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“Let us first try to understand what you seek in devoting yourself to science. Is 
it only the pleasure - doubtless immense - which we derive from the study of nature 
and the exercise of our intellectual faculties? In that case I ask you in what respect 
does the philosopher, who pursues science in order that he may pass life pleasantly to 
himself, differ from that drunkard there, who only seeks the immediate gratification 
that gin affords him? The philosopher has, past all question, chosen his enjoyment 
more wisely, since it affords him a pleasure far deeper and more lasting than that of 
the toper. But that is all! Both one and the other have the same selfish end in view, 
personal gratification. 

But no, you have no wish to lead this selfish life. By working at science you 
mean to work for humanity, and that is the idea which will guide you in your 
investigations. 

A charming illusion! Which of us has not hugged it for a moment when giving 
himself up for the first time to science?”  

An Appeal to the Young, 1880 
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Abstract 

Recent years have seen a substantial increase in the amount of available seismic catalog 
data. Extracting information from these data, on a case-by-case basis is gradually becoming 
infeasible. In order to harness the influx of data, we need new methods that are objective and data-
driven. These methods need to provide the community with models that are modest in their 
complexity and assumptions. This thesis undertakes the task of developing such methods that can 
be readily applied to large seismic catalogs.  

One of the main characteristics of earthquake phenomena is the power-law relation of 
moment release and frequency, i.e. the Gutenberg-Richter law. We developed a penalized 
likelihood-based method for spatial estimation of Gutenberg-Richter’s b-value. We used the 
obtained results to generate an earthquake forecast model for California. Our forecast shows a 
significant information gain with respect to the competing models. These results provide evidence 
for small amplitude, large-scale spatial b-value variations that can, in most cases, be attributed to 
inconsistencies in magnitude estimations. 

Another widely observed feature of seismicity is its multifractal spatial distribution. We 
developed an adaptive multifractal estimation method that reduces edge effects and improves 
precision. The method was successfully validated on synthetic fractals and used to assess the 
scaling properties of the widely studied diffusion-limited aggregation process. We developed also a 
condensation technique that allows accounting for the location uncertainty information in spatial 
analysis. We utilized these two approaches to investigate the spatial distribution of Southern 
Californian seismicity. Our analysis provided evidence for possible issues with the relocation 
procedure of the current catalog. This motivated us to re-locate the last three decades of Southern 
Californian seismicity by employing current state-of-the-art probabilistic non-linear methods. The 
outcome of these efforts is the new KaKiOS-15 catalog that contains the full expression of each 
event’s location uncertainty.  

Lastly, we developed a new fault network reconstruction method based on agglomerative 
clustering. We applied this method to the events in the condensed KaKiOS-15 catalog and obtained 
a fault network for Southern California. In retrospective tests, we were also able to demonstrate that 
the obtained fault network has significantly higher forecasting skills compared to commonly used 
methodologies.  
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Резюме 

Размерът на достъпни сеизмични данни се е увеличава значително през последните 
години. Добиване на информация от тези данни, за всеки случай поотделно постепенно става 
невъзможно. За да може да се възползваме от притока на тези данни, има нужда от нови 
методи, които са обективни и адаптивни. Тези методи трябва да предоставят 
сеизмологичната общност с модели, които са скромни в техните сложности и 
предположения. Тази теза се отнася до разработването на такива методи, които могат лесно 
да бъдат приложени за големи сеизмични каталози 

Една от основните характеристики на земетръсните явления е отношението между 
тяхната енергия и честота, т.е. закона на Гутенберг-Рихтер. Разработихме метод, основан на 
санкционирана вероятност, за пространствено изчисление на б-стойност по закона на 
Гутенберг-Рихтер. Използвахме получените резултати за да генерираме прогнозен модел за 
земетресенията в Калифорния. Нашата прогноза достига значително подобрение спрямо 
конкурентните модели. Тези резултати предоставят доказателство че пространствените 
вариации на б-стойност са широко мащабни и с малък амплитуд. Те могат, в повечето случаи 
да се обяснят с несъответствия в измерванията на магнитуд.  

Една от другите често наблюдавани особености на сеизмичността е нейното 
мултифрактално пространствено разпределение. Разработихме адаптивен метод за 
изчисление на мултифракталния спектър, която намалява периферичните ефекти и 
подобрява точността. Методът бъде успешно утвърден чрез изчисляването на скалиращите 
свойства на различни синтетични фрактали. Също така, разработихме кондензационен 
метод, която дава възможност за отчитане на локационното неопределение в 
пространственните анализи. Използвахме тези два метода за да изследваме пространственото 
разпределение на сеизмичността в Южна Калифорния. Нашият анализ предоставя индикации 
за проблеми относно локализационната процедурата на текущия каталог. Това ни мотивира 
да локализираме сеизмичността в Южна Калифорния отначало, използваики съвременните 
нелинейни и вероятностни методи. Резултатът на тези усилия е новият каталог KaKiOS-15, 
който съдържа пълния израз на локационното неопределение за всяко заметресение. 

Наи последно, разработихме нов метод за разломна реконструкция основан на 
обединителено групиране. Приложихме този метод към кондензираните земетресенията в 
каталога KaKiOS-15 и получихме разломна мрежа за Южна Калифорния. В ретроспективни 
изследвания, можахме да демонстрираме, че разломната мрежата има значително по-високо 
умение за прогнозиране в сравнение с често използваните методологии. 
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Özet 

 evc ut sismi  veri mi tar ı son yıllarda  ne mli  l  de  artmı tı r.  e r bir va a    elinde ayrı 
ayrı bilgi    tl eme  gidere  olana sı  hale gelme tedir .  u amansı  veri a ını ndan istifade 
edebilme  i in veri g d  ml   ob e tif y ntemler e ihtiya  vardır.  u y n temlerin,  a rma ı l ı  ve 
varsayımda m t eva ı modeller ortaya  o yabilmesi gere ir .  u te   er evesinde,  ola ylı la b y   
sismi   ata loglara uygulanabilece  bu t r y ntem ler geli ti rmeye gayret etti . 

 e prem olayının temel   elli l erinden biri  ut enberg-Richter  a nunu, ba  a bir deyi l e 
deprem ener isi ve fre a nsı arasında i  g   yasası ili  i sidir. Bu tezde, Gutenberg-
Richter  a nununda i b de e rinin me a nsal  e stirimi i in , d  eltilmi  olabilirli  temelli bir y ntem  
geli ti rdi .  lde edilen sonu ları  ull anara  Kaliforniya i in deprem tahmin modeli olu t urdu . 
 odelim i  ra ip modellere  ı yasla belirgin bir tahmin  a biliyeti g s terdi.  u sonu lar, b-
 de e rinde i me a nsal far lılı  lar ın       genli li  ve b y    l e  li  oldu unu i ar et etme tedir .  u 
far lılı  lar ın  o unlu l a fi i sel olma tan  te , deprem b y  l    l  m lerinde i tutarsı lı lar dan 
 a yna landı  ına dair bulgular elde etti . 

Sismisitenin yaygın olara  g  lemlenen bir di er   elli i multifra tal me a nsal 
da ılımdır.  una y ne li  olara   enar et i lerini a altan ve  e stirim do ru lu unu iyile ti ren adaptif 
bir multifraktal kestirim y nt emi geli ti rdi . Y ntemi senteti  fra tallar    erinde uygulayara  
ba a rıyla do ruladı .    olara , me a nsal anali  esnasında  onum belirsi li  verisinin hesaba 
 a tılmasını sa layan bir yo unla tı rma te ni  i geli ti rdi .   ne y Kaliforniya sismisitesinin 
me a nsal da ılımını inceleme  i in bu i i  y n temi uyguladı .  u anali  sonucunda, mevcut 
 a talogta  ull anılan  on um belirleme prosed r n de sorunlar oldu u y n nde bulgulara ula tı  . Bu 
bulgular, bi i son otu  yılda meydana gelen   ney Kaliforniya depremlerini yeni ba t an 
 onuml andırmaya te vi   etti.  o  rusal olmayan, olasılı sal  onu mlandırma ya ılımlarını 
 ull anara  her deprem i in  a psamlı bir  onum  belirsi li  verisinin yer aldı ı yeni KaKiOS-15 
 a talo unu olu turdu . 

Son olara , aglomeratif   mele nmeye dayalı yeni bir fay a ı re onst r  si yon y ntemi  
geli ti rdi .  u y ntemi yo unla tı rılmı  KaKiOS-15  a talo una uygulayıp   ne y Kaliforniya i in 
bir fay a ı elde etti . Retrospe ti f testler, elde edilen fay a ının yaygın olara   ull anılan y ntemler e 
 ı yasla daha y  se  tahmin becerilerine sahip oldu unu g ster mi ti r.  
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Résumé 

La quantité de données disponibles dans les catalogues de sismicité a récemment 
substantiellement augmenté. Extraire de l'information de ces données devient graduellement 
impossible. Afin d'exploiter ce flux de données, nous avons besoin de nouvelles méthodes 
objectives et dirigées par les données. Ces méthodes doivent procurer à la communauté des modèles 
aux hypothèses et à la complexité modestes. Cette thèse entreprend la tâche de développer de telles 
méthodes qui peuvent être aisément appliquées à de grands catalogues sismiques. 

Une des caractéristiques principales des séismes est la relation en loi de puissance du 
moment relâché et de sa fréquence, i.e. la loi de Gutenberg-Richter. Nous avons développé une 
méthode basée sur une pénalisation de la vraisemblance afin d'estimer la variation spatiale de la 
valeur de b de la loi de Gutenberg-Richter. Nous avons utilisé les résultats pour générer un modèle 
de prévision de l'aléa sismique pour la Californie. Notre prévision montre un gain d'information 
significatif par rapport aux modèles concurrents. Ces résultats montrent des variations de b à grande 
échelle, mais de faibles amplitudes, qui peuvent  la plupart du temps être attribuées à une 
incohérence dans l'estimation des magnitudes. 

Une autre caractéristique fréquemment observée de la sismicité est sa distribution spatiale 
multifractale. Nous avons développé une méthode adaptative d'estimation du spectre multifractal 
qui réduit les effets de bord et améliore la précision. La méthode a été validée avec succès sur des 
fractals synthétiques et utilisée afin d'évaluer les propriétés d'échelle du célèbre processus 
d'aggrégation limité par la diffusion. Nous avons également développé une technique de 
condensation qui permet de tenir compte de l'incertitude des localisations lors d'analyses spatiales. 
Nos avons utilisé ces deux approches pour afin d'étudier la distribution spatiale de la sismicité de 
Californie du Sud. Cette analyse indique des problèmes possibles lors de la re-localisation du 
catalogue actuel. Ceci nous a conduit à ré-estimer la localisation de la sismicité Sud-Californienne 
des trois dernières décennies en employant des méthodes probabilistes non-linéaires sophistiquées. 
Le produit de ces efforts est le nouveau catalogue KaKiOS-15 qui contient une description complète 
de l'incertitude de localisation pour chaque événement. 

Enfin, nous avons développé une nouvelle méthode de reconstruction de réseaux de failles 
basée sur le regroupement agglomératif. Nous avons appliqué cette méthode aux événements du 
catalogue KaKiOS-15 condensé, et avons obtenu un réseau de failles pour la Californie du Sud. A 
l'aide de tests rétrospectifs, nous avons également démontré que le réseau obtenu permet de 
meilleures prévisions comparé aux autres méthodes communément utilisées. 
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Chapter 1 Introduction 

Science, being a mainly public funded enterprise, strives to yield a benefit to its funders, i.e. 
the public. For some fields the immediate goals of this strive may be more obvious than others; 
compare medical research (e.g. vaccine development) with particle physics (e.g. hadron collider 
experiments). In geophysics, one can even find fields that seem to work against one another; 
geophysicists toiling away to advance hydrocarbon exploration are often under the same roof with 
their colleagues who try to convince the public of the immediate effects of green house gases and 
global warming. The field of natural hazards provides a safe haven from such moral dilemmas. The 
goals are clear; understanding, modeling and ultimately forecasting the deadly wrath of Nature.  

These goals have proven relatively easier to achieve for some natural disasters than others. 
For instance, meteorological models benefit from extensive observational techniques together with 
well established precursory signals (low barometric readings, seasonal correlation, etc). Volcanoes 
undergo observable changes (uplift, increased seismic activity) while landslides can be correlated 
with regions with heavy rain falls and unstable slopes. Once such causal relationships are posed and 
established, public funding provides leverage by focusing wider research effort, more accurate 
instrumentation and better data coverage. In most cases these investments yield to better models and 
ultimately better forecasts of the studied natural disaster. 

Unfortunately, this has hardly been the case in the study of earthquakes. Today we have the 
highest number of geodesic/seismic stations, the widest station coverage, the largest seismic 
catalogs and the highest number of researchers working in the field than we ever had before; but our 
understanding and hence our ability to forecast earthquakes has seen little improvement over the 
last century. Despite extensive research efforts there is still an absence of a distinct characteristic or 
variable that can be associated with the magnitude of an impending earthquake. Our best 
forecasting models still rely on empirical laws posed more than half a century ago, namely the 
aftershoc  rate decay (Omori’s law) and the magnitude frequency distribution ( utenberg Richter’s 
law). The resulting information gains are minute and hence they cannot warrant any short-term 
precautionary measure or be used for any decision making process.  

There are several possible reasons why meaningful earthquake forecasting has remained 
elusive. Some of these reasons are due to the distinct nature of the earthquake phenomena. The 
frequency of earthquakes versus their released energy follows a well defined power law meaning 
that large and devastating events occur rarely leading to scarce observations. When observations are 
available, the information regarding the actual process is usually limited to a triplet of location, time 
and magnitude, which are often of unassessed or poor quality. Nevertheless, this single frequency 
energy distribution observed through multiple scales implies that the relationship between 
earthquakes is self-similar, lacking distinct grouping with characteristic interaction scales or 
magnitudes. This property of earthquakes leaves us with the prospect of studying small earthquakes 
and inferring statistical and physical properties of the larger ones. Due to the same self-similar 
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distribution, we can expect to expand our catalogs by tenfold for a unit of magnitude improvement 
in our detection threshold. While this aspect should in principle empower the research community, 
in practice it has led to two distinct approaches to data analysis that in turn lead to irreconcilable 
results. 

The simplistic approach maintains that as data accumulates the empirical laws observed 
globally become more robust, supporting a universal behavior and deeming deviations as 
insignificant results of statistical fluctuations. Whereas the pluralists, who view nature as infinitely 
complex, maintain that more data reveals more complexity. Hence this latter approach tends to 
focus on exceptions of the empirical law and tries to collect evidences based on a case studies rather 
than large scale analysis. Ultimately, the main distinction between these two approaches and the 
reasons for their conflicting results stem from the different ways chosen to treat the same data. As 
illustrative examples, we can consider the studies by Kagan who reports a stable universal 
Gutenberg-Richter law studying large global datasets [Kagan, 1999b, 2002]. Pisarenko and Sornette 
(2003)  confirmed these results through an extensive investigation of the distribution tails, with the 
exception of mid-ocean ridges where they found significant differences in the distribution. Similar 
results of universal scaling have been reported using a local but large dataset of seismicity in a 
South African mine [Boettcher et al., 2009]. These results contrast with several reports of spatial 
and temporal variation observed by studying smaller sample sizes [Wiemer and Wyss, 1997; Wyss et 
al., 2000; Tormann et al., 2014]. Similar dissidence is found while studying the fractal dimension of 
earthquake locations: while some report stable scaling regimes for Californian and Japanese 
earthquakes [Hirata, 1989], other researchers find fluctuations which seemingly correlate with 
deviations from the Gutenberg-Richter law [Enescu and Ito, 2001; Wyss et al., 2004]. 

Neither approach can be viewed as correct since their final conclusions seem to be 
dependent on their initial assumptions about the origin of the data while, ideally, it should be the 
opposite way, data should be processed with as few assumptions as possible and the results should 
provide evidence in favor or against the competing hypothesis. Faced with this dichotomy, in this 
Phd thesis we tried to advance alternative approaches that rely on data-driven techniques, 
information criteria for penalizing complexity, synthetic tests for verification, and forecasting 
experiments for final validations. This holistic and objective approach has allowed us to expose 
distinct properties of seismicity that seem to indicate robust empirical laws and also other features 
than can be understood as artifacts in terms of measurement errors and inconsistencies in data 
quality.  

The methods introduced in this thesis deal with all the dimensions of a typical seismicity 
catalog, namely magnitude, location and time. It is important to notice that all these parameters are 
jointly inferred from a limited set of seismic observations under the assumption of a previously 
modeled earth structure. Thus, the observational and modeling errors affect all of them through 
different non-linear couplings. For instance, a misidentified phase arrival can bias the hypocentral 
location that in turn might lead to a bias in both the time and magnitude of the earthquake. 
Similarly, a velocity model biased towards faster seismic wave velocities will tend to cause 
overestimated depths. The information potential of these catalog parameters is directly proportional 
to their range and inversely proportional to their uncertainty. Our modeling approaches should be 
tailored according to these primary differences and our consequent interpretations should not 
exceed the upper bounds set by our limited instrumental capacity. We can only then build up on our 
acquired understandings and extend our investigations.   
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We thus begin our analysis with the investigation of the frequency-magnitude relationship 
distribution of Californian seismicity. Our motivation is that if earthquakes exhibit spatially varying 
magnitude probabilities, then through identifying these regions we can create better models to 
forecast seismicity. If such spatial variations do exist, further investigations regarding their origin 
can be beneficial. For this purpose, we develop in Chapter 2 a data-driven spatial analysis method 
that is based on Voronoi tessellations and penalized likelihood. In Chapter 3, we put our modeling 
results through retrospective forecast tests and validate that the introduced method provides 
improvements over the state-of-the-art methods. Such studies lead us to the conclusion that the 
spatial variation in frequency-magnitude distribution, while significant in terms of forecasting 
capability, is mainly driven by network discrepancies and magnitude errors. Thus, we decide to turn 
our attention on a seemingly better constrained parameter, namely the hypocenter locations in the 
relatively well instrumented Southern part of California. Similarly to the frequency-magnitude 
distribution, the spatial distribution of seismicity also exhibits a power-law scaling, namely a 
multifractal spectrum. However, at this point we are hampered by a) the poor performance of the 
classical multifractal estimation methods and b) the vast computational resources needed for the 
analysis of such large datasets. To address the first issue, we developed a new approach for point 
distributions in Chapter 4. This new method is tested rigorously on deterministic and stochastic 
multifractal sets to establish its superior performance. To tackle the problem of large datasets, we 
introduce in Chapter 5 a new compression technique that reduces the size of seismicity catalogs 
while preserving the spatial information content. In the same study, we perform a multifractal 
analysis of the Southern Californian seismicity. Our results suggest the presence of artifacts that 
could be associated with the relocation procedure of the catalog. Motivated by these findings, we 
then undertake in Chapter 6 the comprehensive task of developing a consistent velocity model for 
Southern California, and relocating the seismicity of the last 30 years with a probabilistic non-linear 
method. Finally, in Chapter 7, we develop a new pattern recognition method for seismicity-based 
fault reconstruction. We apply our new method to the new catalog, and obtain a detailed fault 
network that is validated through a retrospective forecasting test. In the final Chapter 8 of this 
thesis, we discuss our results and give an outlook for future studies. 
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2.1 Abstract 

In this paper we present a penalized likelihood-based method for spatial estimation of 
Gutenberg-Richter’s b-value. Our method incorporates a non-arbitrary partitioning scheme based on 
Voronoi tessellation, which allows for the optimal partitioning of space using a minimum number 
of free parameters. By random placement of an increasing number of Voronoi nodes we are able to 
explore the whole solution space in terms of model complexity. We obtain an overall likelihood for 
each model by estimating the b-values in all Voronoi regions and calculating its joint likelihood 
using A i’s formula. Accounting for the number of free parameters we then calculate the Bayesian 
Information Criterion for all random realizations. We investigate the ensemble of the best 
performing models and demonstrate the robustness and validity of our method through extensive 
synthetic tests. We apply our method to the seismicity of California using two different time spans 
of the ANSS catalog (1984-2014 and 2004-2014). The results show that for the last decade the b-
value variation in the well-instrumented parts of mainland California is limited to the range of 
[0.94±0,04-1.15±0.06]. Apart from the Geysers region, the observed variation can be explained by 
network related discrepancies in the magnitude estimations. Our results suggest that previously 
reported spatial b-value variations obtained using classical fixed radius or nearest neighbor methods 
are likely to have been overestimated, mainly due to subjective parameter choices. We envision that 
the likelihood-based model selection criteria used in this study can be a useful tool for generating 
improved earthquake forecasting models. 

2.2 Introduction 

The Gutenberg-Richter (GR) law provides a fundamental description of the relation between 
earthquake occurrence frequencies and magnitudes: 10log ( ( ))N m a bm  , where a and b are 
constants, and N(m) is the cumulative number of earthquakes of magnitude m or greater [Ishimoto 
and Iida, 1939; Gutenberg and Richter, 1954]. The widely accepted empirical formula has 
prevailed through time, having been validated numerous times by earthquake catalogs, laboratory 
experiments (e.g Mogi, 1962; Amitrano, 2003, 2012)  and numerical models (e.g. Bak & Tang 
1989; Olami et al. 1992). Thus, for earthquake forecasting, the frequency magnitude analysis has 
been quite popular among other more controversial and complex concepts such as the characteristic 
earthquake model, static stress triggering and seismic gap models. Especially the b-value, which 
describes the relative amount of large to smaller earthquakes, has attracted widespread research 
interest due to the fact that it is one of the main parameters governing seismic hazard. 

Different methods have been proposed for the estimation of the b-value. Initially, 
seismologists used least squares fitting on a log-log plot to determine the slope that corresponds to 
the b-value. After the introduction of A i’s maximum likelihood estimator [Aki, 1965] it has been 
repeatedly demonstrated that this should be the preferred method [Marzocchi and Sandri, 2003; 
Amorese et al., 2010]. Corrections for the magnitude binning have also further improved the 
performance of the estimator [Utsu, 1965; Bender, 1983; Tinti and Mulargia, 1987]. Additionally, 
analytical derivations for the standard estimation error with respect to sample size and b-value have 
been derived [Shi and Bolt, 1982]. 

Many studies have investigated the variability of the b-value both in the space and time 
domains. Despite the well established methodology for b-value estimation, there is not a consensus 
on the reporting and the interpretation of its results. An important question is whether the observed 
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spatiotemporal variations of the b-value are statistically significant. Currently there are two main 
conceptions: The parsimonious view maintains that the b-value is constant both in space and time 
and that the observed fluctuations are artifacts resulting from undersampling, magnitude errors and 
non-homogenous detection capabilities [Shi and Bolt, 1982; Frohlich and Davis, 1993; Kagan, 
1999b, 2002, 2010; Amorese et al., 2010]. The other side of the debate argues that the observed b-
value variations are not statistical or network related artifacts. Thus they have been used for 
physical interpretation of various faulting regimes [Wiemer and Wyss, 1997, 2002]; as a proxy for 
shear stress and pore pressure [Scholz, 1968; Schorlemmer et al., 2005; Bachmann et al., 2012]; as 
an indicator of material heterogeneity [Mogi, 1962; Mori and Abercrombie, 1997]; or even as 
precursors of future rupture areas and sizes [Schorlemmer and Wiemer, 2005]. The debate has 
remained inconclusive; mainly due to the lack of objective methods that can produce quantitative 
results [Kagan, 1999a].  

The most commonly used methods for mapping b-values in space are the fixed radius and 
nearest neighbor method [Wiemer and Wyss, 2002] that estimate b-values from close-by events 
within a proximity limit. The parameter sensitivity of these approaches has been previously 
demonstrated [Schorlemmer et al., 2004; Kamer and Hiemer, 2013]. Imoto (1987, 1991) and Ogata 
and Katsura (1993) addressed the issue of optimal parameter choices by introducing likelihood-
based b-value mapping approaches that take into account model complexities. In these methods, the 
study region is divided into segments of equal space-time volumes. B-values are estimated for each 
of these volumes in an optimization setting that seeks to maximize a likelihood-based information 
criterion [Imoto, 1987, 1991]. These approaches were the first to introduce likelihood criteria for 
parameter optimization, however they can be further improved by addressing the limitation of using 
regularly shaped, equal volume segments. 

In this study we build on Ogata’s principle of likelihood criteria, and we propose a new 
method for the investigation of spatial b-value variations, which incorporates a data-driven 
partitioning scheme. The paper is structured as follows: first, we give an overview of the commonly 
used methods for spatial mapping of b-values. Secondly, we present our method based on optimal 
partitioning using Voronoi tessellation, penalized likelihood and wisdom of the crowd philosophy. 
To assess the validity and the performance of our method we perform synthetic tests using realistic 
spatial distributions of events with varying b-values and sample sizes. Finally, we apply our method 
to the seismicity of entire California and discuss the implications of our results for previous and 
future studies. 

2.3 Traditional spatial b-value mapping 

Since its introduction in the 90s, the spatial mapping of Gutenberg-Richter’s b-value has 
become an increasingly popular analysis. B-value maps obtained with the commonly used 
techniques often feature large spatial variations at small scales, which are rarely observed in well-
sampled large catalogs. However, the input parameters (such as grid spacing, cylindrical mapping 
radius, and minimum number of events) have to be chosen somewhat arbitrarily.  

 The classical spatial b-value analysis [Wiemer and Wyss, 2002] involves the following steps: 
(1) the earthqua es within the study area are pro ected on a planar surface (e.g. the  a rth’s surface, 
a fault cross section), (2) the planar surface is gridded into equally sized cells, (3) each cell is used 
as a center for a circle of radius R, and (4) if the number of encircled events exceeds a predefined 
minimum (Nmin), the b-value is estimated and assigned to the location of the cell. A variant of the 
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same method involves using variable circle radii, which are expanded until a constant number of 
nearest earthquakes are enclosed. For both approaches the b-values of neighboring cells are 
inevitably correlated because R is always larger than the cell grid interval Dg which results in 
substantial data overlaps. In the constant number approach, the b-value at each node is estimated 
from equally sized samples, thus the uncertainty of the results is assumed to be spatially constant 
while the spatial resolution varies with the density of earthquakes. The constant radius approach 
keeps the spatial resolution constant, whereas the b-value uncertainty varies spatially. 

Regardless of the choice of constant number or radius, the results of the method are sensitive 
to the values of the free parameters R, Nmin and Dg. For qualitative and quantitative examples the 
reader is referred to Figure 4 of Schorlemmer et al.(2004) and Figure 3 of Kamer (2014). While 
significant effort is devoted to find patterns in the resulting b-value maps, further research is needed 
to assess the influence of these free parameters or to develop objective strategies for determining 
their values. For instance, the sampling radius R is sometimes chosen based on qualitative criteria 
such as the “crispiness” of the resulting b-value image [Wyss et al., 2000; Schorlemmer et al., 
2004]; or observations that certain values reduce b-value contrast [Schorlemmer et al., 2004]. The 
minimum number of samples (Nmin), which governs the standard error of the estimations, is also 
often set to low values. Using small sample sizes (~50) is favorable, since it can image small scale 
details, and can be justified if there is prior knowledge that differences in b-value are large [Wiemer 
and Wyss, 2002]. Other studies, on synthetic catalogs with known b-values, suggest that such small 
sample sizes can cause variations in the estimations [Shi and Bolt, 1982; Pickering et al., 1995; 
Felzer, 2006]. Nevertheless, due to the difficulty in detecting sufficient amount of events in certain 
field conditions, such as induced seismicity, some studies are carried out with even smaller sample 
sizes (~25) [Bachmann et al., 2012].   

Studies that aim to assess the significance of the obtained spatial b-values usually 
investigate standard deviations [Efron, 1979] and conduct statistical significance tests [Utsu, 1992] 
based on the subset of events assigned to each grid cell [Enescu and Ito, 2002; Schorlemmer et al., 
2003, 2004]. These tests can indicate which of the estimated b-values are reliable; however varying 
the mapping parameters can change the data assigned to the grid cells and hence the obtained test 
results. A recent study introduced a semi-synthetic test to facilitate parameter choices [Tormann et 
al., 2014], whereas the applicability of the proposed method, in the absence of prior knowledge on 
b-value variation, is debated [Kamer, 2014; Tormann and Wiemer, 2014].  

Consequently, some issues arise in the interpretation of b-value maps obtained by this 
method: 1) due to the subsampling induced by low values of the parameters R and Nmin, the b-value 
maps feature extreme spatial variations at small scales that are rarely observed in large catalogs 
[Howell, 1985; Bird and Kagan, 2004]. 2) Earthquake epicenter distributions and faults are known 
to be  scale-invariant [Kagan and Knopoff, 1980; Mandelbrot, 1982; Ouillon and Sornette, 1996; 
Kagan, 2007]. In other words, the notion of characteristic scale (expressed by the R parameter) does 
not exist [Sornette and Werner, 2009]. The resolvable scaling range, which is bounded by location 
uncertainties at the lower end, expands as a function of sample size. 3) Previous studies have shown 
that earthquake clusters can be anisotropic [Ouillon et al., 2008; Ouillon and Sornette, 2011], thus 
the choice of isotropic mapping volumes may not always be the optimal choice. Cylindrical 
volumes become especially problematic in the presence of closely spaced faults with diffused 
seismicity (e.g. the Hellenic subduction zone, pers. comm. G. Chouliaras). 4) The b-values are 
estimated using a maximum likelihood approach, however due to the overlapping volumes a single 
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earthquake contributes to the likelihood of several b-value estimates. Thus, there is no 
straightforward way to calculate an overall likelihood for the whole b-value map with respect to the 
entire catalog. Due to this data overlap it is also not clear how to obtain a synthetic earthquake 
catalog using a b-value map such as the generating model, hence the results cannot be statistically 
or numerically tested as a whole. For a detailed comparative synthetic test that also highlights these 
difficulties, the reader is referred to Appendix A. 

2.4 A penalized likelihood-based method 

In order to address the limitations described in the previous section, we propose an 
automated, parameter-free method which is based on optimal partitioning using Voronoi 
tessellation, penalized likelihood and wisdom of the crowd philosophy. The problem of mapping b-
values can be viewed as a two step inverse problem involving (1) the classification of a subset of 
earthquakes (corresponding to the delineation of a region) which is in accordance with the GR law 
and (2) the estimation of a b-value. Not only the number of subsets but also their shapes, sizes and 
b-values have to be inferred jointly. That is using the data themselves to constrain the maximum 
allowable complexity in the model rather than specifying this beforehand. Considering the broad 
solution space, one seeks an ensemble of solutions instead of a single best model and derives 
properties of that ensemble to infer information about the unknown spatial model [Sambridge et al., 
2013]. 

Earthquakes are clustered in space but the shapes and sizes of these clusters vary greatly, 
hence the need for a flexible partitioning approach facilitating the search of segmentations that 
might be present in the data. For this purpose we use Voronoi tessellation that uses a set of points 
(nodes) to partition space assigning each node with its nearest neighborhood region [Voronoi, 
1908]. By random perturbation of these nodes, it is possible to obtain anisotropic regions of various 
shapes and sizes. Another benefit of the Voronoi tessellation is that the complexity of the 
partitioning model is minimal, requiring only the coordinates of the nodes to be specified. This is of 
particular importance because increasing the number of Voronoi nodes allows for exploration of 
smaller scales. If one were to use polygon vertices for defining the partitioning, the number of free 
parameters in the model would increase rapidly with the number of regions. 
  We start with a single Voronoi cell, which assigns a single b-value for the whole catalog; 
this solution can be regarded as the null hypothesis as it implies that there is no spatial b-value 
variation. We then gradually increase the number of Voronoi nodes, which generates models of 
increased complexity. At each increment we randomize the locations of the Voronoi nodes 
investigating possible segmentations. For each Voronoi region (cell) we first estimate the 
magnitude of completeness (mc) of the enclosed events using the maximum curvature method [Wyss 
et al., 1999; Mignan and Woessner, 2012], which is further complemented with statistical 
significance tests [Clauset et al., 2009]. The probability density function of the magnitudes m ≥ mc 
is given by: 

 
 ( )( ) log(10)10 cb m mP m b  

  2-1 
 
The likelihood that a set of N magnitudes mi is a realization of equation (2-1) is given by: 
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and the corresponding log-likelihood reads: 
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Using equation (2-3) we calculate the log-likelihood of all m ≥ mc events in each Voronoi cell. The 
b-value is estimated with Aki's (1965) maximum likelihood method corrected for binned data using 
the formula provided by Tinti and Mulargia (1987): 
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where ̂ is the sampling average of the magnitudes. We want to point out that we use this formula 
rather than the commonly used corrections [Utsu, 1966; Bender, 1983] because it gives more 
accurate and stable results under varying sample sizes [Marzocchi and Sandri, 2003]. We point out 
that A i’s maximum li e lihood estimation is based solely on the mean magnitude, i.e. datasets with 
similar means will result in similar b-values, regardless of their parent distributions. Due to the 
absence of any measure on the quality of the fit, Deluca and Corral (2013) suggest that equation 
(2-4) should be rather called “minimum unli e lihood estimation”. This issue is addressed in 
Appendix B where we investigate the plausibility of the GR law for the Californian seismicity. It 
should be noted that equation (2-1) implies infinite seismic moment/energy rate, thus for physical 
consistency it must be supplemented by an upper magnitude limit. In this study we use the standard 
GR relation because, if treated as a fitting parameter, the upper magnitude would be biased by the 
size of each Voronoi region. The issues arising from the assumption of an infinite upper limit will 
be further discussed in Appendix B.    
  Unlike the classical method that has significant data overlaps, the tessellation ensures that 
each event is used only in the estimation of the b-value of its Voronoi cell. Thus by summing the 
log-likelihoods over all Voronoi cells, we can calculate the overall log-likelihood for each random 
tessellation:  
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where Nv is the total number of Voronoi nodes and bv is the estimated b-value in each Voronoi cell. 
This provides us with an objective criterion that can be used to search for the optimal number of 
partitions. However, as in every optimization problem, increasing the model complexity (i.e. the 
degrees of freedom) will increase the likelihood, thus to compare models with different 
complexities it is necessary to penalize the likelihood based on the number of free parameters. For 
this purpose, we use the Bayesian Information Criteria (BIC) [Schwarz, 1978] given by: 
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where L̂  is the overall likelihood of a model (cf. eq. 5), k is the number of free parameters in the 
model and N is the number of data points. Each Voronoi cell is characterized by the coordinates of 
its node and its b-value, thus for 2D applications each Voronoi cell would require 3 free parameters 
(x,y,b). Such parameterization would allow the node locations to be specified with infinite precision 
(since x,y ∈ℝ). However, as already mentioned in the previous section, the smallest resolvable scale 
is bounded by the earthquake location uncertainties. Thus we discretize the Voronoi node selection 
space in accordance with the location uncertainties. Intuitively, it follows that this reparametrization 
should reduce the model complexity since the location parameters become less potent. Indeed, 
when the space for possible Voronoi nodes is limited and discretized, instead of specifying two 
variables for each coordinate we can initially communicate an enumerated list of all possible finite 
locations and their coordinates. With the help of such a list it is possible to refer to Voronoi node 
locations only by their indices and hence use only one free parameter instead of two. Since the list 
has to be communicated for all models, regardless of their complexity, it can be regarded as a 
constant and thus be neglected in the BIC formulation. With this reformulation, the number of free 
parameters k in equation (2-6) is given as k=2*Nv, where Nv is the number of non-empty Voronoi 
cells. Apart from decreasing the overall model complexity, the discretization reduces the procedure 
of random Voronoi placement to Nv-permutations of Np where Np is the number of all possible 
discrete locations. This makes the random search more tractable and avoids repeated placement of 
nodes on the same coordinate. 

The total number of randomly generated tessellations is given as ,max( 1)Tot vT T N  , where 

,maxvN is the highest number of Voronoi cells considered and T  is the number of random 

realizations for each Nv. We consider all models, which perform better (in terms of BIC) than the 
prior that is a single b-value for the entire dataset. After ranking all models according to their BIC 
per event we obtain an ensemble solution by BIC weighted averaging of the top ranking models. 
This is a manifestation of the wisdom of the crowd philosophy since models with different 
complexities but similar penalized likelihoods have equal influence on the ensemble inference. 
Similar concepts, often referred to as “boosting” [Schapire, 1990], are widely used in machine 
learning. The ensemble inference provides not only an average spatial b-value map but also a 
corresponding standard deviation for each location. This allows inferring the stability of the results 
and provides insights about the penalized likelihood surface, such as presence of competing local 
maxima. The method bears similarities with, and is in fact inspired by, the concept of 
transdimentional inference developed by Sambridge and others [Sambridge et al., 2006, 2013; 
Bodin and Sambridge, 2009]. However, our method is considerably simpler in its formulation and 
implementation due to the fact that it relies on BIC and random search of the solution space. By 
contrast, other sampling techniques such as Markov chain Monte Carlo require prior distributions 
for parameters and for probabilities of changing the model complexity. 
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2.5 Application to synthetic datasets  

2.5.1 Uniform event distribution 

To demonstrate the performance of the proposed method we conduct a simple checkerboard 
test that features b-value anomalies [0.5-1.5] with different spatial extents and different sample 
sizes (Figure 2-1a). For the sake of simplicity, we assume a uniform distribution of event locations. 
First we applied the classical nearest neighbor mapping method using two different values for the 
mapping parameter Nmin. Setting Nmin = 150 [e.g. Tormann et al., 2014] results in the emergence of 
artifacts due to undersampling (strong small-scale b-value variations [0.39-1.99], Figure 2-1b). 
Increasing Nmin to a larger value (1000) prevents such artifacts but fails to reproduce the b-value 
anomalies [0.53-1.35] due to mixing different magnitude distributions (Figure 2-1c). By contrast to 
the classical b-value mapping approach, the proposed method does not feature any adjustable tuning 
parameters. For this synthetic example case we randomly generated 50,000 models in the 
complexity range of 1-100 Voronoi seeds for data partitioning. We ranked all models according to 
their penalized likelihood score and obtained the ensemble median of the best performing models 
([0.47-1.48], Figure 2-1d,e). The ensemble is stable with respect to the number of individual models 
considered (compare Figure 2-1d and e).  

 

 
Figure 2-1 a) Underlying spatial b-value distribution for the generation of synthetic magnitudes for 8000 uniformly 
distributed events. b) and c) Resulting b-value maps using the classical nearest neighbor mapping method for Nmin = 
150 and Nmin = 1000, respectively. d) and e) Resulting b-value maps based on the penalized likelihood approach for 

50,000 randomly generated models in the complexity range of 1 - 100 Voronoi nodes (showing the median of the 100 
and 1000 best performing models, respectively.) Ranges of resulting b-values are given in the title of each subplot. 
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2.5.2 Fractal event distribution 

To further demonstrate the performance and robustness of the proposed method and to 
illustrate a comparison between the ensemble and individual models, we conduct a more realistic 
synthetic test. This involves generating synthetic earthquake catalogs using two spatially separated 
frequency magnitude distributions (FMDs) with: 1) a b-value for background events (bbkg) and 2) an 
anomalous b-value (bano) for a subregion. Instead of using an unrealistic homogenous spatial event 
distribution we generate a fractal distribution by recursively replicating the matrix M: 

 
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

M

 
 
 
 
 
 
   .

 

 
This produces a point distribution with a fractal dimension of D=log(13)/log(5)=1.59. For a more 
detailed description of this process, the reader is referred to Kamer et al. (2013). This value is 
chosen such that it is in accordance with the reported fractal dimensions of actual catalogs:  ≈1. 6 
for southern California [Helmstetter et al., 2005] and similar values of D=1.5-1.6 for the Japan Arc 
[Hirata, 1989]. Unlike a homogenous event distribution, such a synthetic fractal is a more realistic 
spatial representation of seismicity and poses more sensible challenges to any mapping technique in 
general. 
  Using this synthetic location distribution that extends a unit square, we delineate a region of 
interest (ROI) which contains 25% of the events (Figure 2-2a). We simulate magnitudes for the 
events in the ROI using a GR law with a b-value of bano=0.75; the remaining (surrounding) event 
magnitudes are generated using a b-value of bbkg=1. The generated catalog consists of a total of 
8000 events, 2000 being located in the ROI (Figure 2-2a). Notice that the estimated b-value for the 
anomaly deviates from the input (bano=0.77) due to the relatively small sample size (Figure 2-2b). 
 

 
Figure 2-2 Fractal (D=1.59) distribution of synthetic events. Symbol size scales with event size. Color-coding depicts 

the underlying b-value: 6000 background events were drawn from a GR law using bbkg=1.0, and 2000 events from 
bano=0.75. The boundaries of the anomaly are 0.25/0.75 in both x- and y-direction. b) Cumulative frequency-magnitude 

distributions and estimated b-values for both regions. 
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We discretize the spatial domain by a 20x20 grid, which results in 400 possible locations for 
Voronoi node placement. The number of Voronoi cells is increased from Nv = 1 to Nv,max = 30 at an 
increment of one, performing 500 random tessellations at each step. This results in 

500(30 1) 14500TotT     models, which are ranked according to their BIC (Figure 2-3c). Only 102 
of these perform better than the prior model (i.e. a single b-value for the whole catalog). Notice that 
Nv,max is not a free parameter since above a certain number of Voronoi cells (Nv=15), none of the 
tessellations performs better than the prior. We use all the 102 models to obtain an ensemble model, 
which is expressed in terms of median and interquartile range (IQR). Such a non-parametric 
representation avoids the assumption of a certain distribution and symmetry.  For objective 
evaluation of the output we report the median b-value within the predefined ROI, which is 0.79 
(Figure 2-3a). High IQR depicts regions in which the ensemble signal becomes unreliable (Figure 
2-3b). These can correspond to regions with limited data or transition zones between distinct b-
value regions. Notice that despite the arbitrary discretization of Voronoi locations, the ensemble 
conveys sufficient spatial detail to distinguish the ROI. The ensemble signal is invariant with 
respect to the discretization of the domain due to the fact that the optimal complexity (i.e. the 
number of Voronoi cells) is governed by the number of data points and their likelihood. To 
illustrate the Voronoi tessellation obtained by individual models, we show the top ten solutions 
labeled by their number of Voronoi nodes and BIC (Figure 2-3d). We observe that even though 
most of the individual solutions did not delineate the ROI correctly, the ensemble provides a stable 
solution (bano≈0.79, IQR≈0.05) and most importantly spatial variance estimation. 
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Figure 2-3 a) Ensemble median bmed and b) ensemble interquartile range (IQR) of the best 102 solutions. The median 
spatial b-value within the region of interest ROI is 0.79 (dashed line, compare Fig. 1). c) 14500 randomly generated 
solutions are shown in terms of their BIC (black dots) and their average negative log-likelihood (gray line, error bar 
corresponds to one standard deviation). Red circles highlight the best 102 solutions. d) Best ten individual models. 

Black dots denote the positions of the Voronoi nodes; resulting partitions are color-coded by their estimated b-values. 

2.5.3 Convergence with increasing sample size 

  To assess the performance and convergence of our method we extend the presented 
synthetic test by: 1) investigating a wider range of commonly reported b-values, analyzing 
bano=0.50, 0.75, 1.25 and 1.50; 2) incrementing the sample size of the ROI (Nano) from 100 to 5000 
at steps of 100; and 3) considering different ratios between the number of events in the ROI and the 
background (Nbkg/Nano=3, 2 and 1). This results in a total of 4x50x3=600 test cases. The overall 
error of the estimated b-value during such a test is influenced by both the synthetic catalog 
generation and the optimal partitioning process. We generate 100 synthetic catalogs for each case; 
for each of these catalogs we apply our method and report the median b-value within the ROI 
obtained from the best model. We then use these 100 b-values to calculate confidence intervals for 
the result of each test case. The results of the test are grouped into three panels according to the 
Nbkg/Nano ratio (Figure 2-4).  

Intuitively, as the difference between bbkg=1 and bano increases the detection of the anomaly 
should become easier. This is observed for negative b-value anomalies (bano <1), which converge 
rather quickly to their input values, however, for the positive anomalies (bano >1) the convergence is 
much slower (Figure 2-4). Not surprisingly this is due to the fact that the b-value is an expression of 
slope on a log-log plot: as the slope becomes steeper (higher b-values) small variations in the 
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abscissa (magnitude axis) will induce greater fluctuations. This is also why, as a rule of thumb, any 
candidate power-law is required to span at least two orders of magnitude in both x and y axes 
[Stumpf and Porter, 2012]. This test demonstrates the robustness of our method and also highlights 
the inherent difficulties associated with estimating power-law exponents. We remind the reader that 
for a single dataset, the reliability analysis is carried out by investigating the spatial variance 
distribution obtained from the ensemble averaging procedure (cf. Figure 2-3b). 

 

Figure 2-4 Convergence of the method for four different b-value anomalies (0.5, 0.75, 1.25 and 1.5) with varying 
sample sizes (from 100 to 5000). The three panels show results for different sample size ratios with respect to the 

surrounding events. Solid lines and shaded areas denote the corresponding median b-value and 0.16-0.84 quantiles, 
respectively. 

2.6 Application to Californian seismicity  

We applied our method to Californian seismicity using the Advanced National Seismic 
System composite catalog (ANSS, http://www.ncedc.org/anss/). Our study region is delineated by a 
polygon that envelops all listed crustal events for the period of 01.01.1900 - 01.01.2014 
(31°≤latitude≤43°, -127°≤longitude≤-113°, 0≤depth≤30 m ). The event magnitudes are binned into 
magnitude bins of ∆m = 0.1. We then perform a temporal mc analysis using a sliding window of 
5000 events with a sliding step of 1000 events. For mc estimation, we used the maximum curvature 
method, which consists of finding the magnitude bin with the largest number of events. This non-
parametric method requires fewer events than other techniques to reach a stable result [Mignan and 
Woessner, 2012]. We observe that the estimated mc values show a decreasing trend with short-term 
spikes that are characteristic for aftershock sequences of large earthquakes. Because the Southern 
Californian networ  underwent a substantial upgrade in 1984, we use all m≥2.2 (chosen as the 
highest observed value during this time period) events in the period of 01.01.1984 - 01.01.2014 
(125,760 events with m≥2.2).  ue  to spatially inhomogeneous station coverage, the catalog is not 
complete everywhere at this magnitude level. However, our method accounts for possible spatial 
completeness variability since mc is locally estimated in each Voronoi partition. 
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2.6.1 Results for the time period of 01.01.1984 – 01.01.2014 

To allocate discrete locations for Voronoi node placements, we discretize the study area into 
1x1 km cells obtaining a total of 712,493 cells. This discretization is chosen in accordance with the 
horizontal location uncertainty of the events and allows for delineation of small-scale features while 
reducing the computational demands. We have investigated the results' sensitivity with respect to 
the chosen grid size by testing 5x5 and 10x10 km cells and confirm that the ensembles remain 
stable. Instability arises when using much larger grids, which affect the shape and size of the 
tessellations, neglecting small scale features supported by the data. In order to further increase the 
efficiency of our random searching algorithm, we consider only cells containing more than one 
event. This reduces the number of potential Voronoi node locations from 712,493 to 16,152.  

We increment the number of Voronoi nodes from 1 to Nv,max = 500, and spatially randomize 
each configuration 2,000 times. As a result, the solution space comprises 106 models, each 
representing a unique spatial segmentation of the study region. All models are labeled and ranked 
by their penalized likelihood using BIC. Preliminary results showed that some of the b-value 
estimates (especially in the Cascadia subduction zone) were affected by an underestimation of mc. 
This is due to the tendency of the maximum curvature method to underestimate mc in the case of 
gradually curved FMDs [Mignan and Woessner, 2012]. When mc is underestimated, the maximum 
likelihood estimate of the b-value (which is driven by the small events) becomes unreliable for the 
large magnitudes. To counter this problem, we apply the method of Clauset et al. (2009) which 
optimizes the lower data cut off (mc) by minimizing the Kolmogorov-Smirnov distance between the 
empirical CDF obtained from the data and the analytical CDF obtained using the estimated GR law 
exponent. The use of this method was also proposed by Amitrano (2012) who pointed out improper 
statistical methods as a potential explanation for observed b-value variations. For visual inspections 
of the individual GR law fits, we have generated videos featuring each Voronoi region of the best 
100 tessellations [Kamer and Hiemer, 2014a, 2014b]. These videos, which are publicly accessible, 
demonstrate the robustness of the estimates. We find that all 106 random realizations performed 
better than the prior model (Figure 2-5a), which suggests that the use of a single b-value to describe 
such a heterogeneous dataset is an oversimplification (i.e. an underfitting model). We calculate the 
ensemble model using the best 1000 solutions. Unlike the synthetic test maps, we use only the non-
empty 1x1 km cells to display both the median b-values and the interquartile ranges (Figure 2-5b,c). 
The results are stable with respect to the number of averaged top solutions since model 
contributions are weighted by their BIC. As verification, we have averaged as few as 10 and as 
much as 10,000 best solutions, obtaining consistent results in terms of both median and interquartile 
range. Normally Nv,max should be set to a number large enough to ensure that the average BIC trend 
goes above the prior and thus all model complexities better than the prior have been considered. In 
this application we observed that the majority of the best performing models is concentrated at 
Nv<100 thus, in order to save computational time, we set Nv,max = 500. We confirm that even when 
considering the 10,000 best performing models, all of their complexities were well below Nv=100.  
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Figure 2-5 a) Entire solution space for the ANSS catalog 
(1984-2014, m≥2.2): Average BIC (black line) and 
negative log-likelihood (gray line) as a function of number 
of Voronoi cells. Error bars correspond to one standard 
deviation. Red circles denote the BIC of the best 1000 
solutions. b) and c) show the corresponding ensemble 
median b-value (in the range of 0.78-1.28) and ensemble 
IQR (in the range of 0.02-0.65), respectively, computed at 
all 1x1km cells with more than one event. 

 
Figure 2-6 Same as Figure 2-1 for the last decade of the 
ANSS catalog (2004-2014, m≥2.2). Ranges for median b-
values and IQRs are [0.79- 1.15] and [0.01-0.35], 
respectively. 
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Since our method is based on data driven partitions of various shapes and sizes, the notion 
of spatial resolution might be of particular interest. For this purpose, we investigate the average 
Voronoi areas of the top 1000 model segmentations used in the ensemble. These segmentations 
span the whole study region, which consists of 712,493 cells of 1x1km. Each cell is assigned the 
area of the Voronoi region it resides in. This is repeated for all the top 1,000 segmentations in order 
to report a mean area for each cell. The Voronoi areas are constrained by both the edges of the 
polygon defining the study region and the possible discrete locations for Voronoi seed placements. 
It is clear that these factors alone (which are independent of the model) will produce a particular 
pattern that should be regarded as an edge effect. To account for this we apply a correction 
technique inspired by Ouillon and Sornette (1996) who account for edge effects by normalizing 
their fractal fault measurements with measurements on randomly distributed faults within the same 
bounding polygon. To do this, we first compute a measure for the edge effects by randomizing the 
Voronoi node locations of the top 1,000 solutions and calculating their average Voronoi area 
distribution (Figure 2-7a). We then repeat the calculation using the actual optimal Voronoi seed 
locations obtaining a measure, which includes both the edge effects and the preferred model 
segmentations (Figure 2-7b). By normalizing the later with respect to the former we obtain an 
relative spatial resolution map which indicates if on average a region has been partitioned by a 
larger or a smaller segment with respect to random placement (Figure 2-7c). 

 

 
Figure 2-7 Average Voronoi areas for a) random placement of Voronoi seeds and for b) Voronoi seed positions of the 
best 1000 solutions, white circles highlight the Mendocino Triple Junction and Los Angeles c) The ratio of averaged 

areas (b/a) highlights regions covered by smaller (<1.0) and larger (>1.0) Voronoi cells with respect to random 
placement. 

For instance Figure 2-7b shows that both the Mendocino Triple Junction and Los Angeles 
(highlighted with white circles) were contained by Voronoi cells having an average area of ~20,000 
km2. However, the ratios in Figure 2-7c indicate that for Los Angeles this value is similar to the one 
obtained using random placement, whereas for the Mendocino Triple Junction the same value is 
more than 30% lower with respect to random placement. This indicates that optimizing the 
likelihood induced relatively smaller Voronoi partitions in this region. 

When applied to the Californian seismicity of the last 30 years, our method reveals spatial b-
value variations limited within the range 0.78-1.28 (Figure 2-5b). To investigate the source of this 
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variation, we focus on four regions with anomalous b-values: (1) Mendocino fault zone/ Cascadia 
subduction zone (b=0.78±0.05), (2) Geysers (b=1.14±0.07), (3) Palm Springs (b=1.28±0.18) and (4) 
Northridge (b=0.90±0.04). 
   (1) The Cascadia subduction zone, the Mendocino transform fault and the San Andreas Fault 
intersect at the Mendocino triple junction [Silver, 1971; Bird, 2003]. Complex interactions among 
the North American, Pacific, and Juan de Fuca plates are responsible for one of the highest rates of 
seismicity in continental North America [Furlong and Schwartz, 2004]. The low b-values in this 
region have relatively narrow confidence intervals, expressed by low IQR values, which point out a 
significantly different local frequency magnitude distribution.  
 (2) The geothermal region of Geysers has a high seismicity rate producing mainly small 
events and hence a significantly higher b-value. Due to the non-tectonic origin of these events the 
FMD in this region exhibits an upper magnitude limit. The characteristics of this region are further 
discussed in the conclusion section. 

(3) The area with the relatively high b-value can be associated with the 1984 sequence of 
North Palm Springs. The sequence was initiated by a m=5.9 event followed by 1,437 aftershocks 
with magnitudes m≥1.8. Kisslinger and Jones (1991) estimated the b-value of these events as 1.12. 
The ensemble map has relatively large IQR (≈0.18) values in this region, which undermine the 
statistical significance of the deviation with respect to b=1. Similarly to the synthetic tests, these 
high IQR values could also be indicative of potential transitions between regions with different b-
values. 

(4) Although the low tendency of the b-value in this region is not strong, it might be of 
interest due to the low ensemble variance associated with it. Seismicity in this region is dominated 
by the 1994 m=6.7 Northridge earthquake and its aftershocks. This sequence has been previously 
characterized by a b-value of 0.91 [Wiemer and Katsumata, 1999; Shcherbakov et al., 2005] which 
agrees well with the ensemble value reported here. Aftershock sequences of such large events can 
introduce bias in b-value estimations due to the sudden decrease in the network detection 
capabilities following the increased number of large aftershocks [Mignan and Woessner, 2012]. 

2.6.2 Results for the time period of 01.01.1984 – 01.01.2014 

In this paper, we have analyzed the b-value variations in the spatial domain assuming that 
they are temporally constant. However, as mentioned in the section above, previous studies indicate 
that most observed b-value variations can be associated with specific events and thus can be 
regarded as time-dependent. To investigate the temporal stability of the initial results, we applied 
our method to a constrained dataset with only events occurring in the last decade (01.01.2004-
01.01.2014), which contains 32,042 out of the 125,760 initially used events. In comparison, we 
observe that the spatial b-value variability is greatly reduced as small-scale anomalies such as (3) 
and (4) have disappeared (Figure 2-6b,c). The corresponding variations observed in Figure 2-5b,c 
can thus be attributed to seismic sequences prior to 2004. For entire Southern California we observe 
a uniform b-value of 0.95 with a low variance (IQR≤0.05). This b-value also extends to the region 
of Long Valley and Nevada with an IQR≤0.1 (Figure 2-6b,c). For Northern California, the low b-
values around the Mendocino Triple Junction and the high b-values in the Geysers region are 
preserved when compared to the long term catalog.  

As previously discussed, making statistically significant inferences of the results requires the 
ensemble median to be considered jointly with the ensemble variance. To facilitate a clearer 
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inference, we make use of a representation used by Felzer (2006), and show the median b-values, 
cut-off magnitude mc and number of events with m≥mc as a function of longitude (Figure 8). For 
each median value we further show both the 0.25-0.75 (IQR, Figure 2-6c) and 0.16-0.84 percentile 
ranges. This representation indicates that the median b-values in Southern California and Nevada 
are within the range of [0.92-0.98]. The Central San Andreas Fault Zone (SAFZ) has relatively 
higher median b-values that vary in the range of [1.09-1.13]. We observe that the IQR values in 
SAFZ are significantly higher compared to Southern California and Nevada. Considering their 
confidence intervals, only the regions of Cascadia and Geysers are distinguished significantly with 
low (b=0.79±0.02) and high (b=1.15±0.06) values. 

 

Figure 2-8 Median b-values from Figure 2-6b, median cut-off magnitude mc and median number of events with m≥mc 
(Ncomp) as a function of longitude. Dark and light gray bars correspond to percentiles of [0.25 - 0.75] and [0.16 - 0.84], 
respectively. Top right inset shows Californian seismic stations, colored according to their network affiliation. Parts of 

Nevada and Southern California networks cover the same longitude range, thus we show values from the Southern 
California network separately (right panels). 

2.7 Discussion 

2.7.1 Magnitude inconsistencies between local networks 

Although the amplitude of the variations in onshore California is small, we observe an 
abrupt offset in the b-value along the SAFZ occurring around longitude -120° (Figure 2-6a, Figure 
8). This region coincides with the transition zone between the North and South Californian seismic 
networks. To investigate if the observed difference is caused by differences in the magnitude 
estimation procedure of the two networks, we analyzed the magnitude distribution of events that 
have been located by both networks. For this purpose we acquired both catalogs separately from the 
two earthquake data centers for the period of 01.01.2004 - 01.01.2014 (NCEDC: 
http://quake.geo.berkeley.edu/ncedc/catalog-search.html, SCEDC: http://www.data.scec.org/eq-



 

48 
 

catalogs/date_mag_loc.php). To select identical events, we applied a joint criterion of maximum 
difference in detection time (3 seconds), location (10 m)  and magnitude (∆m<1), which resulted in 
a total of 1026 events. We find that small magnitudes (m<3) are systematically overestimated in the 
North with respect to the South (Figure 2-9a). If the overestimation was in the form of a constant 
bias effective over the entire magnitude range, this would not have implications on the b-value. 
However, the overestimation decreases as a function of cut-off magnitude; consequently this results 
in a change in the slope of the probability density functions of the two networks (Figure 2-9a). We 
observe that for mc≥2.5, where both datasets can be regarded as complete, the b-values calculated 
for the Northern network are consistently higher (∆b≈0.1-0.2) than those for the Southern network 
(Figure 2-9a). Since this analysis is based on a small subsample of the catalog, we do not expect an 
exact match with the b-values computed in the ensemble map. However, we maintain that such a 
network-related discrepancy can be used to explain the deviation between Northern and Southern 
California in Figure 2-6. It is important to note that similar network related issues have caused the 
emergence and misinterpretation of artificial seismicity features, such as the Byerly-Gutenberg 
discontinuity [Gawthrop, 2014].  

 

 
Figure 2-9 Magnitude and b-value comparison using matching events from a) NCEDC-SCEDC, b) NCEDC-Nevada, 

and c) Nevada-SCEDC. Top panels show magnitudes and magnitude probability density functions. Black line is a 
reference for equal magnitudes. Bottom panel shows b-value with interquartile range as a function of cut-off magnitude. 

Dashed lines denote the mode of each magnitude distribution. 

 
Furthermore we propose that the same reasoning can be used in Northern California since the 
region is covered by two different seismic networks: the Northern California Seismic network 
operated by USGS and the Nevada network operated by the University of Nevada, Reno. We 
observe that the drop in the b-value between west (b≈1.12) and east (b≈0.98) Northern California 
coincides with the network boundary (top bar in Figure 2-8). To test this reasoning we performed 
the same analysis using events located by the Nevada Network. The publicly available dataset 
includes events only after 06.2012 (http://www.seismo.unr.edu/Earthquake). Thus, the comparisons 
with respect to the Nevada network were based on a limited time period (Figure 2-9b for Northern 
and Figure 2-9c for Southern Californian network). Similarly to the results of the South-North 
networks comparison, we observe a discrepancy between the reported magnitudes for the 690 
matching events between the Nevada and North California networks. This leads to a systematic 
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shift in the estimated b-values. The subset of events detected by the Nevada network has a lower b-
value compared to the North California network, which is similar to the spatial trend observed in 
Figure 2-6 and Figure 2-8. For the comparison with the South Californian network (Figure 2-9c), 
we observe a close correspondence in both the shapes of the magnitude PDFs and the estimated b-
values. However, the results of this comparison should be regarded with care due to the limited 
number of matching events (78 events). 

2.7.2 Bias and errors in magnitude estimations  

It might be tempting to infer the consistently low b-values (b≈0.8) reported offshore the 
Mendocino triple junction as being indicative of a distinct tectonophysical process. However, 
because the region is located far from the California network stations (low azimuthal coverage) and 
has the smallest sample size (~130 m≥4 events, Figure 2-8), we need to consider the possibility of 
bias due to systematic magnitude errors. To demonstrate the possible effect of station coverage and 
configuration on magnitude estimation, we conduct a synthetic earthquake location test in 2D. For 
an earthquake location we first calculate true P arrival times at all stations assuming a constant 
Vp=6 km/s. We then perturb these arrival times with a Gaussian pic in g time error σ= 0.1s. Using 
these perturbed P picks for each station pair we obtain hyperbolas that indicate possible locations of 
the earthquake. Discretizing the grid at a resolution of 100m, we convert the hyperbolas into 
discrete probability mass distributions that are then multiplied element-wise to calculate the joint 
probability of the event location (Figure 2-10). We sample the resulting spatial probability 
distribution with a total of 100 points. Finally, for each of the sampled locations we calculate a 
magnitude average over all stations based on the local magnitude formula [Richter, 1935]:  

 
 10 10log ( ) 2.76log ( ) 2.48LM A D    2-7 
 
where A is the P wave amplitude at 0.8 Hz in micrometers and D is the epicentral distance in 
kilometers. Since we assume no error on the amplitude measurement, A is calculated from the true 
magnitude ML

* and true epicentral distance D* using equation (2-7). Thus the magnitude error ML-
ML

* simplifies to: 
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Figure 2-10 shows how different network configurations with low azimuthal coverage can 

result not only in large deviations from the true magnitude but also in systematic biases. Actual 
earthquake locations are prone to a more extensive cascade of errors including phase 
misidentifications, velocity model errors, station delays and asymmetric picking time errors. It is 
likely that for poor station coverage and limited number of events such errors can lead to biases in 
the estimated magnitudes and consequently in the b-value.  
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Figure 2-10 Distribution of magnitude error (estimated-true) for different network configurations assuming a P pick 

error of 0.1s and Vp= 6 km/s. Stations are shown with red triangles, true epicenters with a red cross and samples from 
the location PDF with white dots. Low azimuthal coverage results in large magnitude errors and bias: overestimation in 
a) and underestimation in c). Moving a single station to increase the azimuthal coverage ( shown in b) and d) ) reduces 

the error and bias significantly in both configurations. 

In his paper, investigating the global Centroid Moment Tensor (CMT) [Ekström et al., 2012] 
catalog, Kagan (2010) observed that moment magnitude errors decrease with increasing magnitude 
causing inflated b-value estimates. However, in his analysis of the GeoNET New Zealand catalog, 
Rhoades (1996) observed that magnitude errors increase linearly with magnitude leading to 
underestimation of b-values. Such overall positive or negative biases cannot explain regional 
differences as all b-values would be equally affected. If the magnitude error function changes with 
magnitude, however, regions spanning different magnitude ranges would be biased differently, 
leading to regional b-value differences. The ANSS catalog does not report magnitude errors, 
however as [Werner and Sornette, 2008] pointed out in their study, it is possible to obtain a “raw” 
catalog from the NCEDC (the authoritative network for North California) that include median 
absolute deviation (MAD) of the reported magnitudes. We obtained all events with m>2 for the 
time period of 01.01.1984-01.01.2014 and depth < 30km resulting in a total of 80,719 events with 
reported MAD values. We group events at 0.5 magnitude intervals and plot box plots of their MAD 
values. We observe that the median MAD value remains stable for 2<m≤4 and then increases 
rapidly for m>4 as a function of magnitude (Figure 2-11a). As demonstrated by Rhoades (1996) the 
MAD increase at large magnitudes would cause the b-value to be underestimated in regions with 
large magnitudes (Figure 2-11b). The region offshore the Mendocino triple junction contains the 
largest earthquakes in our study region and has the highest mc value of mc=4 (Figure 2-8). Thus it is 
safe to assume that the b-value in this region is underestimated with respect to onshore regions that 
have lower mc values.  
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Figure 2-11 a) Box plot of median absolute deviation versus magnitude for  the Northern California NCEDC catalog, 
1984-2014, binned at M0.5 intervals. The corresponding number of events with reported MAD values is given in the 

top. Box height corresponds to the IQR and whiskers extend to the most extreme values within 1.5 IQR in both 
directions. b) Schematic plot of the bias in the estimated GR relation in the presence of magnitude uncertainties 

(adapted from [Rhoades and Dowrick, 2000]). 

To determine whether this reasoning can be generally applicable to explain low b-value 
anomalies observed in other regions, we revisit the studies of Kagan and Rhoades, repeating their 
error analysis with more up-to-date datasets (see Supplementing Information). We observe that for 
shallow events in the CMT catalog, the magnitude error decreases for 5<m≤6.5 but increases for 
m>6.5 (Figure S1a1). Kagan also observed a similar break-point at m=6.5 but argued that the small 
number of events available at the time cannot support a more complex trend beyond this range. For 
deep events, the magnitude errors are generally smaller and decrease consistently throughout the 
whole magnitude range (Figure S1a1). For the GeoNET New Zealand catalog, we observe, 
similarly to the NCEDC catalog, that the median magnitude error remains stable (2.5<m≤5) and 
then increases again (m>5) as a function of magnitude (Figure S2a1). For deep events, we observe 
that the median error remains fairly constant for all m>3 events. These analyses suggest that the 
bimodal relationship between magnitude errors versus magnitude might be typical in shallow 
seismicity regions, and hence cause biases in the b-value estimations. 

2.8 Conclusions 

  In this paper we introduced a fully automated, objective method for spatial b-value 
variations estimation, which does not involve any adjustable input parameter. The core components 
of the method are (1) Voronoi tessellation, (2) penalized likelihood in terms of BIC and (3) 
ensemble inference. The Voronoi tessellation allows for adaptive spatial resolution, putting more 
emphasis on areas that are highlighted by data availability. The flexible partitioning makes the 
delineation of any irregular shape possible. The BIC acts like a regularizer between the data and the 
complexity required to model it. The ensemble averaging procedure ensures that results comprise 
most likely models of different complexities.  

 We used synthetic tests to demonstrate the efficiency of the BIC for determining optimal 
complexity. An alternative approach might be cross validation which involves separating the data 
into two complementary sets and evaluate the performance of the model derived from one set (i.e. 
the training set) based on the likelihood of the other (i.e. the validation set). While this approach 
yields satisfactory results in other fields, its application to spatial b-value mapping remains 
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problematic due to the fact that the results depend greatly on the selection of the validation set. 
Following the common practice of using a random selection, one would end up with mostly small 
events in the validation set. Such a validation set would prefer models with high b-values, since 
they provide higher likelihoods for small events. Yet, if an arbitrary number of large earthquakes 
are set aside for validation (as they are of greatest interest) then many parts of the spatial domain 
will remain invalidated. In this regard, the BIC not only helps us avoid such arbitrary choices but 
also allows the use of the full dataset. 
  Applications to the Californian seismicity catalog of the last 30 years indicate that there are 
statistically significant b-value variations in the range of [0.78-1.28] (Figure 2-5b). As previously 
pointed out by Kagan [Kagan, 1999b, 2002, 2010], it is possible to attribute observed b-value 
variations to magnitude errors and temporal variations in the detection capabilities. Since we would 
expect these effects to subside with time, we have analyzed separately the last 10 years of the 
seismic catalog and found that the range drops to [0.79-1.15] (Figure 2-6b). We observe the 
following three main features: (1) abrupt change in b-value between Northern California and 
Southern California / Nevada (Figure 2-8), (2) consistently high b-values in the geothermal area of 
Geysers and (3) consistently low b-values offshore the Mendocino triple junction.  
  (1) We showed that discrepancies in magnitude estimations between different networks 
alone result in b-value variations (~0.2, Figure 2-9) that are comparable or even greater than the 
reported changes (~0.15, Figure 2-8). This effect should not be overlooked when dealing with 
composite catalogs featuring different magnitude estimation practices of the contributing agencies. 
A possible way to address this issue is to obtain empirical magnitude relationships (see Figure 2-9) 
between different networks. However, this would require large amount of matching events and that 
the magnitude estimation practices do not change with time [Agnew, 2010]. 
  (2) The Geysers seismicity is thought to arise from increased pore fluid pressure and 
volumetric contraction due to water injection [Boyle and Zoback, 2014]. Many local studies have 
characterized this region by an anomalously high b-value (e.g [Helmstetter et al., 2007]). Our 
method detects the same pattern in a fully automated fashion. However, it is expected that the 
frequency of large events will deviate from the GR law, which ignores the fact that rupture surfaces 
and stimulated volumes are finite [Shapiro et al., 2013]. Accordingly we observe relatively low p-
values that indicate the poor performance of the unbounded GR model in this region (Figure 2-14). 
Another noteworthy observation regarding Geysers is that although the geothermal region has a 
small spatial extent, the low b-values associated with it span larger extents. This is due to the 
relatively large number of complete events in this region compared to its surrounding. This large 
density tends to dominate its vicinity through the fully random segmentation search that is often 
unable to make a tight delineation of the small region. The proposed method is based on data-driven 
segmentation in the absence of prior  no wledge; however it is possible to improve the method’s 
performance by introducing prior knowledge of regions with distinct geophysical characteristics. 
For instance by ensuring that Geysers region is tightly delineated in all randomly generated 
segmentations.  
  (3) We have demonstrated that the magnitudes reported offshore the Mendocino triple 
junction, which has consistently low b-values (b≈0.8), are li e ly to have larger magnitudes errors 
compared to the smaller onshore events. Simple synthetic tests suggest that the low azimuthal 
coverage in this region is likely to contribute to larger magnitude errors. Such a magnitude error 
difference can give rise to underestimation of the b-value [Rhoades, 1996; Rhoades and Dowrick, 
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2000]. These findings preclude us from making physical interpretations based on the observed b-
value anomaly. 
  The fact that the b-value map for the period of 1984-2014 differs from the more recent one 
of 2004-2014 gives rise to two possible explanations: (I) there are actual temporal b-value 
variations in California and (II) the results for 1984-2014 may have been affected by temporal 
completeness issues and changing network practices. We believe the truth lies somewhere in 
between. Since our method does not feature segmentation in the time domain it is difficult to a give 
a definitive answer. Nevertheless, based on data quality, we put more confidence on the results 
obtained from the last 10 years of data.  
  It is important to point out that our results are irreconcilable with many recent studies: for 
instance, Wiemer and Schorlemmer (2005) presented a spatial b-value map for whole California 
featuring variations saturated in the range of [0.5-1.5]. It might be worth noting that their study was 
conducted on a declustered catalog while the results presented here are obtained from a non-
declustered catalog. The same authors reported a similar range in their Parkfield study conducted 
over a more limited non-declustered dataset [Schorlemmer and Wiemer, 2005]. Recently, [Tormann 
et al., 2014] conducted a b-value analysis on major Californian faults with a constant radius of 7.5 
km and minimum 50 events and estimated probabilities of m6+ events. Such b-value maps, and 
many published maps obtained using the classic method, feature abrupt changes of the b-value at 
small scales. Until now, the prevalent inference of this heterogeneity has been that b-values can be 
used as proxy for stress, which is also believed to be heterogeneous in the upper crust. Our results 
indicate that the b-value variation is smaller, observed over much larger scales and in most cases 
can be explained by magnitude errors and magnitude discrepancies due to network effects. Thus 
they, do not support any correlation with stress, be it tensile or compressive. These conclusions are 
supported also by previous studies: Frohlich and Davis (1993) reported similar b-value ranges after 
rigorous analysis of several global catalogs, Imoto (1987) and Ogata and Katsura (1993) observed 
such variations only at large scales in New Zealand and Japan using penalized likelihood 
approaches.  
  Throughout this paper we have highlighted drawbacks of the previously used methods and 
how the proposed penalized likelihood-based method addresses these. Nonetheless, there is room 
for further improvement.; As we have demonstrated by processing two different time periods, the 
catalog contains temporal features (such as the 1994 Northridge and 1984 Palm Springs sequences). 
The Voronoi partitioning can be readily applied in n-dimensions, and thus we can extend our 
method to partition not only the spatial but also the temporal domain. Such a partitioning will 
enable us to capture the spatiotemporal changes in mc. This spatiotemporal flexibility of mc will 
allow for the use of the recently introduced entire magnitude range angular FMD that is compatible 
with A i’s maximum li elihood b-estimator [Mignan, 2012]. The angular FMD will facilitate the 
use of both complete and incomplete events, which have often been discarded previously. 
  To summarize our conclusions regarding the last decade of recorded seismicity: 

1) The spatial b-value in the well instrumented parts of mainland California is limited to the 
range of [0.94±0.04-1.15±0.06].  

2) Except for the geothermal area of Geysers, discrepancies in magnitude estimations between 
different networks and bias due to magnitude errors alone can explain the observed b-value 
variations. This precludes non-testable hypotheses such as crustal stress variations. 
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 Our results for California support the recent decision of the 2014 Working Group on 
California Earthquake Probabilities to use a uniform b-value for the entire state of California [Field 
et al., 2014]. Lastly, we underline that the results of our method are objectively quantifiable in 
terms of likelihood; this is not the case with the classical methods, which have been wildly applied 
up till now. It must be noted that in the absence of an objective evaluation criterion, any method can 
turn into a data distortion tool or, as Coase (1995) puts it, “if you torture data enough, nature will 
always confess”. 

2.9 Appendix A: Comparative Synthetic Test Based on Californian 

Seismicity 

In this appendix we demonstrate the reliability of the proposed method and highlight its 
advantages over the previously used methods via a synthetic test. We consider the same dataset as 
in Section 5.2, namely the 32,042 events occurring in the period (01.01.2004-01.01.2014) with 
m≥2.2. We keep the original event locations and define three distinct b-value zones based on the 
results obtained in Figure 2-6 and Figure 2-8. The zones and their assigned b-values are: 
Cascadia/Mendocino (b= 0.8), Geysers (b=1.2) and Southern California/Southern Nevada (b=0.95) 
(see Figure 2-12a). We assigned magnitudes to the events in each zone from a GR distribution 
generated with the zones' b-value. The magnitudes of the events outside these three zones were 
generated from b=1. Similarly to the analysis conducted on the real data, we perform 2,000 random 
tessellations at each Voronoi increment. We stop the random tessellation procedure at Nv=40 since 
all the resulting models perform worse than the single b-value model at this level. The top 80 of all 
80,000 models are assembled to obtain the median b-value and IQR distributions (Figure 2-12a, b). 
The results are stable with respect to the assembled number of top solutions; we present the case of 
80 since it is consistent with the ratio used in the application to the real data. 

In order to put these synthetic results into the perspective of the currently used methods, we 
analyze the same dataset with a constant radius approach. As pointed out in Section 2, the data 
overlap in the classical methods hinders the computation of an overall likelihood that is needed to 
facilitate a comparison. That is why we use non-overlapping grids of different cell sizes. The b-
value is calculated in each grid cell containing more than 50 events (as commonly used in classical 
b-value mapping). The overall likelihood and BIC terms are calculated using the formulas given in 
equations (2-3) and (2-6). Similarly to the case of Voronoi tessellations, the number of free 
parameters is k=2*Ng where Ng is the number of non-empty grid cells. In Figure 2-13 we present the 
resulting maps with their BIC scores for grid sizes of 10, 25, 50, 100, 200 and 300 km. We point out 
that all of the top Voronoi models regardless of their complexity (varying from 3 to 17 cells), 
outperform the gridded segmentations in terms of BIC. 
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Figure 2-12 Ensemble median bmed(a) and IQR(b) for the synthetic dataset based on the [2004-2014] catalog with 
magnitudes generated from the annotated b-values in each zone. The remaining magnitudes are generated from b=1. c) 
The entire solution space for the synthetic catalog: BIC scores (black dots) and negative log-likelihood (gray line) as a 

function of number of Voronoi cells. Error bars correspond to one standard deviation. Red circles denote the BIC of the 
best 80 solutions. 
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Figure 2-13 Same synthetic dataset as Figure 2-12 analyzed via constant sized non-overlapping grids with increasing 
sizes from 10 to 300 km with Nmin=50. The resulting BIC scores and b-value ranges are given in the title of each grid 

plot. 

2.10 Appendix B: How plausible is the GR law for Californian seismicity? 

In this appendix we acknowledge the fact that any dataset can be fitted with any parametric 
model regardless of the model’s capacity to describe the data. We investigate the plausibility of the 
GR law in each of the ensemble Voronoi partitions using the Kolmogorov-Smirnov (KS) distance 
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as a measure for the goodness of fit. To this end we follow the methodology proposed by Clauset et 
al. (2009): For each Voronoi region the lower cut-off (mc) and the b-value are assigned jointly by 
minimizing the KS distance between the empirical CDF and the analytical CDF obtained using the 
GR law exponent estimated from events with m≥ mc. Note that this is the same method used in the 
analysis of Californian seismicity presented in this study. Next, we compare the observed KS 
distance with KS distances obtained by applying the same procedure to several randomly generated 
synthetic datasets. For each dataset containing a total of NT=Nc+Ni events, where Nc and Ni are the 
number of events with m≥ mc and m<mc respectively, we generate Nc synthetic magnitudes from a 
GR distribution with the b-value estimated from the original dataset. Ni magnitudes are generated 
by bootstrapping the original magnitudes with m<mc. This synthetic dataset is then used in the same 
way as the original one to estimate the optimal cut-off, b-value and KS distance. The procedure is 
repeated several times keeping count of the instances where the KS distance measured in the 
original data are smaller than the one obtained from the synthetics. The reported p-value is the ratio 
of the number of such instances to the total number of simulations. A high p-value indicates that the 
GR law is plausible since synthetic datasets rarely perform better in terms of KS, while a low p-
value would indicate that the observed KS distance is large compared to what one would expect 
from a true GR law and thus it is not a plausible model for the data. Clauset et al. (2009) consider p 
>0.1 to be sufficiently large enough not to rule out the candidate model.  
 

 
Figure 2-14 Median p-values obtained by 1000 Monte-Carlo simulations with the top ranking partitions for the 2004-
2014 California catalog (Fig. 6). The p-value represents the probability of observing a worse GR law fit (in terms of 
Kolmogorov-Smirnov distance)  estimated from the Monte-Carlo simulations. Values lower than pmin=0.1 indicate 

implausibility of the GR law. 
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Here we present results of the p-value analysis conducted for the 2004-2014 Californian 
seismicity. We calculate a p-value for each Voronoi region of all the top ranking tessellation models 
(Figure 2-6) using 1000 synthetic runs. The median p-values are assigned to the same non-empty 
1x1 km cells used in Figure 2-6 (Figure 2-14). For better visualization we also present the p-value 
distributions as a function of longitude (Figure 2-15). The results suggest that the GR law is 
plausible in all the top models that contribute to the ensemble. The spatial variability of the p-value 
can be attributed to several aspects related to the generation of the synthetics and the consequently 
calculated KS distance. For instance the low p-values near the Californian state border with Mexico 
are most likely due to the fact that small events falling outside the state boundaries are not included 
in the catalog, this would cause instabilities in the estimation of the lower cut-off, increased KS 
distances and thus low p-values. The  e yser’s region also features low p-values, however in this 
case the most likely cause is the actual frequency magnitude distribution, which is expected to 
deviate from a power law at small cut-off due to the fact that the magnitudes in this range exhibit 
swarm characteristics [Shapiro et al., 2013]. 

 

Figure 2-15 Median p-values from Fig. B1 as a function of longitude. Dark and light gray bars correspond to percentiles 
of [0.25-0.75] and [0.16-0.84], respectively. 
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3.1 Abstract 

In this article we present a time-independent earthquake rate forecast for California. Our 
model features spatial variations of the Gutenberg-Richter b-value using the method of Kamer and 
Hiemer, (2015) . We account for lessons learned from the outcome of the Regional Earthquake 
Li elihood  odels (R L ) experiment and use R L ’s framewor  to investigate different 
concepts for modelling the spatial distribution of seismicity. Our resulting forecast shows a 
significant information gain with respect to all other first-generation RELM mainshock forecasts, 
including the much-praised smoothed seismicity model by Helmstetter et al., (2007) . Our findings 
indicate that large-scale b-value variations are a considerable feature for increasing the skill of 
Californian seismicity forecasts. We underline the importance of statistical rigor when 
implementing earthquake occurrence hypotheses. Our results have implications for seismic hazard 
studies, where the b-value is either chosen as a regional constant or varies spatially between local 
zones. Future improvements of our model may help to overcome the inherent subjectivity in 
choosing either of these approaches. 

3.2 Introduction 

 Rigorous testing of earthquake occurrence hypotheses is key to enhance both our statistical 
models and physical understanding of seismicity. The Regional Earthquake Likelihood Models 
(RELM) experiment evaluated the reliability and skill of a variety of probabilistic seismicity 
forecasts for California over the five-year target period 2006-2011 in a truly prospective fashion 
(using all m ≥ 4.95 events, [Schorlemmer et al., 2007]). RELM can be regarded as a milestone for 
forecasting-related research in seismology because it successfully addressed a major deficiency 
faced previously: the lack of a controlled environment for model performance evaluations. 
Modellers expressed their forecasts in a common format and submitted them to a testing center that 
used pre-agreed statistical criteria to test the models against future seismicity. Accordingly, such a 
hands-off approach ensured the prevention of retrofitting model parameters or of any other 
hindsight model adjustments. The spirit of RELM has been subsumed by the broader initiative of 
CSEP (Collaboratory for the Study of Earthquake Predictability; e.g. [Jordan, 2006; Zechar et al., 
2009]) that conducts similar forecasting experiments in various regions in the world (for an 
overview visit www.csep-testing.org). 
 The first-generation RELM models were based on diverse input data and modeling 
approaches, including non-parametric density estimates of past earthquake locations, pattern 
recognition in seismicity rate changes, geodetic estimates of strain rates from GPS data, geologic 
fault slip rates, and physics-based numerical earthquake simulations (see [Field, 2007] and 
references therein). Many RELM and CSEP related studies have focused on the revision and 
improvement of evaluation metrics [Zechar et al., 2010; Imoto et al., 2011; Rhoades et al., 2011; 
Eberhard et al., 2012; Molchan, 2012; Taroni et al., 2013], on model combination and ensemble 
forecasting [Marzocchi et al., 2012; Rhoades et al., 2014; Shebalin et al., 2014], on the 
development of alternative testing approaches [Clements et al., 2011; Lee et al., 2011; Sachs et al., 
2012; Smyth et al., 2012; Bray and Schoenberg, 2013; Ogata et al., 2013], and on the future design 
of earthquake forecasts experiments [Werner and Sornette, 2008; Lombardi and Marzocchi, 2010; 
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Werner et al., 2010]. However, little has been done regarding both the improvement of the models 
themselves and the assessment of R L ’s results in terms of what we have learned about the 
earthquake occurrence hypotheses governing the models. 
 The first-order results of RELM [Zechar et al., 2013] revealed the kernel smoothed- 
seismicity model by Helmstetter et al., (2007) as the most skilful forecast (hereafter referred to as 
the HKJ model). Their underlying working hypothesis is that the spatial density of past earthquakes 
indicates where future earthquakes are most likely to occur. The model’s magnitude distribution is 
essentially based on a tapered Gutenberg-Richter distribution using a uniform b-value across 
California. By contrast, the Wiemer and Schorlemmer (2007) forecast was build on the hypothesis 
that spatial variations of the Gutenberg-Richter b-value hold important information for forecasting 
future rates of earthquakes. Their forecast was found to be inconsistent with the spatial distribution 
of target events; a result that was not only reported by the prospective RELM experiment in 
California [Zechar et al., 2013], but also by retrospective CSEP evaluations in Italy regarding a 
similar model [Gulia et al., 2010; Werner et al., 2010]. Despite its inconsistency, the Wiemer and 
Schorlemmer (2007) model finished among the runner- up forecasts when ranking all RELM 
mainshock models in accord to their information gains (notice that the three best-performing 
models are based on seismicity data alone, [Rhoades et al., 2011; Zechar et al., 2013]). This result 
thus might indicate that there is potential for the gainful use of spatially varying b-values in 
probabilistic earthquake rate forecasting. 
 In the present study we investigate the reasons for the deficiency of the Wiemer and 
Schorlemmer (2007) forecast (hereafter referred to as the WS model) and we address the question 
whether the rejection of the model in the RELM framework implies the rejection of its underlying 
earthquake occurrence hypothesis. In that regard it is important to note that the WS model was 
based on a b-value mapping technique that involves the somewhat arbitrary choice of several 
mapping parameters, such as mapping radii and minimum number of events for reliable b-value 
estimation (see review article by [Wiemer and Wyss, 2002]). [Tormann et al., 2014] used a similar 
approach to conduct a systematic survey of b-value images along Californian faults. However, 
[Kamer, 2014] argued in his comment article that the results of the classical b-value mapping 
technique heavily depend on external parameters, whose choice requires a priori knowledge of the 
spatial b-value distribution. Moreover, it has been underlined that many conclusions based on b-
value variations should be viewed with caution mainly because these studies often fail to 
acknowledge sources of errors (e.g. under-sampling, magnitude errors, non-homogeneous detection 
capabilities, lack of statistical rigor; [Frohlich and Davis, 1993; Kagan, 1999b, 2010; Amorese et 
al., 2010; Kamer and Hiemer, 2013; Geist and Parsons, 2014]). 
 In this article we propose an alternative, objective implementation of the hypothesis that 
spatial b-value variations can provide information gain for probabilistic earthquake rate forecasting. 
The magnitude dimension of our time-independent mainshock model is based on the recently 
introduced method by Kamer and Hiemer (2015) that circumvents the arbitrary choice of external 
mapping parameters. The development of the spatial component of our forecasts builds up on the 
first-order results of the RELM experiment; specifically on the success of the HKJ model and the 
failure of the WS model (Figure 3 in [Zechar et al., 2013]). 
 The article is organized as follows: in the method section, we first review the fundamental 
differences in the construction of the HKJ and WS model. We then detail the lessons learned from 
R L  for the development of our forecast. In the result section, we test our model’s consistency in 
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terms of number, magnitude and space; particularly when using different concepts for the 
description of the spatial distribution of seismicity. We compare our forecasts against all first-
generation RELM mainshock forecasts applying state of the art CSEP comparison tests. We finally 
discuss the strengths and weaknesses of our forecasts and indicate avenues for further 
improvements. 

3.3 Method 

The two most successful RELM mainshock forecasts (HKJ and WS, Figure 3-1) exhibit 
fundamental differences in their model constructions albeit being both based on earthquake catalog 
data as input alone. The analysis of those differences is important for the development of reliable 
next-generation seismicity based earthquake forecasts. The transparent policy of the RELM 
experiment allows for the thorough investigation of the advantages and drawbacks of individual 
model components and modeller’s choices. 

 

 
Figure 3-1 Spatial distribution within R L ’s testing area of the expected m≥5 earth- quake rate λ for the 5-years target 
period of 2006 - 2011 for the Wiemer and Schorlemmer (2007) and Helmstetter et al. (2007) forecast. Small dots label 

cells whose rates were defined by the “water-line” criteria. 

3.3.1 The Helmstetter et al. (2007) approach 

Helmstetter et al., (2007) used earthquakes of m ≥ 2 in the Advanced National Seismic 
System (ANSS) catalog, in the time period from 1 January 1981 to 23 August 2005. The authors 
applied the [Reasenberg, 1985] declustering method to remove large fluctuations of seismicity rate 
in space and time due to aftershock sequences. Notice that they did not follow the Monte Carlo 
approach suggested by the RELM testing center [Schorlemmer et al., 2007]. Instead, Helmstetter et 
al., (2007) applied their own modification of Reasenberg’s code using one specific declustering 
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parameter combination. The first step for the construction of the HKJ forecast is to estimate the 
density of seismicity in each cell by smoothing the locations of all past earthquakes with an 
isotropic power-law kernel of variable smoothing distance. The smoothing distance connected to 
each event is obtained by measuring the horizontal distance to its nth nearest neighbor. In 
retrospective evaluations (i.e. using cross-validation) the performance of the spatial component of 
their forecast was found to be optimal in terms of likelihood gain for n = 6. 
 In a second step, the local densities needed to be corrected to account for spatial variations 
in the magnitude of completeness. In order to estimate the completeness magnitude in each cell, 
Helmstetter et al. (2007) extended their spatial smoothing approach by incorporating magnitude 
smoothing using a Gaussian kernel with a fixed bandwidth of 15 km. The magnitude of 
completeness m0 is then estimated as the maximum of the local smoothed magnitude distribution. 
Such an approach bears similarities with the maximum curvature method applied to empirical 
magnitude distributions [Wiemer and Wyss, 2000]. In order to avoid non-physical small-scale 
fluctuations the authors smoothed the resulting spatial distribution of m0 using a Gaussian filter with 
a standard deviation of 15 km. Under the assumption that the magnitudes follow the Gutenberg-
Richter law with b=1, the density of events with m ≥ mmin could then be corrected by the factor of 

0 min10m m . 
 The magnitude distribution of the HKJ model is assumed to obey a tapered Gutenberg-
Richter law with a uniform b-value and corner magnitude mc. The corresponding cumulative 
density function reads 
 

    min min1.5( ) 1.5( )10 exp 10 10c cb m m m m m mF m         3-1 
 
with the minimum magnitude mmin = 4.95 and the corner magnitude mc = 8.0 (as suggested by Bird 
and Kagan (2004) for continental transform fault boundaries). The b-value was estimated as b = 
0.89 on the basis of the catalog provided by the RELM testing center (using all m ≥ 4.95 events 
weighted by their independence probabilities, [Schorlemmer et al., 2007]). Helmstetter et al. (2007) 
dedicated special attention to the region of Geysers, where they decided to use a local b-value 
estimate of 2.0 after having found that using b = 0.89 gives a very large expected rate of m ≥ 4.95 
events. They also examined magnitude distributions of other geothermal or volcanic areas within 
the RELM testing region (Mammoth Lakes, Coso, Salton Sea), but did not consider them as 
anomalous. 
 It is important to note that the HKJ model relies on estimating probability density functions 
for both the spatial and magnitude dimension. Finally these densities are scaled by the total 
expected number of target events (4.41 m ≥ 4.95 events per year), which  e lmstetter et al. (2007) 
estimated by counting target earthquakes in the RELM catalog that occurred during the time 
window 1984-2004. Accordingly, the final rates λ(is, im) for each spatial cell is and magnitude bin im 
for the HKJ model are given by: 
 
      ,s m s mi i N i P i   3-2 
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where N is the expected number of target events for the next 5 years, μ(is) describes the spatial 
density within each longitude-latitude cell is, and P(im) is the magnitude density within the 
magnitude bin im (estimated from equation 3-1). 
 The non-systematic approach for estimating the magnitude distribution in each cell can be 
regarded as the main deficiency of the HKJ approach, as underlined by Helmstetter et al. (2007) in 
their conclusion section. Furthermore, we noticed that their density correction scheme is 
questionable as it depends on the local degree of incompleteness (i.e. two spatial cells with identical 
m0 and identical number of events ≥ m0 will not get the same spatial density if their numbers of 
events ≤ m0 are different). 

3.3.2 The Wiemer and Schorlemmer (2007) approach 

The WS model is based on the idea that small-scale spatial variations of the Gutenberg-
Richter b-value are important for improving the skill of a probabilistic earthquake rate forecast. The 
basic method to construct their model was established by a number of case studies of cross-
sectional b-value mapping along faults [Wiemer and Wyss, 2000]. 
 Wiemer and Schorlemmer (2007) pointed out that due to the lack of objective criteria to 
estimate all involved mapping parameters; they used their intuition in the physical processes of 
earthquake occurrences as guidelines for model decisions. The WS model used all events in the 
ANSS catalog with depth ≤ 30  m in the time period from 1 January 1984 to 30 June 2005. 
Aftershocks were removed by applying the mainshock-window approach proposed by 
[Uhrhammer, 1986]. The WS forecast requires the estimation of three local parameters: the m0-
value, the b-value, and the a-value. 
 In a first step, a map of the local magnitude of completeness m0(is) was generated by 
applying the entire magnitude range (EMR) method of [Woessner and Wiemer, 2005]. The EMR 
method performs a bootstrap estimate of m0 that includes also events below m0. Note that is has 
been shown that the magnitude probability density function estimated with the EMR technique 
becomes discontinuous due to problems with its mathematical formulation (Figure 9 in [Mignan 
and Woessner, 2012], and references therein). Wiemer and Schorlemmer (2007) added an extra 
safety factor of 0.2 to the local m0 estimates and smoothed the results using a Gaussian kernel with 
an unspecified width. 
 The regional b-value for the declustered catalog within the RELM testing area was reported 
to be b = 0.823 (using a magnitude cut-off of m0 = 3.5 and A i’s maximum li e lihood formula 
corrected for magnitude binning, [Aki, 1965; Utsu, 1966; Bender, 1983]). For each cell is the local 
b-value b(is) is estimated for all events with m ≥ m0 (is) that are within a cylindrical volume of 
radius R. The value of R was incremented in the range of 7 ≤ R ≤ 20  m provided that the fixed 
regional b-value lead to a better penalized likelihood score than the use of the locally estimated b-
value (as justified by the corrected Akaike Information Criterion; [Burnham and Anderson, 2002]). 
In cells with insufficient number of events (defined as Nm≥m0 < 50 for R = 20 km), the regional b-
value estimate was used as a default value. Finally, the local a-value a(is) was calculated using the 
formula a(is) = log10[N0(is)] + b(is) · m0(is), where N0 is the total number of earthquakes with m ≥ 
m0(is) located within the spatial cell is. Wiemer and Schorlemmer (2007) chose a default value of 
0.01 m ≥ 0 events for all cells that did not contain observed events above m0(is). 
 The resulting forecast can be regarded as a modified version of the common relative-
intensity based earthquake forecasts (e.g. Nanjo, 2010 and references therein). The cumulative  
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rates λcum(is, im) for each spatial cell is and magnitude bin im for the WS model are given by: 
 

  
     10,

s s ma i b i m i

cum s m t
c

i i T
T




  3-3 

 
where Tc = 21.5 years and Tt = 5 years are the time spans of the learning and forecasting period, 
respectively. Notice that in the original code for computing the WS forecast (D. Schorlemmer, pers. 
comm.) all rates were estimated using Tc = 22.5 years, which does not correspond to the length of 
the input catalog. Moreover, we could not reproduce the reported regional b-value of 0.823 (using 
the same catalog results in b = 0.92 instead). 
 Wiemer and Schorlemmer (2007) pointed out that their method’s results are not quantifiable 
in terms of a likelihood score, i.e. that the method does not allow for an optimization considering 
the entire parameter space. The WS model’s sensitivity to its chosen external parameters (R, 
Nm≥m0, and the default a-value for empty cells) hinders the investigation for the particular reason of 
the forecast’s skill in the RELM experiment. 

3.3.3 A novel approach for probabilistic seismicity forecasting 

In this subsection, we outline a novel method for the development of a forecast that 
incorporates spatial b-value variations. The basic concept of our forecast is based on the method of 
Kamer and Hiemer (2015), which uses penalized likelihood criteria to investigate the optimal b-
value complexity supported by the data. Kamer and Hiemer (2015) proposed random Voronoi 
tessellations to explore optimal spatial partitioning using a minimum number of free parameters. 
For each random realization the overall likelihood is obtained by estimating the b-values in all 
Voronoi regions using A i’s formula. All individual models can then be ran e d by their li e lihood 
scores accounting also for the number of free parameters by means of the Bayesian Information 
Criterion [Schwarz, 1978]. Finally, an ensemble model is calculated by BIC-weighted averaging of 
the top-ranked models (for a detailed description and illustration of the method the reader is referred 
to Kamer and Hiemer, 2015). 
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Figure 3-2 Entire solution space for the declustered 1984 - 2005.5 ANSS catalog (as used by Wiemer and Schorlemmer, 
2007). Average BIC (black line) and negative log-likelihood (gray line) are shown as a function of number of Voronoi 

cells. Error bars correspond to one standard deviation. Crosses denote the BIC of the best 400 solutions and black 
circles highlight values for the two models shown in Figure 3-3. 

 For an unbiased comparison, we use the same catalog as the WS forecast to construct our 
model. We increment the number of Voronoi nodes Nv from 1 to 200, and spatially randomize each 
configuration 2000 times. The resulting solution space is composed of 400′000 models, each 
representing a unique spatial segmentation of R L ’s testing region. All models are ran ed by 
their penalized likelihood using BIC (Figure 3-2). We used the same fraction of top-ranked models 
as in Kamer and Hiemer (2015). Figure 3-3 illustrates two individual solutions with significantly 
different complexities. Each Voronoi region features a local estimate of the b-value (e.g. top panels 
in Figure 3-4), which can be used to correct the local spatial density estimates as a function of 
magnitude (as done in the HKJ model with a uniform b-value). We compare four different methods 
for describing the spatial component of our forecast (Figure 3-4): 
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Figure 3-3 Map view of two individual tessellations. Black dots denote location of Voronoi seeds. The two models 

represent solutions of relatively low and high complexity, respectively. Corresponding BIC scores are given in the title 
and in Figure 3-2. 

 (A) Homogeneous: treating each Voronoi region like a classical area source zone in seismic 
hazard related source models), (B) relative intensity: simple counting of the number of events 
hosted by each cell above the cut-off magnitude (i.e. as applied in the WS forecast), (C) constant-
width kernel: kernel-density estimation using a constant power-law kernel (set to 5 km as a 
benchmark; J. Zechar, pers. comm.), and (D) variable-width kernel: kernel-density estimation using 
a variable kernel with n = 6 (i.e. the same technique as used for estimating the spatial dimension of 
the HKJ forecast). 

 

 
Figure 3-4 Top panels show a close-up of a single Voronoi region (see top left corner in Figure 3-3) and the 

corresponding frequency-magnitude distribution. Dashed line denotes cut-off magnitude. Bottom panels visualize 
results of different techniques for modelling the spatial distribution of seismicity. λ is the estimated number of expected 
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m≥5 events as derived from the  R  parameters. Note that empty gray squares indicate λ = 0. The total sum Σλ over all 
spatial cells in a single Voronoi region is identical for the different techniques. 

 In contrast to the HKJ model, the resulting spatial probability density μ(is, im) of our forecast 
differs for each magnitude bin (as a consequence of incorporating spatially varying b-values). The 
rates λ(is, im) for each spatial cell is and magnitude bin im in our model are given by: 
 
      , ,s m s m mi i N i i P i   3-4 
 
where we followed the same formulation as Helmstetter et al. (2007) for estimating the overall 
magnitude probability distribution P and the total expected number of target events N. We construct 
four different ensemble forecasts based on the four different spatial component modelling 
techniques (Figure 3-4). Each forecast is ensembled by averaging all spatial probability density 
maps obtained from the top ranking individual tessellations. 

3.4 Results 

Figure 3-5 displays the cumulative spatial rates of our four ensemble forecasts using the 
same visual representation as for the WS and HKJ forecasts in Figure 3-1. 
 

 
Figure 3-5 Same as Figure 1 for the ensemble forecasts using the top 400 individual models (crosses in Figure 3-2). 

Notice that the relative intensity based forecast involves cells with zero expectation (compare Figure 3-4B). 

 We subject our forecasts to a pseudo-prospective evaluation based on the metrics as outlined 
by the RELM experiment. The target earthquakes are those with m ≥ 4.95 (in the ANSS catalog) 
occurring between 1 January 2006 and 31 December 2010. During these five years, 31 such target 
earthquakes occurred in the testing region and 20 of these were classified as target mainshocks 
(Table 1 in Zechar et al., 2013). We conducted R L ’s conditional li e lihood and spatial 
consistency test to evaluate the statistical agreement of our forecasts with the observations. Note 
that for the number and magnitude consistency test we obtain the same score as the HKJ forecast, 
because the respective underlying distributions are the same. We found that all our forecasts that 
account for the spatial clustering of seismicity (Figure 3-5B,C,D) are consistent with the 
observation assuming a critical significance value of 5%. The homogeneous model (Figure 3-5A) 
failed both the spatial and overall conditional likelihood tests. 
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 We focus on the evaluation of the skill of our forecasts relative to the first-generation 
models of Helmstetter et al. (2007) and Wiemer and Schorlemmer (2007). As pointed out by 
Eberhard et al. (2012), we replaced the inappropriate R-test used for pairwise model comparison by 
the T- and W-test (Rhoades et al., 2011). Both tests assess whether the average information gain per 
earthqua e of one model (ΛA) over another model (ΛB) is significantly different from zero. The 
average information gain per earthqua e  IN (ΛA, ΛB) is defined as 
 

  
     1

ln ln
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t tt
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where it denotes longitude-latitude magnitude bins in which target earthquakes occurred and the 
term   TN     corrects the result for each forecast’s overall rate. NT is the total number 

of target events (NT = 20 for RELM). The T-test assumes normally distributed rates and is based on 
Student’s paired t-test, and the W-test is the corresponding non-parametric alternative that uses the 
Wilcoxon signed-rank test. 
 

 
Figure 3-6 Rate-corrected average information gain per RELM target mainshock (20 m ≥ 4.95 events in 2006 - 2010) 
with respect to the Wiemer & Schorlemmer model. Confidence intervals are derived from T-test statistics, and letter T 
highlights significance for positive information gains. Note that the number of target events varies for different RELM 
member models due to differences in spatial coverage (for corresponding numbers see Figure 5 in Zechar et al., 2013). 

 We find that the forecasts (B), (C), and (D) have a positive rate-corrected average 
information gain over the WS forecast as a reference, whereas the forecast (A) does not (Figure 
3-6). For the forecasts (B) and (D) these results are significant given both the T- and W-test 
statistics. Notice that the confidence intervals given in our Figure 3-6 for the first-generation of 
RELM models do not agree with the ones published in the Electronic Supplement of Zechar et al. 
(2013). Zechar et al. (2013) reported values for IN together with one sample standard deviation, but 
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did not scale the standard deviation appropriately (i.e. multiplied by the t-quantile and divided by 
√NT, see Rhoades et al., 2011). However, their conclusions regarding the significance of the final 
ranking of RELM models are not affected by this technical error. 

We repeated the comparison evaluation by using the HKJ model as a reference. The rate-
corrected average information gains for our ensemble forecasts (A-D) are -1.22±0.50, +0.25±0.24, 
+0.10±0.29, and +0.17±0.23, respectively (see Figure 3-7). Although not significant in terms of T- 
and W-test, the positive gains obtained for the ensemble forecasts (B-D) seem promising. To further 
investigate the reasons for the skilfull performance of these ensemble models, we constructed 
individual forecasts out of each of the 400 individual partitions (including the two partitions shown 
in Figure 3-3). The T-test results indicate that 20% of the models in (B) and 7% of the models in 
(D) are significantly better than the HKJ forecast. However, it is important to notice that 8% of the 
models in (B) failed to enter the comparison test due to the occurrence of target events in cells with 
an expected rate of zero. 

 

 

Figure 3-7 Rate-corrected average information gain per RELM target mainshock for the individual models that were 
used to construct the ensemble forecasts (Figure 3-2 and Figure 3-5). Top panels show results with respect to the 

Wiemer & Schorlemmer model (for ensemble T-scores see Figure 3-6) and bottom panels show results with respect to 
the Helmstetter model (the T-scores for the ensemble models are: A=-1.22±0.50, B=0.25±0.24, C=0.10±0.29, and 

D=0.17±0.23). Inset text boxes quantify the fractions of models that feature positive information gains/ significantly 
positive information gains/ zero-rate cells with target events. Notice that 8% of the forecasts in B failed the spatial 

consistency test due to target events occurring in such zero expectation cells. 

3.5 Conclusions 

 In this article we outlined the construction of a time-independent earthquake rate forecast 
that uses seismicity catalog data as input. The development of the spatial component of our model 
was facilitated by the lessons learned from the prospective RELM experiment (regarding the 
performance of the HKJ and WS forecast). In the light of both the outcome of RELM and the 
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pseudo-prospective evaluations presented in this paper, we draw the following three main 
conclusions for the construction of a reliable and skilful probabilistic seismicity forecast. 
 (1) Kernel density estimation emerges as a suitable technique for transforming discrete 
earthquake locations into a non-parametric spatial probability density function (e.g. [Stock and 
Smith, 2002]). Both the success of the HKJ model and our own findings support the use of spatially 
varying kernels, however, we did not optimize the constant kernel size and we did not investigate 
different constant kernel shapes. The Relative- Intensity method, i.e. the simple counting of events 
inside spatial cells, suffers from its dependence on the initial definition of the spatial cells. Although 
the method performs well in terms of information gain, we find that, unlike the others models, 8% 
of all the individual forecasts failed the spatial consistency tests. Wiemer and Schorlemmer (2007) 
used a minimum “water line” level to fill up empty spatial cells, but the chosen value was too low to 
provide spatial consistency (as further reported by Werner et al., 2010). Note that the Relative-
Intensity method can be regarded as a variant of the kernel density estimation technique, where each 
kernel represents a constant-width boxcar function (centered on the cell closest to the earthquake 
location; using the same size as the cell itself). 
 (2) We revised two different approaches for modelling the magnitude dimension of a 
seismicity forecast. The HKJ forecast used a tapered Gutenberg-Richter distribution [Kagan, 2002], 
and estimated its parameters (the b-value and the corner magnitude) based on regional large data 
sets (Bird and Kagan, 2004). By contrast, the WS model relied on estimating the GR parameters on 
a local scale and the overall magnitude distribution was obtained by the summation of all local 
ones. However, Woo (1996) showed that the partition of a large zone into subzones of non-equal b-
value is algebraically inconsistent. This is supported by Figure 4 presented in Wiemer and 
Schorlemmer (2007): The sum of all local magnitude distributions is dominated by the 
contributions from small b-values, which in turn leads to deviations from the overall observed 
magnitude distribution. To avoid this “b-value pitfall” (Woo, 1996) we used the regional approach 
by Helmstetter et al. (2007) to constrain the magnitude dimension of the forecasts presented in this 
paper. Note that in the RELM experiment both the HKJ and WS forecasts passed the magnitude 
consistency test (Zechar et al., 2013). 
 (3) We find that the incorporation of spatial b-value variations has the potential to 
significantly increase the skill of a forecast (comparing our forecasts to the HKJ model as a 
reference). Helmstetter et al. (2007) manually investigated several selected regions in California (in 
a non-systematic way). They modified the magnitude distribution in the Geysers geothermal area, 
which has an unusually large b-value. Wiemer and Schorlemmer (2007) estimated the b-value 
locally in each cell using a specific set of external mapping parameters (mapping radius R, 
minimum number of events) and an information criterion that favors the search for local b-values. 
We note that their resulting b-value value map features extreme variations at small scales (in the 
range of 0.35 ≤ b ≤ 2.79, not visible in their Figure 3A due to saturation of the color bar, Wiemer 
and Schorlemmer, 2007). The WS forecast does not have a positive information gain over the 
uniform b-value HKJ model (Figure 3-6), which might indicate that spatial b-value variations do 
not contribute to increasing the skill of a Californian seismicity forecast. However, we argue that 
such a conclusion might be unwarranted due to the poor implementation and lack of objective 
criteria for setting the external mapping parameters in the WS model. We proposed a seismicity 
forecast that remedies such deficiencies by using the method of Kamer and Hiemer (2015). The 
presented model features a positive information gain over the HKJ model. We conclude that the 
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overall success of the HKJ forecast (as a representative for simple smoothed seismicity models) can 
be attributed to their rigorous methodology regarding the spatial and overall magnitude dimension. 
However, we showed for the case of the RELM experiment that these forecasts are lacking skill 
with respect to models that feature large-scale b-value variations. 

3.6 Discussion 

Hindsight is much easier than foresight and only truly prospective testing will reveal if our 
conclusions based on pseudo-prospective evaluations will retain their validity. Nevertheless, we 
point out that our forecast does not require the subjective choice of external parameters, which 
facilitated both the model construction and the investigation of the forecast’s performance regarding 
different methods for modelling the spatial distribution of seismicity. Our results confirm one of the 
main outcomes of RELM that the kernel density smoothing technique should be preferred over the 
Relative Intensity method for estimating the spatial forecast dimension. Our simple investigation 
supports the use of variable kernels in favour of constant kernels (Figure 3-6). However, we did not 
address the issue of kernel size and shape optimization in this study. For instance, Kagan and 
Jackson (2012) outlined drawbacks of variable kernels and promoted the use of adaptive kernels 
instead (as defined by Silverman, (1986)). 
 None of the first-generation RELM models features a positive information gain with respect 
to the HKJ model (Zechar et al., 2013, their Figure 5), which makes Helmstetter et al. (2007) the 
official winner of the RELM experiment. We showed in this paper that the HKJ model lacks skill 
due to the disregard of large-scale b-value variations. Notice that our findings regarding the rate-
corrected average information gains are stable with respect to the number of individual models used 
for constructing the ensemble forecasts (Figure 3-5). 
 We assert that the method introduced by Kamer and Hiemer (2015) is a step in the right 
direction to investigate spatial b-value variations and to incorporate these in probabilistic 
earthquake rate forecasts. However, we find that the repeated random placement of Voronoi seeds is 
computational expensive considering the high number of generated models needed to explore the 
whole solution space. For instance we observe that despite the extensive random search conducted 
in our study, none of the individual optimal partitions succeeded to delineate the Geysers cluster 
(e.g. Figure 3-3) such that the local b-value is consistent with the one reported by Helmstetter et al. 
(2007). Therefore our model features a very large expected rate of m ≥ 5 earthqua e s in that region, 
close to the largest value in all California (Figure 3-5; compare with HKJ in Figure 3-1). Despite 
our model’s s il ful performance, we underline that this setbac  lead to losses in information gain 
with respect to the HKJ forecast. 
 To address the apparent weaknesses of the current random tessellation method we intent to 
investigate more efficient searching schemes in a related future study. Note that by contrast to 
classical b-value mapping techniques (Wiemer and Wyss, 2002), the framework provided by Kamer 
and Hiemer (2015) allows for the objective quantification of the performance of alternative 
tessellation methods in terms of penalized likelihood (e.g. Figure 3-2). We consider such an 
investigation as a much-needed benchmark before releasing any model for truly prospective testing 
within CSEP. We underline that only prospective testing in a well-defined controlled environment 
will help to advance earthquake forecasting related research. 
 The promotion of healthy competition among models and modellers can be regarded as one 
of the major aims of CSEP. Unlike many Hollywood movies, we argue that there is a strong case 



 

75 
 

for a RELM sequel in California to account for all the lessons learned from the first round. The 
seismicity forecast presented in this paper and many recent iterations of the HKJ approach (e.g. 
Werner et al., (2011); Helmstetter and Werner, (2012, 2014)) underline the benefits of RELM 
regarding the improvement of probabilistic seismicity forecasts. 
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4.1 Abstract 

We present a novel method to estimate the multifractal spectrum of point distributions. The 
method incorporates two motivated criteria (barycentric pivot point selection and non-overlapping 
coverage) in order to reduce edge effects, improve precision and reduce computation time. 
Implementation of the method on synthetic benchmarks demonstrates the superior performance of 
the proposed method compared with existing alternatives routinely used in the literature. Finally, 
we use the method to estimate the multifractal properties of the widely studied growth process of 
Diffusion Limited Aggregation and compare our results with recent and earlier studies. Our tests 
support the conclusion of a genuine but weak multifractality of the central core of DLA clusters, 
with Dq decreasing from 1.750.01 for q=-10 to 1.650.01 for q=+10. 

4.2 Introduction 

Since their popularization by Mandlebrot[Mandelbrot, 1977], fractals and fractal geometry have 
been empirically observed and extensively studied in a wealth of natural and experimental physical 
phenomena. A common way to quantify the fractal or multifractal properties of a given set of data 
points is to calculate its generalized (Renyi) dimensions[Renyi, 1970], given as: 
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where  is the scale of observation, pi() is the fraction of data points (e.g, estimated measure) 
within box i of size , q is a real-valued moment order and the sum is performed over all boxes 
covering the data set under investigation. The most popular generalized dimensions are: D0 the box 
counting dimension, D1 the information dimension, and D2 the correlation dimension. Varying the q 
parameter, Dq characterizes the scaling of the underlying measure within the distribution. Thus, 
D  and D respectively correspond to the local scaling of the lowest and highest densities, i.e. to 
the weakest and strongest singularities. For monofractal sets, Dq is a constant independent of q. For 
multifractal distributions, Dq decreases monotonically with q, and the resulting functional 
dependence of Dq as a function of q fully characterizes the underlying scaling properties. However, 
in practical implementations, strong departures from the theoretical values may occur due to edge 
effects related to the shape of the sampled zone, or to the finite number of data points (see for 
instance [Ouillon and Sornette, 1996]). 

In many studies, researchers have tried to account for the edge and finite size effects using 
preprocessing, filtering and exclusion of data[Weitz and Oliveria, 1984; Tence et al., 1986; Torcini 
et al., 1991], which often suffer from some arbitrariness. The results’ sensitivity to these sub ective 
choices is often ignored or deemed incomputable, since these choices often alter not only the 
applied method but also the data used. Although methods for assessing and correcting such bias 
have been formerly introduced (see [Grassberger and Procaccia, 1983; Ouillon et al., 1995a; 
Ouillon and Sornette, 1996] for instance), some recent fractal analysis studies continue to use 
methodologies which exhibit errors up to 0.15 in D0 for uniform 2D distributions[Márquez-Rámirez 
et al., 2012]. Such large error margins and the need for additional corrections to obtain unbiased 
measures have hindered the interpretation and comparison of the results between different 
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multifractal analyses. In this study, we address the issue of edge effects by introducing a novel 
method that accounts for such errors/biases intrinsically during the analysis. This is done with the 
help of two data-driven, non-arbitrary criteria: barycentric pivot selection and non-overlapping 
coverage. 

We test the performance of the method on synthetically generated monofractal and 
multifractal distributions and compare the obtained empirical results with the analytically predicted 
ones. Encouraged by the results, we then proceed with the analysis of large clusters resulting from 
the growth process of diffusion limited aggregation. We provide new results that further inform the 
debate about the possible multifractal nature of such a generic growth process.  

4.3 The Barycentric Fixed Mass Method 

4.3.1 Review of multifractal analysis methods 

In order to put our proposed method in perspective, we shall first give a brief overview of 
the commonly used multifractal analysis methods. Generally, they are classified as either fixed-size 
or fixed-mass methods. Fixed-size methods (FSMs) [Jensen et al., 1985; Tél et al., 1989] estimate 
Dq via the scaling of the total mass M within a constant r-sized ball, as r is increased: 
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The box counting method, which consists in covering the distribution with boxes and 

increasing their sizes, is a classical example of FSMs. Due to its significant bias for small samples, 
the box counting method is regarded as impractical[Greenside et al., 1982]. Inspired from the 
correlation dimension algorithm [Grassberger and Procaccia, 1983], the sand box method [Tél et 
al., 1989] performs better than box-counting by centering circles at arbitrary points on the fractal 
and averaging the mass accumulation as the radii is increased. However, this method is not reliable 
for Dq values when q<1, which quantify the scaling properties of the weakest singularities, i.e. the 
low density parts of the multifractal.  

On the other hand, fixed-mass methods (FMMs) estimate Dq via the scaling of the smallest 
radius r to include a fixed mass m, as m is increase. Several studies report FMMs to be superior to 
FSMs, especially for negative q values [Badii and Broggi, 1988; Grassberger et al., 1988; 
Hirabayashi et al., 1992]:  
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For a detailed review of both FSMs and FMMs, the reader is referred to [Theiler, 1990]. 

Other methods such as wavelet analysis have also been introduced [Arneodo et al., 1988; Ouillon et 
al., 1995b]; however they are also prone to biases due to finite size effects, and their efficient 
implementation generally necessitates to discretize the underlying distribution. 
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The barycentric fixed-mass method (BFM) introduced in the present study uses Equation 
(4-3) to estimate Dq. The method uses two criteria in order to reduce the finite size and boundary 
effects, which we now describe. 

4.3.2 Barycentric Pivot Selection 

In both FSM and FMM, the data points serving as centers for the fixed radius or mass circles 
are chosen randomly within the sample. The Dq’s measured using a small selection of such random 
centers is considered to be good approximation if those centers (hereafter pivot points) are chosen 
according to a uniform distribution on the fractal [Tél et al., 1989]. This assumption reduces the 
computation load and allows a quick analysis of large datasets. However the measured multifractal 
spectrum will depend on the location of the randomly selected pivot points, as the finite size and 
irregular boundaries effects will vary: pivots in the inner core of the fractal will accumulate more 
mass compared to pivots on the outer edges. Repeating the analysis with a different set of pivot 
points will result in variation of the estimated Dq, which controls the precision of the analysis. 
Using all data points as pivots would give a single Dq estimate, increasing the precision, but this 
would not account for the edge effects and would require more computational resources.  

The barycentric pivot selection criterion tackles these two issues and is illustrated in Figure 
4-1. We consider a given data point (plotted in yellow color in Figure 4-1) as a potential pivot. As 
the mass m has been previously defined, we consider its m closest neighbors and compute the 
barycenter of those m datapoints; we also compute r, which is the distance from the pivot to the 
farthest of those neighbors. If the barycenter stands closer to the pivot than to any neighbor, then the 
corresponding couple (m, r) contributes to the averaging term in Equation (4-3). This is the case in 
Figure 4-1 for the circles labeled as A and B, as well as for the corresponding barycenters of the 
enclosed data points labeled the same way. Those circles correspond respectively to masses m=5 
and 10 and radii rA and rB. 

 

 

Figure 4-1 Illustration of the barycentric pivot point selection criterion 
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In the example shown in Figure 4-1, this criterion then ceases to be valid when one extends 
the mass m by 3 units or more, as the circle radius now becomes equal to rC (corresponding to the 
circle labeled C on the figure). The corresponding barycenter is found to be offset to the right so 
that the previous pivot point ceases to be active, as it is no longer the closest point to the barycenter. 
Another example is shown with a circle and its center both labeled as E, corresponding to a mass 
m=25. In the usual methods, be it FSM or FMM, the circle around the yellow point is allowed to 
extend till it encloses all its neighbors. In contrast, using the barycentric criterion, the pivot point 
will be active only up to radius rB in the example shown in Figure 4-1. Applying this criterion to 
each data point, we determine the set of radii for which it can be used as a pivot. 

4.3.3 Non-Overlapping Coverage 

Implementing the classical methods, all N pivot points spread over the whole self-similar 
set, so that each data point contributes N times to the averaging term in Equation (4-3). The 
barycentric pivot selection criterion we introduced above results in pivot points being preferably 
chosen within dense areas where the mass concentration is higher than in their neighborhood. Points 
located within these areas will be more likely to satisfy the barycentric condition over large radii, 
resulting in high density areas having a higher contribution to the averaging term. To account for 
the bias that could result from this selection, we introduce an additional non-overlapping coverage 
(NOC) criterion for each pivot point. For each fixed mass value, we require that the ensemble of 
selected pivot points and their respective fixed mass spheres define a non-overlapping 
configuration. In the absence of the implementation of the NOC condition, the data points located in 
dense regions would be multiply counted by many spheres, leading to an oversampling of the 
strongest singularities. By introducing the NOC criterion, we are effectively equalizing the 
probability of low-density areas to be correctly sampled. The NOC criterion is akin to the 
construction of the pac ing  dimension, which is obtained by “pac ing” equal si ed spheres inside a 
given subset[Tricot, 1982]. However, because our method is a fixed-mass method, the spheres will 
have different sizes, contrary to the usual definition of the packing dimension. Allowing for only a 
limited amount of overlap in the location of the spheres will lead to a tight covering of the dataset, a 
configuration similar to the definition of the Hausdorff dimension[Hausdorff, 1918]. The minimum 
amount of overlap can be approximated by considering a set of three circles covering an area as 
given in Figure 4-2. Once the radius of the circle is fixed, we compute the minimum distance 
between the centers of the circles as the one for which all three circles intersect at the same location 
(ensuring that the whole space within the dashed triangle is completely covered by the three 
circles). By simple geometrical reasoning applied to the case of three circles of equal radii, we 
estimate the radius overlap as 2R/2r = 1 32 13.4%  , where r is the radius of the circles and 2R 
the distance between two distinct circle centers. 
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Figure 4-2 Minimum overlap of circles covering an area 

The NOC criterion is implemented by placing a first random candidate pivot point with a 
circle with radius R0 (satisfying the barycentric pivot selection) and then discarding all pivot points 
(with radii Ri) within a distance of 0.86(R0+Ri). By downscaling the radii to 86.6%, we tend to 
induce an overlap of 13.4% necessary for full coverage. The next pivot point is again chosen 
randomly from within the remaining set of possible pivot points. The random selection and 
consequent discarding is then repeated over the remaining set of points until all candidate pivot 
points are placed (or discarded). For a synthetic dataset we use the multifractal Sierpinski measure 
which is obtained by recursive replication of the density matrix [1 0; 1 2]. Figure 4-3 illustrates the 
first recursion of the generation procedure. At each recursion, the output grid replicates itself 
multiplicatively over each element of the density matrix. This results in tripling (due to the 3 non 
zero elements) of the area and quadrupling (1+0+1+2=4) of the mass with each recursion. The 
reader is referred to[Lynch, 2004] for details. The distributions in Figure 4-4 are obtained by 6 
recursive replications, resulting in a total mass of (1+0+1+2)6=4096 points and a maximum mass 
concentration of 26=64 points. The same figure displays two coverages of a multifractal Sierpinski 
triangle with fixed-mass circles with masses of respectively 84 and 136. The candidate pivot points 
satisfying the barycentric pivot selection are plotted as gray dots and the selected circle centers are 
plotted as black dots. 

 
Figure 4-3 Generation of the synthetic multifractal measure shown in Figure 4-4 from the density matrix given by the 

2x2 table on the left 
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Figure 4-4 Coverage of a synthetic multifractal Sierpinski triangle with fixed-mass circles 

 

4.4 Multifractal spectra of synthetic datasets 

4.4.1 First example with the synthetic multifractal Sierpinski triangle of Figure 4-4  

To estimate Dq, we increment and calculate the expression 
1

log ( )R m
 for sets of 

fixed-mass circles covering the point distribution. The mass range m is sampled at logarithmically 
spaced steps, giving mi=m x 10iα, with α=0.05, where the role of the smallest value m is discussed 
in section 3.2. The curves of averaged radii versus fixed-mass are given on a log-log plot in Figure 
4-5a. Calculating the slope for each  exponent (represented in shades of gray), we estimate both 
Dq and q. The analytical and estimated curves of Dq as a function of q are shown in Figure 4-5b; 
the solid curve represents the exact analytical expression of Dq for the synthetic multifractal 
Sierpinski triangle of Figure 4-4, the dashed curve is the estimation and the gray band corresponds 
to ±1σ obtained over 100 trial measurements, resulting in different configurations of circles 
locations. We thus check that, for this dataset, our method obtains excellent results, even for 
negative q values and such a small dataset. 



 

84 
 

 
Figure 4-5 a) Averaged radii versus fixed-mass for increasing   ; b) Analytical and estimated Dq-q curves for the 

multifractal Sierpinski triangle obtained recursively with the density generator [1 0; 1 2] as explained in the text and 
with Figure 4-3.  

4.4.2 Multifractal spectra of synthetics datasets 

This subsection extends the previous one by exploring the merits and limitations of our 
barycentric fixed mass method applied to different mono- and multifractal measures obtained 
synthetically. Thesynthetic datasets are constructed by recursive replication of a 2 by 2 density 
matrix (See Figure 4-3 for an example). The resulting density grid is normalized so that the lowest 
mass in a cell is 1 and each other grid cell is uniformly sampled by a number of points according to 
its computed mass. An optimal uniform distribution within grid cells featuring more than one point 
is ensured by assessing the locations according to an optimal circle packing within each square. The 
analytical values of Dq of the obtained distribution are given by Equation (4-4) in terms of the 
elements of the density matrix (pi): 
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The formulation of Dq does not depend on the locations of the pi elements, thus shuffling the 

elements of the density matrix would result in a different fractal with the same Dq. To test the 
robustness of the new method, we conduct two test cases for each density matrix: (i) a regular 
distribution where the density matrix is constant through all iterations, and (ii) a random distribution 
where the density matrix is shuffled in the beginning and rotated 90 degrees after each iteration. We 
choose rotation rather than shuffling in order to ensure that the replication is not done with the same 
matrix in consecutive generations (a possibility when shuffling). This is done to minimize the effect 
of discrete scale invariance, which is intrinsic in deterministic synthetic fractals [Sornette, 1998]. 
The 6 test-sets and their details are given in Table 4-1. The figures show the density of data points, 
which increases with the darkness of the grey level. 
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Table 4-1 Synthetic datasets used for the benchmark test 

Name Density 
Matrix 

Replication 
No 

Total  
Mass 

Density Grid 
Regular Random 

Monofractal 
Sierpinski Triangle 

1
3
1 1
3 3

0 
 
 

 8 6561 

(38) 

  

Multifractal 
Sierpinski Triangle 

1
4
1 2
4 4

0 
 
 

 6 4096 
(46) 

  

Multifractal 
Sierpinski Carpet 

2 1
5 5
1 1
5 5

 
 
 

 5 3125 
(55) 

  
 

The proposed non-overlapping barycentric fixed-mass method (NO-BFM) was 
benchmarked against the usual fixed-sized (FS-SB) and fixed-mass sandbox (FM-SB) methods, 
both of these methods being prone to significant edge effects: the mass vs radius (or vice versa) 
growth for a point located at some edge of the fractal differs significantly from a point in the center 
of the fractal, as the corresponding circles include more and more empty space as their radius 
increases. 
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Figure 4-6 Benchmark results for regular and random synthetic distributions 

In order to present an objective comparison, we tried to optimize the implementation and 
maximize the performance of all methods in competition. For the FS-SB method, we limited the 
spanning radius range starting from the maximum of the closest neighbour distance up to the 
minimum of the furtherest neighbour distance (corresponding to the smallest enclosing radius). This 
R interval was logarithmically sampled as Ri=R10iα with α=0.05. For the FM-SB method, the mass 
range m was sampled logarithmically as mi=m10iα with α=0.05.  The minimum mass was set by a 
condition imposed on the maximum number of points within an elementary cell, so as to avoid that 
the spatial distribution of points within that cell becomes uniform (D=2), thus breaking self-
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similarity. The maximum mass was limited to one quarter of the total mass (1/2D with D=2). These 
values were also used for the NO-BFM method with the exception of the maximum mass. The latter 
is determined automatically as the maximum mass level at which only one non-overlapping circle 
can be placed on the fractal, since the averaged <R> term would require at least two circles. It is 
important to point out that FS methods are sensitive to the sampling of the R range: as a result, 
<M> vs R curves can become unstable at oversampled small scales where the radius increment fails 
to result in mass increment. In contrast, the FM methods are more robust since the radius increases 
to enclose the Mth closest neighbor, thus ensuring <R> to increase with M. Another issue regarding 
the benchmarking of the methods is the use of the full (or partial) dataset for the generalized 
multifractal dimensions estimation. The general practice for both FM-SB and FS-SB methods is to 
select a random sample dataset (usually 10 percent of the whole) as pivot points, and perform the 
measurements at these points. The standard deviation of the measure is calculated by different 
randomizations of this subset. For comparability with the NO-BFM method, which considers the 
full dataset for determining the candidate pivot points and eliminating overlaps, we also use the full 
dataset as pivot points for both FM-SB and FS-SB methods. Thus, for the regular fractals, these 
methods do not allow us to compute a standard deviation, while NO-BFM provides a standard 
deviation related to the different possible packing configurations.  

The Dq estimates of the six datasets for the three methods are displayed in Figure 4-6. For 
the random synthetics, estimates are plotted with confidence bounds of ±1σ obtained over 100 
different randomized distributions. One should be aware that all the possible randomization 
outcomes depend on the unique elements of the density matrices. The results clearly show that, for 
the multifractal sets, NO-BFM outperforms both fixed-mass and fixed-sized methods for both 
negative and positive values of q. We observe that, for the regular multifractals, the method tends to 
slightly overestimate Dq. Since we do not observe this in the randomized distributions, we conclude 
that this overestimation is due to the discrete scale invariance effect[Sornette, 1998], which 
becomes more pronounced as the high density mass is progressively being concentrated in one part 
of the fractal. We have also investigated individual coverage configurations of the regular 
multifractals, and observe sudden drops in the number of covering circles as their mass is increased, 
a signature of discrete scale invariance. 

In order to highlight the implications of our synthetic test results, we draw the reader’s 
attention to the randomly generated fractal sets on the right panel of Figure 4-6. We consider these 
sets to be more representative of typically observed distributions due to their stochastic structure. 
For all three cases, the estimation error of NO-BFM is bounded within the range of ±5%. Our 
method performs slightly worse for the regular sets on the left side of Figure 4-6, however this is 
due to the pronounced discrete scaling pattern which is irrelevant for most natural systems. While 
the other methods perform fairly well in the monofractal case, their errors increase drastically when 
the data starts exhibiting multifractality. These results indicate that the sandbox-based methods 
might still be used for monofractal sets, but since such a conclusion implies a prior knowledge 
about the input distribution it should be avoided. Another practical consideration regarding the 
results obtained with the classic methods is that they represent the best-case scenario. As these 
methods are computationally demanding, many applications are conducted over a small subset of 
pivot points rather than the full dataset as presented here. The reason for the poor performance of 
the classical methods is their susceptibility to finite size and edge effects that remained overlooked 
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because previous benchmarks were carried out on 1D multifractals or 2D monofractals [Tél et al., 
1989; Vicsek et al., 1990]. 

In terms of computation resources, although NO-BFM includes both pivot selection (BFM) 
and no-overlap (NOC) criteria, it is still superior to both methods. The computation of the averaging 
term is significantly accelerated since NOC decreases the number of averaged points as the fixed-
mass increases. On the other hand, BFM limits the number of points considered in NOC, 
minimizing the time needed for its computation. 

4.5 Application to the Diffusion-Limited Aggregation (DLA) process 

Having evaluated the accuracy and precision of the proposed NO-BFM method, we now 
revisit the diffusion-limited aggregation (DLA) growth process, which has been the subject of many 
fractal analyses. Diffusion-limited aggregation occurs when particles following a random walk stick 
to a stationary seeding point, becoming themselves locations for the attachment of other later 
incoming particles, leading to the growth of a complex aggregate. The growth of such an aggregate 
is governed by branch (finger) formations and the consequent screening effects of channels between 
the fingers. Due to its simple mechanism and widespread occurrence in natural phenomena, the 
DLA process has been studied extensively. However analyses of its fractal properties resulted in 
different conclusions: some studies[Meakin, 1983; Argoul et al., 1988, 1990; Li et al., 1989] 
suggest that the DLA cluster is a monofractal set with a constant Dq, independent of q while 
others[Meakin and Havlin, 1987; Nittmann et al., 1987; Nagatani, 1988; Vicsek, 1990; Boularot 
and Albinet, 1996] propose that it is a multifractal. The differing findings are likely to be influenced 
by the finite size and boundary effects, which affect all Dq estimation methods to different degrees. 
In a recently published study[Hanan and Heffernan, 2012], the authors tried to address this and 
several other issues by limiting the pivot point selection to points within a distance 0.5Rg< d <1.5Rg 

from the cluster seed point, where Rg is the radius of gyration defined as:  
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where ri is the distance of the i-th particle to the barycenter of the DLA cluster. 

The R interval for the slope estimation was chosen as 0.032Rg < R <0.32Rg. The 
study[Hanan and Heffernan, 2012] suggests that the multifractality of the DLA cluster is less 
pronounced than previously thought by some authors, proposing a constant Dq value of 1.69. It is 
difficult to assess the consistency of these results, as they are likely to be affected by the somewhat 
arbitrary criterion for pivot point selection and R interval. The authors also indicate that their 
estimate of Dq is likely to be underestimated due to the boundary effects inherent in the fixed-size 
sandbox method.  
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Figure 4-7 Dq-q curves estimated for 100 DLA clusters with increasing masses given in the inset with different colors 

We performed a multifractal analysis on DLA clusters using our new NO-BFM method. For 
this purpose, we grew 100 off-lattice DLA clusters up to a total mass of 106 points each. To study 
the evolution of Dq as the clusters grow, we estimated Dq at mass increments of 105 points, resulting 
in 10 estimates for each cluster as it grows. For robustness of the analysis, as with the synthetics, we 
required a minimum of 2 circles to calculate the averaging term. The mass was sampled with a 
logarithmic step α=0.05. The sampling is initiated at a mass of 7 points based on the fact that one 
circle surrounded by six other circles corresponds to the hexagonal lattice, which is the lattice 
arrangement of circles with the highest density, as proven by Lagrange. The Dq-q curves for the 10 
different masses are shown in Figure 4-7, where the error bars indicate the standard deviation 
obtained over the 100 clusters. To check the convergence of our results in Figure 4-8, we plot Dq as 
a function of the number of data points in the cluster for q=-10, 0 and 10. 
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Figure 4-8 Convergence of Dq versus the number of samples in DLAs 

To assess the significance of the obtained measure, we conducted the following test: we 
created a synthetic monofractal set with Dq=1.63 (log(6)/log(3)) and confirmed that the method 
retrieves the correct dimension with a maximum error of 0.03 with sample sizes as low as 66=46656 
points. Secondly, we created a synthetic multifractal having a Dq curve similar to what we observe 
in the DLA datasets. The density matrix was chosen as [2 0 2; 0 2 0; 2 1 2]. We confirmed that, for 
a sample size of 115=161051 points, the method retrieves the correct dimensions with a maximum 
error of 0.02. The results are presented in Figure 4-9. We chose regular constructions because they 
can be associated with the mean DLA branching number 5, resulting in synthetic clusters that look 
somewhat similar to DLA clusters. 
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Figure 4-9 Dq-q curves obtained for mono and multifractal toy DLA synthetics 

In order to put our results in perspective, Figure 4-10 shows our obtained multifractal Dq 
curves together with those obtained in[Hanan and Heffernan, 2012] and [Vicsek et al., 1990] for 
DLA clusters with similar mass. All three results are for DLA clusters of 1 million particles. In 
contrast to[Hanan and Heffernan, 2012] that uses only 104 random pivot points, [Vicsek et al., 
1990] uses 5*104 random pivot points and square boxes for the fixed-size sandbox method. Also, 
the R interval for this study was wider: 0.037Rmax < R <0.5Rmax. 
 

 
Figure 4-10 Comparison with Dq-q curves reported by Hanan et. al. 2012 Vicsek et. al. 1990 
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4.6 Conclusions 

We have introduced a novel method, coined the Barycentric Fixed Mass Method, to address 
the ubiquitous edge and finite size effects that plague current determination of multifractal spectra. 
The method incorporates two motivated criteria (the barycentric pivot point selection and the non-
overlapping coverage) in order to reduce edge effects, improve precision and reduce computation 
time. We have presented extensive tests on synthetically generated mono- and multifractals, both 
deterministic and random, which demonstrate the superior performance of our proposed method. 
We have then applied it to the still open question of whether large clusters generated by diffusion-
limited aggregation (DLA) exhibit genuine multifractality. Our tests support the conclusion of a 
genuine by weak multifractality of the central core of DLA clusters, with Dq decreasing from 
1.750.01 for q=-10 to 1.650.01 for q=+10. 
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5.1 Abstract 

We present the “condensation” method that exploits the heterogeneity of the probability 
distribution functions (PDF) of event locations to improve the spatial information content of seismic 
catalogs. As its name indicates, the condensation method reduces the size of seismic catalogs while 
improving the access to the spatial information content of seismic catalogs. The PDFs of events are 
first ranked by decreasing location errors and then successively condensed onto better located and 
lower variance event PDFs. The obtained condensed catalog differs from the initial catalog by 
attributing different weights to each event, the set of weights providing an optimal spatial 
representation with respect to the spatially varying location capability of the seismic network. 
Synthetic tests on fractal distributions perturbed with realistic location errors show that 
condensation improves spatial information content of the original catalog, which is quantified by 
the likelihood gain per event. Applied to Southern California seismicity, the new condensed catalog 
highlights major mapped fault traces and reveals possible additional structures while reducing the 
catalog length by ~25%. The condensation method allows us to account for location error 
information within a point based spatial analysis. We demonstrate this by comparing the 
multifractal properties of the condensed catalog locations with those of the original catalog. We 
evidence different spatial scaling regimes characterized by distinct multifractal spectra and 
separated by transition scales. We interpret the upper scale as to agree with the thickness of the 
brittle crust, while the lower scale (2.5km) might depend on the relocation procedure. Accounting 
for these new results, the Epidemic Type Aftershock Model formulation suggests that, contrary to 
previous studies, large earthquakes dominate the earthquake triggering process. This implies that 
the limited capability of detecting small magnitude events cannot be used to argue that earthquakes 
are unpredictable in general. 

5.2 Introduction 

The latest advances in the instrumentation field have increased the station coverage and 
lowered seismic event detection thresholds. This has resulted in a vast increase in the yearly number 
of located events. The abundance of data comes as a double-edged sword: while it facilitates more 
robust statistics, this comes at the cost of larger computations, with execution times often growing 
exponentially with the number of data points. In many analyses studying temporal or spatial 
clustering, a common approach to deal with the large amount of data is to introduce threshold 
criteria. These can be minimum magnitude, maximum location uncertainty or a specific time or 
space window. While large magnitude events are of greater importance for risk assessment studies, 
events with small location uncertainties are crucial for accurately mapping the active/potential 
unknown structures [Wang, 2013; Wang et al., 2013]. Some studies prefer limiting their data to the 
most recent periods, however, there is strong evidence that the notion of time invariance does not 
hold for seismicity distributions, at least on the time scales covered by existing catalogs. Apart from 
containing a degree of arbitrariness, implementing these thresholds discards data that clearly 
contain some information, and could potentially be useful. 

In this study, we present a novel method that (i) assesses the relative importance of each 
earthquake hypocenter location data point using its uncertainty as a metric, (ii) reduces the size of 
the dataset, (iii) preserves the total number of events and (iv) helps improving the signal to noise 
ratio for statistical analyses such as the multifractal analysis of the spatial distribution of 
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hypocenters. Our motivation stems from the fact that the geometrical information contained in a 
seismic catalog is not optimally encoded, is redundant and thus requires unnecessary memory. In 
other words, the same spatial information can be stored allocating fewer resources. This encoding 
inefficiency is a result of the sequential data entry where new events are recorded without taking 
into account the information contained in previous ones. As an extreme example, consider several 
events with identical parameters occurring at the same location. For the purpose of spatial 
clustering, it would be optimal to group together and represent them by a single entry with a 
multiplier (weight). Instead, they each occupy a memory space as if they provided distinct spatial 
information. We can generalize this idea for events with locations that are not identical but 
relatively close: given its mean vector and covariance matrix of position errors, each event can be 
regarded as a representation of the distribution of its possible locations (i.e. a probability density 
function, PDF). We propose to implement the re-grouping at this micro-scale in order to optimize 
the encoding of the joint spatial distribution of all events in a catalog. In this way, we also minimize 
biases of statistical estimators for variables depending on the whole spatial information.  

The method does not rely on any assumptions regarding the physical processes generating 
the point distribution. As such, the method can be readily applied to other point process datasets 
featuring location uncertainty (e.g. meteorite impacts, explosions, sunspots…). To facilitate a non-
arbitrary implementation, the following physical analogy is useful: if each event entry describes the 
possible location distribution of the event (i.e. microstates), the logarithm of the squared deviations 
can be regarded as its entropy. The higher the entropy is, the wider is the scatter of microstates.  
With this definition in mind, the condensation phenomena can be viewed as water vapor (high 
entropy state) liquefying upon encountering a low entropy setting (lower temperature). Following 
the same analogy, we can imagine events with high location uncertainties as clouds of water vapor 
and the ones with more certain locations as droplets of cold water. Under such a setting, the vapor 
would condense onto the nearest droplets reducing the overall volume (i.e data size) while 
conserving the total weight content. It is important to note that in this thermodynamic analogy the 
entropy is related to the actual scatter/disorder of the microstates of gases and liquids. In the case of 
earthquake locations, the entropy is an expression of the lack of precise knowledge due to 
observational limitations. 

Similar concepts of spatial clustering and entropy have been used in previous studies [Jones 
and Stewart, 1997; Nicholson et al., 2000], with the main difference that these aimed at relocation 
of events to reveal underlying structures. The collapsing method introduced by Jones and Stewart 
[Jones and Stewart, 1997] iteratively moves each event towards the centroid of all events enclosed 
by its uncertainty ellipsoid. The process stops when the distribution of all movements becomes 
comparable to the variance of the spatial distribution of the catalog. This method successfully 
highlights structures by collapsing multiple events onto each other. However, synthetic tests with 
uniformly distributed random points produced similar linear structures that could be proven as 
artifacts of the method. To counter this downside, Nicholson et al.[Nicholson et al., 2000] 
introduced a weighting function in the calculation of the centroid. However, their synthetic test 
showed that the artifacts were still present, only reduced in amplitude. The method presented in this 
paper 1) preserves the total seismicity rate of a catalog while minimizing the data size without 
altering the location of the events, 2) illuminates possible structures as well-located events are 
highlighted by the condensation of the poorly located ones in their vicinity and 3) regularizes the 
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catalogs with respect to the spatially varying location quality. This provides an efficient encoding of 
the location quality for further analysis such as inter-event distances. 
 The paper is structured as follows. First, we present an illustrative description of the 
condensation method and its application to Southern Californian seismicity. In Section 3, we 
investigate quantitatively and visually the effect of condensation in terms of likelihood gain and 
weight transfer. In Section 4, we perform a comparative multifractal analysis on the original and 
condensed catalogs. We conclude our paper with a discussion of our findings and their implications 
for interpreting previous studies and for future studies. 

5.3 The Condensation Method 

5.3.1 Description and illustration of the method 

Condensation transfers weight from events with large location uncertainty (“sources”) to 
events with smaller location uncertainty (“targets”). For this purpose, reported hori ontal and 
vertical standard location errors are used to estimate an isotropic overall variance for each event in 
the catalog (see Equation (5-1)).  
 
 2 2 2 2
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The implementation of the method follows the following steps:  
1) Assign a unit weight to each event and sort them in descending order according to their 

overall variance. Select the event with the highest variance as a source. 
2) Sample the source’s location P F  using a large number of points (typically 1,000; labeled 

as offsprings). 
3) Compute the responsibility of each event (targets and current source) in generating each 

offspring defined in 2). This is done by estimating the likelihood of the offspring conditioned on the 
target. 

4) Each event gains a weight proportional to the ratio of the number of offspring for which it 
had the largest responsibility. 

5) We consider the next source event and go to step 2. 
The condensation stops when all events except the ones with the lowest variance have been 

processed, i.e., when there are no target events for the latter to condense on. For a better 
understanding, we present a step by step illustration of the method applied to a set of 1D normal 
distributions representing location of five events (Figure 5-1). The distributions have respectively 
variances of 0.5, 1, 1.5, 2, and 2.5 and are labeled with letters A to E. The event E, having the 
largest variance, becomes the initial source.  Condensation continues until all events except A, 
which has the lowest variance, have transferred their weight to targets providing the higher 
likelihoods (Figure 5-1). At the end of the condensation, one observes that the weights of events E 
and C decrease while those of events A and B increase, the total sum of weights being preserved. 
The weight of event D remains almost unchanged since no event with better or worse variance is 
present in its vicinity. For applications to seismic catalogs, this indicates that, in areas with sparse 
seismicity, condensation will tend to conserve the initial weight distribution (i.e. the initial structure 
of seismicity). However, many catalogs feature pronounced spatial clustering of events, which may 
differ significantly in their location accuracies. Therefore, condensation leads to a large fraction of 
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events ending up with vanishing weights. Discarding these events allows for a reduction in the 
overall data size of the catalog without any loss in the overall information on the spatial structure 
encoded in the catalog, as we demonstrate below.  
The output of catalog condensation is a vector of weights assigned to each individual event in the 
original input catalog. The sum of these weights is equal to the total number of events in the input 
catalog. Events can be classified into the following four categories according to their final 
condensation weights: 

 
Figure 5-1 Illustration of the condensation procedure for a set of 1D distributions. These are labeled with letters A to E 
according to their standard deviations [0.5, 1, 1.5, 2, and 2.5]. At each step, source events loosing mass are represented 
by downward arrows while target events gaining mass are labeled with upward arrows. The portion of the probability 

weight assigned to each event is depicted with its respective color 

a. Weight >1: Events that are better located with respect to their neighbors and have thus 
increased their weights. Note that good location accuracy does not necessarily lead to 
increased weights since this depends on the local presence of events with higher location 
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uncertainty. Being selected as a source or a target depends on the respective accuracies of 
the events with overlapping location error PDFs. 

b. Weight <1: Events that have relatively poor location accuracy and are in the close proximity 
of better located events. It is likely that these events will further decrease their weights in the 
future, as location capabilities of the seismic network improve and as new events with better 
accuracy are recorded in their vicinity. 

c. Weight =1: This occurs for spatially isolated events that neither gained nor lost weight. This 
can also be observed when several events are close together and have identical variances. 
Another possibility is that during condensation, an event acquires the exact weight that it 
loses and hence ends up with a weight ≈1.  ow ever, due to computational precision, the 
final weight is unlikely to be precisely 1. 

d. Weight =0: Events whose spatial PDF information can be virtually expressed as a 
combination of other better located events. These events can be discarded and hence reduce 
the catalog's length significantly. 

The weights of the condensed catalog can be regarded as coefficients of spatial importance 
optimized with respect to the spatially varying location capability of the seismic network.  
 

 
Figure 5-2 Synthetic distributions of 3360 points with different fractal dimension (D). Each distribution is generated by 

iteratively replicating and permuting the 3D template matrices given in the upper left corners. L and M denote the 
factors of length reduction and mass increment per iteration, where log(M)/log(L)=D. See Kamer et al. (2013) for 

details. 

5.3.2 Synthetic Test with Fractal Distributions 

In this subsection, we generate synthetic fractal distributions, perturbed with realistic 
locations errors, and compare their spatial information content before and after condensation. We 
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consider seven distributions (Figure 5-2), with different fractal dimensions D=[3.00, 2.58, 2.00, 
1.58, 1.00, 0.63, 0] generated by recursive replication of template 3D density matrices (for a 
detailed description of this process the reader is referred to Figure 3 of [Kamer et al., 2013a]). The 
fractals are generated within a cube of 10km side length and contain 3360 points. For a realistic 
representation of location uncertainties, we use the covariance matrices of 3360 aftershock events 
following the 1992 M7.3 Landers earthquake [Wang et al., 2013]. The location uncertainties 
associated with each of these events has been determined using a probabilistic inversion and 
expressed by six independent elements in their covariance matrix. The median values of the square 
roots of the eigenvalues are σI=0.89 km, σII=0.39 km and σIII=0.27 km. The initial locations are 
stored as the true locations and then perturbed using the randomly assigned covariance matrices. 
The resulting perturbed locations and the covariance matrices become the perturbed catalog. This 
perturbed catalog is then condensed to obtain a vector of weights. We then calculate the likelihood 
of the true (unperturbed) locations with respect to the perturbed (LP) and condensed catalog (LC) 
according to the following formulation: 
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where N is the number of points, f is the multivariate normal probability density function, ti is the 
true location of point i, rj is the perturbed location, σj is the covariance matrix and wj is the 
condensation weight of point j. Thus, we consider each catalog as a Gaussian mixture model 
represented by a weighted sum of the multivariate normal distributions associated with each event 
[Bishop, 2007]. We calculate the probability that the true locations were generated by either of these 
models. This formulation allows us to quantify the likelihood gain for any given arbitrary set of true 
locations. Figure 5-3a shows the log likelihood gain per point (ln(Lc/Lp)/N) for the seven fractal 
distributions as a function of the number of data-points. We observe significant likelihood gains for 
all cases except the uniform (D=3.00) case. The gain increases with both the number of samples and 
the degree of clustering (decreasing D), thus suggesting that it is governed by the minimum spacing 
(∆d) between the points. To investigate this hypothesis, we calculate analytically ∆d for each fractal 
distribution using the following formula: 
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where L and M are the unit length and unit mass of the template matrices given in Figure 5-2. As 
expected, the li e lihood gain increases as ∆d decreases (Figure 5-3b). However the fact that the data 
do not collapse on a single curve suggests that the minimum spacing is not the sole controlling 
parameter. Spatial clustering of small spacings, is another factor, as well as the interplay between 
the local anisotropy of the events’ locations and the one of the uncertainty ellipsoids.  
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Figure 5-3 Log likelihood gain of the condensed catalog with respect to the original catalog. Each curve corresponds to 
a different distribution with a given fractal dimension D, calculated for an increasing number of events. b) All curves, 

except D=0, plotted against the minimum spacing calculated from Equation (5-3). 

The likelihood gains obtained through condensation can be understood in terms of 
information retrieval. Each time an earthquake is located, the true location is perturbed with an error 
vector due to instrumental (signal to noise ratio) and modeling (Earth structure) errors. For a single 
event, having multiple wave arrival time observations allows one to estimate the amplitude of this 
error vector (expressed as the standard error) but not its orientation. Thus, each time we locate an 
earthquake, this information is lost. Condensation facilitates the retrieval of this orientation by 
exploiting the mutual information of proximate events and giving preference to the more certain 
ones.  

5.4 Application to South Californian Seismicity 

5.4.1 Condensing the catalog 

As a first application of the method, we use the waveform relocated Southern California 
earthquake catalog of Hauksson et al. [Hauksson et al., 2012]. Most of the events in this catalog 
have been relocated using differential travel times and a 3D velocity model. Since condensation is 
based on the absolute location quality of all events, we consider the absolute location errors that are 
provided as one-sigma errors for the horizontal and vertical components. As a pre-filter to reduce 
the size of the catalog, we exclude events with horizontal or vertical error larger than 20 km, 
resulting in a total of 493,025 events. Keeping these events would not change our results as their 
large location errors implies that the condensation method would make them disappear by 
distributing their mass approximately uniformly to a large number of neighboring events. The 
493,025 events are ranked by their descending isotropic variances. Since the one-sigma errors are 
reported with a 100m resolution, the isotropic variance distribution becomes discrete and results in 
a total of 5,651 distinct groups. The events in each group are then used in turn as sources, 
transferring weights to target events in lower variance groups. The condensation reduces the 
weights of 111,487 poorly located events to zero, while increasing correspondingly the weights of 
better located events in their vicinity. This corresponds to an overall data length reduction (i.e. 
compression) of 22.6%. An investigation of the temporal distribution of events with zero weights 
reveals that they are most numerous (≈10,900) in 1992, the year of the Landers earthquake, which 
triggered a large number of aftershocks. The year with the second largest number of events with 
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 ero weight is 1994 (Northridge earthqua e ) with ≈9,700 events (40% of all events recorded that 
year). This implies that many aftershocks of these two major earthquakes in Southern California 
have been recorded with rather poor location quality relative to the other events, notwithstanding 
the relocation procedure.  

The probability density distributions of the vertical, horizontal and isotropic errors over all 
events belonging to the original and condensed catalogs are shown in Figure 5-4. The change in the 
distributions depicts the weight transfer occurring between events with high and low spatial 
variance governed by their proximity and relative location error distributions. 
 

 
Figure 5-4 Probability density distributions of vertical, horizontal and isotropic errors of the original and condensed 

catalogs: first row of panels for the whole catalog;  second row of panels for events with  ≥2 

In the presented study the condensation method is applied to a set of hypocenter (i.e 
nucleation points), and yields a new catalog of nucleation points (which is a subset of the original 
one). The analysis of nucleation points can be regarded as a robust approach due to the fact that any 
statistical analysis of seismicity is dominated by the more numerous small magnitude events 
[Sornette et al., 1996]. For instance, constraining the analysis to events smaller than M5 (rupture 
length of ~1.4km [Wells and Coppersmith, 1994]) reduces the number of data points only by 107 ( 
~0.02% of all events) and thus the results remain unaffected. Furthermore, the extended geometry 
of large earthquakes is always illuminated by nucleation points of small magnitude aftershocks. 

5.4.2 Visualizing and quantifying weight transfer due to condensation 

Since seismicity is distributed within a volume, visualizing the weight transfer occurring as 
a result of the condensation would require volumetric density plots and slice planes at various 
angles, which become difficult to interpret. For a simpler illustration, in this section, we project all 
events onto the surface and thus omit the vertical dimension. With this simplification, condensation 
is performed in 2D, relying only on the horizontal location errors. In this 2D setting, the 
compression rate increases to 41.1%. To estimate the probability density distributions, the spatial 
extend of the catalog is discretized using a 100x100 m grid resulting in a 8052 x 8341 matrix. The 
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probability density functions for each catalog are estimated at each of these grid points by summing 
up the weighted contributions of the PDFs of all individual events. Notice that the two catalogs 
differ only in the weights assigned to the events (a constant of 1 for the original and varying weights 
for the condensed one). The total PDF of the original catalog is then subtracted from the total PDF 
of the condensed one. The total displaced weight is calculated by integrating the absolute 
differences divided by two, in order to account for the fact that transferred weight is double-counted 
as it is reported as negative at the source location and as positive at the target. At the initial 
resolution of 100 m, we calculate that 14.7% of the total weight has been displaced due to 
condensation. We note that the percentage of displaced mass and the compression level (41.1%) are 
not directly comparable because the former is coarse grained at the scale of the grid cells (100m) 
while the latter is estimated on a pointwise basis (i.e. corresponding to a cell si e → 0).  

 

 
Figure 5-5 Areas of weight enrichment (red or dark gray) and depletion (green or light gray) comparing a) the original 
and condensed catalogs of Southern California, b) two uniform random spatial PDFs with similar extends for Gaussian 

filters with bandwidths of σ=1 and σ=5  m. c) Percent of displaced weight as a function of filter bandwidth σ. 

The percentage of displaced weight includes all displacement occurring at scales larger than 
the grid resolution (100m). To depict the effect of condensation more accurately, we quantify 
weight displacement as a function of distance. For this purpose, we apply a rotationally symmetric 
Gaussian low-pass filter to the total PDFs of the two catalogs (original and condensed). By varying 
the bandwidth of the filter, we can effectively coarse-grain the PDFs, so that the measure is 
insensitive to weight displacement occurring at scales smaller than the filter bandwidth. We observe 
that the total displaced weight decreases significantly as the scale of interest is increased (Figure 
5-5c).  

To put these results in perspective, we compare the displaced weight as a function of the 
filter bandwidth curve with the same curve obtained by subtracting two random PDFs spanning the 
same extent as the seismicity catalog (Figure 5-5). The random PDFs were generated by assigning 
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each cell with a random number drawn from a uniform distribution [0 1] and then normalizing the 
whole matrix so that it integrates to one. The difference of two standard independent uniform 
random variables (X1,X2) follows the standard triangular distribution given as: 
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As discussed above, the analysis of displaced weight considers half of the absolute differences, 
whose distribution is given as: 
 
 ( ) 2(1 ) 0 1Yf z z z     5-5 
 
Equation (5-5) represents a right-angled triangle and as such this distribution has its mean at z=1/3. 
Thus, for two random PDFs, the expected displaced weight at the original resolution is 33%, which 
is considerably larger than the 14.7% observed for the original and condensed catalogs of Southern 
California seismicity. For increasing spatial bandwidths, the two curves given in Figure 5-5c show 
that the weight transfer due to condensation is focused at small scales (~1km) and decreases more 
rapidly as a function of scale for the natural catalog than for a random displacement process. The 
limited scale of mass transfer is also in agreement with the distributions of horizontal location errors 
given in Figure 5-4. These results show that condensation is consistent with the overall location 
error distribution and preserves the overall spatial features.   

For a qualitative inspection, in Figure 5-6, we superimpose the fault traces obtained from the 
Community Fault Model [Plesch et al., 2007] onto the map of weight depletion/enrichment coarse-
grained at bandwidth σ=3km. This value is chosen in agreement with previous fault observations of 
apparent low-velocities zones with similar widths [Feng and McEvilly, 1983]. Maps obtained for σ 
=[1-10km] are presented in the electronic supplement. Notice that the total weight transfer at this 
spatial scale (σ=3km) is merely 0.23% and the maximum weight transfer at each grid cell does not 
exceed 1.5*10-10. Due to the omission of the depth component in this 2D illustration, weight 
transfers on dipping faults are projected on the surface and hence the depletion/enrichment regions 
close to these faults may be exaggerated, but nevertheless limited at the scale of analysis (σ). In 
many places, such as the Brawley and Laguna Salada fault zones in the South-East, the structures 
highlighted by weight increase coincide with the observed and extruded fault traces. It is possible to 
infer larger structures such as the San Jacinto Fault and the San Andreas Fault. In other parts of the 
map, regions of weight accumulation seem to produce patch-like features without a linear structure. 
This is mostly observed on the San Clemente Fault where condensation highlights small features 
perpendicular to the fault trace. One explanation could be that this is due to issues of offshore 
network coverage; however for the Santa Cruz - Santa Catalina Ridge Fault Zone, which is also 
offshore, we observe a good correspondence. These results, together with the likelihood gains 
reported in the previous section, suggest that the condensation method can be used to complement 
fault network reconstruction applications, which rely on high quality location data [Ouillon and 
Sornette, 2011; Wang et al., 2013].  
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Figure 5-6 Areas of weight enrichment (red or dark gray) and depletion (green or light gray) resulting from 

condensation at bandwidth of 3km, superimposed with the fault traces obtained from the Community Fault Model. 
Individual faults are labeled with the following abbreviations: San Andreas (SAn), Santa Cruz (SCr), San Clemente 

(SCl), San Jacinto (SJc), Brawley (Brw) and Laguna Salada (LgS). 

5.5 Multifractal properties of the original and condensed catalogs 

In this section, we investigate the implications of the condensation method for the 
multifractal properties of the seismicity distribution. Such an investigation is of particular interest 
because it provides a quantitative description of the spatial patterns at various scales. Since 
condensation allows us to incorporate the location quality information in the form of a scalar 
weight, we are interested in whether we find the same values in the appropriate scaling regimes for 
both original and condensed catalogs. Additionally, we are interested in re-evaluating scaling 
regimes at small scales that until now have remained concealed due to the effect of location errors 
[Marsan, 2005; Kagan, 2007].  

5.5.1 The multifractal formalism and classical estimation methods 

Even a simple questions such as “ ow  long is the coast of  ritain” [Mandelbrot, 1967] can 
become problematic since the answer changes as a function of the observation scale. The formalism 
of Fractals aims to extract this functional form (i.e recursive scaling regime) and provide insight 
into the underlying phenomena. The term fractal (monofractal, or homogeneous fractal) implies that 
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the scaling can be quantified by a single exponent, the fractal dimension. Multifractal distributions 
can be seen as different sets with different scaling properties interwoven altogether. The 
consequence is that the singularity of the underlying distribution fluctuates from place to place, the 
complexity of the structure being fully encoded by the multifractal spectrum. A common way to 
quantify the fractal or multifractal properties of a given set of data points is to calculate its 
generalized (Renyi) dimensions [Renyi, 1970], given as: 
 

 
1

1

1

log( )
lim

log( )

q
iq

i
q

p
D










 5-6 

 
where  is the scale of observation, pi() is the fraction of data points (e.g, estimated measure) 
within box i of size , q is a real-valued moment order and the sum is performed over all boxes 
covering the data set under investigation. Varying the q parameter, Dq characterizes the scaling of 
the underlying measure within the distribution. Thus, D  and D

respectively correspond to the 
local scaling of the lowest and highest density areas, i.e. to the weakest and strongest singularities 
of the distribution. For monofractal sets, Dq is a constant independent of q. For multifractal 
distributions, Dq decreases monotonically with q. 

The commonly used multifractal analysis methods can be classified into two broad classes, 
called fixed-size and fixed-mass methods respectively. Fixed-size methods (FSMs) [Jensen et al., 
1985; Tél et al., 1989] estimate Dq via the scaling of the total mass M (i.e number of data points) 
within a constant r-sized sphere, as r is increases: 
 
 1log ( ) ( 1) log( )q

qM r q D r    5-7 
 
Fixed-mass methods (FMMs) estimate Dq via the scaling of the smallest radius r to include a fixed 
mass m, as m is increases: 
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Several studies report FMMs to be superior to FSMs [Badii and Broggi, 1988; Grassberger et al., 
1988]. For a detailed review of both FSMs and FMMs, the reader is referred to [Theiler, 1990]. 

Many previous studies have undertaken the task of estimating fractal dimensions for seismic 
catalogs. However, most of the published results are questionable because I) the used methods are 
prone to finite size and edge effects that have not be adequately addressed [Theiler, 1990]; and II) 
of lack of benchmarks with synthetic fractals with analytically derivable fractal dimension. For 
instance, many studies use the correlation integral [Grassberger and Procaccia, 1983] to estimate 
the fractal dimension (D2) of hypocenter or epicenter sets [Helmstetter et al., 2005; Marsan, 2005]. 
The observed scale ranges in such studies are usually quite limited and, due to the inherent finite 
size and edge effect, it is difficult to quantify the quality of the measure. Phase transitions, observed 
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in the form of change of slopes, are usually identified manually and their attribution to physical 
dimensions (such as seismogenic layer thickness) or locations errors (horizontal or depth) remains 
somewhat speculative. Kagan[Kagan, 2007] has made notable efforts to facilitate the applicability 
of the correlation dimension measure by characterizing and correcting for edge effects and location 
errors. In the same study, Kagan casted doubt on the significance of fractal analysis performed 
under these conditions and proposed that studying the higher order point configurations might be a 
better option. Interestingly, Hirabayashi et al[Hirabayashi et al., 1992] reached the same conclusion 
when they showed that using fixed-mass methods provides more reliable results in multifractal 
analysis of seismic catalogs. Nevertheless, even with the use of FMMs, dealing with edge-effects 
remains a problematic task often tackled by introducing scaling limits or data censoring 
[Hirabayashi et al., 1992; Zamani and Agh-Atabai, 2011]. 

5.5.2 The Barycentric Fixed Mass estimation Method 

To address the problems associated with the commonly used methods, we have previously 
introduced a new non-parametric method for multifractal analysis [Kamer et al., 2013a]. The so-
called Barycentric Fixed Mass (BFM) method incorporates two criteria aimed at reducing edge 
effects, improving precision and decreasing computation time; a) barycentric pivot point selection 
and b) non-overlapping coverage. As most fixed mass methods, the BFM method has more stable 
results at small scales, since it avoids sampling empty spaces by extending the measuring scale to 
the next neighboring point. Figure 5-7 compares the performance of the BFM method with two 
commonly used FMM and FSM. 
 

 
Figure 5-7 Dq vs q curves for two synthetic multifractal point distributions given in the upper right insets: A multifractal 

Sierpinski triangle (left) and Sierpinski carpet (right). Analytically derived true Dq (solid line) is shown together with 
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the BFM method (diamonds), fixed-size (squares) and fixed-mass (circles) methods. Reproduced from Figure 6 of 
Kamer et al. [2013] 

5.5.3 Multifractal analysis of the Southern Californian Seismicity with robust 

estimation of the different scaling regimes  

For a given dataset, the Dq and q values are estimated from the moment curves 
1

log ( )R m
 calculated from fixed-mass spheres covering the point distribution. Incrementing 

the exponent  allows sweeping q in the range of interest. Previous studies have found that, for 
negative q values, the Dq measure becomes unstable due to the inherent undersampling of the 
emphasized regions [Amitrano et al., 1986; Hirabayashi et al., 1992; Ouillon et al., 1996]. That is 
why we focus our attention on dimensions D0 to D5. Dq is estimated from the ( )q -moment curve’s 
slope, while q is obtained subsequently as q=1+ ( )q /Dq, and we use ( )q  values of [-3, -2, -1, 0.1, 
1, 2, 3, 4, 5, 6]. This allows to roughly cover the interval [0;5]q . The mass range m is sampled at 
logarithmically spaced steps rounded to their closest integer value, given by mi=m 10iα, with 
α=0.05, where the smallest possible mass value is m=2. The curves of averaged radii versus fixed-
mass for the different   values are given in Figure 5-8. Since the configuration of covering spheres 
is stochastic, we can reduce the variance in the curves by repeating the measurement multiple times 
and averaging the resulting curves (Figure 5-8). Averaging multiple realizations reduces the 
variability observed in the large mass ranges. 
 

 
Figure 5-8 Averaged radii versus fixed-mass for increasing  obtained from a single measurement (left) and averaged 
over 100 measurements (right) of the  ≥ 2 Southern Californian seismicity. The two arrows mar  the transitions from 

small to medium scales (RS-M) and medium to large scales (RM-L). 

Both Dq and q are estimated via the local slope for each  exponent. For relatively simple 
multifractals, such as the widely studied growth process of Diffusion Limited Aggregation, the 
entire m range can be characterized by a single set of slopes (see Figure 1 of [Vicsek et al., 1990]). 
However, in the case of the Southern Californian hypocenter distribution, we observe phase 
transitions highlighted by changes in these slopes as a function m. The visually identifiable 
breakpoints in Figure 5-8 mark the transitions from small to medium scales (RS-M) and medium to 
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large scales (RM-L). These are of particular interest as they might provide insight into different 
characteristic length scales that govern the seismogenic processes. For instance, in their multifractal 
analysis of fault networks in Saudi Arabia, Ouillon et al.[Ouillon et al., 1996] showed that such 
characteristic length scales might correspond to the rheological stratification of the crust. 

The task of identifying the number of observed scaling regimes and their effective ranges 
can be viewed as an optimization problem. In this setting, we model the curves as a set of 
discontinuous and piecewise linear functions where each segment is characterized by its slope and 
intercept. The segments, defined by their breakpoints, are imposed on all the curves simultaneously. 
The sum of squared errors (Q(s)) to be minimized is given as:  
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where T is the number of curves corresponding to each   exponent, S is the number of segments, 
RObs and RMod represent the observed and modeled ordinates of the curves, aij and bij are the slope 
and intercept estimated for segment j of curve i and pj is the breakpoint between segments j and j+1. 
Equation (5-9) implies that the SSE would tend to zero as the number of segments (i.e. the 
complexity of the model) is increased. Thus, it becomes essential to include a regularizing term that 
penalizes the goodness of fit for the complexity of the model. In their study, Seidel et al. [Seidel et 
al., 2004] address a similar problem of investigating the number of linear trends in the global 
atmospheric temperature record by comparing different models, using the Bayesian Information 
Criterion (BIC) [Schwarz, 1978]. In this study, our goal is to represent the continuous multifractal 
spectra in an interpretable form, rather than identifying the single best model to describe the data. 
For this purpose, we use an ensemble approach where we consider best fitting models with different 
number of segments (see Figure 5-9). Each model is essentially a staircase function defining 
constant slopes in each segment. By averaging the different staircase functions obtained for each 
curve, we are able to obtain a continuous set of slopes. These are used in Equation (5-8) to obtain 
the continuous multifractal spectra that specifies Dq for any given q and R. The proposed approach 
is much simpler in the sense that it can be applied without the need to account for correlation 
between data points, which can become problematic for BIC [Seidel et al., 2004], and it can handle 
the irregular sampling intervals at small m values. 
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Figure 5-9 Best fitting piecewise linear models with a) 3 and b) 6 segments fitted to the moment curves shown in Figure 
5-8. Different segments are represented by different colors (shading). The staircase slope functions obtained for the best 

fitting models shown in a,b) are shown in c,d). 

The ensemble is obtained by averaging the slopes of all the best fitting models with 3 to 10 
segments. Our choice for the minimum of 3 segments is based on the general shape of the curves 
and on previous studies reporting the presence of similar numbers of apparent scaling regimes 
[Marsan, 2005; Kagan, 2007]. We confirmed that our results are stable with respect to these initial 
choices by varying the minimum and maximum number of segments. 

5.5.4 Multifractal analysis of the Southern Californian Seismicity: condensed versus 

original catalogs 

The continuous multifractal spectra obtained for the original and condensed Southern 
Californian seismicity with  ≥2 are given in Figure 5-10. For the original catalog, we observe 
changes in the scaling regimes occurring at several scales. The first scale is RM-L≈10 m (m≈400): 
this scale can be inferred as the effective thic n ess of the crustal seismogenic width (2R≈10-25km 
[Nazareth and Hauksson, 2004]). The decrease of dimensions at this scale can be understood by 
considering the case of a plate with finite thickness a that is sampled with a uniform point 
distribution; spheres with R<a will report D=3 while, for R>a, the spheres will be insensitive to the 
thickness and thus report D=2. We observe a similar decrease of the dimensions Dq>2 beginning at 
RM-L≈10 m. This scale is also consistent with the depth distribution of the catalog (mean µ= 
7.95 m, standard deviation σ= 4.44 m;  2RM-L≈20 m corresponds to the 0.98 percentile). Another 
transition between small and medium distances is RS-M≈1.5 m (m≈6): a priori it is difficult to 
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conclude if it stems from a genuine physical process or from location uncertainties. However, if the 
latter is true, we would rather expect generalized dimensions close to 3 at r<RS-M.  
 

 
Figure 5-10 Continuous multifractal spectra of the a) original and b) condensed catalogs. The horizontal axis indicates 

the increasing radius (bottom) and mass (top); the vertical axis represents the q value and individual colors represent Dq 
within the range [0-3]. The two arrows mark the transitions from small to medium scales (RS-M) and medium to large 

scales (RM-L). 

For the sake of clarity, we shall investigate the clustering properties in terms of D2 and the 
multifractality in terms of D=D1-D5. At small scales (r<RS-M), the clustering is more pronounced 
with low D2 = 0.9, while for medium scales (RS-M<r< RM-L), it is significantly reduced as evidenced 
from the high values of D2=1.8-1.9. At large scales (r> RM-L) we observe D2=1.2-1.3. The 
multifractality is strongest at the small scales with D=0.5, decreasing at medium scales to D=0.3 
and decreasing even further to D=0.2 at large scales. 

Similarly, for the condensed catalog (Figure 5-10b), we observe two scaling breaks close to 
the ones reported above. The gradual transition at larges scales becomes more pronounced and 
remains at RM-L≈10 m;  however, the small to medium scale transition is shifted from RS-M≈1.5 m t o 
RS-M≈2.5 m. Furthermore, we observe a significant decrease of clustering within the small scale 
regime (r< RS-M) as D2 increases to 1.2. A similar increase of the fractal dimensions is also observed 
for the medium scale range (RS-M<r< RM-L): D2=1.9-2.0.  At large scales (r> RM-L), the D2 values 
remain similar to the values observed in the original catalog. In terms of multifractality, we observe 
a significant increase at small scales with D=0.9, while the values at medium and large scales 
remain similar. 
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The difference observed in the fractal dimensions of the original and condensed catalogs 
indicates that the location uncertainty information, which is the basis of condensation, should be an 
important factor in the spatial clustering analysis of any seismic catalog. As a reminder, the only 
cause for the different results in the multifractal analyses is the consideration of location error 
information. Both catalogs have the same event locations and the BFM analyses are conducted in 
the exact same ways. Previous studies have disregarded location uncertainties in the analysis step 
only to introduce it to help the interpretation of the scales where the phase transitions occur 
[Marsan, 2005]. It is important to note that, for both the condensed and the original catalog, the 
small to medium phase transition occurs at distances that are much larger compared to the vertical 
and horizontal errors of the catalog (see Figure 5-4). To verify that the observed scaling breaks are 
not due to location errors, we perturbed the events in the catalog according to their confidence 
ellipsoids. We repeated the analysis by scaling up the ellipsoids with a factor of 10 and observed 
that RS-M increased only by a factor of about 1.5, RM-L remains unaffected while Dq values on all 
scales increased. This indicates that the observed RS-M cannot be due to location errors since one 
would expect a higher degree of dependency between the two. 

5.5.5 Multifractal analysis of a multiscale synthetic dataset 

The results suggest that the Southern Californian seismicity catalog features a distinctive 
scaling regime at small scales. In order to demonstrate that the methods used in this study are 
indeed capable of correctly detecting phase transitions and the respective scale at which they occur, 
we conduct the same analysis on a synthetic dataset. Our goal is to create a dataset that is the result 
of two different scaling regimes effective on different scales. For this purpose, we generate a spatial 
density distribution by recursive replication of a 2 by 2 density matrix [2 0; 0 1]. After a number of 
replications, we modify the density matrix, which is now [2 0; 1 1] (see insets of Figure 5-11c), and 
continue the replication process to obtain a multiscale fractal. We then sample the resulting spatial 
density distribution with weighted points. Figure 5-11 illustrates the whole process and the obtained 
multifractal spectra. Since we replicate each matrix 4 times, the phase transition occurs when the 
linear regime extends to a length of 24=16 units. Thus, the corresponding radius of a covering 
sphere is 16 2 2 11R   . The method not only detects the phase transition correctly but is also 
able to estimate the fractal dimensions for the two scaling regimes accurately. 
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Figure 5-11 a) Spatial distribution of the synthetic distribution, inset shows a close up with the small scale linear 
features. b) Radii vs mass curves for different increasing τ exponents c) Continuous multifractal spectra of the 

distribution (similar to Figure 10); insets show the replicating density matrices of each scaling regime together with the 
analytically calculated D0, D1 and D2 values. 

5.6 Discussion 

5.6.1 Consequences for the spatial distribution of earthquake loci 

The results of our analysis reveal the multifractal characteristics of hypocenter distributions, 
which are evidenced by different scaling regimes holding at different scales. An important question 
arises regarding the origin of these distinct scales. The largest of these scales (approximately 10km), 
is common to both the original and condensed catalog and can safely be interpreted as the typical 
thickness of the seismogenic crust in Southern California. Beyond this scale, seismicity becomes a 
2D process, while it is a 3D one at smaller scales. Another phase transition is observed at a smaller 
scale RS-M≈1.5 m for the original catalog.  y accounting for the location uncertainties via the 
condensation method, this transition is offset to RS-M≈2.5 m.  elow this scale, the effect of the 
condensation process is also to decrease the strength of the clustering. This can be rationalized by 
the observation that the compression achieved during condensation (about 7.4% for all events with 
M>2) is performed by assigning a zero weight to repeating events and thus by removing them (and 
their associated bias). The change in the location of the scaling break RS-M may then be also partly a 
consequence of the change of slope of the moment curves at small and medium scales (see Figure 
5-8). In other words, if we have a bilinear curve and change the slope of only one of the segments 
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the intersection point would shift. A possible physical constraint for RS-M can be the width of the 
fault gouge zone. However, Sammis and Biegel [Sammis and Biegel, 1989] found that the particle 
size distribution within gouge zones is likely to be a power law with exponent 2.6, suggesting a 
similar fractal dimension for the set of ruptures bounding the grains and blocks. We observe a 
substantially smaller value D2=1.2, suggesting that seismicity is indeed much more clustered. 
Interestingly, such a high degree of clustering seems in agreement with the reports of narrow, quasi-
linear seismicity streaks along several faults in California [Rubin et al., 1999; Waldhauser et al., 
1999; Shearer, 2002]. 

A different explanation for the origin of RS-M≈2.5 m can be the earthqua e  relocation 
process itself. The relocation is based on a double-difference method using cross correlation of 
events that are initially clustered according to multiple criteria. In their paper [Hauksson et al., 
2012], the authors report one of these criteria to be a maximum separation distance of 2.5km. A 
conclusive analysis would require repeating the relocation procedure varying this arbitrary distance 
criterion and repeating the multifractal analysis. The transition scale may also be controlled by the 
initial clustering criterion such as the correlation coefficient threshold. Although such an analysis is 
beyond the scope of this study, we also note that double-difference methods have been reported to 
be highly susceptible to biases resulting from velocity structure errors [Michelini and Lomax, 2004]. 
These can strongly affect the shape and inner structure of the relocated clusters themselves, hence 
their associated scaling properties. 

5.6.2 Consequences for earthquake triggering models 

The spatial distribution of earthquakes plays an important role in understanding their 
interactions. Previous studies investigating the importance of small earthquakes in triggering have 
been mostly limited in reporting only the capacity (D0) [Helmstetter, 2003] or correlation 
dimensions (D2) [Helmstetter et al., 2005; Marsan and Lengliné, 2008] and using these two 
dimensions interchangeably (which is valid only under the assumption of monofractality). We argue 
that the reported values certainly feature strong biases resulting from the applied methods. 
Moreover, from those values, they were able to draw important conclusions about the triggering 
properties of events with different magnitudes (and assuming that seismicity can be modeled as an 
Epidemic Type Aftershock-Sequence (ETAS) process). Within the ETAS formalism [Ogata, 1988], 
the number of aftershocks following a magnitude M event is assumed to scale as: 
 
 ( ) ~10 Mn M   5-10 
 
where α is the productivity parameter. For example, Helmstetter (2003) estimates =0.8. The 
magnitude-frequency distribution of these aftershocks obeys the Gutenberg-Richter law: 
 
 ( ) ~10 bMP M   5-11 
 
In the following, we use b=1 as evidenced by global and regional analyses  [Kagan, 2010; Godano 
et al., 2014; Kamer and Hiemer, 2015]. Since each individual aftershock can trigger its own 
aftershocks, the total number of aftershocks triggered collectively by all magnitude M events scale 
as 
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 ( )( ) ( ) ( ) ~10 b MN M n M P M   5-12 
 
Equation (5-12) implies that, if α>b, the triggering is dominated by the largest earthquakes, while, 
if α<b, then it is controlled by the smallest ones. The latter case would have serious implications for 
understanding earthquake interactions, and hence advances in earthquake prediction, since the 
Gutenber-Richter holds up till very small magnitudes [Boettcher et al., 2009], meaning that the 
majority of the small events are below the detection threshold of current seismic networks [Sornette 
and Werner, 2005]. Measuring α from a seismic catalog is problematic not only because it involves 
subjective definitions of time and space windows for aftershocks, but also because of the inherent 
incompleteness due to missed events following large main shocks. Here, we argue that fractal 
analysis can be used to obtain more reliable estimates of α. To provide a link between α and the 
fractal dimension(s) of seismicity, we use the empirical observation that the rupture length L of a 
magnitude M event is given by [Kanamori and Anderson, 1975]: 
 
 ( ) ~10 ML M   5-13 
 
where regression analyses show that  depends on the faulting style [Wells and Coppersmith, 1994]. 
We also notice that, in case of a fractal distribution, the average number of events within a domain 
of size L scales as:  
 
 2( ) ~ Dn L L  5-14 
 
Combining Equation (5-13) and (5-14) yields the scaling of the average number of aftershocks 
within a domain with the size of the mainshock: 
 2( ) ~10 MDn M   5-15 
 
so that we can identify α = 2D . Triggering properties can thus be inferred by comparing 2D  and 
b. 

Using a correlation integral (i.e. a fixed scale approach), Helmstetter et al.[Helmstetter et al., 
2005] estimated D2=1.5 (also reported by Kagan[Kagan, 2007]) and D2=1.74 for two different 
catalogs in Southern California for 0.1≤r≤5 m.  ow ever, they chose to use D2≈2, estimated for 
inter-event times larger than 1000 days, in order to remove the distortion of the scaling due to the 
triggering itself. Citing [Kanamori and Anderson, 1975], they chose =0.5, and concluded that 
small earthquakes are as important as big ones for triggering, as 0.5D2≈b. We notice that, without 
any constraint on inter-event times, they would have obtained 0.5D2<b, so that small events would 
be predicted to dominate the triggering. We also notice that Helmstetter[Helmstetter, 2003] uses 
=0.5 while[Kanamori and Anderson, 1975] give four possible values of   ranging from 0.33 to 1 
based on theoretical derivations. Similarly Marsan and Lengliné [Marsan and Lengliné, 2008] used 
6190  ≥3 earthqua e s in Southern California to estimate individually =0.6 and  =0.43. They 
reported D2=1.17 and reached the conclusion that small earthquakes have a greater effect on 
triggering.  
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We argue that the ETAS formulations can be extended by accounting for the multiscale 
multifractal characteristics presented in this study and hence provide more rigorous inferences about 
the earthquake interactions process. As Southern California seismicity is largely dominated by 
strike slip events, we suggest to use the value  =0.74. This value has been derived from 43 global 
strike-slip events with rupture lengths 1.3<L<432km [Wells and Coppersmith, 1994]. To illustrate 
the impact of this scaling parameter, we conduct the following exercise: We calculate the predicted 
rupture lengths for the 1999 Hector Mine and 2014 M6.0 West Napa earthquakes, based on the 
rupture length observed during the 1992 M7.3 Landers earthquake. We employ 
   7.385 10 ML M km  

   using the three different   values discussed above (see Table 1). We note 

that small   values will exaggerate the triggering effect of small magnitude events since they 
overestimate observed rupture lengths significantly as the magnitude decreases. 
 

 
Observed Rupture Length 

Predicted Rupture Length 
using 1992 M7.3 Landers (85 km*) 

 =0.43  =0.50  =0.74 
1999 M7.1 Hector Mine 41 km* 69.7 km 67.5 km 60.4 km 
2014 M6.0 West Napa 12 km** 23.5 km 19.0 km 9.3 km 

 
* http://www.data.scec.org/significant/chron-index.html 
**http://www.eqclearinghouse.org/2014-08-24-south-napa/files/2014/08/EERI-Special-Eq-Report-
2014-South-Napa-versionOct19web.pdf 

Our results indicate that, for distances r<10km, the relocated catalog of Southern California 
exhibits two different scaling regimes with a transition at RS-M≈2.5 m. If this scaling brea  is due to 
the parameter choices of the relocation procedure, we conclude that, using D2=1.9-2.0, we get 
0.74D2≈1.44>b, so that large events dominate triggering. On the other hand, if this scale is physical, 
earthquakes with magnitudes M<M5.7 (approximate rupture length of 2R=5km) induce a triggered 
seismicity with D2=1.2. The inequality 0.74D2 < b then suggests that at this scale the triggering is 
controlled by the smallest earthquakes. Yet, for larger magnitudes, the largest events dominate 
triggering. We anyway underline that such scaling breaks are not compatible with the definition of 
the ETAS model, which does not feature any transition scale, so that we should be cautious when 
drawing such conclusions. 

The implications of our result, specifically the case of >b, has been previously investigated 
by Sornette and Helmstetter[Sornette and Helmstetter, 2002] in terms of the branching ratio: 
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where k is a normalization constant of the productivity rate given in Equation (5-10), mmax is the 
maximum earthquake magnitude (in the range of M8-M9.5 [Kagan, 1999b], but see improved 
methods of determination of mmax [Pisarenko et al., 2008, 2010, 2014]) and m0 is the minimum 
magnitude of an event that can trigger its own aftershocks. The authors showed that the subcritical, 
stationary behavior of the earthquake process (i.e that aftershocks sequences die out within a finite 
time length) requires that n<1. Furthermore they demonstrate that the case of >b in which mmax is 
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infinite leads to explosive seismicity dynamics, in the form of stochastic finite-time singularity 
[Sammis and Sornette, 2002]. Such transient dynamics can actually be observed in various 
aftershock sequences and also instances of accelerated seismicity. For finite mmax, such explosive 
dynamics are transient and taper off before any mathematical divergence, when the largest events of 
the distribution are sampled. 

It is important to note that the conclusions of Helmstetter and Marsan, arguing for the 
importance of small earthquakes, have spawned case studies aiming to quantify this claim in terms 
of static stress triggering (e.g [Cocco et al., 2010; Meier et al., 2014]). Such studies rely on the 
limited number of available focal mechanisms, various assumptions and large uncertainties to 
compute Coulomb stresses [Felzer et al., 2002]. Due to these limitations, the results are often 
inconclusive and difficult to generalize. Here, we showed that a purely statistical and robust 
approach based on empirical laws can provide rigorous answers to such questions. Although our 
answers depend on the origin of RS-M , this ambiguity can be resolved by relocating the catalog 
directly from the waveforms using the fully probabilistic approach NonLinLoc, which gives a more 
realistic representation of the location PDFs [Lomax et al., 2009]. We shall then be able to conclude 
on the existence and properties of such a scaling break. 

5.7 Conclusion 

We have introduced a novel condensation method that improves the spatial information 
content of seismicity catalogs by accounting for the heterogeneity of the reported location qualities. 
We obtain significant likelihood gains in synthetic datasets perturbed with realistic location 
uncertainties, and expect the same to hold for natural ones. Qualitative comparison with mapped 
fault traces in Southern California indicates that condensation highlights active fault structures. The 
method also reduces the length of the catalogs significantly and allows the location uncertainty 
information to be taken into account in spatial analyses. Using this information and the state of the 
art BFM method, we have performed multifractal analyses on the last 20 years of Southern 
Califorian seismicity. Our analysis reveals a phase transition occurring at RS-M≈2.5 m,  which is 
most likely due to the relocation procedure rather than a genuine physical process. We use the 
correlation dimension D2 obtained in our analysis, together with observations on rupture length 
scaling with magnitude, to make inferences on earthquake triggering models. Contrary to previous 
studies, our results suggest that large earthquakes dominate the earthquake triggering process. We 
thus conclude that the limited capability of detecting small magnitude events cannot be used to 
argue that earthquakes are unpredictable in general.  

We envision that the proposed condensation method will become an essential preprocessing 
tool in the field of seismicity-based fault network reconstruction, which had significant advances in 
the recent years[Ouillon et al., 2008; Ouillon and Sornette, 2011; Kamer et al., 2013b; Wang et al., 
2013]. These studies employ clustering methods to infer fault structures illuminated by past 
seismicity. The vast amount of events contained in the seismicity catalogs hinders the large-scale 
application of these methods because the computation time increases exponentially with the number 
of data points. For instance, Ouillon and Sornette [Ouillon and Sornette, 2011] used 2747 events of 
the 1986 Mount Lewis sequence while Wang et al.[Wang et al., 2013] used 3013 aftershocks of the 
1992 Landers event. The condensation method reduces the number of data points significantly and 
should thus allow for faster computations. With the help of these improvements, we were recently 
able to perform a clustering analysis on the Southern Californian catalog containing ~500,000 
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events [Kamer et al., 2014]. Condensation also ingrains the information of location uncertainty into 
the weight of each event, providing an efficient representation of the relative location quality. 
Furthermore, the weight of each event can be regarded as a multiplier quantifying repeating 
occurrences at individual locations, which can be inferred as a representation of repeated slip. By 
equalizing all the individual condensed weights to 1, we can get better insights into the underlying 
fault structure. This should be of particular interest because individual faults often have regions 
with different seismicity rates that hinder a holistic clustering inference. 
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6.1 Abstract 

Earthquake catalogs are one of the most essential elements in the study of earthquake 
phenomena. They provide the origin time, location and magnitude information that constitutes the 
basis for earthquake interaction analysis, as well as physics and statistics based earthquake 
forecasting models. In this paper, we locate the Southern Californian seismicity using the state-of-
the-art probabilistic and non-linear method NonLinLoc. We use only the P wave picks in order not 
to introduce the velocity model errors of the S phase, which is also harder to detect and thus less 
constrained. Using a subset of the best well-locatable earthquakes, we then conduct a joint inversion 
using the VELEST software to obtain a minimum 1D velocity model and station corrections. With 
this 1D velocity model and the inferred model uncertainties, we use the NonLinLoc software to 
obtain realistic location distributions for each event. We compare the resulting catalog with the 
current state-of-the-art obtained using double difference methods. Our results indicate that the 
absolutely located seismicity exhibits a single multifractal regime and is much less clustered 
compared to its relatively located counterpart, which features a distinct scaling break and a higher 
degree of clustering. We speculate that this discrepancy is likely to have significant effects on 
physical and statistical models that rely on consistent seismicity catalogs as their input data. 

6.2 Introduction 

Earthquake records provide pick times at which the earthquake phases of interest exceed the 
background noise. These arrival times are then used together with the previously determined 
velocity structure (Earth model) to constrain the origin time and location of the event. There has 
been a continuous effort for more accurate and precise locations, with more stations being deployed 
to increase station coverage, decrease the minimum earthquake detection threshold and improve the 
location quality. In parallel to these instrumental improvements, different location methods have 
also been proposed aiming to extract additional information from the available recordings. 
Observed waveform similarities between records of earthquakes within proximity of each have 
motivated the development of cross-correlation based relocation methods [Waldhauser and 
Ellsworth, 2000; Hauksson and Shearer, 2005]. These methods use the waveform similarity 
(measured by of cross-correlation coefficient) to constrain the relative location between earthquake 
pairs or between a master event and a set of events associated with it. The resulting catalogs often 
feature linear structures (streaks) of tightly grouped hypocenters that are often associated with fault 
geometries. 

Studies have demonstrated that these so called double difference (DD) methods may result 
in biased relocations in the presence of velocity modeling errors [Michelini and Lomax, 2004]. 
These effects can be aggravated and modulated through the parameter choices employed in the 
procedure (such as the cross-correlation coefficient threshold, the minimum event separation 
distance between correlation pairs, etc...). In our recent multifractal analysis of the relocated 
Southern Californian seismicity catalog (hereafter referred to as the HYS-12 catalog) we observed 
the presence of a scaling break at 2.5km that coincides with the minimum distance criteria used in 
their DD relocation procedure [Hauksson et al., 2012]. The resulting earthquake locations can thus 
be seen as the realization of a particular parameter set, which is only a single point in a large 
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parameter space. The inevitable need for absolute locations catalog with uniformly consistent 
uncertainty estimations has motivated us to relocate the last 30 years of Southern Californian 
seismicity using a probabilistic non-linear method.  

The paper is organized as follows: we start by developing a minimum one dimensional 
velocity model from the best constrained earthquakes using the VELEST routine [Kissling et al., 
1995]. We then employ this velocity model in the probabilistic non-linear location software 
NonLinLoc [Lomax et al., 2000] to obtain maximum likelihood hypocenters together with sampled 
probability density functions (PDFs) of the location distributions. We compare this new catalog, 
which we name KaKiOS-15, with the HYS-02 catalog in terms of location shifts, depth 
distributions and multifractal spectra analysis. We finally summarize our findings and their 
implications for previous and future studies. 

6.3 A Minimum 1D Velocity model for Southern California 

It is important to note that all earthquake parameters contained in a catalog (location, time 
and magnitude) are jointly inferred from a limited set of seismic observations under the assumption 
of a previously inferred earth model. Thus, the observational and modeling errors affect all of them 
through different non-linear couplings. For instance, a misidentified phase arrival can bias the 
hypocentral location that in turn will lead to a bias in both the time and magnitude of the 
earthquake. Similarly, a velocity model biased towards faster seismic wave velocities will tend to 
cause overestimated depths. Thus, it becomes apparent that a well-constrained earth model is the 
key ingredient for a uniformly consistent earthquake location catalog. 

There exist many methods in the literature for the inversion of a velocity structure. These 
methods vary in their model complexities (1D, 3D and number of layers), formulation and inversion 
techniques. It has been shown that simple 1D models with parsimonious number of layers combined 
with station corrections, which account for shallow local velocity variations, can perform as well as 
or even better than their complex 3D counterparts. Such models are called minimum 1D velocity 
models. Their advantage is that they are less prone to the under-sampled ray coverage and, having 
few free parameters, they facilitate a more efficient and robust global optimization. In this paper, we 
used the VELEST inversion tool [Kissling et al., 1995]to obtain a minimum 1D model for Southern 
California together with the corresponding station corrections. VELEST employs an iterative 
approach by jointly adjusting the layer velocities, earthquake times and locations, and station 
corrections so as to minimize the root mean squared (RMS) residual between the observed and 
modeled arrival time. 

6.3.1 Data selection 

It is imperative to use a large number of earthquakes that are well constrained by multiple 
observations. Otherwise, the inversion procedure will become unstable as parameters compensate 
for each other and the obtained minima will not be stable when posed against a different dataset. 

For this purpose, we obtained all individual waveforms recorded between 1981-2011 from 
the Southern California Earthquake Data Center (SCEDC). We decided to use only the P picks in 
order to avoid introducing velocity model errors of the S phase, which is harder to detect and thus 
less constrained. We considered all recordings within 100km radius of the routine SCEDC 
epicenters that yields a total of ~10 million waveforms. Figure 6-1 shows the spatial distribution of 
all events based on number of P picks (Nobs) and largest azimuthal gap (AzGap). Earthquakes 
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recorded at the boundaries of the network tend to have fewer P picks and hence larger azimuthal 
gaps. This implies that if the selection is done solely on these two criteria there would be a selection 
bias towards the central regions; hence the obtained velocity model would be biased towards these 
local structures.    
 

 
Figure 6-1(Left) Routine epicenter locations colored according to the number of P observations within 100 km of their 

epicenters. (Right) Colored according to the azimuthal gap 

Since we intend the resulting minimum 1D velocity model and station corrections to be used 
for the whole region we aimed at obtaining a good areal and station coverage without 
compromising the well-locatablity of the selected events. For this purpose, we grid the region into 
fixed size cells and consider the top well-locatable events (no worse than Nobs>12 AzGap<150) 
within each one. To optimize coverage, we chose the best event in each 6.3km cell for the training 
set, giving us a total of ~2500 events with ~73,000 P picks (See Figure 6-2). We also obtained the 
2nd-6th best events in each cell. These were shuffled and then used to construct four different 
validation sets with ~2000 events each. 
  

 
Figure 6-2 Training set of events selected as the most well-locatable events within a 6.3km cell grids 

6.3.2 Inversion results and validation 

We begin the inversion procedure by selecting a reference station that provides coupling 
between the minimum 1D model and the station corrections. To obtain station corrections that are 
representative of the local velocity structure, the reference station should have numerous 
observations and be situated in the middle of the network. We chose the station CI XTL (Crystal 
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Lake; 34.29°, -117.86°), which is on a Mesozoic granite site, as a reference station since it complies 
with these criteria. Next, we investigate different depth parameterizations and initial velocity values 
by performing multiple inversions initialized with different published 1D models [Hadley and 
Kanamori, 1977; Dreger and Helmberger, 1990]. Figure 6-3 shows the progression and results of 4 
such inversions. 
 

 

Figure 6-3 Top: Initial (squares) and final (crosses) values of Vp velocities for different models. Bottom: Progression of 
the RMS with increasing iteration numbers. Final RMS values are shown in the legend. 

The results in Figure 6-3 indicate a fairly smooth increase of velocity in the mid depth 
section. Following the general rules of [Kissling et al., 1995] and after several trials with different 
parameterizations, initial values based on previous convergences and investigating the hypocentral 
adjustments ,we converged to a stable minimum 1D model with the lowest RMS value. To test the 
robustness of the obtained minimum 1D model, we initiated four inversions with the four different 
validation sets that we generated earlier. All the models were initialized at the same velocity layer. 
The results in Figure 6-4 show that the obtained velocity model is stable throughout the depth 
ranges of 2-23km. The variations below and above this range are to be expected due to the 
subvertical and subhorizontal ray path coverage. 
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Figure 6-4 Same as Figure 6-3 obtained for the YKEK05 initial model using the four validation sets 

Another important validation is the correspondence between the obtained station corrections 
and the surface geology. In Figure 6-5 we show the station corrections individually constrained by 
more than 100 observations and superimposed onto the surface geology. Since the reference station 
is on Mesozoic granite, stations on softer (slower) structures have positive corrections while the 
ones on harder (faster) structures have negative corrections with respect to the reference. The first 
order correspondence between these values and the underlying surface geology should be regarded 
as a testament to the physical consistency of the obtained model. 
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Figure 6-5 Left: Station corrections shown as O (negative) and + (positive) signs scaled according to their amplitude. 
Right: The same station corrections superimposed over the geological map of California. 

6.4 Hypocenter relocation using NonLinLoc 

Having obtained and validated our minimum 1D model, we proceed to employ it in the non-
linear, probabilistic and absolute earthquake location routine NonLinLoc. For this purpose, we 
consider all the events with at least 4 P phase picks within 100 km radius of their routinely 
determined epicenters. The number of observations, their spatial distribution and their uncertainty 
coupled through the velocity model and its modeling error determine the probability density 
function of the absolute location (for illustrative figures see [Lomax et al., 2009]). The velocity 
modeling error was estimated from the station residuals averaged over the validation sets. For 
information regarding the observational error (i.e the picking time errors) we investigated the 
quality classes provided in the earthquake phases files. The quality class in these files varies in the 
range of [0-1] with a precision of 0.1. However we found that usage of this class is not consistent 
through time; with different sets of three to four values being used throughout the catalog time span. 
For this reason, we considered instead the onset type (impulsive/emergent) as a binary indicator of 
picking time quality. We used standard deviations of 0.05s and 0.1s for impulsive and emergent P 
picks respectively. To test if the pick quality provides an additional constrain for the earthquake 
locations, we conducted a controlled test using VELEST. We conducted three separate inversions 
using the same training set and the minimum 1D velocity model as initial conditions. The tests 
differed from each other only in terms of the provided quality information: a) no quality 
information, all observations weighted equally; b) quality classes assigned based on impulsive (0) 
and emergent (1) onsets; c) randomly assigned classes of quality 0 and 1. The results of these tests 
are shown in Figure 6-6. The lowest RMS value was obtained in case c) which indicates that onset 
type is a reliable first order indicator of observation uncertainty. These results also suggest that the 
pick quality has little effect on the final velocity model which can be attributed to the well-
locatability of the events used in the inversion. 
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Figure 6-6 Same as Figure 6-3. Red: No pick quality information; blue: randomly assigned pick quality; green: qualities 

assigned according to onset type (impulsive=0, emergent=1) 

The global optimization search is conducted using the Oct-tree approach in a 100x100x40 
km volume centered on the routinely reported epicenter. We used the Equal Differential Time 
(EDT) norm as the likelihood function because it has been demonstrated to be more robust in the 
presence of outlier (such as misidentified picks or timing errors) and provide more realistic location 
PDFs [Lomax et al., 2009]. The entire computations were performed in parallel on the high 
performance computing cluster Brutus of ETH Zurich. The output of these computations is a 
summary file containing the earthquake parameters, stations residuals and particularly the sampled 
location PDF (using 1000 points in our case). 

We believe that one of the main issues hindering a wider spread and acceptance of 
NonLinLoc is the general reluctance of the seismological community to deal with complex non-
linear uncertainties. For this purpose, in this study we represent the complex location PDFs as 
mixtures of Gaussians, i.e. Gaussian Mixture Models (GMM). In this formulation, the spatial 
distribution of PDF sample points is represented as the combination of a finite number of three 
dimensional Gaussian kernels, each with an individual mean vector, covariance matrix and 
responsibility weights which all sum up to 1 [Bishop, 2007]. To find the optimal model complexity 
(i.e. the number of GMM components) we employ the Bayesian Information Criteria (BIC) which 
penalizes the likelihood of the model according to the number of free parameters it contains 
[Schwarz, 1978]. For each location PDF we initiate several GMMs with different initial conditions 
and employ the expectation maximization algorithm [Bishop, 2007] to converge to a final model. 
We keep the model with the best BIC score, increment the number of components and restart the 
modeling. The process continues until the current BIC score performs worse than the last two steps 
(i.e until a stable minima is reached). Using this scheme, we find that only 19% of the events are 
modeled by a single Gaussian, while on average of 3.24 components are needed to model the 
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location PDFs of the rest of the events. Figure 6-7 shows an example of an event location PDF and 
its corresponding GMM. 

 
Figure 6-7 A NonLinLoc location PDF sampled with 1000 points shown as crosses superimposed on the optimal BIC 
Gaussian mixture model with components weights 0.59, 0.31 and 0.09 (darker shading for larger weights). Gaussian 

ellipsoids are plotted at ±1σ level. 

6.5 Comparison of the KaKiOS-15 and HYS-12 catalogs 

6.5.1 Vertical and Horizontal shifts 

To ensure the consistency of the comparisons, we limit the following analysis only to events 
contained in both catalogs. From a total of 502,962 events contained in the HYS-12 catalog we 
were able to match 476,157 to the KaKiOS-15 catalog based on their unique event IDs. The reduced 
events number in the KaKiOS-15 catalog is due to the more stringent location criteria that we 
employ (at least four P picks within 100km). Since in the KaKiOS-15 catalog each hypocenter is 
represented by varying number of Gaussians, we use the maximum likelihood (ML) location for the 
following comparison (i.e. the mean location of the Gaussian component with the largest weight). 
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Figure 6-8 Horizontal and vertical shifts PDFs between the HYS-12 and KaKiOS-15 catalogs, calculated with respect to 

the later. 

In Figure 6-8 we show the distribution of the horizontal and vertical displacements between 
the two catalogs. The lateral shifts do not show first order systematic effects, while the vertical 
shifts exhibit a systematic pattern indicating that HYS-12 catalog is deeper with respect to KaKiOS. 
This effect can be attributed to the difference in the velocity models. Figure 6-9 shows the depth 
distribution of the two catalogs. Although several studies assert that the DD methods reduce the 
effect of the velocity modeling errors, here we observe a direct dependence between the hypocentral 
depth distribution and the assumed velocity model. This dependence can be inferred in terms of the 
velocity model parameterization. In our VELEST inversions, we observed a rather smoothed 
velocity gradient within the 2-23km range (see Figure 6-4), whereas in the standard South 
California model this transition is expressed by two steps located respectively at 5.5km and 16 km 
depth. This leads to a strong bias in the depth distributions as hypocenters tend to avoid these abrupt 
steps, leading to the bimodal distribution observed in Figure 6-9. Although far less prominent, a 
similar effect can also be observed in the KaKiOS-15 catalog at a depth of ~2km.  

 

 
Figure 6-9 Hypocentral depth distribution of the HYS-12 and KaKiOS-15 catalogs. Gray dashed lines indicate the 

velocity model layer boundaries. 
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6.5.2 Multifractal analysis of the two catalogs 

The comparison presented in the previous section provides a first order glimpse into the 
differences between the two catalogs relative to each other. However it does not reveal the 
statistical properties (e.g. degree of clustering, inter-event distance scaling) of these spatial 
distributions. For a more informative comparison, we employ the recently introduced multifractal 
analysis method of  [Kamer et al., 2013a, 2015] to better assess the differences in the clustering 
properties of the two catalogs. The spatial scaling relationships in a catalog affect any analysis 
based on inter-event distances (e.g. declustering, static/dynamic stress transfer, pattern recognition 
etc...). The multifractal analysis consist in covering the spatial distributions with spheres containing 
the same number of points (mass) and then investigating how the average radii of these spheres 
scales as the mass is gradually increased. The average radii is calculated for different moments and 
thus the slope of each radii-mass curve corresponds to the different generalized fractal dimensions 
Dq, where large and small qs represent the scaling in dense and sparse parts of the distribution. For 
detailed information about the multifractal formalism and the numerical implementation, the reader 
is referred to Kamer et al. (2015). 

 
Figure 6-10 Averaged radii versus fixed-mass curves for τ =[-3,6] averaged over 100 measurements. Left panel: the 

HYS-12 catalog; right panel: the KaKiOS-15 catalog. 

 We consider only events with magnitudes M≥2 in order to reduce the effect of variations in 
the regional detection threshold. This leaves us with 98,050 events in both catalogs. In Figure 6-10, 
we show the radii versus mass for the two catalogs, using the ML locations for the KaKiOS-15. We 
observe that there are significant variations in the scaling regimes of the two catalogs. To facilitate 
the visual representation, Figure 6-11 shows a plot of Dq in the range of q=[0,5] for an increasing 
radius.  
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Figure 6-11 Continuous multifractal spectra of the HYS-12 (top) and KaKiOS-15 (bottom) catalogs. The horizontal axis 

indicates the increasing radius; the vertical axis represents the q value and individual colors represent Dq within the 
range [0-3] 

For the sake of clarity, we shall investigate the clustering properties in terms of D2 and the 
multifractality in terms of ΔD=D1-D4. We observe that overall HYS is significantly more clustered 
than KaKiOS which indicates that the effects of the cross-correlation relocation procedure are not 
limited to small scales. We also observe a distinct scaling break at ~1.5km for HYS and at ~1.8km 
for KaKiOS. The break is more abrupt for the HYS where the change is from D2= 0.95 to D2= 1.78, 
compared to D2= 1.45 to D2= 2.05 for KaKiOS. There is also a gradual dimension reduction for 
both catalogs beginning at ~10km for HYS and at ~ 8km for KaKiOS. This can be attributed to the 
seismogenic zone thickness (see Kamer et al. (2015)). In terms of multifractality, the main feature 
in HYS-12 (1.5km<r<15km) has a larger ΔD=0.34 compared to KaKiOS-15 (1.8km<r<13km) 
where ΔD=0.25. This indicates that the differences in densities between individual localities is less 
pronounced in the KaKiOS-15 catalog (i.e. relatively more homogeneous). 

To recreate the dimension reduction effect and to investigate the possible origin of the small 
scale behaviour in both catalogs, we conduct the following synthetic test: we generate 80,000; 
160,000 and 320,000 uniform random points inside a volume with dimensions 400x400x16km, 
which is compatible with the spatial extent of the Southern California. As with the seismicity 
catalogs, we conduct 100 repetitions of MFA and average the obtained results (see Figure 6-12).  
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Figure 6-12 (Left) Multifractal spectra of three different uniform synthetic distributions with dimensions 

400x400x16km. Insets show the point densities with color correspondence in the right panel. (Right) The radius versus 
mass curves plotted with their respective colors. Inset shows a 20x20km sample region of densest catalog. 

Interestingly, the synthetic distributions exhibit a similar small scale feature of increased 
clustering and decreasing Dq as a function of q. The spatial extent of this feature is governed by the 
density of the distributions. As the density increases from 1/32 km3 to 1/8 km3 the average smallest 
measured radius decreases from 1.7 km to 1.2 km while the extent of the high clustering is reduced 
from 3.5 km to 2.4 km. We interpret this persistent feature as being the result of the seemingly 
coherent alignments created by the uniform random distribution that can be highly clustered at 
small scales. This can be regarded as a correlated spatial noise effect. We thus interpret the small 
scale feature in both catalogs as possibly being due to the location error that tends to create artificial 
structures at small scales. The effect is more pronounced in the HYS-12 catalog where the cross-
correlation approach tends to amplify the random clustering by collapsing the hypocenters on 
streak-like features. 

To further investigate the effect of the location uncertainties on the MFA, we repeat the 
analysis on the KaKiOS-15 catalog; but this time, instead of using the single ML hypocenter 
location for each earthquake, we use the mean locations of all Gaussian components used in the 
GMM modelling of its non-linear location PDF. This increases the number of points from 98,050 to 
240,070.  Each such mean location represents a mass that is equal to the relative weight of its 
Gaussian kernel, hence the total mass remains 98,050. Naturally, increasing the number of points 
while preserving the overall mass should lead to a decrease in the overall clustering (i.e increase in 
Dq). This is also what we observe in the results shown in Figure 6-13. The interesting result is that 
by considering the location uncertainty information, we observe a more or less single scaling 
regime that extends till the width of the seismogenic zone thickness. The Dq values in this analysis 
should be expected to be higher than the true values associated with the real seismicity because the 
multi-modal representation of the hypocentral PDF does not have a physical origin, but is due to our 
observational limitations. However, by taking these limitations into consideration, we are able to 
conclude that the spatial distribution of earthquakes in South California is likely to follow a single 
scaling law with D2= 2.05 and ΔD=0.25 (see Figure 6-11). 
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Figure 6-13 Continuous multifractal spectra of the KaKiOS-15 catalog, using all the individual Gaussian components of 

each earthquake. 

6.6 Conclusion 

In this paper, we developed an absolute seismicity catalog spanning three decades of 
Southern California seismicity. The main advancement of the KaKiOS-15 catalog is that it features 
uniformly consistent location uncertainty information. This achievement can be seen as the net 
result of employing the fully probabilistic location algorithm NonLinLoc and the development of a 
minimum 1D model using the most well-locatable portion of the dataset, hence allowing for the  
constraining and quantification of the modeling errors. Compared to the HYS-12 catalog that has 
been obtained using a DD methods, the KaKiOS-15 catalog is significantly less clustered, not only 
at small scales (expected to be the primary target of the cross-correlation based similarity measures) 
but also at relatively large scales too. Throughout this paper, we showed evidences that in the case 
of Southern California, the DD method has led to the emergence of highly clustered small scale 
features that can be regarded as an artifact of the method. These features are much less prevalent in 
the KaKiOS-15 catalog and they become insignificant when the analysis accounts for the non-linear 
location uncertainties. The discrepancy between the results of these two methods (relative and 
absolute) will undoubtedly have significant effect on the consequent efforts regarding physical and 
statistical modeling of earthquakes. For instance, in Coulomb stress analysis, where the stress 
amplitude decreases as r-3, an inflated clustering will lead to higher stresses for pairs of events that 
can in reality be further away. Similarly, de-clustering methods employed in many earthquake 
forecast methods calculate a probability of being an independent event based on a space-time 
distance. Thus, such artificial clustering can lead to an underestimation of the true background 
seismicity rate. 

In this respect, we expect the KaKiOS-15 catalog to reduce the amount of bias in such 
studies. Nevertheless, there is certainly room for further improvements. The recent developments in 
automated pickers [Di Stefano et al., 2006; Lomax et al., 2012] can allow us to re-pick the 
waveforms recordings of all events in a systematic manner, providing more accurate pick times 
with more consistent uncertainty quantifications. Such an approach may complement NonLinLoc’s 
EDT norm in reducing the effect of misidentified picks or similar blunders. The training of such an 
automated algorithm might require considerable effort; however, the minimum 1D model and the 
well-locatable events can be readily employed in VELEST to provide a robust benchmark for the 
quality-weighted observation residuals 
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7.1 Abstract 

We present applications of a new clustering method for fault network reconstruction based 
on the spatial distribution of seismicity. Current methods start from the simplest large scale models 
and gradually increase the complexity trying to explain the small scales, whereas the method 
introduced in this paper uses a bottom-up approach, by an initial sampling of the small scales and 
then reducing the complexity by optimal local mergers. We describe the implementation of the 
method through illustrative synthetic examples. We then apply the method to the absolute, non-
linear KaKiOS-15 catalog, which consists of three decades of South Californian seismicity. To 
reduce data size and increase computation efficiency the new approach builds upon the recently 
introduced catalog condensation method that exploits the location uncertainty associated with each 
event. We validate the obtained fault network through a retrospective spatial forecast test and 
discuss possible improvements for future studies.  

The performance of the introduced model attests to the importance of the location 
uncertainty information, which is a crucial input for the large scale application of the method. We 
envision that the results of this study could be used to construct improved models for temporal 
evolution of seismicity.  

7.2 Introduction 

The continuing advances in instrumentation and the improved seismic network coverage is 
decreasing earthquake detection thresholds and increasing the number of recorded events. Recent 
studies suggest that the Gutenberg-Richter law might hold down to very small magnitudes 
corresponding to molecular dislocations [Boettcher et al., 2009]. This implies that there is 
practically no upper limit on the amount of seismicity we can expect to record as our 
instrumentation capabilities continue to improve. Although considerable funding and efforts are 
being channeled into recording seismicity, when we look at the uses of the end product (i.e. seismic 
catalogs) we often see that the vast majority of the data (i.e. events with small magnitudes) are 
omitted. For instance, probabilistic seismic hazard studies rely on catalogs with large durations and 
increases the minimum magnitude that can be considered due to the high completeness magnitude 
levels of the past. Similarly, earthquake forecasting models are based on the complete part of the 
catalogs. For instance, [Helmstetter et al., 2007] use only M>2 events, which corresponds to only 
~30% of the recorded seismicity. The forecasting skills of the current state-of-the-art models can 
well be suffering not only from our limited physical understanding of earthquakes, but also from 
this data starvation.  

In this conjecture, fault network reconstruction can be regarded as an effort to tap into this 
seemingly neglected but vast data source, and extract information in the form of fault patterns. We 
are motivated by the ubiquitous observations that large earthquakes are followed by aftershocks that 
sample the main rupturing faults, and conversely that these faults become the focal structures of 
following large earthquakes. In other words, there is a relentless cycle; earthquakes occur on faults 
that grow by accumulating earthquakes, which nucleate on these faults... By using each earthquake, 
no matter how big or small, as a spark in the dark we aim to illuminate and reconstruct the 
underlying fault network. The emerging structure should allow us to better forecast the spatial 
distribution of future seismicity and also to investigate possible interactions between its 
constituents. 
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The paper is structured as follows. First, we give an overview of recent developments in the 
field of fault network reconstruction and spatial modeling of seismicity. In Section 2 we describe 
our new clustering method and demonstrate its performance on various synthetic point distribution. 
In Section 3 we apply the method to the recently relocated KaKiOS-15 catalog and discuss the 
obtained fault networks. In Section 4 we perform a prospective forecasting test using the seismicity 
of last four years, which is not included in the KaKiOS-15 catalog. In the final section we present a 
sample temporal analysis application using the reconstructed fault network and conclude with 
outlook on future developments. 

7.3 The agglomerative clustering method 

7.3.1 Recent developments in fault reconstruction 

Fault network reconstruction based on seismicity catalogs was introduced by [Ouillon et al., 
2008] where they develop a dynamical clustering method based on fitting the point distribution with 
a plane that was then iteratively split into an increasing number of subplanes to provide better fits. 
They use the overall location uncertainty as a lower bound on the fit residuals to avoid over fitting. 
[Ouillon and Sornette, 2011] then extended this method by incorporating the pattern recognition 
technique of mixture modeling [Bishop, 2007] using 3D Gaussian kernels. Notable improvements 
in this method are the introduction of an independent validation set used to constrain the number of 
kernels and diagnostic based on nearest-neighbors tetrahedra volumes aiming to eliminate singular 
clusters. Recently [Wang et al., 2013] made further improvements by accounting for the individual 
location uncertainties of the events. While our method is inspired by these studies, and in several 
aspects builds upon their findings, we also notice an inherent deficiency of the iterative splitting 
approach that is common in all the previously mentioned methods. This can be observed when an 
additional plane (or kernel), introduced by splitting, fails to converge to the local points and is 
instead attracted to the regions of high variance (see Figure 7-1 for an illustration).  
 

 

Figure 7-1 Iterative splits on the 1992 Landers aftershock data. Points with different colors represent seismicity 
associated with each plane. Black dots show the center points of the planes resulting from the next split. Notice how in 

the 2nd step the planes fail to converge to the local branches (shown with arrows). 

This deficiency has motivated us to introduce an important conceptual change. Instead of 
starting with the simplest model (i.e a single plane or kernel) and increasing the complexity 
progressively by iterative splits, we propose just the opposite: start at the highest possible 
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complexity level (as many kernels as possible) and proceed to a simpler structure by iterative 
merging of the individual  e rnels. In this respect our new method is a “bottom-up” approach, while 
the ones previous are “top-down” approaches. 

7.3.2 Method description 

The method implementation follows the basic principles of agglomerative clustering with 
additional improvements to suit the specific characteristics of seismicity data. We start with the 
most detailed structure, i.e. the model with the highest complexity, and then employ penalized 
likelihood based information criterion to determine the best merger, i.e. simplification. The process 
continues till there is no merger that can be considered as improvement in terms of the information 
criterion. 

For a given dataset with N points, we first construct an agglomerative hierarchical cluster 
(A C) tree based on Ward’s minimum variance lin a ge method [Ward, 1963]. Such a tree starts 
out with a cluster for each data-point (zero variance) and then branches into a decreasing number of 
clusters following the minimum distance Dw criterion given in Equation (7-1). In this equation, Cij 
is the cluster formed by merging clusters Ci and Cj, x represents the dataset and r is the centroid of 
each cluster. Hence in this formulation two clusters are favorable to merger if the sum of squares 
does not increase too much after they are merged. This merging procedure continues till there is a 
single cluster (maximum variance). Thus the constructed AHC can be used to create a clustering 
with any number of clusters from N to 1.  
 

        
2 22,

ij i j

w i j ij i j
x C x C x C

D C C x r x r x r
  

         7-1 

 
Notice that the clusters formed at any branching level of the AHC will be more or less 

isotropic due to the sum of squared errors criteria in Equation (7-1). Such a simplistic formulation 
would not be relevant for faults, which are known to be highly anisotropic [Ouillon et al., 1996], 
thus we model each cluster with a three dimensional Gaussian kernel expressed by its mean vector 
and covariance matrix. This motivated decision gives rise to the problem of singular kernels, with 
rank deficient covariance matrices. Such instances are problematic because the likelihood data-
points associated with such kernels become degenerate and hinders the calculation of the objective 
function. Our intuitive solution is to discard such clusters all together. Thus we add an additional 
constrain to the general method of Ward, implying that that number of clusters is constrained by the 
spatial coherence of the dataset. Hence, for any data set we can estimate the so called holding 
capacity (i.e maximum number of undiscarded kernels) for a given coherence threshold. Since our 
aim is to detect 3D structures, the most non-arbitrary criterion is to discard all clusters with less than 
4 points. Essentially, for any number of clusters we use the AHC tree at this level as the initial 
configuration. We discard all clusters with less than 4 points and obtain the final number of clusters. 
We continue the search for the maximum final clusters by incrementing the number of initial 
clusters. Figure 7-2 shows the estimated holding capacity under this criterion for a synthetic dataset 
in the presence and absence of uniform background noise. We call this procedure atomization 
because it aims in finding the smallest coherent elements, protoclusters, of a complex structure. We 
shall use this synthetic dataset for applications presented in this section. 
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Figure 7-2 Top: Synthetic fault network created by uniform sampling of 5 faults, each shown with a different shaded 

according to its total number of points. Empty dots represent the uniform random background. Bottom: The number of 
initial and final (undiscarded) cluster for the case with and without background noise. 

Since a holistic approach necessitates accounting for all observed data, rather than removing 
the data-points associated with the discarded clusters, they are assigned to a uniform background 
kernel that encloses the whole dataset. The density of this kernel is simply the number of its events 
divided by its volume (see Figure 7-3). The Gaussian kernels together with the uniform background 
kernel represent a mixture model where each kernel has a contributing weight proportional to the 
number of points that are most likely to be associated with it [Bishop, 2007]. This representation 
facilitates the calculate of an overall likelihood and allows us to use the Bayesian Information 
Criteria (BIC) [Schwarz, 1978] given in Equation (7-2), where L is the likelihood of each data point, 
k is the number of free parameters and N is total number of data-points. The value of k is calculated 
as k=10NC-1 since each kernel requires 3 (mean vector) + 6 (symmetric covariance matrix) + 1 
(weight) = 10 free parameters. k is reduced by one due to the fact that the weights have to sum to 
unity and hence knowing NC-1of them is sufficient. 
 

 2log( ) log( )
N

k

i
BIC L N  

 
7-2 

 
Similarly to the Ward’s minimum variance criteria, we use the measure of information gain in terms 
of BIC to select the best merger. For any given pair of clusters the BIC gain is calculated using 
Equation (7-3) where Lint is the likelihood of each data-point for the initial (unmerged) model and 
Lmrg is likelihood in the case where the two candidate clusters are merged. Notice that each merger 
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decreases k by 10, thus a merger can be favourable only if the reduction of the penalty term is 
greater than the decrease of likelihood (i.e. BICGain>0) 
 

 

int

int 2

10
2

int

log( ) log( )

log( ) log( )

log( ) log( ) 5log( )

Gain mrg

D
k

Gain d
i

D
k

mrg mrg D
i

D D

Gain mrg D
i i

BIC BIC BIC

BIC L N

BIC L N

BIC L L N



 

  

  

  





 
 

7-3 

 

 
Figure 7-3 Left: The initial protoclusters for the synthetic dataset given in Figure 7-2. Notice that the number of clusters 

includes the uniform background kernel as well. Right: The BIC gain matrix calculated for all possible mergers. 

Using this formulation we calculate a matrix where the value at ith row and jth column 
corresponds to the BIC gain for a merger between cluster i and j. We merge the pair with the 
maximum BIC gain and then recalculate the matrix. At each step the complexity of the model is 
reduced by one cluster and this continues until there is no merger with a positive BIC gain. Figure 
7-3 shows such a BIC gain matrix calculated for the initial model with 77 clusters. Notice that 
mergers involving the background kernel are not considered. The BICGain >0 criteria, which 
essentially drives and terminates the merging procedure, is similar to a likelihood ratio test [Neyman 
and Pearson, 1933; Wilks, 1938] with the advantage that the models tested need not be nested. The 
computational demand of the BIC gain matrix increases quadratically with the number of data-
points, hence to make our approach feasible for seismic datasets, we introduce a preliminary check 
that considers clusters as merger candidates only if they are overlapping within confidence interval 
of √12σ in any principal component direction. The factor √12 is due to the variance formulation of 
the assumed uniform distribution of events over seismogenic planes (for details see [Ouillon et al., 
2008]). 

During all steps of the merger procedure the data-points are in the state of soft clustering, 
meaning that they have a finite probability to belong to any given kernel. If a deterministic 
assignment is needed, then each point can be assigned to the cluster that provides the highest 
probability, this is referred to as hard clustering. The dichotomy of stochastic and deterministic 
inference gives rise to two different implementations of the merging criteria: a) local criterion: 
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considering only the two candidate clusters and the data-points assigned to them through hard-
clustering and b) global criterion: considering the likelihood of all data-points for all clusters. In 
essence, the local criterion tests the information gain of for the case of two kernels versus one 
kernel on a subset, whereas the global criterion considers NG versus NG-1 kernels on the whole 
dataset.  

After all the mergers are complete, the weights of the kernels are updated based on the 
number of their hard clustered events. Figure 7-4 shows the resulting reconstructions for the two 
criteria. 
 

 
Figure 7-4 The final models obtained using the local (left) and global (right) criteria. Notice that the number of clusters 

includes the uniform background kernel as well 

For this synthetic dataset, we observe that both the local and global criteria converge to a 
similar final structure. The global criterion yields a model the same number of clusters as the input 
synthetic, while the local criterion produces four additional clusters in the undersampled part of a 
part of a fault. For most pattern recognition applications that deal with a robust definition of noise 
and signal, the global criterion may be the preferred choice since it is able to recapture the input 
complexity level. However, considering the nature of our application, we see potential in the local 
criterion as well. Several studies provide evidence for the notion of fractal structure of fault 
networks [Hirata, 1989; Mandelbrot, 1989; Sammis and Biegel, 1989; Hirabayashi et al., 1992; 
Ouillon et al., 1995b]. Thus, if a fault is the collection of a set of smaller self-similar faults, one can 
expect to recognize a fault only if it is sufficiently sampled. Additionally, during its growth a fault 
network may undergo expansion and reduction of structural complexity as small faults emerge and 
then coalesce to form larger faults. In our synthetic case, the dataset is created by random uniform 
sampling of individual planes. The random uniform sampling can produce coherent small scale 
structures that become less significant as the sample size is increased. Thus we can consider the 
results obtained using the local criterion as expressions of a locally coherent structure that can be 
simplified if viewed in the context of more numerous regional observations.  

7.4 Application to seismicity 

In this section, we apply our method to real seismicity data. For this purpose, we use the 
KaKiOS-15 catalog that was obtained by probabilistic absolute location of nearly 475,000 Southern 
Californian events spanning the time period 1981-2012. We consider all recorded events since they 
each sample parts of the fault network. Before tackling this vast dataset, however, we first consider 
a smaller dataset to assess the overall performance and computational demands. 
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7.4.1 Small Scale application to Landers aftershocks 

We use the same dataset as [Wang et al., 2013] that consists of 3360 aftershocks of the 1992 
Landers earthquake. The initial atomization step produces a total of 394 protoclusters that are 
iteratively merged using the two different criteria. The resulting fault networks are given in Figure 
7-5. Comparing the two fault networks, we observe that the local criterion provides a much detailed 
structure that is at large scales consistent with the global. We also observe that at in the northern 
end the global criterion lumps together small features with seemingly different orientations 
producing thick clusters. These small scale features have relatively few points and thus low 
contribution to the overall likelihood, thus the global criterion favors merger to benefit from the 
reduced penalty, which scales with the total number of points. In the local case, however, because 
each merger is evaluated only based on the points of the merging clusters, the likelihood of such 
features can overcome the penalty. 
 

 
Figure 7-5 Left: Top view of the 1992 Landers aftershocks. Fault networks obtained from these event using the local 

(center) and global (right) merging criterion. 

Our second observation is that the background kernel attains a higher weight using the local 
criterion compared to the global one. Keeping in mind that both criteria are applied on the same 
initial set of protoclusters and that there are no mergers with the background kernels, the disparity 
between the background weights can be understood as being due to density differences in the tails 
of the kernels. This is demonstrated in Figure 7-6 where see that a merged kernel has higher 
densities in its tails compared to its constituents. This effect is amplified when the distance between 
the merging clusters is increased. Hence, in the local case, the peripherial points are more likely to 
be associated with the background due to the lower densities at the tails of the small clusters. 
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Figure 7-6 Two uniform distributions (dotted gray lines), their Gaussian approximations (solid gray lines) and the 

Gaussian resulting from their merger (solid black line). Notice that the joint Gaussian has higher densities at the tails 
compared to its constituents. 

Another important insight from this sample case was related to the feasibility of a large scale 
application. As pointed out here and in previous studies, the computational demands for such 
pattern recognition methods escalate rapidly with the number of data-points. The Landers case with 
3360 points took ~5 minutes on a 4-core, 2.2GHz machine with 16GB memory. Considering that 
our target catalog is nearly ~145 times larger, a quadratic increase would put the expected 
computation time at more than two months. Even with a high performance computing cluster, we 
would have to tackle memory management and associated overhead issues. Although technically 
feasible, pursuing this path would limit the use of our method to only the few privileged with access 
to such computing facilities. In our previous work we proposed a different solution, catalog 
condensation, that uses the location uncertainty to reduce the length of a catalog while preserving its 
information content [Kamer et al., 2015]. In the following section we will show how this method 
was applied to the KaKiOS-15 catalog. 

7.5 Condensation of the KaKiOS-15 catalog 

The initial formulation of the condensation method was developed considering the state of 
the art catalogs of the time. Location uncertainties in these catalogs are assumed to be normally 
distributed and hence expressed either in terms of a horizontal and vertical error or with a 
symmetric 3x3 covariance matrix. With the development of the KaKiOS-15 catalog, we extended 
this representation to allow for arbitrarily complex location PDFs modelled with mixtures of 
Gaussians. This was found to be the optimal representation for 81% percent of the events, which 
were expressed by an average of 3.24 Gaussians. The condensation methodology can be easily 
generalized to accommodate this broader representation. In the normal version, all events begin 
with equal weights of 1. They are then ranked according to their isotropic variances and weights are 
progressively transferred from the high variance to low variance events. In the generalized version, 
each Gaussian kernel starts with its own mixture weight, these kernels are then ranked according to 
their isotropic and the weight transfers are carried out as in the previous method except for the 
single constrain that transfer between kernels of the same event are not allowed (see Figure 7-7a,b). 
This constrain is motivated by the fact that the kernels representing each event location PDF are 
already optimized and hence a weight transfer between those can only lead to a sub-optimal model. 
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Figure 7-7 Idealized schematic representations of a) Condensation: each event is represented by a different shade, 

weight is transfer is represented by the arrows, notice that there are no intra-event weight transfers b) Final condensed 
catalog: total weight sum is preserved, one component is discarded. c) Sampling of the event PDFs: this step is 
independent of the condensed catalog d) Maximum likelihood assignment of the three events onto two of the 

condensed. 

The KaKiOS-15 catalog contains 475,371 events whose location PDFs are represented by a 
total of 1,336,322 Gaussian components. Condensation reduces this number to 600,463 as weights 
are transferred to better located ones. Nevertheless, in Figure 7-8 we see that nearly half of these 
components amount to only 10% of the total event weight. One way to proceed in such a case 
would be to take the components with the largest weights with a cumulative weight amounting to a 
90% or 95% of the total mass. 
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Figure 7-8 Cumulative weights of the 600,463 condensed KaKiOS-15 components representing a total of 475,371 

events. The components are ranked according to increasing weights. 

We avoid such arbitrary cut-offs by noticing that the condensed catalog is nothing more than 
a Gaussian mixture model representing the spatial PDF of earthquake occurrence in South 
California. We can then, in the same vain as the hard clustering described previously, assign each 
event to its most likely GMM component. Since each event is represented by a location PDF, we 
sample it with 1000 points and then calculate the kernels with the highest likelihoods for each 
sample point. The event is assigned to the kernel that provides the highest likelihood for the highest 
number of sample points (see Figure 7-7c,d). As a result, we see that the 475,371 events are 
assigned to 93,149 distinct kernels. The spatial distribution of all condensed kernels and the ones 
assigned with at least one event are given in Figure 7-9. Essentially, we are using the condensed 
catalog as a prior on the individual event locations. 
 

 
Figure 7-9 Left: Mean locations of condensed 600,463 Gaussian components shaded according to their weights. Right: 
The same components shaded according to the total number of events assigned to them after the maximum likelihood 

assignment 
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7.6 Large scale application to Southern California 

Our previous analysis concluded that the spatial distribution of southern California 
seismicity is multifractal, i.e. it is an inhomegeneous collection of singularities [Kamer et al., 2015]. 
We see the distributions given in Figure 7-9 as expressions of these singularities. Since we are 
interested in the general form of the fault network rather than the second order features (e.g 
inhomogeneous seismicity rates) we consider all the 93,149 kernels as individual points without 
taking into account their event counts. Considering these counts would result in more complex and 
singular structures that can be associated with the multifractal slip distribution of big events 
modulated through the non-uniform network detection capabilities. These two different options can 
be understood as mimicking the definitions of the capacity (D0) and information dimensions (D1), 
which are identical in monofractals whereas D0>D1 in multifractals. 

Another important aspect, which deserves further attention in the case of such a large scale 
application, is the uniform background kernel. The assumption of a single background kernel 
defined as the minimum bounding box of the entire dataset seems to be a fair assumption for the 
case of Landers aftershocks, however it becomes evident that in the case of Southern California 
such a box would overestimate the data span and hence lead to an underestimated density. We can 
also expect the background density to vary regionally. The densities might be higher for regions in 
the periphery of the network, swarms or geothermal fields compared to well-defined active faults. 
We thus extend our approach by allowing for multiple background kernels. For this purpose we 
make use of the AHC tree of that is already calculated for the atomization of the whole dataset. We 
divide the dataset into a small number of subsets based on this tree. Each of these subsets then is 
atomized individually and hence in the process gets its own background kernel. The atomized 
subsets are then joined to form a single structure which is then progressively merged. Naturally, we 
have no objective way of knowing how many background kernels a dataset may feature. However, 
in various synthetic tests (involving cuboid backgrounds) we observe that inflating this number has 
no effect on the densities, whereas a too low value causes underestimation. Apart from the 
justifications mentioned above, we are motivated to divide this large dataset into subsets for purely 
computational reasons as this allows for improved parallelization and computational efficiency. 
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Figure 7-10 Fault network reconstructions for the KaKiOS-15 catalog. Top row shows results for the case of 5 initial 
subsets with local (left) and global (right) merging criterion. Bottom row shows the same for 30 initial subsets. The 

number of clusters, background weight and BIC per data point is given in the titles. 

In Figure 7-10 we present two fault networks obtained for two initial divisions with 5 and 30 
subsets. For each choice, we show the result of the local and global criteria, the background cuboids 
are not plotted to avoid clutter. Our immediate observation is related to the events associated with 
the 1986 Oceanside sequence. The kernel associated with these events is virtually absent in the fault 
networks reconstructed from 5 initial subsets. This can be explained in terms of the atomization 
procedure. In the case of 5 initial subsets, the offshore Oceanside seismicity falls in a subset 
containing onshore faults (e.g the Elsinore fault). Because these faults have a more coherent spatial 
structure compared to the diffused Oceanside seismicity, their protocluster capacity is higher. Hence 
the atomization procedure continues increasing the number of clusters while the Oceanside 
seismicity has actually reached its capacity. As a result, this causes nearly all of the protoclusters 
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within this region to become singular and hence be discarded. In the case of 30 subsets, the 
Oceanside seismicity is in a smaller region and thus has a better capacity estimation. 

At this point the natural question would be: which of these fault networks is a better model? 
The answer to this question would naturally depend on the application. If one is interested with 
correspondence of focal mechanisms or high resolution fault traces, which are expressions of local 
stress/strain conditions, then the ideal choice would be the local criterion. However, if the 
application of interest is forecasting then one might consider the global criterion as it provides a 
lower BIC value due to being formulated with respect to the overall likelihood. We leave the 
statistical investigation of the fault network parameters as a subject for a separate study and instead 
focus on immediate uses of the obtained fault network. 

7.7 Validation through a spatial forecast test 

Several methods can be proposed for the validation of a reconstructed fault network. One 
way could be to project the faults on the surface and check their correspondence with the mapped 
fault traces. This would be a tedious task since it would involve a case by case qualitative analysis. 
Furthermore, many of the faults illuminated by the seismicity might not have been mapped or they 
may simply have no surface expressions. In the recent case of the 2014 Napa earthquake, there was 
also a significant disparity between the aftershock distributions and the observed surface trace 
[Brocher et al., 2015]. Another option would be to compare the accordance between the 
reconstructed faults and the focal mechanisms of the events associated with them. With many of the 
metric already developed [Wang et al., 2013], this would allow for a systematic evaluation. 
However, the current focal mechanism catalog for Southern California is based on the HYS-12 
catalog obtained by relative double-difference techniques. As previously discussed in our studies 
[Kamer et al., 2015], we believe this catalog exhibits artificial clustering effects at different scales. 
Hence, any focal mechanism based on hypocenters from this catalog would be inconsistent with our 
absolute KaKiOS-15 catalog.  

Hence we are left with the ultimate option: validation by 3D spatial forecasting. For this 
purpose, we will use the global criterion model obtained from 30 subsets because it has the lowest 
BIC value. Our fault reconstruction is based on all events in the KaKiOS-15 catalog, regardless of 
their magnitude. The last event in this catalog occurred on June 30th 2011. Thus, we consider all 
routinely located events by the Southern California Earthquake Data Center between the July 1st 
2011 and July 1st 2015 with magnitudes larger than M2.5 as our target events. We limit our volume 
of interest arbitrarily to the region limited by latitudes [32.5, 36.0], longitudes [-121, -115] and 
depths in the range 0-20km. The likelihood scores of the target events are calculated directly from 
the fault network, which is essentially a weighted mixture of Gaussian PDFs and uniform 
backgrounds. The only modification done to accommodate the forecast is aggregating all 
background kernels into a single cuboid covering the volume of interest. The weight of this cuboid 
is equal to the sum of all individual background kernel weights. To compare the performance of our 
fault network we also need a reference model. The trivial choice with zero prior information would 
be a single uniform background. We also consider a more competent model, the TripleS [Zechar 
and Jordan, 2010a]  that is often used in as forecasting benchmark. This model is obtained by 
replacing each event with an isotropic, constant bandwidth Gaussian kernel. The bandwidth is then 
optimized for by dividing the dataset into training and validation sets. As already pointed out by 
[Zechar and Jordan, 2010b] this model involves several choices (e.g. choice of optimization 
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function, choice of candidate bandwidth, etc...). Rather than spending time on trying to construct a 
fairly competitive TripleS model, we side-step the issue by allowing optimization of the bandwidth 
parameter directly on the target set. Given such a privilege of foresight, this should correspond to 
the upper bound of the TripleS forecast skill. In Figure 7-11 we show the results for varying 
magnitude cut-offs in terms of negative log likelihood per event. Our fault reconstruction performs 
better for all magnitude cut-off levels. We also see a consistent relative increase in its performance 
with increasing magnitude cutoff. 
 

 
Figure 7-11Average Negative Log Likelihood for the target dataset limited to events above M2.5 (light gray), M3.0 

(dark gray) and M3.5 (black). Performance of the TripeS models is evaluated as function of the isotropic kernel 
bandwidth (dotted lines). The fault network performance is shown with constant level solid lines. 

The superiority of our model with respect to TripleS can be understood in terms of model 
parameteri ation. There is a general misconception regarding the “complexity” of a model in the 
earthquake forecasting community. Sadly, we often see this misconception being perpetuated by the 
very people involved in testing and evaluating forecasts. For instance, in their 2010 paper, Zechar 
and Jordan refer to the TripleS model as “a simple model” compared to models employing 
anisotropic or adaptive kernels [Kagan and Jackson, 1994, 2007]. It is likely that, owing to such 
allegations, some of our readers might believe that the model presented in this study is far more 
complex than TripleS. However, this is not true. The complexity of a model is independent of the 
algorithmic procedures undertaken to obtain it. What matters is the number of its free parameters or 
in other words its minimum description length [Rissanen, 1978; Schwarz, 1978]. TripleS is 
essentially a GMM model expressed by the 3D locations of its components and a constant kernel 
bandwidth. Hence it has a total of (3*475,371)+1=1,426,114 free parameters compared to the 
(10*93,149)-1=931,489 of our fault network. The fact that the TripleS kernels are co-located with 
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hypocenters of previous earthquakes does not reduce the complexity of the model; it only amounts 
to a suboptimal modeling choice. Thus, the performance difference between the two models can be 
understood in terms of the TripleS’ build-in tendency to overfit. Another contributing factor could 
be regarded as the location uncertainty information that facilitates condensation and consequently 
puts more emphasis on the fault structure rather than the aftershock singularities. 

7.8 Conclusion 

In this paper, we introduced an agglomerative clustering method for seismicity-based fault 
network reconstruction. The method provides the following advantages: 1) a bottom-up approach 
that explores all possible paths at each step and moves coherently towards a global optimum; 2) 
introduction of an optimized atomization scheme that aims to isolate the background/uncorrelated 
points; 3) improved performance due to added geometrical merging constrains. We were able to 
reconstruct a very large dataset consisting of 30 years of South Californian seismicity by taking into 
account the non-linear location uncertainties of the events and condensing the catalog ~20% of its 
initial size. We validated the reconstructed Southern California fault network through a 
retrospective 3D spatial forecast test, targeting the last 4 years of seismicity.  

Notwithstanding these encouraging results, there several aspects in which the proposed 
methodology can be further improved and extended. In the current formulation, the background 
kernels are represented by the minimum bounding box of each subset, thus they tend to overlap and 
bias the overall background density. This can be improved by employing convex hulls, alpha shapes 
[Edelsbrunner and Mücke, 1994]  or a Voronoi tessellation [Voronoi, 1908] optimized to match the 
subset borders. The background kernel could also be adapted to the specific application; for induced 
seismicity catalogs, it can be a minimum bounding sphere or an isotropic Gaussian since the 
pressure field diffuses radially from the injection point. Different types of protocluster such as 
Student-t kernels or copulas can be used in the atomization step or they can be introduced at various 
steps by hypothesis testing. 

An important implication of the reconstructed fault network is its potential in modeling the 
temporal evolution of seismicity. The Epistemic Type Aftershock Sequence (ETAS) model can be 
simplified significantly in the presence of optimally defined spatial kernels. Rather than expressing 
the whole catalog sequence as the weighted combination of all previous events, we can instead have 
multiple sequences corresponding to each kernel and hence model each of those as a partial 
combination of the others. Such a formulation would eliminate the need for the commonly used 
isotropic distance kernel. This single degree kernel induces essentially the same deficiencies 
discussed in the case of the TripleS model. Thus, we can expect such an ETAS model, based on our 
fault network, to perform significantly better than its isotropic variant. 
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Chapter 8  

Conclusion and Future perspectives 

8.1 Achieved results 

The main goal of this thesis was to enhance our understanding of earthquake occurrence and 
ultimately improve the current state-of-the-art long term seismicity forecasting models. Under the 
current testing regulations, a skillful long term forecast requires precision in both magnitude and 
space dimensions. For this purpose, in Chapter 2 we initially focused our attention on the spatial 
variation of the frequency magnitude distribution (FMD). We introduced a non-parametric approach 
based on Voronoi tessellation and penalized likelihood in order to investigate models with different 
spatial complexities. Our results indicated significant spatial variations in the FMD, expressed in 
terms of Gutenberg-Richter’s b-value. Consequent investigations about the origin of these 
variations revealed that while some were geophysical in nature, the majority was due to magnitude 
errors and inconsistencies. These conclusions are significant not only for California but also for 
other seismically active regions (e.g Japan, Tur e y, Italy,  reece…) where b-values are extensively 
being mapped and associated with physical properties such as normal/shear stresses.  

It is difficult to assess the origin of b-value variations in the absence of magnitude 
uncertainty estimations. To our best knowledge, currently only the New Zealand GeoNET catalog 
reports consistent magnitude errors. Our results can be used to argue that, under these conditions, 
resources allocated to b-value studies may be diverted to other fields that are less prone to such 
biases, or at least where data errors are assessed and reported.  

To understand to what degree these b-value variations may influence typical earthquake 
forecasting models, in Chapter 3 we investigated the performance of our non-parametric approach 
in a retrospective test. The results of this test suggested that the method achieves significant 
information gains with respect to current models. This can be considered as an indication that the 
performance of current forecasting models may just as well be driven by seismic network effect. 
Unsettled by this conclusion and in the absence of consistent data on magnitude error, we turned 
our attention to the second component of long term forecast models; i.e the spatial distribution of 
seismicity. Just as in the case of FMD, the spatial distribution of earthquakes also follows a self-
similar scaling. However, unlike in the b-value, whose estimation methods are well established, 
estimates of the multifractal spectrum vary depending on the used method. This motivated us, in 
Chapter 4, to develop a new method based on barycentric pivot point selection and the non-
overlapping coverage criteria. We tested our method’s performance against various multifractal 
distributions to confirm its improved performance. It is interesting to notice that, similarly to the 
state-of-the art FMD modeling methods that try to avoid dropping below the detection threshold, 
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our multifractal analysis method tries to avoid the edges of the spatial distribution. In both cases the 
constraints can be considered as instrumental rather than physical.  

The Barycenteric Fixed Mass (BFM) method was able to successfully account for the effect 
of the network coverage geometry, which governed the spatial boundaries, however another 
important factor remained neglected: the location uncertainty. We realized that for a spatial 
analysis, the catalog can be viewed as the discrete sampling of an underlying spatial PDF. This gave 
rise to the notion of an optimal encoding for such a PDF. We were then able to demonstrate in 
Chapter 5, that taking into account the location uncertainty information of all events allows for the 
formulation of a similar PDF but much more concisely; with only a fraction of the initial events. 
Furthermore, we demonstrated through synthetic tests that such a condensed catalog shows greater 
correspondence with respect to a known generating distribution. The condensation method provides 
not only a reduction of overall data-length, but also a natural way of accounting for the location 
uncertainty of the events. Employing these two methods in the spatial analysis of the Southern 
Californian seismicity (HYS-12 catalog) revealed a robust multifractal scaling. We also observed 
distinct transitions in this scaling. While we were able to associate some of these breaks to a 
physical attribute (e.g the thickness of the seismogenic zone), interpretation of other transitions 
remained more elusive. We decided to investigate further, since such transitions could have 
implications for the general understanding of earthquake triggering. We once again turned our 
attention to the consistency of the data and decided to undertake the task of relocating the last three 
decades of Southern Californian seismicity, rather than basing our conclusions on speculations 
regarding the possible caveats of the currently available catalogs. 

Our main goal in this endeavor was to develop a catalog with uniformly consistent location 
uncertainty information. For this purpose, in Chapter 6, we first developed a minimum 1D Vp 
velocity model with station corrections using VELEST. We then used this model in the non-linear, 
absolute relocation of the whole catalog using NonLinLoc. Our comparison of this new absolute 
location catalog (KaKiOS-15) with its relatively relocated counterpart (HYS-12) revealed that there 
are significant differences in the observed multifractal spectra. We also found strong evidence that 
the previously observed scaling break at small scales is due to location errors. The absolute 
locations of the KaKiOS-15 catalog provide evidence for a single multifractal regime and hence 
they are consistent with the overall scale-invariant nature of earthquake phenomena.  

Empowered by this improved catalog and the understanding of multifractal scaling, we 
moved on to a more detailed spatial analysis based on pattern recognition techniques. In Chapter 7, 
we developed a new fault network reconstruction method. It is important to note that this last 
chapter was actually the initial goal of this thesis. Thus while developing all the other presented 
methods, we were simultaneously laying the foundations of the new agglomerative clustering 
method. For instance, the spatial b-value variation results in Chapter 2 motivated us to choose 
Southern California as our area of investigation due to its uniform b-value distribution. If we had 
chosen to investigate the north, we would have to deal with the distinctively non-tectonic seismicity 
in Geysers and the poor network coverage in Mendocino Triple Junction. Building on the 
cumulative results of Chapter 4, 5 and 6, we saw the single multifractal regime and the uniform b-
value in Southern California as an indication that the seismogenic process could be seen, and hence 
modeled, as emerging from simple structures that intermingle to form a large scale, self-similar 
network. This understanding inspired the bottom-up, agglomerative approach presented in Chapter 
7. Similarly, its large scale applications to the KaKIOS-15 catalog were only made possible by the 
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data-length reduction achieved with the condensation method. We were able to benefit from our 
multifractal understanding also in terms of improving spatial forecasts. Unlike models based on the 
higher order dimension D1, we argued that earthquake nucleation essentially samples the capacity 
dimension D0. This motivated us to disregard the condensation weights in our application. The 
information gain achieved by the reconstructed fault network can be attributed to this basic 
understanding.  

8.2 Future perspectives 

The methods and data sources developed in this thesis have led to a better understanding of 
the statistical properties of earthquake phenomena and data inconsistencies associated with its 
measurement. Also, as demonstrated on several occasions, we were able to exploit these 
understandings in order to improve current forecasting models. Thus, we are confident that efforts 
aimed at improving and extending the proposed methods will lead to further insights and better 
forecasts. Here we shall point to some of the possible paths to pursue in this direction. 

The data-driven spatial b-value estimation method, presented in Chapter 1, can be extended 
by allowing for segmentations in the time-domain as well. This would facilitate the temporal 
analysis that is often found to be affected by aftershock incompleteness issues. The Voronoi 
tessellation method can also be improved to allow for more sophisticated and realistic 
segmentations. This can be achieved fairly easily by implementing nested Voronoi tessellations. 
Another alternative could be to build up on the clusters obtained from our fault network 
reconstruction in Chapter 7. We could keep the spatial structure constant and consider mergers in 
the magnitude domain that are conditioned on nested hypothesis tests. This would allow different 
spatial clusters to be modeled with similar FMDs. This would automatically constitute a time-
independent forecast model. However, the application of the bottom-up approach might not be so 
straightforward. Mergers in the magnitude domain would require the use of entire range FMD 
models, since the likelihood has to be defined for all events, regardless of the varying completeness 
levels during the mergers. Other issues might arise if clusters span across different networks, in 
which case we can expect consistency in earthquake locations but not in magnitudes.  

Although we have spent considerable effort in improving the consistency of the Southern 
Californian seismicity locations, we have not tackled the issue of magnitudes. In Section 2.7.2 we 
showed how location errors can propagate into magnitude errors. Now that we have the complete 
location PDFs of the events in the KaKiOS-15 catalog, we can do a similar estimation for those 
magnitude errors. We might have to make certain assumptions in the absence of information about 
the actual stations used in magnitude estimation; however, this would still provide us with a lower 
bound on the realistic magnitude uncertainties. The current version of the KaKiOS-15 catalog can 
also benefit from further improvements. The waveforms for most of the events are available and we 
can use automatic picking algorithms to provide not only better pick times but also uncertainties. 

The fault reconstruction methodology introduced in Chapter 7 is probably the topic that 
provides the largest possibilities for future investigation and refinements. One of them is certainly 
the immediate need for a consistent focal mechanism catalog that would allow us to make physical 
validations in terms of fault orientations. With such insights we should be able to reconstruct better 
fault networks consistent with observed faulting styles. If substantiated, the correspondence 
between the fault geometries and focal mechanism can be used to improve Coulomb stress models. 
The reconstruction procedure can also be extended to allow for different types of kernels. For 



 

152 
 

instance, a Student-t kernel can allow for heavier tails whereas an Epanechnikov kernel can provide 
a stronger taper. Moreover, the kernel type does not have to be specified a priori, it can vary 
through optimization at each step of the merger procedure. This would result in a reconstruction that 
is more data-adaptive. In Chapter 7, we discussed how the fault network can allow for a simplified 
yet more robust re-formulation of the ETAS model. Another possible way to model such a multiple-
input-multiple-output system would be to use artificial neural networks (ANNs). This would allow 
for the use of different types of non-linear interconnections with customizable complexities. The 
ANN field can provide well established training and optimization methods (such as back 
propagation of error and neuron pruning) that could be used to complement our current statistical 
forecast models. 

In the light of these exciting prospects, we believe that fault network reconstruction based on 
a consistent, absolute catalog opens a whole new dimension that awaits to be explored. Since data is 
so vast, this needs to be done with rigor and efficiency in a holistic way. Yet, we should not let this 
endeavor degrade itself into a petty, mundane task of feeble refinements that never amount to 
nothing. We should be able to see our achievement for what it is, and if need be, leave it; for if it 
can’t save lives, then it is worthy of none. We then move on to new frontiers, new data sources and 
push on. 
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