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Summary

The evolution of prosocial behavior and, in particular, of cooperation is still

considered as one of the 25 major unsolved questions in science (Pennisi, 2005).

Any prosocial behavior seems to contradict Darwin’s principle of “the survival

of the fittest” and the widely accepted assumption of a ubiquitous rational

and selfish actor. Nevertheless, an enormous level of large-scale cooperation

among humans and other forms of life can be observed.

As a consequence, researchers from various disciplines have started to inves-

tigate the puzzle of cooperation. Among these fields are evolutionary biol-

ogy (Robinson, Fernald, and Clayton, 2008), neuroscience (Singer, Seymour,

O’Doherty, Stephan, Dolan, and Frith, 2006; Donaldson and Young, 2008),

anthropology (Henrich, 2004; Burkart, Hrdy, and Van Schaik, 2009), sociology

(Coleman, 1998; Elster, 2007), and economics (Fehr and Gachter, 2000; Fehr

and Schmidt, 1999; Bolton and Ockenfels, 2000; Camerer, 2003). This resulted

in the development of theories and models of reciprocity (Cox, Friedman,

and Gjerstad, 2007; Nowak, 2006), other-regarding behavior (Rabin, 1993;

Fehr and Schmidt, 1999), and social coherence (Bernheim, 1994; de Hooge,

Zeelenberg, and Breugelmans, 2007; Henrich, Mcelreath, Barr, Ensminger,

Barrett, Bolyanatz, Cardenas, Gurven, Gwako, Henrich, Lesorogol, Marlowe,

Tracer, and Ziker, 2006). In addition, laboratory experiments and field studies

have been carried out to analyze the prosocial behavior of humans (Fehr and

Gachter, 2000, 2002; Hamlin, Wynn, and Bloom, 2007), animals (Brosnan and

de Waal, 2003; Silk, Brosnan, Vonk, Henrich, Povinelli, Richardson, Lambeth,

Mascaro, and Schapiro, 2005; Jensen, Call, and Tomasello, 2007b,a; de Waal,

Leimgruber, and Greenberg, 2008; Range, Horn, Viranyi, and Huber, 2008),

and even insects (Nowak, Tarnita, and Wilson, 2010). In sum, this diverse

body of literature suggests that our prosocial behavior is deeply rooted in our

genetic and cultural heritage.

The co-evolution of culture and genes represents the fundamental assumption

underlying this thesis. Applying methods from complex systems science com-

bined with approaches from biology, evolutionary psychology, sociology and

behavioral economics, we have developed two models that help to understand

the emergence of fairness preferences, altruistic punishment and cooperation



in an evolutionary competitive and resource-limited world. In particular, we

focus on the behavior of subjects in a public goods problem scenario which is

considered to reflect many real life situations.

In the first part of this thesis, we develop an analytical framework that reflects

the interactions of agents playing a public goods game with punishment under

evolutionary dynamics. We compare the results with the empirical observa-

tions obtained in three previously conducted laboratory experiments. This

leads to the following two results. First, the perception of unfairness in com-

bination with the maximization of one’s relative fitness explains quantitatively

the observed altruistic punishment behavior among humans: the behavior of

subjects in the experiments seems to be driven by an aversion against disad-

vantageous inequitable outcomes. Second, a disadvantageous inequity aversion

preference is evolutionary dominant and stable in an evolutionary environment

when compared to purely self-regarding behavior.

In the second part of this thesis, we complement our analytical model by

numerical simulations. This allows us to relax the assumption of a homo-

geneous population that was required in the analytical model. We are able

to verify that disadvantageous inequity aversion inevitably leads to the emer-

gence of altruistic punishment in a heterogeneous population of multiple in-

teracting agents. Furthermore, we show that an aversion against disadvanta-

geous inequitable outcomes dominates essentially all other variations of other-

regarding preferences in an evolutionary environment.

In the third part of the thesis, we focus on the effect that punishment has on

the level of cooperation among agents who play a public goods game. We do

this empirically with an analysis of the micro-level data from the three pre-

viously conducted experiments and by using our numerical simulation model.

The empirical observations suggest that punishment acts as a coordination

mechanism in one-shot interactions. Also, the simulation results show that

punishment only sustains a preexisting level of cooperation but cannot ex-

plain its evolutionary emergence.

In the last part of this thesis, we first show that punishment can promote

cooperation if the population of agents is sufficiently heterogeneous in the

cooperation behavior. Then, we investigate different mechanisms of multi-level



selection and show that they are able to generate and to maintain heterogeneity

among the agents even in the presence of punishment. The combination of

the aversion against disadvantageous inequitable outcomes and the resulting

altruistic punishment behavior together with the heterogeneity induced by

multi-level selection processes ultimately explains the evolutionary emergence

of cooperation.





Kurzfassung

Die Entstehung von prosozialem Verhalten und insbesondere von Kooperation

wird immer noch als eine der 25 grossen unbeantworteten Fragen der Wis-

senschaft angesehen (Pennisi, 2005). Jegliche Art prosozialen Verhaltens steht

im Widerspruch zu Darwins Grundsatz des “Überleben des Stärkeren”und der

weithin verbreiteten Annahme eines immer rational und egoistisch handelnden

Menschen. Nichtsdestotrotz kann ein weit verbreitetes und hohes Mass an ko-

operativem Verhalten zwischen Menschen und auch bei anderen Lebensformen

beobachtet werden.

Als Konsequenz daraus haben Wissenschaftler vieler verschiedener Forsch-

ungsrichtungen angefangen, die Grundlagen der Kooperation zu ergründen.

Darunter befindet sich unter anderem die Evolutionsbiologie (Robinson et al.,

2008), Neurowissenschaften (Singer et al., 2006; Donaldson and Young, 2008),

Anthropologie (Henrich, 2004; Burkart et al., 2009), Soziologie (Coleman,

1998; Elster, 2007) und Ökonomie (Fehr and Gachter, 2000; Fehr and Schmidt,

1999; Bolton and Ockenfels, 2000; Camerer, 2003). Dies führte zur Entwick-

lung von Theorien und Modellen der Reziprozität (Cox et al., 2007; Nowak,

2006), des Gruppen- und Umfeld bezogenen Verhaltens (Rabin, 1993; Fehr

and Schmidt, 1999) und der sozialer Kohärenz (Bernheim, 1994; de Hooge

et al., 2007; Henrich et al., 2006). Zusätzlich wurden Labor Experimente und

Feldstudien durchgeführt, die das prosoziale Verhalten von Menschen (Fehr

and Gachter, 2000, 2002; Hamlin et al., 2007), Tieren (Brosnan and de Waal,

2003; Silk et al., 2005; Jensen et al., 2007b,a; de Waal et al., 2008; Range

et al., 2008) und auch Insekten (Nowak et al., 2010) untersuchen. Die zusam-

menfassende Betrachtung der Erkenntnisse oben genannter Disziplinen lässt

darauf schliessen, dass unsere Neigung zu prosozialem Verhalten tief in un-

serem genetischen und kulturellen Erbe verwurzelt ist.

Die Koevolution von Kultur und Genen bildet eine grundlegende Annahme

dieser Arbeit. Dabei entwickeln wir mit Hilfe von Methoden komplexer Sys-

teme in Verbindung mit Denkansätzen aus der Biologie, der evolutionären Psy-

chologie, der Soziologie und der Verhaltensökonomie zwei Modelle, die dabei

helfen, die Entstehung von Fairness Präferenzen, altruistischer Bestrafung und

Kooperation in einem evolutionären und kompetitiven Umfeld und unter einer



beschränkten Anzahl an Ressourcen zu erklären. Insbesondere betrachten

wir das Verhalten von Subjekten im Rahmen eines Public Goods Problem

Szenarios, welches eine Abstraktion vieler Situationen des alltäglichen Lebens

darstellt.

Im ersten Teil dieser Arbeit entwerfen wir ein analytisches Modell, welches

die Interaktionen und die evolutionäre Dynamik von Agenten abbildet, die ein

Public Goods Spiel mit Bestrafungsmöglichkeit spielen. Wir vergleichen die

Ergebnisse des Modells mit den empirischen Beobachtungen aus drei Laborex-

perimenten, die von Fehr, Gächter und Fudenberg, Pathak durchgeführt wur-

den (Fehr and Gachter, 2000, 2002; Fudenberg and Pathak, 2009). Dies führt

zu den folgenden zwei Resultaten: Unser Begriff von Fairness, respektive Un-

fairness, im Zusammenhang mit unserer Neigung, stets unsere relative Fitness

gegenüber anderen Individuen zu maximieren, erklärt quantitativ exakt das

beobachtete altruistische Bestrafungsverhalten; das Verhalten der Probanden

in den Experimenten scheint eindeutig durch eine Abneigung gegenüber eines

für sie selbst nachteiligen Spielergebnisses bestimmt zu sein. Zweitens kön-

nen wir zeigen, dass diese Abneigung gegenüber eines nachteiligen Ausgangs

eine evolutionär stabile und gegenüber einem rein egoistischen und selbst-

zentrierten Handeln dominante Strategie darstellt.

Im zweiter Teil dieser Arbeit komplementieren wir das zuvor eingeführte an-

alytische Modell mit Hilfe von numerischen Simulationen. Diese Methode er-

möglicht es uns, die Homogenitätsannahme des analytischen Modelles zu lock-

ern. Mit Hilfe der Simulationen verifizieren wir, dass die unterbewusste Aver-

sion gegenüber Situationen, die sich für einen selbst als nachteilig erweisen,

auch in heterogenen Population zu einem Verhalten altruistischer Bestrafung

führt. Desweiteren zeigen wir, dass die Abneigung gegenüber nachteiligen

Situationen im wesentlichen alle anderen Varianten von Fairness Präferenzen

innerhalb einer evolutionär kompetitiven Umgebung dominiert.

Im dritten Teil der Arbeit konzentrieren wir uns darauf, wie Bestrafung sich

auf den Grad der Kooperation zwischen Agenten auswirkt, welche innerhalb

eines Public Goods Spiel interagieren. Dazu führen wir eine detaillierte Anal-

yse der zuvor von Fehr, Gächter und Fudenberg, Pathak empirisch beobachteten

individuellen Verhaltensmuster durch. Die empirischen Beobachtungen unter-
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stützen die Annahme, dass Bestrafung lediglich als Koordinationsmechanis-

mus zwischen Probanden dient, welche nur einmalig miteinander interagieren.

Unsere Simulationsergebnisse zeigen zusätzlich, dass Bestrafung nur ein zuvor

bereits existierendes Mass an Kooperation erhalten kann, jedoch nicht eine

Entstehung dessen erklären.

Im letzten Teil dieser Arbeit zeigen wir zunächst, dass Bestrafung die Entste-

hung von Kooperation begünstigen kann, wenn die Population der Agenten

über die Zeit hinweg hinreichend heterogen ist. Anschliessend analysieren

wir verschiedene Varianten von Multi-Level Selektion und zeigen, dass diese

auch in der Gegenwart einer koordinierenden Bestrafung in der Lage sind, ein

geeignetes Mass an Heterogenität in der Population zu erhalten. Wie kann

die Entstehung von kooperativem Verhalten schlussendlich erklärt werden?

Zum einen ist es unsere zutiefst innere Abneigung gegenüber nachteiligen und

unfairen Situationen. Zum zweiten die daraus resultierende Neigung zu altru-

istischer Bestrafung und dessen koordinierende Funktion. Zum dritten ist es

das Zusammenspiel der daraus resultierenden Koordinationswirkung und der

durch die Gruppenselektion bedingten Heterogenität in der Population.
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received financial support is gratefully acknowledged. In particular, I want to

thank Paolo Vanini.

Working at the Chair of Entrepreneurial Risks has always been a very en-

joyable, creative and stimulating environment. Special thanks go to Heidi

Demuth for her support in all administrative tasks and for being the reli-

able and constant social hub in the group. I want to extend my thank to

Mirko Birbaumer, Peter Cauwels, Riley Crane, Gilles Daniel, Maroussia Favre,

Vladimir Filimonov, Georges Harras, Andreas Hüsler, Thomas Maillart, Dirk
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1. Introduction

Living organisms and in particular humans are characterized by their tendency

to form social groups, to jointly work for common goods and to cooperate.

The evolution of cooperation and prosocial behavior is considered to be one

of the big question in science that still remains (partly) unanswered (Kennedy

and Norman, 2005). This thesis contributes to a better understanding of the

evolution of cooperation and prosocial behavior by taking on a perspective

from various disciplines ranging from biology, evolutionary psychology and

complex systems to sociology and economics.

1.1 Motivation, aim and scope

During the past centuries research in economics, biology, psychology, sociol-

ogy and anthropology shared the common objective to analyze, model and

ultimately explain the individual as well as the collective behavior of humans.

In particular patterns of prosocial behavior have been analyzed and discussed

using lab experiments, field studies and theoretical frameworks. At a first view

and from an evolutionary perspective these behaviors seem to be puzzling and

in contradiction with Charles Darwin’s theory of natural selection and the

principle of the “survival of the fittest”. Moreover, evolution has all too often

been interpreted as a goal-oriented process, a thinking that made its way into

the different disciplines. Most prominently, economists and game theorists,
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first established and (partly) still insists in the paradigm of an ubiquitous

rationality that shapes and is shaped by pure self-regarding maximization

objectives. Of course, the assumed selfish-optimization behavior is not mis-

placed in general, however, it often tells only half of the story. If we replace the

word “fittest” in Darwin’s theory by the concept of “best adapted” we kill two

birds with one stone: First, this phrasing more precisely reflects the intended

meaning of the initial statement; second, it highlights the relative character

of the fitness measure and thus (i) puts the pure self-regarding maximization

of self-interest into perspective and (ii) emphasizes the indetermination of the

evolutionary process 1.

Behavioral sciences emerged and developed as largely disconnected disciplines

in the scientific landscape and were and still are shaped by a history of well

established and even better advocated disciplinary boundaries. This is consid-

ered to be one of the vital errors in social sciences (Capra, 2004). We believe

that thinking in strictly-separated categories and disciplines is not adequate to

capture the complexity and interdependencies that are required to understand

and explain pro-sociality and its evolutionary emergence. As a consequence,

this thesis provides a complex systems approach to explain the evolution of

cooperative behavior that integrates perspectives from biology, psychological

anthropology, sociology and economics. In this way, we can show how the

interplay of mechanism at different scales, e.g. genetic or cultural, can pro-

mote the emergence of prosocial behavior in the form of cooperation and its

supporting mechanisms such as altruistic punishment of non-cooperators.

Within our framework we define cooperative behavior as follows: cooperation

is a joint action of multiple individuals to achieve a common purpose or mutual

benefit. The second term that is of relevance for our work is “altruism”. The

French philosopher August Comte first brought up the definition of“vivre pour

altrui”, that is “live for others”, which later on led to the term altruism. In

this thesis we focus on the act of “altruistic punishment” that is defined as the

punishment of defectors (non-cooperators) at own costs and without material

benefit. Depending on the context, cooperation and altruism are closely tied.

The distinguishing factor between a cooperative and an altruistic act is rooted

1In section 2.2 we will provide a more detailed discussion about the relative character of
fitness in evolutionary systems.
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in the definition of the underlying evolutionary fitness measure. In terms

of relative fitness measure, cooperation is equivalent to altruism. Here, the

cooperative behavior can reduce the fitness of the cooperator relative to the

fitness of the recipient(s) in an otherwise competitive environment and thus

can be considered to be altruistic. However, by the strict definition of altruism,

an altruistic act requires to reduce the absolute fitness of the altruist and to

increase the absolute fitness of the recipient(s) (Wilson, 1977; McElreath and

Boyd, 2007). In our competitive evolutionary environment, the fitness of an

agent is always defined relative to her context, i.e. to other agents. We are

aware of the fact that within a relative definition of fitness cooperation can

be promoted by a much wider range of mechanisms that are subject to less

strict requirements. However, this assumption does not constitute a strict

relaxation of the problem of cooperation to our approach: We will show that

the emergence of cooperation requires the existence of altruism in the strict

sense, namely in the form of altruistic punishment.

In our approach, we focus on the cooperation in voluntary contribution mech-

anisms, also known as the common- or public goods problem. In 1968, Hardin

formulated this type of a social dilemma in his paper “The Tragedy of the

Commons” and highlighted its relevance for the history and future of mankind

(Hardin, 1968). The social dilemma in public goods has become prominent

in the context of climate change and the depletion of natural resources by

the human species. Throughout our analysis, we focus on the classical public

goods problem that has been analyzed and discussed in many studies, most

prominently in the context of economics and game theory. Most studies how-

ever share the limitations that come along with studying the problem only

from the perspective of one discipline. A non-exhaustive list of exceptions is

the work of Herbert Gintis, Joseph Henrich, Charles Efferson and others.

In the last two centuries, research has been shaped largely by a prototype of

an exact and quantifiable science with Physics leading the way as opposed to

the soft “social” sciences. This has led to the tendency and the perception

that everything, even in social sciences, should be modeled analogously to the

Newtonian mechanic in Physics, which shaped the thinking in many fields of

science, most prominently in economics (Capra, 2004). However, the dynamics

in social systems, such as the interaction in economies, are fundamentally
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different to those applied in Physics which mostly base on constant and exactly

defined natural phenomenons (except for extensions of the newtonian model

in the field of quantum physics). In contrast to the Newtonian mechanical

dynamics in physics, biology provides a framework of evolutionary dynamics

that bases on non-deterministic processes which are characterized by random

events in the form of mutations and the recurring recombination of a finite

pool of genes. However, when looking at socio-economic systems, as we do in

this thesis, it becomes evident that the evolution of these systems occurs on

average in much shorter periods than in the biological context. Moreover, the

evolution of an economic system inextricably reciprocates with the evolution

of its underlying society. In turn, a society co-evolves along with a system

of social conventions and values such as norms, culture and religion (Capra,

2004). It becomes obvious that the evolution of socio-economic systems can

neither be characterized by unique objectives nor by clearly defined ideals

and moral concepts. As a response to the constantly changing environment,

either endogenously by social events or exogenously e.g. by (natural) disasters,

the process of cultural evolution constantly develops new structures within

our value system. This highlights the demand for a more integrative and

transdisciplinary approach, something that we try to provide with this thesis.

In the remaining part of this chapter we discuss cooperation and pro-sociality

viewed from different disciplines and at different scales. In particular, we look

into the biological aspects of prosocial behavior and take on a perspectives of

evolutionary psychology, sociology, economics and philosophy.

1.2 Biology and neuroscience

Biology deals with the characteristics of living organisms including their for-

mation, growth and evolution. All biological organisms are subject to evo-

lutionary dynamics in form of selection, replication and mutation. Most of

them are also subject to adaptation dynamics, i.e. organism react and adapt

to their environment during lifetime, and to cross-over replication in form of

reproduction by mating of two or even more organisms. These fundamental

forces apply to all living organisms and continually modify, shape and let them

evolve across time.
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From a biological perspective selection, cross-over replication and mutation

occurs on the level of the genotype, i.e. by the continuous evolution of the or-

ganism’s blueprint. The genotype consists of DNA molecules. These molecules

encode and store genetic instructions. In the process of gene transcription the

genetically stored information of the DNA is interpreted and transformed into

RNA and protein molecules. This process of gene expression defines the start-

ing point of the transition from the genotype to the observable characteristics

of an organisms, the phenotype. The phenotype characterizes an organism by

its biochemical properties, the physiological appearance and development and

ultimately its behavior.

In general, evolutionary replication occurs either by plain copying of DNA

structures or by cross-over replication through the combination of the DNA

structure of two different organisms, e.g. by sexual reproduction. Besides the

genetic variation in the process of cross-over replication, genetic diversity is

induced and maintained in form of mutations that originate e.g. from DNA

copying-errors. Parts of the DNA may also mutate as a consequence of envi-

ronmental influences, e.g. by radiation damages. Thus, the phenotype of an

organism is determined by its genotype and by the reciprocal interaction of the

organism with its environment across time. Interaction occurs e.g. by adapta-

tion to specific conditions while at the same time the environment is altered,

e.g. by specific actions. The influence and interaction of the environment on

the organism controls for the selection for well- vs. badly adapted organisms.

This selection mechanism determines the genetic diversity of a population of

organisms.

Research in ethology and neuroscience shows that social information patterns,

e.g. in form of hierarchy structures among animals and social stimuli such as

communication patterns in birds are shown to have an impact on the brain

circuits (Mello, Vicario, and Clayton, 1992). Genes do not directly determine

the behavior of individuals but encode the structure of molecules and there-

from direct the formation and development of neural circuits in the brain. The

composition of these brain structures finally provides the substructure of the

individually expressed behaviors.
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Evidence for short-term updates of gene expressions in the brain structure

have been verified across species (Donaldson and Young, 2008; Mello et al.,

1992; Jarvis, Scharff, Grossman, Ramos, and Nottebohm, 1998; Clayton, 2000;

Goodson, Evans, and Wang, 2006; Cummings, Larkins-Ford, Reilly, Wong,

Ramsey, and Hofmann, 2008). Here, shifts in the neurogenomic state of the

brain that base on the encoded information in the genotype are triggered by

social stimuli. In particular, social information and social cognition have a non-

negligible effect on brain structures. E.g. songbirds update gene expressions

in the brain when exposed to unknown vocal sequences in order to adapt to a

changing social environments and to detect potential unknown invaders. This

happens even within the short time scale of hours. Worker bees change their

behavior from brood care to pollen collectors which is triggered by an alterna-

tion of genes expressions in their brains. This alternation of the DNA, in turn,

is controlled by the lack of specific repressive pheromones, i.e. RNA, that cor-

relate inversely with the population’s need for additional foraging (Grozinger,

Sharabash, Whitfield, and Robinson, 2003). Another example of the influence

of social information on behavior and genome modifications is the social hier-

archy in groups that controls the access of individuals to common resources.

The degree up to which resources can be accessed and utilized determines

the fitness and the reproduction rate Whitfield, Cziko, and Robinson (2003);

Grosenick, Clement, and Fernald (2007) and thus controls the propagation of

specific genes.

Vice versa, an influence of genes and proteins on the social behavior has also

been manifested. For instance, specific neural circuits of the brain can be asso-

ciated with (social) behavior and thus the genotype might include a behavioral

component (Fehr and Camerer, 2007; de Quervain, Fischbacher, Treyer, Schell-

hammer, Schnyder, Buck, and Fehr, 2004; Glimcher and Rustichini, 2004;

Soares, Bshary, Fusani, Goymann, Hau, Hirschenhauser, and Oliveira, 2010).

For example neural messengers account for the social cognition among mem-

bers of the same species. Similarly, the reproductive behavior is influenced by

peptises and their encoded gene expressions (Dickson, 2008).

A good overview of the interrelation of genes, brain structures and social

behavior is presented in (Robinson et al., 2008).
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1.3 Evolutionary Psychology

Evolutionary psychology is an interdisciplinary field of research that interlinks

the biological aspects of human evolution with the psychological mechanisms

underlying human behavior. Evolutionary psychology assumes that the be-

havior of humans is influenced by inherited factors both on a biological level

as well as on a cultural level. This deduces from the fact that humans are

nothing else than animals and are subject to the same evolutionary processes,

i.e. humans are the product of nature, biology, nurture and culture. In par-

ticular, the human brain is made up of neural circuits that have been shaped

by natural selection and thus every behavioral traits results from an adaptive

reason. This leads to the perspective of a “modular mind”which describes our

brain in terms of specialized (cognitive) modules, e.g. the module for language

or the ability to recognize faces, which have evolved along adaptive problems

within our evolutionary history. Even though we diverged from our most re-

cent common primate ancestors 65 million years ago, the last 10.000 years

most probably provided a most formative environment for the evolutionary

adaptiveness of our minds. During this period humans started to group in

hunter-gatherer societies, a development that still shapes our modern psychol-

ogy and social behavior. In particular, we developed methods that allowed

us to externalize knowledge and to teach this knowledge to our offsprings. In

combination with an increasing population density and the associated higher

rate of interactions, this gave rise to the emergence of a cumulative culture.

The evolution of culture distinguishes us from other animals, although pri-

mates such as chimps and orang-utans developed relatively large brains that

also enabled them to evolve initial indications and features of a culture. How-

ever, as the brain size correlates negatively with the reproduction rate of a

species due to energetic constraints, hominids soon reached an evolutionary

barrier. The human species successfully side-lined this barrier by the develop-

ment of cooperative breeding structures and the organization in social group

sizes and structure that supported the evolution of larger brains (Dunbar,

1998; Silk, Alberts, and Altmann, 2003; Zhou, Sornette, Hill, and Dunbar,

2005; Burkart et al., 2009; Burkart and van Schaik, 2010). Today, evolution

occurs mainly by means of cultural adaptation and less on the level of biology.

Cultural evolution has started to invent technologies and to establish social
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institutions that enabled us to sideline the biological aspects of evolution and

to establish certain behavioral patterns that are associated with pro-sociality.

However, natural selection was replaced by other mechanisms and fitness mea-

sures that now determined the evolutionary process on the cultural level. The

most prominent representative of this development is the advent of money.

1.4 Social Psychology

The interdisciplinary field of social psychology bridges the gap between the

fields of psychology and sociology; while psychology focuses on the situational

aspects of feelings, thoughts and decision making and the resulting behavior of

individuals, sociology provides explanations for the collective decision making

and behavior of groups and societies and how institutions and cultures form. In

contrast, social psychology studies the effects of the interplay among humans

on the feelings, decision making and the behavior of the single individual,

either in the form of direct social interactions or indirectly by imagined or

implied social influences (Allport, 1985); in other words: social psychology

studies the human behavior in a social context, i.e. it focus on the single

individual within the group. The field of social psychology mainly addresses

questions in the following three domains:

• social cognition, i.e. how we perceive and interpret social objects and

actions,

• social influence, i.e. how our behavior and attitudes are influenced

and caused by others and

• social interaction, i.e. how interaction takes place in a social environ-

ment.

Laboratory and field experiments provide an important instrument in social

psychology in which the effect of one or multiple altered variables that deter-

mine a specific situation are tested against other fixed variables. For example

the violation of social vs. moral norms and its implication on the feeling of

the observer (contempt vs. anger ) and the violator (shame vs. guilt) was

analyzed in experiments (de Hooge et al., 2007). Other areas such as the
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differences between rational choices based on beliefs and desires compared to

emotional/heuristic decisions (Gigerenzer and Selten, 2002; Plous, 1993), the

effect of money in the social contexts (Vohs, Mead, and Goode, 2006) and

the interplay of emotions and fairness norms (Reuben and van Winden, 2005)

were investigated by tools of social psychology. In summary, social psychology

is a very large, diverse and dynamic field of research on prosociality that goes

far beyond the short overview in this thesis.

1.5 Sociology

Sociological theory focuses on the collective behavior of a society that results

from the socialization of individuals by the internalization of social norms.

Therefore a role/actor model has been introduced (Goffman, 1959). The pro-

cess of socialization itself is characterized by the internalization of norms that

occurs as a transmission of norms and moral values between successive gen-

erations (Parsons, 1967). The concept of norms has been widely discussed in

the sociological theory resulting in various different and even sometimes in-

consistent definitions. Essentially, the following three definitions of norms can

be distinguished (Elster, 2007):

• Social norms, which affect the behavior of the actor as a result of the

fact that this behavior can or will be observed by other individuals.

• Moral norms, which in general are unconditional and have a proactive

character. This means that the behavior of the actors is not affected as

a results of the presence of other individuals or as a reaction to them.

• Quasi-moral norms, which describe a reactive behavior that is trig-

gered by the fact that the actor can observe the others’ behavior.

In general, roles are characterized by one or multiple types of the above de-

scribed norms. This normative commitment of roles imposes an intrinsic ex-

pectation on the actor’s behavior in the form of moral virtues and ethical

values (Gintis, 2009). Violations of the normative commitments associated

with a role are expressed as emotions such as anger, guilt or shame. These

universal emotions sustain the normative commitments, i.e. the continuity of
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social norms. One example is the perception of fairness and the reaction to

unfair behavior.

The set of internalized norms defines, characterizes and keeps a society to-

gether by attaching expectations, duties and obligations to the specific roles

in the society. The roles may vary geographically as a result of different evo-

lutionary trajectories. Beside the normative commitments of norms that are

associated with a role, motivations of material interest also play an important

aspect in sociology. The private payoff of an actor who holds a specific role in

society might be in conflict with the public expectation or even with the pub-

lic payoffs coming along with this role. Thus the wrong personal commitment

of an actor to a role can lead to socially inefficient outcomes (Gintis, 2009).

These kind of situations have been the objects of study in other disciplines,

e.g. in experimental economics by analyzing social dilemmas such as volun-

tary contribution mechanisms and public goods problem. The coordinative

features of social norms can help to overcome this conflict of interests and can

help to promote prosocial behavior (Gintis, 2009).

1.6 Economics and Game Theory

Microeconomic theory focuses on the decision making of individuals which are

thought of to strictly pursue only their private interests. A large body of the

economic theory bases on the rational actor model and assumes that agents

always seek to maximize their utility, i.e. to optimally achieve their desired

preferences. Preference can be represented by a set of discrete choices or in

the form of continuous preference relations. Various extensions to the stan-

dard utility framework have been formulated. Most known among them is the

expected utility theory framework that adds the possibility for stochastic out-

comes in decision settings. The definition of the preference or utility function

plays a crucial role in the modeling of agents’ behavior, in particular, when it

comes to prosocial behavior. Three main classes of pro-social economic models

have been identified in (Meier, 2006):

• Outcome-based pro-social preferences: This type of models ac-

count for other-regarding preferences in the utility function. Charac-

teristic examples of outcome-based prosocial preferences are inequity or
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inequality-aversion models, e.g. those presented in (Fehr and Schmidt,

1999; Rabin, 1993; Bolton and Ockenfels, 2000).

• Reciprocity models: Reciprocity models consider a time-dimension in

the social interaction between agents. This induces a conditionality into

the decision making of agents, keeping it with the motto “I scratch your

back if you scratch/scratched mine”. One example for prosocial reci-

procity is the costly punishment of unfair behavior. Therefore agents

need to have a common sense of what is perceived as being “unfair”,

which directly leads back to the concepts of norms, moral and culture.

E.g. Falk and Fischbacher introduced a theory of reciprocity in (Falk

and Fischbacher, 2006). Different forms of reciprocal rules have been de-

fined, among them kin selection, direct and indirect reciprocity, network

reciprocity and types of group selection (Nowak, 2006).

• self-identity models: Self-identity models are a mixture of the pre-

vious two types of models: They include other-regarding preferences,

namely the second-order perception of the self-identity: Agents care for

the advantageous perception of their reputation in the eyes of others. In

turn, maintaining a “reputation” requires to conform to the social norms

of the associated reference group. Thus, self-identity models indirectly

include a reciprocal aspect, as norms do not emerge out of thin air, but

moreover evolve from reciprocal interactions.

An increasing number of experiments and field studies are conducted with the

aim to better understand the human decision process with respect to proso-

cial behavior and to verify the assumption made in the theoretical models.

Evidence for prosocial preferences has been manifested across various scales

in lab experiments and field studies. The design of most lab experiments in-

troduces either a distinct competition- or coordination-problem, such as the

competition in voluntary contribution-, market- and bargaining-games or the

coordination problem in the various versions and modifications of the prisoner

dilemma. In particular, pro-social behavior in the form of altruism and co-

operation is the subject of numerous empirical investigations. Following our

definition in section 1.1, cooperation is a joint action of multiple individuals

to pursue a common purpose or mutual benefit. This definition provides the
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basis for the social dilemma known as the public goods problem. This has been

the object of study in many empirical and theoretical economic papers. In the

public goods problem, a group of individuals can invest an effort, e.g. money,

into a common public good which yields an amount back to the group that

is larger than the sum of the individual contributions. However, the return

generated by the public good is defined in a way that the per capita gain for an

agent can become negative if only a small fraction of agents contributes to the

public goods while others free-ride. Thus, the public goods problem defines a

social dilemma situation that is comparable to a n-person prisoners dilemma

and thus is susceptible to material self-interest. A wide range of decision set-

tings in real life can be characterized as public goods problems (Meier, 2006)

ranging from group work in seminars up to credit crunch on the interbanking

market or the tragedy of the commons (Hardin, 1968). For that reason the

public goods problem will play a central role in this thesis.

In addition to the perspective of utility theory, game theory provides a toolbox

for studying strategic interactions among individuals. It provides a mathemat-

ical coherent framework to solve the strategic decision making problem that

individuals are facing when the outcome is characterized by simultaneous or

dependent decisions between actors. Game theory is considered as a logical

extension of evolutionary theory as strategic behavior is often equated with

being evolutionary stable (Gintis, 2009). However, short term adaptation and

learning might be fundamentally different to the resulting dynamics and out-

come of long-term co-evolutionary processes. Evidence for this will be shown

later on in this thesis.

1.7 Philosophical perspective

Explaining prosocial behavior, such as cooperation and altruism, inevitably re-

quires to discuss the definition of moral behavior. There is no truth about what

is moral and what is good. Truth is always a question of scientific findings,

whereas morality is a question of experience (Precht, 2010). Morality is always

defined on basis of subjective criterions that vary among cultures, religions, lo-

cations and people; to keep it with Albert Einstein: “Morality is not God-given,

but moreover a fully human affair”. It is the result of group communication
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based on a joint background (Precht, 2010). The human brain developed the

ability to formulate and think about very abstract and high-level concepts

of morality. However, many decisions in everyday life are driven by heuris-

tics and emotions that originate from different brain functions and regions

than the abstract reasoning about the construct of morality. This ultimately

prevents the high-order principles of morality to be applied in many decision

settings (Gigerenzer, 2010; Precht, 2010). Already the Scottish philosopher

David Hume differentiated between reasons and passions: Rational reasons

alone cannot cause actions, but the subliminal emotions, i.e. the “slave of the

passions” can do so. Thus, the pure rational part of decision making alone

cannot explain moral behavior as this relies on social intuition. Social intu-

ition is inevitably associated with emotions and instinctual feelings such as

anger, fear, love, respect, shame and many more (Precht, 2010). Coming back

to the “tragedy of the commons” (Hardin, 1968) and its inherent public goods

problem, the question of “how cooperation emerges” receives an even more

important aspect because the emotional basis accounting for our prosocial

behavior is limited to our proximate social environment. To (partly) over-

come this problem mechanisms of cultural evolution, such as the emergence of

institutions and social norms, started to play a vital role among humans.

While neuroscience and biological processes can explain the way we perceived

and experience specific situations on the basis of biochemical processes, other

forms of consciousness can develop and occur only on higher levels of ab-

straction. Human beings are most probably the only species that is able to

formulate assertions about their self, i.e. we can think of what we are and

how we should be (Precht, 2010). This results in the existence of different

levels of self-consciousness. For example, the interaction with other individ-

uals and, in particular, the forming of beliefs about the others’ perception

about oneself (second, third,... -order beliefs) opens a different dimension to

the concept consciousness and the perception of the self. We organize and

compare everything that we experience not only with our interests but also

with the perception of the self. Thus we rely on the attention and recognition

of others (Precht, 2010). This leads to one of the essential aspects analyzed in

this thesis: other-regarding preferences, -beliefs and -behavior which set the

own-decision making and acting in relation to the beliefs and behaviors of oth-
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ers. Making decisions by taking the behavior of other into account essentially

creates a “social chess game” (Precht, 2010), which requires certain cognitive

abilities such as e.g. language, memory or computational skills. These neural

abilities are subject to evolutionary processes on the biological scale and conse-

quently the “social chess game” is indispensably interlinked with our biological

heritage. In chapter 2 and 3 we show that other-regarding preferences and the

perception of unfairness are not necessarily an abstract cultural agreement be-

tween humans but moreover are deeply rooted in our evolutionary history. In

the end our nature is characterized by a set of conflicting and diverse mecha-

nisms of decision making that evolve and operate on different scales and levels

of self-consciousness.

1.8 Structure of the thesis

The thesis is structured as follows: In chapter 2 we present an analytical

framework to explain the emergence of fairness preferences and altruistic pun-

ishment behavior among agents who interact through a public goods problem.

The framework combines ideas from expected utility theory and from mecha-

nisms of evolutionary dynamics. Simplifying assumptions are made about the

population structure to ensure the mathematical solvability of the problem.

Chapter 3 addresses the same questions of fairness preferences and altruistic

punishment as in chapter 2, however, we present a numerical approach in order

to be able to account for heterogeneity in the population structure. Chapter 4

in detail investigates the level of cooperation among subjects who interact by

means of a public goods game. Furthermore, it reveals the effect of altruistic

punishment that emerges as a result of the evolutionary dominant fairness

preferences, on the level of cooperation in a public goods game. In the last

chapter 5 we analyze which evolutionary mechanisms are required to promote

the emergence of cooperation in a competitive and resource limited environ-

ment that is susceptible to material self-interest. In particular, we show how

the interplay of fairness, altruistic punishment and multi-level selection leads

to high levels of cooperation. In this way, we try to provide a comprehensive

and integrated picture to help understanding the evolutionary puzzle of coop-

eration. In the conclusion section 6 we finally provide a critical review of our

work and give an outlook of potentially interesting extensions of our research.



2. A theory of evolution, fairness

and altruistic punishment

In this chapter we identify and explain the mechanisms that account for the

emergence of fairness preferences and altruistic punishment in voluntary con-

tribution mechanisms using an analytical framework. In particular, we com-

bine an evolutionary perspective together with an expected utility model. In

order to cope with the complexity of the evolutionary dynamics and the n-

player characteristics of the analyzed public goods game, we use common

methods and assumption that are often applied in game theoretical frame-

works to achieve a best trade off between computational tractability and rep-

resentative results. Our approach is motivated by previous findings on other-

regarding behavior, the co-evolution of culture, genes and social norms, as

well as bounded rationality. Our first result reveals the emergence of two

distinct evolutionary regimes that force agents to converge either to into a de-

fection state or to a state of coordination, depending on the predominant set of

self- or other-regarding preferences. Our second result indicates that subjects

in public goods experiments coordinate and punish defectors as a result of

an aversion against disadvantageous inequitable outcomes. Our third finding

identifies disadvantageous inequity aversion as an evolutionary dominant and

stable strategy in a heterogeneous population of agents that initially consists

only of self-regarding and selfish-acting agents. We validate our model using
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previously obtained results from three independently conducted experiments

of public goods games with punishment.

2.1 Introduction

Why do we maintain moral attitudes, display other-regarding behavior, have

a distaste for unfairness, act prosocially and, at times, even behave altruisti-

cally towards others? How is this behavior compatible with the predominant

theories of rational choice, selfish utility maximization and, in particular, with

Darwin’s principle of the survival of the fittest? This chapter presents an evo-

lutionary utility framework of fairness, altruistic punishment and cooperation.

It presents quantitative arguments supporting the hypothesis that the key to

understanding the ostensibly mysterious patterns of human behavior is deeply

rooted in our evolutionary history.

Prosocial behavior in humans has been studied in many laboratory experi-

ments throughout the world. One key finding is the evidence for altruistic

punishment behavior in humans, i.e. the punishment of non-cooperators and

norm violators at own costs without direct or indirect material benefit (Bo-

chet, Page, and Putterman, 2006; Nikiforakis and Normann, 2008; Nikiforakis,

2010; Anderson and Putterman, 2006; Brandts and Fernanda Rivas, 2009;

Fehr and Gachter, 2002; Fudenberg and Pathak, 2009; Gachter, Renner, and

Sefton, 2008; Egas and Riedl, 2008; Masclet, Noussair, Tucker, and Villeval,

2003). To allow for this pro-social behavior that is often marked as “irra-

tional”, economists shifted from purely self-regarding assumptions to theories

that incorporated other-regarding preferences (Camerer, 2003). In particu-

lar, analytical frameworks of fairness, reciprocity and cooperation have been

formulated that consolidate individual utility maximization with inequality

and inequity aversion (Rabin, 1993; Cox, Friedman, and Sadiraj, 2008; Bolton

and Ockenfels, 2000; Fehr and Schmidt, 1999; Falk and Fischbacher, 2006;

Englmaier and Wambach, 2010; Andreoni and Miller, 2002). In this way, re-

sults from experimental economics have been rationalized and aligned with

the predominant rational choice theory of pure self-interest.

Besides these equilibrium-based and time-independent utility theories, a sec-

ond class of models emerged that focuses on the evolutionary origin of al-
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truistic punishment and cooperation (Axelrod and Hamilton, 1981; Bowles,

1998; Imhof, Fudenberg, and Nowak, 2005; Sigmund, De Silva, Traulsen, and

Hauert, 2010; Jensen, 2010; Gaechter, Herrmann, and Thoeni, 2010; Berger,

2010). These models are often motivated from a biological perspective in-

cluding arguments from evolutionary psychology, anthropology and sociology.

Although the emergence of pro-social behavior in settings which are subject to

material self-interest seems to contradict rational choice theory and the princi-

ple of the survival of the fittest, one can show that altruistic punishment and

other-regarding behavior can originate, emerge and be sustained in a com-

petitive, resource-limited environment even in the presence of evolutionary

dynamics.

This chapter presents a combination of both approaches: an expected utility

framework that allows for other-regarding preferences, and which is subject

to standard evolutionary dynamics. In particular, we show that the interplay

of natural selection and selfish utility maximization inevitably results in the

emergence of other-regarding preferences in the form of disadvantageous in-

equity aversion. The term “disadvantageous” implies a relaxation from the

concept of inequity aversion and fairness preferences: Subjects only dislike

situations in which the inequity is to their disadvantage. Consequently, no

a priori stipulated modeling assumptions about altruistic, self-discriminating

behavior are embodied. The aversion against inequitable outcomes causes al-

truistic punishment behavior to emerge, even in social dilemma situations that

are subject to material self-interest. We argue that the bare individual sur-

vival needs of our ancestors induced an inherent predisposition to unfairness

aversion that persists in our behavior up to this day.

This argument might sound farfetched given that human beings are proba-

bly the most successful species in eluding or manipulating natural selection

by continuous enhancing, e.g., via improvements of health care and medical

engineering. However, at the same time, our cultural evolution developed

higher, more abstract levels of selection mechanisms that operate e.g. as mon-

etary, bargaining and market competition, and led to hierarchical structures

of power and of social standing. In other words, the natural selection that

was previously affecting and operating on our hunter-gatherer ancestors has

substantially been replaced in our modern societies by social institutions, most
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notably by the advent of money and the measures of economic power. Our

primal instinct to unfairness aversion is still subliminally active and can be

triggered by this high-order social and cultural selection mechanisms. In con-

sequence, the corresponding reactions to unfair behavior can be observed today

even though we are in most situations not directly affected in our biological

viability.

The analysis of our expected utility model, in combination with the under-

lying evolutionary dynamics, allows us to identify and explain the origin and

the emergence of other-regarding preferences and, ultimately, enables us to

quantitatively explain the degree of altruistic punishment that is observed in

lab experiments. As a result, our approach complements and extends other

utility frameworks, e.g. the Fehr/Schmidt model (Fehr and Schmidt, 1999),

Bolton/Ockenfels (Bolton and Ockenfels, 2000) and Rabin (Rabin, 1993) by

adding the too often neglected but, in fact, indispensable evolutionary perspec-

tive to the problem of explaining prosocial behavior. Unlike other approaches,

our model does not assume ex ante the existence of other-regarding prefer-

ences, but instead demonstrates their co-evolutionary emergence along with

the emergence of altruistic punishment behavior. The design of our model

is inspired by previous findings about the co-evolution of culture, norms and

genes, the effect of other-regarding behavior as well as bounded rationality.

We motivate our model by the psychological predisposition of individuals to

maximize their expected utility together with subliminal disposition to fol-

low social norms (Gintis, 2009; Bernheim, 1994; Messick, 1999; Bardsley and

Sausgruber, 2005; Henrich, 2004). Both mechanisms are closely related in the

process of gene-culture co-evolution.

The following section 2.2 describes the model in detail and explains the inter-

play of agents that maximize their expected utility under the effects of natural

selection and competitive evolutionary dynamics. Then, section 2.3 presents

empirical tests of the theory. Section 2.4 establishes the evolutionary domi-

nance of the specific other-regarding preference in the form of disadvantageous

inequity aversion. Section 2.5 concludes.
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2.2 The model

2.2.1 General framework

We take an evolutionary utility maximization approach as a starting point

to construct our model. The fitness of an agent is considered to be equiva-

lent to her realized cumulative payoff, i.e. to the monetary units (MU) that

the agent gains over time. Each agent i is characterized by one or multiple

traits. The traits of an agent determine her behavior and correspond to a

pure strategy denoted by si. Traits are passed on as fitness weighted values

to the offspring in the process of evolutionary reproduction. The population

thus is determined by the set of pure strategies S ⊂ Rx. In an evolutionary

competitive environment, agents are subject to natural selection which affects

their viability and fertility. While viability selection accounts for removing

poor performing agents from the population, fertility selection enables more

successful agents to spread and to promote their genetic and cultural heritage

in the population. This process corresponds to the standard evolutionary chal-

lenge of survival and reproduction. Following the Darwinian principle of the

survival of the fittest, both selection mechanisms are defined relative to the

environment of an agent. This means that the fitness of an agent is determined

relative to the performance of the remaining population that she is exposed to

and interacts with. In an evolutionary environment, the success of an agent

and of its strategies defines the fitness of the agent and thus determines the

proportional change of the strategies (traits) in the population over time.

The set of strategies S that characterizes a population of agents is specified by

a probability measure P t that quantifies the frequencies of the single strategies

si ∈ S in the population at time t. In the two player case the payoff of an

agent who plays a pure strategy s ∈ S against another agent who plays the pure

strategy ŝ is denoted by f(s, ŝ). Both, s and ŝ are defined in the x-dimensional

continuous strategy space S ⊂ Rx. For the n-player case, the average payoff of

an agent who plays a strategy s at time t against a population characterized

by the probability measure P t over the strategy space S is defined by

E(s, P t) =

∫
S

f(s, ŝ)P t(dŝ) . (2.1)
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The total average payoff of the entire population at time t is defined by

E(P t, P t) =

∫
S

· · ·
∫
S

f(s, ŝ)P t(dŝ)P t(ds) . (2.2)

The success of a strategy s is given by the difference of equations (2.1) and

(2.2) as shown e.g. in (Oechssler and Riedel, 2001; Cressman and Hofbauer,

2005; Hofbauer, Oechssler, and Riedel, 2009):

Φ(s, S) = E(s, P t)− E(P t, P t)

=

∫
S

f(s, ŝ)P t(dŝ)−
∫
S

· · ·
∫
S

f(s, ŝ)P t(dŝ)P t(ds)
(2.3)

The dynamics of a specific strategy s in the population are defined by the

ordinary differential equation

∂P t(ds)

∂t
=

∫
S

Φ(s, ŝ) · P t(ds) . (2.4)

By writing the utility of an agent in the form of an evolutionary measure of

success, we obtain the utility function of agent i as the sum of the experienced

payoff differences between the own monetary payoff fi and the monetary payoff

of the remaining individual group members fj :

ui(f1, ..., fn) =
∑

j=1..n,j ̸=i

(fi − fj) (2.5)

The utility of an agent is thus not defined in an absolute way but relative to

her environment, by putting the payoff of agent i in relation to the payoff of

the remaining population. This form of the utility function describes a popu-

lation of agents that is exposed to evolutionary dynamics. Positive values of

ui(f1, · · · , fn) are desirable, because they are associated with a higher fertility

and a lower mortality. Negative values of ui(· · · ) should be avoided in order

to prevent the evolutionary extinction of the own traits.
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2.2.2 The public good games with punishment

In the following, we model the behavior of agents playing a standard one-

shot-interaction public goods game with punishment as presented in (Fehr

and Gachter, 2000, 2002; Fudenberg and Pathak, 2009). Agents are pooled

in groups of size n. Each agent i is characterized by a strategy ŝi = [mi, ki]

that is defined by two traits. The first trait mi corresponds to the amount

of MUs an agent contributes to the common group project (the public good)

and thus reflects the agent’s willingness to cooperate. The second trait ki

reflects the agent’s propensity to punish defectors in the group. In the first

stage of the game, agent i contributes mi monetary units (MUs) to a common

public good which yields a return of g MUs per invested MU. The return from

the public good is equally redistributed among the n group members. Agents

then learn about the contributions of the other group members. In a second

stage, they are provided with the opportunity to punish other group members.

Punishment comes in the form of additional costs for both the punisher as well

as the punished agent: for each MU spent by the punisher, the return that the

punished agent obtained from the public goods game is reduced by r MUs.

Given the one-shot-interaction characteristic of the game, punishment does

not result in a direct or indirect material benefit and is often considered in the

literature to be an altruistic act.

2.2.3 Modeling assumptions

We make the following assumptions about the behavior of agents and the

evolutionary environment:

• Agents are assumed to be self-interested and to act rationally given their

available information and computational capabilities (von Neumann and

Morgenstern, 2007; Simon, Egidi, Viale, and Marris, 2007; Arthur, 1994;

Gigerenzer and Selten, 2002). In particular, agents are involved in one-

shot interactions only and have no ex-ante information about the others’

actions at the time they take their decisions.

• Agent i is assumed to punish agent j according to a function that is

linearly increasing with the negative deviation between j’s and i’s con-

tributions. Specifically, if mj − mi < 0, agent i punished agent j with
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k·(mi−mj) MUs, while j suffers a loss of r·k·(mi−mj) MUs. We assume

this linear dependency because it can frequently be observed in experi-

ments conducted in the western cultural area (Fehr and Gachter, 2000,

2002, 2005; Egas and Riedl, 2008; Fudenberg and Pathak, 2009). Figure

2.1 illustrates this behavioral pattern for data obtained in three pub-

lic goods games (Fehr and Gachter, 2000, 2002; Fudenberg and Pathak,

2009). The factor k describes the propensity to punish negative devia-

tors.
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Figure 2.1: Mean expenditure of a given punishing member as a function of
the deviation between her contribution and that of the punished member, for
all pairs of subjects within a group, as reported empirically (Fehr and Gachter,
2000, 2002; Fudenberg and Pathak, 2009). The error bars indicate the stan-
dard error around the mean. The straight line crossing zero with a slope of
−k shows the average decision rule for punishment. The anomalous punish-
ment of cooperators, corresponding to the positive range along the horizontal
axis, is neglected in our model. The inset shows the relative frequency of the
pairwise deviations.
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• k is assumed to be a common trait or a norm that is shared by all agents

within a homogeneous population. It reflects the subjects’ genetically

and culturally encoded behavior to react to actions that are perceived as

being unfair. The interplay of punishment and evolutionary dynamics

over hundreds of thousands of years caused the convergence of a pre-

viously diverse set of behavioral patterns. This process ultimately led

to a common set of behavioral traits which are shared among directly-

or indirectly-related and -interacting individuals, e.g. groups originating

from the same cultural area. Vice-versa, the prevalent set of behav-

ioral traits determined the anticipated expectations about the behavior

of individuals from the same cultural and genetic background. Pun-

ishment thus provided the basis for the emergence and manifestation of

traits and (social) norms, while simultaneously punishment itself got fre-

quently established as a common trait and norm. In conclusion, humans

and our ancestors have converged and evolved to this common norm-

enforcing feedback mechanism over hundreds of thousands of years as a

result of gene-culture co-evolutionary processes (Henrich, Boyd, Bowles,

Camerer, Fehr, Gintis, and McElreath, 2001; Bowles and Gintis, 2004;

Gintis, 2003). The subjects’ psychological predispositions to render these

encoded norms effective ultimately results in the focal action that is ob-

served as a direct and immediate harm towards negative deviators or it

acts as a hidden deterrence (Gintis, 2009). Today, lab experiments and

field studies such as those of (Fehr and Gachter, 2000, 2002; Fudenberg

and Pathak, 2009; Henrich et al., 2006; Henrich, Ensminger, McElreath,

Barr, Barrett, Bolyanatz, Cardenas, Gurven, Gwako, Henrich, Lesoro-

gol, Marlowe, Tracer, and Ziker, 2010) allow one to sample and observe

the statistically stationary characteristics of the common propensity to

punish k from subjects originating from a similar cultural background.

• The population of agents is subject to evolutionary dynamics in the form

of selection, cross-over and mutation. These three mechanisms affect the

viability and fertility of an agent. Viability selection induces a minimal

survival condition in the form of a fixed lower value of consumption

cfix. This value reflects the basic requirements of an agent, i.e. it de-

fines a lower limit that an agent needs to consume per unit of time in
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order to survive. cfix thus constantly absorbs a fraction of the agents’

fitness value. Fertility selection accounts for the selection of successful

genotypes, i.e. strategies, as opposed to unsuccessful ones. Agents can

spread their strategies in the population proportionally to their fitness,

e.g. by producing more offsprings. The relative change of the frequency

of a trait, i.e. a strategy, is determined by the average success of that

trait with respect to the average success of the remaining traits in the

population. Cross-over, i.e. the reproduction by mating of two or more

agents, accounts for the convergence of the present strategies in the

population towards those strategies that are carried by more successful

agents. In contrast, mutation induces an additional heterogeneity to the

agents’ strategy pool and allows the population to explore further the

potential strategy space. This ensures that a population of agents is

always heterogeneous with respect to the strategies, i.e. VAR(m) > 0

and VAR(k) > 0.

2.2.4 Utility formulation of the public goods game model

We first formulate a utility model assuming complete information. The profit

and loss (P&L), i.e. the fitness, of an agent i who plays a public goods game

with punishment is determined by the payoff from the game minus the costs

of punishing and being punished and minus the contributed effort:

fi(m1, · · · ,mn) = −mi +
g

n
· (mi +

∑
j ̸=i

mj)

− k · r ·
∑
j ̸=i

max(mj −mi, 0)

− k ·
∑
j ̸=i

max(mi −mj , 0)

(2.6)

The first term in the right hand side of equation (2.6), i.e. mi, corresponds to

the contribution of agent i to the public good. The second term represents the

return from the public good. The third and fourth terms quantify the costs of

being punished by others and punishing others, respectively. The number of

agents in the group is denoted by n, the return from the public good is g per

invested MU, and r corresponds to the punishment efficiency factor.
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Analogously, the P&L of the remaining agents j ̸= i can be written as

fj(m1, ...,mn) = −mj +
g

n
· (mi +

∑
j′ ̸=i

mj′)

− k · r
∑
j′ ̸=j

max(mj′ −mj , 0)

− k ·
∑
j′ ̸=j

max(mj −mj′ , 0) .

(2.7)

By substituting equations (2.7) and (2.6) into equation (2.5), we obtain the

evolutionary utility of an agent, given by the two-term utility function shown

in equation (2.8) below. The first term of (2.8) is defined by equation (2.6):

it corresponds to agent i’s utility gained from the payoff of the public goods

game with punishment. The second term of equation (2.8) defined in (2.7)

represents the payoff of the n − 1 opponents indexed by j. The total utility

for agent i is defined by the sum of the differences between all combinations

of fi(m1, ...,mn) and fj(m1, ...,mn) with j ̸= i:

ui(f1, ..., fn) =
∑

j=1..n,j ̸=i

(fi(m1, ...,mn)− fj(m1, ...,mn)) (2.8)

Consistent with utility theory (even in the presence of bounded rationality)

and the underlying evolutionary dynamics, we assume that the agents seek to

maximize their utility (von Neumann and Morgenstern, 2007). Obviously, the

maximum of the utility function (2.8) can only be calculated in the hypothet-

ical case of complete information about the others’ contributions. However,

information about the individual contributions −→m = (m1, ...,mj) is not avail-

able ex ante, because agents decide about their contributions simultaneously.

It follows that agents are required to make assumptions, i.e. to form their

first-order beliefs, about the others’ contributions. We model this by trans-

forming the utility model in equation (2.8) into a subjective expected utility

model.

Therefore, we introduce the subjective probability measure Pi(mj) that repre-

sents agent i’s (first-order) belief about the contributions of the other agents.

Pi(mj) quantifies the likelihood as perceived by agent i that another agent
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j will contribute mj MUs1. Using Pi(mj), agent i can form her expectation

(Savage, 1972) about the average of the other agents’ contributions:

Ei[mj ] =

∫
mj · Pi(mj)dmj . (2.9)

Similarly to the propensity k to punish, Ei[mj ] can be interpreted as the

expected norm-conforming behavior of the population that has co-evolved,

learned and internalized across time in a population of interacting agents.

The utility model defined in equation (2.8) is transformed into an expected util-

ity model using the subjective expectations Ei[mj ]. Rewriting fi(m1, ...,mn)

and fj(m1, ...,mn) by replacing each value mj ∈ [m1, ..,mi−1,mi+1, ..,mn]

with agent i’s subjective expectation Ei[mj ] on mj gives the following equa-

tions:

Ei[fi(mi)] = −mi +
g

n
·mi

+
g

n
· (n− 1) ·

∫ ∞

0

mj · Pi(mj)dmj

− (n− 1) · k · r ·
∫ ∞

mi

(mj −mi) · Pi(mj)dmj

− (n− 1) · k ·
∫ mi

0

(mi −mj) · Pi(mj)dmj

(2.10)

Ei[fj(mi)] = −
∫ ∞

0

mj · Pi(mj)dmj +
g

n
·mi

+
g

n
· (n− 1) ·

∫ ∞

0

mj · Pi(mj)dmj

− k · r
∫ mi

0

(mi −mj)Pi(mj)dmj

− k ·
∫ ∞

mi

(mj −mi)Pi(mj)dmj

(2.11)

Note that, in the formation of the expectation by agent i of the others’ utility

functions, agent i’s own contribution mi is obviously known to her, hence the

term g
n ·mi appears without averaging.

1In the one-shot game version studied here, all agents j ̸= i are indistinguishable from
the point of view of an agent i, i.e., agent i has no information on any preference, trait or
specific characteristics of the other agents.
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As in the case of complete information, agents seek to maximize their relative

fitness, i.e. the sum of the differences between their own P&L, fi(m1, ...,mn),

and the others’ P&L. Putting all this together, we obtain the expected utility

function ui(Ei[fi(mi)], Ei[fj(mi)]) of agent i as shown in equation (2.12).

ui(Ei[fi(mi)], Ei[fj(mi)]) = (n− 1) · (Ei[fi(mi)]− Ei[fj(mi)]) (2.12)

We start our analysis by a classical utility optimization problem. Agents

maximize ui(Ei[fi(mi)], Ei[fj(mi)]) with respect to their contribution mi:

mi ∈ argmax
mi

ui(Ei[fi(mi)], Ei[fj(mi)]) (2.13)

The first order condition of problem (2.13) reads

∂ui(Ei[fi(mi)], Ei[fj(mi)])

∂mi

!
= 0 , (2.14)

with

∂ui(Ei[fi(mi)], Ei[fj(mi)])

∂mi
= (n− 1)·

(∂fi(mi, Pi(mj))

∂mi
− ∂fj(mi, Pi(mj))

∂mi

)
=
(
− 1− k · (1 + r − n · r)

∫ ∞

mi

Pi(mj)dmj

+ k · (1− n+ r) ·
∫ mi

0

Pi(mj)dmj

)
· (n− 1) .

(2.15)

The second-order condition for a local maximum of (2.13) holds for any rea-

sonable assignment of the problem parameters, i.e.

∂2ui(Ei[fi(mi)], Ei[fj(mi])

∂m2
i

< 0,∀k > 0, n > 0, g > 0, r > 0, 0 < mi < ∞ .

The cumulative distribution function of the contributions mj of the other

agents, as anticipated by agent i, is defined by CDFi(mi) ≡
∫mi

0
Pi(mj)dmj .
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The term
∫∞
mi

Pi(mj)dmj in equation (2.15) corresponds to the survival func-

tion of the subjective expected distribution of contributions in the population:

ai(mi) := 1− CDFi(mi) = Pi({mj > mi}) =
∫ ∞

mi

Pi(mj)dmj (2.16)

Substituting ai(mi) as defined in equation (2.16) into equation (2.15) yields:

− 1 +
g

n
+ k · (n− 1) · (ai(mi) · r + ai(mi)− 1)

!
= 0 (2.17)

Equation (2.17) describes a functional relation between the predetermined pa-

rameters of the public goods game, i.e. the group size n, the public good yield

factor g and the punishment efficiency r, as well as the variable traits of agent

i, i.e. the propensity k to punish and her subjective expectation (first-order

belief) about the fraction ai(mi) of her group fellows who contribute more

than her own contribution mi.

As we are interested in the agents’ evolutionary optimal punishment behavior,

we solve equation (2.17) for k and obtain:

k⋆i =
1

1− n+ r + ai(mi) · (n− 2) · (1 + r)
(2.18)

k⋆i depends on mi via the agent i’s subjective (first-order) belief embodied in

ai(mi) ∈ [0, 1] that the other agents will contribute more than herself. The

value k⋆i can be interpreted as the value that makes agent i better off not to

deviate negatively or positively from her willingness to contribute mi MUs to

the public good, given she believes a number of N = n · ai(mi) of other group

fellows contribute more than her own contribution mi. Equation (2.18) thus

determines a strategy profile s⋆ = [mi, ki] that represents a Nash equilibrium.

In the following subsection, we add evolutionary dynamics to our model.
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2.2.5 The evolutionary dynamics

The evolutionary dynamics of agents, who face a social dilemma situation

in the form of a public goods game with punishment, can be captured by

the variations of the P&L as a function of the deviation in the contribution

level mi(t) and in the population’s propensity to punish k. If agent i starts

to deviate from her current level of cooperation m(t) by a value of ∆m =

m(t + 1) −m(t), the absolute change of the P&L for the agent as a function

of ∆m and k is defined as follows:

∆P&Li(∆m, k) =


−g · ∆m

n
+∆m− (n− 1) · k ·∆m · r, ∆m ≤ 0

g · ∆m

n
−∆m− (n− 1) · k ·∆m , ∆m > 0

(2.19)

The deviation of agent i by ∆m affects not only her own P&L, but also the

P&L of the remaining agents j = 1 · · ·n, j ̸= i. The absolute change of the

P&L of the remaining population as a function of ∆m and k reads

∆P&Lj(∆m, k) =


−g · ∆m

n
− k ·∆m·, ∆m ≤ 0

g · ∆m

n
− k ·∆m · r, ∆m > 0

. (2.20)

Putting equations (2.19) and (2.20) together with

∆̃P&Li(∆m, k) := ∆P&Li(∆m)−∆P&Lj(∆m) (2.21)

yields the relative change of the P&L of agent i with respect to the remaining

population:

∆̃P&Li(∆m, k) =

{
∆m− (n− 1) · k ·∆m · r + k ·∆m, ∆m ≤ 0

−∆m− (n− 1) · k ·∆m+ k ·∆m · r, ∆m > 0
(2.22)

The form of equation (2.22) is equivalent to the relative measure of success

of a strategy introduced in equation (2.3) with s := [∆m, k]. As introduced

above, the realized P&L from the public goods game with punishment can be

interpreted as the fitness of an agent in an evolutionary environment. The

fitness, in turn, is associated with the rate of fertility, i.e. the fitter an agent
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becomes, the more genetically related offsprings she produces. In this way,

traits of agents with a higher realized P&L value tend to spread and to end

up dominating the population over time. It thus holds that the traits [m, k] in

the population move with time towards values [m̂, k̂] of a subpopulation that

on average achieves a higher mean P&L than the average mean P&L of the

entire population.

The corresponding replicator dynamics are

∂x(∆m)

∂t
=

∞∫
0

∆̃P&L(∆m, k) · x(∆m) dk

∂x(k)

∂t
=

∞∫
−∞

∆̃P&L(∆m, k) · x(k) d∆m .

(2.23)

with x(∆m) and x(k) being the proportion of agents deviating by ∆m and

with a propensity to punish k. The dynamics for the expected group average,

m̄ and k̄, are accordingly defined by

∂E[m̄]

∂t
=

∞∫
−∞

∞∫
0

∆m · ∆̃P&L(∆m, k) · x(∆m) · x(k) dk d∆m

∂E[k]

∂t
=

∞∫
0

∞∫
−∞

k · ∆̃P&L(∆m, k) · x(∆m) · x(k) d∆m dk .

(2.24)

The sensitivity of ∆̃P&Li(∆m, k) with respect to the relative change of ∆m

is defined by the partial derivative

∂∆̃P&Li(∆m, k)

∂∆m
=


−1− k + k · (n− 1) · r , ∆m ≤ 0

−1− k · (n− 1) + k · r , ∆m > 0

. (2.25)

With the conditions that n ≥ 2 and r > 1, i.e. a game has always two or more

players and punishment is less costly to the punisher than to the punished
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agent, it holds that for ∆m(t) > 0 the piecewise definition of ∂∆̃P&Li

∂∆m is always

negative and for ∆m < 0 it follows that

a)
∂∆̃P&Li(∆m, k)

∂∆m
≤ 0 , ∀k ≤ 1

n · r − r − 1
, ∆m < 0

b)
∂∆̃P&Li(∆m, k)

∂∆m
> 0 , ∀k >

1

n · r − r − 1
, ∆m < 0 .

(2.26)

This reveals the existence of two distinct evolutionary regimes that are sepa-

rated by the bifurcation point at

k+ =
1

n · r − r − 1
. (2.27)

• Defection: For k ≤ 1
n·r−r−1 and Var(mj) > 0, j = 1, ..., n, the linear

P&L structure of the public goods game with punishment together with

the replicator dynamics are responsible for ∆m to become more negative

over time. It intuitively follows that defection pays out, such that

ma := lim
t→∞

m(t) ≈ cfix
g − 1

(2.28)

results as the evolutionary stable strategy (ESS). Remember that each

agent has a minimum cost of living defined by cfix. In order to meet this

survival condition, the average minimum contribution of the population

is constrained to values of m > cfix
g−1 .

• Coordination: For k > 1
n·r−r−1 , a heterogeneous population with Var(mj) >

0, j = 1, ..., n follows a dynamic that does not converge to a predeter-

mined unique evolutionary attraction point but rather converges to an

evolutionary stable set of strategies. As punishment is efficient in this

regime, with ∂∆̃P&Li(∆m,k)
∂∆m > 0 for values of ∆m < 0, the social dilemma

problem transforms into a coordination problem (Fehr and Schmidt,

1999). If punishment is efficient, the utility maximizing strategy is to

contribute according to the expected contribution of the remaining group

fellows, i.e. to contribute according to the first-order belief. Following

Black’s theorem, the best estimate for this strategy is the median value

m̄i of the subjective probability measure Pi that is believed to charac-
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terize the contributions of the group fellows (Black, 1948; Arrow, 1970;

Bernheim, 1994; Selten and Ostmann, 2000). The median value m̄i of

the subjective probability distribution Pi is defined by∫ ∞

m̄i

Pi(mj)dmj =
1

2
(2.29)

Consequently

mb := lim
t→∞

m(t) = m̄ (2.30)

results as an ESS in the population.

The population of agents initially consists of uncooperative, non-punishers, i.e.

ki(0) ≃ 0 and mi(0) ≃ 0 for i = 1, ..., n. The utility maximization problem

in equation (2.13) determines the optimal level of punishment as defined in

equation (2.18) with

k⋆i =
1

1− n+ r + ai(mi) · (n− 2) · (1 + r)

It follows that

ki(0) ≃ 0 ∧ lim
t→∞

ki(t) = k⋆i −→ 0 ≤ ki(t) ≤ k⋆i ∀t . (2.31)

and thus the value range of the propensity to punish is restricted to the interval

ki(t) ∈ [0, k⋆i ]. With the population being initialized at ki(0) ≃ 0 ≪ k∗, it

follows that agents initially have an incentive to defect as can be inferred

from equation (2.26a). In other words, agents have an incentive to contribute

less than the amount contributed by the other group fellows. In general,

agents have no ex-ante information about the others’ contributions at the time

they take the decision to contribute mi MUs. However, agents have beliefs

about the others’ contribution that is embodied in the subjective probability

distribution Pi. This allows them to form their expectations about the group

average contribution as defined in equation (2.9). In terms of equation (2.16),

“defecting” translates into a probability of one that all mj values are larger
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than the own contribution mi, i.e. ai(mj) = 1. With ai(mj) = 1, it follows

that the optimal propensity to punish defined in equation (2.18) becomes

ka =
1

1− n+ r + (n− 2) · (1 + r)

=
1

(n− 1) · r − 1
.

(2.32)

which is exactly equivalent to the evolutionary threshold value of k+ defined

in equation (2.27). Plugging ka into equation (2.22) yields

∆̃P&Li(∆m, ka) =


0 , ∆m ≤ 0

−∆m·(n−2)·(r+1)
r·(n+1)−1 < 0 , ∆m > 0

. (2.33)

Together with the replicator dynamics defined in equation (2.24), it follows

that for all values of k ≤ k+ the population converges towards the evolutionary

stable attraction point for mi that is defined in equation (2.28). Consequently

the ESS sa = [ma, 0 ≤ k ≤ ka] ends up dominating the population.
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Figure 2.2: Sensitivity of ∆̃P&L(∆m, k) as a function of a relative change ∆m
of the contributions for a group size of n = 4, a punishment efficiency r = 3
and a propensity to punish of k = 0.125 (grey), k = 1

15 (black, dashed) and
k = 0.25 (grey dashed).
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In contrast, for values of k > k+, the social dilemma problem turns into a

coordination problem. Consequently, an evolutionary stable attraction point

mb emerges that is defined by equations (2.29) and (2.30), respectively. As

explained above, mb corresponds to the median of all mi values present in the

population. The evolutionary attraction pointmb implies that ai(m
b) = 1

2 , i.e.

each agent contributes according to the value that matches the median value

of the subjectively expected distribution of populations contributions values

mj . Plugging this into equation (2.18) yields an evolutionary stable strategy

for kb given by

kb =
2

n · (r − 1)
(2.34)

Substituting kb into equation (2.22) results in a ∆P&L profile that is deter-

mined by symmetrically downward sloping functions ∆̃P&Li(∆m, kb) centered

relative to the maximum at ∆m = 0 with

∆̃P&Li(∆m, kb) =


∆m·(n+2)·(r+1)

r·(n−1)−1 < 0 , ∆m ≤ 0

−∆m·(n+2)·(r+1)
r·(n−1)−1 < 0 , ∆m > 0

. (2.35)

Consequently, in the presence of the evolutionary dynamics, the population

converges to the ESS given by sb = [mb, kb].

Figure 2.2 depicts the structure of equation (2.22) with a punishment efficiency

factor of r = 3 and a group size n = 4 for k = 1
15 (black, dashed), k = 0.125

(grey) and k = 0.25 (grey, dashed).

The following subsection analyzes the identified ESSs for a population of agents

that is either purely self-regarding and acting selfishly or a population of agents

that incorporates other-regarding preferences in their decision process.

2.2.6 The effect of self and other-regarding preferences

First, consider a population of purely self-regarding and selfish acting agents,

i.e. agents who try to maximize their utility without e.g. taking into account

specific preferences with respect to the P&L and the contributions of the

remaining agents in the group. The preferences of self-regarding and selfish

agents are simply characterized by the dislike of situations in which their P&L
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in current period t is less than their P&L in the previous period t − 1. This

implies that all agents in the population are satisfied if and only if the following

expression is fulfilled

fi(m1(t), · · · ,mn(t)) ≥ fi(m1(t− 1), · · · ,mn(t− 1)) ∧

fj(m1(t), · · · ,mn(t)) ≥ fj(m1(t− 1), · · · ,mn(t− 1))
(2.36)

with fi(...) and fj(...) being defined in equation (2.6) and (2.7), respectively.

Reducing the expression in (2.36) over the domain of reasonable values for the

variables mj ≥ 0 ∀j = 1, · · · , n, ki ≥ 0, 0 ≤ ai(mi) ≤ 1, n ≥ 2, 0 < g < n and

r > 1 and solving it to the propensity to punish k gives the following condition

for k:

ks ≥ n− g

(n− 1) · n · r
. (2.37)

For all reasonable values of n ≥ 2, g ≥ 0 and r ≥ 1 and assuming that agents

are initially non-punishers, i.e. ki(0) ≃ 0, it holds that the propensity to punish

of self-regarding and selfish agents is always less than the bifurcation threshold

k+, defined in equation (2.27). Thus, selfish and purely self-regarding agents

are inevitably caught in the defection regime, as ks does not allow to overcome

the bifurcation hurdle at k+. Consequently, the population converges towards

the ESS that is defined by sa = [ma, 0 < ks < ka].

Consider now a population of agents who display other-regarding behavior in

the form of disadvantageous inequity aversion. In general, inequity aversion

preferences relate the personal utility gained from a public good to the per-

sonal contributed effort. If an imbalance exists between the own contributed

effort and the personally received payoff compared to the performed effort and

the received payoff of other agents in the group, the outcome of the game is

perceived as being inequitable or “unfair”. Disadvantageous inequity aversion

implies that subjects only dislike situations in which the inequity is to their

disadvantage. The payoff of an agent i, who plays a public goods game with

punishment, is defined by equation (2.6) and the personal effort is equivalent

to the contributed amount of MU mi. An agent with an aversion against

disadvantageous inequitable outcomes thus does not like situations in which
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• she contributes equally or more than her group fellows (mi ≥ mj) and

receives a payoff that is smaller than the average utility received by the

remaining group members (fi < fj) or

• she contributes more to the public good (mi > mj) and, at the same

time, receives a payoff that is smaller or equal to the remaining group’s

utility (fi ≤ fj).

By implication, the population of agents is satisfied only if at least one of the

following three conditions is fulfilled ∀j = 1, ..., i− 1, i+ 1, ..n:

a) fi(m1, ...,mn) > fj(m1, ...,mn) ∧ mi > mj ,

b) fi(m1, ...,mn) ≥ fj(m1, ...,mn) ∧ mi = mj ,

c) fi(mi, ...,mn) < fj(mj , ...,mn) ∧ mi < mj .

(2.38)

Expressing the above conditions (2.38) over the domain of eligible values for

the variables mj ≥ 0 ∀j = 1, · · · , n, ki ≥ 0, 0 ≤ ai(mi) ≤ 1, n ≥ 2, 0 < g < n

and r > 1 and solving them in terms of the propensity to punish k yields the

following inequality

kieq >
1

ai(mi) · (r + 1) · (n− 2) + r + 1− n
. (2.39)

As introduced above, the evolutionary dynamics induce a tendency towards

defection in a population that initially consists of uncooperative agents who

display no propensity to altruistically punish defectors, i.e. ki(0) ≃ 0 ≪ k+

and mi(0) ≃ cfix
g−1 . In the case of self-regarding agents, the contribution mi of

a given agent i is chosen in a way that it can be expected to be surely less

than what the other agents in the group contribute, i.e. ai(mi) = 1. With

ai(mi) = 1 the condition in equation (2.39) for the optimal level of punishment

becomes

kieq >
1

n · r − r − 1
. (2.40)

The minimum level of punishment kieq that is required to satisfy the disadvan-

tageous inequity aversion conditions in equation (2.38) exceeds the evolution-

ary threshold k+. Thus, agents are forced to switch from the defection regime

into the coordination regime in order to satisfy their preferences. As described
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before, the best response strategy in the coordination regime regarding the

level of cooperation mi is to contribute according to the median value of the

subjective probability distribution Pi. By the definition in equation (2.16), it

follows that the median value m̄i of Pi is equivalent to a value of ai(m̄) = 0.5.

Plugging ai(mi) = 0.5 into equation (2.18) yields the following estimate for

the optimal propensity to punish

kb =
2

n · (r − 1)
. (2.41)

kb is always lager than the evolutionary threshold of k+ for all reasonable

values of n ≥ 2 and r > 1. The population of agents is thus able to maintain

a stable level of cooperation at the median value m̄ that is determined by the

initial distribution P of the contributions. In conclusion, a population of dis-

advantageous inequity averse agents converges to the ESS that is determined

by sb = [mb, kb].

Our first main result can be summarized as follows:

Result 2.1: In the presence of standard Darwinian evolutionary dynamics,

agents’ traits (strategies) converge to evolutionary stable strategies, which re-

sults in a public goods game with punishment to be either characterized by de-

fection (for weak punishment) or by coordination (for sufficient punishment).

Purely self-regarding agents are inevitably caught in the defection regime while

disadvantageous inequity averse agents are able to resolve the social dilemma

by transforming it into a coordination problem.

In the following section, we turn to the empirical validation of our model.
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2.3 Empirical test of the theory

In this section, we compare the predictions derived from our model with the

empirical data obtained in three independently conducted lab experiments and

validate our results against the empirical observations.

2.3.1 Description of the empirical data set

We analyze data from three public goods game experiments with punishment

(Fehr and Gachter, 2000, 2002; Fudenberg and Pathak, 2009), which were

carried out independently. In each experiment, groups of n = 4 subjects

played a two-stage public goods game: at the beginning of stage one, the

contribution step, individuals were endowed with 20 monetary units (MUs).

Subjects could decide on the amount mi of MUs to contribute to the public

good. The sum of all contributions was compounded by a factor of g = 1.6 and

subsequently redistributed in equal shares to all group members. Note that

this results in a per capita gain of 0.4 < 1 per contributed MU which induced

a distinct social dilemma component. In the second stage, the punishment

step, subjects were informed about the contributions of their group mates.

Subsequently, they could spend an additional fraction of their endowment to

punish other group fellows. Each MU spent by the punisher caused a harm of

approximately2 r = 3 MUs to the punished subject.

These two stages were played repetitively either in a stranger or a partner

treatment. In the former, group members were reshuffled after each iteration

to preserve the characteristics of one-shot interactions, i.e., to control for direct

reciprocal effects. In the partner treatment, subjects played continuously with

the same group members across all periods. The first experiment was com-

posed of both, a stranger and a partner treatment. Each of them were played

for 10 periods. The second and third experiments included only a stranger

treatment and were played for 6 and 10 iterations, respectively. In addition,

the third experiment differed in the way information about the received pun-

ishment was revealed to the punished subjects. In the first one, the so-called

observed treatment, subjects were informed immediately after the punishment

2In the first experiment, the punishment efficiency factor was determined based on the
first stage payoff of the punished individual. However, it can be considered to be approxi-
mately equal to the factor 3 as in the remaining two experiments.
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stage about the costs of the received punishment, as in experiments one and

two. In contrast, in the second treatment, the unobserved treatment, subjects

were informed about the costs they had to bear for being punished only after

the last period had been played. However, the results of both treatments were

found not to be significantly different as the fear of punishment seems to be

as effective as the punishment itself (Fudenberg and Pathak, 2009). To obtain

a sufficiently large sample size, we pool the observations from all treatments

of the three experiments introduced above. The subject pool size amounts to

a total of 440 subjects.

2.3.2 Recovering the propensity to punish from the em-

pirical data

The empirical propensity to punish can be calculated by taking the observed

deviations (mi−mj) > 0 between subject i and j and the observed punishment

from subject i to j, pi→j . In this way, each pairwise interaction between two

subjects provides a realization for the propensity to punish according to the

formula

ki,j =
pi→j

mi −mj
. (2.42)

With the set of all pairwise interactions, we construct the empirical distri-

bution of the propensity to punish, by sampling all realized pi→j with their

corresponding mi and mj .

As shown in the first section and also demonstrated in chapter 3, the agents’

propensity to punish can be interpreted as a norm-enforcing behavior that

has co-evolved over tens and hundreds of thousands of years by gene-culture

co-evolution along with the emergence of an aversion to disadvantageous in-

equitable outcome. The perception of fairness and the reaction to unfair be-

havior seems to be deeply rooted in our cultural and genetic heritage (Henrich

et al., 2001; Gintis, Bowles, Boyd, and Fehr, 2003), as experiments and field

studies across different locations and cultural groups suggest (Henrich, 2004;

Henrich et al., 2006). We thus consider the propensity to punish k to be a con-

stant on the evolutionary negligible short time-scale of the experiments. This

can be substantiated by comparing the results of a two-sample Kolmogorov-

Smirnov test between an empirical data set containing only data from the first
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period and the corresponding full-sample data set. The null hypothesis that

the distributions of the two data sets of ki,j result from the same generating

mechanism cannot be rejected with a p-value equal to 0.31. In all three ex-

periments, the observed contributions mi ≫ 0 are approximately stable over

time, as they do not converge towards full defection. Additionally, the stan-

dard deviation of the contributions is on average decreasing over time. Both

of these measures indicate that the subjects in the experiments are in the

“coordination” regime.

2.3.3 Validation of the model prediction for k

We validate the model presented in section 2.2 by asking whether the ESS

value kb of the propensity to punish in the coordination regime given by equa-

tion (2.34) matches the empirically observed data. The group size n and

punishment efficiency r are known parameters in the experiments. The three

public goods game experiments with punishment (Fehr and Gachter, 2000,

2002; Fudenberg and Pathak, 2009) have been performed with n = 4 players

and a punishment efficiency factor of r = 3, respectively. Plugging both values

into equation (2.34) yields

kb =
1

4
. (2.43)

As the value given by (2.43) is based on the assumption that subjects con-

tribute according to the median value of their subjective probability distri-

bution about the contributions of their group fellows, kb corresponds conse-

quently to the median of the distribution of the values {ki→j} of the propensity
to punish.

Remarkably, we find an exact match with the median value k̃emp estimated

from the empirical distribution of the {ki,j} values, i.e. k⋆ = k̃emp = 0.25. The

standard error of the median of the empirical data is σ̂k
med = 0.0013. This cor-

responds to a one-standard error range given by k̃emp±σ̂k
med = [0.2487, 0.2513].

The corresponding 95% confidence intervals for the sample median values are

CI⋆0.95 = [0.2423, 0.2655], CI+0.95 = [0.2486, 0.3336], CI−0.95 = [0.1568, 0.2611]

and Call
0.95[0.25, 0.25]

3.

3We used a bootstrap t-method presented in (Efron and Tibshirani, 1994) to estimate
the confidence intervals. The superscript on the CI indicates the individual data sets:
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Figure 2.3: Propensity to punish as a function of the punishment efficiency r
(continuous line) for a fixed group size n = 4 and as a function of the group
size n (dashed line with cross markers) for a fixed r = 3.

This remarkable agreement between theory and empirical data suggests that

subjects act according to the optimization problem defined in (2.13) and that

their punishment behavior is dominated by disadvantageous inequity aversion

preferences defined in equation (2.38). Again, we argue that in this specific

setup the focal action to punish negative deviators by spending roughly a

fourth of the negative deviation has emerged as the result of the human’s

psychological predisposition to render effective the culturally and genetically

internalized norms (Gintis, 2009; Hetzer and Sornette, 2010). In this case,

these norms are described by disadvantageous inequity aversion.

We can now state our second main result:

Result 2.2: The level of altruistic punishment that subjects exhibit in public

goods game experiments can be explained by a simple aversion to disadvan-

tageous inequitable outcomes together with the individual maximization of the

expected utility defined in equation (2.13).

⋆ =(Fehr and Gachter, 2000)
+ =(Fehr and Gachter, 2002)
− =(Fudenberg and Pathak, 2009)
all=pooled data set of all three experiments
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The dependence of the optimal propensity to punish kb defined in equation

(2.34) on the group size n and the punishment efficiency factor r is plotted

in figure 2.3. This predicts the potential propensity to punish that should

be observed in experiments with differing configurations. In particular, the

larger the punishment efficiency r and the group size n, the smaller becomes

the optimal propensity to punish. To validate these predictions additional

experiments with different groups sizes and punishment efficiency factors have

to be performed in future research.

The following section analyzes the co-evolutionary dynamics of agents with dis-

advantageous inequity aversion compared to agents with purely self-regarding

and selfish behavior in a heterogeneous population.

2.4 Evolutionary dominance of other-regarding

preferences

The results and findings presented in the previous two sections of this chapter

inevitably raise the question about the evolutionary stability and dominance

of other-regarding compared to self-regarding preferences. Are agents with

other-regarding behavior able to invade a population of initially selfish and

self-regarding agents? Can the required conditions for the emergence of altru-

istic punishment spread in a population of agents that is facing a competitive

resource limited environment as described by our model? Is disadvantageous

inequity aversion the predominant strategy in a population of agents who face

a social dilemma situation that provides the opportunity to punish? This sec-

tion addresses these questions by providing an analysis of the co-evolutionary

dynamics that are at play in a heterogeneous population consisting of a mix-

ture of disadvantageous inequity averse agents and purely self-regarding and

selfish-acting agents.

A system that is subject to evolutionary forces is characterized and determined

by selection, cross-over and mutation processes. Consequently, the birth and

death of agents induce multifaceted and complex co-evolutionary dynamics

that are contingent on the states and path dependencies of the individual ac-

tors in the system. In view of this complexity, this section presents a simplified
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but conclusive analytical representation of the system’s dynamics and proper-

ties. This is achieved by reducing the assumed heterogeneity in the system and

by considering only two groups and types of agents, respectively. An extensive

numerical analysis of a population of agents playing a public goods game with

punishment that takes into account the full heterogeneity and the full set of

evolutionary dynamics and path dependencies is presented in chapter 3.

2.4.1 Conditions for evolutionary dominance

Let us write the evolutionary success of a homogeneous group A of agents with

size d playing strategy s1 = [m1, k1] that competes with a homogeneous group

B of size n−d with agents playing strategy s2 = [m2, k2]. Using equation (2.3)

and the P&L structure of the public goods game with punishment defined in

the equations (2.6,2.7), we obtain

Φ(d, n, k1, k2) =
∑
d

f1(m1, · · · ,mn)−
∑
n−d

f2(m1, · · · ,mn)

=
∑
d

m1 +
∑
n−d

m2−∑
d

∑
n−d

k1 ·max(m1 −m2, 0) +
∑
d

∑
n−d

k1 ·max(m1 −m2, 0) · r−∑
n−d

∑
d

k2 ·max(m2 −m1, 0) · r +
∑
n−d

∑
d

k2 · (m2 −m1, 0) .

(2.44)

Expression (2.44) can be rewritten by forming the expectations with respect

to the evolutionary success Φ and assuming that group A randomly varies

in the contribution behavior of its agents. Therefore, the contribution m1

(per agent) of group A is assumed to deviate from the contribution m2 (per

agent) of group B. The total expected deviation of group A is defined by

∆m̂ = p1 · (−∆m) + (1 − p1) · ∆m where ∆m = |m1 − m2|. Each of the

two groups is assumed to be intrinsically homogeneous but differs from each

other, not only in the expected contributions, but also with respect to the

punishment behavior, i.e. k1 ̸= k2. Agents in group A are characterized by

the propensity to punish k1, while group B exhibits a propensity to punish

that corresponds to k2. The average evolutionary success (or failure) of group
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A with d members who deviate negatively with a given probability p1 or

positively with the probability 1 − p1 by a value ∆m from the contribution

m2 of group B which has a total of n− d members is given by

Φ+(d, n, p1, k1, k2) =(1− p1) · (d · (−∆m) +
d 2∆m · g

n
− (n− d) · d ·∆m

n
−

d · (n− d) · k1∆m+ (n− d) · dk1r)+

p1 · (d ·∆m
d 2∆m · g

n
− (n− d) · d∆m · g

n
−

d · (n− d) · k2 ·∆m · r + (n− d) · d · k2 ·∆m) .

(2.45)

The measure Φ+ defines a relation between the relative difference of the P&L

of group A versus that of group B. It thus reflects the evolutionary success

or failure of the two competing groups over time. An expected deviation of

group A by a value of ∆m̂ affects Φ+ to become either positive or negative.

Depending on the sign of Φ+, either the strategies of groupA start to dominate

the population (Φ+ > 0) or alternatively, if Φ+ < 0, the strategies of group B

spread and dominate in the population.

2.4.2 Evolutionary dominance of disadvantageous inequity

averse agents

Consider a population of size n that initially consists only of purely self-

regarding and selfish acting agents. This homogeneous population is assumed

to be in an evolutionary equilibrium state. As identified in the previous sec-

tions, self-regarding agents play the ESS sa = [ma, ks] with

ks =
n− g

(n− 1) · n · r

and

ma ≈ cfix
g − 1

as given by the equations (2.28) and (2.37). Replacing one agent in this

population by a disadvantageous inequity averse agent leads to a heterogeneous

population that consists of two homogeneous subgroups. In the following, we



2.4. Evolutionary dominance of other-regarding preferences 45

analyze the co-evolutionary dynamics of this heterogenous population of agents

that is composed of a group A with size n− 1 of purely self-regarding agents

and a group B with a single disadvantageous inequity averse agent and size

d = 1.

In contrast to the self-regarding agents, disadvantageous inequity averse agents

play the ESS given by sb = [mb, kb] with

kb =
2

n · (r − 1)

and

mb = m̄

as defined in equations (2.41) and (2.30). Substituting k1 = kb, k2 = ks and

d = 1 into equation (2.45) yields

Φ⋆(1, n, p1, k
b, ks) =

(p1 − 1) · (2− n) ·∆mp1 · (n− g) ·∆m

n · r
+

(g · (2− 3 · p1 + n · (2 · p1 − 1)))

n
.

(2.46)

The logically consistent relation between the evolutionary success or failure,

viewed either from the perspective of group A or from group B, reads:

Φ⋆
B := Φ⋆(1, n, p1, k

b, ks)︸ ︷︷ ︸
perspective of group B

!
= −Φ⋆(1, n, 1− p1, k

s, kb)︸ ︷︷ ︸
perspective of group A

=: −Φ⋆
A (2.47)

If Φ⋆
B > 0, group B that initially consists of a single disadvantageous inequity

averse agent, outperforms group A that has n − 1 members of self-regarding

agents. Consequently, the strategy sb = [mb, kb] spreads in the population. In

contrast, if Φ⋆
A > 0, group A becomes predominant and strategy sa = [ma, ks]

spreads in the population. The resulting condition for the disadvantageous

inequity aversion trait to become dominant is defined by

Φ⋆
B > 0 ∧ Φ⋆

A < 0 . (2.48)
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Figure 2.4: Minimum probability threshold p1 given by expression (2.49),
above which a single disadvantageous inequity averse agent can invade a pop-
ulation of selfish agents by deviating from the contribution of the selfish agents
with ∆m̂ = p1 · (−∆m) + (1− p1) ·∆m.

Reducing condition (2.48) over the set of reasonable parameter values with

∆m > 0, n ≥ 2, r > 1 and 0 < g < n reveals that Φ⋆
B becomes positive if the

probability p1 falls into the range

plow < p1 ≤ 1 (2.49)

with

plow =
(n− 2) · (g − 1)

2− 3 · g + n · (2 · g − 1)
. (2.50)

Figure 2.4 shows the surface defined by expression (2.49) for plow as a function

of n and r in the range 2 < n < 8 and 1 < g < 2.5. The domain above the

surface corresponds to p1 values for which a single disadvantageous inequity

averse agent can invade a population of selfish agents by deviating from the

contribution of the selfish agents. A scenario with a population consisting of 4

agents with 3 agents being self-regarding and one agent being disadvantageous

inequity averse, playing a public goods game with a per capita return of 0.4

MUs per invested MU, i.e. g = 1.6, results in a 1− plow = 82% chance for the

single disadvantageous inequity averse agent to outperform at each period.

For all reasonable parameter values, n > 2 and 0 < g < n, the lower bound

plow is always smaller than 1
2 . This means that the probability for the dis-
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advantageous inequity averse agent to invade the population of selfish agents

over time is always larger than one-half. The range of p1 defined by equation

(2.49) shows that, if the single disadvantageous inequity averse agent in group

B deviates on average by a negative value, i.e. p1 > 1
2 , from the contribution

m2 of the selfish agents (group A), she always wins since Φ⋆
B > 0.

Such a single agent can win even though she may be strongly out-numbered

by the n− 1 selfish agents who tend to defect, because the minimum required

consumption cfix per period forces the population to contribute on average at

least an amount of
d ·m1 + (n− d) ·m2

n
≈ cfix

g − 1

MUs in order not to go extinct.

On the other hand, if the single disadvantageous inequity averse agent con-

tributes on average more than the group of self-regarding and selfish agents,

it must hold that
g + n− 2

2− 3 · g + n(2 · g − 1)
< ∆m̂ (2.51)

in order for that agent to have a larger P&L than the self-regarding agents

of group A. Coming along with the condition Φ⋆
B > 0, the disadvantageous

inequity averse agent in group B can be thought of as being more fertile than

the self-regarding agents of group A, which results in d(t+1) being larger than

d(t) over time. In addition, with an increasing number d of agents in group

B and, consequently, a decreasing number n − d of agents in group A, the

lower limit for p1 declines until it becomes zero for d = n
2 . This means that, as

soon as half of the total population consists of disadvantageous inequity averse

agents, the self-regarding and selfish agents are doomed, as the probability for

group B to take over the entire population becomes 1 independent of their

contribution decisions.

In summary, for arbitrary initial conditions, we have established that disad-

vantageous inequity averse preferences and the corresponding ESS sb have

significantly more than 50% chance of spreading in the population. At large

times and for finite populations, in the presence of a larger than 50% proba-

bility to grow their relative population (1 − plow > 1
2 ), the population of the

disadvantageous inequity averse agents will with probability one reach half the
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total population, at which point they invade with certainty the whole popu-

lation due to their self-reinforcing advantage explained above. This can be

summarized by the following set of inequalities:

1− plow >
1

2
⇒ Pr [Φ⋆

B(t) > 0] >
1

2

⇒ Pr [d(t+ 1) > d(t)] >
1

2
⇒ Pr [Φ⋆

B(t+ 1) > Φ⋆
B(t)] >

1

2

⇒ lim
t→∞

Pr [Φ⋆
B(t) > 0] = 1 ⇒ lim

t→∞
d(t) = n .

(2.52)

In conclusion, our third main result can be summarized as follows:

Result 2.3: On long enough time scales, disadvantageous inequity averse pref-

erences always invade and dominate pure self-regarding and selfish preferences

in an evolutionary system.

2.5 Conclusion

Previous works on economic theories about fairness, altruistic punishment

and cooperation in voluntary contribution situations have systematically un-

derestimated the importance of evolutionary dynamics and in particular the

role of natural selection for the emergence of prosocial behavior and fairness

preferences. We have combined an evolutionary approach together with an ex-

pected utility model to identify and explain the mechanisms that account for

the emergence of fairness preferences and altruistic punishment. In particular,

we designed an expected utility model that allowed us to calculate an optimal

strategy profile for the level of punishment in public goods games, depending

on the fairness preferences of the agents in the population.

In particular, we considered two specific types of agents: (1) purely self-

regarding and selfish acting agents and (2) agents who are disadvantageous

inequity averse. We find that the evolutionary optimal strategy profile of

disadvantageous inequity averse agents matches the behavior of subjects in

the experiments and explains quantitatively the observed level of altruistic

punishment without adjustable parameters. Our results imply that subjects

show a strong predisposition for disadvantageous inequity aversion which, in
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turn, seems to be the driving force behind the observed altruistic punishment

behavior. Finally, we showed that disadvantageous inequity aversion is an

evolutionary dominant and stable strategy when compared to the pure self-

regarding behavior, in a heterogeneous population of agents. Our theory offers

new predictions that are testable by running future experiments with differ-

ent numbers of subjects, modified payoff levels or a varied efficiency of the

punishment.

In conclusion, we believe that path-dependent evolutionary processes, together

with the self-organizational aspects of individual utility maximization, provide

an important explanatory basis for the emergence of cooperation, altruism and

prosocial behavior in general. Future research on social preferences should take

the time dimension and the evolutionary dependencies of many social system

more carefully into account.

The results and findings presented in this chapter derive from an expected

utility model that integrates an evolutionary perspective. By definition, the

model is constructed based on certain simplifying assumptions in order to en-

sure its computability. In particular, evolutionary comparisons with respect to

the fitness of individuals or the dominance of strategies are implemented using

a simplistic two-person view. This approach is common practise in game the-

ory and economics and is widely applied in this area of research. However, we

stress that the inherent characteristics of evolutionary systems require a more

sophisticated approach in order to fully understand the dynamics and underly-

ing mechanisms. The following chapter 3 presents a numerical approach that

takes the full complexity of evolutionary path dependencies, n-player interac-

tions and mechanisms such as adaptation, selection, cross-over and mutation

into account.





3. The co-evolution of fairness

preferences and altruistic

punishment

This chapter studies the co-evolutionary emergence of fairness preferences in

the form of other-regarding behavior and its effect on the origination of altru-

istic punishment behavior using a numerical simulation model. Our approach

closely combines empirical results from three public goods experiments with

an evolutionary simulation model whose formulation borrows ideas from evolu-

tionary biology, behavioral sciences and -economics as well as complex system

science. As a principal result, we show that the evolution among interacting

agents inevitably involves a built-in sense for fairness in the form of disadvan-

tageous inequity aversion that emerges in the presence of effective selection

pressure. The evolutionary dominance and stability of disadvantageous in-

equity aversion is demonstrated by enabling agents to co-evolve with different

self- and other-regarding preferences in a competitive resource limited envi-

ronment. Disadvantageous inequity aversion leads to the emergence of altru-

istic punishment behavior and quantitatively explains the level of punishment

observed in contemporary lab experiments. Our findings corroborate, comple-

ment, and interlink the experimental and theoretical literature that has shown

the importance of other-regarding behavior in various decision settings. This
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chapter can be considered as the logical and consistent extension to the find-

ings from chapter 2. Therefore, we increase the complexity of the evolutionary

dynamics and the interactions by replacing the analytical approach in chapter

2 with the numerical simulation model presented in this chapter.

3.1 Introduction

Why do we show altruistic- and other-regarding behaviors? Why have we

developed a sense for fairness? Is such behavior compatible with Darwin’s

principle of fitness maximization and/or with the economic axiom of rational

decision making? Which evolutionary mechanisms dominate the evolution of

our pro-sociality? With the genesis of more complex forms of life and organ-

isms, evolution has been working on multiple scales, ranging from the level

of genes and phenotypic traits to the emergence of norms, culture and social

institutions. In continuation of the previous findings in chapter 2, this chapter

aims at shedding further light on the puzzling behavior of pro-sociality. By al-

lowing for more complex evolutionary dynamics using a numerical simulation

model we attempt to analyze the roots of pro-sociality and the reciprocal ef-

fects at different scales of the evolutionary mechanisms. This chapter presents

a transdisciplinary approach to explain the emergence of fairness preferences

and altruistic punishment behavior, which is motivated by perspectives from

biology, evolutionary psychology, sociology and economics.

There is evidence from a variety of studies that fairness preferences have

emerged in hominids over hundreds and thousands of years, with roots in

our genetic heritage as evidence from recent studies on primates and the ge-

netic encoding of social behavior suggests (Brosnan and de Waal, 2003; Silk

et al., 2005; Jensen, Hare, Call, and Tomasello, 2006; Jensen et al., 2007b;

Hamlin et al., 2007; de Waal et al., 2008; Robinson et al., 2008; Takahashi,

Shimomura, and Kumar, 2008; Fowler and Schreiber, 2008). The importance

of our genetic heritage for the structural basis of our pro-sociality appears to be

plausible: Our genes encode the essential protein structures that are required

to build up our physical-, cognitive- and computational capabilities. These

capabilities allow us e.g. to perceive others’ behavior, to compare quantities

and to interact either physically or by communication with our environment.
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Furthermore, they build the fundamental basis that allows us to express, trans-

mit and externalize our cumulative knowledge, our culture. Vice versa, our

cultural evolution promotes those genes which are beneficial to the cultural

evolution itself. Culture and genes thus appear to be subjected to more com-

plex, co-evolutionary processes occurring over a spectrum of different time

scales. Cultural evolution is shaped by biological conditions, while, simultane-

ously, genes are altered in response to the evolutionary forces induced by the

cultural context. As a consequence, the perception of fairness and the reaction

to unfair behavior as well as the individual’s response to its social environment

in general seem to be encoded both, in cultural norms and in genes (Boyd and

Richerson, 1988; Laland, Smee, and Feldman, 2000; Gintis, 2003; Sinha, 2005;

Jablonka and Lamb, 2007; Jasny, Kelner, and Pennisi, 2008; Efferson, Lalive,

and Fehr, 2008).

On all scales, living things tend to organize and group together. Cells which

consist in large parts of complex molecules such as proteins group into or-

ganisms. Proteins are transcriptions of one or multiple genes. Higher level

organisms arrange themselves in groups and populations. Groups again often

organize in societies. Throughout the hierarchical levels of biological and so-

cial disciplines, previously independent entities on a lower scale reassemble to

an new unique and individual entity on a higher scale. As an ultimate result,

the coordination and convergence of individual attitudes to common group

behavior and the emergence of social norms as well as their enforcement by

informal social sanctions are often observed in groups of animals and human

societies (Homans, 1974; Coleman, 1998; Whiten, Horner, and de Waal, 2005;

Bernhard, Fischbacher, and Fehr, 2006; Guererk, Irlenbusch, and Rockenbach,

2006). From small cliques to the social order in groups and tribes, all the way

to the legal frameworks of countries, punishment is a widespread mechanism

underlying the formation of social norms (Fehr, Fischbacher, and Gaechter,

2002; Fehr and Fischbacher, 2004; Henrich et al., 2006). In particular, al-

truistic punishment, i.e., the punishment of norm violators at one’s own cost

without personal benefit, is frequent in social dilemmas and is often used

to explain the high level of cooperation between humans (Fehr and Gachter,

2000, 2002; Rockenbach and Milinski, 2006; Henrich et al., 2006; Herrmann,

Thoni, and Gachter, 2008). From an evolutionary perspective, natural se-



54 3. The co-evolution of fairness preferences and altruistic punishment

lection should discriminate against altruists who incur costs to themselves in

order to provide benefits to non-relatives and to strangers in one-shot inter-

actions. Within Darwin’s theory as well as in economic and game theoretic

models, which rely on rational selfishness and the dominance of self-regarding

preferences, such behaviors are puzzling, if not disrupting. This observation

calls for the identification of the generative mechanism(s) underlying altruistic

punishment.

Models of kin selection, inclusive fitness, reciprocity, network reciprocity, group-

level and multi-level selection have been developed to explain the presence of

pro-social behavior. Laboratory experiments and field studies suggest that

egalitarian motives and other-regarding preferences, which relate a person’s de-

cision to her social environment, have a significant influence in social dilemmas,

coordination and bargaining games (Fehr and Fischbacher, 2002; Fowler, John-

son, and Smirnov, 2005; Fehr, Bernhard, and Rockenbach, 2008; Tomasello

and Warneken, 2008). As a result, psychological models of inequity aversion

have been formulated that included descriptions of other-regarding prefer-

ences. These models are based on motivation functions that include relative

income preferences, envy, inequality aversion and altruism (Fehr and Schmidt,

1999; Bolton and Ockenfels, 2000; Charness, Gary and Rabin, Matthew, 2002;

Fehr and Schmidt, 2006). The quantitative comparison with empirical data

often remains unsatisfactory as most models aim at explaining stylized facts

rather than providing quantitative explanations of the underlying mechanisms.

Although, while based on plausible assumptions, their evolutionary validation

is not manifested: Can other-regarding preferences emerge, evolve and ul-

timately dominate pure self-regarding and selfish behavior? What are the

consequences of other-regarding behavior for our social interactions? Can the

presence of other-regarding preferences cause the emergence of altruistic feed-

back mechanisms such as costly punishment?

Experiments on public goods and social dilemma games provide convenient

tools to study social preferences in well-defined scenarios under controlled con-

ditions. As already presented in chapter 2, these experiments allow to study

in details what controls the predisposition of humans to bear the costs associ-

ated with punishment of free riders, and how it may improve the welfare of the

group. The observed behavior in the experiments can be interpreted as sam-
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pling the statistically stationary characteristics of a cultural group of subjects

which have evolved over a long time horizon. Their response to specific social

dilemma situations are then revealed through the present-day experiments.

In particular, when provided with the opportunity to punish norm deviators

at own costs, altruistic behavior is manifested (Fehr and Gachter, 2000, 2002;

Decker, Stiehler, and Strobel, 2003; Masclet et al., 2003; Noussair and Tucker,

2005). Even in one-shot interactions in public good games in which reputa-

tion and reciprocal effects are absent, costly punishment, which at a first sight

seems to be in contradiction with individual fitness maximization, natural se-

lection and rational choice theory, is frequently observed (Fehr and Gachter,

2000, 2002; Anderson and Putterman, 2006; Fudenberg and Pathak, 2009).

One should, however, keep in mind that other patterns of behaviors may have

emerged in the presence of different norms, environmental conditions and ge-

netic endowments. E.g. subjects from 15 diverse populations display various

behavioral patterns when playing an ultimatum game (Henrich et al., 2006).

The diversity of behavioral traits found in different human cultures may re-

sult from different evolutionary trajectories as well as from distinct relative

influences of the cultural versus genetic heritages and a varying intensity of

the selection pressure (Cason, Saijo, and Yamato, 2002; Henrich et al., 2006;

Hil and Gurven, 2004).

The co-evolutionary dynamics and inter-dependencies of genes and cultural

norms constitute our starting point to understand the properties of our proso-

cial behavior and our sense of fairness, as observed in lab experiments, field

studies and, of course, in real life. To identify and fully understand the mech-

anisms underlying our prosocial behavior, we design an evolutionary simula-

tion model that mimics the dynamics of individuals being exposed to a social

dilemma situation. To verify our theoretical results, we compare them with

observations previously obtained in three independently conducted lab exper-

iments. As a most important result, we find that evolution favors a build-in

predisposition for fairness concerns: In the presence of a sufficiently large

selection pressure, individuals inevitably develop an aversion to unfairness.

Secondly, the dislike of unfair situations - not to be confused with a prefer-

ence for fairness in general - promotes altruistic behavior in the form of costly

punishment that occurs even in one-shot interactions as frequently observed
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in lab experiments. Thus, altruistic punishment is a consistent consequence

of our conditional evolutionary predisposition to unfairness aversion.

In the following section, we will present our model, motivate, discuss and

verify the obtained results and draw conclusions about the evolution of fairness

preferences, altruistic punishment and moral behavior.

3.2 Method

We develop a simulation model consisting of synthetic agents that describes

the long-term co-evolution of cultural norms and genes accounting for fairness

preferences and altruistic punishment behavior in populations being exposed

to a competitive voluntary contribution dilemma. Specifically, we compare

our model with the results of three public goods game experiments conducted

by Fehr/Gachter and Fudenberg/Pathak (Fehr and Gachter, 2000, 2002; Fu-

denberg and Pathak, 2009). Our modeling strategy is to see the empirical

observations in the experiments as a snapshot within a long-term evolutionary

dynamics: on the short time scales of the experiments, the traits of the human

players probed by the games can be considered fixed for each player. These

traits might be encoded in the cultural context, in genes, or both.

Our model does not aim at simulating and explaining strategic short-term

behavior of agents in social dilemmas, but instead mimics the culture-gene

co-evolution that has occurred over tens of thousands of years. Aiming at

two goals, we validate our model by comparing its results with the observed

behavior in the experiments. In a first step, we quantitatively identify the

underlying other-regarding preference relation that explains best the contem-

porary behavior. Here, we specifically look into a set of common assumptions

made by researchers to account for fairness preferences and its observable

consequences in the form of altruistic punishment behavior. Other-regarding

preferences are expressed as inequality or inequity aversion. Initialized with

different variants of these other-regarding preferences, the traits of our agents

converge after long transients to statistically stable values, which are taken

to describe the present-day characteristics of modern humans. In a second

step, we verify that the identified preference relation which explains best the

contemporary behavior is evolutionary stable and dominates the remaining
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variants of self- and other-regarding preferences. We do this by allowing the

other- and self-regarding preferences to co-evolve over time within a hetero-

geneous population. Our final goal is to reveal the ultimate mechanisms and

the conditions under which agents develop spontaneously a propensity to “al-

truistically” punish, starting from an initial population of self-regarding and

selfish-acting non-punishers.

The design of our model is inspired by three public goods game experiments

with punishment conducted by Fehr/Gachter and Fudenberg/Pathak (Fehr

and Gachter, 2000, 2002; Fudenberg and Pathak, 2009). In these experiments,

subjects1 are arranged in groups of n = 4 persons and play a two stage game.

At the beginning of each period, in stage one, subjects received an initial

endowment of 20 monetary units (MUs). Thereafter, subjects could invest

m ∈ [0, 20] MUs to a common group project, which returned g = 1.6 MUs

for each invested MU. The total return from the project was equally split and

redistributed to all group members. Thus, the return per capita was g/n = 0.4.

As long as g/n < 1, the game has a vivid social dilemma component, since it

is rationally optimal not to cooperate, even though the group is better off if

each member cooperates2. Thus the setup is susceptible to defection through

material self-interest and we consider the subjects’ investment as their level of

cooperation.

In the second stage of the game, subjects were provided with the opportu-

nity to punish other group members, after they had been informed about the

individual contributions3. The use of punishment was associated with costs

for both parties, in which each MU spent by a punisher led to rp = 3 MUs

taken from the punished subject (Fehr and Gachter, 2002; Fudenberg and

Pathak, 2009)4. Experiments were played both in a partner treatment (Fehr

1Here undergraduate students from the Federal Institute of Technology (ETH) and the
University of Zurich as well as subjects from the Boston area universities.

2If all agents contribute one MU (cooperate), they each obtain 1.6 MU. If only one does,
the three others (free-riders) pocket 0.4 MU on top of their own uninvested MU while the
single contributor is left with just 0.4 MU and thus takes a loss of 0.6 MU.

3In (Fudenberg and Pathak, 2009), subjects also played an unobserved treatment in
which they learned the contributions of other group members not until the last period has
been played. However, this variation in the design of the experiment did not lead to a
significantly different level of observed punishment.

4In (Fehr and Gachter, 2000), the punisher paid approximately 2 MUs to take an addi-
tional 10% from the punished subject’s period profit.
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and Gachter, 2000), in which the group composition did not change across pe-

riods, and in a stranger treatment (Fehr and Gachter, 2000, 2002; Fudenberg

and Pathak, 2009). In the later, subjects were reassigned to new groups at

each period using an anonymous random matching procedure and thus were

only engaged in one-shot interactions during the entire runtime of the exper-

iment. In total, the experiments were played for T1 = 10 (Fehr and Gachter,

2000; Fudenberg and Pathak, 2009) and T2 = 6 periods (Fehr and Gachter,

2002) respectively.

The data from Fehr/Gaechter and Fudenberg/Pathak as well as from sev-

eral other public goods experiments (Decker et al., 2003; Masclet et al., 2003;

Noussair and Tucker, 2005) show that people, if provided the opportunity,

frequently punish defectors, even if this is costly to themselves and not im-

mediately observable to others. In the case of repeated interactions, as in the

partner treatment, such behavior might be explained by the“direct reciprocity”

mechanism. What is more surprising is that subjects continue to punish at a

cost to themselves even in one-shot interactions for which there is no feedback

mechanism in action that would work e.g. by direct or indirect reciprocity.

This behavior is referred to as “altruistic punishment” to emphasize the con-

flict with the behavior expected from purely rational agents. The question

we address here is why humans behave in a way that seemingly contradicts

individual fitness maximization and rational choice.

3.2.1 The computational model

We construct an evolutionary simulation model adapted from the design of the

experiments in (Fehr and Gachter, 2000, 2002; Fudenberg and Pathak, 2009)

that consists of a population of agents who play a public goods game with

punishment. In this model, agents are characterized by three traits. The first

two traits characterize the agent’s level of cooperation m and their propensity

to punish k. The third trait q characterizes the agent’s preferences for self-

and other-regarding behavior, respectively. All traits can adapt and evolve

over long periods according to generic evolutionary dynamics: adaptation, se-

lection, crossover and mutation. In order to capture the possible evolution

of the population, agents adapt and die when unfit. Newborn agents replace

dead ones, with traits taken from the pool of the other surviving agents. The
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adaptation and replication dynamics are described in detail in section 3.2.2

and 3.2.3, respectively.

A given simulation period t is decomposed into two sub-periods:

1. Cooperation: Each agent i chooses an amount ofmi(t) MUs to contribute

to the group project in period t. This value ofmi(t) reflects the agent’s intrinsic

willingness to cooperate and thus is referred to as her level of cooperation. As

in the experiments, each MU invested in the group project returns g = 1.6

MUs to the group. Combining all the contributions by all group members and

splitting it equally leads to a per capita return given by equation (3.1).

r(t) = (g/n) ·
n∑

j=1

mj(t) (3.1)

This results in a first-stage profit-and-loss (P&L) of

si(t) = r(t)−mi(t) = (g/n) ·
n∑

j=1

mj(t) − mi(t) , (3.2)

for a given agent i, which is equal to the difference between the project return

and its contribution in period t. The willingness to cooperate embodied in

trait mi(t) evolves over time as a result of the experienced success and failures

of agent i in period t. The adaptation and replication rules are described in

detail in sections 3.2.2 and 3.2.3.

2. Punishment: Given the return from the group project r(t) and the indi-

vidual contributions of the agents, {mj(t), j = 1, ..., n}, which are revealed to

all, each agent may choose to punish other group members according to the

rule defined by the equation (3.3) below. To choose the agents’ decision rules

on when and how much to punish, we are guided by figure 2.1 in chapter 2.

Resulting from the data of three experiments, figure (2.1) shows the empiri-

cally reported average expenditure that a punisher incurs as a reaction to the

negative or positive deviation of the punished opponent.

One can observe an approximate proportionality between the amount spent for

punishing the lesser contributing agent by the greater contributing agent and
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the pairwise difference mj(t)−mi(t) of their contributions. The figure includes

data from all three experiments (Fehr and Gachter, 2000, 2002; Fudenberg and

Pathak, 2009). In our model, this linear dependency, with threshold, is chosen

to represent how an agent i decides to punish another agent j by spending an

amount given by

pi→j(t) =

{
ki(t) · (mi(t)−mj(t)) mi(t) ≥ mj(t) ,

0 otherwise.
(3.3)

The coefficient ki(t), which represents the propensity to punish, is the second

trait that characterizes agent i at time t. It is allowed to vary from agent to

agent and it evolves as a function of the successes and failures experienced

by each agent, as explained in sections 3.2.2 and 3.2.3. Given that certain

other-regarding preferences are active, we will show that evolution makes the

punishment propensities ki(t) self-organize towards a value fitting remarkably

well the empirical data, without the need for any adjustment.

As a result of being punished, the fitness of the punished agent j is reduced

by the amount spent by agent i multiplied by the punishment efficiency factor

rp. As in the experiments, we fix the punishment efficiency factor to rp = 3.5

The total P&L ŝi(t) of an agent i over one period of her lifetime is thus the

sum of three components: (i) her first stage P&L si(t) from the group project

(equation (3.2)), (ii) the MUs
∑

j ̸=i pi→j(t) spent to punish others and (iii) the

punishments rp
∑

j ̸=i pj→i(t) received from others, where pi→j(t) and pj→i(t)

are given by (3.3):

ŝi(t) = si(t)−
∑
j ̸=i

pi→j(t)− rp
∑
j ̸=i

pj→i(t) . (3.4)

Equation 3.4 represents the second stage P&L of agent i in period t.

5In the first experiment of Fehr/Gachter (Fehr and Gachter, 2000), the punishment
efficiency factor was determined based on the first stage payoff of the punished individual.
However, it can be considered to be approximately equal to the factor 3 as in the remaining
two experiments.
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3.2.2 Adaptation Dynamics

Adaptation is an heritable phenotypic trait that affects the individual’s fit-

ness as a result of facing short- and long-term changes in the environment

(Williams, 1996; Reeve and Sherman, 1993; Drickamer, Vessey, and Miekle,

1995). In the context of the analyzed public goods game, this translates into

the underlying mechanism that makes subjects adjust their individual willing-

ness to cooperate mi(t) and their propensity to punish ki(t) as a consequence

of experienced environmental conditions.

It has been argued (Simon, 1982; Arthur, 1994; Holland, Holyoak, Nisbett, and

Thagard, 1989; Gigerenzer and Selten, 2002) that humans (and our ancestors)

are likely to use heuristics and inductive reasoning to make decisions. In

particular, this means that humans tend to replace working hypotheses with

new ones when the old ones cease to work. We adopt this bounded rational

approach to define the adaptation mechanism that controls the dynamics of

the propensity to punish and the level of cooperation.

The two traits [mi(t); ki(t)], characterizing each agent i at a given period t,

evolve with time according to standard evolutionary dynamics: adaptation,

selection, crossover and mutation. While selection, crossover and mutation

operate on the individual fitness level, i.e. are controlled by the birth-death

process, adaptations are individually performed by each agent during its life-

time. We model this phenotypic expression using a third trait, qi(t). In con-

trast to [mi(t); ki(t)], which are continuous measures, qi(t) represents a discrete

indicator variable that corresponds to a specific boolean expression. The asso-

ciated boolean expression translates into a specific adaptation condition that

expresses a self- or other-regarding preference relation. We focus in particular

on the set of inequality and inequity aversion preferences, which have been

identified as important determinants in the human decision process and that

of other species (Brosnan and de Waal, 2003; Brosnan, Talbot, Ahlgren, Lam-

beth, and Schapiro, 2010; Almas, Cappelen, Sorensen, and Tungodden, 2010;

Tricomi, Rangel, Camerer, and O/’Doherty, 2010; Range et al., 2008; Fehr

et al., 2008; Braeuer, Call, and Tomasello, 2006). If a particular condition

becomes satisfied, an unbiased adaptation of [mi(t); ki(t)] is triggered. This

allows each agent to adapt [mi(t); ki(t)], either solely based on the individually
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experienced P&L values, or depending on the P&L and contributions of all

group members.

Inequality aversion refers to the dislike of unequal profits, ignoring a potential

inequality in the individually contributed efforts. In contrast, inequity aversion

relates the personal profits directly to the personal efforts that has been con-

tributed to the group project. The following six preference types represent the

fundamental set of variants of inequality and inequity aversion preferences: (A)

inequity averse, (B) inequality averse, (C) disadvantageous inequality averse,

(D) disadvantageous inequity averse, (E) advantageous inequality averse and

(F) advantageous inequity averse. “Disadvantageous” indicates that agents are

only inequality/inequity averse if the inequality/inequity plays to their disad-

vantage, while “advantageous averse”agents do the opposite. In contrast, pure

inequality or inequity averse agents dislike both situations in which they are

discriminated against or are discriminating others. We as well analyze purely

self-regarding and selfish-acting agents (G), i.e. agents who adapt their traits

independently of the actions and the outcomes of other agents.

Figure 3.1 depicts schematically the possible variants of inequality and inequity

aversion preferences introduced above. While inequity aversion (first row) is

determined by a combinatorial condition relating the P&L to the performed ef-

fort (contribution) of an agent, inequality aversion (second row) is determined

only by the agent’s P&L value. Disliked regions of individual P&Ls (inequality

aversion) or combinations of P&Ls and contributions (inequity aversion) are

highlighted by boxes filled using the same pattern: E.g. inequity averse agents

(first row, left column) dislike situations in which they contribute more than

the average and their P&L is less than the average (combination indicated by

1) or vice versa (combination indicated by 2). The following list describes the

set of analyzed phenotypic expression q̂ ∈ Q in detail:

A: Inequity averse agents: such an agent i updates her cooperation level

and her propensity to punish according to eq. (3.5) below, if...

...she has contributed less than (or equally) to her group fellows (mi(t) ≤
m̄(t)), where the average m̄(t) is performed over the contributions of the

other members of her group and, at the same time, has received a total

P&L ŝi(t) defined in (3.4) larger than (or equal) to the group average
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(ŝi(t) ≥ s̄(t)), where the average s̄(t) is performed over the other group

members...

...or she has contributed more than (or equally) to her group fellows

(mi(t) ≥ m̄(t)) and, at the same time, has received a total P&L less

than (or equal) to the group average (ŝi(t) ≤ s̄(t)).

For inequity averse agents, the boolean expression is defined as q̂A :=

[mi(t) ≤ m̄(t) ∧ ŝi(t) > s̄(t)] ∨ [mi(t) < m̄(t) ∧ ŝi(t) ≥ s̄(t)] ∨ [mi(t) ≥
m̄(t) ∧ ŝi(t) < s̄(t)] ∨ [mi(t) > m̄(t) ∧ (ŝi(t) ≤ s̄(t)].

B: inequality averse agents: such an agent i updates her cooperation

level and her propensity to punish if her P&L ŝi(t) given by (3.4) is not

within a specific tolerance range [−l,+l] around the average P&L of the

other members of her group, i.e. if ŝi(t) < s̄(t) − l or ŝi(t) > s̄(t) + l.

When this occurs, agent i updates her traits [mi(t); ki(t)] according to

equation (3.5). It is clear that inequality averse agents do not take the

individually contributed efforts explicitly into account, in contrast with

the inequity aversion agents (A).

For inequality averse agents, the boolean expression reads q̂B := [ŝi(t) <

s̄(t)− l] ∨ [ŝi(t) > s̄(t) + l]

We run multiple simulations initialized by different values for l as pre-

sented in the results section.

C: disadvantageous inequity averse agents: as for agents of type (A),

disadvantageous inequity averse agents compare their P&L to their con-

tributions, however they only dislike situations in which the inequity is

detrimental to them. If an agent i has contributed equally or more than

her fellows in the group (mi(t) ≥ m̄(t)) and, at the same time, has re-

ceived a total P&L ŝi(t) defined in (3.4) smaller than or equal to the

group average (ŝi(t) ≤ s̄(t)), then she updates her traits [mi(t); ki(t)]

according to eq. (3.5).

For disadvantageous inequity averse agents, the boolean expression is

defined by q̂C := [mi(t) ≥ m̄(t) ∧ ŝi(t) < s̄(t)] ∨ [mi(t) > m̄(t) ∧ (ŝi(t) ≤
s̄(t)]
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D: advantageous inequity averse agents: these agents correspond to

the antithesis of agents of type (C). If an agent i has contributed equally

or less than her fellows in the group (mi(t) ≥ m̄(t)) and, at the same

time, has received a total P&L ŝi(t) defined in (3.4) larger than or

equal to the group average (ŝi(t) ≤ s̄(t)), then she updates her traits

[mi(t); ki(t)] according to eq. (3.5).

For advantageous inequity averse agents, the boolean expression is q̂D :=

[mi(t) ≤ m̄(t) ∧ ŝi(t) > s̄(t)] ∨ [mi(t) < m̄(t) ∧ ŝi(t) ≥ s̄(t)]

E: disadvantageous inequality averse agents: these agents only dislike

situations in which the inequality is to their disadvantage. An agent i

updates her cooperation and her propensity to punish only if her P&L

ŝi(t) given by (3.4) is smaller than the average P&L of the other members

of her group, i.e. ŝi(t) < s̄(t). When this occurs for an agent i, she

updates her traits according to equation (3.5).

The corresponding boolean expression for disadvantageous inequality

averse agents is qE := [ŝi(t) < s̄(t)− l]

F: advantageous inequality averse agents: these agents only dislike

situations in which the inequality is to their advantage as opposed to

setup (E). An agent i updates her cooperation and her propensity to

punish only if her P&L ŝi(t) given by (3.4) is larger than the average

P&L of the other members of her group, i.e. ŝi(t) > s̄(t). When this

occurs for an agent i, she updates her traits according to equation (3.5).

Advantageous inequality aversion is defined by the boolean expression

qF := [ŝi(t) > s̄(t) + l]

G: self-regarding agents: such an agent updates her cooperation and

propensity to punish if her P&L ŝi(t) given by (3.4) turns out to be

smaller than the P&L in the previous period t− 1.

Pure self-regarding and selfish behavior is defined by the boolean expres-

sion q̂G := [ŝi(t) < ŝi(t− 1)]
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Figure 3.1: Scheme of the different possible variants of inequality and inequity
aversion preferences introduced in the text.

In addition, each agent needs at least to consume an amount of cfix > 0 per

period in order to match the minimum costs of living, i.e. this value reflects

the absolute lower limit required for survival. Thus agents in all dynamics

additionally adapt their traits if their P&L is less than cfix in avoidance of

becoming extinct.

The update an agent performs if the predominant condition from the set of

conditions Q := [q̂A; q̂B ; q̂C ; q̂D; q̂E ; q̂F ; q̂G] applies consists in an unbiased ran-

dom increment according to

mi(t+ 1) = mi(t) + ϵ[−0.005,0.005]

and

ki(t+ 1) = ki(t) + κ[−0.005,0.005] .

(3.5)

The random variables ϵ and κ are uniformly distributed within the interval

indicated in the subscript. Since contributions and punishment expenditures

are non-negative, draws of ϵ and κ are truncated to avoid realizations that

would lead to negative values of mi(t + 1) and/or ki(t + 1). Our results are

robust to changes of the width of the interval, as long as it remains symmetric

around zero.
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3.2.3 Replicator Dynamics: Selection, crossover and mu-

tation

In addition to the adaptation of the agents’ traits [mi(t); ki(t)]; qi(t) described

above, survival, viability and fertility selection occur by replacing under-

performing agents. As we do not include a population dynamic, our model

assumes a constant group size equal to n, with each death being followed by

a corresponding birth. Selection occurs if an agent’s wealth drops below zero,

i.e. wi(t) < 0. In this case, the agent dies and is replaced by a new one

with different traits [mi(t+1), ki(t+1), qi(t+1)], determined by those of the

surviving agents of the group. We tested our model with the following three

variants of the selection mechanism:

S1: The first variant includes a survival-, viability- and fertility-selection

mechanism. At each period, consumption absorbs an amount c(t) of the

agents’ fitness. As mentioned above, each agents requires a minimum

consumption of cfix > 0 per period to satisfy the minimum expenses

associated with the survival capability. Additionally, we implement a

realistic driving force to select for successful traits. Traits, carried by

agents that perform better than the group average over time, are selected

using a consumption that is proportional to the average P&L of the

group. In total, the consumption of an agent in the current period is

determined by:

c(t) = Max[
1

n

∑
i

ŝi(t); cfix] . (3.6)

When an agent’s fitness wi(t) drops below zero, the agent dies and is

replaced.

S2: A second variant incorporates only a viability- and fertility-selection

mechanism. Here, the death- and rebirth-event of an agent occurs ran-

domly in time but the viability is proportional to the wealth. For each

simulation period, the agent with the lowest wealth (fitness) in the group

dies with a probability ξ and is subsequently replaced. We have varied

ξ in a range 0.0001 < ξ < 0.01 resulting in essentially the same output.

To avoid negative values of wealth, which might occur as a result of
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continuously realized negative P&L values, agents are endowed with an

initial wealth wi(0) ≫ 0.

S3: In the third investigated variant, survival and viability selection is not ac-

tive. Selection occurs based on a simple mechanism with non-overlapping

generations, i.e. all agents have the same predefined lifespan. After one

generation has reached its maximum age, the entire population of agents

is replaced. The traits [mi(t + 1), ki(t + 1), qi(t + 1)] of the new gener-

ation are inherited proportionally to the realized wealth of the agents

in the previous generation. Agents receive an initial endowment with

wi(0) ≫ 0 to prevent negative values of wealth (fitness).

Our results are robust to all three selection mechanisms (S1,S2 and S3 ), i.e.

all variants essentially create the same quantitative output. To be specific,

without loss of generality, we obtained all results described in the following

sections using replicator dynamic S1.

To simulate fertility selection, i.e. the fact that successful individuals produce

more offsprings, we initialize reborn agents with traits inherited proportional

to the fitness of the surviving agents. In this way, more successful traits are

more strongly propagated than less successful ones. In detail, the process of

crossover and mutation for the first two traits, mi(t + 1) and ki(t + 1), is

determined as follows:

mi(t+ 1) = m̄(t) + ϵ[−0.005,0.005]

and

ki(t+ 1) = k̄(t) + κ[−0.005,0.005] .

(3.7)

m̄(t) and k̄(t) correspond to the fitness weighted average values calculated

over the surviving population and ϵ and κ reflect the individual mutation

rates in the form of an unbiased uniformly distributed random increment over

the interval indicated by the subscript. Again, draws of ϵ and κ are adjusted

in a way to ensure the non-negativeness of the mi(t+ 1) and ki(t+ 1) values.

Crossover and mutation for the discrete indicator variable qi(t + 1) occurs

analogously. Our model implementation allows us to pairwise compare dif-

ferent self- and other-regarding preferences, i.e. a heterogeneous population
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can co-evolve along two different adaptation rules q̂x, q̂y ∈ Q across time. The

value qi(t) determines which of the two conditions q̂x, q̂y is active for agent i:

if agent i’s indicator value qi(t) = 0, then she adapts mi(t) and ki(t) according

to rule q̂x. In contrast, if qi(t) = 1, adaptation occurs according to the second

rule q̂y. Crossover and mutation operates on qi(t+ 1) as follows:

qi(t+ 1) =

{
1, if τ[0,1] ≤ q̄(t) + ξ[−0.005,0.005]

0, if τ[0,1] > q̄(t) + ξ[−0.005,0.005]

(3.8)

First, the fitness weighted average of the surviving population q̄(t) is calcu-

lated and mutated by a random variable ξ that is uniformly distributed in

[−0.005, 0.005]. Second, a [0, 1]-uniformly distributed random number τ is

drawn and compared to the value q̌(t) := q̄(t) + ξ[−0.005,0.005]. If τ is less than

or equal to q̌(t), qi(t+ 1) becomes one and zero otherwise.

3.3 Results and Discussion

This section is structured in two parts. In the first part, we aimed at de-

termining which superordinate regime (q⋆ ∈ Q) of self- or other-regarding

preferences has led our ancestors to develop traits promoting altruistic pun-

ishment behavior to a level that is observed in the experiments. To answer

this question, we let the first two traits [mi(t); ki(t)] co-evolve over time while

keeping the third one, qi(t), fixed to one of the phenotypic traits defined in

Q := [qA; qB ; qC ; qD; qE ; qF ; qG]. In other words, we account only for a homo-

geneous population of agents that acts according to one specific self-/other-

regarding behavior during each simulation run. Starting from an initial pop-

ulation of agents which displays no propensity to punish defectors, we will

find the emergence of long-term stationary populations whose traits are inter-

preted to represent those probed by contemporary experiments, such as those

of Fehr/Gachter or Fudenberg/Pathak.

The second part focuses on the co-evolutionary dynamics of different self-

and other-regarding preferences embodied in the various conditions of the set

Q := [qA; qB ; qC ; qD; qE ; qF ; qG]. In particular, we are interested in identifying

which variant q∗ ∈ Q is a dominant and robust trait in presence of a social
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dilemma situation under evolutionary selection pressure. To do so, we analyze

the evolutionary dynamics by letting all three traits of an agent, i.e. m, k and

q co-evolve over time. Due to the design of our model, we always compare the

co-evolutionary dynamics of two self- or other-regarding preferences pairwise,

and we consider all possible combination in qx, qy ∈ Q with x ̸= y. Again start-

ing from an initial population of agents with no disposition for other-regarding

behavior and for altruistic punishment, we report below a remarkable consis-

tency between (a) the evolutionary dominance of a variant of other-regarding

behavior and (b) our findings from the first part of the analysis that focused

on the empirical identification and validation. Additionally, we will learn that

the findings presented in this chapter precisely agree with the results obtained

by our analytical model presented in chapter 2.

The results presented below correspond to groups of n = 4 agents with a

punishment efficiency factor of rp = 3 and a per capita return per contributed

MU of 0.4 (g = 1.6) as in the experiments. The minimum consumption value

has been set to cfix = 0.0001. We have run our simulation with thousands of

independent groups over 10 million simulation periods.

3.3.1 The effect of other-regarding preferences on the

evolution of altruistic punishment

To identify if, and if so which variant of self- or other-regarding preferences

drives the propensity to punish to the level observed in the experiments, we test

the single adaptation conditions defined in Q := [qA, qB , qC , qD, qE , qF , qG]. In

each given simulation, we use only homogeneous populations, that is, we group

only agents of the same type and thus fix qi(t) to one specific phenotypic trait

qx ∈ Q. In this setup, the characteristics of each agent (i) thus evolve based

on only two traits [mi(t); ki(t)], her level of cooperation and her propensity to

punish, that are subjected to evolutionary forces.

Each simulation has been initialized with all agents being uncooperative non-

punishers, i.e., ki(0) = 0 and mi(0) = 0 for all i’s. At the beginning of

the simulation (time t = 0), each agent starts with wi(0) = 0 MUs, which

represents its fitness. After a long transient, we observe that the median value

of the group’s propensity to punish ki evolves to different stationary levels or
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exhibit non-stationary behaviors, depending on which adaptation condition

(qA,qB ,qC ,qD,qE ,qF or qG) is active. We take the median of the individual

group member values as a proxy representing the common converged behavior

characterizing the population, as it is more robust to outliers than the mean

value and reflects better the central tendency, i.e. the common behavior of a

population of agents.

Figure 3.2 compares the evolution of the median of the propensities to pun-

ish obtained from our simulation for the six adaptation dynamics (A to F)

with the median value calculated from the Fehr/Gachter’s and Fudenberg/-

Pathak empirical data (Fehr and Gachter, 2000, 2002; Fudenberg and Pathak,

2009). The propensities to punish in the experiment have been inferred as

follows. Knowing the contributions mi > mj of two subjects i and j and

the punishment level pi→j of subject i on subject j, the propensity to punish

characterizing subject i is determined by

ki = − pi→j

mj −mi
. (3.9)

Applying this recipe to all pairs of subjects in a given group, we obtain a mea-

sure of propensities to punish per group. Sampling all groups and all periods,

we calculate the median of all ki values as shown in figure 3.2 (continuous

horizontal line). Figure 3.3 additionally shows a magnification of figure 3.2 for

adaptation dynamics C and D including their 20/80 quantiles.

Figures 3.2 and 3.3 reveal that purely self-regarding and selfish-acting agents

adapting their traits according to dynamics (G) remain weak-punishers as

shown in figure 3.2. In contrast, for agents endowed with inequality or inequity

aversion preferences (adaptation conditions A to F), different stationary and

non-converging states of the propensity to punish emerge spontaneously, each

with different characteristics.

We now state our first main result:

Result 3.1: For all adaptation rules (A to F), it holds that altruistic pun-

ishment has emerged endogenously as a trait in a competitive social dilemma

scenario that is subject to evolutionary selection pressure.
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A: inequity aversion

B: inequality aversion 0.0025

B: inequality aversion 0.00125

B: inequality aversion 0.000625

C: disadvantageous inequity aversion

D: advantageous inequity aversion

E: disadvantageous inequality aversion
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Figure 3.2: Evolution of the propensity to punish as a function of time. The
values correspond to the population’s median of the individual ki values as a
function of time for the seven different adaptation dynamics (A to G). The
values for each adaptation dynamic result from 800 system realizations with a
total of 3200 agents. The empirical median value calculated from all three ex-
periments of Fehr/Gachter’s and Fudenberg/Pathak (Fehr and Gachter, 2000,
2002; Fudenberg and Pathak, 2009) is shown as the continuous horizontal line.
For adaptation dynamic (B), the plot shows the obtained median values for
all tolerance range parameters l ∈ 0.0025; 0.00125; 0.000625. The parameters
of our simulation are: n = 4, g = 1.6, rp = 3, cfix = 0.0001.

In detail, we find that, for self-regarding and selfish-acting agents (dynam-

ics G), the level of punishment that evolved remains too small to explain

the empirical results of Fehr/Gachter and Fudenberg/Pathak. For the in-

equality averse population (B), we find that, for a set of reasonable values

of the tolerance range parameter l, the empirical distribution can not be re-

produced. Figure 3.2 shows the median value of the propensity to punish

for adaptation dynamics B with the following values of the tolerance range

parameter l ∈ [0; 0.0025; 0.00125; 0.000625]. While a large tolerance range

causes altruistic punishment to remain weak, a narrow tolerance range results

in continuously increasing and thus non-stationary levels of punishment. For
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Figure 3.3: Magnification of figure 3.2 for adaptation dynamics C and D in-
cluding their 20/80 quantiles (thin continuous grey line (C) and thin dotted
grey line (D)). The horizontal continuous line corresponds to the median value
of the empirically observed propensities to punish.

inequity- and altruistic inequity averse agents (dynamics A and D) as well

as for disadvantageous inequality- and altruistic inequality averse agents (dy-

namics E and F), we find levels of altruistic punishments that far exceed the

empirical evidence. We find that the adaptation dynamics C (disadvanta-

geous inequity averse agents) causes the values ki of the propensity to punish

to converge towards the empirically observed norm. The quantitative compar-

ison with the Fehr/Gachter and Fudenberg/Pathak experiments supports the

hypothesis that human subjects are well-described as being disadvantageous

inequity averse (dynamics C), corroborating and complementing previous evi-

dence (Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000; Fehr and Schmidt,

2006). A Mann-Whitney test does not reject the equality of the median values

between the results obtained by the adaptation dynamics C and the empir-

ical data observed in the experiments with a p-value of 0.943. For all other

adaptation dynamics, the equality of the obtained median propensity to pun-

ish and the experimental value is clearly rejected. Also, the 95% confidence
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interval for the sample median, either for each of the three experiment data

sets independently, in pairs or as a whole does not allow us to reject adapta-

tion dynamic C, whereas all other dynamics (A,B,D-G) can be rejected. The

propensities ki to punish exhibits a median around k⋆ ≃ 0.25, which means

that most punishers spend an amount approximately equal to one-fourth of

the experienced differences in contributions in the given setup with 4 players.

Note that the value of the median around k⋆ ≃ 0.25 is close to the slope of

the straight line fitting the empirical data shown in figure 2.1. In chapter 2

the value k⋆ ≃ 0.25 has also been identified analytically as a Nash equilibrium

strategy resulting from the maximization of the evolutionary expected utility

problem with disadvantageous inequity aversion preferences. Given the sim-

plicity of our model and of its underlying assumptions, it is striking to find

such detailed quantitative agreement for one of our dynamics. This immedi-

ately raises the question of the generating underlying mechanisms that control

these dynamics.

It is important to stress that the competitive evolutionary environment with

its distinct selection pressure has no build-in mechanism that a priori favors the

emergence of altruistic behavior such as the costly punishment of defectors. In

order to understand how altruistic traits are selected in our simulation model,

we analyze the evolution of the individual realized fitness- and P&L-values

across time. Additionally, we inspect the micro behavior of the adaptation

conditions A-G on a per step level to understand why and when agents adapt

their traits mi(t) and ki(t). Figure 3.4 shows the evolution of a population of

disadvantageous inequity averse agents (adaptation dynamics C). The figure

reveals that the preference for disadvantageous inequity aversion together with

the evolutionary dynamics, in form of survival/viability and fertility selection,

is responsible for the emergence of altruistic punishment behavior in our model.

The interplay of the evolutionary selection- and the individual adaptation-

processes causes the propensity to punish k to evolve to a level that matches

the empirical observations. Remarkably, a symmetric inequity aversion, i.e.

an aversion for disadvantageous and advantageous inequity, is not needed as

a condition to let altruistic punishment emerge.
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We now state our second main result:

Result 3.2: Disadvantageous inequity aversion is sufficient to explain the

spontaneous emergence of altruistic punishment, with a median level of the

propensity to punish that precisely match empirical data.

Figure 3.4(a) shows the average group fitness of the agents across time on a

logarithmic scale6. This plot reveals the existence of two evolutionary attrac-

tion points k = 0 and k = 0.25, which are identified by two discrete horizontal

ranges around k = 0.25 and k = 0 for which the fitness takes the largest

values (brighter shape of grey). Both evolutionary equilibria are separated by

a range of values 0.125 < k < 0.2, in which the evolution is unstable (darker

grey shape). This evolutionary barrier can also be observed in figure 3.4(b),

showing the higher rate of deaths/births in the range of 0.125 < k < 0.2 indi-

cated by a brighter shape of grey. Note that this evolutionary barrier matches

the identified bifurcation hurdle k+ defined in equation (2.27) of chapter 2 and

can also be observed as a pivot value in figure 2.2 of chapter 2.

Figure 3.4(c) depicts the value of the boolean condition q̂C on a group level

across time, i.e. it quantifies whether all 4 agents per group are satisfied

with their realized P&L and the ratio of their contributions in a way that

q̂C becomes false (the agents are “happy”). If this applies, no adaptation

is performed by the agents. For values of k < 0.125, this is clearly not

the case, causing ki(t) and mi(t) to continuously evolve. In addition, figure

3.4(d) reveals that the agents’ viability condition, i.e. P&L-consumption≥ 0,

is only constantly satisfied for levels of the propensity to punish k > 0.2

while it continuously alternates between positive and negative values below

this boundary level.

As described above, fertility selection occurs by replacing dead agents with

newborns whose traits are taken proportional to the wealth of the surviving

group members. This results in k-values that are associated with a higher

fitness to dominate and to spread in the population as a function of time in the

presence of an ongoing deaths/births process. Figure 3.4(a) shows that more

and more agents with k ≃ 0.25 start to dominate the heredity transmission

6We use a logarithmic scale as it better highlights the wealth dynamics across time.
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(a) log[wealth] (b) avg. number of deaths per group in 100
steps

(c) q̂C =true/false per group (d) ŝi(t)− c(t) is ≥ 0 or < 0

Figure 3.4: Evolution of the propensity to punish k (y-axis) over 5 million
time steps (x-axis) (sample taken every 100 steps) resulting from 8 system
realizations with a total of 32 agents in 8 groups. The shade of grey indicates
(a) the evolution of the agents’ fitness/wealth (upper left in log scale), (b)
the number of deaths per group within 100 simulation steps (upper right),
(c) if the disadvantageous inequity aversion condition q̂C is true or false for a
given group (lower left) and (d) the positiveness/negativeness of the difference
between P&L minus the consumption in each period for each of the 32 agents
(lower right).
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mechanisms, i.e. they spread their propensity to punish (k ≃ 0.25) much more

than those with k ≪ 0.25. This is because their fitness is higher and, at the

same time, the deaths of agents with k ≪ 0.25 occur more frequently. This

becomes visible in figure 3.4(a) in the form of an increasing brighter shape of

grey along the time line for realizations corresponding to a k ≃ 0.25, while

those with k ≪ 0.25 remain at a lower fitness level and disappear by-and-by.

The identified level of the propensity to punish at k ≃ 0.25 is consistent with

the findings obtained by our analytical framework in chapter 2. The optimal

propensity to punish kieq that is defined in equation (2.39) matches exactly

the value of k ≃ 0.25 for the specific game setup with n = 4 agents and a

punishment efficiency of r = 3 as can be seen in the analysis of section 2.3.3.

In summary, we observe the co-evolution of three processes:

• Aversion to disadvantageous inequity makes agents adapt and explore

values of their propensity to punish at levels k > 0.125.

• This leads them into a evolutionary unstable state associated with the

range 0.125 < k < 0.2.

• Subsequently, the evolutionary dynamics in the form of selection, cross-

over and mutation, makes agents converge towards an equilibrium of

their propensity to punish at a value around k ≃ 0.25.

This equilibrium is shaped by the two main conditions, i.e. the aversion to sit-

uation of disadvantageous inequity and evolutionary viability condition P&L-

consumption≥ 0. The two conditions can be fulfilled simultaneously only for

k ≈ 0.25.

Figures 3.5 to 3.10 present an overview of the micro-dynamics of the remaining

self- and other-regarding preferences (dynamics A,B,D-G). The three subplots

show the evolution of the propensity to punish k (y-axis) over 5 million time

steps (x-axis) (sample shown every 100 steps) resulting from 8 system real-

izations with a total of 32 agents in 8 groups. In subplot (a), the shade of

grey indicates the evolution of the wealth. Subplot (b) depicts, if the other-

regarding preferences condition q̂A,B,D,E,F,G is true or false for a given group.
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(a) log[wealth] (b) q̂A =true/false per group

(c) ŝi(t)− c(t) is ≥ 0 or < 0

Figure 3.5: Dynamics A - inequity aversion
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(a) log[wealth] (b) q̂B =true/false per group

(c) ŝi(t)− c(t) is ≥ 0 or < 0

Figure 3.6: Dynamics B - inequality aversion with l = 0.000625
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(a) log[wealth] (b) q̂D =true/false per group

(c) ŝi(t)− c(t) is ≥ 0 or < 0

Figure 3.7: Dynamics D - advantageous inequity aversion
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(a) log[wealth] (b) q̂E =true/false per group

(c) ŝi(t)− c(t) is ≥ 0 or < 0

Figure 3.8: Dynamics E - disadvantageous inequality aversion
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(a) log[wealth] (b) q̂F =true/false per group

(c) ŝi(t)− c(t) is ≥ 0 or < 0

Figure 3.9: Dynamics F - advantageous inequality aversion
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(a) log[wealth] (b) q̂G =true/false per group

(c) ŝi(t)− c(t) is ≥ 0 or < 0

Figure 3.10: Dynamics G - self-regarding agents
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Subplot (c) shows the positiveness/negativeness of the difference between P&L

and consumption in each period and for each of the 32 agents.

Figure 3.2 has shown that altruistic punishment emerges not only in the pres-

ence of disadvantageous inequity aversion but also in the presence of the other

variants of other-regarding preferences (dynamics A,B, D-F). However, a closer

look on the micro-behavior data presented in the figures 3.5-3.10 reveals that

the evolutionary dynamics A,B and D-F make agents not to converge to a

stable stationary propensity to punish.

Figures 3.5 and 3.7 reveal that preferences of symmetric inequity aversion and

advantageous inequity aversion (dynamics A and D) make agents to quickly

explore values k > 0.125. In contrast to disadvantageous inequity aversion (dy-

namic C), the conditions q̂A and q̂D can not permanently be resolved to false

for k > 0.125. In addition, there exists no unique equilibrium with respect to

the fitness, for values of k larger than 0.2 as shown in figures 3.5(a) and 3.7(a).

This causes adaptation and evolutionary selection to operate continuously. As

a consequence, the populations continue to evolve without achieving a stable

evolutionary state.

Altruistic punishment also originates in the three analyzed variants of inequal-

ity aversion (dynamics B, E and F). Figures 3.6, 3.8 and 3.9 suggest that via-

bility and fertility selection operate in the opposite direction to the inequality

aversion preferences, keeping agents away from achieving a potential stable

state. While q̂B can only become false for k < 0.2, agents with k ≫ 0.2

outperform those with a smaller propensity to punish as indicated by brighter

shades of grey for k ≫ 0.2 in figures 3.6(a), 3.8(a) and 3.9(a). This leads to

an evolutionary dynamic with no statistically stationary behavior and thus

results in a heterogeneous population of agents with respect to k.

Purely self-regarding and selfish-acting agents (dynamic G) do not evolve a

significant level of propensity to punish. Figure 3.10(a) reveals the existence

of a single attraction point k = 0 indicated by brighter grey tones towards this

value that lasts for the entire simulation. The purely self-regarding and selfish

adaptation condition q̂G does not allow agents to achieve an evolutionary stable

state in the range of 0 < k < 0.2, as can be observed in figure 3.10(b). As with

the inequality aversion preferences, evolutionary selection, with its attraction
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point at k = 0, works in the opposite direction to the adaptation condition G.

This results in a population of agents that stray in an evolutionary non-stable

range of 0 < k < 0.2.

We find that the agents have an average lifetime of ∼ 160 periods with a

median value of ∼ 90 periods. Therefore, a typical simulation run allows the

occurrence of tens of thousands generations 7.

3.3.2 The co-evolution of self- and other-regarding pref-

erences

The results obtained in the previous section in combination with the find-

ings of section 2.3 in chapter 2 suggest that the punishment behavior of sub-

jects observed in the experiments is driven by an aversion against disadvanta-

geous inequity. Consequently, this raises the question if the identified adapta-

tion dynamic C (disadvantageous inequity aversion) is an evolutionary stable

and dominant phenotypic trait that emerges and prevails in an competitive

resource-limited environment together with other variants of self- and other-

regarding preferences. A first investigation of the evolutionary dominance of

disadvantageous inequity aversion has been presented in the section 2.4 of

chapter 2. Using the evolutionary simulation model the dominance of adap-

tation dynamic C can be verified by allowing agents with an aversion against

disadvantageous inequitable outcomes to co-evolve along with other agents

that act based on one of the remaining adaptation conditions (A,B,D-G) in

our model.

In the following, we run our model with a population that consists of members

who are either disadvantageous inequity averse or have the phenotypic trait

of one of the other self- or other-regarding preferences. In this way, we can

compare the reciprocal effects of the co-evolutionary dynamics from each vari-

ant A,B,D-G against disadvantageous inequity aversion preferences C. This

results in 6 pairwise comparisons. In the beginning of each simulation run,

the model is initialized with a preliminary homogeneous population of agents

which are not disadvantageous inequity averse but moreover act according to

one of the dynamics defined by A,B,D-G. The evolutionary updates of the

7These lifetimes correspond to a population of selfish inequity avers agents (C).
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two competing adaptation traits is performed as described in section 3.2.3, i.e.

qi(t) alternates between qi(t) = 0 and qi(t) = 1 according to the results of

selection, crossover and mutation.

Running our simulation, we observe that the population of agents becomes

always dominated by disadvantageous inequity aversion preferences, indepen-

dent of which competing variant of self- or other-regarding adaptation dynam-

ics has been seeded at step t = 0.

To further understand why we observe this behavior, for each of the six pair-

wise comparison, we plot in figures 3.11 to 3.16:

(a) the fraction of disadvantageous inequity averse agents compared to the

whole population,

(b) the average wealth per agents in each phenotypic trait class,

(c) the relative frequencies of Z = ŝi(t) − c(t), i.e. the P&L minus the

consumption, for periods in which groups were heterogeneous, i.e. agents

with both phenotypic traits were present in the group,

(d) the fraction of the total wealth taken by each phenotypic trait class and

(e) the average age at death for each phenotypic trait class.

The resulting set of a total of 6 pairwise comparisons are depicted in figures

3.11-3.16, each of them showing the 5 subplots described above. Time steps

(x-axis) are indicated in a non linear scale with a total of 10000 y-value

samples taken over the whole simulation steps. The results correspond to

128 system realizations with a total population of 512 agents in 128 groups.

The plots show nicely the impact of survival, viability and fertility selection

on the population of agents. The indicated metrics in the different subplots

conclusively demonstrate how disadvantageous inequity aversion always ends

up dominating the population.
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Figure 3.11: disadvantageous inequity aversion (C) vs. self-regarding (G)
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Figure 3.12: dis. inequity aversion (C) vs. inequality aversion (B)
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Figure 3.13: dis. inequity aversion (C) vs. dis. inequality aversion (E)
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Figure 3.14: dis. inequity aversion (C) vs. adv. inequality aversion (F)
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Figure 3.15: dis. inequity aversion (C) vs. inequity aversion (A)
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Figure 3.16: dis. inequity aversion (C) vs. adv. inequity aversion (D)
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Figure 3.11(a) shows the evolution of the number of disadvantageous inequity

averse agents as a fraction of the total number of agents in the population

across time. The impact of fertility selection is depicted in figure 3.11(b)

with disadvantageous inequity averse agents being able to maintain on aver-

age a higher wealth value - also due to the longer lifetimes. Consequently,

they are better able to promote their traits in the population. Figure 3.11(c)

shows that, in periods where agents of both phenotypic traits are present,

those acting based on disadvantageous inequity aversion clearly outperform

self-regarding and selfish-acting agents on the short run. This is indicated

by a right-shifted distribution (positive values of P&L-consumption) of the

disadvantageous inequity averse agents compared to the left-shifted distribu-

tion of those being purely self-regarding and selfish-acting. Disadvantageous

inequity averse agents do perform better here because they are less volatile

in their adaptations as shown in figure 3.4(c) compared to the fluctuating be-

havior of self regarding agents shown in figure 3.10(b). In this way, agents

with adaptation dynamic C suffer from less losses as a result of differences

in contributions and punishments, respectively. Additionally, we provide the

median value of the two distributions printed in the plot’s legend. The frac-

tion of wealth of disadvantageous inequity averse agents compared to the total

wealth of the population starts to dominate as can be seen in figure 3.11. This

result indicates that disadvantageous inequity averse agents typically invade

and take over groups that are heterogeneous with respect to the phenotypic

trait q̂. The effect of survival selection is shown in figure 3.11(e). Groups of

disadvantageous inequity averse agents are much more stable and are charac-

terized by, on average, longer lifetimes with correspondingly a lower number

of deaths. This makes them being less exposed to cross-over and mutations

than compared to purely self-regarding and selfish-acting agents.

Essentially the same results and lines of argumentation hold for the remaining

5 comparisons, ie. inequity aversion (A) vs. disadvantageous inequity aver-

sion (C), inequality aversion (B) vs. (C), advantageous inequity aversion (D)

vs. (C), disadvantageous inequality aversion (E) vs. (C) and advantageous

inequality aversion (E) vs. (C) as shown in figures 3.12 to 3.16.
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We now state our third main result:

Result 3: The three effects together (1-higher average wealth, 2-smaller volatil-

ity in their adaptation, 3-longer lifetimes) lead to the emergence of disadvan-

tageous inequity aversion and its prepotency compared to the 6 self- and other-

regarding preferences listed above.

These findings together with those reported in the previous section and in

chapter 2 suggest that disadvantageous inequity aversion does not only de-

scribes best the punishment behavior observed in lab experiments but more-

over is also consistent and coherent with evolutionary dynamics in a compet-

itive, resource limited environment. It seems that evolution inevitably pushes

towards the development of a sense for fairness (disadvantageous inequity aver-

sion) in population of adaptive and evolving interacting agents. This likely

shapes the contemporary behavior of subjects and provides an explanation

for the altruistic behavior observed in modern experiments in the form of the

altruistic punishment of defectors.

3.4 Conclusion

This chapter studied the evolution of fairness preferences in the form of other-

regarding behavior and its effect on the origination of altruistic punishment

behavior. For this, empirical results from three public goods experiments has

been combined together with an evolutionary simulation model. The model

borrows ideas from evolutionary biology, behavioral sciences and -economics

as well as complex system science.

Our first principal result is that, in a evolutionary-competitive resource-limited

environment, altruistic punishment behavior can spontaneously emerge in a

population of agents who are initially non-punishers, if other-regarding pref-

erences are present. We have shown how this derives from an evolutionary

process with adaptation, selection, crossover and mutation for different vari-

ants of inequality or inequity aversion.

Our second main result is the identification of disadvantageous inequity aver-

sion as the most relevant underlying mechanism to explain the emergence and
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the degree of altruistic punishment observed in public goods experiments. The

results has been obtained by combining empirical data with an evolutionary

simulation model in an innovative way. Our findings substantiate and extend

the results obtained by an analytical utility framework presented in chapter 2.

Our simulation model is able to reproduce quantitatively, without adjustable

parameters, the experimental results concerning the level of punishment be-

havior. This result is of particular importance to substantiate the assumptions

made by researchers in order to describe realistic behavior within the frame-

work of rational choice: Humans exhibit other-regarding, and in particular,

disadvantageous inequity aversion preferences in their decision process when

facing public goods dilemmas with punishment opportunity.

As a third main result, we have demonstrated that disadvantageous inequity

aversion is an evolutionary stable preference which dominates pure self-regarding

and selfish behavior and also all other analyzed variants of inequity- and in-

equality aversion in a competitive resource-limited environment. This nu-

merically calculated result supports, substantiates and extends the findings

presented in chapter 2. We showed that standard evolutionary dynamics in-

deed have a built-in affinity to promote other-regarding behavior. This results

from the fact that individuals so-to-speak hold each other mutually in bay to

first ensure their own survival and second to preferably promote their own

genetic and cultural heritage. Other-regarding behavior in the form of disad-

vantageous inequity aversion is often interpreted as a sense for fairness that

serves to explain altruism. However, we find that disadvantageous inequity

aversion and altruistic punishment, respectively, are just natural evolutionary

consequences in the presence of competitive selection pressure.

The next chapter examines the effect of punishment behavior on the evolution

of cooperation in public goods games. In addition, various mechanisms of

group and multi-level selection are analyzed and discussed with respect to

their contribution to the emergence of cooperative behavior in social dilemmas

and competitive, resource-limited environments.



4. The effect of punishment on

cooperation

In contrast to the punishment behavior that was discussed in the previous

chapters, this chapter focuses on the interaction and the mutual effects of

cooperation and punishment behavior in public goods game experiments. In

the first part of this chapter, we identify and discuss behavioral patterns of

cooperation and defection observed in a pool of subjects from three previously

conducted lab experiments (Fehr and Gachter, 2000, 2002; Fudenberg and

Pathak, 2009). Therefore, a modification of the analytical utility framework

that was introduced in chapter 2 is used to quantify the subjects’ preferences

either to cooperate or to defect. This provides us with a probability distri-

bution of the subjects’ intrinsic motivation to cooperate or to defect. In the

second part of this chapter, we analyze and discuss the effect of (altruistic)

punishment on the level of cooperation in public goods games.

Our previous findings presented in chapters 2 and 3 revealed that an aversion

against disadvantageous inequitable outcomes causes altruistic punishment be-

havior to emerge to a level that precisely matches observations recorded in the

three lab experiments. In addition, it was shown that disadvantageous inequity

aversion is an evolutionary dominant and stable preference. In order to better

understand the effect that the propensity to punishment has on the evolution

of the cooperation level, we analyze the micro-level behavior of subjects from
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three public good game with punishment (Fehr and Gachter, 2000, 2002; Fu-

denberg and Pathak, 2009). This reveals that altruistic punishment promotes

cooperation only among individuals who repeatedly interact with each other.

In contrast, punishment among strangers, i.e. in one-shot interactions, only

serves to maintain a preexisting level of cooperation. Given the widespread

high levels of cooperative behavior which are present today in almost all ar-

eas of human life, punishment alone does not provide a sufficient explanatory

solution to the puzzle of the evolution of cooperation. In particular, we find

that punishment causes a convergence, i.e. a consolidation, of the behav-

ior of agents and thus requires an additional countervailing mechanism that

maintains heterogeneity in a population in order to keep the system evolving.

Relevant mechanisms that account for the maintenance of heterogeneity in a

population are subsequently discussed and analyzed in chapter 5.

4.1 Introduction

While some studies argue that punishment, and in particular altruistic pun-

ishment, accounts for the evolutionary emergence of cooperation (Boyd and

Richerson, 1992; Fehr and Gachter, 2000, 2002; Masclet et al., 2003; Noussair

and Tucker, 2005; Guererk et al., 2006; Nikiforakis and Normann, 2008; Her-

rmann et al., 2008; Gachter et al., 2008; Egas and Riedl, 2008), other studies

conclude differently and argue that punishment can only sustain cooperative

behavior and does not explain its evolutionary origin (Dreber, Rand, Fuden-

berg, and Nowak, 2008; Fudenberg and Pathak, 2009; Wu, Zhang, Zhou, He,

Zheng, Cressman, and Tao, 2009; Boyd, Gintis, and Bowles, 2010; Mathew and

Boyd, 2011). Various other articles combined the opportunity to punish with

additional mechanisms, such as the possibility to abstain from voluntary ac-

tions or to switch between punishment and no-punishment treatments (Hauert,

De Monte, Hofbauer, and Sigmund, 2002; Brandt, Hauert, and Sigmund, 2006;

Hauert, Traulsen, De Silva, Nowak, and Sigmund, 2008). A further group of

studies investigates the differences between peer and pool punishment scenar-

ios (Sigmund et al., 2010; Marlowe, Berbesque, Barrett, Bolyanatz, Gurven,

and Tracer, 2011; Baldassarri and Grossman, 2011) or addresses questions re-

garding the negative effects that punishment might cause on the evolution of

the population welfare (Jensen, 2010; Holmas, Kjerstad, Luras, and Straume,
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2010). Many of these studies apply methods from evolutionary game theory

or provide insights using empirical investigations such as laboratory and field

experiments. Apparently, there is no existing consensus in the literature about

the role, function and importance of punishment for the evolution of cooper-

ation. We add our findings from the previous chapters to this debate and put

them into perspective with respect to the effect of punishment behavior on the

level of cooperation in public goods games.

In the previous two chapters, we discussed the evolution of fairness preferences

and the evolution of altruistic punishment behavior that is observed in lab ex-

periments. This allowed us to reveal that fairness preferences in the form

of disadvantageous inequity aversion (i) explains the altruistic punishment

observed in the lab experiments and (ii) that an aversion against disadvanta-

geous inequitable outcomes is a stable and dominant evolutionary strategy. In

the first part of this chapter, we apply the analytical framework presented in

chapter 2 and extend it in order to reveal the individual cooperation prefer-

ences of subjects in the three public goods games experiments. In particular,

we provide a descriptive model of cooperation preferences by characterizing

subjects by means of their intrinsic willingness to cooperate or to defect and

subsequently classify subjects based on a continuous scale ranging from pure

defection to unconditional cooperation. In the second part of this chapter, we

focus on and analyze micro-level data from three public goods games (Fehr and

Gachter, 2000, 2002; Fudenberg and Pathak, 2009) experiments in order to un-

derstand the effect of punishment on the short-term dynamics of cooperative

behavior. Additionally, we use the evolutionary simulation model introduced

in chapter 3 to study the effect of punishment in an evolutionary competitive

environment and to further identify its role, function and importance for the

evolution of cooperation.

4.2 Cooperation preferences among subjects in

experiments

The following section builds on the utility model introduced in the first chapter

of this thesis and extends it with the objective to reveal the distribution of

cooperation preferences in the subject pool. The cooperation preference of
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a subject is defined by the ratio between the own performed effort and the

performed effort of the other subjects in the reference group. In this way,

subjects can be characterized by their intentional willingness to cooperate or

by their purposeful defection. Previous work on the classification of cooperator

types introduced specific experiments to measure and to classify subjects into

a distinct set of categories, such as conditional cooperators, free-rider and

altruists (Fischbacher, 2001; Houser and Kurzban, 2003; Bardsley and Moffatt,

2007; Herrmann and Thoeni, 2009; Rustagi, Engel, and Kosfeld, 2010). These

experiments mainly base on choice/preference ranking tasks in the form of

“given the others provide an effort of X, which effort level Y do you choose?”

(Fischbacher, 2001). Our method complements these approaches by using the

observed punishment behavior of individuals as an indirect benchmark for

the level of disappointment about the opponents’ behavior. The punishment

reactions in three previously conducted public goods experiments (Fehr and

Gachter, 2000, 2002; Fudenberg and Pathak, 2009) are used to estimate the

players’ first-order beliefs about the contributions of their group fellows. Based

on this estimation, we construct the distribution of cooperation and defection

preferences and are able to reveal that the majority of subjects are imperfect

conditional cooperators.

4.2.1 Theoretical framework of cooperation preferences

We start our analysis using the same evolutionary expected utility model that

was introduced in chapter 3. Agents are arranged in groups with size n and

play a public goods game with punishment. Each agent i invests an amount

of mi MU into the public good. The public good yields a per capita return

of g
n monetary units (MU) per invested MU. If g

n < 1 the public goods game

has a social dilemma component that provides an incentive to defect and to

exploit other group members by choosing mi = 0. Each agent i is assumed

to punish other group fellows j proportional to their negative deviation from

the own contribution. As discussed in chapter 2, this behavioral pattern is

widely observed in experiments and field studies that were conducted in the

western cultural area. In general, punishment is costly, but efficient, i.e. each

MU spent by the punisher reduces the fitness of the punished agents by r > 1

MUs. The intensity of punishment is determined by the population’s intrinsic
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propensity to punish k, which has evolved over hundreds of thousands of years

as a result of gene-culture co-evolution. The expected P&L of an agent is

defined by

Ei[fi(mi)] = −mi +
g

n
·mi

+
g

n
· (n− 1) ·

∫ ∞

0

mj · Pi(mj)dmj

− (n− 1) · k · r ·
∫ ∞

mi

(mj −mi) · Pi(mj)dmj

− (n− 1) · k ·
∫ mi

0

(mi −mj) · Pi(mj)dmj .

(4.1)

Agent i has no ex ante information about the contributions mj of her group

fellows. However, all subjects tend to harmonize their contribution behav-

ior as a result of the coordination regime that originates from the subjects’

aversion against disadvantageous inequitable outcomes and the evolutionary

dynamics (cf. chapter 2 and 3). With time, individual preferences and be-

havior converges to common norms that ultimately aggregates into culture.

This joint cultural background allows each agent to form her first-order be-

liefs about the others’ contributions (Gintis, 2009; Bernheim, 1994; Messick,

1999; Bardsley and Sausgruber, 2005; Henrich, 2004). The intuition for the

expected contribution of her group fellows is embodied in the subjective prob-

ability distribution Pi(mj). Group fellows are indistinguishable from agent i’s

perspective. Thus, the expected utility of a representative agent j is simply

given by

Ei[fj(mi)] = −
∫ ∞

0

mj · Pi(mj)dmj +
r1
n

·mi

+
g

n
· (n− 1) ·

∫ ∞

0

mj · Pi(mj)dmj

− k · r
∫ mi

0

(mi −mj)Pi(mj)dmj

− k ·
∫ ∞

mi

(mj −mi)Pi(mj)dmj .

(4.2)
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As presented in chapter 2, the expected evolutionary utility of agent i, is

defined by the sum of the differences between agent i’s expected P&L and the

expected P&L of the n− 1 group fellows

ui(Ei[fi(mi)], Ei[fj(mi)]) = (n− 1) · (Ei[fi(mi)]− Ei[fj(mi)]) (4.3)

The first order condition for an extremum of (4.3) is given by

∂ui(Ei[fi(mi)], Ei[fj(mi)])

∂mi

!
= 0 , (4.4)

with

∂ui(Ei[fi(mi)], Ei[fj(mi)])

∂mi
=
(
− 1− k · (1 + r2 − n · r2)

∫ ∞

mi

Pi(mj)dmj

+ k · (1− n+ r2) ·
∫ mi

0

Pi(mj)dmj

)
· (n− 1)

= −1 +
r1
n

+ k · (n− 1) · (ai(mi) · r2 + ai(mi)− 1) .

(4.5)

As shown in chapter 2, the welfare maximizing strategy for subjects in the

coordination regime is to choose a contribution that corresponds to the me-

dian values of the subjective probability distribution, so that ai(mi) = 1/2. In

reality however, people’s cooperation preferences are heterogeneous and com-

plex. Transforming equation (4.4) to represent ai(mi) as a function of the

propensity to punish k, and not the reverse as done in chapter 2 yields

ami(k) =
1 + k · (n− 1− r)

k · (n− 2) · (r + 1)
. (4.6)

Remember that by the definition in equation (2.16) it holds that

ami(k) := 1− CDFi(mi) = Pi({mj > mi}) =
∫ ∞

mi

Pi(mj)dmj . (4.7)

Equation (4.6) in combination with the definition in (4.7) describes a func-

tional dependency between the expected fraction ami(k) of group fellows that

subject i believed to contribute more than her own contribution mi and the
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propensity to punish ki as well as the group size n and the punishment ef-

ficiency r. This relation allows to estimate the first-order beliefs of subjects

about the contributions of their group fellows.

In principle, ami(k) in equation (4.6) is a function of the propensity ki to

punish that is specific of agent i, because ki and a(mi) are the two sides of the

coin on how agent i reveals her first-order beliefs concerning the contribution

of others. However, because the experiments provide through expression

ki,j =
pi→j

mi −mj

a more fine-grained information, we can interpret the characteristic propensity

to punish of agent i as a random variable that fluctuates around the cultur-

ally and genetically determined intrinsic value of ki. In particular, ki varies

slightly from subject to subject and across periods. It has to be stressed that

the dynamic inconsistency of ki is not the consequence of a lack of rationality,

i.e. that subjects are not acting according to the identified Nash equilibrium

k⋆ as defined in equation (2.18). Moreover, they reflect an uncertainty, i.e.

a lack of information, regarding the norm-conforming behavior with respect

to the contributions of others (Manski, 1977; McFadden, 1974, 1981). This

leads to interpret expression (4.6) as determining ami(k) as a function of all

possible realizations of ki,j . Using the empirical distribution of the observed

punishment reactions and the distribution of the observed contributions to-

gether with equation (4.6) provides a way to infer the cooperation preferences

of subjects, given that the subjects punished evolutionary optimally by playing

a strategy profile that results from the Nash solution obtained from problem

(2.13). As stated above, we define a subject’s cooperation preference by the

ratio between her level of contribution and the expected contributions of her

group fellows (first-order belief).

4.2.2 Empirical cooperation preferences of subjects

First, we need to address a caveat in order to appropriately infer the cooper-

ation preferences of the subjects from the empirical data: In contrast to the

propensity to punish, the observed contributions mi in the first period of the
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game and in the corresponding full-period sample are distinctly different. This

can be seen for instance by performing a two sample Kolmogorov-Smirnov test

comparing these two distributions, which rejects the hypothesis that they re-

sult from the same underlying statistical distribution (p-value= 0.0057). A

possible origin of this difference is that people make strategic decisions about

their contributions while playing a public goods game (Fischbacher, 2001;

Fischbacher and Gachter, 2010; Herrmann and Thoeni, 2009). In iterating

game plays, subjects may adapt and/or learn to evolve their strategic behav-

ior concerning the level of contribution mi. In contrast, the corresponding

Kolmogorov-Smirnov test regarding the propensity to punish ki does not al-

low to reject the null hypothesis that observations form the first period of the

experiment and the full-sample data set originate from the same underlying

distribution. Hence, the propensity to punish ki is not subject to time effects

in the form of adaptation or learning.

In order to eliminate any bias from the observed contributions mi that could

result from such short term adaptation and/or learning, we consider in the

following only data from the first period played in each treatment. In this

way, the measured contributions and punishments for each subject reveal the

true first-order beliefs about the others’ contributions embodied in Pi(mj) and

the personal cooperation preference. The observed contribution can then be

interpreted as the focal action resulting from a decision process that is not

affected by strategic considerations but based only on the individual cooper-

ation preference and the internalized cultural norms (Messick, 1999; Bardsley

and Sausgruber, 2005; Bernheim, 1994).

By the definition of equation (4.6), the term ami(ki,j) reflects the probability

that the own contribution is less than the expected contributions of the oth-

ers. This allows us to quantify to which extent subjects consciously choose

to deviate from their first-order beliefs. As stated above, a reciprocal and

norm-conforming behavior regarding mi corresponds to the median value of

subjective probability distribution about the group fellows contributions. Us-

ing the data set from the first period of each experiment and applying equation

(4.6) with n = 4 and r2 = 3 to all empirically observed values {ki,j} inferred

from equation (4.2.1) yields a set of cooperation preferences ami(ki,j), which

is broadly distributed. By definition (4.7), 0 ≤ ami
(ki,j) ≤ 1, which implies
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via equation (4.6) that 0.125 ≤ ki,j < +∞. Thus, subjects who do not pun-

ish according to the value range that is specified by the evolutionary optimal

behavior are not considered in our model. Reasons for the deviation from the

evolutionary optimal behavior include different utility objectives or a different

bounded rationality. Restricting our analysis to those subjects who punished

negative deviators, i.e., with non-zero ki,j ’s, we find that 49 out of the 292

available observations correspond to ki,j < 0.125. These are ignored in our

analysis. Each of the remaining 243 observations ami(ki,j) represent the ex

ante expected fractions of group fellows that a given agent i believed to con-

tribute more than herself, given she chose a contribution ofmi. In other words,

subject i intentionally chose her contribution mi with the belief that a frac-

tion ami(ki,j) (respectively 1−ami(ki,j)) of her group fellows would contribute

more (respectively less) than herself.

The cooperation preferences of the different subjects participating in the three

experiments can thus be classified roughly into three categories:

• malevolent or free-rider: For ami(ki,j) ≫ 0.5, subject i has intention-

ally chosen to contribute an amount of m⋆
i MUs for which she expects

that on average a fraction of more than ≫ 50% of the group fellows will

contribute more than this value.

• conditional cooperator: For ami(ki,j) ≃ 0.5, subject i has recipro-

cated (conditionally cooperated) by choosing to contribute an amount

of m⋆
i MUs that she expects to match the norm-conforming behavior of

the other participants.

• benevolent or unconditional cooperator: For ami(ki,j) ≪ 0.5, sub-

ject i has intentionally chosen to contribute an amount of m⋆
i MUs for

which she expects that on average a fraction of less than ≪ 50% of the

remaining group members will contribute more than this value.

The distribution of cooperation preferences ami(ki,j) in the population is de-

picted as a normalized histogram in figure 4.1. One can observe that the

histogram in figure (4.1) is skewed towards values of ami(ki,j) larger than 0.5,

which implies that a larger fraction of subjects tends to be imperfect condi-

tional cooperators: Subjects are more likely to intentionally contribute less
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Figure 4.1: Normalized histogram of the distribution of cooperation prefer-
ences ami

(ki,j) in the subject pool of three public goods games with punish-
ment. The median and 20% / 80% quantiles of the distribution of the values
{ami(ki,j)} are indicated by the three ticks on the horizontal bar.

than their first-order beliefs about the contribution of the others. In detail,

20% of the population “defect” by choosing to contribute less than what they

believed a fraction of 80% will contribute. Another 25% of the subjects con-

tribute according to their belief that 80% of the population will contribute

less than themselves. This representation of cooperation preferences provides

an alternative methodology to measure and classify the type of cooperators

compared to already existing approaches presented e.g. in (Fischbacher, 2001;

Herrmann and Thoeni, 2009).

We now state our first main result:

Result 4.1: The majority of subjects can be best described as imperfect con-

ditional cooperators. 20% of the subjects defect by contributing less then what

they believe 80% will contribute. At the same time, 25% of the subjects con-

tribute more than what they expect 80% of the population will contribute.
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We now compare the distribution of the expected contributions Ei[mj ] (first-

order beliefs), embodied in the set of {ami(ki,j)} values, with the effectively

observed distribution of contributions mi. This provides us with a way to

validate our evolutionary utility model introduced in chapter 2 by means of

the consistency of both distributions. We construct a synthetic survivor func-

tion of the distribution of mi by means of the {ami(ki,j)} values as follows:

each observed contribution mi can be ranked by the simultaneously observed

{ki,j} values using equation (4.6) in combination with the definition of ai(mi)

in equation (4.7). In other words, each value ki,j assigns via (4.6) a probabil-

ity (ami
(ki,j) ≡ P (X ≥ mi)) that the contributions of others will be larger

than or equal to mi. To construct the synthetical survivor function of the ex-

pected others’ contributions (first-order beliefs), we smooth the scattered data

set defined by the pairs of {[ami(ki,j),mi]} values using a two step filtering

method. First, we calculate the mean m̄x of those {mi} values taken from

the subsets of pairs {[ami
(ki,j),mi]} where ami(ki,j) falls within a range of

[x−0.04, x+0.04] for all x ∈ [0, 0.02, 0.04, · · · , 0.98, 1]. Following that, we ap-

ply a Savitzky-Golay filter on the resulting uniformly spaced data set of pairs

{[x, m̄x]} in order to obtain a smoothed and meaningful approximation of the

survivor function. With an appropriate choice of the order of the smooth-

ing polynomial, the Savitzky-Golay filtering method has the nice property of

preserving the features of the underlying distribution, such as its moments of

orders up to one plus the order of the smoothing polynomial (here the order

is two). This procedure finally results in the synthetically calculated survivor

function A(mi) of the expected contributions Ei[mj ].

Figure (4.2) shows the resulting reconstructed survivor function A(mi) as a

black continuous line including the one standard error band (two dotted lines).

The sharp drop observed at mi ≥ 17 can be interpreted as a boundary effect

due to the maximum endowment equal to 20. The empirical survivor function

of the first period contributions for 349 subjects (N = 440) who punished

at least once a negative deviator during the experiment is plotted as a gray

continuous line. It is striking to find such an agreement between the empirical

survivor function of the contribution mi for the 349 punishers and the syn-

thetically calculated survivor function A(mi) of the first-order beliefs. This

suggests that our evolutionary utility model and its predicted functional rela-
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Figure 4.2: Synthetically calculated survivor function A(mi) of the expected
contributions (first-order beliefs) Ei[mj ] (black continuous line) including the
one standard error range (dotted lines) and the corresponding empirical sur-
vivor function of the observed contributions mi (gray continuous line) calcu-
lated from data of three public goods games with punishment. The dashed-
dotted gray line shows the empirical survivor function of mi for “anomalous”
subjects which exclusively punished positive deviators. The dashed black line
shows the survivor function of the contributions from subjects who did not
punish at all. The quantitative agreement between the survivor functionA(mi)
of the expectations Ei[mi] reconstructed from the punishments and its directly
observed complement mi supports our modeling approach as applied to “nor-
mal” punishers.

tion between ai(mi), ami(ki,j), k, n and r explains well the empirically observed

data in the three experiments.

Consider in contrast the 80 subjects of the population who did not punish

at all, i.e. who are second-order free riders: the survivor function of their

contributions is shown as a dashed black line. This distribution departs signif-

icantly from our model’s prediction, as should be expected. The deviation is

even much stronger for anti-social punishers (11 subjects) who exclusively pun-

ished positive deviators during the experiment. The corresponding survivor

function is shown by the dashed-dotted gray line.



4.2. Cooperation preferences among subjects in experiments 107

Our second main result is given by:

Result 4.2: The pool of subjects shares a common norm regarding the level

of contribution and thus subjects are able to form a realistic first-order belief

about the contributions of the other group fellows.

4.2.3 Conclusion

This section provided an analysis of the distribution of preferences either to

cooperate (benevolent behavior) or to defect (malevolent behavior) within the

population of subjects from three public goods experiments. The cooperation

preference of a subject is defined by the ratio between her contribution to

the public good compared to her expectations about the contribution of the

remaining subjects (first-order belief). To infer the empirical first-order be-

liefs of subjects, we used the observed intensity of punishment as a measure to

quantify the punisher’s disappointment about the defector’s contribution given

the punisher contributed a specific amount. This measure allowed us to reveal

the subject’s intentional ex ante preferences to cooperate (benevolent) or to

defect (malevolent). We find that subjects are more likely to contribute less

than what they expect the others to contribute (imperfect conditional cooper-

ators). However, 25% of the population in the experiments chose to contribute

an amount that they expected to be larger than what 80% of the population

would contribute. In contrast to existing approaches that use a distinct set

of behavioral patterns to classify subjects (Fischbacher, 2001; Herrmann and

Thoeni, 2009; Frey and Meier, 2004), we have presented a method to quantita-

tively describe the distribution of cooperation preferences. Subsequently, our

findings and the underlying evolutionary utility model are validated by means

of the consistency of two distributions of contributions: (i) the effectively ob-

served distribution of contributions and (ii) the distribution of the expected

contributions (first-order beliefs) that was reconstructed from the observed

punishment data. We find an excellent agreement between both distributions

for the vast majority of the subjects. This finding implies that a common norm

regarding the level of contribution is present among the subjects in the pool,

as subjects were able to accurately estimate the norm-conforming behavior via

their first-order beliefs.
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4.3 The effect of punishment on the level of

cooperation

This section provides a detailed analysis of the evolution of cooperative be-

havior among subjects who face a voluntary contribution mechanism with

punishment opportunity. Existing literature already provides insights into the

contribution dynamics of individuals who are exposed to the threat of punish-

ment by group fellows (Sonnemans, Schram, and Offerman, 1999; Houser and

Kurzban, 2003; Bardsley and Sausgruber, 2005; Bardsley and Moffatt, 2007).

Other studies focus on the effects of different punishment efficiencies, varying

group sizes or changing communication/information structures and their im-

pact on the subjects’ cooperation behavior (Decker et al., 2003). Still others

analyze the effects coming along with combinations of punishment and reward

opportunities (Andreoni, Harbaugh, and Vesterlund, 2003). In this section,

we focus on the first-order dynamics of the contribution behavior of subjects

who play a public goods game with punishment. For this purpose, we look

at the adaptation dynamics of the voluntarily contributed MUs between two

consecutive periods t and t+1 in three previously conducted lab experiments

(Fehr and Gachter, 2000, 2002; Fudenberg and Pathak, 2009) by analyzing and

presenting the observed micro-level data on a per-subject level. We are able

to uncover the different effects that punishment is causing in repeated inter-

actions among partners and in one-shot interactions among strangers. While

the contribution behavior in repeated interactions among partners is mainly

determined by the direct reciprocity effect, punishment induces a strong ten-

dency to conformity in one-shot interaction among strangers (Bardsley and

Sausgruber, 2005).

4.3.1 Empirical foundation

In the following, we analyze the data from three public goods games with

punishment, which have been conducted by Fehr/Gaechter in 2000/2002 and

Fudenberg/Pathak in 2009 (Fehr and Gachter, 2000, 2002; Fudenberg and

Pathak, 2009). The public good games were played for a total of 6 (Fehr

and Gachter, 2002) and 10 (Fehr and Gachter, 2000; Fudenberg and Pathak,

2009) periods. Subjects received 20 monetary units in each period which



4.3. The effect of punishment on the level of cooperation 109

subsequently could be contributed to the public good. The participants were

arranged in groups of 4 in a constant group setup (partner treatment) and

a dynamic group setup (stranger treatment). To control for direct reciprocal

effects, the stranger treatment ensured that subjects were only engaged in

one-shot interactions. Subjects remained anonymous in both treatments. In

period t, subject i decided to contribute mi ∈ [0, 20] MUs to the public good

that yields a return of g = 1.6 ·
4∑

i=1

mi back to the group. If all group members

contribute an identically amount of m MUs, each of them receives 1.6 · m.

In principle, the per capita gain that an individual subject received for 1

contributed MU mi = 1 is g
n = 0.4 MU. As a consequence, this experiment

setup is susceptible to materials self-interest and free-riding behavior. That

is, a subject who decides not to contribute anything performs better than

a subject who contributes. The design of public goods game is a common

social dilemma that is present in many real-life situations and has been most

prominently introduced as the tragedy of the commons (Hardin, 1968). After

each subject i has contributed an amount of mi MUs to the public good,

they learn about the contributions of their fellows and are provided with the

opportunity to punish other group fellows by spending an additional amount

of their endowment. Punishment was efficient with a factor of 3, that is, one

MU spent by subject i to punish subject j caused a cost of 3 MUs to subject

j.

Figure 4.3 shows the average contribution per subject for the partner (dia-

monds) and the stranger (squares) treatment over 10 periods including a one

standard deviation error bands resulting from the observations of all three

experiments. The plot reveals a significant increase of cooperation for the

partner treatment whereas the dynamics in the stranger treatment indicate

that cooperation is only sustained but not promoted over time.

A more precise analysis of the observed behavior on a per subject level reveals

the immediate effect of punishment on the cooperation dynamics: The color

maps in figures 4.4 and 4.5 depict the subjects’ responses yi(t) in period t+1

given they deviated from the group’s average contribution m̄ in period t by

a value of xi(t) = mi(t) − m̄(t) MUs. For instance, subject i deviates from

the average contribution m̄ of its group in period t by a value of xi(t), then
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Figure 4.3: Average contribution per subject including one standard error
band, as reported empirically in (Fehr and Gachter, 2000, 2002; Fudenberg
and Pathak, 2009). Data from all experiments have been pooled. The dia-
mond markers corresponds to the results of the partner treatment, the square
markers belong to the stranger treatment.

the corresponding value on the y-axis reflects the relative adaptation yi(t) =

mi(t + 1) − mi(t) of her contribution between periods t and t + 1. Thus,

the set of observed values (xi, yi(xi)) characterizes the individual response

behavior (yi(x)) of subject i in period t+1, given she experienced a deviation

of xi from the group average m̄(t) in period t. The shade of gray reflects the

number (in log scale) of corresponding (xi, yi(xi)) observations in the pooled

experimental result data. The plots include data from all three experiments

always excluding results from the last period played, in order to control for

the last-round effect. The linear regression between yi(xi) as a function of

xi calculated separately in the two intervals x < 0 and x ≥ 0 is given by

function g(x). To obtain g(x), we apply a moving average smoothing method

on the original scattered set of data (xi, yi(xi)) that calculates the mean of all

yi(xi) values which fall in a window of [x− 1, x+ 1] for all x ∈ [−20, 20]. The

function g(x) corresponds to the best piecewise linear fits on the smoothed
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Figure 4.4: First order dynamics in the partner treatment of subject i’s change
of contribution yi = mi(t+ 1)−mi(t) (y-axis) against her deviation from the
group average contribution mi(t)− m̄(t) (x-axis) sampled across periods. The
function g(x) shows the best piecewise linear fit on the smoothed (moving
average) data set (xi, yi(xi)). Two fits are performed separately in the intervals
[−12.75, 0] and in [0, 11]. The lower curve f(x) represents the estimation of
the probability density function of the deviations x.

data for the two distinct ranges of negative and positive deviations x. In the

partner treatment the term gp(x) is defined by

gp(x) =

−1.1 · x− 1.1 for x ≤ 0

0.23 · x− 0.30 for x > 0 .
(4.8)

The best linear fit gs(x) for the stranger treatment is given by:

gs(x) =

−0.3 · x+ 0.4 for x ≤ 0

−0.35 · x for x > 0
(4.9)

The lower curves f(x) in figures 4.4 and 4.5 represent the estimate of the prob-

ability density function of all observed deviations xi, obtained by a standard

kernel smoothing method.
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Figure 4.5: First order dynamics in the stranger treatment of subject i’s change
of contribution yi = mi(t+ 1)−mi(t) (y-axis) against her deviation from the
group average contribution mi(t)− m̄(t) (x-axis) sampled across periods. The
function g(x) shows the best piecewise linear fit on the smoothed (moving
average) data set (xi, yi(xi)). Two fits are performed separately in the intervals
[−15, 0] and [0, 11]. The lower curve f(x) represents the estimation of the
probability density function of the deviations x.

The difference between the dynamics in the partner and the stranger treatment

is striking. While the distribution f(x) of the deviations from the average con-

tribution is approximately symmetrical around 0 in the partner treatment, the

response yi is highly asymmetric: for positive deviators (xi(t) > 0), the distri-

bution of the adaptation behaviors yi(xi) between t and t+1 is approximately

symmetric around 0. In contrast, for negative deviators (xi(t) < 0) most of

the yi’s are found in the second quadrant (yi(xi) > 0). The form of equation

(4.8) illustrates the different decision characteristics of individuals who either

defected (x ≤ 0) or cooperated (x > 0): for x < 0, subjects react with a strong

increase in contributions at the next period (t+1) and tend to fully compensate

their negative deviations in period t. As seen from the fact that g(x) > −x for

negative values of x, they even show a tendency to over-contribute. On the

contrary, subjects who contribute more than the group average (x > 0) do not

significantly decrease their contributions in the next period resulting in flat



4.3. The effect of punishment on the level of cooperation 113

slope of function g(x) for x > 0. This asymmetry introduces a drift towards

larger overall cooperation and suggests that cooperation between partners is

catalyzed by direct reciprocity. The direct reciprocity effect in combination

with punishment is able to explain the emergence of cooperation in the partner

treatment. However, among strangers the situation is different.

In the stranger treatment, the distribution of deviations from the mean con-

tribution is also approximately symmetrical around 0, but the response yi =

mi(t + 1) − mi(t) is much more symmetric than for the partner treatment:

The slope of g(x) for negative deviations (x < 0) is nearly the same as for

positive deviations. This means that defectors (x < 0) tend to cooperate more

at the next period, as in the partner treatment, while, in contrast, coopera-

tors (x > 0) tend to adapt their behavior and start to cooperate less. In the

stranger treatment, positive deviations compensate negative deviations with

successive increments and decrements causing a convergence of free-riders and

cooperators across time. This allows to conclude, that the feedback provided

by punishment induces a contribution dynamic that ultimately results in a ho-

mogeneous level of contributions which is ex ante determined by the average

level of cooperation of the group m̄ in the first period. The underlying dynam-

ics work as follows: subjects who contributed less than the average increase

their contributions in the next period until they contribute as much as the

remaining subjects. This is characterized by 0 < g(x) < −x for x < 0. On the

other hand, those who contributed more slightly decrease their contributions

in the next period, which is characterized by −x < g(x) < 0 for values x ≥ 0.

These two differences ((i) smaller change towards cooperation for defectors

and (ii) negative change towards less cooperation for cooperators) explain the

stabilization of the level of cooperation in the stranger treatment as apparent

from figure 4.3. For strangers, punishment thus seems to serve as a coordi-

nation mechanism, but does not lead to the emergence and reinforcement of

cooperative behavior. This is in line with our finding presented in chapter 2

and 3.

Additionally to the previous analysis, the characteristic trend of the contri-

butions in a populations of partners and strangers can offer valuable clues to

the overall dynamics. The expected deviation of the population’s contribution

in t+ 1 can be written as the cumulative sum of the first-order deviation dy-
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Figure 4.6: Cumulative first-order deviation dynamics as defined by equa-
tion (4.10). The curves can be interpreted as the expected relative change of
the average group contribution given that only the subjects who deviated by
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the black line to the stranger treatment. The values have been normalized.

namics xi + y(xi) under the condition that the deviation from the population

average m̄ in t is less than x. This yields the following expression:

E[x(t+ 1)|x(t) ≤ x)] :=

x∫
−20

E[x(t+ 1)|x(t) = x)]f(x)dx

:=
∑
x

∑
i,xi

!
=x

xi + y(xi)

(4.10)

Equation 4.10 represents the expected relative change of the average group

contribution in the population conditional on the fact that only subjects who

deviated by xi(t) <= x adapt their contribution while the contributions of

subjects who deviated by xi(t) > x stay constant. The corresponding shapes

of equation (4.10) for the partner and the stranger populations are shown

in figure 4.6. Indeed, figure 4.6 reveals that the level of cooperation in a

population of strangers on average levels out over time, which results in a

homogeneous population.
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We conclude with our third main result:

Result 4.3: Altruistic punishment among stranger acts as a coordination

mechanism that allows to sustain a certain level of cooperation, but cannot

explain its evolutionary emergence. In contrast, providing a punishment op-

portunity among partners can explain an increase of cooperation, however,

only due to the presence of the direct reciprocity effect.

Even though there is a wide-spread belief that punishment, and in particular

altruistic punishment, is a key candidate to explain the evolutionary emer-

gence of cooperation (Boyd and Richerson, 1992; Fehr and Gachter, 2000, 2002;

Masclet et al., 2003; Noussair and Tucker, 2005; Guererk et al., 2006; Niki-

forakis and Normann, 2008; Herrmann et al., 2008; Gachter et al., 2008; Egas

and Riedl, 2008), our analysis of the micro level data from the three experi-

ments (Fehr and Gachter, 2000, 2002; Fudenberg and Pathak, 2009) provides

a contrary evidence. We have shown indeed that punishment can promote

cooperation among partners by sustaining the direct reciprocal mechanism.

However, it only serves to maintain a preexisting level of cooperation in one-

shot stranger interactions. Again, this is in line with our findings presented

in chapter 2 and 3. Given the widespread degree of cooperative behavior that

is present today in almost all areas of human life, this observation requires

to identify the detailed mechanisms accounting for the evolutionary origin,

emergence and sustainment of cooperative behavior.

4.3.2 Simulation results

The presented results in this section originate from the same evolutionary

simulation model that has been introduced in chapter 3. The agents’ fairness

preferences are fixed to disadvantageous inequity aversion (cf. dynamics C

in section 3.2.2) which have been identified to be the predominant measure

of fairness in an aggregated pool of subjects from three different experiments

(Fehr and Gachter, 2000, 2002; Fudenberg and Pathak, 2009).
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The agents play a public goods game with punishment in groups of size n.

The P&L of agent i in period t equals

ŝi(t) =
g

n
·

n∑
j=1

mj(t)−mi(t)−
∑
j ̸=i

pi→j(t)− r
∑
j ̸=i

pj→i(t)

as previously defined in equation (3.4). The simulation sequence is exactly

equivalent to the simulations runs in chapter two. The population of agents is

arranged in groups of n = 4 and the group project yields a per capita return

of 0.4 for each invested MU, i.e. g = 1.6. The punishment efficiency factor

is fixed to r = 3, i.e. for each MU spent by the punisher, the fitness of the

punished agent is reduced by 3 MU. Sampling the simulation model over a set

of predefined parameter configurations, allows us to explore and to analyze

the sensitivities of a population of individual agents to specific exogenously

fixed conditions. In the following, the sensitivity of the level of cooperation

mi(t) is analyzed with respect to the level of punishment in the population.

For this purpose, the dynamics of mi(t) for fixed values of k, ranging from

zero (k = 0) up to excessive punishment behavior with k = 1 are examined.

In the absence of punishment, i.e. all k’s are imposed equal to 0, we find that

cooperation that was maintained previously in the presence of punishment

decays after a few thousand periods as shown in figure 4.7. In contrast, if

punishment is restored at k = 0.25, cooperation remains stable at the previ-

ously initialized level. Figure 4.8 shows the average level of cooperation in a

group of 4 agents after a transient period of 20,000 simulation periods for 1000

system realizations as a function of the propensity to punish k. The level of

cooperation for all agents was initialized by a value drawn from a uniformly

distributed random variable in [0.99, 1.01]. This figure reveals that the level

of cooperation undergoes a phase transition at the critical value kc ≃ 0.125,

at which it becomes non-zero and grows rapidly to a saturation value. For

propensities to punish larger than 0.25, the level of cooperation remains con-

stant at its saturation value. The value k⋆ ≃ 0.25 seems to be the minimum

propensity to punish that enforces to sustain a maximum level of cooperation.

This suggests that evolution may have selected an “optimal” propensity to al-

truistically punish defectors in order to sustain cooperation. To corroborate
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Figure 4.9: Average punishment spent to punish defectors for a group of 4
agents as a function of k after an equilibrium time of 20,000,000 simulation
periods and for 100 system realizations. k is fixed to the corresponding value
on the x-axis and the initial contribution mi(0) in period 0 for all agents i
of a group is randomly drawn form a uniform distribution in [4.99, 5.01]. A
value of k⋆ ≃ 0.25 corresponds to an optimal value of the propensity to punish
associated to a minimum of the global punishment expenditure.

this hypothesis, we now consider the intrinsic propensity to punish k as a

measure of deterrence. Figure 4.9 plots the average amount of MUs spent to

punish a defector during 5,000,000 simulation periods for 3200 system realiza-

tions as a function of the propensity to punish k. As in the setup of figure 4.8,

the level of cooperation mi(t) for all agents is initialized at period t = 0 by a

random variable uniformly distributed in [0.99, 1.01]. The results show clearly

that for values of k above the critical value of kc ≃ 0.125, which corresponds

to a higher level of deterrence, effectively less exertion of costly punishment is

caused in order to maintain a certain level of cooperation and norm conformity,

respectively. This responsive behavior was manifested in many empirical ob-

servations (Kleiman, 2009; Kennedy, 2008; Jensen, 2010; Holmas et al., 2010).

The value k⋆ ≃ 0.25 corresponds to the minimum overall punishment cost

with a stable maximum cooperation level. This substantiates that evolution

may have selected an “optimal” propensity to punish to sustain cooperation

and prevent defection in contexts in which people exhibit disadvantageous in-
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equity aversion. Comparable results were obtained using a different simulation

model, as reported in (Kleiman and Kilmer, 2009).

We now state or last main result of this chapter:

Result 4.4: Evolution has selected an optimal level of altruistic punish, which

is only able to sustain a pre-existing level of cooperation in a population of

agents. Thus, punishment alone cannot explain the emergence of cooperation.

The evolutionary selected level of punishment is optimal with respect to the

group welfare.

4.3.3 Conclusion

Neither the micro-data analysis of the empirical observations from three pub-

lic goods experiments (Fehr and Gachter, 2000, 2002; Fudenberg and Pathak,

2009), nor the results obtained from our evolutionary simulation model sug-

gest that (altruistic) punishment can be considered as the key mechanism

in explaining the evolutionary emergence of cooperation. Moreover, the re-

sults presented in this section reveal that (altruistic) punishment provides a

key stabilization mechanism for sustaining cooperation among strangers. The

evolutionary rooted predisposition to punish based on disadvantageous in-

equity aversion does not appear to help in promoting the level of cooperation.

This inevitably brings up the question for the causative mechanisms that un-

derly the evolutionary emergence of cooperative behavior. In particular, the

preexisting high level of the first period contributions in the experiments at ap-

proximately 12 MUs remains unexplained. To take on this remaining puzzle, a

more detailed analysis of the interaction between conformity promoting mech-

anisms, such as (altruistic) punishment, and heterogeneity inducing processes

is performed in the next chapter.





5. The emergence of cooperation

This chapter aims at explaining the emergence of cooperation in voluntary

contribution mechanisms under evolutionary dynamics. In particular, we fo-

cus on the high levels of contributions that can be observed in public goods

game experiments with punishment. To shed light on this puzzling behavior,

we discuss and analyze the long-term interaction between the heterogeneity

of agents and the feedback provided by punishment. The findings presented

in chapter 4 revealed that the predisposition to punish unfair behavior at

own costs prevents free-riding behavior in social dilemmas and, in particular,

acts as a coordination mechanism in one-shot interactions among strangers: if

the population displays a propensity to punishment that is sufficiently strong,

agents converge to a homogeneous and stable level of cooperation that is sus-

tained across time (Bardsley and Sausgruber, 2005; McNamara and Leimar,

2010). After a population has achieved conformity with respect to the con-

tributions, punishment cannot serve any longer as a catalyst for cooperation

but moreover remains as a passive mechanism of deterrence. This is caused

by the fact that people tend to punish mainly free-riders, i.e. negative de-

viators, with a intensity proportional to their negative variation1. In other

words: as soon as a population is sufficiently homogeneous with respect to

the contributions, punishment becomes inactive and ultimately disappears if

all contributions are equal. Thus, altruistic punishment cannot explain the

1see e.g. figure 2.1 in chapter 2 and results presented (Fehr and Gachter, 2002)
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evolutionary origin of the high levels of cooperation that are observed today.

This calls for the identification of the underlying evolutionary mechanisms that

in combination with punishment account for the emergence and the sustain-

ment of cooperation. For this reason, we extend the evolutionary simulation

model introduced in chapter 3 by implementing different multi-level selection

mechanisms that maintain heterogeneity both between and within groups of a

population. Specifically, we look into different variants of inter and intrademic

group selection.

5.1 Introduction

The emergence of cooperation among groups of organisms ranging from bac-

terial strains to small human tribes, regional communities all the way up to

(inter-)cultural areas and states, is still considered as one of the 25 most com-

pelling puzzles science is facing today (Pennisi, 2005). The principle of the

survival of the fittest, i.e. natural selection and genetic drift, discriminates

individuals who incur costly behavior that is beneficial to other members of

their species. Results from lab experiments, field studies and observations in

everyday life suggest that humans exhibit a high level of cooperative behavior

even in one-shot interactions in which no reciprocal effects are present. This

pro-social behavior strictly contradicts rational choice and is in conflict with

selfish maximization and the paradigm of inclusive fitness.

One mechanism that is considered to contribute to the solution of this puzzling

behavior is the punishment of free-riders and norm-violators. This hypothesis

has been verified with the help of public goods game experiments, which was

already discussed in the previous chapters. The empirical observations and

our computational results suggest that humans show a predisposition to al-

truistically punish free-riders at their own costs even if they are only engaged

in one shot interactions. This seems to replace one unresolved conflict by

another as selfish maximization and standard evolutionary theory, at a first

sight, seem to rule out the emergence of altruistic punishment behavior. In

the previous two chapters we have demonstrated that altruistic punishment

behavior originates and emerges as a result of fairness preferences in the form

of disadvantageous inequity aversion. More importantly, an aversion against
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disadvantageous inequitable outcomes is an evolutionary stable and dominant

behavior that almost surely invades a population that initially only consists

of purely self-regarding and selfish acting agents over time.

In section 5.2 we analyze the dynamics of agents who, in the presence of pun-

ishment, face a constant heterogeneity in their contributions and show how

this affects the structure and the contribution dynamics of the population.

In the section (5.3), the simulation model presented in chapter 3 is extended

and used to quantitatively explore, test and verify different mechanisms that

sustain a level of heterogeneity in the trait pool of the population. This allows

us to reveal the conditions that are required for the evolutionary emergence of

cooperative behavior. In particular, we look into different variants of multi-

level selection and show how the interaction of between-group heterogeneity,

within-group heterogeneity and punishment accounts for the emergence of co-

operation in a competitive and resource-limited environment that is susceptible

to material self-interest.

5.2 Heterogeneity, punishment and the evolu-

tion of cooperation

In chapters 2 and 3 punishment was identified as a coordination mechanisms

that tends to homogenize a population of agents with respect to their contri-

butions. For homogeneously contributing populations, punishment becomes

inactive and the cooperation behavior of agents levels off. However, what hap-

pens if complementary evolutionary processes induce a steady level of hetero-

geneity into the groups of agents? This section provides a detailed analysis of

the population dynamics of agents who continuously face a certain level of het-

erogeneity in their groups while playing a public goods game with punishment.

The presented analysis focuses solely on the effect of the interaction between

heterogeneity and punishment and does not consider potential mechanisms

that cause and maintain heterogeneity in a population. An exploration of al-

ternative mechanisms accounting for heterogeneity in a population of agents

is presented in the last section of this chapter.

First, we consider a population of a finite size n that consists of two distinct sets

of agents: agents in set A contribute an amount of m+ ∆m
2 , while agents in set
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B contribute m− ∆m
2 . The population is assumed to have itself coordinated

around a joint level of cooperation by contributing on average m MUs to

the public good. This means that on average n
2 agents contribute m + ∆m

2

while the remaining other half of the population contributes m − ∆m
2 . In

contrast to the analytical model presented in the last section of chapter 2,

agents cannot arbitrarily adapt their contribution behavior. However, the

proportional fraction of agents in the two sets A and B can vary given that

the total number of agents in the population stays constant. Similarly to

the previous sections and chapters, agents who contribute more punish those

who contribute less. As a consequence, agents in set A punish agents in set

B proportional to their deviation ∆m and in accordance with their intrinsic

propensity to punish represented by the factor k. This linear punishment

behavior was observed in many empirical studies with subjects from western

civilizations as shown in section 2.2.3. It is assumed that the fertility of agents

is determined by their fitness, i.e. agents reproduce proportional to their

realized P&L. Over time the population may thus be dominated either by

agents of from set A or set B depending on their realized P&L levels.

In the following we denote the fraction of members in set A (B) compared to

the total number of agents in the population with Ã (B̃). The profit that an

agent in set A gains from the public goods game is defined by:

P&LA := n · Ã ·
g · ∆m

2

n
− n · B̃ ·

g · ∆m
2

n
+

g ·m− (m+
∆m

2
)− n · B̃ · k ·∆m

(5.1)

The first term on the right hand side of equation 5.1 represents the additional

P&L gained by members of set A, resulting from the fact that a fraction of Ã

contributes an amount of ∆m
2 MU more than the average group contribution

to the public good. Accordingly, the second term corresponds to the deficit

realized by members of set A due to the fact that a fraction of B̃ contributes
∆m
2 MU less than the average. The third term represents the average P&L

received in principle by each member of the population; this value is adjusted

to fit the exact P&L of agents in setA by means of the first two terms described

above. The fourth term represents the costs of contributing to the public good.
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The last term essentially reflects the costs of punishing the fraction B̃ of lower

contributing agents. The corresponding P&L of agents in set B is given by:

P&LB := n · Ã ·
g · ∆m

2

n
− n ·B ·

g · ∆m
2

n
+

g ·m− (m− ∆m

2
)− n · Ã · k · r ·∆m

(5.2)

The different terms of equation 5.2 are accordingly defined to equation 5.1,

except that the last term reflects the costs of being punished and thus it is

additionally multiplied by the punishment efficiency factor r.

The population dynamics for agents in set A can be written using the recur-

rence equation

Ã′ =
Ã · P&LA

Ã · P&LA + B̃ · P&LB

, (5.3)

where Ã′ represents the fraction of agents in set A in the next generation.

The absolute size of set A and B is defined by

size of A = n · Ã

size of B = n · B̃ = n · (1− Ã) . (5.4)

Figure 5.1 depicts the dynamics of the size of setA in a population with a total

size of n = 4 agents over 200 generations. The numbers on the curves indicate

different initializations of the propensity to punish k. The subfigures (a), (b)

and (c) correspond to different initial sizes (1,2,3) of A in the first generation

at period t = 0. Figure 5.1(b) shows that an initially “balanced” population

of size n = 4 consisting of 2 higher contributing agents in set A and 2 less

contributing agents in set B converges over time to one of the two cooperation

fixed-point regimes, i.e. either m + ∆m
2 or m − ∆m

2 . The dynamics depend

on the predefined propensity to punish: for k > 0.25 the population ends up

with A ·n = 4 whereas for k < 0.25 agent from set B end up dominating over

time.

In order to illustrate the interaction between the initial population structure

and the propensity to punish, figure 5.2 depicts a map of the population struc-
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Ã

(c) size of A = 3 at t = 0

Figure 5.1: Population of n = 4 agents playing a public goods game with
punishment with g = 1.6, r = 3 and ∆m = 0.05. Three populations have
been initialized with either one (a), two (b) or three (c) members in set A.
The numbers on the contour lines represent the corresponding propensity to
punish k.
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ture after 200 generations. The map shows the effect of the initial population

structure with respect to the fraction of agents in set A and B (x-axis) and

the level of the propensity to punish (y-axis) on the evolution of Ã and B̃.

The scale of gray indicates the number of m + ∆m
2 contributing agents after

200 generations in a population with a total size of n = 4.

(a) Number (color code) of agents in set A after 200
generations

(b) Cumulative P&L (color code) of agents in set A
over 200 generations

Figure 5.2: Development of the population structure/P&L over 200 genera-
tions as a function of the initial population structure (x-axis) and the propen-
sity to punish k (y-axis).
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We now add an additional layer into the population structure in order to allow

for heterogeneity with respect to the propensity to punish k. Therefore, set A

is divided into two additional sets denoted by P and Q. Agents in the set P

display a propensity to punish of kP and agents in Q punish with an intensity

determined by kQ. P̃ and Q̃ denote the corresponding fractions measured

relative to the size of parent-set A. The resulting population structure is

depicted schematically in figure 5.3. The individual P&L structure of agents

A

B

P

Qm

k
Qm

+
Δ

 m
/2

m
-Δ

 m
/2

k P

k

Figure 5.3: Two layer heterogeneity structure: setsA andB differ with respect
to the contribution level m. Set A is once more divided into a set P of agents
with a propensity to punish kP and a set Q with kQ.

in the resulting sets P, Q and B is given by:

P&LP := n · Ã ·
g · ∆m

2

n
− n · B̃ ·

g · ∆m
2

n
+

g ·m− (m+
∆m

2
)− n · B̃ · kP ·∆m

(5.5)

P&LQ := n · Ã ·
g · ∆m

2

n
− n · B̃ ·

g · ∆m
2

n
+

g ·m− (m+
∆m

2
)− n · B̃ · kQ ·∆m

(5.6)

P&LB := n · Ã ·
g · ∆m

2

n
− n ·B ·

g · ∆m
2

n
+ g ·m− (m− ∆m

2
)−

n · Ã ·
(
P̃ · kP · r ·∆m+ Q̃ · kQ · r ·∆m

) (5.7)
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The different terms in equations 5.5-5.6 are analogously defined as in equation

5.1. The structure of equation 5.7 corresponds to equation 5.2 except for the

last term which reflects the costs of being punished proportional to the size

of set P with the propensity to punish kP and the size of set Q with the

propensity to punish kQ.

The dynamics of the agents in set P are defined by the recurrence equation

P̃′ =
Ã · P̃ · P&LP

Ã · P̃ · P&LA + Ã · Q̃ · P&LQ

(5.8)

in which P̃′ represents the fraction of agents of in set P in the next generation.

The absolute number of agents in the sets P and Q can be obtained by

size of P = n · Ã · P̃

size of Q = n · Ã · Q̃ = n · Ã · (1− P̃) . (5.9)

Figures 5.4 - 5.6 show the structure of the 2-layered (A/P) population after

200 generations for different fixed values of the propensities to punish kP and

kQ and different intensities of heterogeneity, ∆m, in the cooperation level as

a function of the initial size of A (x-axis) and P (y-axis). The size of P has

to be less or equal to the size of its superset A. Hence, only values below the

indicated diagonal can be considered to be meaningful.

Figures 5.4-5.6 demonstrate that a more heterogenous population develops a

potential to evolve to higher levels of cooperation with time rather than a pop-

ulation with a lower variability in their contributions and in their propensity

to punish. The following three scenarios illustrate the effect of heterogeneity

either in the contributions, in the propensity to punish or in a combination of

both:

• Scenario 1 - heterogeneity in punishment: The population in figure

5.4 is quasi-homogeneous with respect to the contributions (∆m ≈ 0),

but heterogeneous in their propensity to punish, i.e. kp ≫ kq and
kP+kQ

2 = 1
4 . In this scenario the initial population structure is pre-
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(a) Size of A (color code) after 200 genera-
tions

(b) Size of P (color code) after 200 genera-
tions

(c) Cumulative P&L (color code) of agents in
set A over 200 generations

Figure 5.4: Evolution of the number of agents in sets A and P and the cu-
mulative P&L after 200 generations. The population has been initialized with
a propensity to punish of kP = 0.4 and kQ = 0.1 and a heterogeneity in the
contributions of ∆m = 0.0005. The values on the x (size of A = P ∪ Q)
and y-axis (size of P) determine the initial population structure in the first
generation. The color code indicates the population structure with respect to
size of A (a), P (b) and the cumulative P&L (c) of the population after 200
generations.
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(a) Size of A (color code) after 200 genera-
tions

(b) Size of P (color code) after 200 genera-
tions

(c) Cumulative P&L (color code) of agents in
set A over 200 generations

Figure 5.5: Evolution of the number of agents in sets A and P and the cumu-
lative P&L after 200 generations. The population has been initialized with a
propensity to punish of kP = kQ = 0.25 and a heterogeneity in the contribu-
tions of ∆m = 0.05. The values on the x (size of A = P∪Q) and y-axis (size
of P) determine the initial population structure in the first generation. The
color code indicates the population structure with respect to size of A (a), P
(b) and the cumulative P&L (c) of the population after 200 generations.
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(a) Size of A (color code) after 200 genera-
tions

(b) Size of P (color code) after 200 genera-
tions

(c) Cumulative P&L (color code) of agents in
set A over 200 generations

Figure 5.6: Evolution of the number of agents in sets A and P and the cumu-
lative P&L after 200 generations. The population has been initialized with a
propensity to punish of kP = 0.4 and kQ = 0.1 and a heterogeneity in the con-
tributions of ∆m = 0.05. The values on the x (size of A = P ∪Q) and y-axis
(size of P) determine the initial population structure in the first generation.
The color code indicates the population structure with respect to size of A (a),
P (b) and the cumulative P&L (c) of the population after 200 generations.
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served and stable across time, which can be observed in subfigures (a)

and (b) by the horizontal (a) and the vertical (b) color gradient.

• Scenario 2 - heterogeneity in cooperation: The structure depicted

in figure 5.5 corresponds to a population that shares a common and

uniform propensity to punish, i.e. kP = kQ, and, on the other hand is

characterized by heterogeneity with respect to the level of cooperation,

i.e. ∆m > 0. This results in a clear fragmentation of the population

structure after 200 generations that comes about with a tipping-point-

like characteristic at Ã(t = 0) = 0.5 (c.f. subfigure 5.5 (a)). Introducing

heterogeneity in the contributions thus induces a strong divergent dy-

namic into the evolution of the population structure. In this respect, the

initial fraction Ã of agents who deviate positively by contributing ∆m

more than the remaining agents in set B determines the evolutionary

outcome.

• Scenario 3 - heterogeneity in punishment and cooperation: The

evolution of the population structure in figure 5.6 is subject to both het-

erogeneity in the contributions and in the propensity to punish. The

co-evolution of low and high contributing agents along with an addi-

tional variability in the punishment behavior (P vs. Q) reduces the

initial minimum fraction Ã of agents required to have set A dominating

the population. However, this is only possible if the fraction of strong

punishers (P̃) is sufficiently large at t = 0. This results in the triangle

shape of the population structure after 200 generations.

We now state our first main result of this chapter:

Result 5.1: Heterogeneity both in the level of cooperation and in the propen-

sity to punish is an indispensable precondition for the evolutionary emergence

of cooperative behavior in environments which are characterized by a social

dilemma component such as the analyzed public goods game.

In the following section, we introduce and discuss different variants of heterogeneity-

preserving mechanisms and explore them numerically using the evolutionary

simulation model presented in chapter 3.
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5.3 Heterogeneity preserving mechanisms in evo-

lutionary dynamics

Under evolutionary dynamics the heterogeneity of the traits within a popu-

lation can only be maintained by one or both of the following two mecha-

nisms: genetic drift and mutations. In contrast, adaptation, selection and the

cross-over, e.g. by sexual reproduction, reduce the heterogeneity of traits in a

population across time. As argued and discussed in the previous chapters, evo-

lutionary dynamics operate not only on the biological level but also on higher

levels, e.g. in the form of the co-evolution of genes, culture and social norms.

As a consequence, we use the term “trait” as an equivalent for both biological

concepts such as the “genotype” or “genes” but also for concepts that apply to

different levels and on different scales in the hierarchy of evolutionary processes

such as an evolving cultural heritage. Starting from this perspective, we dis-

cuss and analyze different types of heterogeneity-preserving mechanisms that

have been and still are subject to a lively debate in the literature (Wade, 1978;

Wilson, 1983; Boyd and Richerson, 1990; West, Griffin, and Gardner, 2007;

Ichinose and Arita, 2008; van den Bergh and Gowdy, 2009; Leigh, 2010). All

these processes belong to the class of group or multi-level selection processes.

Evolutionary dynamics with a “multi-layered” hierarchy of selection processes

do not necessarily induce an upward or downward causation between the differ-

ent layers. Moreover, this leads to more complex and entangled interactions

with non-linear dependencies and dynamics. Multi-level selection operates

across and between all biological and organizational units ranging from the

individual genotype all the way up to groups, communities and cultural struc-

tures in populations(Bergstrom, 2002; Henrich, 2004; Bowles, 2003). If the

evolutionary dynamics on multiple scales, e.g. on the individual and on the

group level, are taken into account, an important step towards a better under-

standing of complex and nested organizational structures, co-evolutionary pro-

cesses and emergent properties is made. Better insights into these multi-scale

phenomena are gained, which ultimately contributes to unravel the puzzle of

cooperation. A comprehensive and well-structured overview about multi-level

selection and its application to social science and in particular to economics is

presented in (van den Bergh and Gowdy, 2009).
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As shown in the previous sections of this chapter, punishment is only effective

and promotes cooperation if the two opposing mechanisms - drift/mutation

vs. selection/cross-over - are balanced, i.e. if a certain level of heterogeneity

is present in the traits of a population. Multi-level selection with its various

intertwined evolution processes can add this required heterogeneity into the

traits of a population by means of multifaceted evolutionary dynamics. In

this section, we look specifically into two types of multi-level selection pro-

cesses: inter and intrademic multi-level selection. Interdemic multi-level oc-

curs among partially isolated sub-populations. Each sub-population is subject

to a locally determined selection pressure whose strength varies individually

per sub-population. The selection pressure among local sub-populations con-

tributes to the heterogeneity of the traits between the sub-populations, i.e. the

selection operates on the basis of “demographic” heterogeneity. Typical mech-

anisms of interdemic selection are dispersal processes, colonization and migra-

tion as well as founder effects (Wade, 1978, 1982; Ichinose and Arita, 2008;

Rogers and Ehrlich, 2008). In contrast, intrademic selection occurs among

sub-populations that are only isolated during some specific period(s) of their

lifetime. Sub-populations are genetically subdivided but experience a uniform

selection pressure that is determined on the population level. Heterogeneity

in the traits of the population arises due to the periodicity in the heredity

transmission of traits that occurs on a population-wide scale. The frequency

of the heredity transmission constitutes a trade-off between trait heterogene-

ity and the population heritability. Kinship structure and social interactions

are exemplary mechanisms that are characteristic for intrademic multi-level

selection (Smith, 1964; West, Pen, and Griffin, 2002; Alger, 2010; Waibel, Flo-

reano, and Keller, 2011; Mahajan, Martinez, Gutierrez, Diesendruck, Banaji,

and Santos, 2011).

Both characteristic forms of multi-level selection are explored and verified

by means of the evolutionary simulation model that was first introduced in

chapter 3. In the competitive resource-limited world of the simulation model,

agents adapt and evolve their cooperation level and their propensity to punish

in response to standard evolutionary dynamics while playing a public goods

game with punishment. If not otherwise specified, the agents’ fairness pref-

erences in the following are fixed to an aversion against disadvantageous in-
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equitable outcomes (dynamics C - see chapter 3 subsection 3.2.2), which was

identified in the previous chapters to be the predominant other-regarding strat-

egy among subjects in three lab experiments. Analogously to the simulation

runs conducted in chapter 3 the model is initialized much in the same way

as described in section 3.2.1: Each monetary unit (MU) that is contributed

to the public good returns a gain of g = 1.6 MUs back to the group. After

the agents contributed mi ≥ 0 MUs, they learn about the contributions of

the other agents and punish negative deviators according to their individual

propensity to punish ki proportional to their deviation as defined in section

3.2.1. The punishment efficiency is always fixed to a value of r = 3, i.e. for

each MU spent to punish an agent, the punished agent loses 3 MUs. In the

definition of our model, a sub-population is defined as a group of agents who

jointly contribute to one public good. The entire population thereby is com-

posed of multiple groups. Groups are indexed by j and agents are indexed by

(i, j). For example the index (4, 2) corresponds to the second agent in group

4. In total, the population consists of b groups, each of them with n members.

In the analytical model presented in chapter 2 as well as the numerical simula-

tion model in chapter 3, all agents are part of the same isolated group as each

population essentially consists only of one group. As a consequence, all agents

inherit their traits from the same local pool and interact through the same

public good. This results in fitness being defined in relative terms among the

agents. In other words: increasing the absolute fitness of agents in an isolated

group does not affect the evolutionary dynamics (Wilson, 2004). However,

if a population is composed of multiple spatial or temporary partly isolated

groups this gives rise to fitness differences between groups which are caused

by the heterogeneity in the traits of the co-evolving groups. An experiment

on the relative fitness between groups and group competition is e.g. presented

in (Burton-Chellew, Ross-Gillespie, and West, 2010).

In section 5.3.1 we investigate the effect of intrademic multi-level selection in

the presence of (altruistic) punishment on the emergence and the evolution

of cooperative behavior. In section 5.3.2 we analyze the mutual interaction

of interdemic group selection and punishment and their impact on the evo-

lutionary emergence of cooperation. In particular, we look into the effect of

migration patterns between partially isolated co-evolving groups.
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5.3.1 Variants of intrademic multilevel-selection

This section provides an analysis of the effect of intrademic multi-level selec-

tion in a population of agents who face a social dilemma in the form of a

public goods game with punishment. Intrademic multi-level selection occurs

in a population of temporary isolated sub-populations, i.e. groups. Being

characteristic for intrademic models, the selection pressure is defined based

on a global selective environment. This means that each individual in each

group faces the same intensity of selection pressure which is determined on the

population-wide level, i.e. across groups. As in the evolutionary simulation

model presented in chapter 3, selection pressure comes in the form of a fixed

consumption which is homogeneous across all groups and agents and is defined

by the population’s average total P&L:

c(t) = Max[
1

m · n
∑
j

∑
i

ŝi(t); cfix] (5.10)

ŝi(t) is defined by equation (3.4) in chapter 3.

The co-evolution of temporary isolated groups which are subject to a population-

wide selection pressure contributes to the between group heterogeneity in the

trait pool. As opposed to this, the frequency and the structure of the heredity

of traits controls the transition from between group heterogeneity to within

group heterogeneity. Ultimately, the interaction of punishment together with

the heterogeneity in a local group promotes the emergence of cooperative be-

havior as discussed in detail in section 5.2: heterogeneous groups coordinate

and evolve their cooperation depending on their propensity to punish k. For

example, if the average propensity to punish k is less than k < 0.25 (cf. section

2.3.3 and 3.3) in a group of n = 4 agents who vary in their initial contributions

mi, the group converges towards the lowest initially present individual con-

tribution min(mi). In other words, the traits of the least contributing agent

most likely spread and start to dominate in the population. The corresponding

dynamics have been illustrated in figures 5.1 and 5.2 of section 5.2.

In the following, we analyze two different heredity-mechanisms that account for

the transmission of traits among successive generations within and between

groups. In general, a population that consists of two or more groups can
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experience two different scenarios that cause an alternation of generations

with a passing on of traits to the offsprings:

• E1 individual extinction: This scenario reflects the case in which 1

up to n − 1 agents of a group with size n go extinct within one period,

i.e. at least 1 agent survives and has the potential chance to father new

offsprings by passing on her traits to the new generation2.

• E2 group extinction: This scenarios reflects the case in which all n

agents of a group go extinct within one period, i.e. there are no survivors

that could sustain the traits that were characteristic for the group and

pass them on to a successive generation.

As our model bases on constant group and population sizes, i.e. population

dynamics are not explicitly modeled, both scenarios require a replacing of the

deceased agents by a succeeding generation that inherits a set of new traits. At

this point the rate of heredity comes into play: For the individual extinction

scenario (E1) the traits of the reborn agents can either be sampled only from

the surviving part of the specific local group (low rate of heredity) or from

the trait pool of global population (high rate of heredity), i.e. across groups.

Similarly, in case of an group extinction (E2), the traits of the reborn agents

can either be sampled from the global populations (high rate of heredity) or

simply be reset to the starting conditions at the beginning of the simulation

(low rate of heredity). In the following we vary the rate of heredity to better

understand the effect of different heredity transmission mechanisms on the

evolution of cooperation. The parts printed in cursive characters reflect the

variable dimension at a time. We essentially investigate the following four

variants of heredity transmission:

• F1: local-group heredity In case of individual extinction (E1) traits of

reborn agents are sampled with probability h either from the trait pool

of the global population, i.e. across groups, or with probability 1 − h

they are sampled from the local pool of the surviving group fellows. If

2We assume a minimum number of only 1 survivor as a sufficient condition for the survival
of a group, even though sexual reproduction and cross-over requires the mating of at least
two surviving agents. Our results are robust to variations of this assumption.
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the entire group goes extinct (E2), all agents of that group are reset to

the initial state at the beginning of the simulation, i.e. mi(t) = 0 and

ki(t) = 0. If h = 0 the model is comparable to a propagule pool model

(Wade, 1978; van den Bergh and Gowdy, 2009).

• F2: local-group and population heredity In case of individual ex-

tinction (E1) this variant is equivalent to F1, however it differs for the

case of group extinction (E2): Here, traits of reborn agents are always

sampled from the trait pool of the global population, i.e. sampled across

all groups. For h = 0 this scenario is similar to the class of “migrant

pool” models (Wade, 1978; Ichinose and Arita, 2008; van den Bergh

and Gowdy, 2009). One well known model of the migrant pool class

is the haystack model introduced by Maynard Smith (Smith, 1964).

The concept of “migrant-pool” does not mean that agents migrate be-

tween groups. Moreover surviving groups send out emigrants who form

a “migrant-pool”. The members of the migrant pool subsequently re-

colonize the locations of groups that became extinct.

• F3: local-group and population heredity In case of individual ex-

tinction (E1), dead agents are always replaced by agents whose traits

are sampled only from the pool of the local group. For the case that

all agents of one group die at once (group extinction - E2), the traits of

the reborn group are sampled with probability h from the trait pool of

the global population, i.e. are sampled across groups. With probability

1 − h groups stay isolated and the traits of the successive generation is

reset to the initial state mi(t) = 0) and ki(t) = 0.

• F4: local group and population heredity In this variant the rate

of heredity is varied for both scenarios E1 and E2 simultaneously. This

means that the traits of reborn agents are sampled with probability h

from the global population, i.e. across groups, independently of the

occurrence of either scenario E1 or E2. With probability 1−h the traits

of reborn agents are sampled from the pool of survivors in the local group

- in case of an individual extinction (E1) - or reset to the initial state

(ki(t) = 0,mi(t) = 0) - in case of group extinction (E2). If h = 1 the

heredity mechanism is equivalent to a kinship-like structure (Lehmann,
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Keller, West, and Roze, 2007; Leigh, 2010; Wade, 1978; van den Bergh

and Gowdy, 2009).

As mentioned above, we modify the evolutionary simulation model introduced

in chapter 3 to analyze the effect of changing rates and structures of trait

transmission for both scenarios E1 and E2. Therefore the model is set up

with a population of agents consisting of b = 8 groups each of them with

n = 4 members. Each group plays a public goods game with punishment

separately. The per capita gain in each group corresponds to g
n = 0.4 MUs.

Clearly this corresponds to a social dilemma situation in which defecting, i.e.

non-contributing with mi = 0, pays out. The population is initialized with

all ki(0) = 0 and mi(0) = 0 at the beginning of the simulation. As stated

above the adaptation dynamics has been fixed to disadvantageous inequity

aversion (cf. dynamics C in section 3.2.2) for all agents in all groups. The

replicator dynamics, i.e. selection, cross-over and mutation occur analogously

to the rules defined in 3.2.3, however we now vary the rate and the structure

of heredity transmission both for the case of group extinction (E2) and for the

individual extinction (E1) according to the 4 variants F1-F4 presented above.

Figure 5.7 shows the resulting average level of cooperation m (left plot) and

the propensity to punish k (right plot) in the groups after 1 million simulation

periods as a function of the rate of heredity for the 4 variants F1-F4. To obtain

the curves we run 256 system realization with a fixed probability value from

the set of 100 values in [0, 0.01, 0.02, ..., 1]. For isolated groups (propagule like

model - F1 with h = 0) the population-wide defined selection pressure (cf.

equation 5.10) remains too strong to allow for “speciation” and the emergence

of heterogeneity among groups in the population. Instead, one group starts to

dominate and contains all of the others. Once a group reached this point, it

does not require to further improve its level of cooperation and thusm remains

relatively weak for all h ∈ [0, 1] in this variant. Variants F2 and F3 complement

each other and show the effect of the different heredity rates and structures

on the evolution of cooperation and punishment. In case that h = 0 in F2 and

h = 1 in F3 both variants are equivalent and correspond to the migration pool

model. For all other values of 0 < h < 1 the plots show nicely the transition

between the two marginal scenarios, i.e. the migrant-pool and the isolated

group scenario (propagule pool). The sensitivity of the level of cooperation
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Figure 5.7: Average group contribution m (upper plot) and propensity to
punish (lower plot) after 1 million simulation periods as a function of the rate
of heredity transmission for all 4 variants F1-F4 described above. The curves
are computed based on 256 system realizations for each probability h between
[0, 1] fixed for increments of 0.01.
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with respect to the rate of heredity rests on the fact that the transmission

of traits between groups transforms the evolved between-group heterogeneity

into within-group heterogeneity. Ultimately, the evolved propensity to punish

in combination with the induced within-group heterogeneity gives rise to the

emergence of cooperation via the mechanism presented in section 5.2.

Finally, F4 reflects a mixture of the variants F2 and F3 and reveals the exis-

tence of an optimal rate and structure of heredity in an evolutionary popula-

tion that mixes approximately in 30% of the cases on a population-wide scale

and in 70% of the cases on a local-group-scale. These results contribute and

provide further food for thoughts to the existing empirical work and discus-

sions on co-residential patterns, kinship-structure and the level of cooperation

in hunter-gatherer societies and among humans (Hill, Walker, Bozicevic, Eder,

Headland, Hewlett, Hurtado, Marlowe, Wiessner, and Wood, 2011).

We conclude with the second main result of this chapter:

Result 5.2: The evolution of cooperation in intrademic multi-level selection

models is controlled by the rate and structure of the active heredity mech-

anisms. This mechanisms must provide (i) a sufficient “breeding-ground” for

the emergence of inter-group heterogeneity and (ii) must transform inter-group

heterogeneity into within-group heterogeneity in an appropriated ratio so that

punishment stays active and promotes the emergence of cooperation.

In the next section we turn to mechanisms of interdemic multi-level selection

and explore them using our evolutionary simulation model.

5.3.2 Variants of interdemic multi-level selection

This section analyzes mechanisms of interdemic multi-level selection and their

effect on the evolution of cooperative behavior in a social dilemma environ-

ment. Interdemic multi-level selection is characterized by a population that

consists of isolated groups which are exposed to individually varying intensities

of selection pressures. We modify the evolutionary simulation model presented

in chapter 3 to include variants of interdemic multi-level selection. In doing so,

we specifically look into the effect that the migration of agents between mul-

tiple isolated groups causes on the emergence of cooperative behavior (Wade,
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1982). Here, “migration” corresponds to a switching of agents between groups

in the population, but could also stand for any kind of (social) interaction

among otherwise distinct and isolated groups, such as the transmission and

adaptation of specific behaviors, cultural norms or - on a higher scale - even

the implementation of laws. Migration and group-exchange patterns have also

been manifested among ancient hunter-gatherer societies (Hill et al., 2011).

Similar to the rate of heredity and its structure (local vs. global), migration

transforms between-group heterogeneity into within group heterogeneity. In

combination with the opportunity to punish, this gives rise to the emergence of

cooperative behavior as shown in section 5.2. In general, there exist two basic

variants of migration patterns: targeted migration, in the form of an assorted

switching of agents as e.g. presented in (Enquist, 1993; Helbing and Yu, 2009;

Aktipis, 2011), or purely random switching. Targeted migration occurs e.g.

if humans actively choose the social environment they want to live in, e.g. if

they group together along their ethnicities. In contrast, the “island-model”

introduced by Wright (Wright, 1943) represents a classical random switching

model. In the analysis of our model we focus on the random switching variant

of models, as targeted migration models base on ex ante assumptions that

inherently induce a trend towards the desired outcome. E.g. if cooperators

prefer to be accompanied by other cooperators this already assumes (i) the

existence of cooperators and (ii) induces a population structure that in most

cases implicitly favors cooperation.

For that reason, we implement a simple “random group-migration” mecha-

nism in our evolutionary simulation model as follows: With probability e two

randomly chosen agents, each of them from a different group, are exchanged

between the two groups. As our model assumes a constant group size and does

not consider population dynamics, we always exchange two agents mutually.

We run this modified version of our model with 8 groups and 4 members per

group over 1 million time periods with fixed probabilities e ∈ [0, 0.02] for each

increment of 0.0005. Again the per capita return for each of the 8 simultane-

ously played public goods games is g
n = 0.4. At the beginning of the simu-

lation, the population is initialized with only non-punishing non-cooperators,

i.e. ki(0) = 0 and mi(0) = 0. The resulting average level of cooperation in
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the population after 1 million simulation steps, i.e. m(t = 1 · 106), and the

propensity to punish, k(t = 1 · 106), is shown in figure 5.8.

Figure 5.8 reveals that for a low probability of migration, i.e a low frequency

of group switching, a sufficiently large propensity to punish, i.e. k > k+,

evolves and cooperation emerges in all groups of the population by the fol-

lowing mechanism: Over a period ∆t ≫ 0 the isolated group A evolves to a

slightly higher level of cooperation when compared to a second isolated group

B, i.e. between-group heterogeneity emerges such that mA > mB. This is

possible due to the interdemic character of the model, i.e. by the isolation

of the groups and the locally determined selection pressures. If now an agent

(B, i) from group B is exchanged with an agent (A, j), agent (B, i) is forced by

the punishment of the agents in group A to increase her cooperation until the

group becomes homogeneous again (c.f. section 5.2) or agent (B, i) dies and is

replaced by a newborn whose traits are sampled locally from the pool of group

A. In reverse, agent (A, j) can cause an increase of the cooperation in group

B before either the group is homogeneous (c.f. section 5.2) or agent (A, j)

dies and is replaced by a new agent whose traits are sample from the local

pool of group B. However, if the frequency of switching between groups be-

comes too large, i.e. the probability 0 ≪ e ≤ 1, the population cannot develop

a sufficiently large between-group heterogeneity, as the traits are constantly

synchronized between groups. In other words: high rates of migration prevent

the emergence of heterogeneity between groups. Another way to look at this

mechanism is the Parrondo or brownian-ratchet effect (Harmer and Abbott,

2002). The Parrondo effect describes situations in which losing strategies or

deleterious effects can combine to win. Here, the random behavior is rooted

in the exchange between groups and the asymmetry is brought in by the pun-

ishment rule. The interaction between different rates of migration and the

effectiveness of multi-level selection has been addressed and discussed in the

literature e.g. in (Wade, 1982; Ichinose and Arita, 2008).

We now extend and test the interdemic model with random group migration by

combining it with the 4 different heredity mechanisms (F1-F4) introduced in

section 5.3.1. We analyze this combination of a interdemic-intrademic model to

better understand the required conditions that render the evolutionary emer-

gence of cooperative behavior possible. Therefore, we run the model with
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Figure 5.8: Average group contribution m(t) (upper plot) and propensity to
punish k(t) (lower plot) after a transient period of 1 million simulation periods
as a function of the migration probability e. The values have been calculated
based on 256 system realizations for 40 uniformly distributed sample values
in the range [0 ≥ e ≥ 0.02].
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different migration probabilities initialized in the range e ∈ [0, 0.02] and, in

parallel, set a specific rate of heredity from h ∈ [0, 1] for each of the 4 different

variants of heredity transmission F1,F2,F3 and F4. In this way, we obtain the

4 figures 5.9-5.12 that show the smoothed3 average group contribution (left

plot) and the propensity to punish (right plot) after 1 million simulation peri-

ods as a function of the migration rate e and the rate of heredity transmission

h.

The figures 5.9-5.12 indicate and confirm that a population consisting out of

b = 8 groups, each with n = 4 members, evolves to higher levels of cooperation

and develops an optimal propensity to punish (c.f. chapters 2 and 3) only for

very low migration rates. Furthermore, a transmission of traits across groups

in case of individual extinction (E1) (c.f. section 5.3.1) must be absent. This

can be seen by the definite peaks around h = 0 and 0 < e ∼ 0 in the fig-

ures 5.9, 5.10 and 5.12. In contrast, figure 5.11 reveals that in case of group

extinction (E2), the rate and the structure of the heredity transmission on a

population-wide scale (F3) still allows for the emergence of cooperation. This

result is plausible as in interdemic multi-level selection models the selection

pressure is determined individually for each group and thus complete groups

go less frequently extinct compared to the inherent competition among groups

in intrademic models with its globally-defined selection pressure. These find-

ings are in line with the previously demonstrated argument that migration

and the heredity transmission of traits (i) need to allow for the emergence of

inter-group heterogeneity and (ii) simultaneously must transform inter-group

heterogeneity into within-group heterogeneity. Only if this condition is satis-

fied the feedback provided by punishment can become effective and cause the

emergence of cooperative behavior even in social dilemmas (c.f. section 5.2).

3We apply the gaussian kernel method presented in (Garcia, 2010) to smooth the surface
plot.
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Figure 5.9: Smoothed average group cooperation (upper plot) and propensity
to punish (lower plot) after a transient period of 1 million simulation periods
as a function of the group exchange probability e ∈ [0, 0.02] and the rate of
heredity h ∈ [0, 1] for the transmission mechanism F1 described in section
5.3.1.
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Figure 5.10: Average group cooperation (upper plot) and propensity to punish
(lower plot) after a transient period of 1 million simulation periods as a func-
tion of the group exchange probability e ∈ [0, 0.02] and the rate of heredity
h ∈ [0, 1] for the transmission mechanism F2 described in section 5.3.1.
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Figure 5.11: Average group cooperation (upper plot) and propensity to punish
(lower plot) after a transient period of 1 million simulation periods as a func-
tion of the group exchange probability e ∈ [0, 0.02] and the rate of heredity
h ∈ [0, 1] for the transmission mechanism F3 described in section 5.3.1.
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Figure 5.12: Average group cooperation (upper plot) and propensity to punish
(lower plot) after a transient period of 1 million simulation periods as a func-
tion of the group exchange probability e ∈ [0, 0.02] and the rate of heredity
h ∈ [0, 1] for the transmission mechanism F4 described in section 5.3.1.
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We thus conclude with the third main result of this chapter:

Result 5.3: Migration in interdemic group models promotes the emergence

of cooperative behavior by transforming inter-group heterogeneity into within-

group heterogeneity which in combination with optimal punishment finally re-

sults in an increase of cooperative behavior. The domain of qualifying rates of

migration is narrow, i.e. the mechanism must provide enough time to allow

co-evolving groups to become sufficiently distinct.

5.4 Conclusion

This chapter studied the emergence of cooperation among interacting agents

who face a public goods problem with punishment opportunity. In the first

part of the chapter, we analyzed and discussed the interplay between hetero-

geneity in the agents’ traits and the feedback provided by punishment and how

it affects the long-term evolution of cooperative behavior in the population.

This revealed that both heterogeneity in the agents’ contributions mi and in

the propensity to punish ki is beneficial for the emergence of cooperation.

Thus, both mechanisms can be considered to play a key role when trying to

understand the high levels of cooperation observed in social dilemma situations

such as the analyzed public goods game. In the second part of this chapter,

we analyzed different mechanisms that are known for generating heterogeneity

in the trait pool of an agent population. Specifically, we looked into different

variants of multi-level selection in the form of inter and intrademic group se-

lection. Our findings showed that both variants are able to promote sufficient

levels of between-group heterogeneity and to transform it at an adequate rate

into within-group heterogeneity. The heterogeneity at different scales in the

population in combination with the effect of punishment provides a conclusive

explanation for the puzzle of cooperation.





6. Conclusion and Outlook

This thesis investigated the co-evolution of fairness preferences, altruistic pun-

ishment and cooperation in a population of agents who interact within the

framework of a public goods problem. The ultimate goal of the thesis was

to explain the high level of cooperation that can be observed among humans,

even though this is in contradiction with many behavioral theories such as

the rational actor model and the principle of the “survival of the fittest”. We

approached this puzzle of cooperation from a transdisciplinary perspective

bringing together ideas and methods from evolutionary biology, evolutionary

psychology, sociology, behavioral economics and complex system science. This

resulted in the development of two quantitative models in which agents play a

public goods game with punishment: The first model represented an analytical

framework that extended the expected utility approach by adding evolution-

ary dynamics to the behavior of the agents. To ensure the mathematical

solvability of the n-person interactions, we had to make simplifying assump-

tions about the heterogeneity in the population structure. The second model

mitigated the assumptions made in the first model by analyzing the n-person

interaction of the agents using a numerical simulation approach. The results

of both models were compared and verified using data from three previously

conducted laboratory experiments on a public goods game with punishment.

By means of our models and the empirical data we were able to identify and

to verify two important patterns of prosocial behavior that promote the emer-
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gence of cooperation: First, natural selection and evolutionary dynamics cause

the emergence of fairness preferences in a population of agents in the form of

an aversion against disadvantageous inequitable outcomes. Second, an aver-

sion against outcomes that are unfavorable for the own fitness is sufficient to

explain the phenomenon of altruistic punishment: Agents who adapt their

behavior to avoid situations in which the behavior of others plays to their

disadvantage are more likely to survive. This evolutionary drift gives rise to

the emergence of (altruistic) punishment behavior by means of the following

mechanism: punishing unfair behaving group fellows transforms the social

dilemma of the public goods problem into a coordination problem and thus

allows prosocial agents to reduce and compensate the fitness advantage that is

usually gained by free-riders. In the third part of this thesis, we analyzed the

empirically observed cooperation behavior and the associated behavioral dy-

namics of subjects from three public goods experiments with punishment. We

presented an alternative methodology to classify subjects along their intrinsic

preferences either to cooperate or to defect based on the observed punishment

reactions and complemented the findings presented in previous studies (Fis-

chbacher, 2001; Houser and Kurzban, 2003; Bardsley and Moffatt, 2007; Her-

rmann and Thoeni, 2009; Rustagi et al., 2010). Furthermore, we verified that

the opportunity to punish indeed induces a coordination dynamic that over

time leads to a homogeneous behavior within groups. In the last part of this

thesis we analyzed the effect of punishment in a public goods problem setting

on the evolutionary dynamics of a population of agents who display a constant

heterogeneity in their cooperation behavior. This confirmed that agents co-

ordinate their behavior with time along the level of cooperation either of the

least or the highest contributing agent in the group, depending on the inten-

sity of the present propensity to punishment. Subsequently, we extended and

modified our numerical simulation model to include mechanisms that main-

tain heterogeneity in the population of agents. In particular, we looked into

the co-evolutionary dynamics of multiple groups of agents that were subject

to different forms of multi-level selection. This ultimately allowed us to re-

veal how cooperation can be promoted in a competitive and resource-limited

environment that is subject to material self-interest: the interplay of a suffi-

ciently strong propensity to punish and the constant presence of within-group
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heterogeneity has been identified to be the driving force behind the emergence

of cooperative behavior. Even though punishment tends to harmonize the

behavior of agents in a group, within-group heterogeneity can be sustained

by the interplay of the following two mechanism: the co-evolution of multiple

groups gives rise to the emergence of between group heterogeneity. The differ-

ent forms of multi-level selection transform the between-group heterogeneity

into within-group heterogeneity. Figure 6.1 illustrates the identified processes

schematically. In the following we comment on our results and modeling as-

sumption and highlight potentially interesting areas for future research.

We motivated that many decision settings can be represented as a public goods

problem. Thus, we focused on a public goods game with punishment oppor-

tunity in both models of this thesis. However, other social dilemma settings

and variants of the public goods problem, e.g. by providing the option to par-

evolution of fairness preferences:

disadvantageous inequity aversion

evolution of altruistic punishment

evolution of cooperation

multi-level selection:

transformation of between-group 

heterogeneity to within-group 

heterogeneity

coevolution of multiple groups

emergence of between-group heterogeneity

within-group heterogeneity & punishment

within groups evolution between  groups evolution

Figure 6.1: Schematic view of the chain of reasoning within our approach to
explain the evolution of cooperation.
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ticipate only voluntarily, have led to interesting results (Hauert et al., 2002;

Brandt et al., 2006; Hauert et al., 2008). An analysis of these variants within

our framework could lead to additional insights into the puzzle of pro-sociality.

Furthermore, our two models base on the assumption that individuals on aver-

age only punish group fellows who contributed less than the own contribution.

Even though the empirical data in figure 2.1 strongly support this hypothesis,

they also show that a fraction of subjects from the three experiments displayed

spiteful punishment behavior. In other words, they punished other individu-

als although they contributed more than themselves. This behavioral pattern

is not considered by our models and could be added in a future extensions.

Another extension to our model could be the co-evolution of more than two

different other-regarding adaptation dynamics (A-F) (c.f. section 3.2.2) at the

same time. This would allow to analyze the evolution of a more realistic popu-

lation structures that consist of agents with various heterogeneous preferences

of inequity and inequality aversion. Furthermore, the results presented in the

last chapter only base on a few known mechanisms that generate heterogeneity

within the population. Beside these multi-level selection mechanisms, other

heterogeneity preserving and generating processes should be analyzed. For

instance, introducing the possibility to allow for strategic short-term behavior

among the agents could lead to different interesting evolutionary dynamics

within the population.

In conclusion, we believe that the combination of empirical research and simu-

lation models can provide deeper insights into the evolutionary roots of human

behavior. E.g. more realistic setups in which agents play several games simul-

taneously so as to mimic more realistic situations may provide further insights

into the nature of our prosocial behavior. With regard to the importance of

understanding social peer-interactions and fostering prosocial behavior, our

approach provides a flexible and powerful methodology to answer many re-

maining research questions. For instance, analyzing the influence of other

feedback mechanisms beside the peer punishment structure implemented in

our models or looking into different group structures and varying selection

pressures, may lead to new insights and tools that could help to stabilize so-

cietal systems in an ever faster changing world. The recent developments of

social and political change in North Africa and the Middle East, but also the
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riots in the United Kingdom revealed the power of the people’s perception

of “fairness” and “unfairness”. This highlights the importance of being able

to design and implement specific social incentive mechanisms and to better

understand the central role of fairness and feedback mechanisms, such as al-

truistic punishment, for the cooperation in social groups, communities and

societies.
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