among majorities that the winning minority in a market system are e.g., “robber bar-
ons” and that therefore “property is theft”.  

We defer further political philosophizing to emphasize that even simple collective games 
such as the MG can be studied as models of not just markets but social systems and that 
the illusion of control is a ubiquitous phenomenon deserving of quantitative and analytic 
study. To the extent that there genuinely exists an “illusion of control”, both losers’ nega-
tive assessments of why winners win (theft) and winners’ self-important assessments of 
why they do (skill) are inaccurate. (As an example of such self-importance, consider Leo 
Hundery, Jr. on his net worth of 150 million USD: “..there are people, including my-
self…who because of their uniqueness warrant whatever the market will bear.”[35]. By 
contrast, a much earlier folk source asserts that “…the race is not to the swift, … nor yet 
riches to men of understanding, nor yet favour to men of skill; but time and chance hap-
peneth to them all.” [36]. The same points is mathematically formalized in a recent model 
explaining the Zipf law of (inter alia) wealth distribution and firm size: Ref. [37] demon-
strates that the law is attributable more to the random part of growth processes than to 
systematic drift—i.e., though both are as a rule present, chance dominates talent. A simi-
lar point is made in appendix chapter A10, where simulations demonstrate that the rank 
changes in an equity ranking system widely used by both individual and professional in-
vestors are attributable more to underlying stochastic processes than to intelligent as-
sessment of rank. 

Beliefs to the contrary are in accord with the extensively documented fact that people are 
“unrealistically optimistic especially when they extrapolate from their own past experi-
ence” [34], consistent with the illusion demonstrated in the MG and THMG. 

However, markets (or phases of a market) are not exclusively characterized by the minor-
ity mechanism. For example, market bubbles are characterized by the herd mentality (to 
wit: “The Madness of Crowds”[38]), i.e., the tendency of people to join a majority, and 
therefore for a time at least, in a self-fulfilling prophesy (positive feedback) drive up the 
price of a commodity. In a real world market, the underlying commodity is ultimately 
something tangible and it, of course, is in limited supply, otherwise no amount of chasing 
after it could drive the price up. But in an artificial market such as the MG, it is, as it 
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were, the price itself that agents chase after. And in real-world bubbles, this is what a ma-
jority of traders appear to do as well. The so-called “momentum” model of trading is 
based on the knowledge that regardless of underlying fundamentals, price sequences 
trend in one direction or the other more frequently than would be expected of a random 
walk. This leads to a greater frequency of extended rises. Thus many traders and certain 
phases of markets may be better characterized by a “Majority Game” (MAJG), where 
agents attempt not to be in the minority (and lose when they are) but the majority. 

However, in order to realize a paper gain of any sort, especially during a bubble, a trader 
must sell his holdings, i.e., leave the majority. But if a majority of traders do this at the 
same time, the bubble breaks and a large market drawdown ensues—the same mecha-
nism as the bubble but in reverse. In this case, a trader scarcely wants to be in the major-
ity, and a MAJG would seem intuitively to be incapable of capturing this dynamic. 

In fact, the ideal trader wants to be in the majority just as the market begins a rise, but in 
the minority just as it begins a decline. The “$-Game” ($G) is structured identically to the 
MG and MAJG but the function describing the payoff to agents is altered to capture this 
shifting objective [39]. All three games in their “time-horizon” variants may be expressed 
analytically for a finite number of agents in terms of Markov transition matrices. The 
relative simplicity of expression highlights the different circumstances under which the 
“illusion of control” emerges in differing CAS. 

It is important to ask whether the illusion of control—to the extent that it is present—is 
somehow unique to the THMG and/or MG, or whether it may be found in other settings. 
As an adjunct to the primary discussion we demonstrate that a similar illusion may be 
found in the most natural setting of a very different kind of game, the single-player Par-
rondo game. A Parrondo game is a game-theoretic formulation of a physical phenome-
non, the asymmetric drift of a charged particle in a so-called flashing-ratchet, i.e., an on-
and-off sawtooth-shaped potential: A particle executing 1D random motion in such a con-
stant potential will demonstrate no net drift from its original position. But if the potential 
is flashed altogether off and on, either at random times or cyclically, the particle will drift 
in the direction of the shallower of the two slopes of the “teeth”. Note that the mean po-
tential is simply a sawtooth ratchet of half the maximum excursion in which a particle 
would show no drift. Thus a seeming “paradox” arises if one incorrectly presumes that 
the flashing ratchet potential (say ½ the time on, ½ off) is equivalent to a stable ratchet 
potential of ½ height: One is tempted to think, at first, that the flashing potential must be 
equal to the mean of both since the instantaneous change in the potential off and on exerts 
no lateral force on the particle.  

This phenomenon can be analogized to a player who alternates among three negatively 
biased binary games (unfair coin-tosses). Under certain constraints the player will on av-
erage nonetheless win—the so-called “Parrondo Paradox” or “Parrondo Effect” (PE) [6, 
7]. At first glance, this seems as though it were like a gambler winning with statistical 
certainty against a house in Las Vegas simply by shifting at random between say Roulette 
and Craps—an evident impossibility. In fact, the Parrondo Effect is unlike this and can-
not be used to devise winning gambling strategies. Using the theory of Markov chains it 
has been shown that there is no real paradox in Parrondo games, as there is none in the 
flashing ratchet. The genuine phenomenon leads naturally to the question, “Is it possible 
to optimize the gains obtained from playing losing games?” 
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Furthermore, it turns out that if one sets up a certain (peculiar) optimization scheme in-
volving many players, an attempt to optimize the outcome yields the reverse result: In-
stead of doing better, the players do worse, obtaining negative results even against the 
positive “current” (drift) induced by the Parrondo Effect. We demonstrate using a setting 
more natural for the Parrondo game (which, unlike the MG, is inherently single-player) 
that the attempt to optimize using prior history yields a similarly strong reversal of out-
come, against the “current” of the Parrondo Effect proper. Attempts have been made to 
apply the Parrondo Effect to trading. These have unsurprisingly been unsuccessful. Our 
results demonstrate that the attempt to achieve success by optimizing is likely not only to 
fail but to yield even worse results[40]. 

We turn now to Chapter 3. wherein we summarize the main findings of this research. 
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Chapter 3. The “illusion of control” in agent-based and 
Parrondo Games 
In this chapter we survey and summarize the main results of our study of three classes of 
market-modeling CAS games (MG, MAJG, $G) and a fourth non-CAS game (PG). We 
concentrate first on the MG and THMG, using it and the pertinent results as the proto-
type. We then extend our observations to the MAJG and $G. We discuss the important 
differences, both theoretical and applied, between the standard MG (and the MAJG and 
$G modeled on it) and the so-called “time-horizon” variants of these games. We describe 
our results quantitatively and graphically, and defer an in-depth presentation of mathe-
matical methods for the Appendix. 

3.1 “Illusion of control” in the Time-Horizon Minority Game 
(THMG) 
The success of science and technology, with the development of ever more sophisticated 
computerized integrated sensors in the biological, environmental and social sciences, il-
lustrate the quest for control as a universal endeavor. The exercise of governmental au-
thority, the managing of the economy, the regulation of financial markets, the manage-
ment of corporations, and the attempt to master natural resources, control natural forces 
and influence environmental factors all arise from this quest. Langer’s phrase, “illusion of 
control” [3] describes the fact that individuals appear hard-wired to over-attribute success 
to skill, and to underestimate the role of chance, when both are in fact present. Whether 
control is genuine or merely perceived is a prevalent question in psychological theories. 
The following presents two rigorously controlled mathematical set-ups demonstrating 
generic circumstances in which optimizing agents perform worse than their non-
optimized strategies, or than non-optimizing (fixed- or random-choice) agents. 

3.1.1 Definition and summary of main results for the Time-Horizon MG (THMG) 
We first study a variant of Minority games (MGs), which constitute a sub-class of mar-
ket-entry games. MGs exemplify situations in which the “rational expectations” mecha-
nism of standard economic theory fails. This mechanism in effect asks, “what expectation 
model would lead to collective actions that would on average validate the model, assum-
ing everyone adopted it?”[41]. In minority games, a large number of interacting decision-
making agents, each aiming for personal gain in an artificial universe with scarce re-
sources, try to anticipate the actions of others on the basis of incomplete information. 
Those who subsequently find themselves in the minority group gain. Therefore, expecta-
tions that are held in common negate themselves, leading to anti-persistent behavior both 
in the aggregate and for individuals. Minority games have been much studied as repeated 
games with expectation indeterminacy, multiple equilibria and inductive optimization 
behavior. 

Consider the Time-Horizon MG (THMG), where N players have to choose one of two 
alternatives at each time step t based on information represented as a binary time series 

( )A t . The action chosen by agent i is denoted ( )ia t  and the binary time series by 
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= ∑ . Those whose choice is the one chosen by the minority win. Each agent 

is endowed with S strategies. Each strategy gives a prediction for the next outcome 
( )A t based on the history of the last m realizations ( ) ( )1 , ,A t A t m− −… simplified into 

binary form—0 replaces ( )A t  when one state is in the minority, i.e., ( ) 0A t < , 1 when 
the other is. (m is called the memory size [length of the collective history] used by the 
agents). Each agent holds the same number S of (in general different) strategies among 
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m

total number of possible strategies. (A strategy associates every possible m-bit 
sequence ( )tμ  with a predicted next binary bit.) The S strategies of each agent are cho-
sen at random, with replacement, once and for all at the beginning of the game. At each 
time t, in the absence of better information, in order to decide between the two alterna-
tives for ( )A t , each agent uses her most successful strategy in terms of payoff accumu-
lated in a rolling window of finite length τ up to the last information available at the pre-
sent time t (the case of a limitlessly growing τ corresponds to the standard MG; the term 
“Time Horizon MG” refers to the case of a fixed and finite τ) .  

This is the key optimization step. If her best strategy predicts ( ) 1Sgn A t = +⎡ ⎤⎣ ⎦ (resp. –1), 

she will take the action ( ) 1ia t = −  (resp. +1). ( )ia t  is then added to the information set 
available for the next iteration at time t+1, along with it’s associated payoff. In the sim-
plest instance of the minority rule, the corresponding instantaneous payoff of agent i is 
given by 

 ( ) ( ) ( )i ig t Sgn a t A t= − ⎡ ⎤⎣ ⎦  (1) 

 (and similarly for each strategy for which it is added to the 1τ − previous payoffs). As 
the name of the game indicates, and as the minus sign in eqn. (1) indicates, if a strategy is 
in the minority ( ( ) ( ) 0ia t A t < ), it is rewarded. In other words, agents in the THMG try to 
be anti-imitative. The richness and complexity of minority games stem from the fact that 
agents strive to be different. Previous investigations have shown the existence of a phase 
transition marked by agent cooperation and efficiency between an inefficient regime and 
a random-like regime as the control parameter 2m Nα ≡  is increased: In the vicinity of 
the phase transition at 2 0.34cm

c Nα = ≈  (for both the THMG and MG proper), the size 
of the fluctuations of ( )A t (as measured by its normalized variance 2 Nσ ) falls below 
the random coin-toss limit for large m’s (assuming fixed N) when agents always use their 
highest scoring strategy [4]. In other words, for a range of m (given N, S), agent perform-
ance is better than what strategy performance would be in a game with no agents optimiz-
ing. The phenomenon discussed here is that when optimizing, and averaged over all ac-
tual agents and strategies in a given realization, agents in the TH variant of the MG none-
theless generally underperform the mean of their own measured strategy performance and 
do so in all phases for reasonable lengths of τ (as also the mean over all strategies in a 
given realization; all this under the restriction that agents do not account for their own 
impact).  
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For any given realization, however, a minority of agents outperform the mean of their 
strategies and the majority of other agents. Some may also achieve net positive gain, if 
rarely.). In the MG proper, however, τ is unbounded and a stationary state is reached at 
some very large 2 200m

eqτ ≥ × where a subset of agents “freeze” their choice of strategy: 
One virtual strategy score attains a permanently higher value than any other. These frozen 
agents in general do outperform the mean of all strategies in a given realization as well as 
the mean of their own S original strategies: They perform precisely as well as their best. 
We focus on results in the THMG with an eye towards real-world markets in which be-
cause the time series being predicted are non-stationary, trading strategies are weakened 
if they incorporate an unbounded (and uniformly-weighted) history of prior strategic suc-
cess or failure: Remote history is less important than recent history and beyond a certain 
point is meaningless. Unless specifically stated otherwise, throughout this paper, when-
ever we compare agent to strategy performance, we always mean the performance of 
agents’ strategies as measured by the accumulation of hypothetical points averaged over 
all agents in the system and the set of all of their strategies. Furthermore, in selecting a 
strategy the agents do not take account of the impact of their choice on the probable mi-
nority state—that is, they do not consider that their own selection of action reduces the 
probability that this action will be the minority one. (We refer to such agents as “stan-
dard”.) 

3.1.2 Statement of our main results on the “illusion of control” in the THMG 
Our main result may be stated concisely from the perspective of utility theory: Through-
out the space of parameters (N, m, S, eqτ τ ), the mean payoff of agents’ strategies (as 
calculated by each agent averaged over all strategies and agents in a realization) not only 
surpasses the mean payoff of supposedly-optimizing agents (averaged over all given 
agents), but the respective cumulative distribution functions (CDF) of payoffs show a 
first-order stochastic dominance of strategies over agents. Thus, were the option available 
to them, agents would behave in a risk-averse fashion (concave utility function) by 
switching randomly between strategies rather than optimizing. This result generalizes 
when comparing optimizing agents with S > 1 strategies with agents having only one 
strategy (or equivalently S identical strategies), when the single strategies are actually 
implemented. (This takes into account any difference in strategy performance that may 
arise from the simple fact of a strategy actually being deployed). The same result is also 
found when comparing optimizing agents with agents flipping randomly among their S 
strategies. Agents are supposed to enhance their performance by choosing adaptively be-
tween their available strategies. In fact, the opposite is true: By our metric, the optimiza-
tion method would appear to agents as strictly a method for worsening performance. (In 
the MG proper the situation is more complex. As detailed in [4], agents with two identi-
cal strategies—equivalent to having only one [and called therein “producers”]—always 
have net gain ≤  0. But this gain may be on average either greater or less than for agents 
that optimize among more than one strategy [called “speculators”]. Which is true depends 
inter alia on the proportion of producers to speculators: A very small proportion of pro-
ducers will outperform speculators. There is an expected proportion of producers that 
arises from the average over many different random possible initial allocations of strate-
gies among agents [i.e., quenched disorder]. Given this expected mean proportion, and 
averaging over all the agents in each initial allocation, the mean performance of strategies 
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is better than that of agents. This is true, however, only when agents do not choose their 
strategies at each step taking into account the impact of that selection.) 

Let us restate our result for the THMG in the language of a financial market with traders 
trying to outperform the overall market. We argue that in using the THMG as a model for 
traders’ actions, the following is the case: Every trader attempting to optimize by select-
ing his “best performing strategy” measures that performance virtually, not by contrast to 
an imagined setting where all traders select fixed strategies at random (to whose results 
he would have no access anyway). Even though the virtual performances of each of his 
basket of strategies might never have been implemented in reality, if he found that his 
real performance under a selection process was worse than the virtual performance of the 
strategies he had been selecting among, he would abandon the selection process. This 
would be true for most agents and not true only for a small minority. (If every trader were 
to do the same, of course, then one would end up with the random or fixed choice game 
as discussed below. This forms the usual standard of comparison for strategy perform-
ance in the MG literature. In reality, many traders, especially hedge funds and other large 
investment pools do attempt to account for their own impact in trading, but it is arguable 
that these assessments are accurate when averaged over all traders.)  

The above argument echoes the finding of Doran and Wright [42], who report that two-
thirds of all finance professors at accredited, four-year universities and colleges in the 
U.S. (arguably among the most sophisticated and informed financial investors) are pas-
sive investors who think that the traditional valuation techniques are all unimportant in 
the decision of whether to buy or sell a specific stock (in particular, the CAPM, APT and 
Fama and French and Carhart models). 

3.1.3 Quantitative statement and tests 

In the THMG, the “illusion of control” effect is observed for all N, m, S and eqτ τ  . We 
use the Markov chain formalism for the THMG [9,10] to obtain the following theoretical 
prediction for the gains, agentWΔ averaged over all agents and strategyWΔ averaged over all 
strategies respectively, of agents and of all strategies in a given realization [43]:  

 1
Agent DNW A μΔ = ⋅  (2) 

 ( )1
2

ˆStrategy NW μ κ μΔ = ⋅ ⋅s  (3) 

Brackets denote a time average. μ  is a ( )m τ+ -bit “path history” [9] (sequence of 1-bit 
states); μ  is the normalized steady-state probability vector for the history-dependent 

( ) ( )m mτ τ+ × +  transition matrix T̂ , where a given element 
1,t t

Tμ μ −
represents the transi-

tion probability that 1tμ −  will be followed by tμ ; DA  is a ( )2 m τ+ -element vector listing 
the particular sum of decided values of ( )A t  associated with each path-history; ˆμs  is the 

table of points accumulated by each strategy for each path-history; κ  is a ( )2 m τ+ -element 
vector listing the total number of times each strategy is represented in the collection of N 
agents. As shown in the supplementary material, T̂  may be derived from DA , ˆμs  and 
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UN , the number of undecided agents associated with each path history. Thus agents’ 
mean gain is determined by the non-stochastic contribution to ( )A t weighted by the prob-
ability of the possible path histories. This is because the stochastic contribution for each 
path history is binomially distributed about the determined contribution. Strategies’ mean 
gain is determined by the change in points associated with each strategy over each path-
history weighted by the probability of that path.  

We find excellent agreement between the numerical simulations and the analytical pre-
dictions (2) and (3) for the THMG. For instance, for m = 2, S = 2, τ = 1 and N = 31, 
‚∆WAgentÚ = −0.22 for both analytic and numerical methods (payoff per time step aver-
aged over time and over all optimizing agents) compared with ‚∆WStrategyÚ = −0.06 also 
(similarly averaged over all strategies) for both analytic and numerical methods. In this 
numerical example, the average payoff of individual strategies is larger than for optimiz-
ing agents by 0.16 units per time step. The numerical values of the predictions (2) and (3) 
are obtained by implementing each agent individually as a coded object.  

In the THMG, the mean per-agent per-step payoff Non OptW −Δ accrued by non-optimizing 
agents (they have only one fixed strategy, or equivalently their S strategies are identical; 
a.k.a. “producers”) is larger than the payoff AgentWΔ of optimizing agents (a.k.a. “specu-
lators”). In general, this comparative advantage decreases with their proportion but much 
less rapidly than in the MG proper [6]. For example, with m = 2, S = 2, τ = 1 and N = 31, 
and 2500 random initializations and Nopt optimizing agents, Non OptW −Δ − AgentWΔ = 

(2.380, 2.270, 2.289, 2.275, 2.145, 2.060, 2.039, 1.994, 1.836, 1.964) 310−×  for Nopt = 1, 
2, …, 10. More generally, the following ordering holds: payoff of individual strategies > 
payoff of non-optimizing agents > payoff of optimizing agents. The first inequality is due 
to the fact that not all individual strategies are implemented and the theoretical payoff of 
the non-implemented strategies does not take into account what their effect would have 
been (had they been implemented). Implementation of a strategy tends to decrease its per-
formance (this is similar to the market impact of trading strategies in financial markets 
associated with slippage and market friction). Non-optimizing agents by definition al-
ways implement their strategies. However, the higher payoff of non-optimizing compared 
with optimizing agents shows that the illusion-of-control effect is not due to their actually 
being deployed, but is a genuine observable effect.  

3.1.4 Generalizations 
The amplitude of the illusion-of-control effect in the THMG highlights important differ-
ences between the MG proper, in which τ is sufficiently large so as to allow the system to 
attain equilibrium with many “frozen” agents (~104 - 106 time steps; though some agents 
will freeze relatively quickly) and the THMG in which τ is arguably of a length compara-
ble to real-world investment “lookbacks”. (A reminder: A strategy in both the 
MG/THMG and in many real-world “technical” trading methods, relates m relatively re-
cent actual changes in price to a future predicted change. The hypothesized utility of dif-
ferent strategies is “back-tested” over different historical “lookback.”) The effect also 
highlights the distinction between optimizing agents with S maximally distinct strategies 
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(in the sense of Hamming distance) and non-optimizing agents with S identical strate-
gies—a distinction with different characteristics in the THMG than in the MG proper.  

It is helpful to generalize the latter distinction by characterizing the degree of similarity 
between the S strategies of a given agent using the Hamming distance Hd between strate-
gies. (The Hamming distance between two binary strings of equal length is the number of 
positions for which the corresponding symbols are different, normalized on the unit in-
terval.) Non-optimizing agents with S identical strategies correspond to 0Hd = . By con-
trast, optimizing agents with S maximally distinct strategies correspond to 1Hd = . Since 
on average agents in the THMG with 0Hd = out-perform agents with 0Hd > , it is natu-
ral to ask whether the ranking of Hd  could be predictive of the ordering of agents’ pay-
offs. But first it is important to clarify differences with respect to Hd  in the MG versus 
the THMG. 

The first difference to emphasize is that in the MG, where the system runs to equilibrium 
prior to making performance assessments, one of the chief features of the stationary state 
is that some (and sometimes many, i.e., max 39%) of the optimizing agents i.e., specula-
tors” which by definition must have strategy Hd  > 0) “freeze”. That is, the effective τ is 
long enough so that one of the S strategies for some agents will attain permanently the 
largest number of “virtual” points. It will then always be deployed, somewhat similar it 
might seem (but only at first glance), to an agent with S identical strategies from the start.  

The second difference is that at equilibrium in the MG, the relation between agent per-
formance and Hd  inverts at the critical point cα [44]: On average, for cα α> , agents 
with larger Hd  outperform those with smaller Hd —and outperform the mean over the 
selected strategies. This reversal is due to the freezing of a subset of agents which is not 
the same as an agent having been assigned two identical strategies from the start. Over 
the very long run-up to equilibrium, frozen agents have the opportunity to choose what is 
in fact a better strategy, but so little better in general that it requires a great many time-
steps for the difference to emerge and become embedded in the system. It is unsurprising 
that a larger Hamming distance between strategies offers more opportunity for such a dif-
ferentiation to occur. Conversely, for agents with Hd  = 0, such selection is by definition 
impossible. 

Note that for extremely short τ (e.g., 1, 10), the phase-transition appears attenuated to the 
point of being undetectable by this metric: Rather, mean agent performance increases 
monotonically and approaches asymptotically that of mean strategy performance. As 
τ increases a number of things happen. First, the phase transition at cα appears and grows 
increasingly sharp. Second, the overall scale of agent return (comparably, volatility of 

( )A t , i.e., 2 Nσ− ) as a function of m oscillates (rather dramatically, in fact) with a pe-

riod equal to 2 2m×  for real histories [43]—but does not vary for random ones. (A major 
point of discussion in the MG literature, addressed only tangentially in this thesis, is the 
interesting fact that the game’s hallmark phase-transition appears even if the “histories” 
to which agents respond are not genuine but mere random sequences freshly generated at 
every t.. The phase transition under random histories further stands in the same relation to 
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m as with real histories. The critical feature that preserves the transition in its sharpest 
form—with its implied maximum cooperativity—and its relation to m is that all agents 
must respond to the same history of length m at each t. However, there are subtle differ-
ences in the volatility of A(t) and in agent performance as a function of phase, between 
games with random and real histories. Some of these differences are referenced with re-
spect to the “illusion of control” in Chapter 7. See ref.’s [45-49] for extended discussions 
of this point.) Third, so long as τ remains “reasonable”, a reversal of the relation between 

Hd  and agent performance does not occur (i.e., the larger the Hd , the smaller the agent 
gain in wealth, for all α ). “Reasonable” lengths for τ  in the THMG, from the perspec-
tive of relative stationarity in real-world financial time-series, cannot be denoted without 
taking into account the regime: For a modest number of agents at small m (e.g., for N = 
31, m < 4), 200 2m× time-steps is sufficient to reach equilibrium. But near the phase tran-
sition (for 31, 4cN m= = ), many more steps are required, on the order of 
5000 2 80,000m× ≥ , equivalent to 320 years of daily price data, assuming that a time step 
equals one trading day. For τ on the order of 103, no reversal of the relation between 
small Hd and better agent performance occurs. Figure 2 provides a typical example of 
the distribution of agent returns by Hd . A similar distribution with negative linear slope 
occurs for all reasonable values of m and τ short of eqτ . 

 
Figure 2: Typical distribution of agent returns by Hamming distance between component strategies. A 
simple linear fit with slope ( ) .061tθ = − demonstrates decreasing mean agent performance with increasing 

Hd ; the time-horizon 2570τ =  is even longer than “reasonable”; it is more than long enough for a sharp 
phase transition to be present at 3 4m≤ ≤  (but still well short of equilibrium, i.e., 12,800eqτ τ< ); the 

memory m = 6 is well past the phase transition after which in the MG proper the relation between Hd  and 

agentWΔ inverts.  

A non-zero Hd implies that there are at least two strategies among the S strategies of the 
agent which are different. But, if Hd  is small, the small difference between the S strate-
gies makes the optimization only faintly relevant ( Hd small implies that the same action 
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will be taken most of the time regardless of which strategy is selected) and one can ex-
pect to observe a payoff similar to that of non-optimizing agents, therefore larger than for 
optimizing agents with large Hd ’s. This intuition is indeed confirmed by our calcula-
tions: the payoff per time step averaged over all agents is a decreasing function of Hd , as 
originally discussed in [44, 50] for the MG at equilibrium (and for cα α< ).  

The illusion of control effect suggests that the initial set-up of the THMG in terms of S 
fixed strategies per agent is evolutionarily unstable (when agents do not select strategies 
taking account of their impact). It is thus important to ask what happens when agents are 
allowed to replace strategies over time based on performance. A number of authors have 
investigated this issue in the MG, adding a variety of longer-term learning mechanisms 
on top of the short-term adaptation that constitutes the basic MG [44, 50-55]. Inter alia, 
ref. [51] demonstrates that if agents are allowed to replace strategies over time based on 
performance, they do so by ridding themselves of those composed of the more widely 
Hamming-distant tuples. Agents that start out composed of identical strategies do not 
change at all; those composed of strategies close in Hamming space change little. Simi-
larly, the authors of [50] explicitly fixed agents with tuples of identical strategies and 
found they performed best. Another important finding in [50] is that the best performance 
attainable is equivalent to that obtained by agents choosing their strategies at random. 
Note that learning only confers a relative advantage. In general, agents that learn out-
perform agents that don’t. This is certainly true for this privileged subset of agents among 
standard ones. But the performance of learning agents approaches a maximum most 
closely attained by agents where the Hamming distance between strategies is 0. These 
agents neither adapt (optimize) nor learn. One might say that when learning is introduced, 
the system learns to rid itself of the illusory optimization method that has been hampering 
it. (Note that if one compares optimizing agents’ performance to the performance of a 
separate system composed entirely of non-optimizing agents, there are regimes in m for 
which the optimizing agents do better: The standard metric of comparison in the MG lit-
erature. This could arise “in reality” only if traders deliberately ignored the evidence most 
perceive, namely, that the mean of their own strategies appear to be outperforming the 
optimization process that chooses deliberately among them. We emphasize “most” here, 
because a smaller proportion of traders’ would in fact see their optimization process suc-
ceeding. Again, mean agent performance underperforms mean strategy performance 
when averaged over all agents and all of the strategies represented in a given quenched 
disorder.) 

There are exceptions, of course. Carefully designed privileges and certain kinds of learn-
ing can yield superior results for a subset of agents, and occasionally for all agents. But 
the routine outcome is that both optimization and straightforward learning cannot im-
prove on simple chance, as measured by agents’ own assessment of their strategies’ re-
spective virtual performance. The fact that the optimization method employed in the 
THMG yields the opposite of the intended consequence, and that learning eliminates the 
method, leads to an important question. We pose it carefully so as to avoid introducing 
either privileged agents or learning: Is the illusion-of-control so powerful in this instance 
that inverting the optimization rule could yield equally unanticipated and opposite re-
sults?  
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The answer is yes: If the fundamental optimization rule of the MG is symmetrically in-
verted for a limited subset of agents who choose their worst-performing strategy instead 
of their best, those agents systematically outperform both their strategies and other 
agents. They also can attain positive gain. (Details of his phenomenon are presented and 
discussed in chapter 7.) Thus, the intuitively self-evident control over outcome proffered 
by the THMG “optimization” strategy is most strikingly shown to be an illusion. Even 
learning and evolutionary strategies generally at best rid the system of any optimization 
method altogether. They do not attain the kind of results obtained simply by allowing 
some agents to reverse the method altogether. We emphasize the fact that extensive nu-
merical studies confirm that the phenomenon here indicated persist over a very wide 
range of parameters in the MG and over all parameter values in the THMG. Hence, hav-
ing a portfolio of S strategies to choose from is in the THMG always counter-productive, 
and the MG often so: (diversification + optimization) performs on average worse than a 
single fixed strategy. 

Let us also mention briefly a related work by Menche and de Almeida. In the standard 
MG, the only public information are recent first places, while Menche and de Almeida 
[56] introduce a history of second places in the agents’ set of strategies, thus providing 
more information to the agents about the state of the game and about the quality of their 
strategies. They find that the resulting performance of the system becomes significantly 
better and the phase transition into the uncorrelated phase is strongly suppressed. Note 
that this variation grants agents greater computational capacity than agents in the standard 
MG. For S = 2 it comes close to the simple variation we explore, where some agents 
choose their worst strategy instead of their best without changing the computational com-
plexity of the game nor of individual agents. 

3.1.5 Illusion of control and the crowding-out mechanism 
Intuitively, the illusion-of-control effect in the MG results from the fact that a strategy 
that has performed well in the past becomes crowded out in the future due to the minority 
mechanism: Performing well in the recent past, there is a larger probability for a strategy 
to be chosen by an increasing number of agents, which inevitably leads to its demise. 
This argument in fact also applies to all the strategies that belong to the same reduced set; 
their number is 2 12 2

m m+ , equal to the ratio of the cardinality of the set of all strategies to 
the cardinality of the set of reduced strategies. (A reduced set of strategies—referred to in 
the literature as a “reduced strategy space”, is a subset of all 22

m

possible strategies that 
spans the full subset. This is possible because strategies that are Hamming very close dif-
fer little in their choice of action and point accumulation.) Thus, the crowding mechanism 
operates from the fact that a significant number of agents have at least one strategy in the 
same reduced subset among the 2m  reduced strategy subsets. Optimizing agents tend on 
average to adapt to the past but not the present. They choose an action ( )ia t  which is on 

average out-of-phase with the collective action ( )A t . In contrast, non-optimizing agents 
average over all regimes for which their strategy may be good and bad, and do not face 
the crowding-out effect. The crowding-out effect also explains simply why anti-
optimizing agents over-perform: choosing their worst strategy ensures that it will be the 
least used by other agents in the next time step, which implies that they will be in the mi-
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nority. The crowding mechanism also predicts that the smaller the parameter 2m N , the 
larger the illusion-of-control effect. Indeed, as one considers larger and larger values of 
2m N , it becomes more and more probable that agents have their strategies in different 
reduced strategy classes, so that a strategy which is best for an agent tells nothing about 
the strategies used by the other agents, and the crowding out mechanism does not operate. 
Thus, regions of successful optimization, if they occur at all, are more likely at higher 
values of 2m N . (See Appendix A for further details.) 

3.1.6 Robustness of the “illusion of control” phenomenon: THMG versus MG 
It could be argued that this example of “illusion of control” is very specific because we 
consider the THMG, and not the standard MG. In the standard MG, some agents are fro-
zen as a result of lengthy optimization, and some of these agents are able to win more 
than half of the time. This appears similar to the references we discuss wherein learning 
takes place and agents learn to “rid” themselves of strategy choice. But in the MG proper 
the “ridding” takes place at the more fundamental level of the basic optimization proce-
dure and reflects a genuine (non-illusory) control that appears along with the phase tran-
sition (requiring an especially lengthy run-up to equilibrium). That some agents are able 
to win more than half the time when they are frozen is only in part analogous to when 
there exists a subset of select agents—for example ones that take into account their im-
pact; or agents with two identical strategies (equivalent therefore to being frozen from the 
start, albeit without any preceding selection process); or agents that choose their worst 
strategy. From one perspective, the existence of genuine control in certain phases of the 
MG proper is an artifact of an “unreasonably” long equilibration process (and an equilib-
rium state arguably not found in real-world markets). From the opposite perspective, the 
illusion of control in the THMG is an artifact of “transients” relatively early in the sys-
tem’s equilibration process. 

In any event, we observe that in the THMG, agents with two identical strategies on aver-
age outperform those selecting among strategies, but do not do better than a 0.5 win 
rate—again, averaged over all those that do in fact do better than 0.5 and those that don’t. 
We also observe that agents that always choose their worst strategy (when they are a sub-
set among a majority that choose their best as usual) have a better than 0.5 win rate on 
average for a number of parameter values. As detailed in [57, 58], when all agents take 
into account their impact, the agents do now outperform their strategies. However, the 
game settles into a Nash equilibrium [59] which is arguably an entirely different situa-
tion, one in which the “illusion” of control is no longer pertinent as the dynamics are in 
this case deterministic. (In game theory, a Nash equilibrium arises when every player’s 
action is optimal given the actions of the other players. A more realistic situation occurs 
when, for example, only some traders account correctly for impact, or when some or all 
account for impact only imperfectly. Depending on the extent of impact-accounting, the 
system may remain frustrated but the illusion of control may still disappear.)  

Any agent accounting for impact looks back at the prior vote imbalance and determines 
what the imbalance would have been had she used each given strategy (not what its score 
would have been using just the strategy she actually did use). Similar methods are used 
by real-world traders taking positions large enough to have an impact on price. A conse-
quence of taking into account impact is that, with a certain probability usually smaller 
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than one, at any time-step, an agent will select some strategy other than the “best” (i.e., as 
computed in the standard way sans impact). From this perspective, accounting for impact 
is similar (but not identical) to the computationally simpler act of agents in fact choosing 
other than the best strategy, always. For S = 2, this is the same as choosing the worst. Al-
though we report in detail only on the effect of choosing the worst strategy for S = 2, the 
same principle holds for S > 2: a subset of agents choosing their worst strategy outper-
forms, on average, those that choose their next-to-worst, etc. When a small subset of 
agents take into account their impact, on average these perform better than those that do 
not. However, they do not perform as well as a similarly sized subset of agents choosing 
their worst strategy. The dynamics of a game composed entirely of agents choosing their 
worst strategy is not similar to the Nash-equilibrated structure of a game with all agents 
accounting for impact. 

It is true in particular that there is a complex relation between maximum/minimum typi-
cal system fluctuation/cooperation and length of strategy score memory (t), which we do 
not discuss in detail: 2 Nσ is periodic in 2 2m⋅ [43]. Nonetheless, as many simulations 
that we have performed illustrate for both real and random histories (see Chapter 7), the 
underperformance of standard agents vis-à-vis the mean of all strategies represented in a 
given Ω̂ , and over many Ω̂ , is found for all τ up to (and greater than) the equilibrium 
number of steps at which point the THMG becomes equivalent to the MG. The difference 
between strategy performance (as we define it) and agent performance declines roughly 
exponentially with τ but remains positive. When a critical point is present (sufficiently 
long τ but still well short of cτ ) it reaches its positive minimum at the critical point. We 
find that strategy out-performance is greater for random histories at this point than for 
real histories. The phase transition central to the MG is most evident for τ long and is at-
tenuated for τ short. 

Even restricted to the THMG, the phenomena we are most interested in are essentially as 
prominent for τ º 1000, say, as for τ º 1. The rule of thumb for reaching the stationary 
state in the standard MG is to iterate for about 200 2m× time steps (it takes even more 
time close to the critical point cα ). Thus, for our simulations with m = 2, values of 
τ º 1000 and above probe the stationary regime of the standard MG and confirm the ro-
bustness of the illusion-of-control effect. It is reasonable to argue that for real-life trading 
situations, which are generally non-stationary, a 100 or 1000 time-unit “look back” is of 
significant interest (Real world τ’s ≤ 100 are not unusual). “Look backs” long enough to 
achieve equilibrium, even for only tens of agents in the MG are (at least arguably) less 
likely to happen in reality. (On the other hand, studies that employ tick data—there are 
~6400 ticks in a day—may arguably require lookbacks on the order of a MG cτ  and may 
be treated as at equilibrium.) If the subset of such agents taking into account their impact 
is large enough to be meaningful (~1/3 or more), one can see that the performance of 
these agents distributes itself as symmetrically as possible around zero. The remaining 
agents “perturb” this equilibrium. When the proportion of agents accounting for impact is 
large enough (depending on the other system parameters), the system as a whole settles 
into a deterministic equilibrium and there is no longer a phase transition at critical cα . 
This equilibrium is achieved more readily when τ is large yet need not be too large. 
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However, in a THMG composed entirely of impact-accounting agents, with N = 31, S = 2 
and m = 2, a near equilibrium state is attained for 10 100τ> > . Also, for 1τ = or 10τ = , 
strategies outperform their agents as we have described. For , the reverse is 
true. In the MG (with standard agents that do not account for their impact), whenever the 
fluctuations of the global choice are better than with random ones, the agents perform 
globally better than in a game composed entirely of non-optimizing standard ones. As 
discussed in [57], which agents perform best during which phase is highly sensitive to the 
precise ratio of “producers” (agents with S identical strategies, hence non-optimizing) to 
“speculators” (agents with at least two different strategies), and to the degree to which 
agents have correlated actions as averaged over all histories. Frozen speculators in gen-
eral perform best of all. We stress that this is not inconsistent with our observation that in 
the aggregate—not examining these “microscopic” differences among types and propor-
tions of agents—standard agents at all τ nonetheless under-perform the mean of all 
strategies in a given quenched disorder averaged over many different such initial configu-
rations. 

3.1.7 First-entry games and symmetric evolutionary stable equilibria 
The above discussion leads to the conclusion that there is often a profound clash between 
optimization on the one hand and minority payoff on the other hand: an agent who opti-
mizes identifies her best strategy, but in so doing by her “introspection”, she somehow 
knows the fate of the other agents, that it is probable that the other agents are also going 
to choose similar strategies, … which leads to their underperformance since most of them 
will then be in the majority. It follows then that an optimizing agent playing a standard 
minority game should optimize at a second order of recursion in order to win: Her best 
strategy allows her to identify the class of best strategies of others, which she thus must 
avoid absolutely to be in the minority and to win (given that other players are just opti-
mizing at the first order as in the standard MG). Generalization to ever more complex op-
timizing set-ups, in which agents are aware of prior-level effects up to some finite recur-
sive level, can in principle be iterated ad infinitum.  

Actually, the game theory literature on first-entry games shows that the resulting equilib-
ria depend on how agents learn [60]: With reinforcement learning, pure equilibria involve 
considerable coordination on asymmetric outcomes where some agents enter and some 
stay out; learning with stochastic fictitious plays leads to symmetric equilibria in which 
agents randomize over the entry decisions. There may even exist asymmetric mixed equi-
libria, where some agents adopt pure strategies while others play mixed strategies. We 
consider the situation where agents use a boundless recursion scheme to learn and opti-
mize their strategy so that the equilibrium corresponds to the fully symmetric mixed 
strategies where agents randomize their choice at each time step with unbiased coin 
tosses. Consider a THMG game with N agents total, NR of which employ such a fully 
random symmetric choice. The remaining NS = N−NR  “special” agents (with NR >> NS) 
will all be one of three possible types: agents with S fixed strategies that choose their best 
(respectively worst, referred to above as anti-optimizing) performing strategy to make the 
decision at the next step and agents with a single fixed strategy. Our simulations confirm 
that these three types of agents indeed under-perform on average the optimal fully sym-
metric purely random mixed strategies of the NR agents (see Figure 26 of Chapter 8). 
Here, pure random strategies are obtained as optimal, given the fully rational fully in-
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formed nature of the competing agents. The particular results are sensitive to which 
strategies are available to the special agents and to their proportion. Their underperfor-
mance in general requires averaging over all possible strategies and S-tuples of strategies. 
(In appendix Chapter A9, we show sample numerical results for NS = 1). 

3.2 Parrondo Games  
We now turn to an entirely different kind of game of the Parrondo type (PG). In the Par-
rondo effect (PE) [61], individually fair or losing games are alternated in succession ei-
ther periodically or randomly by a single player to yield a winning game. That random 
alternation of losing games can yield an overall net gain seems especially counterintui-
tive. The PE was originally conceptualized as the game-theoretic equivalent of the “flash-
ing ratchet” effect: A charged particle that executes symmetric Brownian motion in a 
ratchet-shaped potential drifts unidirectionally if the potential is flashed on and off either 
at random or periodically [62, 63]. It has been proposed as a potential explanation for as-
pects of random-walk diffusion [64], diffusion-mediated transport [65], spin systems 
[66], enzyme synthesis and gene recombination [67] and to be applied in investment 
strategies and portfolio optimization [68-70]. 

3.2.1 Single-player capital-dependent Parrondo effect 
The original Parrondo Effect (PE) combines two “capital-dependent” games which to-
gether constitute the PG. A single player has (discrete)-time-dependent capital 

( ) , 0,1, 2,X t t = … . The time evolution of ( )X t  is determined by tossing biased coins. If 
game A is played, the player’s capital changes by 1+  (“win” ) with probability p and by 

1−  (“loss” )with probability 1 p− . If game B is played, the changes are determined by: 

 Prob. of win Prob. of loss 

( ) / 3X t ∈  p1 1- p1 

( ) / 3X t ∉   p2 1- p2 

For 1
2p ε= − , 1

101p ε= − and 3
42p ε= −  ( 0ε > ) . If either game A or game B is played 

exclusively, they both lose. In other words, ( )X t decreases with t. But if the games are 

alternated at random ( )X t  increases. This is because the capital dependent parameter 

( ) ,Mod X t M⎡ ⎤⎣ ⎦  (here with M = 3) can drive the system into a sufficient frequency of 

the winning component of game B (e.g., 2B ) to cause the PE. Winning by playing losing 
games is only a seeming paradox as the possible values of ( )X t  when both games are 
played are not equiprobable. Instead, they take on values that, for a range of biases in the 
coins, are favorable to the player, given the peculiar rules of game B. (One may also de-
vise probabilities such that both games are winning, yet the combined game is losing, and 
so on. A more general definition of the PE includes such “negative” effects as well. This 
is more fully explicated in appendix Chapter A9 and in ref. [71].) 
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3.2.2 Single-player history-dependent Parrondo effect 
Ref. [72] extends the basic PE. Game A remains as described above (a simple biased coin 
toss). Game B is replaced with a history- as opposed to capital-dependent coin (game) 
defined by the respective winning/losing probabilities of four biased coins. A specific 
bias is associated with each of the four possible two-step binary histories (00,01,10,11) of 
the player’s wins (1) or losses (0). The choice of coin follows the history dependent rule:  
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Before last 
2t −  

Last 
1t −  

History 
 

Coin (Game) 
at t 

Prob. of win 
at t 

Prob. of loss 
at t 

Loss Loss 00 1B  1q  11 q−  
Loss Win 01 2B  2q  21 q−  
Win Loss 10 3B  3q  31 q−  
Win Win 11 4B  4q  41 q−  

Both games A and history-dependent games of type B can be expressed as Markov transi-
tion matrices. But in this case ( )X t , the evolution of the capital, is non-Markovian . To 
relate the capital to history one may therefore define the Markov chain 

 ( ) ( ) ( )
( ) ( )

1
1 2

X t X t
Y t

X t X t
− −⎛ ⎞

= ⎜ ⎟− − −⎝ ⎠
 (4) 

with the set of four states ( ) ( ) ( ) ( ){ }1, 1 , 1, 1 , 1, 1 , 1, 1− − − + + − + + with associated conditional 

probabilities and probability state vector ( ) ( ) ( ) ( ){ } ( )1 2 3 4, , ,t t t t tπ π π π π≡ . The transition 
matrix for game B is therefore 

 

1 3

1 3

2 4

2 4

1 0 1 0
0 0

0 1 0 1
0 0

q q
q q

q q
q q

− −⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟− −
⎜ ⎟
⎝ ⎠

B  (5) 

and ( ) ( )1t tπ π+ = B . The stationary state distribution stπ obeys  

 st stπ π=B  (6) 

with 

 

( )( )
( )
( )

3 4

4 1

4 1

1 2

1 1
11
1st

q q
q q

N q q
q q

π

− −⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟⎜ ⎟
⎝ ⎠

 (7) 

(N is a normalization factor; we assume a similar set of equations exists for A, a simple 
coin-toss.). 

As explained in ref. [72], though game B as a whole is losing, the values of 
{ }1 2 3 4, , ,q q q q in B are such that 2B and 3B are independently losing, 1B and 4B winning. 
Then even if game A is losing ( 1p p< − ), it perturbs the losing cycles of B, as in the 
original Parrondo effect, but with the sensitive moments transferred from capital to the 
state recorded in memory. This can no longer be analogized to the flashing ratchet poten-
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tial, but rather occurs by construction, such that for certain values of p and { }1 2 3 4, , ,q q q q  
the winning games in B dominate. This can occur when 

 
( )( )

( )( ) ( )( )
4 3 1 2

4 3 1 2

1 1

2 2

q q q q

q p q p q p q p

− − >

− − − − < + +
 (8) 

For example, in ref. [72], 1
2p ε= − and { } { }9 71 1

10 4 4 101 2 3 4, , , , , ,q q q q ε ε ε ε= − − − − . 
Then the conditions of (8) are met when 1

1680 ε< < . 

Ref. [73] extends the history-dependent PE further by showing that it may arise when 
Game A is redefined to have the same history-dependent structure as (5). A more com-
plex set of equations define the conditions under which two losing games of this kind, 
each with four coins, generate winning results under random alternation. From this per-
spective the simple coin toss form for game A in ref. [72] may be reformulated with a 
specific set of parameters that fall within the more general parameter space analyzed in 
ref. [73], viz.: 

 

( ) ( )

( ) ( )

1 11 1
2 22 2
1 11 1
2 22 2

1 11 1
2 22 2
1 11 1
2 22 2

0 01 0 1 0
0 00 0

0 00 1 0 1
0 00 0

A

ε εε ε
ε εε ε

ε εε ε
ε εε ε

⎛ ⎞ + +⎛ ⎞− − − −
⎜ ⎟ ⎜ ⎟− −− −⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟+ +− − − −
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ − −− − ⎝ ⎠⎝ ⎠

(9) 

For 0.005ε = , we obtain the following game matrices: 

 

0.505 0 0.505 0 0.105 0 0.755 0
0.495 0 0.495 0 0.895 0 0.245 0

;
0 0.505 0 0.505 0 0.755 0 0.305
0 0.495 0 0.495 0 0.245 0 0.695

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

A B  (10) 

i.e., ( ) { }0.495,0.495,0.495,0.495Aπ = and ( ) { }0.895,0.245,0.245,0.695Bπ = . 

Solving the eigenvalue equation (6) for B and the equivalent for A, we obtain the respec-
tive steady state probabilities for the two independent games: 

 ( ) ( )

0.255 0.231
0.250 0.274

;
0.250 0.274
0.245 0.220

A B
st stπ π

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (11) 

and the respective independent probabilities for winning: 

 
( ) ( ) ( )

( ) ( ) ( )

0.495

0.494

A A
win st

B B
win st

P A

P B

π π

π π

= ⋅ =

= ⋅ =
 (12) 

Naively, one might presume that with a mixing ratio of 1:1, a random alternation of the 
games would yield a winning probability equal to the mean of their winning probabilities, 
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but this is not so, i.e. ( ) ( )1 1 1
2 2 2( , ) 0.4945win win winP A B P A P B≠ + =⎡ ⎤⎣ ⎦ . Instead, the win-

ning probability is determined by the probabilities and steady-state vector of the mean of 
the transition matrices. As detailed more generally in appendix Chapter A9 and ref. [35], 
the winning probability of a combination of Markovian transition (game) matrices is not 
generally equal to the mean of their independent winning probabilities. Thus: 

 
( ) ( ) ( ) ( ) ( ){ } { }

1 1
2 2, 1 1 1 1

1 1 2 2 3 3 4 42 2 2 2, , , 0.695,0.370,0.370,0.595A B p q p q p q p qπ = + + + + =  (13) 

so that 

 ( )

0.305 0 0.630 0
0.695 0 0.370 01

0 0.630 0 0.4052
0 0.370 0 0.595

⎛ ⎞
⎜ ⎟
⎜ ⎟+ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

A B  (14) 

and 

 ( ) ( ) ( )1 1 1 1
2 2 2 2, ,1 1

2 2, 0.501A B A B
win stP A B π π= =i  (15) 

3.2.3 Multiple-player capital-dependent Parrondo effect and its reversal under op-
timization 
Many variants of the PE have been studied, including capital-dependent multi-player PG 
(MPPG) [74, 75]: At (every) time-step t, a constant-size subset of all participants is ran-
domly re-selected actually to play. All participants keep individual track of their own 
capital but do not alternate games independently based on it. Instead, this data is used to 
select which game all participants must use at t. The chosen game is the one which, given 
the individual values of the capital at 1t − and the known matrices of the two games and 
their linear convex combination, has the most positive expected aggregate gain in capital, 
summed over all participants. This rule may be thought of as a static optimization proce-
dure—static in the sense that the “optimal” choice appears to be known in advance. It ap-
pears exactly quantifiable because of access to each player’s individual history. If the 
game is chosen at random, the change in wealth averaged over all participants is signifi-
cantly positive. But when the “optimization” rule is employed, the gain becomes a loss 
significantly greater than that of either game alone. The intended “optimization” scheme 
actually reverses the positive (collective) PE. The reversal arises in this way: the “optimi-
zation” rule causes the system to spend much more time playing one of the games, and 
individually, any one game is losing.  

3.2.4 Single-player capital-dependent Parrondo effect and its reversal under optimi-
zation 
Here, we present a more natural illustration of the illusion of control in Parrondo games: 
While the MG is intrinsically collective, PGs are not. Neither the capital- nor the history-
dependent variations require a collective setting for the PE to appear. Thus, the illusion of 
control effect is most clearly demonstrated in a single-player implementation with two 
games under the most natural kind of optimization rule: at time t, the player plays which-
ever game has accumulated the most points (wealth) over a sliding window of τ prior 
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time-steps from 1t − to t τ− . Under this rule, a “current reversal” (reversal of a positive 
PE) appears. By construction, the individual games A and B played individually are both 
losing; random alternation between them is winning (the PE effect), but unexpectedly, 
choosing the previously best-performing game yields losses slightly less than either A or 
B individually: the PE is almost entirely eliminated. Furthermore, if instead the previ-
ously worst performing game is chosen, the player does better than either game and even 
much better than the PE from random game choice.  

Under the choose-best optimization rule, two matrices A and B do not form a linear con-
vex sum. Instead, the combined game is represented by an 8 8×  transition matrix M with 
conditional winning probabilities jm : 

 ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ){ }

1 5

1 5

2 6

2 6

3 7

3 7

4 8

4 8

1
2

1 0 0 0 1 0 0 0
0 0 0 0 0 0

0 1 0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 0 0 0 0

1 1

1,2, 8

A A B B A A
j j j j j j j

m m
m m

m m
m m

m m
m m

m m
m m

m

j
α β β α β βπ π π π π π

− −⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟
⎜ ⎟= ⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤ ⎡ ⎤= + − + − +⎣ ⎦ ⎣ ⎦
=

M

…

 (16) 

The indices on the individual conditional probabilities for game A and B, 
( ) , ; 1,2, 4A B
i i iπ π = … are converted to indices ( )jα and ( )jβ with 1,2, ,8j = … by the fol-

lowing: 

 ( ) [ ] [ ] [ ]( )1
21,4 1,   1,2 1j Mod j j j Mod jα β= − + = − − +  (17) 

For the “choose worst” rule, eqn. (16) is replaced by: 

 ( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ){ }1

2 1 1

1,2, 8

A A B B A A
j j j j j j jm

j
α β β α β βπ π π π π π⎡ ⎤ ⎡ ⎤= − + + + −⎣ ⎦ ⎣ ⎦

= …
 (18) 

Alternated at random in equal proportion under the “choose best rule”, ( , ) 0.496best A B
winP = , 

while if “choose worst” is used, ( , ) 0.507worst A B
winP = (Compare to eqns. (12) and (15) ). The 

mechanism for this illusion-of-control effect characterized by the reversing of the PE un-
der optimization is not the same as for the MG, as there is no collective effect and thus 
no-crowding out of strategies or games. Instead, the PE results from a distortion of the 
steady-state equilibrium distributions ( )A

stπ  and ( )B
stπ  into a vector ( )1 1

2 2,A B
stπ  which is more 

co-linear to the conditional winning probability vector ( )1 1
2 2,A Bπ  than in the case of each 

individual game (this is just a geometric restatement of the fact that the combined game is 
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winning). One can say that each game alternatively acts at random so as to better align 
these two vectors on average under the action of the other game. Choosing the previously 
best performing game amounts to removing this combined effect, while choosing the 
previously worst performing game tends to intensify it. 

3.3 Conclusions  
In this chapter we have identified two classes of mechanisms operating in Minority 
games and in Parrondo games respectively in which optimizing agents obtain suboptimal 
outcomes compared with non-optimizing agents. These examples suggest a general defi-
nition: the “illusion of control” effect occurs when low-entropy strategies (i.e. which use 
more information) under-perform random strategies (with maximal entropy). The illusion 
of control effect is related to bounded rationality as well as limited information [76] 
since, as we have shown, unbounded rational agents learn to converge to the symmetric 
mixed fully random strategies (at least in the MG). In this setting, it is only in the pres-
ence of bounded rationality that agents can stick with an optimization scheme on a subset 
of strategies. Our robust message is that, under bounded rationality, the simple (large-
entropy) strategies may be preferred over more complex elaborated (low-entropy) strate-
gies. This is a message that should appeal to managers and practitioners, who are well-
aware in their everyday practice that simple solutions are preferable to complex ones, in 
the presence of the ubiquitous uncertainty. 

More examples should be easy to find. For instance, control algorithms, which employ 
optimal parameter estimation based on past observations, have been shown to generate 
broad power law distributions of fluctuations and of their corresponding corrections in 
the control process, suggesting that, in certain situations, uncertainty and risk may be am-
plified by optimal control (ANN; see chapter 10) [77]. In the same spirit, more quality 
control in code development often decreases the overall quality which itself spurs more 
quality control leading to a vicious circle [78]. In finance, there are many studies suggest-
ing that most fund managers perform worse than random [79] and strong evidence that 
over-trading leads to anomalously large financial volatility [80] (again, see Chapter 10). 
Let us also mention the interesting experiments in which optimizing humans are found to 
perform worse than rats [81]. We conjecture that the illusion-of-control effect should be 
widespread in many strategic and optimization games and perhaps in many real life situa-
tions. The contribution here is to put this question at a quantitative level so that it can be 
studied rigorously to help formulate better strategies and tools for management. 

However, it is obviously not the case that optimization in the face of limited information 
inevitably yields worse results. We now compare the findings in the MG to two other 
closely related games, the MAJG and $G in both their standard and TH forms. 
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Chapter 4. Control in the Majority Game and Dollar 
Game 
In chapter 4. we survey and summarize descriptively the main results of seeking an illu-
sion of control in the two other classes of market-modeling games, the MAJG and the 
$G. We discuss the important differences, both theoretical and applied, between the stan-
dard MAJG and $G and their “time-horizon” variants. We discuss the different results 
with respect to the illusion of control in the MG/THMG versus the 
MAJG/THMAJG//$G/TH$G: The illusion is not present in these games; agents success-
fully optimize and outperform their strategies. 

4.1 Optimization in the MAJG and $G: No illusion 
The surprising success of “counteradaptive” agents in the MG and THMG is an important 
marker of the “illusory” nature of the standard and intuitive optimization rule (“choose 
best”). But it also raises the following question: May one correctly think of such an in-
verted rule as equivalent to these agents’ playing a Majority Game (MAJG) instead? It 
would seem on the face of it that as they are not optimizing to be in the minority, they 
must be optimizing to be in the majority but failing, and rather inadvertently succeed in 
finding the minority remarkably often. By this reasoning it seems to follow that in a game 
where all agents are striving to be in the majority (MAJG), select agents that optimize 
instead to be in the minority will likewise succeed disproportionately—implying that the 
MAJG should also demonstrate an “illusion of control”. After all, one might further an-
ticipate, the MAJG with its heterogeneous agents demonstrates frustration and multiple 
equilibria; it undergoes a phase transition at a critical value of m, indeed it may be 
mapped onto a Hopfield net [82]. A similar argument could be made, perhaps, with re-
spect to the $G since players of this game are rewarded according to a time-lagged major-
ity rule. (The formal distinctions among the three types of games are specified in the fol-
lowing section.)  

The goal of the present chapter is to clarify these questions. We demonstrate that agents 
who invert their optimization rule in the MG are not actually playing a MAJG and that no 
illusion of control is found in either the MAJG or the $G. We discuss our results in terms 
of persistent versus anti-persistent characteristics of the time series generated by the vari-
ous models. In [83] and in chapters 5. and 6., we relate these comparative results to dif-
ferent characteristics of markets—or different phases they may enter—as real-world 
agents alter their game-playing behavior. 

We first briefly review the formal structure of each of the MG, MAJG and $G. We then 
present the results of extensive numerical simulations. Finally we discuss the differences 
that emerge in terms of persistent versus anti-persistent time-series. Formal mathematical 
methods may be found appendix Chapter A9 

4.2 Minority versus Majority and $ Games 
4.2.1 Recap of the “illusion of control” in MG and Time-Horizon MG (THMG) 
The characteristic of the MG that distinguishes it from the MAJG and the $G is the in-
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stantaneous payoff of agent i in, i.e., ( ) ( )ia t A t− —the minus sign encoding the minority 
rule (and similarly for each strategy for which it is added to the τ−1 previous payoffs. As 
in eqn. (1), the payoff may also be more simply ( ) ( )iSgn a t A t− ⎡ ⎤⎣ ⎦ . This does not change 
the fundamental dynamics of the game nor has it any effect on the question we are here 
studying). As the name of the game indicates, if a strategy is in the minority so 
that ( ) ( ) 0ia t A t < , it is rewarded. In other words, agents in the MG and THMG try to be 
anti-imitative.  

The phenomenon discussed in [84] and in Chapter 3. is that when optimizing, and aver-
aged over all actual agents and their component strategies in a given realization, and then 
averaged over many such initial quenched disorder states, agents in the TH variant of the 
MG underperform the mean of their own measured strategy performance and do so in all 
phases for reasonable lengths of τ at all m. In the MG proper, the same statement holds 
true for “reasonable” run lengths post initialization but pre-equilibrium. It holds true post-
equilibrium as well except for m at or very near cα , but in this region the number of steps 
to equilibrium is extremely large.  

4.2.2 Definition and overview of the Majority Game (MAJG) 
Mathematically, the MAJG game differs from the MG (and a THMAJG from the THMG) 
only by a change in sign for the individual agent payoff function: i.e., 

( ) ( ) ( )min
i ig t a t A t= −  or ( ) ( ) ( )min

i ig t Sgn a t A t= − ⎡ ⎤⎣ ⎦  whereas ( ) ( ) ( )i ig t a t A t= +  or 

( ) ( ) ( )maj
i ig t Sgn a t A t= + ⎡ ⎤⎣ ⎦ . In consequence of the plus sign, agents are rewarded when 

they select the alternative selected by the majority of agents at the same time. Thus, 
agents strive to be imitative rather than anti-imitative. From the perspective of markets, 
agents in the MG are “pessimistic” in assuming that resources are limited so that there 
can be only a minority of winners; they are “contrarian” in attempting to do what they 
believe most others are not doing. Agents in the MAJG are “optimistic” in assuming that 
resources are boundless, price (and value) potentially rising simply by virtue of collective 
agreement, so that the majority wins; they are “conformist” in attempting to do what they 
believe most others are also doing. Agents in both types of games “believe” that their ac-
tions may be optimized by examining the past paper-performance of their strategies. 

As only a minority of agents win in the MG, mean agent gain ( ) ( )
1

1 0
N

min min
i

i
G t g t

N =

= <∑ . 

Cumulative wealth tends to decrease over time. In the MAJG, a majority of agents win so 

that mean agent gain ( ) ( )
1

1 0
N

maj
i

i
G t g t

N =

= >∑ . Cumulative wealth tends to increase 

over time. 

In the MG, the time series ( )A t (the sum of all agents’ actions) is typically anti-persistent, 
paralleling the anti-imitative behavior of individual agents. In the MAJG the time series 

( )A t is typically persistent, paralleling the imitative behavior of individual agents. (Per-
sistence versus anti-persistence in these games will be formalized and discussed at length 
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in Chapter 5. In brief, to recapitulate, persistence is a measure of the tendency within a 
series for a pattern to repeat.) 

4.2.3 Definition and overview of the Dollar Game ($G) 
The dollar game was introduced in [39] in order to capture more accurately the behavior 
of a great many typical traders in markets, while keeping a framework as close as possi-
ble to the initial MG set-up. Above we commented that agents in the MG are “contrarian” 
in attempting to do what most others do not. But this is not what true contrarian traders 
attempt: First, they attempt to be in the majority when the market is rising. Second, they 
likewise attempt to be in the minority when it is falling or when there is a turning point. 
And this is exactly what non-contrarian traders are also attempting. Indeed every trader 
attempts to do this. Contrarians differ from conformists in their reasoning as to what the 
market trend will be in the immediate future. They make predictions that typically differ 
from the majorities’ prediction—but they may or may not be correct. Like all others, they 
will still hope that, if correct, it will lead them to be in the majority in one instance and 
the minority in the other, as is appropriate according to the corresponding market phase. 
A similar correction to the description of “conformist” traders can be made. 

Thus, an agent with greater “real world” behaviors is precisely one that rationally (but 
within the bounds of his reasoning capacity and data) alternates between choosing what 
he believes will be the minority state and choosing what he believes will be the majority 
state. Ideally, he wants to start choosing to try to be in the majority state at the first mo-
ment the market begins a rise following a decline—i.e., at a convex inflection point. 
Likewise, he ideally wants to start choosing to try to be in the minority state just as the 
market begins a decline following a rise—i.e., at a concave inflection point. A prominent 
trader and technical theoretician explains that traders such as himself try to “…identify a 
trend reversal at a relatively early stage and ride on that trend until the weight of the evi-
dence shows…that the trend has reversed”[85]. This behavior may be most simply cap-
tured by the following alteration in the rule for individual agent gain: 

( ) ( ) ( )$ 1i ig t a t A t= + −  or ( ) ( ) ( )$ 1i ig t Sgn a t A t= + −⎡ ⎤⎣ ⎦ . That is, the action at the previ-

ous time step t−1, interpreted as a judgment about whether ( )A t will be >0 or <0, deter-
mines whether an agent gains or loses. The mean agent gain retains the same form: 

( ) ( )$ $

1

1 N

i
i

G t g t
N =

= ∑ and we anticipate that ( )$ 0G t > because in spite of the time-lagged 

( )1ia t − , the payoff function is preceded by a + sign, so intuitively should generate 
largely imitative behavior. This intuition is confirmed by the numerical simulations pre-
sented in ref. [39] 

4.3. Main results on the “illusion of control” in the THMG v. 
MAJG and $G 
In chapter 3., our main result with respect to the THMG was stated from the perspective 
of utility theory: “Throughout the space of parameters ( ), , , eqN m S τ τ , the mean pay-
off of agents’ strategies not only surpasses the mean payoff of supposedly-optimizing 
agents, but the respective cumulative distribution functions (CDF) of payoffs show a 
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first-order stochastic dominance of strategies over agents. Thus, were the option available 
to them, agents would behave in a risk-averse fashion (concave utility function) by 
switching randomly between strategies rather than optimizing. Agents are supposed to 
enhance their performance by choosing adaptively between their available strategies. In 
fact, the opposite is true (with certain caveats for the MG proper). Two conditions must 
hold for the statement to be false: (1) cm m≥ ; (2) the system must be allowed to reach 
equilibrium. Condition (2) requires an exceedingly large number of preliminary steps be-
fore agent selection begins, and orders of magnitude more steps if cm m ). In the real-
world, observing the paper underperformance of his strategies, a trader would abandon 
the process of adaptively selecting among them.” 

However, in both the MAJG and the $G, we find that the reverse is true: The optimiza-
tion method greatly enhances agent performance, with strategies’ virtual mean perform-
ance consisting of relatively small gains and agents’ mean performance consisting of sig-
nificantly greater gains. In the language used above: “Throughout the space of parameters 
( ), , , eqN m S τ τ , the mean payoff of agents’ strategies (as calculated by each agent av-
eraged over all strategies and agents in a realization) not only underperforms the mean 
payoff of optimizing agents (averaged over all given agents), but the respective cumula-
tive distribution functions (CDF) of payoffs show a first-order stochastic dominance of 
agents over strategies. Thus, were the option available to agents to behave in a risk-averse 
fashion (concave utility function) by switching randomly between strategies rather than 
optimizing, they would rationally avoid such risk in favor of the optimization procedure. 
Agents are supposed to enhance their performance by choosing adaptively between their 
available strategies and they in fact do so.” 

4.3.1 Quantitative statement and tests 

4.3.1.1 Analytic Calculation versus Numeric Simulation 
In the THMG, the “illusion of control” effect is observed for all N, m, S and eqτ τ  . We 
use the same Markov chain formalism for the THMG [41, 84] and extend it to both a 
THMAJG and a TH$G to obtain theoretical prediction for the gains AgentWΔ , averaged 
over all agents and StrategyWΔ averaged over all strategies respectively, of agents and of all 
strategies in a given realization for each of the MG, MAJG and $G. Compare to eqn. (2) 
and (3):  

 1game
agent DNW A μΔ = ± ⋅  (19) 

 ( )1
2

ˆgame
strategy NW μ κ μΔ = ⋅ ⋅s  (20) 

In eqn.s (19) and (20), the superscript “game” identifies the game type with 
{ }, ,$game M MAJ∈ . In eqn. (19), the minus sign is needed for the MG; otherwise not. 

Recall from chapter 3. that μ is a ( )m τ+ -bit “path history” [10] (sequence of 1-bit 
states); μ  is the normalized steady-state probability vector for the history-dependent 

( ) ( )m mτ τ+ × +  transition matrix T̂ , where a given element 
1,t t

Tμ μ −
represents the transi-
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tion probability that 1tμ −  will be followed by tμ ; DA  is a ( )2 m τ+ -element vector listing 
the particular sum of decided values of A(t) associated with each path-history; ˆμs  is the 

table of points accumulated by each strategy for each path-history; κ  is a 12m+ -element 
(= dim[RSS]) vector listing the total number of times each strategy is represented in the 
collection of N agents. As shown in appendix chapter A9, T̂  may be derived from DA , 
ˆμs  and UN , the number of undecided agents associated with each path history. 

Agreement is excellent between numerical simulations and the analytical predictions (19)
and (20) for all of the THMG, THMAJG and TH$G. For instance, for 
{ } { }, , , 2,2,31,1m S N τ =  and one identical quenched disorder state Ω̂ , Table 1 shows the 
payoff per time step averaged over time and over all agents and all strategies for both 
analytic and numerical methods. In this numerical example, the average payoff of indi-
vidual agents is smaller than for strategies by −0.15 units per time step in the THMG, but 
larger by +0.35 units in the THMAJG and by +0.33 units in the TH$G. Thus, in this ex-
ample, optimization appears to agents as genuine in the THMAJG and TH$G but would 
seem illusory in the THMG. 

Table 1: Numeric and Analytic Results for a single typical quenched initial disor-
der state in the THMG, THMAJG and TH$G 

Numeric 
game

agentWΔ  game
strategyWΔ  Analytic 

game
agentWΔ  game

strategyWΔ  

MG −0.21 −0.06 MG −0.21 −0.06 

MAJG +0.43 +0.08 MAJG +0.43 +0.08 

$G +0.39 +0.06 $G +0.40 +0.06 

The above results illustrate primarily the close alignment of analytic and numerical meth-
ods in generating results. Of greater interest is the comparison of agent versus strategy 
gains among the MG, MAJG and $G at various values of m below, at and above mc, and 
at various values of τ both for eqτ τ , for eqτ τ<  and for eqτ τ≥ —all averaged over a 
large ensemble of randomly selected quenched disorder states. The computational re-
sources required to evaluate the analytic expressions grows for game

agentWΔ  as 2m τ+∝ . We 
therefore report only the numerical results. 

4.3.1.2 Illusory versus Genuine Control for eqτ τ  

Almost all results that hold for multiple values of eqτ τ are illustrated for 1τ = . In 
Figure 3, Figure 4 and Figure 5 we therefore first present graphic representations of the 
ensemble average of 50 runs comparable to Table 1 but over many values of m.  
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Figure 3: Agent versus Strategy mean per-step gain in the THMG at various m with τ = 1. The phase tran-
sition expected at m = 4 is not detectable; strategies outperform agents at all m as indicated by the black 
squares .i.e., agent performance is always negative relative to strategy performance. The optimization pro-
cedure employed by agents yields worse performance than their component strategies on the basis of which 
agents select which strategies to deploy at each time-step. 
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Figure 4: Agent versus Strategy mean per-step gain in the THMAJG at various m with τ = 1. Agent per-
formance is always positive and greater than strategy performance. The optimization procedure employed 
by agents yields better performance than their component strategies. 
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Figure 5: Agent versus strategy mean per-step gain in the TH$G at various m with τ = 1. Agent perform-
ance is always greater than strategy performance. The optimization procedure employed by agents yields 
better performance than their component strategies, but the gain approaches zero asymptotically with grow-
ing m. 
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We see that the illusion of control in the THMG persists at all values of m. Incidentally 
we note that the phase transition to be expected at m = 4 is strongly suppressed in the 
sense that the present metric is not sensitive to it. For both the THMAJG and the TH$G, 
the control exerted by agents is non-illusory: Agents outperform their constituent strate-
gies at all m. Because of the non time-lagged implementation of a majority rule in the 
THMAJG ( ( ) ( ) ( )maj

i ig t a t A t= + ), strategies show consistent positive gain, even if less 
than agents. Strategies’ gain tends toward a positive limit with agents’ gain tending to-
ward a greater value at all m. However, in the TH$G, strategies on their own, in the ag-
gregate, tend toward zero gain with increasing m, as would be expected from a realistic 
model of a market. Agents are superior to strategies at all m, but converge to the zero 
limit of strategy gain with increasing m. In other words, of the three variations, the TH$G 
with very short τ shows the most satisfying convergence toward neither net positive nor 
net negative gain for both strategies and agents as strategy complexity increases and be-
gins to approximate random selection. It is especially interesting that this is so, given that 
the $G rule remains a majority one, albeit time-lagged by one step to take into account 
the time lag between decision and return realization [39]. 

4.3.1.3 Illusory versus Genuine Control for eqτ τ<  

In Figure 6, Figure 7 and Figure 8 we present graphic representations of the ensemble 
average of 50 runs of the MG, MAJG and $G comparable to Table 1 but over many val-
ues of m and with eqτ τ< , i.e. with a time window of “reasonable” size, but smaller than 
the equilibrium value (except for m = 2, where 800eqτ = ). 
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Figure 6: Agent versus Strategy mean gain per-step in the THMG at various m with τ = 1000. The phase 
transition expected at m = 4 is clearly visible; strategies outperform agents at all m as indicated by the black 
square: Agent performance is always negative relative to strategy performance. Even with a very long 
lookback of historical data, the optimization procedure employed by agents yields worse performance than 
their component strategies on the basis of which agents select which strategies to deploy at each time-step. 
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Figure 7: Agent versus strategy mean gain per-step in the THMAJG at various m with τ = 1000. Agent 
performance is always positive and greater than strategy performance. The optimization procedure em-
ployed by agents yields better performance than their component strategies. 
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Figure 8: Agent versus strategy mean gain per-step in the TH$G at various m with τ = 1000. Agent per-
formance is always greater than strategy performance. The optimization procedure employed by agents 
yields better performance than their component strategies. 

We see once again that the illusion of control in the THMG persists at all values of m in 
spite of the “reasonable” length (1000 time steps) of τ. Note, however, that the MG phase 
transition at m = 4 is now visible—even though at m = 4 the system is still far from equi-
librium. (Recall that away from mc, we have 100 2m

eqτ ≈ × ; while for m near mc, we have 

100 2m
eqτ × .) In the MG proper, where τ grows without bound and agent and strategy 

performance begins to be measured only after eqτ  steps, agent performance will exceed 
strategy performance—optimization succeeds—but only for cm m≥ . But even for a rela-
tively small number of agents (e.g., 31, as here), at m = 10 say, 11100 2 200,000eqτ ≈ × >  
steps is unrealistically large (for a comparison with standard technical investment strate-
gies used for financial investments). For both the THMAJG and the TH$G, the control 
exerted by agents is again non-illusory: Agents outperform their constituent strategies at 
all m. Strategies in the THMAJG again show consistent positive gain, if less than agents. 
Strategies’ gain likewise tends toward a positive limit with agents’ gain tending toward a 
greater value at all m, just as for 1τ = . Likewise in the TH$G once more: Strategies on 
their own, in the aggregate, tend toward zero gain with increasing m, as would be ex-
pected from a realistic model of a market. Agents are superior to strategies at all m, but 
converge to the zero limit of strategy gain with increasing m. We may draw a similar 
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conclusion for 1000τ =  as for 1τ = : The TH$G with reasonable τ shows the most satis-
fying convergence toward neither net positive nor net negative gain for both strategies 
and agents as strategy complexity increases and begins to approximate random selection, 
in line with what would be expected from the efficient market hypothesis [86, 87]. 

4.4. Interpretations: crowding-out, anti-optimizing agents and 
persistence 
4.4.1 Illusion of control and the crowding-out mechanism 
As discussed in chapter 3., illusion-of-control effects in the THMG result from the fact 
that a strategy that has performed well in the past becomes crowded out in the future due 
to the minority mechanism: Performing well in the recent past, there is a larger probabil-
ity for a strategy to be chosen by an increasing number of agents, which inevitably leads 
to its failing. The crowding-out effect likewise explains why anti-optimizing agents over-
perform [88]: Choosing their worst strategy ensures that it will be the least used by other 
agents in the next time step, which makes it more probable that they will be in the minor-
ity.  

By contrast, in all of the MAJG, $G, THMAJG and TH$G, with their variants of a major-
ity mechanism for agent gain, a strategy that has performed well in the past is likely to do 
so again in the future. The domain of successful optimization encompasses all m, but di-
minishing as m increases and strategies become widely dispersed in strategy space, ap-
proximating ever more closely a collection of random decision makers. The optimization 
procedure is most effective in the $G where the positive bias present even for strategies 
alone in the MAJG appears neutralized by the time-delay factor: On their own, strategies 
show effectively neither gain nor loss—unsurprising if the market is neither positively 
nor negatively biased, as it is in the MG (to lose wealth on average over time) and MAJG 
(to gain wealth on average over time). After all, one would expect that in an unbiased 
market, the net gain/loss averaged over all of a set of randomly chosen an fixed strategies 
should be zero. Gains in the $G are therefore due solely to the optimization procedure. 
Given this, we predict that anti-optimizing agents should show no advantage over their 
optimizing counterparts in the MAJG and $G and will rather underperform. The next sec-
tion presents results of simulations testing this prediction. 

4.4.2. Illusion of control and “anti-optimizing” agents 
We again select 3 of 31 agents to function “counteradaptively” (“C agents”) and the re-
maining to function in the standard fashion (“S agents”). C-agents “anti-optimize”—at 
each time-step they deploy that strategy with the fewest virtual points accumulated over τ, 
rather than the strategy with the most points as do S-agents. We display results obtained 
for a wide range of m both less than, and greater than cm , for the THMG, THMAJG and 
TH$G with 100τ = . τ is long enough so that the phase transition in the MG is not sup-
pressed at cm ( = 4 for N = 31) 

Figure 9 shows C-agent minus S-agent mean per-step change in wealth for 2 < m < 14, 
each averaged over 100 runs of 100 days post-τ = 400. In the THMG, in the crowded re-
gime, the illusion of control effect is so strong that C-agents significantly outperform S-
agents. Because we know that, for all m at this τ, agents underperform strategies, we see 
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that the opposite is true for C-agents: In the act of “anti-optimizing”, they actually opti-
mize. However, as the phase transition approaches, this becomes less true. Indeed at 

cm and after cm —that is, in the non-crowded regime—S-agents outperform C-agents, 
converging to zero difference with increasing m. We know however that these S-agents 
for large m are nonetheless underperforming their strategies. Thus, while the illusion of 
control effect remains present, it is not strong enough for C-agents to outperform S-
agents in this regime. 
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Figure 9: Difference between C-agent and S-agent mean per-step change in wealth for 3 of 31 C-agents, 
averaged over 100 days and 200 runs with τ=400 in the THMG, THMAJG and TH$G.  

By contrast with the results for the THMG, C-agents in the THMAJG and TH$G consis-
tently underperform S-agents as predicted from the success of the optimization scheme at 
all m (again converging to zero difference at large m). The size of this underperformance 
for anti-optimizing agents is consistent with the large degree of standard optimization 
success as shown in Figure 7 and Figure 8. 

4.5 Conclusions 
The “illusion of control” is an unfortunate confounding effect that appears in many situa-
tions of “bounded rationality” where optimization occurs with limited (inadequate) in-
formation. However ubiquitous the illusion may be, it is not universal. In ref. [84] and 
chapter 3., we note that the illusion of control effect in the THMG is fundamentally due 
to three ingredients: (i) the minority mechanism (an agent or a strategy gains when in the 
minority and loses otherwise); (ii) the selection of strategies by many agents because they 
were previously in the minority, hence less likely to be so in the present; and (iii) the 
crowding of strategies (i.e., few strategies for many agents). In the following analysis of 
persistence, we will see that there is a close relationship among these three characteris-
tics, a high degree of anti-persistence in the resulting time-series and the illusion of con-
trol. On the other hand, genuine control is more likely to be present when the underlying 
mechanism employed by agents is not of the minority type (as in the MAJG and $G) and 
the resulting time-series is therefore more likely to be persistent. In another paper [83] 
and in chapters 5. and 6. we extend this analysis to the types of Hamiltonian cycles on 
graphs found associated with persistent and anti-persistent series, and employ these 
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methods for generating predictors of empirically generated time-series, both in models 
and in the real world. 
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Chapter 5. Persistence and anti-persistence in the MG, 
MAJG and $G 
In Chapter 5. we first present the differences among the main time-series 

( ) ( ) ( ) ( ){ }2 0 , 1 , 1 , 1game game game game game
max maxL Sgn A A A t A t≡ − −…  generated by the three 

agent-based games in terms of persistence/anti-persistence. “Persistence” 0 1≤ ≤P, P , is 
a quantitative measure of the tendency of patterns in a time-series to be followed by repe-
titions of that same pattern. Similarly, “anti-persistence” is a measure of the tendency of 
patterns to be followed rather by the pattern with the last binary digit reversed. As pre-
sented in full detail in ref. [89], we show that for the two games employing the majority 
rule (MAJG, $G), $,majL L  is persistent ( 0.5>P ), approaching the random limit asymp-
totically with increasing memory length m (i.e., lim 0.5

m→∞
=P ); in the MG minL  crosses 

from anti-persistent for cm m<  ( 0.5<P ) to persistent ( 0.5>P ) at the well-known 
phase transition, attains a maximum and then declines asymptotically to ( 0.5=P ) with 
further increasing m.  

Second, we then present a new use of a cycle decomposition method that expresses the 
inherently probabilistic nature of a Markov chain as an exact superposition of determinis-
tic sequences, extending ideas discussed in [90]. We demonstrate how the gameL  gener-
ated by the THMG, THMAJG and TH$G (all of which are Markovian processes) may be 
exactly represented as a weighted superposition of deterministic cycles on graphs; gameL  
generated by the MG, MAJG and $G may be approximated by an empirically-derived 
form of the decomposition. 

In other words, all three types of game-generated binary time-series as well as real world 
binary series may be reformulated as perturbations of a characteristic underlying dynamic 
that to the zeroth order is wholly deterministic. I.e., any binary time series may be decom-
posed into a superposition of wholly deterministic Hamiltonian cycles on graphs. The 
cycle of greatest weight may be considered the dominant underlying determinism; cycles 
of lesser weight may be thought of as the higher-order perturbations. Probabilistic transi-
tions from one history to another are in this view recast as probabilistic transitions among 
cycles. This cycle decomposition approach parallels the theories of dynamics systems and 
of deterministic chaos [91] in particular on the one hand and of quantum chaos [92] on 
the other hand, both based on the decomposition on unstable periodic orbits. 

The representation of a series in deterministic cycles is related in complex fashion to the 
degree of “persistence” or of “anti-persistence” it displays. We discuss how the cycle de-
composition of a time-series allows it to be understood as a perturbed deterministic proc-
ess. 

Third, we discuss how a decomposition of the respective series into such cycles on 
graphs reveals in highly intuitive fashion characteristic differences among the three types 
of games. These differences in cycle structure are consistent with, but further differenti-
ate, the distinction between persistent and anti-persistent series. 
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We finally apply the cycle decomposition method to the prediction of game-generated 
time-series, based on a sliding window of past information. 

 5.1 Persistence versus Anti-persistence in the THMG, THMAJG 
and TH$G 
As discussed in [84] and chapter 3., in the MG and THMG, the degree to which agents 
underperform their own strategies varies with the phase as parameterized by a. As noted 
in [41], in the crowded phase ( ,c cm mα α< < , i.e. few available strategies relative to N), 
the “crowd” of agents choosing an action at any given time-step acts like a single “super-
agent”; the remaining agents as a (non-synchronized) “anti-crowd” whose actions will 
conform to the minority choice. Thus, for ,c cm mα α< < , when a strategy is used, it is 
probably used by more than one agent, often by many agents. When many becomes 
enough, it becomes a losing strategy with large probability—precisely because so many 
agents “think” it’s the best choice and use it. This implies that at the next time step, 
agents will not use it. The time-series of determined choices DA therefore does not show 
trends (or persistence), but rather anti-persistence—here we use the term imprecisely and 
impressionistically, meaning “alternating”. Formally, anti-persistence is more complex 
and subtle than mere “alternating” (which, we will see, is formal anti-persistence at a 
scale of 1). Anti-persistence is scale-dependent and not equivalent to “random”. 

Consider a binary time-series with an m-bit ( )tμ  defined in the same way as we have in 

the MG, MAJG and $G: ( )tμ  is a sliding window of 1-bit states each of length m, slid-

ing with a time step of one unit: ( ) ( )1 ,s t m s t− + … . A perfectly anti-persistent binary 
series at scale m = 2, for example, is characterized as follows: Select any one instance of 
the four possible ( ) { }00,01,10,11tμ ∈ . Identify the following bit ( ) { }1 0,1s t + ∈ . Now 

identify the next instance of the selected ( )tμ . If the series is perfectly anti-persistent, 
the following bit will always be 1 if the previous following bit was 0, and 0 if the previ-
ous following bit was 1. (If m = 1, it follows that a perfectly anti-persistent series is 
010101… or 101010…,i.e., alternating.) A perfectly anti-persistent series can be gener-
ated by two lookup tables indicating what bit follows which ( )tμ . Whatever bit is indi-
cated by the first table, the opposite bit is indicated by the second. Whenever an entry in a 
table is used for a given ( )tμ , the other table is used when ( )tμ  occurs again [93]. 
(These tables happen to be identical to strategy pairs at the maximum Hamming distance 
in the MG). No matter which of the 12 16m+ = possible strategies is used for the first table, 
and regardless of which of the 12 4m+ = possible ( )tμ  are used to initiate it, the time se-
ries generated by these tables will rapidly settle into perfect anti-persistence. 

The “persistence” P  of a given series at scale sm  is thus simply the proportion of persis-
tent such following bits, counting every instance of each of the 12 2 smm −=  possible histo-
ries. Its “anti-persistence” 1= −P P . Another way of stating the same thing is that given 
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sm , the persistence P of a series is the proportion of times that histories of length 

1sm + end in bits 00 or 11; anti-persistence P is the proportion they end in 01 or 10. 

The process generating a given empirical series may be unknown. This unknown process 
may itself be a memory-related process such as in the games we are discussing; it need 
not be (it could be, for example, completely random). The process may likewise be 
Markovian and memory-related as are the time-series generated by the TH games; it may 
be memory-related but non-Markovian as the non-TH version of these games. If the 
process is memory-related, whether Markovian or not, we need to distinguish between 
the unknown length m (or m τ+ ) underlying the process and a length we denote as ms 
indicating the scale of our analysis. Intuitively, it would seem that choosing sm m=  or 

sm m τ= + , would yield the most robust analysis of persistence versus anti-persistence. 
But if the memory length of the process is unknown, this cannot be done. In the case of a 
TH game, all paths of length m τ+ transition to other paths of equal length with known 
probabilities as these games are Markovian. The scale m τ+  would seem even more 
natural since all quantities can be determined exactly using analytic methods, at least in 
principle. (See [94, 95] for illuminating studies on how to determine the optimal coarse-
grained scale in simple cellular automata.)  

However, for m or τ large, the transition matrices become intractably large as well, scal-
ing as 2( )m τ+ . We thus need to know whether the degree of persistence/antipersistence 
may be approximated at a lower effective ms: I.e., given a binary time-series generated by 
an unknown process, may we usefully characterize its persistence by a small value of ms 
to replace its “actual” m or m τ+ ? Before analyzing the degree of persistence and anti-
persistence in the MG, MAJG and $G, we first show that, in fact, relatively small values 
of ms do successfully characterize persistence. 

We implement an algorithm to characterize the persistence of a binary time series as de-
scribed above. We find sharp differences in the degree of persistence between the time 
series generated by the MG on the one hand and the time series generated by the MAJG 
and $G on the other. A less sharp distinction also emerges between the MAJG and the 
$G. We find as well that characteristic distinctions arise at all reasonable m, attenuating 
as m grows large, and at all reasonable scales. This last point is important: While the de-
gree of persistence is obviously best captured for the TH variants of these games as the 
natural scale m τ+  (since the TH games are Markovian), it is not obvious that a small-m 
scale will effectively capture distinctions in the MG, MAJG and $G proper as the natural 
scale is large and unbounded. It emerges that in general, if a significant degree of persis-
tence or antipersistence is characteristic at a large-m scale, it may be approximated by a 
low-m analysis. We demonstrate this, and the differential characteristics of the respective 
time series in the following. 

Figure 10 illustrates graphically the mean degree of persistence or anti-persistence aver-
aged over 25 different initializations identically shared by each of the THMG, THMAJG 
and TH$G with N = 31, S = 2, τ = 100 and { }2,3,...,10m ∈ , scale { }2,3,...10sm ∈ . The 
generally darker shade in all squares of the grid representing the THMG implies values 
closer to or consistent with anti-persistence (<0.5, with 0.5 representing the equal degree 
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of persistence and anti-persistence of a random sequence), those in the THMAJG and 
TH$G with persistence (>0.5). (We note for future investigation the telling fact that in the 
THMG, 0.5≈P roughly uniformly, for all values of sm m> . This is evidenced by the 
roughly uniform gray shading in the upper right region above the diagonal in the leftmost 
graphic in Figure 10. By contrast, in the MAJG, 1.0≈P , again roughly uniformly, for 
all values of sm m< , as shown in the lower-left region below the diagonal in the middle 
graphic. Both are consistent with the idea that m is the natural scale at which to measure 
persistence.) 

2 4 6 8 10
scale

2

4

6

8

10

m
=

mid
m

Persistence in the $G

0

2 4 6 8 10
scale

2

4

6

8

10

m
=

mid
m

Persistencein theMAJG

0

2 4 6 8 10
scale

2

4

6

8

10

m
=

mid
m

Persistence in the MG

0

 
Figure 10: Persistence (white)/Anti-Persistence (black) at various scales and memory lengths in the MG, 
MAJG and $G for { } { }, 31, 2N S = . The grey scale between 0 and 1 given to the right of the checkboards 
encodes the degree of persistence at the chosen scale (abscissa) for different m values (ordinate), calculated 
as described in the text, using game-generated binary histories of length 1000 over 100 different runs for 
each game type  

The fraction of persistent sequences up cells of increasing m are roughly similar on a 
relative basis up the columns of different scales, but shifted toward the random, espe-
cially for the THMAJG and TH$G. The fraction of persistent sequences up cells of in-
creasing m in the THMG shows a shifting transition point. This feature is seen most 
sharply along the upward-and-to-the-right diagonal which represents the relation 
scale=m. Figure 11 charts the degree of persistence along this diagonal for all three 
games. 
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Persistence/Anti-Persistence in the MG, MAJG and $G
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Figure 11: Persistence and anti-persistence in MG, MAJG and $G for 'm m= , 100 runs of 1000 time 
steps for each game, at each 'm m= Error bars show 1 SD (barely visible at this scale for the MAJG).  

At the phase transition ( 4cm = for N = 31), the time-series generated by the THMG when 
the scale equals m undergoes a transition from anti-persistence to persistence and then 
declines asymptotically to the random limit 0.5. When sm m≠  this transition occurs at 
either smaller or larger values of m. Both the THMAJG and TH$G generate persistent 
time-series exclusively. The degree of persistence declines monotonically to the random 
limit 0.5 with increasing m. Persistence in the THMAJG is always greater than in the 
TH$G. 

Figure 11 also illustrates that the variability in persistence differs from game to game and 
for the MG by phase. Consistent with the fact that for cm m<  the time-series itself is 
highly variable from run to run and much less so for cm m≥ , the variability in persistence 
from run to run likewise changes at the phase transition. Consistent with it high degree of 
persistence, there is little variability altogether for the MAJG. The variability in P for the 
$G is roughly consistent throughout and much greater than for the MAJG. 
We now compare the MG, MAJG and $G in terms a decomposition of the binary time-
series they generate—i.e., ( ){ }1 2 1Sgn A t +⎡ ⎤⎣ ⎦ —into Hamiltonian cycles on graphs (at 

some given length sm ). 

5.2 Cycle structure of a binary series 
To obtain a cycle decomposition of a binary series, we first encode a general binary series 
as its decimal equivalent +1 given length sm  (a rolling window). For example, take some 
arbitrary binary series { }0,1,1,1,0,0,1,0,… . Then at sm =2: 
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{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

{ } { }
0,1,1,1,0,0,1,0, 0,1 , 1,1 , 1,1 , 1,0 , 0,0 , 0,1 , 1,0

1,3,3,2,0,1,2 1 2,4,4,2,1,2,3

→

→ + =

… …

… …
 (21) 

All of the allowed transitions from one 2sm = -bit state to the next form a complete bi-
nary de Bruijn graph of order 2 as shown in the middle graphic of Figure 12. (Examples 
of complete de Bruijn graphs of order 1sm =  and 3m = are shown to the left and right 
respectively.) 

 
Figure 12: Complete binary de Bruijn graphs of orders 1, 2 and 3 from left to right. The vertices may be 
numbered as shown or by their decimal equivalents +1. In a complete graph, all possible states and transi-
tions are represented. 

If a binary sequence thus encoded touches no vertex more than once except upon return-
ing to the first, the sequence is considered a cycle. Figure 13 shows the cycle consisting 
of the last four digits in (21). The four digits are represented as three vertices (and the 
“edges” connecting them) because the last digit (vertex) repeats the first. 

 
Figure 13: de Bruijn graph for 2ms = showing only the cycle consisting of the last four states of (21) 

In appendix Chapter A9, we demonstrate in detail that (and how) any sequence may be 
decomposed into a weighted superposition of such cycles, unique for each sm . Each cy-
cle represents a different deterministic binary-state process, implicit in the fact that no 
state in such a cycle can be reached by, nor may it transition to, more than one other state. 
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In the most general non-cyclic binary process, every sm -bit state may be reached from 
two preceding states and may transition to two. This follows from the fact that all transi-
tions may be considered as the motion of a sliding window along the binary string: One 
digit is dropped at the beginning, one is added at the end. Given a state at time t, the state 
at time t+1 can end in only two possible states: the one ending in 0 or the one ending in 1. 
The converse is true as well reading the string in reverse order, hence any given state can 
be reached by two preceding ones. In ternary series, each state may transition to one of 
three possible states and may likewise be reached by three, and so on for higher bases.  

Suppose a binary series represents transitions from one state to the next that are probabil-
istic. When a general process is decomposed into deterministic cycles, the transition 
probabilities between states are recast as transition probabilities to different cycles from 
those states common to more than one cycle. (In what follows, we take for granted the 
cycle decomposition and apply it; readers who prefer to understand the details first may 
turn to appendix Chapter A9). 

 

5.3 Cycle distinctions among MG, MAJG and $G 
Figure 14 illustrates the typical weighting of cycles in the MG, MAJG and $G for 

4, 2c sm m m= = = , relative to the expected weighting in a completely random binary se-
quence. Bars in white represent cycle weights in excess of the random expectation value 
normalized to 1; bars in gray represent cycle weights less than 1. 
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MAJG Cycle Decomposition
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$G Cycle Decomposition
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Figure 14: Relative weighting of cycles in the MG, MAJG and $G at ms = 2 for m = mc = 4, N = 31, S = 2 
expressed as a fraction/multiple of the expected weighting (normalized to 1) of a cycle decomposition of a 
completely random binary sequence 

There are many potential way of both characterizing and applying such a “taxonomy” of 
series. One simple metric is the pseudo-Euclidian distance between the cycle decomposi-
tion of a given series and that for a completely random series, providing a measure of 
non-randomness. Taken exactly, such a measure presumes that cycles in a decomposition 
are orthonormal and they are not. But by normalizing the relative weights [ ]0,1jw ∈ (with 
all weights 0 for a random series), we get a somewhat better if still imprecise definition 
of “distance”. Presuming orthogonality, this distance d is simply: 
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1

k

game j
j

d w
=

= ∑  (22) 

As is evident from the absolute values of the distance from zero of each of the bars in 
Figure 14, $0.270 0.133 0.028maj mind d d= > = > = , i.e., the MAJG generates series that 
are, by this measure, the least random; the MG generates series that are closest to random 
(at cm . A more exact use of this metric would require characterizing a series at many, 
theoretically all, sm .) The same relationship among the three games are illustrated in Fig-
ure 13 with respect to persistence and anti-persistence: While the MG is anti-persistent 
and the MAJG and $Gs are persistent, the MG is closest to 0.5=P , the random limit, the 
MAJG farthest. 

In Figure 12 we present a side-by-side comparison of the raw weights for the non-TH 
MG, MAJG and $G at 2 8m≤ ≤ , decomposed at 2sm = . The phase transition in the MG 
is evident in the change in the cycle structure at m = 4. It is important to note that these 
are ensemble averages over many different initial quenched disorder states Ω̂ . The cycle 
distribution for any single Ω̂usually differs substantially from any other and typically 
departs widely from that for a random series. Thus, for the MG, the closeness of the dis-
tribution to the random distribution, especially for small m, represents not the typical dis-
tribution but the many widely varying distributions around a mean. 

Even though the cycle distribution for the MG changes significantly as m varies, at all m 
the MG structure is different at a glance from the MAJG and $G structures. Likewise, the 
$G structure, with its disproportionately smallest representation of longer cycles is distin-
guishable from the MAJG structure at a glance. 
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Figure 15: Relative cycle weights given { } { }, , 2, 2,31m S N = for MG, MAJG and $G from left to right and 2 
< m < 8 from top to bottom. Within each graph, the numbers 1-6 on the x-axis represents the six cycles at 
ms = 2, i.e., ( ) { } { } { } { } { } { }( )1, 2,3, 4,5,6 1,1 , 4, 4 , 2,3, 2 , 1, 2,3,1 , 2, 4,3, 2 , 1, 2, 4,3,1≡ . The cycles may likewise be 
converted into the outcome + or − following a sequence of directional changes, i.e., if the last number in the 
cycle label is odd, the height of the bar represents the probability relative to a random series that − follows 
the series of directional changes; if even that a + follows. 
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5.4 Cycle analysis of the illusion of control 
Ref. [84] discusses another feature of MG’s and THMG’s: Even though agents’ choice of 
strategy is designed to optimize their performance, the performance of agents (their mean 
per-step accumulation of wealth) is always on average poorer than the measured per-
formance of their S strategies. Agents choose which strategy to use based on a compari-
son of how their strategies perform: The optimization rule employed is simply “deploy 
whichever strategy would have accumulated the largest number of points over the time 
horizon τ ”. Yet by this measure agents appear to do better by selecting a single strategy 
and sticking to it, or by randomly selecting strategies (or actions) at each time-step. Thus 
the control method in the MG and THMG yields what may be called an “illusion of con-
trol”. The relative outperformance of strategies as thus defined can be seen as arising 
from the anti-persistence characteristic of MG-generated time-series. As discussed in ref. 
[89], MAJG, THMAJG, $G and TH$G display no illusion of control and the time-series 
they generate are persistent at all m. 

Another way of understanding this phenomenon is by examining the performance of 
agents and strategies around deterministic cycles in the THMG. Depending on the 
weights, a single cycle may dominate the behavior of the THMG. In other instances just a 
few cycles dominate. It turns out that for a majority of Ω̂ , most cycles show an illusion of 
control under the MG optimization rule for most strategy pairs. Therefore, the illusion is 
expected on average over many different initial configurations of Ω̂ . As cycles are deter-
ministic, we can examine the behavior of the optimization rule in particularly simple 
form. Table 2 illustrates the behavior of the MG optimization rule around all possible (al-
lowed) cycles as averaged over every possible strategy and every agent (i.e., every possi-
ble pair of strategies) for{ } { }, , , 2,2,31,1m S N τ = . (This is the first occasion where [al-
most] all possible cycles based on paths of length 3 are listed. We take this opportunity to 
note that the two simplest cycles, ( )1,1 and ( )8,8 , and only these two, are absent. This is a 
typical feature of the THMG and demonstrates immediately the tendency of its binary 
time-series toward anti-persistence, at least at the smallest possible 1sm = .)  

Table 2: Optimization of All Standard Strategy Pairs over All Cycles and time steps 
Cycle ‚DWagent, all pairsÚ ‚DW/Dtagent, all pairsÚ ‚DWstrats, allÚ ‚DW/Dtstrats, allÚ 

(3,6,3) 0. 0. 0. 0. 
(2,3,5,2) 0. 0. 0. 0. 
(4,7,6,4) 0. 0. 0. 0. 
(1,2,3,5,1) –0.5 –0.125 0. 0. 
(2,4,7,5,2) 0. 0. 0. 0. 
(4,8,7,6,4) –0.5 –0.125 0. 0. 
(1,2,4,7,5,1) –0.5 –0.1 0. 0. 
(2,4,8,7,5,2) –0.5 –0.1 0. 0. 
(1,2,4,8,7,5,1) –1.0 –0.1667 0. 0. 
(2,3,6,4,7,5,2) 0. 0. 0. 0. 
(2,4,7,6,3,5,2) 0. 0. 0. 0. 
(1,2,3,6,4,7,5,1) –0 –0.0714 0. 0. 
(1,2,4,7,6,3,5,1) –0.5 –0.0714 0. 0. 
(2,3,6,4,8,7,5,2) –0.5 –0.0714 0. 0. 
(2,4,8,7,6,3,5,2) –0.5 –0.0741 0. 0. 
(1,2,3,6,4,8,7,5,1) –1.0 –0.125 0. 0. 
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(1,2,4,8,7,6,3,5,1) –1.0 –0.125 0. 0. 
Mean, all cycles  –0.07682 0. 0. 

As noted before, from eqns. (27)-(31) (found in appendix chapter A9) it is straightfor-
ward to calculate the number of points gained or lost around cycles. We see that the per-
step performance of strategies averaged over all possible strategies is neutral around 
every cycle ( 0 W

tW Δ
ΔΔ = = ), while agent performance is ~ -0.08 averaged over all cy-

cles. (The unit step change in wealth must be adjusted for the differing number of steps in 
different cycles. This has been done in columns 3 and 5 of Table 2 )  

Note, too, that the change in wealth for strategies when averaged over all possible cycles 
and all possible strategies is zero For almost all given quenched disorder matrices Ω̂  the 
distribution of strategies is asymmetrical, and the asymmetry of this distribution, in con-
junction with the minority rule for winning, ensures an average loss (even if under most 
circumstances less of a loss than for agents [12]). In other words, a “crowd” of strategies 
in one region of strategy space insures that their choices will on average be the majority, 
hence losing, decisions. By averaging over all possible strategies, we eliminate the ex-
pected asymmetry in strategy distribution. 

Similar patterns are found for all but a few exceptional values of τ where mean agent 
performance is also neutral. (That this must be so follows from the fact that the mean per-
formance of all agents in a given Ω̂ is at best 0.) Thus, over many different Ω̂ , the opti-
mization rule of the THMG degrades mean performance relative to the measured per-
formance of underlying strategies. In ref. [84], the inclusion of agents who select their 
worst-performing strategy is discussed. It turns out that these agents outperform not only 
standard agents, they outperform their underlying strategies and can even regularly attain 
net positive gain which for a standard agents in a MG structure is exceedingly rare. The 
performance of such agents around cycles have the same values as standard agents but 
with the opposite sign. 

5.5 Cycle-based predictors for the MG, MAJG and $G 
What Figure  illustrates at a glance is that the overall departure from randomness of the 
MAJG and $G is greater than for the MG and that the MAJG departs somewhat less from 
randomness than the $G. On this basis we expect, and in fact find, that a prediction 
method based on a cycle decomposition should yield the best results for the MAJG and 
$G relative to the MG. 

The predictor itself consists of a table regenerated from all sm =2 cycles for every possi-
ble 250-day (-step) sliding window in sequence along a binary series. The cycles are 
rank-ordered by weight (frequency). The last state prior to the prediction day consists of 
1 plus the last m days of binary data converted to decimal form. The predictor simply 
consists of the next state cycle following the present state. The prediction is the first 
number (1 or 0) in the binary representation of the state. If the present state is represented 
in more than one cycle, the cycle with the larger weight is used. (The rare persisting ties 
are settled by a fair coin toss.) 

We start using days 1-250 predicting day 251 and then slide the 250 day window forward 
by one day and recalculate the decomposition, so that days 2-251 predict day 252. The 
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process is repeated through all days of data (minus the initial 250) and the percentage of 
correct predictions is calculated. 

In Chapter 6, we create a toy predictor and apply it to real world financial time series. all 
three games, pretending that the sequences they return are actual market price-changes. 
We find that for the MG at sm =2, the percent of correct predictions using a cycle-
decomposition predictor is ~65%; for the MAJG the percent is ~72% and the $G ~66%. 
Thus the predictability of the three game types by this test stand in the same relationship 
to one another as gamed and gameP . 

5.6 Approximation of a Series as a Perturbed Dominant Cycle 
As discussed in ref.’s [88, 89], the THMG, THMAJ and TH$G may all be expressed ana-
lytically in the form of Markovian transition matrices. If these matrices are then decom-
posed into a weighted superposition of deterministic cycles, then the most heavily 
weighted cycle may be considered a zeroth order approximation for the entire matrix. (In 
the limit of small m and τ , it may often happen that more than one cycle has the same, 
largest weight; these may be linked or disjoint.) As detailed in ref.s [43, 88, 89] and be-
low, the transition matrices for these games arises out of ( )UN t , the expression for the 

number of agents at timestep t whose contribution to the collective state ( )A t  needs to be 
determined by a coin toss (because their S strategies have accumulated the same number 
of points but would yield at least two differing predictions), and ( )DA t , the expression for 

the contribution to the value of ( )A t that is wholly determined, contingent only upon the 
particular quenched disorder initializing the game and the particular “path history” at t, 
i.e., ( )tμ . A path-history is simply the union of the m-bit binary history at t (which we 
denote as tμ ) and the preceding τ -bit rolling window over which agent and strategy 
scores are maintained.  

An agent’s contribution to ( )A t will be fully determined (non-stochastic) when all of its 

strategies make the same prediction given ( )tμ . (This is more likely the smaller the 
value of S, i.e., the fewer the number of strategies per agent). This will happen only for 
some ( )tμ if an agent’s strategies differ, but of course for all ( )tμ  if they happen to be 
identical.  

Now, ( ) ( ) ( )D UA t A t A t= + , where ( )UA t is the sum of all agent’s contributions deter-

mined by an unbiased coin-toss. For certain ( )tμ  the absolute value of ( )DA t  may be 
large enough (a sufficient proportion of agents contributing to it) so that 

( ) ( )U DA t A t< —even if all the remaining agents (the number of which = ( )UN t ) happen 

to vote the same way by chance and therefore generate the maximum possible ( )UA t . In 

these instances, ( )Sgn A t⎡ ⎤⎣ ⎦ = ( )DSgn A t⎡ ⎤⎣ ⎦ , i.e., the contribution to the series 

( ) ( )1t tμ μ→ + will be determined and that step in the series therefore deterministic. In 
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terms of a transition matrix for a binary series, the entries representing the two transition 
probabilities from a given state to each of two possible successor states will consist of 1 
and 0, implying that the transitions are either present or absent with certainty (i.e., wholly 
determined). In fact, as we will detail shortly, the dominant cycle in a decomposition of a 
Markovian transition matrix arises directly from the expression for ( )DA t , excluding the 

term ( )UN t . Its weight is therefore a direct measure of the degree of determinism present 
in the series. 

A transition matrix presumes that a series is in fact Markovian. Series generated by the 
THMG, THMAJG and TH$G truly are. But the series generated by their non-TH vari-
ants, the MG, MAJG and $G proper are effectively Markovian only at equilibrium, and 
with intractably large matrices—the window of past information grows without bound 
and becomes equivalent to a sliding window only when very remote information no 
longer has an effect. However, as discussed in ref. [89], a very high-dimensional Mark-
ovian series may be approximated by a series of much lower dimension, capturing at least 
some of the information of the full matrix. Likewise may non-Markovian process be ap-
proximated, in a fashion similar to the use of hidden Markov models in which a more 
complex process is approximated by a hidden switching between two different Mark-
ovian processes [96, 97]. (Indeed, the cycle decomposition method may be considered a 
simplification of the hidden Markov method in which the “switching” occurs among mul-
tiple deterministic matrices instead of between two probabilistic ones.) 

The information contained in such an approximate transition matrix may be captured by 
analysis of a large window of preceding history. An efficient way of doing so is to create 
a cycle decomposition from this empirical data. If cycles emerge that are not merely 
somewhat but significantly weightier than all the others, one may hypothesize a signifi-
cant degree of hidden determinism in the series as evidenced, for instance by the creation 
of predictors that successfully employ the weightiest element(s) of the decomposition. 

Note, too, that in converting a continuously-valued (but time-discrete) series to a binary 
series, we are severely compressing the available data. Success or failure of a cycle-
decomposition predictor in the teeth of real-world transaction costs provides a useful heu-
ristic for the degree of data-preservation. 
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Chapter 6. Cycle- and persistence-based real-world (toy) 
predictors 
In Chapter 6. we apply the cycle decomposition method and analysis of persistence to 
real-life financial time series: Different series (or the same series in different periods) 
may be characterized by a signature cycle structure and/or degree of persistence. This fact 
leads to prediction methods based on cycles and on persistence, even for time-series 
which are not in fact Markovian. 

6.1 Cycle-based predictor for the NASDAQ composite 
Ultimately, the agent-based games we are studying are meant to illuminate the behavior 
of real-world financial markets and the time-series they generate. An important question 
that has been addressed on occasion is whether and how the light shed by studies of these 
games may be translated into methods applicable to, for example, the prediction of real-
world time-series. For example, ref. [98] identifies “pockets of predictability” in the MG 
and shows how the reasoning as to the circumstances under which they occur may be 
transferred to a prediction method for the NASDAQ composite index (IXIC). Ref. [99] 
provides an example of prediction by “tuning” an ensemble of MGs to a real-world time-
series. Ref. [100] uses the tuning method of [99] to predict the Shanghai stock market, 
but with an ensemble of “mix-games”, i.e., in each game in the ensemble, some agents 
play a MG and the rest a MAJG.  

We likewise provide an example of how insights derived from these games may indeed 
be translated into real-world prediction methods. We do so by constructing a predictor 
based on a decomposition of the time-series into weighted deterministic cycles on graphs 
and by quantifying the degree of persistence or anti-persistence in our target series. For 
pedagogical purposes we here demonstrate only “toy” predictors of great simplicity. 
However, these methods may be readily generalized and improved, opening up new ave-
nues for research and application, for instance, by encoding price-change histories in ter-
nary or even more detailed form. The cycle decomposition method for such higher-order 
matrices is significantly more complex, however. 

Following [98] to make possible comparison, we likewise examine the NASDAQ com-
posite (IXIC) over its entire history. We then incorporate a persistence filter with im-
proved results. We also examine the index divided in fourths over its history to analyze 
the different performance characteristics of the predictor and relate it to persistence dur-
ing different time periods. We compare results of the cycle decomposition predictor with 
and without transaction costs both to a simple buy and hold strategy and to a Martingale 
strategy (MGL). The latter consists of going long on day t if the sign of the price change 
on day t−1 is “+” and going short on day t if the sign of the price change on day t−1 is 
“−”. 

We first examine the structure of the series as a whole. We find that at sm = 2, the overall 
degree of persistence is ~0.52, thus somewhat persistent like the series from the MAJG 
and $G and contrary to the MG. Its relative-weighted cycle decomposition (again over its 
entire history) is shown in Figure 12. (The cycle decomposition for each fourth of the 
series is presented later.) The cycle with weight closest to zero is the last, Hamiltonian 
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cycle { }1,2,4,3,1 . The one-step persistent cycles { }1,1  and { }4,4  are over-represented 

relative to a random series and the one-step anti-persistent cycle { }2,3,2 is under-
represented. We thus have a snapshot that suggests a somewhat predictable because 
somewhat persistent time series. (The perfectly anti-persistent one-step cycle, the last, is 
present with the lowest weight.) With 0.118IXICd = , the IXIC departs from randomness 
by this cycle measure to an extent midway between that of the MG and the $G. 

1, 1 4, 4 2, 3, 2 1, 2, 3, 1 2, 4, 3, 2 1, 2, 4, 3, 1

-0.1

0

0.1

0.2
1, 1 4, 4 2, 3, 2 1, 2, 3, 1 2, 4, 3, 2 1, 2, 4, 3, 1

ms

 
Figure 12: Cycle decomposition of the entire binary daily history of the NASDAQ composite index (IXIC) 
from February, 1971 through January, 2008. (No error bars as this is a single—the only actual-
instantiation.) 

From the over-representation in the IXIC of the two one-step persistent cycles one may 
guess informally at a simple strategy that has in fact been widely employed (by so-called 
“momentum traders”) to trade the IXIC, namely the one-step MGL: If the previous day’s 
change in price is positive, buy (go or stay long); if negative, sell (go or stay short). Over 
the entire nearly 10,000 day history of the IXIC this strategy yields 58% correct direc-
tional guesses (which needs to be compared to a net upward drift over the history of 56% 
up days). This small degree of excess predictability, however, yields an annualized return 
of 38% per year (exclusive of transaction costs) versus a “buy and hold” return of 9% per 
year.  
However, at 50 basis points per “round-trip” transaction (i.e., 50/10000 = .005 cost per 
unit value traded), the MGL strategy would have yielded an annualized return of ~7%, 
more than 22% less than the buy and hold return of ~9%. A significant amount of infor-
mation has nonetheless been detected by the MGL strategy, but not enough to be of prac-
tical use—the predictor is highly inefficient, obtaining large gains at the cost of many 
changes in strategy direction. In the end, insufficient information has been recovered 
from the binary-compressed price-change series to compensate for the cost of applying 
that information. 

An explicit hidden (switching) Markov model of tick data used to generate a predictor for 
foreign exchange rates [101] yielded similar results: While significant theoretical predict-
ability was obtained for the USD/CHF exchange rate, it was insufficient to overcome 
transaction costs, a common problem that plagues financial market predictors. 

We do better by building a more precise (if still “toy”) predictor based on the same cycle-
decomposition for the IXIC index (NASDAQ composite; Figure 12), taking into account 
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the entire cycle structure (in a simple way to be described) and again obtain a correct pre-
diction percentage of 58% versus 56% up. The excess predictability in this case yields an 
annualized return of 36% versus the “buy and hold” return of 9%—slightly worse than 
the MGL predictor. However, returns remain superior to “buy and hold” for “round-trip” 
transaction costs of up to 50 basis points. Thus, the cycle predictor even in “toy” form 
extracts information from the compressed binary time-series more efficiently than does 
the MGL predictor—enough arguably to warrant potential real world application. 

Like most real-world series, the IXIC goes through periods of varying P (as measured 
over some time-scale). For example, we expect—and find—that during periods of low 
volatility as measured by proxy using the VIX (Chicago Board of Trade Volatility Index 
for the NASDAQ 100), the IXIC shows P > 0.5, while during periods of high volatility, 
P > 0.5 (i.e., anti-persistence as here defined measures the probability of frequent rever-
sals of direction). Furthermore, if very recent past periods (50 trading days) of anti-
persistence (P < 0.45) are excluded (no market exposure on such days, either long or 
short), the returns (annualized over days of market exposure) rises to 38% (equivalent to 
the MG predictor) and remain superior to buy and hold for up to 60 basis points per 
round trip. In addition, since one is exposed to the market for only ~8% of trading days 
using this measure, monies are freed up for other uses the rest of the time. 

6.2 Cycle predictors for other time-series 
Similar results are obtained for the US Dollar/Japanese Yen foreign exchange rate char-
acterized by 0.53P . However, if we apply these same methods to a real-world series 
with 0.50P , for example, the Philadelphia Exchange Gold and Silver Index (XAU), 
we find that they all fail. 

It is worth comparing the cycle decomposition and its associated predictor to a simpler 
statistical analysis of dependencies and a comparable predictor we develop from these 
dependencies. In [102], Zhang studies the history of directional price changes in the 
NYSE Composite Index (NYA) of 400 stocks from 1966 to 1996. He displays the fre-
quency that an up (+) daily price change occurs following each of the eight possible 
three-day sequences of directions of price changes. In Figure 13 we duplicate for the 
IXIC his analysis of the NYA. (The figures are remarkably similar.)  
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Figure 13: Frequency with which a positive daily change in price occurs following each of the eight possi-
ble three-day sequences of the direction of price-change for the IXIC. White circles indicate the relative 
weighting of the sequence. “+” = up; “−” = down. The small number of days of no change are excluded 

In Figure 14 we transform the results of Figure 13 into expectations relative to a random 
sequence with the same overall upward bias as the NYA itself, to make it comparable to 
the cycle decomposition of Figure 12. Figure 14 makes evident the rationale for the 
Martingale predictor:  Regardless of the preceding two states, if the last state is “+” the 
next one is more likely to be as well; similarly with “−”.  
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Figure 14: Relative probabilities of a positive daily price change following each of the 8 possible daily 
sequences of direction of price changes over three preceding days 

To improve the comparison—and highlight differences—the cycles of Figure 12 may be 
recast according as follows. The cycle { }4,4 is equivalent to11 11 111→ = ≡ + + + , i.e., 
“ + + ” followed by “+” with frequency (probability) of 0.50 + 0.03 = 0.53. The 0.03 
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comes from the second bar of Figure 12. The cycle { }1,1  is equivalent to 
00 00 000→ = ≡ − − − , i.e., “ − − ” followed by “ − ” with frequency (probability) of 0.50 
+ 0.08 = 0.58 (again from Figure 12) which is the same as followed by “+” with fre-
quency (probability) of 1 − (0.50 + 0.08) = 0.42. All the cycles of Figure 12 may be re-
cast according to Table 1. Note that not every possible sequence of states for any length 
other than 2 is included and that the selection of states based on the cycle decomposition 
includes states of four different lengths. 

Table 3: Probability of + following state sequences equivalent to cycles 
Cycle Prior States Calculation P(+) 
{ }1,1  − − 1 − (0.50 + 0.08) = 0.42 

{ }4,4  + + 0.50 + 0.03 = 0.53 

{ }2,3,2  − + − 0.50 − 0.06 = 0.44 

{ }1,2,3,1  − − + − 1 − (0.50 − 0.04) = 0.46 

{ }2,4,3,2  − + + − 0.50 − 0.03 = 0.47 

{ }1,2,4,3,1  − − + + − 0.50 + 0.51 = 0.51 

The results of Table 3 are displayed in Figure 15. 
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Figure 15: Cycle decomposition of the IXIC recast in terms of frequencies that a given sequence of daily 
directions of price changes is followed by a positive change in price. 

The departures from 0.50 in Figure 15 show mean dependencies over the entire history 
of the IXIC that are noticeably smaller than the departures and dependencies in Figure 
13. At first glance therefore one might expect that a predictor based on the cycle decom-
position would be less powerful than a comparable one based simply on the eight possi-
ble three-day histories. (The six sequences in the transformed cycle decomposition have a 
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mean length of 3.3.) But the cycle decomposition arguably reveals more complex de-
pendencies than the simpler statistical analysis. 

In fact, using the eight three-day histories we construct a “dependency predictor” as close 
as possible in structure to the cycle-decomposition predictor and obtain the following re-
sults: Not taking into account transaction costs, the dependency predictor yields annual-
ized returns of 26% — better than buy and hold (consistent with the arguments against 
the efficient market hypothesis made in [102]), but not so good as either the Martingale 
or cycle-decomposition predictor. (The superior performance of the Martingale predictor 
vis-à-vis the dependency predictor suggests that an approach based strictly on these de-
pendencies may attain maximum performance at least for this application by utilizing his-
tories of no longer than a single day.) Furthermore, while the cycle decomposition predic-
tor retains performance superior to buy and hold (and to Martingale) for up to 50 basis 
points of transaction costs, dependency predictor gains—as well as effectively the entire 
initial investment—are wholly wiped out by such costs with an annualized loss of −19% 
per year. The dependency predictor retains performance superior to buy and hold only for 
transaction costs of no more than 17 basis points. 

It is valuable to examine the performance of the predictor during a set of different arbi-
trarily selected time-periods. Following the procedure in [102] as applied to the NYA, we 
divide the IXIC price-change series in equal fourths and apply the cycle predictor to each. 
Results are shown in Table 4 and in Figure 16. 
Table 4: Summary of cycle predictor results for IXIC history divided into equal sequential fourths 
Fourth P <P> Ann. Ret. Cyc. Ann. Ret. BH Ann. Ret. Cyc. − BH d 

1st 0.56 0.55 57% 2% 55% 0.16
2nd 0.52 0.54 40% 9% 31% 0.13
3rd 0.52 0.52 49% 23% 26% 0.11
4th 0.49 0.49 -7% -6% -1% 0.09
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Figure 16: Annualized return of cycle predictor, by fourth of IXIC, in excess of buy and hold return show-
ing correlation with d and <P>. d is the pseudo-Euclidian distance between the cycle decomposition of the 
series and the expected decomposition of a random series with the same overall linear bias. <P> is the 

mean persistence of the series, i.e., averaged over 1 10sm< < . 

For each fourth we determine the annualized raw return (exclusive of transaction costs) 
from the cycle predictor and the annualized buy and hold return. We compute the differ-
ence and denote the associated P, < P > (averaged over 1 10sm< < ) and d. We see that 
the raw return from the cycle predictor in excess of the buy and hold return declines 
monotonically over time with monotonic declines in P, < P > and d. These results are 
consistent with the improved performance of the cycle predictor found previously with a 
persistence filter. 
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Chapter 7. Supplementary findings in the MG  
In Chapter 7. we illustrate certain additional findings and subtleties in the MG corollary 
to the main findings already presented, focusing on genuine and illusory control. First, we 
present additional findings for the MG/THMG in which a subset of agents choose their 
worst strategy. (Appendix Chapter A9 provides the mathematical details for modifying 
TH game expressions to account for any proportion of such “counteradaptive” or “anti-
optimizing” agents in the TH –MG, -MAJG and -$G.) Second, we present more extensive 
numerical simulations for the illusion of control in the MG/THMG for a wide range of τ. 

7.1 Choosing the worst strategy in the THMG/MG 
In previous chapters we have discussed the fact that in the MG/THMG, if a small subset 
of agents invert the fundamental optimizing rule by always deploying their previously 
worst-performing strategy, these “anti-optimizing” (or “counteradaptive”, i.e. “C”) agents 
outperform standard (“optimizing”, “adaptive”, i.e. “S”) agents. 

The MG literature is replete with specific phenomena that arise from the fact that by 
definition, the majority of agents on average must lose in the long run: Inter alia, these 
references discuss MG macrostate (and therefore mean agent) performance as a function 
of the critical MG parameters [4, 5, 59]; of evolutionary variations of the MG rules [103-
105]; of agent-heterogeneity [106, 107] and of the limits on information available to 
agents [107-109]. Different forms of agent contrarian behavior have likewise been ex-
plored [107, 109]. But the primary fact of agent underperformance vis-à-vis their own 
strategies itself has remained only indirectly examined; nor has the experiment been done 
that follows logically once this observation is made—what is the effect of strictly revers-
ing not agents’ choice per se (“contrarian” behavior in a naïve sense), but the basis on 
which they make choices.  

Framing the experiment this way probes a fundamental presupposition of the MG—that 
choosing the best method of responding based on history is rational (if boundedly, which 
might therefore mean in fact mean “irrationally”. In other words, as in real life, one takes 
for granted that the most rational course of action is to continue doing that which has 
worked best in the past; irrational to deliberately do the reverse. The “illusion of control”, 
when present, illustrates how the opposite may prove true.) That the MG optimization 
procedure generates, on average (and under most circumstances, if not all), worse results 
for agents than for their strategies might lead a cynic to conclude that the fundamental 
MG rule for adaptation is instead maladaptive for agents, even if it is adaptive collec-
tively (i.e., leads to cooperativity among agents). 

The unexpected fact that a subset of agents selecting their worst strategy consistently 
outperform the rest by a very wide margin—and even generate net positive gain in a set-
ting (minority wins) where mean loss is inevitable—is consistent with a related phe-
nomenon explored in ref. [106, 110]: Therein, some or all agents choose among their 
strategies probabilistically as determined by a standard partition function of a tempera-
ture-like parameter. In effect, a degree of biased randomness is introduced into the opti-
mization process. At any time-step a subset of agents will by chance choose their worst 
strategy. At each time-step the subset size varies about a mean as determined by the parti-
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tion function, and in composition varies as a flat distribution among all agents allowed to 
select probabilistically. This has an overall salutary effect in lowering σ, as in [111]. By 
contrast we here examine a systematic, complete and non-probabilistic inversion of the 
optimization procedure for a fixed subset of agents. We focus primarily on the compara-
tive performance characteristics of individual agents, secondarily on systemic effects. 

There are also discussions in the literature of so-called “contrarian” agents [109], but 
these are agents who always vote contrary to their best strategy, not in accord with their 
worst. (This means that when all strategies dictate the same action, the agent chooses the 
opposite action). The distinction is not trivial: As a group, truly counteradaptive agents 
not only outperform standard agents as well as their own strategies, as noted, they often 
achieve net positive gain. By contrast, on average, “contrarians” achieve a maximum av-
erage winning probability of 0.485 [109]—still < 0.5—whereas truly counteradaptive 
agents attain a winning probability > 0.5. 

7.1.1 Sample Results from the MG and THMG 
For a single instantiation both numerically and analytically with N = 31, S = 2 and m = 2 
at τ = 1, Table 5 demonstrates how the improved (often net positive) gain among the C 
agents raises the overall performance of the agent pool. So long as the proportion of C 
agents is small enough the game as a whole behaves like standard minority game as evi-
denced by the still-negative gain of agents averaged over all agents. 

Table 5: Numerical/Analytic Results of THMG with and without 3 C 
Agents 28 S Agents (= left value/right value) for N = 31, S = 2, m = 2, τ = 1 

 ‚∆WAgentÚ ‚∆WStrategyÚ 

With 3 C-agents of 31 –0.14/–0.14 –0.05/–0.05 

Without any C-agents –0.26/–0.26 –0.05/–0.05 

Figure 17 shows an ensemble result over 100 runs. For both Table 5 and Figure 17, three 
agents are selected first to contribute as S agents and then, in an identical 31Ω̂  as S 
agents. For the ensemble results of Figure 17, an identical sequence of pre-selected ran-
dom numbers is used for each pair (i.e., of C-containing and all-S) of runs, at each in-
stance where the net vote requires a coin-toss.  
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Figure 17: Mean agent (blue) versus strategy (black) performance over 100 runs for N = 31, S =2, m =2 at 
τ = 1000, both with (solid lines) and without (broken lines) 3 C-agents. Re-simulations use identical pa-
rameters and where required (and possible) identical random numbers. 

The single example in Table 5 is selected to be typical: That is, the three agents that are 
run once as S agents and then again as C agents are at the modal Hamming distance for 
the ensemble of Figure 17.  

Both the typical and ensemble average for these agents—when containing C agents—not 
only outperform both their own strategies and the other S agents on average, they all gen-
erate net positive gain, approximately inverting the relation between Hamming distance 
between strategies and gain. We cannot tell from these findings whether the changed 
agents achieved actual positive gain. Figure 18 demonstrates the individual agent and 
strategy performances for the 3 C agents in the single instantiation of a 31Ω̂ of Table 5. 
Figure 19 demonstrates the individual agent and strategy performances for the 3 C agents 
averaged over the 100 instantiations of 31Ω̂  in Figure 17. 
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Figure 18: 3 of 31 agents use counteradaptive (“C”, choose worst) strategy selection, shown in red. Their 
previous underperformance when using standard selection rule (“S”, choose best) is shown in blue. The 
chart shows results for three agents from a single typical quenched disorder tensor 31Ω̂ . Note the approxi-

mate inversion of the relation between Hd and agentWΔ . This individual example from among an ensemble 

of 100 differing 31Ω̂ as typical: Its three C agents are at the mode of the three different Hamming distances 
in the ensemble. 
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Figure 19: Ensemble averages for 3 of 31 agents using counteradaptive (“C”) strategy selection are shown 
in red. Their previous underperformance when using standard selection rule (“S”, choose best) is shown in 
blue. The chart shows results for three agents from 100 randomly-selected quenched disorder tensors 31Ω̂ . 

Note the approximate inversion of the relation between Hd (values in white) and agentWΔ . 
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The hypothetical outperformance of the “unused” relative to the “used” strategies in the 
MG was first observed in [44]. “Unused” strategies may be translated as “worst” for N = 
2 and as “not best” for N > 2. The results we discuss here are the same for N > 2: The 
worst strategy under these conditions performs best, the second worst performs second 
best, etc.  

Ref. [56] discusses a MG in which the performance of the second-best strategy for S > 2 
is considered in agents’ decision as to which strategy to employ. The global performance 
is thereby enhanced. These results are arguably consistent with but not identical to what 
we discuss here: The principle that appears to emerge from [56] is that additional infor-
mation—i.e., ranked strategy performance—enhances agent performance. But in fact, this 
conclusion is an artifact—an illusion—that arises from the simpler phenomenon demon-
strated here. 

7.1.2 Microscopic examination of agent performance with and without C agents in 
the THMG 
As noted, that C agents may attain net positive gain on average is not immediately evi-
dent from the information presented so far: C agent performance that is merely better 
than S agent performance but still negative will also improve agent performance averaged 
over all agents. (From the actual values in Figure 17, however, one may deduce that the 
contribution of the three C agents must be on average positive in order to shift the per-
formance curve upward as much as it does.) More explicitly, Figure 20 presents the 
mean of many simulations in which positive net gain for C agents emerges clearly: The 
mean performance of these three agents only is shown as a solid red line, the mean for the 
same three agents’ performance when standard (S) is shown as a broken red line. In fact, 
in the symmetric phase ( )2mP

c N Nα α> = =  counteradaptive agents end to be absolute 

winners. (The phase transition at cα is preserved when the number of counteradaptive 

agents is small as is the characteristic relation of the global efficiency, 2

N
σ , to P.)  

However, the effect of potentially differing histories with and without counteradaptive 
agents must be addressed. It seem likely that thus altering three of 31 agents must lead to 
significantly divergent histories: The sum of all agents’ actions will differ in the simula-
tion pairs. With different histories, the timing and number of tie-breaks will also differ. 
Perhaps the outperformance of the counteradaptive agents arises in some way from a dif-
ferent history; and different histories would render meaningless the attempt to impose a 
fixed sequence of random numbers to break ties. 

The divergences in histories can be large. But it turns out that there are surprisingly many 
instances when histories do not diverge at all within simulation “pairs” (i.e. between a 
given ˆ

NΩ run without C agents and the same ˆ
NΩ run with C agents). This is because (as 

we will address formally via the analytic formulation of the THMG) the counteradaptive 
vote of any given agent will differ from its standard vote for only certain “path histories” 

( )tμ  of length m τ+ , and not for all. Which ( )tμ  are associated with a potentially 
changed vote depends upon the specific pair of strategies constituting the agent (and, of 
course, the summed actions of all other). Thus, for any given ( )tμ there will almost al-
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ways be fewer changed individual “determined” votes (votes involving no tie break) than 
the total number of counteradaptive agents, and often none at all. (Hence a requirement 
that the proportion of C agents be “small”.) As detailed in the mathematical appendix 
which builds on [43], because this set of values is independent of agent action, the num-
ber of determined votes associated with each ( )tμ  is the same in both simulations of a 
pair. The particular proportion of 1 and 0 votes contributing to the majority and minority 
determination may differ: But whether it can differ for a given simulation pair depends 
upon whether enough undetermined votes remain —votes that require a coin-toss—to 
alter the collective decision should all vote the same way; and whether it actually does 
differ if it can, depends upon the actual vote. (Note that if ( ) ( ) ( )i ig t a t A t= −  rather than 

( ) ( ) ( )i ig t Sgn a t A t= − ⎡ ⎤⎣ ⎦  as in our discussion, this principle still holds since each new 

(last) digit of the history tμ (and path-history ( )tμ )is converted from ( )A t  to binary 

form, i.e., ( ) ( ){ }1 2 1D t Sgn A t= − +⎡ ⎤⎣ ⎦ ) 

If the proportion of counteradaptive agents is small enough, the total number of poten-
tially changed individual determined votes between pairs in a simulation is therefore yet 
smaller. The sum of all changes alters the net voting imbalance but often not so much as 
to alter the minority position. Often the overall proportion of determined votes is so large, 
and the altered vote imbalance so small, that it will be impossible for the minority side to 
differ. When a difference is possible, it is most often unlikely: Even less likely if the ran-
domly chosen value of the undetermined vote is made identical within pairs. Note, too, 
that if altering one or more agents changes ˆ

NΩ , the history is likely to be very different 

because the history is generated by ˆ
NΩ . This is what occurs when an agent or agents are 

given “optimal” strategies [57]; likewise if an agent always votes opposite to what it oth-
erwise would, as this is equivalent to replacing each of a strategy-tuple with its most 
Hamming-distant “opposite.” Changing only agents’ method of strategy selection 
alone—even for all agents—has no effect on ˆ

NΩ ; changes in the history grow more 
likely therefore with the proportion of counteradaptive agents. 

In both simulations the total number of undetermined voters following each possible his-
tory remains the same. In simulations using { } { }, , 31, 2, 2N S m = , the proportion of unde-

termined votes is about 0.2. Over different ˆ
NΩ , and within simulation pairs, the average 

difference in the imbalance caused by the “determined” voters is dependent upon M, S 
and N and the distribution of the total of all choices requiring a coin-flip is binomial 
around zero. The difference varies from small to large and inversely with the range of 
variation in the total vote (i.e., 1

σ∝  for cα α< ; see Figure 22 and discussion): A large σ 
implies large imbalances, which in turn can arise within a given run consistently only by 
a large imbalance in the determined vote; and these are less likely to be reversed by the 
votes of a small number of undetermined voters—and may be impossible to reverse. 
(N.b., this analysis provides an impression of how the TH games in general may be 
treated as deterministic systems perturbed symmetrically about sequential determined 
states. Where the size of the perturbation is non-zero but small enough, ( )A t will differ 
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from ( )DA t  but not from ( )2 1D t − . In these instances, perfectly deterministic sequences 
of states will arise, i.e., pockets of predictability as discussed in [98]. In this reference, it 
is the MG rather than the THMG that is at issue, but in many instances the equilibrium 
(unbounded τ) sequence of agent strategy choice, hence the equilibrium sequence of 
states ( )D t , is little different than the choices and sequence of states for bounded τ.  

Therefore the possibility of divergent histories is reduced, sometimes to zero, when the 
undetermined agents are forced to make the same random choice in both simulations. 
Hence the distribution of divergences over many different initial states is not Gaussian: 
Divergences tend to persist; the absence of divergences likewise, especially, of course for 
those path-histories (possibly all) which are wholly determined. (See [98] for a discussion 
of other implications of determined portions of the overall history.) The presence of many 
instances when the histories within simulation pairs are identical both requires and makes 
meaningful the imposition of identical random number sequences in comparing them. We 
may then ask whether the outperformance of the counteradaptive agents is found in such 
instances as well. 

For example, using a fixed sequence of random numbers in 100 typical simulations of 
100 time-steps for N = 31, with and without 4 C agents, the minority group reversed in 
~30% of all time-steps averaged across the 100 simulation pairs. But in fully 20 of the 
100 hundred runs all 100 time-step histories were identical within pairs (implying, as 
mentioned, that divergences tend to persist in those runs wherein they arise). The exam-
ple in Table 5 happens to show no divergence in the two runs in a pair, hence the strategy 
scores are identical.  

Averaging over just the simulation pairs with identical histories, the agents selected to be 
counteradaptive did worse in that simulation where they were kept standard than in the 
simulation where they actually became counter adaptive; and even slightly worse than the 
agents kept standard in both runs. (And these did about the same in both). But when the 
selected agents became counteradaptive in fact, they significantly outperformed the stan-
dard agents (in both runs as well as themselves in the standard run).  

Over all 100 runs the average outperformance of counteradaptive agents versus the stan-
dard ones was ~0.04 wealth units per time-step. In just the 20 identical runs, their outper-
formance averaged ~0.05 wealth units per time-step. Thus, the improvement showed by 
the agents becoming counteradaptive cannot be adequately explained by divergences in 
the collective history. For runs with identical history pairs, strategy performance does not 
(cannot) differ at all at any time-step, since the action of the strategies at all time-steps is 
wholly determined by the history. So, further, the improvement shown by the coun-
teradaptive agents with respect to their own performance when kept standard holds as 
well for their performance with respect to their strategies. Henceforth we will drop any 
requirement that only runs with maximally-identical histories be compared. 

The mean performance of all strategies with 3 agents choosing counteradaptively (black, 
solid line) in Figure 17 is somewhat better than the mean performance of all strategies 
with no agents choosing counteradaptively (black, triangular points). The mean perform-
ance of all agents with 3 agents choosing counteradaptively (blue, solid line) is much bet-
ter than the mean performance of all agents with no agents choosing counteradaptively 
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(black, square points). For both simulations mean agent performance is very much worse 
than mean strategy performance. These relations suggest what Figure 20 breaks out in 
detail: That agents choosing counteradaptively perform significantly better than standard 
agents. 

 
Figure 20: Comparative effect on agent v. strategy wealth of standard v. counteradaptive optimizations in 

the (TH)MG for { } { }, , 31,2,2N m S = and τ = 1. 

Figure 20 is composed as follows. 

▲ All agents are standard, but this trajectory breaks out the mean wealth ac-
cumulation by strategies for those agents that are standard in both.  

▲ All agents are standard, but this trajectory breaks out the mean wealth ac-
cumulation by strategies for those agents that in the second simulation will 
change to the counteradaptive optimization. In the standard run, the mean 
wealth accumulation by the strategies of these agents happens to be some-
what better the remaining agents’ strategies. This is a matter of chance. It 
depends upon which agents are selected at random to use the other selec-
tion method in the second run. 

■ All agents are standard, but this trajectory breaks out the mean wealth ac-
cumulation by agents for those agents that are standard in both. 

■ All agents are standard, but this trajectory breaks out the mean wealth ac-
cumulation by agents for those agents that in the second simulation will 
change to the counteradaptive optimization. Note that for both groups in 
the standard run, wealth accumulation by agents significantly underper-
forms wealth accumulation by agents’ strategies. This effect happens to be 
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especially striking for the 3 agents that in the second run will change their 
optimization method. 

— 28 agents are standard, 3 counteradaptive. This trajectory breaks out the 
mean wealth accumulation by strategies for the 28 agents that remain stan-
dard in the second simulation. 

— 28 agents are standard, 3 counteradaptive. This trajectory breaks out the 
mean wealth accumulation by strategies for the 3 agents that change to 
counteradaptive in the second simulation. Their mean is somewhat better 
than when they were standard, but remains negative. 

— 28 agents are standard, 3 counteradaptive. This trajectory breaks out the 
mean wealth accumulation by agents for the 28 agents that remain standard 
in the second simulation. 

— 28 agents are standard, 3 counteradaptive. This trajectory breaks out the 
mean wealth accumulation by agents for the 3 agents that change to coun-
teradaptive in the second simulation. Their mean is dramatically better than 
when they were standard, and is in fact strongly positive in this case where 
they were the most strongly negative when standard. Most important is the 
simpler fact that these agents outperform rather than underperform their 
respective strategies. 

Figure 21 illustrates a similar effect averaged over 20 different randomly-selected ˆ
NΩ  

for { } { }, , 101,2,2N m S = with 10 C agents. Here the counteradaptive agents outperform 
the standard ones but do not necessarily achieve a positive gain. Actual results for a par-
ticular agent/strategy configuration are highly sensitive both to ˆ

NΩ  as well as to which 
and how many are C agents. If the fraction of C agents is very small (d0.05), on average 
the system-as-whole behaves very similarly to the same system with no C agents. But the 
performance of the C agents varies widely from run to run. If the fraction of C agents is 
large (t 0.25), they constitute a more representative subset of all agents and their behav-
ior varies less from run to run. But these agents then cause the behavior of the system as a 
whole to differ significantly in comparison to the same system with no counteradaptive 
agents.  
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Figure 21: Simulation of (TH)MG with 101 agents for 500 time-steps averaged over 20 randomly-selected 
agent/strategy configurations. 10 of the 101 agents are C agents, i.e., they choose their strategy coun-
teradaptively.  

In a mixed group of agents all with fixed memory the performance of the counteradaptive 
agents and standard agents both relative to each other and relative to zero mean gain de-
pends in a consistent fashion both upon the total number and relative proportion of coun-
teradaptive and standard agents. Figure 22 illustrates the results of a THMG simulation 
with t = 1 for each of N = 21, 31, ..., 101, and for percentages of counteradaptive agents 
increasing from ~3% to ~97%. 10 runs of 100 time-steps were performed for each set of 
values: Every triple consisting of a blue, red and green triangle represents the mean of 10 
final values at the end of a run. Every plot represents a different N. (The solid lines repre-
sent least-square polynomial fits of order 3). Blue represents the mean Δwealth/Δt for the 
standard agents at a given N at decreasing proportions of standard agents; red represents 
the mean Δwealth/Δt for the counteradaptive agents at a given N at increasing proportions 
of counterproductive agents; green represents the difference between the two. 

Each of the ~1800 runs were initialized independently with 2N strategies randomly cho-
sen from the same reduced strategy space in N pairs from the space of “typical” pairs re-
stricted as discussed in the mathematical appendix, and with random initial histories. 
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Figure 22: Counteradaptive (CA) agent outperformance at different N, %C 

Note the consistent shape of all three curves with varying % C agents, across N. For % C 
small, the C agents outperform the S agents and conversely (to a greater degree) at % C 
large. Equality of performance is reached consistently at % C d 30. Note, too, that as the 
% C increases, it grows more likely that the game will settle into a Nash equilibrium and 
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the gain of the S agents not only exceeds that of the C ones, it is consistently positive and 
large. 

More intriguing is the fact that the same is true in reverse, if much less markedly so at % 
C small (d 10% – 15%): Not only do the counteradaptive agents outperform standard 
agents, within a narrow but consistent range of { ,% }N C  they predictably achieve small 
absolute positive gain. The positive gain surfaces from the same data as in Figure 22 are 
shown in Figure 23, the ungridded sections representing positive gain for counteradap-
tive agents, the gridded surface for standard agents. For range of { ,% }N CA  with positive 
gain for the counteradaptive agents the game does not settle into Nash equilibria states. 
Hence the outperformance and positive gain of the counteradaptive agents is not associ-
ated with the loss of frustration in the system as for % CA large, but occurs in spite of it. 
It is important to emphasize that this positive gain is related neither to additional informa-
tion or intelligence afforded the CA agents, nor to their adopting a different optimization 
procedure of evident advantage. 

 
Figure 23: C (un-gridded) and S (gridded) agent performance surfaces 

The underperformance of S agents relative to their strategies is found more predictably 
under different conditions than is the outperformance of C agents relative to S ones. And 
both phenomena appear even more consistently in the standard MG than in the THMG 
with t small (as in the examples just discussed). Figure 24 illustrates the same phenome-
non (and with largely positive absolute wealth gain) for the standard (non-TH) MG. But 
the standard MG with modest N is intractable in principle (and in practice the THMG 
with a very long time-horizon), to the kind of analytic reductions that will be used 
shortly, based on [41, 43], with which we can better understand how this paradoxical 
seeming effect arises. 
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Figure 24: Outperformance of 15 C agents by comparison to 86 S agents as a function of m, for N = 101, S 
= 2 over 10 runs showing high degree of absolute positive performance for m small. These results are for 
the standard MG in which strategy points accumulate without bound (over τ growing with t). The general 
form of the relation of σ to m (and of the dispersion of σ) is present in spite of the fact that ~15% of the 
agents are following the C rule. Outperformance disappears as σ reaches its minimum ( cα α→ ) and re-
mains absent as the game enters the random or asymmetric phase ( cα α> ). The spread in the counteradap-
tive values at each m (red) is greater than the spread in the standard values (blue) because of the smaller 
number of agents for the former. 

7.2 Illusion of control in the THMG at various τ 
We have emphasized that the illusion of control in the THMG is present for all “reason-
able values” of τ. Figure 24 demonstrates that in the standard MG where the system is 
allowed to run to equilibrium and τ is unbounded (and very large), the illusion is absent 
for values of cα α≥ (where agents freeze). As the illusion vanishes, so too does the out-
performance of C agents, as expected (since this outperformance is a powerful conse-
quence of the illusion). It is instructive to examine the relation between the illusion and τ 
in greater detail. This is shown in Figure 25. Here we increase τ in approximately regular 
(exponentially growing) intervals from τ = 1 to τ = 31620 for a system with 
{ } { }, , 31,2,2N m S = . We also compare results for real histories to random histories. (We 
have not previously focused on this difference in this document. This graph demonstrates 
that in examining the illusion of control, the differences are quantitative but not qualita-
tive: Random histories alter the position in the historical record of a given ( )A t  but not 

the response of the system to that ( )A t with respect to agent and strategy wealth. As will 
be evident from the mathematical appendix, another difference is the proportional distri-
bution of the various allowed path-histories ( )tμ . With random histories the vector μ is 
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composed of identical entries (steady states are equiprobable), equal to the mean of all 
μ averaged over an infinite number of randomly-selected ˆ

NΩ  for given m, S.) 
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Figure 25: Illusion of control in the THMG at values of τ from 1 to “> 
reasonable” (31620), for both real histories (top 10 graphs) and random 
histories (bottom 10 graphs) with N = 31, m = 2, S = 2. ▲ ΔWagent 
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We may note the following general features.  

First, as τ grows, the phase-transition at cα becomes increasingly evident ( 2 Nσ , the 
standard measure of inverse system cooperativity or wealth, is provided in black squares 
for convenience. It varies as the inverse square of agentWΔ shown as grey triangles).  

Second, as τ grows, the excess mean gain of strategies over (supposedly optimizing) 
agents at cm  — i.e., strat agentW WΔ − Δ —shrinks. Because the maximum number of equili-
brating steps, though very large, is less than the number of steps required to attain equi-
librium (which at cm is exceedingly large), it remains the case that, though small and at a 
minimum, 0strat agentW WΔ − Δ > , i.e., the illusion of control persists throughout. 

Third, away from cm , the illusion persists throughout and is large. 

7.3 Performance of optimizing (S) versus random-choice agents 
in the THMG 
Figure 26 shows the performance (mean change in wealth per step) of a single optimiz-
ing agent embedded in a THMG-like game versus all other agents making a symmetric 
random choice. From left to right N = 11, 21, 31; S = 2,3; m = 2,3,4,5; and τ = 1. Random 
agents always outperform optimizing agents. Similar results are found for other values of 
N, m, S and τ. Within statistical fluctuations typical for the number of runs (100) and for 
the random selection of strategies, results for anti-optimizing agents are identical. 
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Figure 26: Performance (mean change in wealth per step) of a single optimizing agent embedded in a 
THMG-like game versus all other agents making a symmetric random choice.  
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Chapter 8. Discussion 
In Chapter 8. we review and summarize our major findings from a bird’s eye perspective. 
We discuss limitations in the present research and suggest further avenues of research. 

8.1 Status of the illusion of control; anti-persistence 
“Illusion of control” is a problem that appears in many domains. We have here demon-
strated certain formal conditions under which it appears: In multi-player MG and in an 
attempt to optimize the Parrondo effect in single-player games of the Parrondo type (PG). 
Both classes of games have experienced broad and growing acceptance as models for a 
very wide range of human activities, especially the MG and its variants. The effect is so 
powerful in the MG under most circumstances (particularly in the THMG variant) that 
the deliberate inversion of its optimization rule actually leads to superior results. (Con-
sider how unlikely it is that a trader would deliberately choose to deploy that strategy 
which in his hypothetical simulations consistently demonstrated the worst results.) 

However, the illusion of control is not present under all circumstances in the MG (even if 
very widely and under most realistic constraints) and it is entirely absent in the MAJ and 
$G, whether TH-variant or not. 

The mechanism for the illusion in PG’s is unrelated to its mechanism in MG’s. It is not 
possible to denote a single underlying similarity in cause and this doubtless reflects the 
fact that failure of optimization in real-world settings may be due to many different 
causes. 

However, in that large class of phenomena that are characterized by a one-dimensional 
time series arising from the interaction of many different agents, i.e., complex adaptive 
systems (CAS), our results suggest that the presence of anti-persistence in particular may 
be a warning flag for would-be optimizers. Thus when applying the method of cycle de-
composition to the creation of real-world predictors—which arises naturally in the study 
of the TH games—we find strong indicators that anti-persistence is at least one cause for 
periods of weaker success (or outright failure).  

8.2 Cycle decomposition 
Complementary to the assessment of persistence in a binary time series, we have demon-
strated a simple version of the cycle decomposition method as a rapid and visually ap-
pealing way to characterize time series and, in fact, to achieve a certain kind of optimiza-
tion, e.g., prediction. While we have here restricted ourselves to elementary applications, 
we anticipate (and preliminary results not included support the impression) that this 
method may yield a rich harvest in future studies. 

In particular, methods that employ higher-base decompositions (e.g., ternary instead of 
binary series) should be especially appealing in the financial forecasting arena since 
many financial series are much more usefully projected not onto a two-state spectrum of 
“up” and “down” changes, but onto a three-state one, “up”, “down” and “no change”. 
Clearly in the financial domain especially, the unusually large number of very small 
changes begs for a significant role for a “no change” element. (Financial time-series typi-
cally show both fatter tails than in a Gaussian distribution and sharper central peaks. Set-
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ting a reasonable range of middle value to zero helps to emphasize the “fat tails” indica-
tive of the strongest dependencies.) Nonetheless, the fact that we are able to make signifi-
cant headway using “toy” predictors that lack this feature is an indication of the potential 
of the method.  

We emphasize that there is probably nothing dramatically new in this approach that could 
not be achieved also, perhaps if only with greater toil, by more conventional statistical 
methods. An old argument comes to mind: For many years the statistics community rou-
tinely dismissed artificial neural networks (ANN) as nothing new—they simply codified 
in a different way various kinds of extant non-parametric statistical methods. Nonethe-
less, for many problems, the implementation of a an ANN is the preferable solution 
method (noise-canceling headphones, sonar identification of foreign underwater targets, 
to give two current practical implementations). 

Similarly, the statistical dependencies in financial markets discussed by Zhang [102] ap-
pear elsewhere in market prediction methods closely related to (and often applied as a 
part of) ANN methods, namely “cased-based reasoning” (CBR)[112]. In CBR, prior ex-
periences are cataloged as “cases” along with their typical outcomes and the current 
situation is matched to the appropriate case to make a prediction. In so-called “fuzzy” 
CBR the likelihood of a certain next-step is estimated based on the statistics of the prior 
cases to which it is matched. This method of conceptualizing statistical dependencies is 
not inherently different than statistical methods proper but lends itself to machine learn-
ing (and to implementation as an ANN of the “vector learning” variety). Perhaps the in-
troductory cycle-decomposition techniques we have presented here may be thought of in 
the same spirit as very modest analogs to the use of Feynman diagrams to express rapidly 
the dynamics presented in Schwinger’s equations for QCD 

8.3 Limitations and future lines of research 
The literature on MG in particular has grown very rich as the field has matured. There are 
many “branch points” in the development of this work which would lead to obvious and 
important corollary studies. Here are some we have deferred for forthcoming efforts. 

8.3.1 Effects of S > 2 in MG, MAJG and $G 
Much of the literature has made clear that the most significant phenomena associated 
with the MG, MAJG and $G are present when each agent has only 2 strategies. We have 
spent time investigating what happens in these games when a subset of agents choose 
their worst strategy which, for S = 2 means simply, “the other strategy”. At least one 
study has examined what differences arise when agents take into account on the predic-
tions generated by their second best strategy (with S > 2, of course)[56]. It would be help-
ful, we think, to study more carefully what would happen were the subset of “C” agents 
to act solely in accord with their second-best, third-best, … strategy. 

8.3.2 Grand Canonical MG, MAJG and $G 
More importantly, we are interested in extending the analyses we have presented here to 
variations of the Grand Canonical (GC) MG/THMG (and MAJG, $G). Many features of 
real-world markets that are absent from the non-GC version are present in the GC games. 
In GC games, agents may participate or not depending upon whether a certain perform-
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ance threshold has been met. Allowing agents to not participate is analogous to ternary 
cycle decomposition. Just as extremely small changes are best classified as “0” rather 
than + or −, it makes sense that agents would be allowed to do nothing as part of the ac-
tions associated with their strategies. 

Would the illusion of control, when present, be greater, less or not significantly different 
under these circumstances? 

Related to this consideration is the role of “volume” in real world markets and various 
studies of so-called “momentum” trading. Volume may be studied in the CG version of 
agent-based games and related to the illusion of control. 

8.3.3 Agents with mixed memory and/or lookback 
There is a large literature on the standard MG but with agents of mixed memory m, a 
variation that conforms to expectation that in real-world markets traders have a range of 
computational capacities (intelligence; see, for example ref.s [106, 107]). It would be 
valuable to examine the THMG, THMAJG and TH$G under these conditions with an eye 
toward understanding where and why the illusion of control appears and disappears. Us-
ing the TH variants, we may also explore the role of having agents with different look-
backs, differentiating this condition from their having different strategy memories.  

8.3.4 Other Games 
We have not explored the illusion of control in other games meant to mimic financial 
markets even more rigorously. Challet has recently introduced a variation of the three ba-
sic agent-based games we discuss that includes, importantly, 1) all three reward mecha-
nisms and 2) holding periods (an obvious difference between MG, MAJG and $G and 
real-world markets). This variation has only just begun to attract research attention. It 
would be instructive to determine if and when in this single game the illusion of control 
appears/disappears. 
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Chapter A9. Appendix: mathematical methods 
Chapter A9 is a mathematical methods appendix. We present formal analytic expressions 
for all three agent-based games. We present methods for illustrating the illusion of con-
trol effect in generalized single-player Parrondo games. We also present methods for de-
termining the persistence/anti-persistence of a binary series, for decomposing a given bi-
nary series into a superposition of cycles on graphs and for obtaining analytically the cy-
cle-decomposition of a known Markov transition matrix.  

A9.1: Analytic Methods for the TH –MG, -MAJG and -$G 
A9.1.1 The Time Horizon Minority Game: Choosing the Best Strategy 
In the simplest version of the Minority Game (MG) with N agents, every agent has S = 2 
strategies and m = 2. In the Time Horizon Minority Game (THMG), the point (or score) 
table associated with strategies is not maintained from the beginning of the game and is 
not ever growing. It is a rolling window of finite length τ (in the simplest case 1τ = ). 
The standard MG reaches an equilibrium state after a finite number of steps stt . At this 
point, the dynamics and the behavior of individual agents for a given initial quenched 
disorder in the MG are indistinguishable from an otherwise identical THMG with sttτ ≥ .  

The fundamental result of the MG is generally cast in terms of system volatility: 2

N
σ , 

where s is the variance over time in the agent vote (i.e., the sum of all agents’ “actions”). 
All variations of agent and strategy reward functions depend on the negative sign of the 
majority vote. Therefore both agent and strategy “wealth” (points, whether “real” or hy-
pothetical) are inverse or negative functions of the volatility: The lower the value of  2

N
σ , 

the greater the mean “wealth” of the “system”, i.e., of agents. However, this mean value 
is only rarely compared to the comparable value for the raw strategies of which agents 
are composed. Yet agents are supposed to enhance their performance by choosing adap-
tively between their available strategies. In fact, the opposite is true in the THMG: The 
optimization method is strictly a method for worsening performance, not necessarily for 
every agent, but averaged over all agents and all strategies in a given Ω̂ , averaged over 
many Ω̂ .  
To emphasize the relation of the THMG to market-games and the illusion of optimiza-
tion, we transform the fundamental result of the THMG from statements on the properties 
of 2

N
σ  to change in wealth, i.e., W

t
Δ

Δ  for agents and W
t

Δ
Δ  for strategies. We again use 

the simplest possible formulation—if an agent’s actual (or a strategy’s hypothetical) vote 
places it in the minority, it scores 1+  points, otherwise 1− . Formally: At every discrete 
time-step t, each agent independently re-selects one of its S strategies. It “votes” as the 
selected strategy dictates by taking one of two “actions,” designated by a binary value: 

 ( ) { }1,0 ,   ,ia t i t∈ ∀  (23) 

The state of the system as a whole at time t is a mapping of the sum of all the agents’ ac-
tions to the integer set { }12N N− , where 1N  is the number of 1 votes and 0 1N N N= − . 
This mapping is defined as : 
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 ( ) ( ) ( ) 1 0
1 1

2 2 1
N N

i i
i i

A t a t N a t N N
= =

= − = − = −⎡ ⎤⎣ ⎦∑ ∑  (24) 

If ( ) 2
NA t > , then the minority of agents will have chosen 0 at time t ( 0 1N N< ); if 

( ) 2
NA t < , then the minority of agents will have chosen 1 at time t ( 1 0N N< ). The minor-

ity choice is the “winning” decision for t . This is then mapped back to { }0,1 : 

 ( ) ( ) ( ) { } { }Sgn   1, 1 0,1sys sysD t A t D t= − ∴ ∈ − + →⎡ ⎤⎣ ⎦  (25) 

For the MG, binary strings of length m form histories ( )tμ , with ( )dimm tμ= ⎡ ⎤⎣ ⎦ . For 
the THMG, binary strings of length m τ+  form paths (or “path histories”), with 

( )dim tm τ μ+ = , where we define ( )tμ  as a history in the standard MG and tμ as a path 

in the THMG. Note that for memory m, there are 22
m

possible strategies from which 
agents select S strategies at random (with substitution). However detailed in ref. [4], the 
space of strategies can be minimally spanned by a subset of all possible strategies. This 
reduced strategy space [RSS] has dimension 12m+ . As in ref. [10] we may represent this 
quenched disorder in the allocation of strategies among agents (from the RSS) by a dim = 

1

1

2
S

m

s

+

=
∏  tensor, Ω̂  (or from the full strategy space by a dim = 2

1

2
m

S

s=
∏  tensor). The 12m+ (or 

22
m

) strategies are arranged in numerical order along the edges of Ω̂ . Each entry repre-
sents the number of agents with the set of strategies indicated by the element’s position. 
Then as demonstrated in [9], any THMG has a Markov chain formulation. For 
{ } { }, , 2,2,31m S N =  and using the RSS, the typical initial quenched disorder in the 

strategies attributed to each of the N agents is represented by an 8 ×8 matrix Ω̂  and its 
symmetrized equivalent ( )1

2
ˆ ˆ ˆ= Ω + ΩΨ Τ . Positions along all S edges of Ω̂  represent an 

ordered listing of all available strategies. The numerical values ijΩ ( ijΩ … for 2S > ) in Ω̂  
indicate the number of times a specific strategy-tuple has been selected in the initial en-
dowment of the S strategies to the N agents. (E.g., for two strategies per agent, S = 2, 

2,5 3Ω = means that there are 3 agents with strategy 2 and strategy 5.) Without loss of 

generality, we may express Ω̂  in upper-triangular form since the order of the strategies 
comprising an agent has no meaning. The example (26) is a typical such tensor Ω̂  for 
{ } { }, , 2,2,31m S N = .  
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1 2 0 0 1 1 0 0
0 0 0 0 3 3 1 1
0 0 2 0 1 0 0 0
0 0 0 1 1 0 0 1ˆ
0 0 0 0 1 0 2 1
0 0 0 0 0 2 2 1
0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Ω = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (26) 

Actions are drawn from the reduced strategy space (RSS) of dimension 12m+  [4]. Each 
action is associated with a strategy k and a history ( )tμ . Together they can be repre-

sented in table form as a ( ) ( )dim RSS dim tμ× ⎡ ⎤⎣ ⎦  binary matrix with elements converted 

for convenience from { } { }0,1 1, 1→ − + , i.e., { }1, 1t
kaμ ∈ − + . For m = 2, there are 22 = 4 

possible histories and r = 23 reduced strategies. In this case, the table coding for all possi-
ble reduced strategies and paths reads: 

 

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

â

− − − −

− − + +

− + − +

− + + −

+ − − +

+ − + −

+ + − −

+ + + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟≡
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (27) 

The change in wealth (point gain or loss) associated with each of the r = 8 strategies for 
the 8 paths at any time t (i.e., 8 allowed transitions ( ) ( )1t tμ μ− → among the 4 histo-
ries) is then: 

 ( ) ( ) ( )
( )

( ){ }, 1 ˆ 2 1 ,2 1t t t
S a Mod tμ μ μ

δ μ− = × − −⎡ ⎤⎣ ⎦
T

 (28) 

[ ],Mod x y is “x modulo y”; ( )tμ and ( )1tμ − label each of the 4 histories { }00,01,10,11  

hence take on one of values { }1,2,3,4 . Equation (28) picks out from (27) the correct 
change in wealth over a single step since the strategies are ordered in symmetrical se-
quence. 

The change in points associated with each strategy for each of the allowed transitions be-
tween paths tμ of the last τ  time steps used to score the strategies is: 

 ( ) ( )

1

, 1
0

t t i t i
i

s S
τ

μ μ μδ
−

− − −
=

= ∑  (29) 
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For example, for m = 2 and t = 1, the strategy scores are kept for only a single time-step. 
There is no summation so (29) in matrix form reduces to the score: 

 ( ) ( ), 1t t ts Sμ μ μδ −=  (30) 

or, listing the results for all 8 path histories:  

 ˆˆμ δ=s S  (31) 

ˆδS  is an 8μ8 matrix that can be read as a lookup table. It denotes the change in points 
accumulated over t = 1 time steps for each of the 8 strategies over each of the 8 path-
histories. 

Instead of computing ( )A t , we compute ( )tA μ . Then for each of the 2 8m τ+ = possible 

tμ , ( )tA μ  is composed of a subset of wholly determined agent votes and a subset of un-
determined agents whose votes must be determined by a coin toss: 

 ( ) ( ) ( )t D t U tA A Aμ μ μ= +  (32) 

Some agents are undetermined at time t because their strategies have the same score and 
the tie has to be broken with a coin toss. ( )U tA μ  is a random variable characterized the 
binomial distribution. Its actual value varies with the number of undetermined agents. 
This number can be explicated (using an extension to the method employed in [9]) as : 

 

( )

( ) [ ]( ) ( ) [ ]( ) ( )
( )

1 1Mod 1,4 1 Mod 1,4 1
Mod 1,2 1

ˆˆ ˆ1
t tt t m

t

U tN

a a s sδ μ δ μμ μ
μ

μ

− + − +
⎡ ⎤− +⎣ ⎦

=

⎧ ⎫⎛ ⎞⎡ ⎤− ⊗ ⊗⎨ ⎬⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎩ ⎭
ΩT T  (33) 

“ δ⊗ ” is a generalized outer product, with the product being the Kronecker delta. UN  

constitutes a vector of such values. The summed value of all undetermined decisions for a 
given tμ is distributed binomially. Similarly: 

 

( )

( ){ }
( )t

8

1
1 Mod 1,2 1

ˆ ˆ1   
t t

m

D t

rr

A

Sgn s s aμ μ
μ

μ

= ⎡ ⎤− +⎣ ⎦

=

⎛ ⎞⎡ ⎤⎡ ⎤−⎜ ⎟⎣ ⎦⎣ ⎦⎝ ⎠
∑ Ψ i

 (34) 

An example of how (33) and (34) can be deduced is given later in the context of the origi-
nal definition of alternate types of agents. Details may also be found in ref. [11]. We de-
fine DA  as a vector of the determined contributions to ( )A t for each path tμ . In expres-
sions (33) and (34) tμ numbers paths from 1 to 8 and is therefore here an index. 

t
sμ is the 

“ tμ th” vector of net point gains or losses for each strategy when at t the system has trav-

ersed the path tμ ( i.e., it is the “ tμ th” element of the matrix ˆˆμ δ=s S in (31)). “ ”is a 
generalized outer product of two vectors with subtraction as the product. The two vectors 
in this instance are the same, i.e., 

t
sμ . “ ” is Hadamard (element-by-element) multiplica-
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tion and “ i ”the standard inner product. The index r refers to strategies in the RSS. Sum-
mation over r transforms the base-ten code for tμ  into { }1, 2,3, 4,1, 2,3, 4 . Selection of 
the proper number is indicated by the subscript expression on the entire right-hand side of 
(33). This expression yields an index number, i.e., selection takes place 1 + Modulo 4 
with respect to the value of ( )1tμ − . 

To obtain the transition matrix for the system as a whole, we require the 2 2m mτ τ+ +×  ad-
jacency matrix that filters out disallowed transitions. Its elements are 

1,t tμ μΓ
−

: 

 

1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 1 0 0ˆ
0 0 1 0 0 0 1 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

Γ  (35) 

Equations (33), (34) and (35) yield the history-dependent ( ) ( )m mτ τ+ × +  matrix 

T̂ with elements 
1,t t

Tμ μ −
, representing the 16 allowed probabilities of transitions between 

the two sets of 8 path-histories tμ and 1tμ − : 

 ( ) ( )

( ) ( )( ) { }( )
( )

1 1, ,

1
0

1 Sgn 2 2Mod ,2 1
2

t t t t

U tU t U t
NN N

D t U t t
xx

T

A x N

μ μ μ μ

μμ μ

δ μ μ μ

− −

−
=

= Γ ×

⎧ ⎫⎪ ⎪⎛ ⎞ ⎡ ⎤× + − + −⎨ ⎬⎜ ⎟ ⎣ ⎦⎝ ⎠⎪ ⎪⎩ ⎭
∑

 (36) 

The C expression 
( ) ( )1

2

U tU t
NN

x

μμ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 in (36) represents the binomial distribution of undeter-

mined outcomes under a fair coin-toss with mean = ( )D tA μ . Given a specific Ω̂ ,  

 ( ) ( )  t D t tA Aμ μ μ= ∀  (37) 

We now tabulate the number of times each strategy is represented in Ω̂ , regardless of 
coupling (i.e., of which strategies are associated in forming agent S-tuples):  

 ( ) ( ) ( ) ( ){ }
2 2

1 2 2
1 1

ˆ ˆ2 , ,
m m

mkkk k
n n n

τ τ

τκ σ σ σ
+ +

+

= =

≡ + = =∑ ∑Ω Ω Ψ …T  (38) 

where kσ  is the kth strategy in the RSS, ˆ ˆ,k kΩ ΩT  and ˆ
kΨ are the kth element (vector) in 

each tensor and ( )kn σ  represents the number of times kσ is present across all strategy 
tuples. Therefore 
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 ( )1
Agent DNW Abs A μΔ = − ⋅  (39) 

and 

 ( )1
2 ˆStrategy NW μ κ μΔ = ⋅ ⋅s  (40) 

with μ  the normalized steady-state probability vector for T̂ . Expression (39) states that 
the mean per-step change in wealth for agents equals –1 times the probability-weighted 
sum of the (absolute value of the) determined vote imbalance associated with a given his-
tory. Expression (40) states that the mean per-step change in wealth for individual strate-
gies equals the probability-weighted sum of the representation of each strategy (in a 
given Ω̂ ) times the sum over the per-step wealth change associated with every history. 
The –1 in (39) reflects the minority rule. I.e., the awarding of points is the negative of the 
direction of the vote imbalance. No minus sign is required in (40) as it is already ac-
counted for in (27). 

Figure 27 shows the cumulative mean change in wealth for strategies versus agents over 
time, given (26). 

 
Figure 27: Mean Strategy versus Agent Cumulative Change in Wealth 
in the THMG. { } { }, , 2, 2,31m S N = ; 100 time steps 

As first studied in [12,13], and discussed in the body of the manuscript, agent perform-
ance is inversely proportional to the Hamming distance between strategies within agents. 
With the variation expected of a single example, our sample Ω̂  given by (26) reproduces 
this relation as shown in Figure 28. Thus agent performance is distributed within Ω̂  in 
orderly if complex fashion. The mean over many Ω̂ corresponds to a “flat” Ω̂ .  
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Figure 28: Agent wealth as a function of Hamming distance be-
tween strategy pairs in agents for the example simulation.  

A9.1.2 The Time Horizon Minority Game: Choosing the Worst Strategy  
The Markov equations (33), (34) and (35) have been modified only slightly from their 
original form developed in [41, 43]. To account for the impact on the system of including 
an arbitrary selection of “counteradaptive” (or C agents, that select their previously 
worst-performing strategy; standard S agents select their best), the equations need a more 
significant extension. It is important, too, that the extended equations distinguish the C 
sub-population of agents from the S sub-population. We will see that the necessary ana-
lytic modifications are surprisingly simple and they yield results in as close concord with 
numerical simulation as the original equations do for the standard agents alone in the 
THMG (as illustrated in Chapter 7. We precede writing out the modified equations with a 
brief explanation of the reasoning that leads to them. This requires a “microscopic” illus-
tration of the relation among strategies within agents following different path histories. 
Results differ in part depending on whether an agent’s “selection rule” is C or S, and re-
quires a prior determination—unaffected by the “selection rule”—of whether an agent’s 
action at the next step is going to be “determined” or “undetermined”.  

Regardless of whether C agents are present or not, computation of the transition matrix 
T̂  requires all critical values: If we can derive it, we will have been able to obtain UN , 

DA  and κ as well as characterize the steady state of the system. In the THMG without C 

agents UN and DA both derive directly from Ω̂ because two or more agents consisting of 
the same tuple of strategies are indistinguishable except in certain cases of tie-breaks. 
When C agents are included, and when they may distributed without restriction among 
the agent population, agents consisting of the same tuple of strategies need no longer 
necessarily be thus indistinguishable, but will behave differently often. Thus Ω̂  cannot 
be used so simply and directly when C agents are present as when they are absent. Of 
course, neither can ( )1

2
ˆ ˆΨ̂ = +Ω ΩT . For example, the sum on the right-hand side of (34) 

must be carried out after taking into account whether each agent is C or S—that is, seem-
ingly agent-by-agent. 
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But as we will see, the degree of complexity introduced by C agents is less than it may 
seem. First, UN  follows unchanged from Ω̂  regardless of whether the agents of each 
non-zero element in ,i jΩ  are C or S or both (iff , 1i jΩ > ). Second, only DA must be cal-

culated differently than as in (34). The component values ( )tA μ  for each path tμ remain 
both determinable for both C and S agents. All other computations are identical to those 
in section A91.1. We want to determine the contribution of agent k to each component 
(by path) of DA , depending on whether k acts as a C-type or as an S-type agent. We will 
then be able to separately add all the C-type contributions to DA for each path and all the 

S-type contributions. In the end, we will find that we may simply redefine Ω̂  as being 
composed of two tensors, one C-type, the other S-type. In the conventional THMG the 
initial quenched disorder is expressed by the single S-type matrix alone. For the THMG 
with C-agents, the two matrices may be handled separately using the same mathematical 
formalism, and the results summed with but a single change of sign at the appropriate lo-
cation. Since the exact spot for the change is not intuitively evident at a glance, it is worth 
showing how it arises. This provides an opportunity to review the reasoning behind the 
equations. 

Consider an arbitrary agent{ } { }1 2, 1,2
k

σ σ = , 1 k N≤ ≤  belonging to ˆ
NΩ . In this exam-

ple we limit element 1,2Ω 1=  so that only { } { }1 2, 1,2
k

σ σ = . I.e., agent k (and for simplic-
ity no other agent) consists of strategy 1 coupled with strategy 2. We will consider how 
agent k behaves depending upon the path history of the system and whether it S or C. The 
details are laid out in Table 6.  

Suppose it is now time t. From (27)-(31) we know that when the system has just traversed 
path tμ , strategies 1 1σ =  and 2 2σ = will be credited with a fixed and known number of 
points. In (31) (i.e., ˆμs ), these points are given by columns 1 and 2 respectively, with tμ  
numbering the rows. We have copied these columns as the first set of number-pairs in 
Table 6. The rows are labeled from 1 through 8 representing the 8 possible paths, tμ . 
Reading from left to right, the column headings show steps in computing agent k’s action 
at time t, for each prior path history. Thus, this first column of number-pairs is headed 

t
sμ , and sub-headed ( )1 2,σ σ  for the scores accumulated by the respective strategies of 
agent k.  

The “virtual action” that defines a strategy—how every strategy would vote at every time 
t based on ( )tμ —is encoded as its numeric label. (In this case, the numeric labels for 
strategies run from 1 through 8 and so do the labels for paths. That both numbers are 8 is 
of course only coincidental, because we have chosen the simplest 1τ = so that 

12 8 2m mτ+ += = .) In Table 6 we represent this action for 1 1σ =  and 2 2σ = , by path his-

tory, in the second column of number-pairs. This column is headed ( )taμ  and again sub-
headed ( )1 2,σ σ . Note that if we write ( )ka t , we mean to indicate the “actual” action 

taken by an agent—agent k. ( )ka t will contribute to a sum of actions constituting a state 
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of the system of the whole. For convenience, strategy “votes” have been mapped from 
their “native” 1/0 form (in which the minority state is generally counted) to 1/ 1+ − .  

The next step is to find out if ( )ka t , agent k’s action at time t, is determined or undeter-
mined by tμ . For its action to be undetermined, both strategies must have accumulated 
the same number of points following tμ , yet the action dictated by these strategies must 
differ. (Under these conditions, there is no basis for choosing one strategy over the other 
and a fair coin toss is used. It will make no difference whether the agent is C or S—every 
possible action has a fair shot at being selected at random. Thus also, the calculation 
of UN and the results of each coin-toss are unaffected by whether an agent is C or S.)  

The converse is therefore also true: If the strategies have accumulated a different number 
of points; or if the actions dictated by both strategies are the same (or both), then the 
agent’s action at time t is determined. (Note for later comment that these are three logi-
cally distinguishable conditions.) 

We define the “determinacy” of an agent { }1 2,
k

σ σ  at t by the expression 

{ }
1 2, ( ; ) 1,0tD tσ σ μ ∈ . (More precisely, 

1 2,Dσ σ is the determinacy of the agent’s action 

( )ka t .), Iff 
1 2, ( ; ) 1tD tσ σ μ = , ( )ka t is determined and : 

 ( ) ( ) ( ){ }( )1
1,2 1,2 1,2; 1 1

t

t
tD t s aμ

μμ δ δ −⎡ ⎤= − × − ⎣ ⎦  (41) 

The third column of number-pairs in Table 6 is composed of the two Kronecker delta 
functions that are part of the product on the left-hand side of (41). The column is headed 

1,2δ  and the pairs are sub-headed ( )( ),
t

ts aμ
μ . The first number in each pair is 1 if 

( ) ( )1 2t t
s sμ μσ σ=  and 0 otherwise; the second number is 1 if ( ) ( )

1 2

t ta aμ μ
σ σ=  and 0 other-

wise. Column 4 calculates the results of (41) with 1 meaning ( )ka t  is determined, 0 that 

it is undetermined. All the information is now at hand either to compute the action ( )ka t  
for all

1 2, ( ; ) 1tD tσ σ μ = , or to replace it with equiprobable random values if 

1 2, ( ; ) 0tD tσ σ μ = . Determinacy and action may be similarly computed in brute fashion for 

all possible ( )2
Sm τ+ -tuples. 
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Table 6: Possible determined or undetermined actions ak(t) for a given agent k. The agent is composed of 
strategies σ1 = 1, σ2 = 2, and ak(t) is shown assuming both standard (S) and a counteradaptive (C) selection 
rule. Both ak(t) and all intermediate steps depend upon the prior path history μt for the system-as-a-whole. 
ak(t) for C-agents differs from that for S-agents only when both the accumulated points and the history-
dictated actions of the component strategies differ. For the particular strategy-tuple shown, this occurs for μt 
= 7 or 8. Otherwise ak(t) is either determined and identical for both C-agents and S-agents, or it is undeter-
mined for both with two-state p = 0.5. 

path sμt aμ(t) δ1,2 
1–δ1,2sμt μ 

[1– δ1,2 aμ(t)] 
ak(t) 

μt ( σ1, σ2 ) ( σ1, σ2 ) ( sμt, ah(t)
 ) D1,2(t, μt) ( S, C ) 

1 ( +1, +1 ) ( +1, +1 ) (  1, 1  ) 1 ( +1, +1 ) 

2 ( –1, –1 ) ( +1, +1 ) (  1, 1  ) 1 ( +1, +1 ) 

3 ( +1, +1 ) ( +1, –1 ) (  1, 0  ) 0 ( ≤1, ≤1 ) 

4 ( –1, –1) ( +1, –1 ) (  1, 0  ) 0 ( ≤1, ≤1 ) 

5 ( +1, –1 ) ( +1, +1 ) (  0, 1  ) 1 ( +1, +1 ) 

6 ( –1, +1 ) ( +1, +1 ) (  0, 1  ) 1 ( +1, +1 ) 

7 ( +1, –1 ) ( +1, –1 ) (  0, 0  ) 1 ( +1, –1 ) 

8 ( –1, +1 ) ( +1, –1 ) (  0, 0  ) 1 ( –1, +1 ) 

 

The last column of Table 6 provides the computed actions for agent k by path. 
Equiprobable undetermined actions are indicated as 1± , determined actions as either 

1+ or 1− . As mentioned above, there are three logically distinguishable conditions that 
yield a determined outcome for ( )ka t :  

1. The strategies comprising the agent have accumulated the same number of points, 
and their strategies dictate the same actions; 

2. The strategies comprising the agent have accumulated a different number of 
points, but their strategies dictate the same action; 

3.  The strategies comprising the agent have accumulated a different number of 
points, and their strategies dictate different actions; 

When neither of conditions 1., 2. nor 3. hold, ( )ka t  is undetermined. Strategy selection 
and agent action results from a random process. 

When either of conditions 1. and 2. hold, the accumulated strategy scores are irrelevant 
(and differences between strategies). No selection takes places and the action is deter-
mined by: 

 ( ) ( ) ( )
1 2

t t
ka t a aμ μ

σ σ= =  (42) 

Only when condition 3. holds does strategy selection play a role in determining ( )ka t . 
Let us convert to 1/0 form the accumulated point values in the column of pairs labeled 
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t
sμ in Table 6 and make a dot product of each pair with the corresponding pair in the next 

column labeled ( )taμ . Multiply this by the corresponding value (in the same row) of 

1 2,Dσ σ . The result is the action for agent { }1 2,
k

k σ σ= , for each path, assuming that agent 
k is S and not C. Determined actions will be expressed as 1+  or 1− ; undetermined action 
as 0: 

 ( ) ( ) ( ) ( ){ } ( ) ( ){ }1 2 1 2, 1 1; 2 1,  2 1 ,
t t

t t
k ta t D t s s a aη η

σ σ μ μ σ σμ σ σ= × − − i  (43) 

Summing over all actual agents in Ω̂ yields DA
μ

. These steps are condensed in (34) (for S 
agents only). In Table 6, 0’s have been replaced with 1± . These are accounted for prob-
abilistically in equation (36) which remains unchanged for S agents. 

Because C agents behave differently under condition 3., two additional steps are required 
to account for them here and in modifying (34). We must identify when condition 3. 
arises and when it does we must treat it properly. For example, we could insert an addi-
tional column in Table 6 that adds the pairs of the Kronecker deltas in the column labeled 

1,2δ  and takes the sign of this sum. and subtracts it from 1. Iff the result is 0, condition 3. 
obtains. The actions for all agents when undetermined, or when determined under condi-
tions 1. and 2., can be handled by multiplying the right-hand side of (43) by the value in 
the appropriate row (which will be 1). Subtracting the values from 1 assigns 1 to condi-
tion 1.. It may then be handled by multiplying the right hand side of (43) by this assigned 
value and by 1− .  

Then, importantly, the reversal of sign picks out the position of the strategy with the 
lower point score. The preceding agent-by-agent computation may be condensed and 
made general with a straightforward analytic extension to (34) that incorporates the re-
versal of sign for C agents. 

First, we re-cast the initial quenched disorder on the set of strategies attributed to the N 
agents in a given game realization as a two-component tensor { }ˆ ˆ ˆ,= + -Ω Ω Ω . ˆ +Ω repre-

sents standard (S) agents that adapt as before; ˆ -Ω represents “counteradaptive” (C) agents 
that instead select their worst-performing strategies. In our example (26) then, suppose 
we select at random 3 agents to use the C rule, one each at 1,2 2,6,Ω Ω and 7,8Ω and redefine 

Ω̂  so that: 
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{ }ˆ ˆ ˆ,

1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 3 2 1 1 0 0 0 0 0 1 0 0
0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0

,
0 0 0 0 1 0 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 2 2 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

≡ =

⎧⎛ ⎞ ⎛ ⎞
⎪⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟
⎪⎜ ⎟ ⎜ ⎟⎨⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩

+ -Ω Ω Ω

⎫
⎪
⎪
⎪
⎪
⎪
⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎭

 (44) 

(Thus, the original Ω̂  of eqn. (26) would be ˆ ˆ+ −+Ω Ω ) 

We likewise modify the definition of Ψ̂ :. 

 { }ˆ ˆ ˆ,+ +Ω = Ω Ω  (45) 

 { }ˆ ˆ ˆ,+ −Ψ = Ψ Ψ  (46) 

 ( ) ( )1 1
2 2

ˆ ˆ ˆ ˆ ˆ ˆ;   + + + − − −Ψ = Ω + Ω Ψ = Ω + Ω
T T

 (47) 

The elements of ˆ +Ω are the S agents of Ω̂  as previously defined and discussed. The ele-
ments of ˆ −Ω  represent agents that use the C strategy selection rule. We then re-write (34) 
as : 

 

( )

( ) ( ){ }
( )

8

1
1 Mod 1,2 1

ˆ ˆ ˆ1 Sgn 1 Sgn
t t t t

m
t

D t

rr

A

s s s s aμ μ μ μ
μ

μ

+ −

= ⎡ ⎤− +⎣ ⎦

=

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤− + + ⋅⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠
∑ Ψ Ψ 

 (48) 

If we use (48) with the same 3 arbitrarily selected C agents as in Figure 17, and with 
ˆ ˆ+ −Ω + Ω  identical to that used to generate the results of Figure 17 and Table 5, we ob-

tain the satisfying analytic/numeric agreement for agent versus strategy mean per-step 
change in wealth shown in Table 7. 

Table 7: Numerical versus Analytical Results of THMG with 3 C agents. 

 ‚∆WAgentÚ ‚∆WStrategyÚ 

Numerical –0.16 –0.05 

Analytical –0.16 –0.05 

The 3 C agents of 31 now perform so well that they significantly raise the overall per-
formance of the system as shown in Figure 17 and detailed in Figure 18. They not only 
outperform both their own strategies and the other S agents on average, they generate net 
positive gain. The hypothetical outperformance of unused relative to used strategies in 
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the MG was first observed in [13]. But the explicit generation of positive results, by 
agents simply deploying their unused strategies (without privileging) has here been 
tested. (In the case of S = 2, “unused” are by definition the “worst-performing”.)  

A9.1.3 Analytic methods for the THMAJG and TH$G 
The Markov transition matrices for the THMAJ and TH$G (for any proportion of C 
agents) may be obtained by straightforward extensions to the methods presented above. 

We know that for the MG, MAJG and $G respectively, the gain (loss) accrued by agents 
are given by the following equations 

( ) ( ) ( )min
i ig t a t A t= −  or ( ) ( ) ( )min

i ig t Sgn a t A t= − ⎡ ⎤⎣ ⎦    (49) 

( ) ( ) ( )maj
i ig t a t A t= +  or ( ) ( ) ( )maj

i ig t Sgn a t A t= + ⎡ ⎤⎣ ⎦    (50) 

( ) ( ) ( )1$
i ig t a t A t= + −  or ( ) ( ) ( )min

i ig t Sgn a t A t= − ⎡ ⎤⎣ ⎦    (51) 

Extending eqns (27) and (28), the change in wealth (point gain or loss) associated with 
each of the strategies for the allowed transitions among the 4 histories) at any time t for 
each of the three games is then (note sign and subscript differences corresponding to eqns 
(49)-(51)): 

 ( ) ( ) ( )
( )

( ){ }min
, 1 ˆ 2 1 ,2 1t t t

S a Mod tμ μ μ
δ μ− = + × − −⎡ ⎤⎣ ⎦

T

 (52) 

 ( ) ( ) ( )
( )

( ){ }, 1 ˆ 2 1 ,2 1maj
t t t

S a Mod tμ μ μ
δ μ− = − × − −⎡ ⎤⎣ ⎦

T

 (53) 

 ( ) ( ) ( )
( )

( ){ }$
, 1 1

ˆ 2 1 ,2 1t t t
S a Mod tμ μ μ

δ μ−
−

= − × − −⎡ ⎤⎣ ⎦
T

 (54) 

Once again, [ ],Mod x y is “x modulo y”; ( )tμ and ( )1tμ − label each of the 4 histories 

{ }00,01,10,11  hence take on one of values { }1,2,3,4 . Equations (52)-(54) pick out from 
(27) the correct change in wealth over a single step since the strategies are ordered in 
symmetrical sequence. 

With { }, ,$game min maj∈ , the change in points associated with each strategy for each of 

the allowed transitions along all the τ histories (i.e., along the path ( ) ( )1t t tμ μ μ≡ − → , 
accounting for the last τ  time steps used to score the strategies) is: 

         ( ) ( )

1

, 1
0

t

game game
t i t i

i

s S
τ

μ μ μδ
−

− − −
=

= ∑      (55) 

Eqn (55) accounts for the change in points along path tμ by summing them over all tran-
sitions on the path. For example, with m = 2 and t = 1, the strategy scores are kept for 
only a single time-step and 1 0τ − = so the sum in (55) reduces to a single term. (55) in 
matrix form therefore reduces to the score (-by-strategy) vector: 

 ( ) ( ), 1t

game game
t ts Sμ μ μδ −=  (56) 
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or, listing the results for all 8 path histories:  

 ˆˆgame game
μ δ=s S  (57) 

ˆ gameδS  is an 8μ8 matrix that can be read as a lookup table. It denotes the change in points 
accumulated over t = 1 time steps for each of the 8 strategies over each of the 8 path-
histories. 

Instead of computing ( )gameA t , we compute ( )game
tA μ . Then for each of the 

2 8m τ+ = possible tμ , ( )tA μ  is composed of a subset of wholly determined agent votes 
and a subset of undetermined agents whose votes must be determined by a coin toss: 

 ( ) ( ) ( )game game game
t D t U tA A Aμ μ μ= +  (58) 

Some agents are undetermined at time t because their strategies have the same score and 
the tie has to be broken with a coin toss. ( )game

U tA μ  is a random variable characterized by 
the binomial distribution. Its actual value varies with the number of undetermined agents 

game
UN . For each of the three games, this number can be denoted as: 
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Note that (59) and (60) are structurally identical while (61) differs from these in that the 

indices on ( )âT  and on the entire expression reference path-histories 1tμ − rather than tμ , 

reflecting the one-step time-lag in the payoff for the $G. The sign differences on 

( )âT vanish again because of the products. Similarly: 
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 (62) 
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If C agents are present, these expressions must be modified accordingly, i.e.: 

 

( )

( ) ( ){ }
( )t

8

1 Mod 1,2 1

ˆ ˆ ˆ1 1  • 
t t t t

m

min
D t

min min min min

rr

A

Sgn s s Sgn s s aμ μ μ μ
μ

μ

+ −

= ⎡ ⎤− +⎣ ⎦

=

⎛ ⎞⎡ ⎤⎡ ⎤ ⎡ ⎤− + +⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠
∑ Ψ Ψ 

 (65) 
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(67) 

Once again, the index r refers to strategies in the RSS and summation over r transforms 
the base-ten code for tμ  into { }1, 2,3, 4,1, 2,3, 4 . Selection of the proper number is indi-
cated by the subscript expression on the entire right-hand sides of eqns (62)-(64). This 
expression yields an index number, i.e., selection takes place 1 + Modulo 4 with respect 
to the value of ( )1tμ −  for the THMG and with respect to the value of ( )1 1tμ − −  for the 
THMAJG and TH$G. 

Equations (58) through (67) yield the history-dependent ( ) ( )m mτ τ+ × +  matrix T̂ with 
elements 

1,t t
Tμ μ −

, representing the 16 allowed probabilities of transitions between the two 
sets of 8 path-histories tμ and 1tμ −  (the game-type superscripts on DA  and UN  are under-
stood in context): 
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∑

(68) 

Given a specific Ω̂ ,  
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 ( ) ( )  game game
t D t tA Aμ μ μ= ∀  (69) 

κ , the list of the number of times each strategy is represented in Ω̂ , is identical in all 
three games of course, so that: 

 ( )1
Agent DNW Abs A μΔ = ± ⋅  (70) 

with the minus sign for the MG, otherwise not, i.e., the awarding of points is the negative 
of the direction of the vote imbalance for the MG, and in the direction of the imbalance in 
the MAJG and $G. And 

 ( )1
2

ˆStrategy NW μ κ μΔ = ⋅ ⋅s  (71) 

A9.1.4 Analytic methods for the cycle decomposition of binary series 

A9.1.4.1.Cycle Decomposition of TH games 

In [90], the MG proper (not the THMG) is represented as a deterministic system with per-
turbations due to tie-breaks. The underlying deterministic system is likewise character-
ized as an Eulerian path on a de Bruijn graph even though the system’s path is not Mark-
ovian. As described above, a close approximation of the underlying determinism in the 
THMG, THMAJG and TH$G may be achieved simply by rounding every element of 
ˆ gameT (eqn. (68) to either 0 or 1. When N is relatively large, T̂ is relatively unlikely to 

have elements equal to 1
2  and the rounded T̂ ( 0

ˆ≡ T ) well-characterizes the system, even 
for small m and τ. But for many interesting values of N (i.e., 31N = ), elements equal 
to 1

2 are common in ˆ gameT and there are different (binomially-distributed) 0
ˆ gameT . 

Note that elements rounded to 0 are eliminated from ˆ gameT . If no values other than 0,1 are 
allowed, 0

ˆ gameT will therefore either represent one cycle from the De Bruijn graph, or if 
more than one, the cycles will be disjoint. If elements exactly equal to 1

2 are left un-
changed, then for every such element there will be a cycle. The cycles will not necessar-
ily be disjoint and the dynamic represented by 0

ˆ gameT  may then be viewed as two (or 
more) deterministic orbits in state-space with a 0.5 probability of switching from one to 
another upon exiting any the state with probability 1

2 . Similarly, ˆ gameT unmodified (with 
arbitrary elements [ ], 0,1game

i jT ∈ ) can be thought of as a (probabilistically) weighted su-

perposition of all possible deterministic cycles present in ˆ gameT . In general, the cycle with 
the greatest weight provides a good first-order approximation to ˆ gameT .  

The upper limit on the number of terms (cycles) required to decompose a finite-sized 
transition matrix is also finite but grows super-exponentially with m τ+ . The accuracy of 
the approximation grows with the number of cycles included. But more important for our 
purposes is the fact that deterministic cycles are much easier to study individually than 
their composite, and characteristics emerge in the aggregate that shed light on features of 
the latter.  
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A9.1.4.2.Extraction of Cycles from a Binary Series 

We require first a method of extracting cycles from a given binary data series. (Note that 
if we create a cycle decomposition of an arbitrary series, we are recasting it in a form that 
treats the series as Markovian, whether it is or is not, with a transition matrix of dimen-
sionality equal to some memory scale, sm .) Consider an arbitrary finite binary history 

(not necessarily derived from a TH ˆ gameT , but a purely arbitrary history selected at ran-
dom):  
 {1,0,0,1,0,0,0,1,1,1,0,1,1,1,0,1,0,0,1,1,0,0,0,1,1,0,1,1,0,0 }…  (72) 

This is equivalent to the following path-history (binary converted to digital) when paths 
are defined as having length sm = 3 (i.e., were eqn. (72) in fact a TH game history, then 
“ m τ+ ” would likewise = 3): 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

{ 1,0,0 , 0,0,1 , 0,1,0 , 1,0,0 , 0,0,0 , 0,0,1 , 0,1,1 , 1,1,1 ,

1,1,0 , 1,0,1 , 0,1,1 , 1,1,1 , 1,1,0 , 1,0,1 , 0,1,0 , 1,0,0 ,

0,0,1 , 0,1,1 , 1,1,0 , 1,0,0 , 0,0,0 , 0,0,1 , 0,1,1 , 1,1,0 ,

1,0,1 , 0,1,1 , 1,1,0 , 1,0,0 }
{5,2,3,5,1,2,4,8,7,6,4,8,7,6,

→…
3,5,2,4,7,5,1,2,4,7,6,4,7,5 }…

 (73) 

A cycle consists of any sequence of digital states of length ( )9 2 1sm≤ = +  that begins 
and ends with the same digit, and within which no digit is otherwise found more than 
once. The first cycle in this series happens to coincide with the first four decimal digits 
and is { }5,2,3,5 . Extract and tabulate this cycle and replace it with 5, the repeated initial 
digit, i.e., 

 
{5,2,3,5,1,2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5 }

5, {5,1,2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5 }
→…

…
 (74) 

The next cycle is { }4,8,7,6,4 . Extract this cycle and replace it with 4. This leaves 
5,1,2,4,8,7,6,3,5,2…. Continue extracting and tabulating until no cycles are left. Ignore 
any remaining digits. Then repeat the process seven more times (i.e., for a total of 
2 sm times), each time dropping one more digit from the beginning of the series. For the 
beginning of the series in (73) Table 8 shows the first four of the seven extractions. 
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Table 8: Extraction of Cycles from a Series 

Remaining Sequence Extracted Cycles 

(5,2,3,5,1,2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)  
(5,1,2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5) 
(5,1,2,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)     
(5,2,4,7,5,1,2,4,7,6,4,7,5)    
(5,1,2,4,7,6,4,7,5)    
(5,1,2,4,7,5)  
(5) 

– (5,2,3,5) 
– (4,8,7,6,4) 
– (5,1,2,4,8,7,6,3,5) 
– (5,2,4,7,5) 
– (4,7,6,4) 
– (5,1,2,4,7,5) 

  
(2,3,5,1,2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)    
(2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)   
(2,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)   
(2,4,7,5,1,2,4,7,6,4,7,5)     
(2,4,7,6,4,7,5) 
(2,4,7,5) 

– (2,3,5,1,2) 
– (4,8,7,6,4) 
– (2,4,8,7,6,3,5,2) 
– (2,4,7,5,1,2) 
– (4,7,6,4) 

  
(3,5,1,2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)     
(3,5,1,2,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)    
(3,5,2,4,7,5,1,2,4,7,6,4,7,5)   
(3,5,1,2,4,7,6,4,7,5)   
(3,5,1,2,4,7,5) 
(3,5) 

– (4,8,7,6,4) 
– (3,5,1,2,4,8,7,6,3) 
– (5,2,4,7,5) 
– (4,7,6,4) 
– (5,1,2,4,7,5) 

  
(5,1,2,4,8,7,6,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5) 
(5,1,2,4,8,7,6,3,5,2,4,7,5,1,2,4,7,6,4,7,5)     
(5,1,2,4,7,5,1,2,4,7,6,4,7,5)   
(5,1,2,4,7,6,4,7,5)    
(5,1,2,4,7,5)  
(5) 

– (4,8,7,6,4) 
– (2,4,8,7,6,3,5,2) 
– (1,2,4,7,5,1) 
– (4,7,6,4) 
– (5,1,2,4,7,5) 

Categorize and count the number of times each cycle appears and compute its proportion 
as a fraction all cycle types. Adjust this proportion by treating cyclic permutations of a 
cycle as the same type and combine them into one category. Results for the partial series 
(four of eight extractions) in (73) are shown in Table 9. The proportional representation 
of a cycle in the complete extraction constitutes its “weight”.Table 9: Computation of Cycle 
Weights 

Cycle Raw Count Adj. Count Weight (Proportion) 
(4,7,6,4) 4 4 0.190 
(5,2,3,5) 1 1 0.048 
(2,3,5,1,2) 1 1 0.048 
(4,8,7,6,4) 4 4 0.190 
(5,2,4,7,5) 2 2 0.095 
(1,2,4,7,5,1) 1 5 0.238 
(2,4,7,5,1,2) 1 – – 
(5,1,2,4,7,5) 3 – – 
(2,4,8,7,6,3,5,2) 2 2 0.095 
(3,5,1,2,4,8,7,6,3) 1 2 0.095 
(5,1,2,4,8,7,6,3,5) 1 – – 
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The cycles in column 1 of Table 9 can be represented as adjacency matrices within the 
space of all possible cycles on the binary deBruijn graph of order 3 as shown in Figure 
29. Call this column vector J .  

:

i

k

jjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

y
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0 0 0 0 0 0 0 0

y

{

zzzzzzzzzzzzzzzzzzzzzzz

,

i

k

jjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
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0 0 0 1 0 0 0 0
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0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

y
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>

 
Figure 29: J = the 8 non-zero-weight cycles of (73) in adjacency matrix form. 

Call column 4 of Table 9 ω , the weights of every cycle. The dot product ω⋅J  yields 
(75), the transition matrix for the series in (73):  

 

0 0 0 0 0.38 0 0 0
0.38 0 0 0 0.24 0 0 0

0 0.10 0 0 0 0.19 0 0
0 0.52 0 0 0 0.38 0 0
0 0 0.29 0 0 0 0.33 0
0 0 0 0 0 0 0.57 0
0 0 0 0.52 0 0 0 0.38
0 0 0 0.38 0 0 0 0

ω

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⋅ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

J
 (75) 

In this case the resulting matrix has complementary entries that do not add to 1 because 
the series is so short. But as proven formally in [113, 114], in the limit of a sufficiently 
long such series, the transition values obtained by a complete extraction are accurate and 
arbitrarily precise, i.e., for every pair of non-zero entries { }, 1,

,
i j i jk kJ J

+
representing an al-

lowed transition in the R R×  transition matrix kJ (where { }1 2, , ,k RJ J J J ≡ J… … ), 

( ), 1,
lim 1

i j i jk kL
J J

+→∞
+ = , with L the series’ length. In any series of such finite length, the 

complementary entries { }, 1,
,

i j i jk kJ J
+

 may be normalized so their sum equals 1 to convert 

actual transition frequencies to approximate transition probabilities: 
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0 0 0 0 0.38 0 0 0 0 0 0 0 0.61 0 0 0
0.38 0 0 0 0.24 0 0 0 1 0 0 0 0.39 0 0 0

0 0.10 0 0 0 0.19 0 0 0 0.16 0 0 0 0.33 0 0
0 0.52 0 0 0 0.38 0 0 0 0.84 0 0 0 0.67 0 0
0 0 0.29 0 0 0 0.33 0 0 0 1 0 0 0 0.37 0
0 0 0 0 0 0 0.57 0 0 0 0 0 0 0 0.6
0 0 0 0.52 0 0 0 0.38
0 0 0 0.38 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟ →⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

3 0
0 0 0 0.58 0 0 0 1
0 0 0 0.42 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (76) 

Note, too, that the weightiest cycle treated as having weight = 1 provides a 0th order (and 
therefore wholly deterministic) approximation for the series. (The closer its actual weight 
is to 1 the more accurate the approximation) . In the above instance: 

 

0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (77) 

We may create higher order (no longer wholly deterministic) approximations by adding 
the second weightiest matrix, third weightiest, etc. (and again normalizing the entries to 
1). 

now demonstrate the use of this decomposition in the series generated by the THMG by 
analytically decomposing the transition matrix ˆ minT derived from an initial quenched dis-
order tensor Ω̂ , in particular the tensor of eqn. (26). Identical methods will decompose 
ˆ majT and ˆ $T . We will later use the above empirical method to approximate series gener-

ated by the (non-TH) MG, MAJG and $G as well as real-world series. Note that the de-
composition of a given finite series produces an approximation of a transition matrix 
whereas an actual transition matrix generates a series of unlimited length.  

A9.1.4.3 Analytic Form of a Cycle Decomposition 

The decomposition of a known transition matrix into its weighted cycle structure was 
first proposed in ref. [113]. For any stochastic matrix T̂ (of which the transition matrix 
for THMG is an instance of size 2 2m mτ τ+ +× ), and the set C of all possible directed cycles 

cJ  of the adjacency matrix Γ̂ of T̂ , it can be shown that [115]: 

 ( )
,

, ,   1 dim ,   1 , 2

c
c i j

mc
i j c

c i
c

J
T c C i j

J
τ

ω

ω
+= ≤ ≤ ≤ ≤

∑
∑

 (78) 

(recall that the cω are the cycle weights) where  
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,
c
i jJ =1 if (i,j) is a directed edge of cJ , 0 otherwise. In addition, 

 c
i c i

c
Jπ ω= ∑  (80) 

so that 

 , ,
ˆ;   c c

i i j c i j
c c

T J Jπ ω π π ω= ⋅ = = ⋅∑ ∑T  (81) 

where the iπ are the 2m τ+ steady-state probabilities derivable from T̂ . (81) represents 
dim(C) simultaneous matrix equations to be solved for the cω . 

For the ˆ minT of equation (26) (and Γ̂ of equation (35)) which has only 4 cycles (and only 
S agents), 

 { }1 2 3 4, , ,J J J J≡ =J  (82) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
, ,

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
,

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎧ ⎛ ⎞ ⎛ ⎞⎫
⎜ ⎟ ⎜ ⎟⎪ ⎪
⎜ ⎟ ⎜ ⎟⎪ ⎪
⎜ ⎟ ⎜ ⎟⎪ ⎪
⎜ ⎟ ⎜ ⎟⎪ ⎪

⎪ ⎪⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎩ ⎝ ⎠ ⎝ ⎠⎭

 

corresponding to ( ) ( ) ( ) ( ){ }4,7,6,4 , 4,8,7,6,4 , 1,2,4,7,5,1 , 1,2,4,8,7,5,1  and their cyclic 
permutations. (In general, a random binary series converted to paths of length 3 can, and 
if long enough, will have 19 unique cycles. The truncated series (73) we used as a sample 
contains only the 8 cycles shown in adjacency matrix form in Figure 29, of which we 
showed the extraction of 4 in detail. In the present example derived from a THMG tensor, 
there are only 4 extractable cycles in toto reflecting the high degree of determinism in the 
time series generated by Ω̂ .) From (79): 

 

1 4
1 1

1 4
8 8

0 0 1 1
0 0 1 1
0 0 0 0
1 1 1 1ˆ
0 0 1 1
1 1 0 0
1 1 1 1
0 1 0 1

J J

J J

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟≡ =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

J  (83) 
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Solving (81) (equivalently, ˆπ ω= ⋅J  ), for the cω using the method of cofactor expansion, 
we obtain the approximate values shown in Table 10.  

Table 10: Cycle Weights 
 Cycle Weight
w1 (4,7,6,4) 0.072 
w2 (4,8,7,6,4) 0.428 
w3 (1,2,4,7,5,1) 0.072 
w4 (1,2,4,8,7,5,1) 0.428 

To check on the correctness of the solution for equation (81), equivalently ˆ
cycω⋅ ≡J T : 

 

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0ˆ ˆ;     
0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0
0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0.5 0
0 0 0 0.1445 0 0 0 1 0 0 0 0.1445 0 0 0 1
0 0 0 0.8555 0 0 0 0 0 0 0 0.8555 0 0 0 0

cyc

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

T T

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (84) 

Note the one pair of entries that differ between the two matrices in (84). The matrix equa-
tion (81) may be solved by a number of methods (e.g., division-free row reduction, one-
step row reduction; we used cofactor expansion). All typically also have difficulty with 
probabilities = 0.5. We see that this has happened here. Formally, the convergence of 
ˆ

cycT to T̂ is in general weak and “almost sure” [116]. We will see by comparison to nu-
merical simulation that the small error thus introduced has no effect on our use of the de-
composition. The difference between the two matrices in (84) provides an illustration of 
one reason why this has no effect: The original matrix T̂ on the left of (84) shows an 
equiprobable transition from path 3 [from ( )0,1,0 ] to path 5 or to path 6 [to ( )1,0,0 or 

to ( )1,0,1 ]. But looking at row 3 of either matrix, we see that state 3 is inaccessible alto-
gether (no transitions from any other state to it), hence no transition from state 3 is possi-
ble. This is reflected in ˆ

cycT (on the right) by the two 0 zero entries in place of 0.5. Thus, 
the two matrices, being at equilibrium, are equivalent. 

A9.1.4.4 Comparison to Numerical Simulation 

Each cycle in the decomposition is a purely deterministic, discrete periodic process. As 
noted before, the elements of ˆ

cycT represent the probabilities of transitions between cycles 

rather than (equivalently in T̂ ) transitions between path histories. All the dynamics of the 
full THMG can therefore be derived from the deterministic dynamics of the THMG 
around just one of every cycle, properly composed and weighted. For example, if 
ˆ

cycT were composed of just two cycles of respective lengths 5 and 4, the total change in 
agent and strategy wealth over these will be computed over twenty (the lowest common 
multiple) steps—4 of the first cycle times 5 of the second, each times its appropriate 
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weight, and then summed. The net per-step gain (or loss) in wealth for both agents and 
for their underlying strategies is easily computable around any cycle using (27)-(31). For 
the T̂ and ˆ

cycT of (84), with 31 agents, overall results are shown in  

Table 11.  

Table 11: Elements of the Cycle Decomposition of the THMG with S and C agents 
Cycle Weight DW 

(4,7,6,4)   
DWagent –0.10 
DWstrategy 

0.08(4) –0.09 
(4,8,7,6,4)   

DWagent –0.23 
DWstrategy 

0.85(4) –0.06 
(1,2,4,7,5,1)   

DWagent –0.11 
DWstrategy 

0.06(3) –0.04 
(1,2,4,8,7,5,1)   

DWagent –0.19 
DWstrategy 

0.00(0) –0.03 
Weighted Composite   

DWagent –0.21 
DWstrategy 

1.00(0) –0.06 

Comparison to numerical and the standard analytic results are in able 12 showing the 
close agreement among methods. (“Analytic” results here refer to the mean per-step 
change in wealth averaged over all agents and all strategies respectively, i.e., 

,agent strategyW WΔ Δ  as detailed in section 3.2 as well as in [43, 84]. Numeric results refer to 
numeric simulations of the THMG. In both cases we refer here to a single initial 
quenched disorder matrix. As explained in [84], this example is typical with changes in 
wealth close to the average over many initial quenched disorders.) 
able 12: Comparison of cycle decomposition to analytic and numeric results 

 DWagent DWstrategy 
Numeric –0.20 –0.07 
Analytic –0.22 –0.06 
Cycle –0.21 –0.06 

A9.2 Analytic expression of the general Parrondo effect 
Consider N > 1 s-state Markov games iG , { }1,2, ,i N∈ … , and their N s s× transition ma-

trices, ( )ˆ iM . For every ( )ˆ iM , denote its vector of s winning probabilities conditional on 
each of the s states as ( ) ( ) ( ) ( ){ }1 2, ,i i i i

sp p p=p …  and its steady-state equilibrium distribution 

vector as ( ) ( ) ( ) ( ){ }1 2, , ,i i i i
sπ π πΠ = … . For each game, the steady-state probability of winning 

is therefore ( ) ( ) ( )i i i
winP = ⋅Πp . Consider also a sequence of randomly alternating iG with in-

dividual time-averaged proportion of play [ ]
1

0,1 ,  1 
N

i i
i

γ γ
=

∈ =∑ . The transition matrix for 

the combined sequence of games is the convex linear combination 
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1 2( , , , ) ( )

1

ˆ ˆN

N
i

i
i

γ γ γ γ
=

≡ ∑M M… with conditional winning probability vector 

1 2
( )

1

( , ,..., )
n

n i

i
i

γ γ γ γ
=

= ∑p p and steady-state probability vector ( )1 2, , , nγ γ γΠ …  (which is a complex 

nonlinear mixture of the   
(i)

Π 's ). The steady-state probability of winning for the com-
bined game is therefore 

 ( ) ( ) ( )1 2 1 2 1 2, , , , , , , , ,N N N
winP γ γ γ γ γ γ γ γ γ= ⋅ Πp… … …

 (85) 

A PE occurs whenever (and in general it is the case that)  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2, , , , , , , , ,

1 1

, . .,N N N
N N

i i i
i win win i

i i

P P i eγ γ γ γ γ γ γ γ γγ γ
= =

≠ ⋅ Π ≠ ⋅ Π∑ ∑ p p… … …
 (86) 

 

hence the PE, or “paradox”, when the left hand sides of (86) are less than zero and the 
right-hand sides greater. 
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Chapter A10. Appendix: anti-persistence using an eq-
uity-ranking predictor 
A10 is an appendix chapter that describes an alternate prediction method based on neural 
networks and building on the so-called “Value Line anomaly.” It forms the basis for a 
working paper. The method illustrates a certain degree of predictive control along with 
many instances of the “illusion of control”. Anti-persistence reappears as an accompani-
ment to the overall success of the predictor, yielding high levels of volatility. 

A10.1 Introduction 
Using an artificial neural network (ANN), a fixed universe of ~1500 equities from the 
Value Line index are rank-ordered by their predicted price changes over the next quarter. 
Inputs to the network consist only of the ten prior quarterly percentage changes in price 
and in earnings for each equity (by quarter, not accumulated), converted to a relative rank 
scaled around zero. Thirty simulated portfolios are constructed respectively of the 10, 20, 
…, and 100 top ranking equities (long portfolios), the 10, 20, …, 100 bottom ranking eq-
uities (short portfolios) and their hedged sets (long-short portfolios). In a 29-quarter 
simulation from the end of the third quarter of 1994 through the fourth quarter of 2001 
that duplicates real-world trading of the same method employed during 2002, all portfo-
lios are held fixed for one quarter. Results are compared to the S&P 500, the Value Line 
universe itself, trading the universe of equities using the proprietary “Value Line Ranking 
System” (to which this method is in some ways similar), and to a Martingale method of 
ranking the same equities. The cumulative returns generated by the network predictor 
significantly exceed those generated by the S&P 500, the overall universe, the Martingale 
and Value Line prediction methods and are not eroded by trading costs. The ANN shows 
significantly positive Jensen’s alpha. All three active trading methods result in very high 
levels of volatility. But the network method exhibits a distinct kind of volatility: Though 
overall it does the best job of segregating equities in advance into those that will rise and 
those that will fall relative to one another, there are many quarters when it does not 
merely fail, but rather “inverts”: It disproportionately predicts an inverse rank ordering 
and therefore generates unusually large losses in those quarters. The same phenomenon 
occurs, but to a greater degree, with the VL system itself and with a one-step Martingale 
predictor. An examination of the quarter to quarter performance of the actual and pre-
dicted rankings of the change in equity prices suggests while the network is capturing, 
after a delay, changes in the market sampled by the equities in the Value Line index 
(enough to generate substantial gains), it also fails in large measure to keep up with the 
fluctuating data, leading the predictor to be often “out of phase” with the market. A time 
series of its global performance thus shows antipersistence. However, its performance is 
significantly better than a simple one-step Martingale predictor, than the Value Line sys-
tem itself and than a simple buy and hold strategy, even when transaction costs are ac-
counted for. 

A10.2 Background 
A wealth of technical and fundamental information on a representative universe of pub-
licly-traded equities is updated each week, in principle, for every company in the well-
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known Value Line Investment Survey (VL, “the Survey”) of approximately 1700 primar-
ily-U.S. companies. According to a proprietary and not necessarily static formula known 
to depend disproportionately upon recent percentage changes in the price of an equity, the 
recent percentage change in its earnings, and especially on an intermittently-generated 
and more loosely quantified “earnings surprise factor”[117], the Survey updates and as-
signs to each equity every week a “Timeliness Rank” from 1 to 5 (In fact, not every eq-
uity is updated every week in consequence of a certain “slippage” in the VL system). 
This rank is a measure of future “price performance.” Stocks assigned a rank of 1 are 
predicted to experience the largest positive long- and intermediate-term price change (six 
to twelve months), 5 the least (or greatest decline).  

Because the VL survey appears to provide information on equities with at least some pre-
dictive power, it has been the object of a significant amount of academic study, beginning 
with Shelton in 1969 [118], but most notably Fisher Black’s 1973 paper, “Yes, Virginia, 
there is hope: Tests of the Value Line ranking system” [119] and a subsequent more de-
tailed dissertation by a student of Black’s at M.I.T. [120]. Other widely-cited studies have 
been performed again in 1973 (with a focus on risk [121]), and in 1981 (testing aggres-
sive investing using VL ranks [122]), 1985 (testing the inverse effect: How VL rank 
changes affect stock prices [123]), 1987 (relating VL rank to firm size [124]),1990 (dis-
cussing the implications for the efficient market hypothesis—EMH), 1992 (relating the 
VL effect to post- announcement earnings changes [125]), 2000 (finding a positive effect 
even controlling for post-announcement earnings changes [126]) and 2008 (examining 
the predictive value of other data in the VL Survey apart from the ranking system 
proper)[127]. 

Until relatively recently, with the advent of more extensive computerized financial data 
services, the Value Line survey was one of the most widely-used for professional ana-
lysts’ forecasts. It has been shown to provide some of the most accurate forecasts of ana-
lysts’ predicted excess return, especially in comparison to other widely used sources (e.g., 
IBES, S&P) [128]. Fisher Black is reported to have offered the following advice in 1983: 
“One of the best ways for an investment firm to pilot a portfolio through the vicissitudes 
of the market would be to fire all the financial analysts, save one, and make that one read 
Value Line. [129]” 

Even though VL defines its rankings to predict long-term price appreciation, most of 
these studies have concluded that its predictive power is real chiefly for the short-term 
only and only doubtfully so once transaction costs are included. Nonetheless, given the 
power of the efficient market hypothesis, the presumed predictive capacity of the VL sys-
tem is impressive: “In a world with no end of people hawking investment advice, the 
Value Line Investment Survey has captured the imagination of the finance community like 
few others[126].” 

Studies of the VL ranking system consistently demonstrate that it is at least theoretically 
effective (before trading costs); and occasionally demonstrate that it is practically effec-
tive when its predictive range is carefully analyzed and applied such that trading costs do 
not erode gains[120].  

Because the Survey claims to heavily weight “earnings surprises”, and because these are 
known to affect prices, this factor has been offered as the explanation for how there could 
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be some predictive power in the ranking system [130, 131]. But this explanation contrasts 
with VL’s own arguments on its behalf, since the system claims to incorporate more than 
simply earnings surprises in arriving at its rankings (See for example, [117]). Indeed, 
most rank assignments are made without any earnings surprises. It appears that much of 
the outside research testing the VL ranking system on the basis of earnings’ surprises pre-
sumes that the EMH is effectively correct—all available information is instantaneously 
incorporated into the present price of a stock; earlier price and earnings data therefore has 
no predictive power; an earnings surprise represents new (by definition unavailable) in-
formation that requires some time to be reflected in the current price; during this time the 
surprise therefore has (rapidly declining), short-term predictive power. 

Nonetheless the question has been hotly debated in the academic community as to 
whether the VL ranking system as a whole can provide more than a theoretical refutation 
of the EMH. The semi-strong form of the EMH precludes the ability to profit from VL 
information as all such information—including VL’s forecast of future price apprecia-
tion—would already be in principle incorporated into the present price of a security and 
thus discounted against future gains [132, 133] 

A review of the literature makes it clear that while a significant majority of researchers 
have in fact detected a VL “anomaly” or “enigma”, most find the size of the anomaly 
likely to be too small to be exploited given transaction costs.[119, 120, 122, 126, 134, 
135], regardless of whether it is attributed to the earnings’ surprise factor or not. 

The VL data and rankings are used both by analysts and traders: Given the relatively 
modest price of a subscription to the survey, VL could scarcely be a working business, 
especially for as long as it has been—since the 1960’s at least—if its subscription base 
were only analysts). This leads naturally to another important consideration which has 
also been the object of study: the possibility of feedback between the weekly release of 
the VL rankings, especially therefore rank changes, and short-term price changes among 
equities undergoing rank changes. The EMH could remain in principle true, yet brief de-
partures from it could occur simply because of the market response to rank changes—
whether or not these changes accurately reflect underlying fundamentals.  

Indeed, there is evidence that analysts will herd significantly (and thus their clients will 
trade accordingly) based on VL recommendations, thus amplifying any direct effect from 
VL subscribers. Among analysts who publish newsletters this herding unsurprisingly oc-
curs when signal correlation among them is high. It also occurs, also unsurprisingly, 
when their measured performance ability is low. Perhaps more surprising is the fact that 
significant herding based on VL occurs when the analysts’ reputation is high [136]. The 
surprise fades when one considers that high reputation may be as much an effect of herd-
ing, as independent of underlying fundamentals (ability) as may be prices. 

In any event, there is evidence in the literature that a measurable component of the 
change in certain stock prices may be due a herding effect mediated by VL. 

It should be noted, however, that the influence of VL may be declining. First, very little 
research on VL has taken place after the year 2000. Second, by 2000, popular discussion 
frequently noted a decline in the belief “on the street” that VL recommendations were 
still of use. In 2000, for example, Money magazine published an article decrying its de-
cline[137]. The article made no academic claims, but may well have both represented and 
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reinforced a popular belief that made its claims accurate. (In light of the above discus-
sion, whether they were or not would depend of course in large part on how widely the 
belief remained that they were, or whether a consensus was arising that they weren’t.) 

In any case, the anomalous performance of the VL ranking system leads naturally to the 
question as to whether it may not be improved upon. 

 

A10.3 Review of the VL ranking system and its performance 
The distribution of equities in each ranking “bin” is not flat. There are approximately 100 
1’s, 300 2’s, 600 3’s, 300 4’s and 100 5’s = 1500. The number of equities characterized 
as “3” varies the most, with other equities dropping in and out of the survey altogether 
over time. If the middle of the 3’s is treated as a zero line, then the cumulative distribu-
tion of the ranks approximates a coarse-grained hyperbolic tangent: It is thus a natural 
way of quantizing the (discrete) rank-ordering by predicted price change for every stock, 
given the natural distribution of percentage price changes around zero, both positive and 
negative, ignoring the greater asymmetries at the extremes. (Since the smallest number of 
equities in the two 100-size bins are predicted to experience the largest price changes, 
respectively up and down, the next-sized bins the next largest price changes and the larg-
est middle bin the least, the distribution of price changes—rather than bin sizes—
conforms to a coarse-grained arc-tanh: If the largest positive changes are represented on 
the left side of a chart, the curve is actually a negative arc-tanh.) 

During the period covered by this study (beginning of 1994 – end of 2001, i.e., capturing 
the run-up to, the peak and the drop-off following the 2000 “bubble”), VL rank 1 (T100, 
i.e., top 100), rank 5 (B100, i.e., bottom 100, Simulates long investments in Rank 5 
stocks) or long-short (H100) hedged portfolios (long Rank 1, short Rank 5) would have 
performed as shown in Figure 30, assuming no transaction costs: 
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Figure 30: Returns from the VL Ranking System 1994-2001 
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During this period, reasonable costs would have eroded all competitive gains assuming 
weekly portfolio restructuring. Notice as well that while the slope of the compounded re-
turns for the VL-defined T100 equities (rank 1) is > 1 for four-plus of the six-plus years, 
the slope of the compounded returns for the VL defined B100 equities (rank 5) is actually 
up for five+ years. More pertinent are the segments of relative slope, indicated qualita-
tively by the H100 return curve. This consists of five contiguous segments of positive 
slope followed by two of sharply negative slope where the ranking system not only fails, 
it inverts. As noticed by others and at other scales, inversions such as these are typical in 
the VL system (“In 1983 the average annual returns of stocks ranked four or five at the 
beginning of 1983 were higher than the corresponding average returns for stocks ranked 
one, two or three at the beginning of the year” [134]). The erosion of its competitive ad-
vantage is not primarily caused, for example, by intermittent “statistical” failures of the 
B100 portfolio to decline in absolute value and regress toward the market mean—
especially easy to do in the face of a generally rising market. Rather, the failures and the 
erosion are abrupt and rapid—much faster than the gains as may be seen at a glance—and 
is caused rather by reversals in the model’s performance. During these periods it seems, 
the model is not merely “not working”, it is working “in reverse”, as it were. This obser-
vation of the VL failure, while a mere impression from such a coarse example, provides 
an initial hypothesis for the consideration of “regime-change” in market models of a par-
ticular kind, where relative valuation of a group of equities is used as a general method 
for handling problems of normalization of data. 

The VL investment survey includes many other kinds of rankings for its equities (e.g., 
“safety”) and for broad categories of equities as well (e.g., performance and safety rank-
ings for market “sectors”). Thus, another peculiarity of the VL approach to the financial 
domain—perhaps underestimated because of its simplicity—is that by combining and 
recasting so many numerical quantities into ranks, VL indeed performs a crude “renor-
malization” which—given the amount of noise, uncertainty and error in financial data—
may nonetheless be quite effective, even if it was never conceptualized in such formal 
terms. 

That is, VL’s weekly “Timeliness Rank” (a function of relative change of price and rela-
tive change in earnings, inter alia) might be an effective method of weekly renormaliza-
tion on a basis if it consisted of (or at least began with) a complete rank-ordering of the 
universe of equities, instead of a mere 5-bin coarse-grained version. The hand method of 
ranking originated by Arnold Bernhard has now been extended and computerized by his 
86%-still-family-owned firm. The quasi non-linear, perhaps somewhat adaptive algo-
rithms now employed remain proprietary. It is possible that the firm privately creates a 
complete and effective single-step ranking, but sells only the coarse-grained version to 
the public. If so, the remarkably poor performance of the VL Fund (a mutual fund that is 
said to employ the ranking system) argues against its efficacy. Or perhaps these proprie-
tary methods involve the creation of the coarse-grained version only, or of something be-
tween it and a full rank-ordering. In any case, the coarse-grained version appears to con-
tain enough information to be of academic interest and to provide a large incentive to 
subscribers, but to be at or just below the borderline of profitability once rigorously scru-
tinized, especially of late. 
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For example, we performed a preliminary Monte Carlo simulation on 1400 artificial 
stock prices undergoing randomized price changes drawn from the actual distribution of 
the Value Universe of price changes from 1994-2001, and then scattered into ranking par-
titions that mimic the 100-300-600-300-100 VL structure. This simulation shows that 
typically, 40-60% of the rank changes reported in the weekly VL survey can be attributed 
simply to price perturbations near the rank boundaries. Since on many weeks there may 
be only one or two changes, there are many weeks when no changes are caused by any-
thing other than such perturbations. The Survey itself refers to this phenomenon some-
what misleadingly as the “dynamism” of the ranking system.  

Of much greater interest—and pertinent to this study—is the fact that there is an immedi-
ate, very strong post-release effect on the price of a stock whose rank has changed once 
the change is announced. This effect has been noted and exploited by many (subscribers, 
analysts and their advisees)—and that can be exploited by VL company insiders com-
pletely legally in advance. It also has been examined and argued not to be caused primar-
ily by a preceding earnings announcement: For instance, Thomas et al. [6] examined the 
impact of VL timeliness rank changes on stock prices while controlling for contempora-
neous earnings releases, and found that the market response is consistent with increased 
liquidity in the shares. 

Furthermore, our Monte Carlo simulation shows that stocks occasionally can change even 
two ranks stochastically because of the “tanh”-like distribution of rank bin sizes. Indeed, 
the distribution of the bin size ensures that these “meaningless” large events both happen 
and that they are disproportionately more likely to occur as moves both in and out of 
ranks 1 and 5—the ones that in turn have the largest post-release impact on the market 
they are meant to predict. 

Thus, if there is indeed any genuine information contained in as coarse-grained a ranking 
system as that publicly available in the VL investment survey, it makes sense to attempt 
to create a more fine-grained version to extract it. The long history of the VL system with 
its tantalizing successes and failures; its longstanding and successful use of various rank-
ing methods as naïve ways to handle scaling and normalization problems with financial 
data; the specific successes and kinds of failures of its “Timeliness Ranks” as a method 
for the short-term prediction of relative stock price changes; the observation of possible 
“phase” or “regime” changes causing catastrophic failure even in so crude a model as 
this; the tanh-like distribution of the bin sizes being suggestive of a coarse-grained re-
normalization of a finer-grained ranking; the fact that even though the VL system was 
developed nearly half a century ago, its core “inputs”—recent percent change in price and 
recent percent change in earnings—continue to dominate: All of these ideas suggest that 
it should be possible to create de novo a complete ranking of equities from the VL uni-
verse. 

All of the above suggest that a very simple neural network architecture could be used to 
generate an equity ranking system that might provide insight into the phenomenon of 
abrupt performance inversions characteristic of the VL system and perhaps also improve 
upon the VL system itself by replacing its coarse-grained ranking with a more fine-
grained version.  
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An initial system was developed for trading purposes and employed successfully as part 
of a number of hedge funds and funds of funds in different configurations in 2002. How-
ever, because of the very high volatility at all time scales, in spite of continuing good re-
turns, it was decided to perform a much longer and detailed set of studies of the method 
and the nature of the volatility of which this paper is part. 

A10.4 Methods 
A10.4.1 Equities 
More than 1600 equities from the VL universe were selected with data eventually col-
lected both by hand and from electronic sources from March 1, 1992 through December 
1, 2001. All data was checked against two independent sources for consistencyi, and a 
third if discrepant (The primary source of data was the Value Line Investment Survey 
itself (the print version). The secondary source was Bloomberg, inc. Tertiary data sources 
were chiefly WRDS and Telescan). Equities with irreconcilable data discrepancy rates > 
0.5% were eliminated from use. This resulted in a significantly smaller pool of equities 
than VL itself routinely uses in its ranking system and a much cleaner data set. From this 
universe, a permanently fixed set of 1452 equities were identified for data extraction. 

However, in any given quarter, fewer than 1452 stocks may actually be ranked. This is 
always because of the listing of new corporations and the delisting of existing ones. To 
have included only equities that were listed throughout the test period (plus 10 prior train-
ing quarters for the first out-of-sample prediction = 39 quarters ≈ 10 years would have 
resulted in a very reduced set of equities highly biased toward large capitalization corpo-
rations unrepresentative of the VL universe.  

A10.4.2 Input data and outputs 
Inputs to the network consist of the ten preceding quarterly percent price and earnings 
changes (not accumulated) transformed as ranks. Outputs are the predicted next quarter’s 
percentage price changes. All ~1452 stocks are then ranked in descending order by the 
ANN’s predicted percentage price change for the next (out of sample) quarter. (The MGL 
predictor simply uses the prior quarter’s actual price-change rank as the best estimate for 
the next quarter.)  

From this output, for each successive out of sample quarter, twenty portfolios are con-
structed (and ten more from hedged combinations among these twenty). The twenty port-
folios represent cumulative deciles from 10 to 100 from the top and bottom ends of the 
ranking. A T10 portfolio consists of the 10 equities predicted to perform best, the T20 the 
twenty equities predicted to perform best, and so on to T100. The deciles are cumulative 
in the sense that the T20 portfolio consist of the T10 portfolio plus the next 10 best and so 
on. The B10,…,B100 portfolios are constructed similarly but from the bottom of the 
ranking up. H10,…H100 portfolios represented combinations of the respective T and B 
cumulative deciles with the T equities bought and the B equities sold short. 

Depending on the week or month that the data is drawn from, raw price data will vary, of 
course, within a given quarter, whereas raw earnings data will either be unavailable, 
available, or will be available and then modified after the fact. Only original earnings re-
ports were used, and only for those weeks and months in a cycle when they would actu-
ally have been available. Furthermore, based both on the well-known date of release 
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problem in historical data, and on a variety of other glitches that arise in real-time trading 
(that were uncovered during experience with this method in 2002) approximately 30% of 
earnings reports that look as though they would have been available on a given day actu-
ally are not. Therefore, the final column of earnings data is not used at all as input for 
those weekly or monthly date cycles when it couldn’t be available at all, and in all earn-
ings input columns, 30% of the earnings figures are removed at random before ranking to 
simulate other real-life problems.  

A10.4.3 Selection of trading period start 
Given a starting quarter, there would in principle be (on average) ~thirteen different 
weekly periods of data all starting in that quarter and sharing the same change in earnings 
value; or three monthly periods. (VL reports changes in its ranking system on a weekly 
basis.) The data structures for each of these cycles differ in their relation to earnings re-
leases both with regard to the availability in relation to pricing data and from company to 
company. All of these considerations have been addressed, but because of the complexity 
of the task in back testing (by contrast to collecting data in real time going forward), the 
study reported here is limited to a single cycle of properly collected and error-checked 
data rather than an aggregation of between two and twelve weeks of data with an un-
known amount of error and anachronism. The completed and fully error checked data set 
is simply the single best one able to be completed with the available resources. It contains 
no known errors. Back tests on other incomplete cycles show qualitatively similar results. 
The data period reported on here makes its first prediction for June 1, 1993 and its last for 
December 1, 2001 (roughly comparable to the report on hedge fund performance refer-
enced below [138]). 

A10.4.4 Network Architecture 
The results reported on here are obtained using a simple back propagation network with a 
single hidden layer and recurrence. The results of multiple initializations are aggregated 
to obtain a final ranking. Exact net architecture and parameters are optimized independ-
ently on each new data set using a genetic algorithm but with extremely tight constraints. 
No variable deletion is allowed. Only a hidden single hidden layer is allowed. In general, 
minimal searching is permitted. 

A10.4.5 Training 
Training and testing sets are selected a-priori at random for optimization of training itera-
tions. Under-fitting is greatly preferred to over fitting. Results are relatively insensitive to 
training lengths between six and twenty quarters. The results shown here are at about the 
median. 

Two points should be emphasized here. First, as is an appropriate procedure in the use of 
ANNs, the network is always freshly trained on (ten quarters of) data that is out of the 
(one quarter) prediction sample. The ANN never has access to data from within the pe-
riod it is predicting, hence the special care required with respect to using historical earn-
ings data as explained in section 3.2. 

Second, while the VL method as received by a subscriber appears static in the sense of 
implementing no evident adaptive or learning mechanisms, we know informally from a 
private meeting with the founder of the VL system that the regression-like formulae em-
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ployed by VL are updated over time. (Thus any decline in its performance over time can-
not be attributed to its algorithms become outdated solely because they are static). 

5 Results  
A10.5.1 Hedged Returns 

A10.5.1.1 Overall results 

Figure 31 provides a concise graphic snapshot of results, demonstrating the superior per-
formance of the ANN predictor (not including transaction costs) relative to a one-step 
Martingale (MGL) predictor and (for all 100 equities) to the VL system itself, as well as 
to the S&P 500 index. Once a month, the ANN and MGL methods are used to predict and 
rank-order the top 10, top 20,…, top 100 equities (i.e., “cumulative decile”: T10, T20, …, 
T100, from among the universe of 1452 stocks based on the inputs as described in section 
A10.4.2), as well as the bottom deciles: B10, B20, …, B100. A portfolio is composed of 
matched T deciles held long and B deciles sold short (resulting in fully hedged “market-
neutral” portfolios H10, H20, …, H100). Every portfolio is readjusted once per month. 
To adjust for possible monthly or seasonal effects, results are averaged over all three pos-
sible monthly starting points in a quarter. These results are compared to the actual VL 
selection of T100 and B100 stocks (groups “1” and “5” respectively) adjusted every quar-
ter similarly (rotated and averaged), and to the S&P 500 Index over the entire out-of-
sample range of 29 quarters. As shown here, trading costs are not included (to be dis-
cussed later). Note, however, that for small portfolios (i.e., H10, H20, H30), even were 
the turnover to be 100%, such costs are relatively moderate as they occur only at quar-
terly intervals. 

Figure 31 illustrates that at the end of the 29-quarter period, the ANN predictor succeeds 
at separating high-performing from low-performing stocks sufficiently well to generate 
substantial returns for all hedged decile ANN portfolios. A 6% annual risk-free rate of 
return has been assumed (high, therefore conservative). Furthermore, the internal pro-
gressively layered relations among the top 10, top 20, …, top 100 are very well-preserved 
by the network predictor: Returns generally fall off by cumulative decile (CD) implying 
that the separation is highly significant (These relations are not preserved by the MGL 
predictor which generates roughly the same loss for all cumulative deciles.  

On the right edge, we see that the fully hedged T100+B100 = H100 equity portfolio using 
the network predictor yields annualized returns of 16.7% (10.7% in excess of the risk-
free return). The MGL predictor for the same hedged portfolio yields excess annualized 
returns of 4.0% while the VL ranking system yields –0.8%  

During this period both the broad market index (the S&P 500) and the (unweighted) VL 
universe performed roughly comparably, i.e., flat to slightly negative, thus we have 
eliminated any overall bias during the test period, but this result is composed of a period 
of rapid growth followed by a short period of high volatility followed by a period of rapid 
decline (before and after the 2000 market bubble), a challenging stretch of time for any 
model. The ANN not only does a superior job of ranking stocks than the VL method it-
self (while employing what is likely very similar inputs), in addition it parses the ranking 
more finely. (Both the ANN and MGL predictors provide explicit rankings for all 1452 
stocks.) 
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Figure 31: Comparative annualized excess returns from the ANN and MGL predictors for hedged (top and 
bottom 10, 20, …, 100) cumulative decile (CD) baskets of securities and for the VL system hedged Rank 1 
and Rank 5 stocks. 

To understand the relation of the ANN and MGL predictors to changes of regime, it will 
later prove instructive to decompose the hedge into its constituent long and short compo-
nents. 

A10.5.1.2 Long Returns 

Figure 32 demonstrates the long-only ANN, MGL and VL system portfolios. Both the 
MGL and ANN predictors successfully generate the progressive relationship among cu-
mulative deciles, but the ANN predictor generates superior returns in 9 of 10 instances. 
Comparing only the ANN Top 100, the MGL Top 100 and the VL Top 100, we find that 
the ANN returns 19.6%, the MGL 11.6% and the VL system 9.9% compared to the VL 
universe of 1452 stocks which returned –0.16% over this period. (The S&P 500, by com-
parison, returned –0.35%, i.e., both VL and SP are comparably flat). Thus, in a head-to-
head comparison with the VL system (using all T100 stocks), the network predictor per-
forms best by a large margin, the MGL predictor next best, the VL system comparably to 
the MGL and all three significantly better than the VL universe as a whole. Comparing 
the hedged to long only results, we see that the VL system has succeeded in identifying 
rising stocks but not in identifying poor-performing or declining ones. This fact is made 
evident by examining the short side of the results. 
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Figure 32: Comparative annualized excess returns from the ANN and MGL predictors for long (top 10, 20, 
…, 100) cumulative decile (CD) baskets of securities and for the VL system hedged Rank 1 and Rank 5 
stocks. 

A10.5.1.3 Short Returns 

In Figure 33. we illustrate the short-only ANN, MGL and VL system portfolios (results 
show the actual returns, not their negatives as is required for a short position). In other 
words, the lower the return the more desirable it is. We see that no system succeeds in 
generating absolutely negative results (it is typically far more difficult to predict stocks 
falling in price than rising ones). But the value of a hedged portfolio is not in amplifying 
gains by succeeding in shorting falling stocks. The goal is rather to create a portfolio that 
is “market-neutral” so as to neutralize price changes that may attributed to changes in the 
market as a whole. Captured gains therefore presumably arise from the intelligent selec-
tion of a portfolio of strategically chosen equities from among the available choices. (We 
will quantify the degree of success achieved by the ANN predictor in the next section.) 

We see that the ANN successfully preserves the appropriate progressive relations among 
CDs: The bottom 10 are the worst performers (best for shorting), the bottom 100 the best 
(worst for shorting). The MGL predictor is not nearly so good as it was in identifying 
stocks for the long component—though it does a better job than the VL Rank 5 selection, 
its short baskets are all much better performing (therefore worse for shorting) than the 
ANN for all CD portfolios and the progressive relations among CDs are not preserved. 
Note, however, that the scale for the short selections is much compressed vis-à-vis the 
scale for long selection. The superior performance of the ANN versus the MGL predictor 
for hedged portfolios is therefore attributable both to its superior selection of top-
performing sticks and bottom-performing stocks. The VL system fails altogether—its se-
lection of bottom-performing stocks does better than the VL universe and even better 
than its selection of top-performing stocks. 
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Figure 33: Comparative annualized excess returns from the ANN and MGL predictors for short (bottom 
10, 20, …, 100) cumulative decile (CD) baskets of securities and for the VL system hedged Rank and Rank 
5 stocks. Returns shown are as though long, not their negatives (shorted) as computed in the hedged portfo-
lios. For the short component of the hedged portfolio, therefore, the lower the return the more desirable. 
 
A10.5.2 Risk-adjusted returns 

A10.5.2.1 Sharpe ratios 

The simple hedged returns by cumulative decile provide an excellent test of the capacity 
of the ANN to extract information about future stock performance from prior price and 
earnings changes. Note, however, that this model does not attempt to predict or to mini-
mize risk, i.e., volatility. We do not necessarily expect that such a model will produce 
superior risk-adjusted returns. Indeed, a well-known correlation between performance 
and risk is the bête noir of most aggressive approaches to achieving superior returns. A 
perhaps overly simple but widely-used measure of risk-adjusted performance is the 
“Sharpe ratio”, i.e., the ratio of the excess annualized return to the annualized standard 
deviation of the price. Figure 34 provides a comparison of Sharpe ratios for the same 
categories as the excess returns in Figure 31. The general fall-off with cumulative decile 
is preserved once again for the ANN and more weakly for the MGL predictor. Except for 
the first cumulative decile, the resulting Sharpe ratios for the ANN predictor are lower 
than for the S&P 500 reflecting the relatively high volatility of the equities selected 
within the top 100. (Post-hoc examination reveals that these are very disproportionately 
in the technology sector which over this time period experienced unusually dramatic 
volatility in fact.) Thus, the superior returns generated by the ANN come at the cost of 
high volatility. (Note, however, that by this measure the ANN significantly outperforms 
the VL methodology for selecting high performance stocks as well as the MGL predictor 
and the VL universe as a whole. 



 130

 

-60%

-40%

-20%

0%

20%

40%

60%

80%

10 20 30 40 50 60 70 80 90 100

Cumulative Decile

Sh
ar

pe
 R

at
io

 (S
R

)

ANN H SR
MG H SR
VL H SR
S&P500 SR
All VL SR

 
Figure 34: Comparative Sharpe ratios (risk-adjusted returns) for the ANN and MGL predictors for hedged 
baskets of securities; for the VL system proper; and for the VL and S&P 500 universes of equities. (VL H 
SR [green] and All VL SR [blue] have the same value.) 

Hedge funds in general claim to aim for and achieve Sharpe ratios of between 1 and 2. 
Again assuming a 6% risk-free rate of return, between January of 1990 and June of 2003, 
equity long/short funds reported annualized excess returns of ~12.07% [139] and an im-
portant study of eleven major market-neutral hedge funds from May, 1990 through April 
2000 (hence during a period of generally rising markets only) reported Sharpe ratios of 
1.1 [140]. By this measure, the ANN predictor falls short—unless one considers the very 
much more difficult and volatile period encompassed by the study. (It is very likely, fur-
thermore that Sharpe ratios of 1-2 are less common than measured by various hedge fund 
tracking reports (for example, Hedge Fund Research) because data on failed funds is of-
ten unavailable, especially those that fail relatively quickly [139].  

Another and arguably more accurate indicator of performance is provided by Jensen’s 
alpha, and by the associated beta, a measure not of absolute volatility in terms of simple 
arithmetic or logarithmic price change, but of expected volatility given the volatility of 
the universe of stocks from which a portfolio is selected. From this perspective, the ANN 
succeeds remarkably well. 

A10.5.2.2 Jensen’s alpha 

The most widely used tool for assessing risk-adjusted investment performance is Jensen’s 
alpha (a). a is designed to quantify how an investment performs not absolutely but rela-
tive to the volatility of the actual market universe from which it is drawn. It has been 
widely demonstrated that high volatility investments with a large possibility of large 
losses are likely to demonstrate larger gains (upon success) than low volatility ones: The 
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risk of losing a great deal is compensated for as a larger “risk premium”. Thus, no in-
vestment “intelligence” is required to attain large gains by simply investing in a very 
high-risk vehicle. For example, a majority of start-up companies fail altogether. But those 
that succeed return a very high premium to their investors who assume the high risk. 
Well-established, so-called “blue chip” corporations offer relatively modest returns to 
purchasers of their stocks. But in exchange, shareholders may anticipate a relatively low 
risk of large losses. 

The value added by a portfolio investment strategy (or manager) is therefore associated 
with gains beyond that attributable to the simple volatility of the appropriate universe of 
choices from which the strategy is drawn. a reflects the difference between the invest-
ment strategy’s actual performance and the performance expected based simply on inher-
ent risk. An investment that produces the expected return for the level of risk has an a of 
zero. 0α >  implies that the strategy produced a return greater than expected for the risk 
taken. 0α < indicates that the strategy has produced a return smaller than expected rela-
tive to the risk.  

It has been widely observed that ~75% of stock investment managers fail to improve on 
the performance of someone who had simply invested in a market-weighted basket of 
every stock. This phenomenon has been argued to be due to the “efficiency” of markets. 
This belief yielded market capitalization weighted index funds that seek to replicate 
broad market indices (i.e., baskets of securities representative of the entire pool of securi-
ties from which the selected ones are drawn), i.e., to reproduce the returns of those indi-
ces, hence aim for 0α = . 

a thus depends upon a measure of risk that is relative to a given market denoted Beta 
(b). The b of an investment strategy is defined as: 

 
[ ]

[ ]
strat mkt

strat
mkt

Cov R R
Var R

β =  (87) 

where stratR is the return of the strategy and mktR is the return of the market from which 
the strategy is drawn. In other words, stratβ is the slope of the linear fit of a scatter-plot 
with stratR the abscissa, mktR the ordinate. 

Stock index funds established a tacit standard of performance for investment strategies 
(and their managers): The successful strategy is one that yields performance in excess of 
the passive strategy of investing in everything equally since the latter strategy is more 
likely to be the better one, statistically. a is thus any additional return above the expected 
return of the b-adjusted return of the appropriate market. 

The formal expression for investment a is derived from the Capital Asset Pricing Model 
(CAPM), wherein the estimated return iR  on a security is  is given by three terms: 

 i i i mkt iR Rα β ε= + +  (88) 

iα  (in CAPM) is considered a constant drift unique to the ith asset in the market with as-
set weights { }1 2, ,..., ,...i Nmkt s s s s≡ ; iβ  is the volatility of asset i as defined in (87); iε is 
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a random variation unique to asset i with mean zero (hence as the number of different as-
sets increases in a portfolio of many securities, the combined iε  for the portfolio van-
ishes). Thus:  

 ( )strat strat rf strat mkt rfR R R Rα β⎡ ⎤≡ − + −⎣ ⎦  (89) 

where returns have been adjusted by the risk-free rate of return, rfR . By this standard, 
0stratα > represents a successful strategy. 

The a results for the ANN predictor are especially illuminating, given that the study pe-
riod was one of unusual volatility. These are presented in Figure 35. The results show 
0.4 0.2ANNα> > , roughly half the value reported by eleven major market-neutral funds 
between the bull-market of May, 1990 and April, 2000 ( 0.6α ≈ ), but still significantly 
positive (and in line with the Sharpe values presented above). More importantly the pres-
ervation of progressive relations among CDs is preserved more rigorously and for this 
measure of risk-adjusted performance, a power-law fall-off has a high correlation coeffi-
cient. (The market for which we calculate ANNβ to derive ANNα  is the VL universe.) As 
we may anticipate from Figure 34, a for the MGL predictor is poor, hovering at or below 
zero throughout, a reflection of the excess volatility associated with its returns. 
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Figure 35: a for the ANN with b for the VL 1452. (MGL results not shown as they are evidently worse) 

We now turn to the question of how regime changes affect predictor performance 
which is the major purpose of this chapter.  

A10.6 Antipersistence in predictor behavior 
This study was initially motivated by two facts: First, that a subtle feature of the VL sys-
tem is that even if it has a history of in general working (i.e., making successful predic-
tions contrary to the EMH), when it fails its failures are especially striking. Second, that 
the ANN predictor described above, which created a more fine-grained version of the VL 
rankings, and which was traded successfully in the real-world (with net positive post-
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transaction-cost gains) likewise suffered from high volatility—i.e., its periods of success 
were remarkably large but were interspersed with periods of large failure. 

In section 4., studying a much longer period of time, we have shown that in spite of high 
volatility, the ANN predictor nonetheless is able to generate significantly positive a. 
Thus, its gains, and implied predictive capacity, can not be attributed solely to the volatil-
ity (�) of the underlying market in which it trades. 

We wish therefore to understand what is the nature of the swings in the returns generated 
by the predictor. To this we end, we first examine in finer detail the structure of the rank-
ings generated by the ANN across all ~1500 equities. We argue that the peculiar distribu-
tion of actual returns by predicted rank may be understood within each time period (quar-
ter) as a weighted mixture of highly successful and highly unsuccessful predictions. 
Whether a time-period’s out-of-sample prediction is on balance successful or not depends 
upon the relative weights of the successful and unsuccessful components of the ranking. 
The respective components may be represented mathematically as negative and positive 
ArcTanh functions. 

We then examine the decomposition of the rankings across time and show that the bal-
ance between successful (net negative ArcTanh distribution of returns by ranking) and 
unsuccessful (net positive ArcTanh distribution of returns), varies to a degree that is 
greater than what should be expected by chance, in particular showing “anti-persistence”. 
Persistence is defined as a measure of the tendency of a binary series to exhibit repeating 
patterns; anti-persistence the tendency to specifically avoid repeating patterns. A random 
sequence exhibits neither persistence nor anti-persistence. 

We then concentrate on just the extreme left (T10-T100 portfolios) and right (B10-B100 
portfolios) ends of the distributions, combining the data across time into two sets: one set 
representing all the net-successful quarters, a second set representing all the net unsuc-
cessful quarters. From the hypothetical returns generated by these two contrasting sets, 
we find that the nature of the failure of the ANN predictor, when it fails, is different from 
and less dramatic than the more complete inversion of results of the MGL predictor, es-
pecially in choosing equities for the B10-B100 portfolios. 

A10.6.1 Distribution of ANN predictions as a composite of success and failure 
For each of the 29 out-of-sample quarter, both the MGL and ANN predictors forecast the 
quarterly price change for every stock. The stocks are then sorted in descending order by 
this forecast to obtain the predicted rank-ordering. Consider quarter 26 as a first example. 
Figure 36 shows the distribution of actual returns from for all equities ranked by the 
ANN predictor. Those ranked highest are to the left, those lowest to the right. The butter-
fly-shaped plot is typical for both the MGL predictor and the ANN predictor. The precise 
shape and density of the distribution determines whether the predictor is successful for 
long, short or hedged portfolios and for which CDs. 
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Figure 36: All 1452 returns (vertical axis) by rank (horizontal axis) in quarter 26 ranked by the ANN pre-
dictor 

Now suppose that the predictor were 100% successful: i.e., the rank-ordering predicted 
by the ANN corresponded exactly to the descending ordering of actual price-changes. In 
that case Figure 36 would like rather like Figure 37.  
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Figure 37: All equities for quarter 26 in descending (exactly correct) order of actual price change.  

If the predictor were 100% unsuccessful, Figure 36 would look instead like  
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Figure 38: All equities for quarter 26 in ascending (exactly wrong) order of actual price change 

The actual butterfly distribution then may be considered a mixture of the fully correct and 
fully incorrect distributions. To find this empirically, we first fit both the correct and in-
correct distributions to respective ArcTanh functions with parameters that thus reflect the 
actual distribution for the quarter. We find that: 

 ( )0.254 0.346 1 0.000689correct correctp ArcTanh rΔ = − + × −  (90) 

where correctpΔ  is the actual price change as predicted by the correct ranking and correctr is 
the correctly predicted rank. 

Likewise: 

 ( )0.227 0.350 1 0.00689incorrect incorrectp ArcTanh rΔ = − × −  (91) 

with incorrectr the rank predicted maximally incorrectly. (In both (90) and (91) the subscript 
on pΔ refers to the source of the price change, either the correct or incorrect ranking. In 
both cases the pΔ  in question is one of the actual ones.) 

We may now fit the actual distribution of price changes by the actual ANN predic-
tion/ranking to a weighted sum of these two functions (for which the ArcTanh terms are 
of course the same): 

 0.510 0.490correct incorrectp p pΔ = Δ + Δ  (92) 

which yields the curve shown in Figure 39. (Only a part of the range is shown—the mid-
range of Figure 36—because the wide scatter would otherwise obscure the shape of the 
fit. The same fit may be obtained directly from a single ArcTanh fit, but this would not 
yield the weights of the decomposed correct and incorrect components.) 
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Figure 39: ArcTanh fit to the actual price change by ANN predicted rank for the out-of-sample data in 
quarter 26. 

The fact that the fit curve is generally declining from left to right implies that over the 
entire list of equities the predictor is on average successful. The flatter region at the right 
end implies a smaller degree of success in identifying stocks that will decline relative to 
the universe; the sharper upturn at the left end implies a larger degree of success in identi-
fying stocks that will rise relative to the universe. The fact that the curve is almost en-
tirely below the zero line illustrates that the universe of equities declined overall this 
quarter 

Each quarter’s rank ordering constructed by the ANN may be similarly treated as a mix-
ture or “superposition” of a globally successful and a globally unsuccessful distribution. 
The net balance of each yields both the distinctive final result and generates the typical 
butterfly distribution.  

Note that Figure 39 shows only a fit for quarter 26 (as an illustration) and only for the 
ANN. The question may be raised as to whether such a fit is meaningful. The most 
straightforward evidence that it is (averaged across all quarters)—and that it is also both 
meaningful in the MGL equivalent and in comparison shows evidence of the MGL pre-
dictor’s poorer performance follows from the three facts that (1) the ANN generates sig-
nificantly positive returns for the hedged 10, 20,…100 portfolios (left and right ends); 
that (2) the same is true for the MGL predictor, but less so; and (3) that the returns among 
the 10 CDs for both the ANN and MGL generally fall off by CD. Furthermore, we dis-
cuss in section 5.4 similar graphed results examining only the top and bottom extremes of 
the distribution but aggregated for all quarters, segregated by winning and losing quar-
ters. A negative ArcTanh-like distribution is visibly evident for the aggregated winning 
quarters likewise a positive Arc-Tanh-like distribution for aggregated losing ones. Com-
paring these similar results between the ANN and MGL we find in the different structure 
of the distribution an explanation for how the ANN outperforms the MGL. 
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A10.6.2 Anti-persistence in predictor performance 
The weights for the successful and unsuccessful components in each quarter’s prediction 
always add to 1. We may therefore track the weight of the successful component to glean 
a snapshot of ANN performance over time as in Figure 40 (and in ranking all ~1500 eq-
uities, not just the extremes.) 
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Figure 40: Proportion of successful component (Wsuccess) of ANN predictor by quarter. 

Impressionistically, we see that the predictor appears to show relatively wide and fre-
quent swings between being globally successful and not. We may quantify this impres-
sion by considering the sequence of “successful” (Wsuccess > 0) and “unsuccessful” (Wsuc-

cess < 0) quarters as a binary series and examining this series for persistence. 

As discussed in [83, 93, 141], persistence is a formally defined measure on [0,1] of the 
extent to which patterns in a binary series tend to repeat, anti-persistence of their ten-
dency to avoid repetition. The persistence P of a maximally repetitive sequence equals 0, 
of a maximally anti-persistent sequence 1. A random sequence has persistence P = 0.5. 

In brief, persistence is determined at a particular scale sm by examining all possible bi-
nary sm -bit subsequences and counting the proportion of times that when a particular 
subsequence is followed in the series by 0, it is followed by 0 again upon its next occur-
rence; likewise for a following 1. Details of the calculation and examples from other do-
mains may be found in [83, 93, 141]. At a scale of 1 (which is the only scale at which so 
short a sequence can have a meaningful persistence measure), P measures the tendency 
of a series not to alternate (1− P, its anti-persistence, the tendency to alternate, with the 
series 1,0,1,0,1,0,… or 0,1,0,1,0,1,… having P = 0.5).  

We find that the 29 quarters of predictor data in Figure 40 have 0.143MGL =P  at 1sm =  
which is highly anti-persistent. It might appear that with only 29 binary values, the meas-
ured P could not be statistically significant. But in fact, measuring P on 1,000,000 ran-
dom binary sequences each of length 29 yields 0.00403p ≤ . A similar set of analyses 
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performed on the results from the MGL predictor yields 0.357MGL =P  with 
0.00127p ≤ . 

The implication of a significant degree of antipersistence in a predictor’s results is that 
whether returns are in general positive or not, they are associated with a high degree of 
volatility. The MGL predictor’s higher volatility as measured by its Sharpe ratio is con-
sistent with its somewhat greater anti-persistence. We see in the comparison between 
anti-persistence in the ANN and in the MGL the fact that while high performance tends 
to be associated with high volatility, it is possible for subtler methods to yield a more sat-
isfactory relationship between volatility and return as reflected in the measure of alpha. 

A natural question is whether there is correlation between successful versus unsuccessful 
predictions by quarter and the direction of the market. Perhaps the ANN is successful 
when the market rises and unsuccessful when it falls—a common complication of naïve 
predictors. If the direction of the overall mean VL universe by quarter—equivalent to a 
buy and hold strategy—is converted into a binary series, this series is also anti-persistent 
with 0.283All =P . For a series of this length, this degree of antipersistence is not highly 
statistically significant 0.035p ≤ , suggesting that the variation in quarterly mean returns 
may well be effectively random. Furthermore there is no correlation between success by 
quarter for the ANN and mean gain by quarter: 2 0.00001r < .  

A10.6.3 Effects of overall predictor performance on the top and bottom ends of the 
predictor rankings 
The severity of the models failures when they fail (both the ANN predictor and the MGL) 
reflects the fact that the state of the model is at times of failure at best one time-step be-
hind the phase of the market. Nonetheless, if its inputs have been properly chosen so as to 
reflect actual feedback characteristics of the market in question such that by tacitly learn-
ing patterns of market change (which a MGL predictor cannot do), the ANN model 
should be able to change its state rapidly enough to compensate for those time periods 
when its state is out of phase with the market and generate a net cumulative positive re-
turn that is significantly greater than any control, as has occurred.  

We know that at least some real-world feedback has been demonstrated between the se-
lection of top-ranked VL stocks and changes in its price and earnings reports. The ANN 
inputs have been chosen with this in mind and look backward over ten quarters’ worth of 
prior earnings and price rankings, developing a tacit relation among these in determining 
its prediction for the subsequent ranking. Unlike the MGL predictor, it may detect a pat-
tern not only of ranking but of change of rank structure over time. (We do not here report 
on a similar predictor that does not use earnings data. Results are degraded in the direc-
tion of the MGL predictor but remain superior to it.) 

In order to quantify results efficiently, and test this hypothesis using so limited a number 
of quarters, the quarterly results can be segregated by positive or negative net return for 
the market as a whole (the VL universe) and then aggregated. If there is a strong ten-
dency for quarters with net positive returns to show a negative ArcTanh-like distribution 
(and an positive ArcTanh for quarters with negative returns), aggregation should amplify 
this effect. Since quarters with results close to zero are included, considerable noise is 
introduced, strengthening the significance of the aggregation while ensuring that no se-
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lection bias is involved in the segregation. We do not attempt to fit our results, since as 
will be demonstrated, we are combing data from the extremes of the distribution, creating 
a discontinuity. 

Aggregated results by top, bottom and hedged 10 through 100 deciles can be compared to 
the MGL predictor for the same groupings likewise segregated into the same two major 
classes (rising quarters versus declining quarters).  

In preparation for this analysis, we first provide some relevant global measures of per-
formance.  

Figure 41 illustrates the cumulative returns over time for the hedged ANN portfolios (log 
scale). Note the tendency for the returns to be relatively extreme in both directions; for 
quarters with sharply positive (negative) returns to be followed by quarters with sharply 
negative (positive) returns; for the progressive relationship by decile to be relatively well-
preserved through time; and for the net cumulative return in all fully balanced long-short 
portfolios to be significantly positive. Note too how the progressive relations among cu-
mulative deciles are quite well preserved over time. 
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Figure 41: Semi-log Chart of Multiple of Initial Investment in Hedged Portfolios over 29 Quarters 

Table 13 shows the cumulative decile performance for the ANN and MGL predictors, 
followed by their differences. We will want to analyze what contributes to this difference 
in performance. We will see that the two predictors have many similarities that contribute 
to both their successes and their failures, but in varying proportion. In quantifying these 
proportions we can gain some insight into the phenomenon of change of regime and/or 
phase.  

Table 13 
Portfolio Excess Ann’l Return Portfolio Excess Ann’l Return Difference 

ANN H 10 50.2% MGL H 10 -10.2% 60.4% 
ANN H 20 18.1% MGL H 20 -10.0% 28.1% 
ANN H 30 19.2% MGL H 30 -9.6% 28.8% 
ANN H 40 13.2% MGL H 40 -10.4% 23.5% 
ANN H 50 11.3% MGL H 50 -10.6% 21.9% 
ANN H 60 10.9% MGL H 60 -10.6% 21.5% 
ANN H 70 8.7% MGL H 70 -10.8% 19.5% 
ANN H 80 11.0% MGL H 80 -10.7% 21.8% 
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ANN H 90 11.5% MGL H 90 -10.8% 22.3% 
ANN H 100 10.7% MGL H 

100 
-11.1% 21.8% 

As noted before, the MGL method does reasonably well in selecting equities that simply 
continue to rise—especially as part of a universe of equities experiencing a general rise. 
But the method does not appear capable of differentiating those that will significantly rise 
(relatively) from those that will significantly fall, a weakness that it shares with the VL 
predictor than whose final results it does scarcely any better. We will see that the ANN 
shares this same weakness, but in lesser degree. This particular kind of failure appears in 
two guises: 

1. The failure appears cross-sectionally within any given prediction set in the form of a 
series of equities predicted to make large price changes in one direction that actually 
make large price changes in the opposite direction (giving rise to the anti-persistent 
behavior discussed above). Typically, such mistaken predictions are admixed with a 
large number of correct predictions. This gives to the overall scatter plot of rank-
orderings versus actual percentage price changes a butterfly shape from which quanti-
fiable information will be extracted for the ANN predictor, the MGL control and their 
differences. The weighted proportion of successes and failures in the top 10, 
20,…,100 portfolios versus the matching bottom portfolios determines the magnitude 
of the success or failure of the respective hedged outcome for any given quarter. 

2. The failure appears intermittently and abruptly through time as the balance between 
overall correct and incorrect predictions shifts. As we will see, this shifting balance 
produces large changes in outcome from quarter to quarter generating the impression 
of a change in regime that is especially pronounced in the MGL model. The final re-
sults are a consequence of the accumulated successes and failures over time.  

 
A10.6.4 T/B Portfolios aggregated by global success or failure of the predictor(s) 

A10.6.4.1 T/B 10 = H10 Portfolios 

One gains an intuitive impression that the universe of equities tracked by the model(s) 
undergoes sudden changes in performance partially captured in the “whipsaw” behavior 
of the predictors generated by the models. The challenge is to devise and extract a simple 
measure that objectively characterizes this phenomenon, if present. 

We have taken the following approach: All ~1500 equities have been assigned out-of-
sample predicted ranks for all 29 quarters both by the ANN and the MGL predictors. All 
equities likewise have their known in-sample actual percentage price-changes for every 
quarter. We thus start with two ~1500 X 29 tables showing the rank (by row number, 
with the best predicted rank being 1, the worst ~1500), one table for the ANN and the 
other for the MGL. From these tables we keep only the top 100 rows and the bottom 100 
rows. We create an identical set of tables this time keeping only the top 90 rows and the 
bottom 90 rows. Again for the top and bottom 80, 70, …, 10 rows. Within each table, we 
identify those quarters where counting all ~1500 equities, the mean market change is 
positive and where it is negative.  
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Table 14 shows a hypothetical example for the T100 and B100 price changes sorted by 
predicted rank: Gray columns represent quarters where the mean price change for the 
portfolio—long on the top 100, short on the bottom 100—is negative. White columns 
represent positive quarters. 
Table 14: A data table with (hypothetical) actual price changes arranged by predicted rank and quarter for 
top and bottom 100 equities. 

� Rank/Quarter ö Q1 Q2 Q3 … Q29 
1 +.001 +.002 −.004 … −.014 
2 −.017 +.018 −.050 … +.005 
… … … … … ... 
100 −.003 −.009 −.011 … −.014 

1353 +.020 +.017 +.021 … −.014 
… … … … … −.003 

1451 +.008 +.015 +.034 … +.001 
1452 +.045 −.003 −.016 … +.022 

Mean Hedged Ret. −.043 +.032 −.004 … +.007 
For each data table (2 tables for each of the size 100, 90,…,10 data sets), we then segre-
gate the successful and unsuccessful quarters (+ or − net or mean gain for the hedged 
portfolio) as in Table 15 and Table 16. 

Table 15: Successful quarters only 
� Rank/Quarter ö Q2 … Q29 

1 +.002 … −.014
2 +.018 … +.005
… … … ... 
100 −.009 … −.014

1353 +.017 … −.014
… … … −.003

1451 +.015 … +.001
1452 −.003 … +.022

Mean Hedged Ret. +.032 … +.007
 

 
Table 16: Unsuccessful quarters only 

� Rank/Quarter ö Q1 Q3 … 
1 +.001 −.004 … 
2 −.017 −.050 … 
… … … … 
100 −.003 −.011 … 

1353 +.020 +.021 … 
… … … … 

1451 +.008 +.034 … 
1452 +.045 −.016 … 

Mean Hedged Ret. −.043 −.004 … 
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Within each portfolio H10 – H100, but now segregated into all successful quarters and all 
unsuccessful quarters, we examine the top component of the portfolio and the bottom 
component (and do so for both the ANN and MGL predictors). We quantify the perform-
ance across all successful quarters of the rank 1 stock, the rank 2 stock,….through the 
rank 10, 20,…,100 stock (depending on the size of the portfolio we are studying). Then 
we do the same with the bottom groups. We likewise quantify the performance in the 
same way across all unsuccessful quarters. This will allow us to examine the structure of 
the each predictors’ assignment of rank not quarter-by-quarter, but treating successful and 
unsuccessful quarters (as we did in sections 5.2 and 5.) but in the aggregate instead, and 
each aggregation separately. 

The simplest way to thus aggregate the data across rows is to use their mean and standard 
deviation (which we will examine shortly). But this would fail to account for the differ-
ence in the number of winning and losing quarters (and the difference in these numbers 
between the ANN and MGL predictors) which after all is a key consideration. The meas-
ure employed here is therefore an artificial metric adapted from the “natural” features of 
the financial domain: Pseudo-compounding of the numbers across a row (plus one each) 
as though all winning quarters occurred in sequence following an initial investment of 1; 
all losing quarters similarly. This method is meant to place all quarters on an independent 
footing while properly weighting the geometric effect of an imbalance in the number of 
winning and losing quarters. The resulting numbers will therefore scale somewhat like 
the actual results but are not “real”: Both the winning and the losing quarters, for both 
MGL and ANN tables have simply been compounded in sequence from the actual per-
cent changes. Unrealistically sized final gains and losses for each row are then used in 
place of a mean, but the relative relations among points are properly preserved. while be-
ing pushed apart around 1. 

Figure 42 shows the results of the MGL predictor for the Top and Bottom 10 portfolios 
under this transformation. Each mark represents a pseudo-compounded return for a quar-
ter with blue marks for the aggregated successful quarters (“+”); red marks for the unsuc-
cessful ones (“−”). Keeping in mind the discussion in sections 5.1 and 5.2, we see some-
thing similar: The blue marks all together (from both top and bottom ends of the ranking, 
joined together at the midline, as it were) create a negative ArcTanh-like distribution, the 
red ones a positive ArcTanh. The blue distribution thus mimics a successful quarter when 
the predictor is “in phase” so to speak with the distribution of price changes; the red dis-
tribution mimics an unsuccessful quarter when the predictor is “out of phase” with the 
distribution of price changes. But in this case we have aggregated the data from all quar-
ters, collating the “in phase” and “out of phase” results separately. 
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Figure 42: Pseudo-compounded returns across all quarters, for Top and Bottom 10 MGL predicted stocks, 
segregated by the success (“+”, blue, “in phase”) or lack of success (“−”, red, “out of phase”) of the MGL 
predictor. The x-axis shows the rank (top 1 through 10) of the equity to the left side of the vertical line, and 
the rank (bottom 1 through 10) on the right side; the y axis the pseudo-compounded returns. 

 
There are four components to Figure 42, each with ten (colored) elements: 

▲ T10 MGL portfolio pseudo-compounded return during a (+) ”phase” of the predictor  
▲ T10 MGL portfolio pseudo-compounded return during a (-) ”phase” of the predictor 

 B10 MGL portfolio pseudo-compounded return during a (+) ”phase” of the predictor 
 B10 MGL portfolio pseudo-compounded return during a (-)”phase” of the predictor 

The left hand axis indicates the multiple of an initial return of 1.0 at the end of all win-
ning (losing) quarters, were returns to be compounded back to back. (“Pseudo-
compounded”. Later, we will combine all winning and losing quarters to show that these 
figures are not unrealistic even though they appear to be when segregated in this way).  

Note that blue marks represent data aggregated (compounded as described above) from 
winning quarters; red marks represent data aggregated from losing quarters. The left half 
of the horizontal axis represents equities ranked T1 through T10 across all quarters (from 
left to right, i.e., ranked 1 through 10), the right half equities B10 through B1 (from left to 
right, i.e., ranked 1443 through 1452). The leftmost blue and red marks are in the same 
horizontal position, likewise for all remaining nineteen successive rightward blue and red 
marks. The blue leftmost mark represents the pseudo-compounded return for just the 
number 1 ranked equity during all quarters with the predictor in phase with the market, 
the red leftmost mark for just the number 1 ranked equity during all quarters with the 
predictor out of phase with the market; the blue second-to-leftmost mark represents the 
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pseudo-compounded return for just the number 2 ranked equity during all quarters with 
the predictor in phase with the market, and so on. 
 

Concentrating first on just the blue marks (successful, “in phase” quarters, “φ + ”), note 
that the marks to left of the midpoint are triangular and represent from left to right the 
aggregated pseudo-compounded returns respectively for the top 1 through top 10 ranked 
equities; marks to the right of the midpoint are circular and represent from left to right 
equities ranked 1443 through 1452 (the bottom ten in order). Each triangle represents the 
pseudo-compounded final return over 18 continuous quarters. These are quarters during 
which the MGL predictor generated positive net returns for a T10/B10 hedged portfolio. 
Although there is very wide scatter on individual real returns, in this aggregated trans-
formed data, in all “in phase” (φ + ) quarters, all top 10 data points lie above all bottom 10 
data points. 

Turning now to the red marks, we find that the above relationship has been largely in-
verted:  

For 11 “out of phase” quarters (“φ − ”), the aggregated data points representing equities 
predicted to perform as the top 10, are now found entirely below both the blue marks rep-
resenting the top 10 for winning quarters and below the red circular marks representing 
the predicted bottom 10 performing equities. Furthermore, with one exception, each red 
circle lies above its corresponding blue circle. That is, during φ − quarters, rather than do-
ing poorly, as predicted, the bottom 10 of the MGL model consistently outperform the 
bottom 10 of the MGL model during winning quarters, often by an order of magnitude or 
more; as well as greatly outperform the predicted top ten of the MGL predictor itself for 
those same quarters, and some proportion of the MGL top 10 predictor during winning 
quarters. 

Thus, the MGL predictor—which simply uses the prior actual rank ordering of the market 
as a predictor—comes very close to demonstrating two distinct states that are evident at a 
glance—at least at its extremes. (The same phenomenon is evident, if somewhat less 
clearly, using charts of similarly aggregated and transformed data for the top and bottom 
20, 30, …, 100 as well as using non-transformed and non-aggregated data.) With this in 
view, the φ + quarters may be thought of as periods of “positive” predictor state in the 
sense that the state of the predictor is in phase with the performance of the universe of 
equities;. Declining quarters we deem periods of “negative” predictor state φ − . 

However, we may observe at least one significant departure from a strict inversion: Dur-
ing periods of negative predictor state φ − , the positive return of the B10 portfolio is not 
nearly so great as the positive return of the T10 portfolio during periods of positive state 
φ + . In consequence, the MGL predictor generates a net positive return, especially for the 
T10 portfolio alone (and similarly for T20-T100). We keep this asymmetry in mind as we 
turn to the ANN portfolio with which we compare it, at the end adding numerical quanti-
fication. 
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Figure 43 shows the comparable chart for the ANN predictor and the resulting Top and 
Bottom 10 portfolios: 
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Figure 43: Pseudo-compounded returns across all quarters, for Top and Bottom 10 ANN predicted stocks, 
segregated by the success (“+”, blue, “in phase”) or lack of success (“−”, red, “out of phase”) of the ANN 
predictor. The x-axis shows the rank (top 1 through 10) of the equity to the left side of the vertical line, and 
the rank (bottom 1 through 10) on the right side; the y axis the pseudo-compounded returns. 

 

There are likewise four components to the above chart each with ten (colored) elements: 

▲ T10 ANN portfolio pseudo-compounded return during a (+) ”phase” of the predictor  
▲ T10 ANN portfolio pseudo-compounded return during a (-) ”phase” of the predictor 

 B10 ANN portfolio pseudo-compounded return during a (+) ”phase” of the predictor 
 B10 ANN portfolio pseudo-compounded return during a (-)”phase” of the predictor 

These results from the ANN predictor clearly have many general features in common 
with the MGL predictor. However, there are a number of important differences. Chief 
among these is the fact that in the right half of the chart (representing the selection of 
stocks predicted to fall or do poorly, thus suitable for shorting), the circular marks repre-
senting the B10 aggregated data from both the positive and negative phases are relatively 
closely clustered and interpenetrating rather than separated. This is not an artifact of the 
semi-log representation: In contrast to the MGL predictor, four of ten ANN negative 
phase B10 lie above their positive phase counterparts. Thus, as a time-averaged state-
ment, the ANN predictor only inverts its prediction for the top 10 – 100 equities during 
periods of lack of success; it simply loses any predictive ability for the bottom during 
these phases, which leaves long and hedged strategies intact.  
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Also, while the ANN predictor does not make as many exceptionally large correct predic-
tions on the positive side, it makes far fewer mistakes in general, especially when select-
ing equities to sell short (generally a much more difficult task, especially in a rising mar-
ket). 

We may understand the ANN’s success vis à vis the MGL predictor as follows. First, we 
remind ourselves that by “success” we at times simply mean a lesser degree of failure 
(which for purposes of investment may call forth a high premium). Second, we note that 
the VL system, the MGL predictor and the top half of the ANN predictor are all subject 
to an inversion of their behavior; and place this observation in context of the above ob-
servations: The possibility that when they fail, the simpler models are falling prey to a 
change occurring in the market as a whole which they cannot anticipate or adjust for.  

Third, in both the MGL and ANN predictors, inversions most often occur delayed rela-
tive to changes in the universe of equities, but this happens less often with the ANN. 
(Hence the anti-persistence evident in both as discussed above, but the greater anti-
persistence for the MGL.) This makes sense, of course, as it explains why a large number 
of losing quarters arise—e.g., 9 of 29 for the H10 ANN predictor, 11 of 29 for the H10 
MGL predictor, in the statistics provided above. 

Studying this problem carefully requires a more rigorous definition of what constitutes a 
”state” than we have constructed, and what constitutes an inversion. However, a quick 
impression can be obtained from Figure 44: 

 
Network T/B 10 Quarter 16

-160% 

-140% 

-120% 

-100% 

-80% 

-60% 

-40% 

-20% 

0% 

20% 

1 1443

 
Figure 44: ▲ Top 10  Bottom 10 

Quarter 16 T10 and B10 equities ranked by the ANN within full rank 
spectrum of 1443 stocks (of 1452 possible). 

Figure 44 shows the percent returns for the top and bottom 10 equities ranked by the 
ANN just for quarter 16 showing their actual ranks within all stocks available during that 
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quarter, during which the universe of (during that quarter) 1443 (out of the possible 1452) 
equities experienced a mean decline of 21.8%. (There are usually fewer stocks to rank 
within a given quarter because of the listing and delisting of corporations.) The preceding 
quarter saw a rise of 2.7% and the following quarter a rise of 24.3%. During this quarter, 
for this portfolio, the MGL predictor persisted in maintaining the “usual” ranking struc-
ture which had a (weakly) inverse relationship to the actual market during this quarter. 
While all four of the T10, B10 MGL and ANN individual portfolios lost—T10 MGL, 
B10 MGL, T10 ANN and B10 ANN—the T10 MGL did worse than the B10 MGL for a 
net H10 MGL loss during this one quarter of almost 4%.  

On the other hand, while the ANN predictor does not resist the overall downward trend of 
the market and even—consistent with its overall volatility—amplifies it, the ANN H10 
portfolio makes a significant gain. The ANN has created a winning rank-ordering struc-
ture for a hedged portfolio almost entirely from negative returns, in this case, in the face 
of (or composed out of) a declining market (following a series of quarters in which the 
overall market had risen, but less so, in each successive quarter). Note that in the long 
run, successful results are obtained for the T10-T100 portfolios on an absolute basis.  

In the additional two quarters where the ANN succeeds and the MGL predictor fails, the 
market as a whole was similarly experiencing an overall decline (as in the one example 
just given). The successful adaptation in the structure of the predictor occurs “simultane-
ously” with the change in the equity market as a whole (within the discrete time unit of 
the procedure—one quarter). 

The ANN predictor resists simply following the prior state, and rather seems to adapt 
when called for (with mixed success), with less of a delay. Hence, there are quarters 
when instead of failing because it does not keep up with a changing market, it partially 
adapts. The ANN predictor is much more frequently able than the MGL predictor to gen-
erate a ranking structure that is useful during generally adverse periods. 

Table 17 and  

Table 18 present descriptive statistics comparing the MGL and ANN predictors for the 
T10 and B10 combined portfolios using the above aggregated measures. The figures in 
Table 17 present idealized mean quarterly returns that would yield the pseudo-
compounded returns in  

Table 18. Note that whereas the idealized pseudo-compounded ANN returns are ap-
proximately equal to the actual compounded returns in the simulation, the idealized MGL 
returns are much larger. Thus fortunately, this comparison has tended conservatively (in 
this instance) to favor the MGL predictor. 

The different results arise as follows: The product of 1 plus each specific quarterly differ-
ence between T10 and B10 is not equal to the product of 1 plus their average difference. 
I.e., in general, “pseudo-compounded” returns calculated as 
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The data in  

Table 18 present the data represented in Figure 43. Together they quantify the preceding 
discussion. 

Table 17: Mean quarterly returns segregated by “ f” 
Quarterly Mean f+ f- 

No. Quarters 20 9 
ANN T10 0.20 -0.106 
ANN B10 0.01 0.052 
ANN H10 0.19 -0.16 

No. Quarters 18 11 
MGL T10 0.26 -0.10 
MGL B10 0.01 0.11 
MGL H10 0.25 -0.21 

 
Table 18: Pseudo-compounded quarterly returns segregated by “ f” 

Ps.Compo
unded 

f+ f- Cu
m
. 
r
e
t. 

Ann. 
ret. 

No. Quar-
ters 

20 9   

ANN T10 38.55 0.37   
ANN B10 1.22 1.58   
ANN H10 32.72 0.21 6.98 30.7% 

No. Quar-
ters 

18 11   

MGL T10 67.21 0.31   
MGL B10 1.19 3.16   
MGL 

H10 
58.64 0.07 4.29 22.3% 

During 20 “positive” regime quarters (“f+  ”: predictor in phase with the universe of equi-
ties), the ANN predictor generated average returns of 0.191 for the H10 portfolio (com-
bined T10 and B10). For 9 “negative” regime quarters (“f- ”: predictor out of phase with 
the universe of equities), the ANN predictor generated average returns of −0.158 for the 
H10. By contrast, the MGL predictor generated larger mean positive regime returns of 
0.254 for the H10, but for fewer quarters (18) and also generated larger negative regime 
returns of −0.212 for more quarters (11).  

Table 18 illustrates the equivalent pseudo-compounded results with 30.7% annualized 
return for the ANN predictor (close to actual) and 22.3% for the MGL (significantly 
higher than actual). 
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The most important point to be noted is that the relative success of the network predic-
tor—and relative failure of the MGL predictor—is caused by the relatively large values 
in the negative phase columns, MGL B10 rows, compared to the ANN B10 rows, as these 
values are contrasted to their respective T10 rows. 

A10.6.4.2 T/B 100 = H100 Portfolios 

The above discussion can be extended throughout all the portfolios from 10 through 100 
with (almost) uniform results. Figure 45 and    Figure 46 are compa-
rable to Figure 42 and Figure 43; Table 19 and Table 20 are comparable to Table 17 
and  

Table 18, presenting results for the T100, B100 and H100 portfolios, both ANN and 
MGL. 

Network T/B 100

0.001

0.01

0.1

1

10

100

1000

0 100 200

Martingale T/B 100

0.001

0.01

0.1

1

10

100

1000

0 100 200

    1                 100 -100               -1      1                 100 -100                 -1 
   Figure 45: ANN T/B = H100 Portfolios   Figure 46: MGL T/B = H100 portfolios 
 

Table 19: Mean quarterly returns segregated by phase f 
Quarterly Mean f+ f- 

No. Quarters 16 13 
ANN T100 0.20 0.01 
ANN B100 0.03 0.10 
ANN H10 0.17 −0.09 

No. Quarters 15 14 
MGL T100 0.19 0.036 
MGL B100 0.01 0.163 
MGL H100 0.18 −0.13 
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Table 20: Pseudo-compounded quarterly returns segregated by phase f 
Ps.Compounded f+ f- Cum. ret. Ann. ret. 

No. Quarters 16 13   

ANN T100 14.91 1.11   
ANN B100 1.58 3.90   
ANN H100 12.50 0.28 3.49 18.8% 

No. Quarters 15 14   

MGL T100 11.88 1.68   
MGL B100 1.10 8.80   
MGL H100 11.56 0.15 1.72 7.8% 

Here again the same general pattern prevails, if somewhat attenuated. The superior rela-
tive and absolute performance of the ANN predictor is attributable primarily to its capac-
ity to occasionally adapt rank structure in phase with shifts in the market. It therefore has 
a larger number of winning quarters. Consistent with this capacity, it tends to “resist” an 
apparent inversion at the bottom end of the ranking during losing quarters, thus incurring 
smaller losses than the MGL predictor. 

A10.7 Discussion 
The prediction method outlined above has many complex features only a few of which 
have been treated. We discuss here a small number of key points, including problems. 

A10.7.1 Data Cleaning and Errors 
As discussed previously, the original VL data has an extremely large number of errors. It 
was not possible to obtain meaningful results using uncleaned data and the process of 
cleaning data to an acceptable level is very resource-intensive. Because of this, it has not 
yet been possible to run simulations on all possible monthly, weekly and daily cycles 
within a quarter. Randomly selected and targeted runs performed on partial sets show in-
significant differences with the results presented here. Identical simulations performed at 
shorter data intervals (monthly, weekly, daily) should yield similar results with more ro-
bust statistics. But as the interval shortens, the data problem worsens. Furthermore, with 
respect to earnings, the quarterly time period is the only natural time step. 

A10.7.2 Why Does the ANN Predictor Work? 
There are a sufficient number of occasions when the ANN predictor seems able to adapt 
and anticipate an inversion in the market, i.e., a change in the structure of the VL uni-
verse of equities it is attempting to rank, and so undergoes a change in the rank-ordering 
it establishes. Rather than mimic the rank-ordering of the immediately prior quarter (as 
does the MGL predictor), the ANN has the option of looking back at the rankings by 
change in price and by change in earnings for all 1452 equities over ten quarters. For 
each equity it then assesses the impact of each of these twenty parameters on the most 
recent change in price. But every other input is itself an earlier period’s change in price 
(merely transformed into a rank), that was itself once an output. Not every quarter most 
closely mimics the prior quarter. There are in fact many quarters when the average 
change in price over the entire universe of equities more closely mimics what happened 
two quarters prior, or three. (A MGL predictor based on the rank ordering of two quarters 
prior still outperforms a random ranking.) To some extent, the ANN is apparently able to 
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properly weight the changing relative contribution of these prior quarters, including the 
contribution of changes in earnings: An identical predictor that excludes earnings inputs 
still outperforms the MGL predictor, but underperforms this ANN predictor and is much 
more volatile. In particular, because the ANN tacitly develops a nonlinear relationship 
among the input variables, it may detect as a “pattern”, a pattern in the “change-of-state” 
of the market, as it were, if such a pattern exists or seems to exist. 

This, of course, raises a caution: With only 29 quarters, it is not possible to differentiate 
between a “pattern of change of state” that actually exists and one that only seems to ex-
ist, even if the internal structures within each quarter are very robust. In other words, the 
ANN predictor may indeed be better at detecting global patterns of the above kind than 
the MGL predictor. But one can only argue that the markets undergoing large scale de-
clines during the quarters captured by the ANN (and missed by the MGL) did so as part 
of a pattern detectable by the ANN rather than a pattern invented by it. The success of the 
ANN in generating large returns provides the evidence for the former. 

A10.7.3 Relation between the ANN and the VL ranking system 
The behavior of the ANN in generating rankings shows many similarities to the VL sys-
tem proper which, as noted in the introduction, has been the object of significant attention 
because of its apparently anomalous success. One similarity is the ability of the ANN to 
generate significant positive returns; another is the fact that when it fails, it, too, does not 
simply lose predictive ability, it produces rank-orderings that are inverted relative to the 
actual price changes and so creates large losses. Nonetheless, better than a MGL predic-
tor, or the VL system proper, it is able both to anticipate the need for a different rank or-
dering, on occasion, and to do a better job in resisting failure when identifying stocks for 
short-selling. On balance, at least in this study sample, the ANN is able to improve upon 
the VL approach proper and generate net positive returns over the long run in excess of a 
buy and hold strategy and sufficient to overcome transaction costs. (These are kept to a 
minimum in the quarterly trading process employed). These results suggest that at least 
part of the power inherent in the VL approach is in wide use of rank orderings as a gen-
eral method for coarse-graining financial data. 
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