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Abstract

This thesis is a collection of six self-contained research papers of which three

are already published in peer-reviewed journals, two are in the process of being published

and one working paper. The major focus of the present thesis consists in creating novel

statistical metrics for the ongoing diagnostic of financial bubbles across multiple scales

and to reduce the uncertainty of inferences about a future crash date using sophisticated

Likelihood estimators and Information Geometry.

Chapter 1 is an introductory chapter and provides a literature review about finan-

cial bubbles. It also defines the Log-Periodic Power-Law Singularity (LPPLS) model [56]

and enumerates some of its’ bottlenecks whose the present thesis propose a solution.

In Chapter 2 we ask the following question: it is easier to spot the birth or the

burst of financial bubbles? We argue that it is the lack of knowledge regarding when

bubbles will burst that allows them to grow even in the presence of rational agents. Using

the LPPLS model, we provide a methodology for quantifying the uncertainty of each one of

these parameters (t1 := birth of the bubble and tc := burst) based on the eigenvalues and

eigenvectors of the Fisher Information matrix approximated at the best-fit parameters.

Chapter 3 provies a novel statistical metric which allows one to compare goodness

of fit of a model using unbalanced sample sizes. When applied to the LPPLS model cost

function, the methodology allows one to automatise the process of diagnosing the beginning

of financial bubbles without requiring further exogenous information.

Given the occurrence of bubbles across multiple time-scales, Chapter 4 provides a

novel multi-scale bubble-diagnostic technology which allows one to automatically perform
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an ongoing assessment of bubbles maturing across the short, medium and long-term scales.

Chapter 5 focuses on diminishing the uncertainty surrounding the prediction of

financial bubbles’ burst. Based on eigenvectors and eigenvalues of the Fisher Information

Matrix, we sequentially calibrate the LPPLS model parameters using the Modified Profile

Likelihood estimator. Using the sloppiest parameter tc as the focal parameter, the proposed

methodology drastically reduces estimation uncertainty of t̂c, specially on small samples and

allows one to construct robust confidence intervals around parameter estimates.

Chapter 6 questions if the findings of the previous Chapter can be extended to

different classes of models. Using a simple GARCH(p,q) model, we make use of a number of

Monte Carlo simulation studies in order to show that calibrating models sequentially based

on the eigenvalue hierarchy structure of the Fisher Information Matrix enhances parametric

estimation precision and reduce variance. Our results show that an order of 8 reduction on

estimation uncertainty can be obtained specially for small sample-sizes (N≤200).

Finally, Chapter 7 reports a successful ongoing diagnosis and post-mortem analysis

of the SSEC 2015 bubble made by the Financial Crises Observatory (FCO) while Chapter

8 concludes.
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Abstrakt

Diese These ist eine Sammlung von sechs eigenständigen Forschungsarbeiten, von

denen drei bereits in Fachzeitschriften veröffentlicht werden, zwei sind in den Prozess

der Veröffentlichung und ein Arbeitspapier. Der Schwerpunkt der vorliegenden Arbeit

besteht darin, neue statistische Metriken für die laufende Diagnostik von finanziellen Blasen

über mehrere Skalen zu schaffen und die Ungewissheit der Schlussfolgerungen über einen

zukünftigen Crash-Datum mit anspruchsvollen Likelihood-Schätzern und Information Ge-

ometry zu reduzieren.

Kapitel 1 ist ein einleitendes Kapitel und liefert eine Literaturrecherche über fi-

nanzielle Blasen. Es definiert auch das Log-Periodische Power-Law Singularity (LPPLS)

Modell [56] und zählt einige seiner Engpässe, deren die vorliegende Arbeit eine Lösung

vorschlägt.

In Kapitel 2 stellen wir die folgende Frage: Es ist einfacher, die Geburt oder das

Platzen von finanziellen Blasen zu erkennen? Wir argumentieren, dass es der Mangel an

Wissen darüber ist, wann Blasen platzen werden, die es ihnen erlauben, auch in Gegenwart

von rationalen Agenten zu wachsen. Mit dem LPPLS-Modell stellen wir eine Methodik zur

Quantifizierung der Unsicherheit eines jeden dieser Parameter (t1 := Geburt der Blase und

tc := Burst) auf der Grundlage der Eigenwerte und Eigenvektoren der Fisher Information

Matrix an Die Best-Fit-Parameter.

Kapitel 3 beweist eine neuartige statistische Metrik, die es erlaubt, die Güte der

Passform eines Modells mit unausgewogenen Stichprobengrössen zu vergleichen. Bei der

Anwendung auf die LPPLS-Modellkostenfunktion erlaubt die Methodik, den Prozess der
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Diagnose des Beginns von Finanzblasen zu automatisieren, ohne weitere exogene Informa-

tionen zu erfordern.

Angesichts des Auftretens von Blasen über mehrere Zeitskalen bietet Chapter 4

eine neuartige, mehrstufige Blasendiagnostik-Technologie, die es ermöglicht, automatisch

eine laufende Bewertung von Blasen durchzuführen, die kurz-, mittel- und langfristig fällig

sind Waage.

Kapitel 5 konzentriert sich auf die Verringerung der Unsicherheit um die Vorher-

sage der finanziellen Blasen Burst. Basierend auf Eigenvektoren und Eigenwerten der Fisher

Information Matrix kalibrieren wir sequentiell die LPPLS-Modellparameter unter Verwen-

dung des Modified Profile Likelihood Schätzers. Mit dem schlimmsten Parameter tc als

focal-Parameter verringert die vorgeschlagene Methodik drastisch die Schätzunsicherheit

von t̂c, speziell auf kleine Samples und erlaubt es, robuste Konfidenzintervalle um Parame-

terschtzungen zu konstruieren.

Kapitel 6 Fragen, wenn die Ergebnisse des vorherigen Kapitels auf verschiedene

Klassen von Modellen erweitert werden können. Mit einem einfachen GARCH (p, q) Modell

nutzen wir eine Reihe von Monte-Carlo Simulationsstudien, um zu zeigen, dass die auf der

Eigenwert-Hierarchiestruktur der Fisher Information Matrix sequentiell basierenden Kalib-

riermodelle die parametrische Schätzprzision erhöhen und die Varianz reduzieren. Unsere

Ergebnisse zeigen, dass eine Ordnung von 8 Reduktion auf Schätzunsicherheit speziell für

kleine Stichprobengrössen (N ≤ 200) erhalten werden kann.

Schliesslich berichtet Chapter 7 eine erfolgreiche laufende Diagnose und Post-

mortem-Analyse der SSEC 2015 Blase, die von der Financial Crises Observatory (FCO)

gemacht wird, während Chapter 8 abschliesst.
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zürich was by far one the most incredible experiences of my life. The amount of exchanged

information with fellow researchers, the new ideas and the fast pace that discovery takes

place are incredible. I have to thank many people whose help was extremely precious during

these three years.

First of all, I must thank Didier Sornette for everything; for believing in me and

for being there for me both in science and in life. Not too many people have the chance to

work with their idols; well, I did and I am extremely thankful for that chance. Your thirst

to live is something that never ceases to amaze me. Moreover, thank you for always making

sure that we were healthy and fit and for being this inexhaustible source of inspiration and

wisdom.

Another person who contributed plenty for my formation and for this thesis is

Vladimir Filimonov. Thank you for teaching me how to proper code in Python, how to do

statistics and for being this outstanding friend who is always eager to help and to provide

valuable advice.

I must also thank Professors Eraldo Sérgio Barbosa da Silva and Guilherme Moura

for their support throughout the M.Sc. program at the Federal University of Santa Catarina

and for sparkling the flame of curiosity in me which led me to pursue the Ph.D degree outside

of Mainstream Economics. Thank you very much.

It wouldn’t be fair not giving thanks to all my friends and colleagues from the

Chair of Entrepreneurial Risks who definitely made my life and work way more pleasant;

Isabella Bieri, Jan C. Gerlach, Diego Ardilla, Zhuli He, Zalan Forro, Qunzhi Zhang, Dimitry

Chernov, Qun Zhang, Dorsa Sanadgol, Yavor Kramer, Tobias Huber, Michael Schatz, Lucas

Fievet, Ahmed Ahmed, Tatyana Kovalenko, Richard Senner, Rebecca Westphal, Ke Wu and

Spencer Wheatley.

xi



Acknowledgments xii

I also wish to thank my family for the amazing support and for believing in my

dreams. I would not be where I am today were it not for you. Thank you Antonio, Marlene,

Gabriel and Ana.

Last but not least, I wish to thank Prof. Thorsten Hens for accepting to be my

co-referee and Prof. Antoine Bommier for being the president of the thesis committee.



In loving memory of my brother, Gabriel Demos.

Donec iterum conveniant.

xiii



Chapter 1

Introduction and summary

1.1 Introduction

“The history of financial markets has been dotted with episodes of bubbles, during

which market values of assets vastly exceeded reasonable assessments of their fundamental

value.” [125]. Defining financial bubbles or understanding why they occur, persist and when

they shall burst it is by no means a straightforward task. Besides problems with the defini-

tion of the true fundamental value of a security [48], not all bubbles are the same [36]. There

are those fuelled by low interest rates (i.e. Economic Policy driven [76]), agents optimism

of ever growing prices (Behavioural driven [68]), technological breakthroughs (Innovation

driven [95]) among others.

Due to differences in the underlying generator process, bubbles tend occur over

different time-scales. As the reader shall see on Chapter 4, one of our research findings

suggests that the magnitude of crashes suffered by bubbly securities are a direct function

of the time-scale that they have been inflating. For example, the low interest rate environ-

ment which started in the late 1990’s with the approval of the Gramm-Leach-Bliley Act.

and enhanced post 2001/09/11 terrorist attacks on U.S. territory, culminated in the 2008

1
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liquidity crisis; a long-term bubble maturing throughout the 2000’s. Meanwhile, the cryp-

tocurrency Bitcoin (BTC) characterised by its wild fluctuations and lack of institutional

coordination in terms of policies, suffered from a number of bubbles due to herding and

short-term speculative behaviour of agents [6, 43].

Why do bubbles start and why they persist are subjects of much controversy

[103, 125]. I quote Mr. Graham [48] on the problem of defining fundamental value: “We

must recognise, however, that intrinsic value is an elusive concept. In general terms it is

understood to be that value which is justified by the facts, e.g., the assets, earnings, dividends,

definite prospects, as distinct, let us say, from market quotations established by artificial

manipulation or distorted by psychological excesses. But it is a great mistake to imagine

that intrinsic value is as definite and as determinable as is the market price”. According to

the author, the inadequacy or incorrectness of the data, uncertainties regarding the future,

and irrational behaviour of the market are major obstacles to the success of security analysis.

Indeed, the task of correctly pricing the fundamental value of a given firm or asset involves

much uncertainty, due to inherent sensitivity of the method of discounting future dividends

or earnings through time [49].

Neo-Classical Economic stresses that prices should reflect all available information

at a given time [87] and consequently any mispricing should be promptly arbitraged by

market makers. In reality, many anomalies seem to persist, the bubble phenomenon being

arguably the prominent one. In fact, financial bubbles were shown to be persistent even

in the presence of rational expectation agents [18]. The behavorial feedback-loop theory

for example, stress that higher present observable prices leads to higher expected price

appreciation [10, 94]. This resembles the resale option theory [50] where agents are willing

to pay more than their own expectation of the asset fundamental value because they expect

to re-sell the asset in the future to a more optimistic agent, for a higher price. This argument
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was explored in a more quantitative way by [54].

In short, Neo-Classical Economic theory is based on the assumptions of rationality

of economic agents and of their homogeneous beliefs, or equivalently that their aggregate

behaviours can be represented by a representative agent embodying their effective collective

preferences. There is growing evidence that equilibrium models and the efficient market

hypothesis (EMH) cannot provide a fully reliable framework for explaining the stylized

facts of price formation [34] and alternative behavioural theories are being proposed [72]

We believe that a complex systems approach to research is crucial to capture the inter-

dependent and out-of-equilibrium nature of financial markets, whose total size amounts to

at least 300% of the world GDP and of the cumulative wealth of nations [103].

In this thesis, we make use of cutting-edge technology and allow data to do the

talk when it comes to explaining bubbles and crashes. We rely on tools and models from

statistical-physics and provide an exhaustive analysis of this extreme phenomena (using both

synthetic and real-world time-series over multiple scales, markets and securities) within a

complex systems framework where financial markets are viewed as an adaptive dynamical

system [110]. Our major goal here is not only to understand why bubbles occur and provide

confidence intervals about when a change of regime will occur but rather to create novel

data-driven techniques for diagnosing in real-time the growing of financial bubbles which

allows one to ad-hoc reach conclusions and make inferences about the future trajectory of

the system with high probability. The importance of such metrics cannot be stressed enough

since their use by governments and regulatory agencies have the power to save countless

jobs and to alleviate both recession and depression periods or even avoid them completely.

The goals and subject matter of the seven parts are sufficiently different to merit

individual introductions and summaries, which now follow without further ado.

• Chapter 2: Birth or Burst of Financial Bubbles: which one is easier to di-
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agnose? Within a Rational Expectations framework of [18], there is a view proposed

by [1] that financial bubbles persist due the lack of knowledge of agents about their

beginning rather than burst date. Rather than the beginning of bubbles, Chapter 1

argues that it is their ends that are devilishly difficult to forecast with any useful

accuracy. The contribution of this Chapter is to propose a methodology to quantify

these intuitions that is based on a series of works from Professor James Sethna and

his group [74]. We make use of the LPPLS model in order to diagnose bubble regimes

and endogenize the bubble starting date (i.e. t1) thus allowing us to directly compare

the level of indeterminacy of t1 and the end of bubbles (i.e. tc). Results on both

synthetic and 8 real world time-series provide evidence that is the lack of certainty

about the crash date rather than the beginning of bubbles, that allows bubbles to

persist even when expectations are rational.

• Chapter 3: Lagrange regularisation approach to compare nested data sets

and determine objectively financial bubbles’ inceptions. Inspired by the

question of identifying the start time τ of financial bubbles, we address the calibration

of time series in which the inception of the latest regime of interest is unknown. By

taking into account the tendency of a given model to overfit data, we introduce the

Lagrange regularisation of the normalised sum of the squared residuals, χ2
np(Φ), to

endogenously detect the optimal fitting window size := w∗ ∈ [τ : t̄2] that should be

used for calibration purposes for a fixed pseudo present time t̄2. The performance

of the Lagrange regularisation of χ2
np(Φ) defined as χ2

λ(Φ) is exemplified on a simple

Linear Regression problem with a change point and compared against the Residual

Sum of Squares (RSS) := χ2(Φ) and RSS/(N-p):= χ2
np(Φ), where N is the sample size

and p is the number of degrees of freedom. Applied to synthetic models of financial

bubbles with a well-defined transition regime and to a number of financial time series
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(US S&P500, Brazil IBovespa and China SSEC Indices), the Lagrange regularisation

of χ2
λ(Φ) is found to provide well-defined reasonable determinations of the starting

times for major bubbles such as the bubbles ending with the 1987 Black-Monday, the

2008 Sub-prime crisis and minor speculative bubbles on other Indexes, without any

further exogenous information. It thus allows one to endogenise the determination of

the beginning time of bubbles, a problem that had not received previously a systematic

objective solution.

• Chapter 4: On the Predictability of Stock Market Bubbles: Evidence from

LPPLS ConfidenceTM Multi-scale Indicators. We examine the predictive ability

of market-based indicators over the positive and negative bubbles in the S&P 500

index using the LPPLS ConfidenceTM Multi-scale Indicators to the S&P-500 index.

We find that the LPPLS framework is able to successfully capture, ex-ante, some of the

prominent bubbles across different time scales, such as the Black Monday, Dot-com,

and Subprime Crisis periods. We then show that measures of short selling activity

have robust predictive power over negative bubbles, in line with the previous studies

that short sellers have predictive ability over stock price crash risks. Interestingly,

however, the liquidity premium embedded in stock prices is found to have robust

predictive power over both the negative and positive bubbles, suggesting that the

risk premium associated with exposure to liquidity shocks can be used to predict the

occurrence of booms and crashes. The evidence overall points to the predictability

of stock market bubbles, while positive and negative bubbles exhibit significantly

different predictability patterns.

• Chapter 5: Modified Profile Likelihood and Interval Forecast of the End of

Financial Bubbles. We present a detailed methodological study of the application of
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the modified profile likelihood method for the calibration of nonlinear financial models

characterised by a large number of parameters. We apply the general approach to the

Log-Periodic Power Law Singularity (LPPLS) model of financial bubbles. This model

is particularly relevant because one of its parameters, the critical time tc signalling the

burst of the bubble, is arguably the target of choice for dynamical risk management.

However, previous calibrations of the LPPLS model have shown that the estimation

of tc is in general quite unstable. Here, we provide a rigorous likelihood inference

approach to determine tc, which takes into account the impact of the other nonlinear

(so-called “nuisance”) parameters for the correct adjustment of the uncertainty on

tc. This provides a rigorous interval estimation for the critical time, rather than a

point estimation in previous approaches. As a bonus, the interval estimations can

also be obtained for the nuisance parameters (m,ω, damping), which can be used to

improve filtering of the calibration results. We show that the use of the modified profile

likelihood method dramatically reduces the number of local extrema by constructing

much simpler smoother log-likelihood landscapes. The remaining distinct solutions

can be interpreted as genuine scenarios that unfold as the time of the analysis flows,

which can be compared directly via their likelihood ratio. Finally, we develop a

multi-scale profile likelihood analysis to visualize the structure of the financial data at

different scales (typically from 100 to 750 days). We test the methodology successfully

on synthetic price time series and on three well-known historical financial bubbles.

• Chapter 6: Hierarchical calibration of sloppy statistical models based on

information geometry. Model, data and optimisation approach should be consid-

ered as a “new complex system” in need of a general theory. We propose a powerful

step in this direction by constructing a natural parametric hierarchy that is ubiquitous

for multi-parameter models, and which provides a roadmap on how models should be
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calibrated to experimental data in order to greatly reduce estimation uncertainty.

By employing sophisticated parameter estimation techniques with information from

eigenvalues and eigenvectors of the Fisher Information Matrix, the proposed calibra-

tion scheme is capable of turning non-identifiable parameters into identifiable ones.

Using a GARCH(1,1) model, our Monte Carlo simulation results show a factor of 8

reduction on estimates uncertainty relative to the standard Quasi Maximum Likeli-

hood approach. The performance is notoriously good when using small sample (i.e.

N=100, . . . , 200).

• Chapter 7: Real-time prediction and post-mortem analysis of the Shanghai

2015 stock market bubble and crash. We assess the performance of the real-time

diagnostic, openly presented to the public on the website of the Financial Crisis Ob-

servatory (FCO) at ETH Zurich, of the bubble regime that developed in Chinese stock

markets since mid-2014 and that started to burst in June 2015. The analysis is based

on (i) the economic theory of rational expectation bubbles, (ii) behavioural mecha-

nisms of imitation and herding of investors and traders and (iii) the mathematical

formulation of the Log-Periodic Power Law Singularity (LPPLS) that describes the

critical approach towards a tipping point in complex systems. The authors document

how the real-time predictions were presented in the automated analysis of the FCO,

as well as in our monthly FCO Cockpit report of June 2015. A complementary post-

mortem analysis on the nature and value of the LPPLS methodology to diagnose the

SSEC bubble and its termination is also given.

• Chapter 8: Conclusion.
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1.2 The Log-Periodic Power-Law Singularity Model

The working-horse model of this thesis for detecting bubbles and predicting it’s

future path is the LPPLS model [56]. In this section, both theory and the mathematical

formulation of the model are presented in detail. A large portion of this Chapter is also

devoted to studying the process of calibrating the LPPLS model and stressing the challenges

surrounding parameter estimates and model fitting. It is here that two major concepts

(rigidity and sloppiness) are presented to the reader. These concepts are central building

blocks of the present thesis.

The LPPLS model we use was proposed by [56] and is usually referred to in the

literature of financial bubbles as the JLS model. It starts from the rational expectation

settings of [18], where the observed price P of an asset can be written as

P = Pfundamental + Pbubble (1.1)

where Pfundamental and Pbubble represent respectively the fundamental value and the bubble

component. The equations shows that the price is a linear combination of the fundamen-

tal value and the bubble component. The JLS Log-Periodic Power-Law (LPPLS) model

specifies the dynamics of the bubble component independently of the dynamics of the fun-

damental price. The later can be specified according to standard valuation models, for

instance leading to the usual geometrical random walk benchmark [8]. The model adds to

this featureless fundamental price the so-called log-periodic power law structure, which is

used to diagnose the presence of bubbles.

The LPPLS model is based on the standard jump-diffusion model, where the

logarithm of the asset price p(t) follows a random walk with a varying drift µ(t) in the
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presence of discrete discontinuous jumps:

dp

p
= µ(t)dt+ σ(t)dW − κdj. (1.2)

Here, σ(t) denotes the volatility, dW is the infinitesimal increment of a standard Wiener

process and dj represents a discontinuous jump such as j = χ(t−tc), where χ(·) is a Heaviside

function and tc denotes the time of the jump. Within the “bubble-crash” framework, tc

defines the “critical time”, which is defined within the rational expectations framework as

the most probable time for the crash or change of regime to occur. The parameter κ then

quantifies the amplitude of the crash when it occurs. The expected value of dj defines the

crash hazard rate h(t): E[dj] = h(t)dt.

According to the Johansen-Ledoit-Sornette (JLS) model [58, 56, 57], the complex

actions of noise traders can be aggregated into the following dynamics of the hazard rate:

h(t) = α(tc − t)m−1
(
1 + β cos(ω ln(tc − t)− φ′)

)
, (1.3)

where α, β, ω and φ′ are parameters. The core of the model is the singular power law

behavior (tc − t)m−1 that embodies the mechanism of the positive feedback at the origin

of the formation of bubble leading to a super-exponential price growth. The oscillatory

dressing 1+β cos(ω ln(tc− t)−φ′) takes into account the existence of a possible hierarchical

cascade of panic acceleration punctuating the course of the bubble. The particular form of

the log-periodic function cos(ω ln(tc−t)−φ′) in (1.3) is a first-order expansion of the general

class of Weierstrass-type functions [46, 128] that describes the discrete-scale invariance

around tipping points in complex natural and socio-economic systems [108, 109].

Under the no-arbitrage condition (E[dp] = 0), the excess return µ(t) is proportional

to the crash hazard rate h(t): µ(t) = κh(t). Then direct solution of the equation (1.2) with
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the given dynamics of the hazard rate (1.3) under the condition that no crash has yet

occurred (dj = 0) leads to the following Log-Periodic Power Law Singularity (LPPLS)

equation for the expected value of a log-price:

LPPLS(t) ≡ E[ln p(t)] = A+B(tc − t)m + C(tc − t)m cos(ω ln(tc − t)− φ), (1.4)

where B = −κα/m and C = −καβ/
√
m2 + ω2. It is important to stress that the exact

solution (1.4) describes the dynamics of the average log-price only up to critical time tc and

cannot be used beyond it. This critical time tc corresponds to the termination of the bubble

and indicates the change to another regime, which could be a large crash or a change of the

average growth rate.

The LPPLS model in its original form (1.4) is described by three linear parameters

(A,B,C) and four nonlinear parameters (m,ω, tc, φ). As discussed further in Section 1.2.2,

the calibration of the model can be performed using a two-stage procedure. First, the

linear parameters A,B,C for fixed values of m,ω, tc, φ can be obtained directly via the

solution of a matrix equation. Second, the non-linear parameters m,ω, tc, φ can be found

using a nonlinear optimization method. Notwithstanding the reduction from 7 to 4 of the

number of parameters to determine, the numerical optimization is not straightforward, as

the cost function possesses a quasi-periodic structure with many local minima. Any local

optimization algorithm fails here and an extra layer involving so-called metaheuristic algo-

rithms [119] is needed in order to find the global optimum. Thus, the taboo search [30] has

often been used to perform this metaheuristic determination of the 4 nonlinear parameters

of the LPPLS function (1.4).

A better approach has been suggested by [38], which consists in reformulating the

model (1.4) in a way that significantly simplifies the calibration procedure. The reformula-
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tion is based on the variable change

C1 = C cosφ, C2 = C sinφ, (1.5)

so that equation (1.4) becomes

LPPLS(t) := E[lnP (t)] = A+B(f) + C1(g) + C2(h), (1.6)

where, ln[P (t)] is the price logarithm vector of size N and

f ≡ (tc− t)m, (1.7)

g ≡ (tc − t)mcos(ω ln(tc − t)), (1.8)

h ≡ (tc − t)msin(ω ln(tc− t)). (1.9)

In this form, the LPPLS function has only 3 nonlinear (tc, ω,m) and 4 linear

(A,B,C1, C2) parameters. As shown in [38], this transformation significantly decreases

the complexity of the fitting procedure and improves its stability tremendously. This is

because the modified cost function for (1.6) is now free from quasi-periodicity and enjoys

good smooth properties with one or a few local minima in the case where the model is

appropriate to the empirical data.

1.2.1 LPPLS Filtering Conditions

Additional constraints have been proposed, based on compilations of extensive

analyses of historical bubbles [114, 60, 71]. Previous calibrations of the JLS model have

further shown the value of additional constraints imposed on the nonlinear parameters in

order to remove spurious calibrations (false positive identification of bubbles) [106, 56, 55,
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44].

1. exponent 0.1 < m < 0.9: This more stringent constraint than the one (0 < m < 1)

discussed above improves the power of discriminating bubbles by removing calibrations

that select parameters too close from the bounds.

2. angular log-periodic frequency 6 < ω < 13: This condition ensures that the

preferred scaling ratio := e
2π
ω of the log-periodicity [102] is of the order of 2, as

suggested by general theoretical arguments [86].

3. Search interval for tc given by t2 + 1 < tc < t2 + η||t2 − t1||, where time is in

units of days. [t1, t2] is the time window in which the calibration is performed. One

can think of t2 as the “present” time, in the sense that it is the latest time at which

information is used to calibrate the model. The beginning t1 of the fitting interval

sets the time scale t2−t1 of the analysis. The factor η is of the order of 1, often chosen

about 1/3 or 1/2 to ensure that the remaining bubble lifetime is within an horizon of

predictability estimated to scale proportionally to the width of the analysing window.

4. “Damping” condition: Within the RE bubble framework used by the JLS model,

the crash hazard rate is found to be proportional to the expected return during the

bubble, conditional on the fact that the bubble has not yet burst. Since the crash

hazard rate is by definition a non-negative quantity, this imposes that the expected

return during the bubble should be non-negative. This can be shown to impose that

condition D ≥ 1 where D := |B|m
ω
√
C2

1+C2
1

[47]. Intuitively, the amplitude of the log-

periodic oscillations should be not too large compared with the acceleration of the

price so that their combination ensures the non-negativity of the expected return at

all times during the bubble. Of course, the realized stochastic return can be negative.

It is only its expectation that should be non-negative.
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5. Number of oscillations: The number of oscillations (half-periods) of the log-

periodic component is given by O := ω
π ln

(
tc−t1
tc−t2

)
. [52] showed that a minimum

number of oscillations is needed to distinguish a genuine log-periodic signal from one

that could be generated by noise. In the present implementation, we qualify a fit only

if O ≥ 2.5.

6. residuals r ∼ AR(1): [70] have emphasised the need for the residuals of the LPPLS

calibration to be mean-reverting in order for the calibration of the log-price by the

LPPLS model to be consistent. Hence, we test for the mean-reverting (O-U) property

of the residuals of the fit, using both the standard unit-root Augmented Dickey-Fuller

and Phillips-Perron tests.

1.2.2 Estimating the LPPLS model

Fitting (1.4) envolves minimising the cost function,

F (tc,m, ω,A,B,C1, C2) =
1

2

N∑
i=1

[
ln[P (ti)]−A−B(fi)− C1(gi)− C2(hi)

]2
. (1.10)

Slaving the intrinsic linear (IL) parameters {A,B,C1, C2} to the remaining nonlinears

(NL) {tc,m, ω}, yields

{t̂c, m̂, ω̂} = arg min

{tc,m,ω}
F1(tc,m, ω), (1.11)

where (•̂) denote estimated parameters. The cost function F1(tc,m, ω) is thus given

by

χ2 := F1(tc,m, ω) = min

{A,B,C1,C2}
F (tc,m, ω,A,B,C1, C2). (1.12)
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Using only 3 NL parameters, the optimization problem

{Â, B̂, Ĉ1, Ĉ2} = arg min

{A,B,C1,C2}
F (tc,m, ω,A,B,C1, C2), (1.13)

can be obtained analytically using ordinary least squares:



N
∑
fi

∑
gi

∑
hi∑

fi
∑
f2
i

∑
figi

∑
fihi∑

gi
∑
figi

∑
g2
i

∑
gihi∑

hi
∑
fihi

∑
gihi

∑
h2
i





Â

B̂

Ĉ1

Ĉ2


=



∑
yi∑
yifi∑
yigi∑
yihi


.

1.2.3 Reaching the best-fit

Let us denote Φ = [m,ω, tc, A,B,C1, C2] as the full parameter set and θ = [m,ω, tc]

as the NL parameter set of length m. Also, allow every residual ri :=
∑N

i=1
1
2(y(t)i −

LPPLS(θ; t)i), of Eq. (1.11) be collected into a vector r : <m → <N which reads

r = (r1(θ), r2(θ), ..., rN (θ))ᵀ. From now on, bold letters denote either matrices or

vectors.

Embedded within a m-dimensional space, the slaving procedure displayed by Eq.

(1.12) allows one to search for the smallest distance 1
2 ||r(θ)||22 ,where || • || denotes

the Euclidean norm. Taylor expansion is a wide-used mechanism by optimization

algorithms for approximating the value of a function at a given point. Assuming our

cost function (χ2), completely known at θk = θ∗, and m ∈ <++, for the case of m = θ
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variables, the Taylor expansion reads

χ2(θ∗i + ∆θi, θ
∗
j + ∆θj) =χ2(θ∗i , θ

∗
j ) +

[
∂χ2

∂θi

∣∣∣∣∣
(θ∗i ,θ

∗
j )

∆θi +
∂χ2

∂θj

∣∣∣∣∣
(θ∗i ,θ

∗
j )

∆θj

]
+

1

2

[
∂2χ2

∂2θi

∣∣∣∣∣
(θ∗i ,θ

∗
j )

. . .

(1.14)

(∆θi)
2 + 2

∂2χ2

∂θi∂θj

∣∣∣∣∣
(θ∗i ,θ

∗
j )

∆θi,∆θj +
∂2χ2

∂2
j

∣∣∣∣∣
(θ∗i ,θ

∗
j )

(∆θj)
2

]
.

(1.15)

Organizing the displacements into column vectors [∆θi ∆θj ]
ᵀ, Expression (1.15) can

be written matricially in terms of fitting residuals as

χ2(θ∗ + ∆θ∗) = r(θ∗) + ~5r(θ∗)ᵀ∆θ∗ +
1

2
∆(θ∗)ᵀH(θ∗)∆θ∗. (1.16)

Expression (1.16), consists on the summation of a first order/linear variation and a

second order/quadratic variation given in terms of the Gradient (~5r), and Hessian

(H), respectively. The Gradient reads,

5χ2(θ) := dχ2 =
∂ri
∂θi

d(θi) +
∂ri
∂θj

d(θj), (1.17)

and is collected by a (1×m) matrix known as the Jacobian,

J(θ) =


∂ri
∂θi

...

∂ri
∂θj

 ≡
[

∂ri
∂m

∂ri
∂ω

∂ri
∂tc

]ᵀ
i,j=1,2,...,M ;

.

The slope of χ2|θk=θ∗ at the point θk = θ∗, is a column vector of first-order partial
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derivatives (Eq. 1.17), representing the direction in which the the cost will increase

more rapidly. This direction guides algorithms for correctly finding the solution (1.11)

and uncertainty on estimated parameter may arise when this landscape is degenerate

[74].

The LM algorithm, commonly used for solving nonlinear optimisation problems, is a

Newton-type algorithm. When fitting residuals are small about the best fit it approx-

imates the objective function χ2
∣∣
∗ by expanding the quadratic term in Eq. (1.16) and

thus infinitesimaly updating parameters δ(θ), according to

δ(θ) = − (JTJ + λDTD)−1 5 χ2(θ). (1.18)

where D and λ are respectively, a matrix containing diagonal elements of the second-

order derivatives matrix and a damping parameter. Moreover, λ rotates the search

direction of the algorithm from the Gauss-Newton to the Gradient direction, thus

controlling the step size used in the Taylor expansion for finding the roots of the

objective function.

The Jacobian can be calculated using a semi-analytical method like the centered finite-

difference scheme, which reads

f ′(x) ≈ f(x+ h)− f(x− h)

2h
, (1.19)

where h is the time step. The Hessian matrix is then approximated in terms of the

residuals as follows

∂χ2(θ)

∂θiθj
=

m∑
i=1

(
ri
∂2ri(θ)

∂θi∂θj
+
∂ri(θ)

∂θi

∂ri(θ)

∂θj

)
, (1.20)
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which is equivalent to

JᵀJ := H =

N∑
i=1

(5r(θ)i)(5r(θ)i)
ᵀ. (1.21)

It is known from PCA (Principal Component Analysis) that the output sensitivity

of a model with respect to input parameters can be measured by eingenvalues λ

and eigenvectors ~λ of the Hessian matrix H (Eq. 1.21), which embody the varying

important (stiff) and unimportant (sloppy) combination of parameters.

1.2.4 Rigid vs. sloppy directions in parameter space
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Figure 1.1: Uncertainty surrounding t̂c and ω̂: The cost function χ2 of tc and ω (x and y-axis of the left

hand-side figure) form ellipses about the best-fit region. Notice that varying tc together with ω has little

influence on square residuals. Looking at the right hand-side figure, each coloured line corresponds to the

extrapolation of our model using values of tc denoted by dot, square and diamond markers.

Notwithstanding a number of improvements concerning the calibration of the LP-

PLS model, including meta-search heuristics [117] and reformulation of the equations to

reduce the number of nonlinear parameters [38], the calibration of the LPPLS model re-

mains a bottleneck towards achieving robust forecasts and a matter of contention [20, 116].

The main reason for this is the parameteric geometry which can be undestood via the Hes-
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sian matrix approximated at the best fit parameters and the Jacobian term (Eq. 1.21 and

Eq. 1.18 respectively). These metrics allows one to understand the uncertainty permeating

the LPPLS model and it’s parametric sensitivity when fitted to data. How this uncertainty

affects prediction can be better visualised through Figure 7.6. The cost function χ2 of tc

and ω (x and y-axis of the left hand-side figure) displays ellipses about the best-fit region.

This feature leads to uncertainty on parameter values since each parameter can adapt to

changes of the other while keeping the cost χ2 stable. We illustrate this feature using the

log-price time series of the S&P -500 Index on Fig. 1.1. Looking at the right hand-side

figure, each coloured line corresponds to the extrapolation of our model using values of tc

denoted by dot, square and diamond markers (corresponding to a calendar date of ≈ Oct.

07, Dec. 07 and Feb. 08, respectively). All fits mimic the time-series in the same manner

because of the trade-off between ω and tc while the forecasted change of regime date tc

differs substantially.

This behaviour is referred to from now on as sloppiness, in accordance to a number

of studies from [74]. Overcoming sloppiness and therefore obtaining significant estimates of

the LPPLS parameters (specially tc), constitute the core of this thesis. As we shall see, the

exploration of the geometry of non-linear squares fits leads to a number of practical insights

for the proper calibration of sloppy statistical models, including the LPPLS. Besides under-

standing and quantifying what are the important and unimportant parametric directions

of a model, Information Geometry allows us to proper detect the beginning of financial

bubbles and to turn practical non-identifiable parameters (i.e. optimisation problems such

as the one depicted by Fig. 1.1) into practical identifiable ones (i.e. a convex-like cost

function as observed in Oridinary Least Squares optimisation problems) [118].



Chapter 2

Birth or Burst of Financial

Bubbles: Which one is easier to

diagnose?

2.1 Introduction

Financial bubbles and their subsequent crashes provide arguably the most visi-

ble departures from well-functional efficient markets. There is an extensive literature (see

e.g. the reviews [64, 25]) on the causes of bubbles as well as the reasons for bubbles to

be sustained over surprising long period of times. One prominent question is: why are not

arbitragers quelling bubbles in the same way that investment opportunities based on market

imperfections tend to be removed by arbitrage? Among many arguments advanced in the

literature, we here focus on the one suggested by [1]. In the authors’ set-up, market partic-

ipants become aware about the mispricing developing during the bubble in a disorganised

fashion, one after another. Thus, opinions differ about the date when the bubble really

19
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started, preventing a coordinated arbitrage that would have put an end to the burgeoning

bubble.

We question this view and mechanism. Indeed, from informal private exchanges

with a large number of practitioners during massive bubbles (such as the dot-com bubble

that terminated in 2000), it appears that the existence of a bubble permeates rather early

in the consciousness of professionals. For instance, hedge-funds tend to correctly diagnosed

bubbles in their early stages [49]. Think for instance of the famous “irrational exuberance”

quip of Federal Reserve chairman, Alan Greenspan, issued on Dec. 5, 1996, more than three

years before the bubble finally burst. One could have thought that such a strong statement

from such a respected authority (at the time) would have synchronised the attention of

arbitragers, leading to the demise of this bubble. In fact, after a minor volatility spike lasting

no more than a few days following Greenspan’s statement, the markets roared unabated to

new highs, with the years of 1998 and 1999 enjoying a sky-rocketing cumulative return of

more than 1100% for the technology sector. This suggests that bubbles do not persist and

flourish because of a lack of general perception of their presence at early times. Rather than

shorting the bubble, it is in the interest of investors to “surf” it as long as it lasts [24], given

that the gains are so extraordinary that they typically attract less and less sophisticated

investors as well as generally less well-informed foreigners, further fuelling the ascent of

the bubble [97, 110]. Moreover, it often happens that value investors opportunistically

transform into momentum followers during bubble regimes.

Rather than the beginning of bubbles, we argue that it is their ends that are dev-

ilishly difficult to forecast with any useful accuracy. As Keynes famously commented: “The

market can stay irrational longer than you can stay solvent.” And Greenspan’s statement

mentioned above also illustrates the discrepancy between an early diagnostic and the much

delayed conclusion of the bubble. The contribution of the present article is to propose a
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methodology to quantify these intuitions. We put numbers on how precise can be the early

diagnostic of a nucleating bubble and the estimation of its lifetime. For this, we use the

log-periodic power law singularity (LPPLS) model [56, 110] to represent bubble regimes.

We endogenize t1 as a parameter to calibrate and estimate the LPPLS model on synthetic

time series generated by the LPPLS model with noise and on eight historical bubble cases.

In order to determine the uncertainties of the calibrated parameters we calculate the eigen-

values and eigenvectors of the Fisher Information Matrix defined from the cost function of

the calibration exercise, following [19], [123] and [74]. Comparing the eigenvalues and the

parameters that contribute to the corresponding eigenvalues, we can estimate the “rigid”

parameters versus the “sloppy” ones, the later being characterised by very small eigenval-

ues so that the cost function is essentially insensitive to their specific values, making them

impossible to determine precisely. We find that the eigenvalues of the Hessian matrix ap-

proximated at the best-fit parameters whose eigenvectors are dominated by t1 tend to be

three orders of magnitude larger than those controlled by tc. As a rough estimate, this

implies that the errors on tc are about 30 times larger that on t1. The determination of

the end of the bubble is thus much more difficult that its beginning. This suggests that the

lack of knowledge regarding the end of the bubble tc should play a more important role on

asset price inflation than the lack of agents consensus about t1.

The article is structured as follows. Section 2.1.4 presents an initial result of the

sloppy-rigid analysis performed on synthetic data. We then extend the application of the

method to real world data in Sec. 2.2 and conclude in Section 2.3.

2.1.1 Expanded parameter space to endogenize t1

Because the goal of the present Chapter is to determine which of the beginning or

the end of a bubble is best estimated, we propose to endogenize the search for the beginning
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of the bubble in the calibration of the parameters. For this, we define the beginning of

the bubble as the ‘best’ beginning time t1 of the interval [t1, t2] in which the calibration

is performed, ‘best’ in the sense of minimising an appropriate scaled goodness of fit in

combination with filtering conditions 1-6 presented on Section 1.2.1. As we shall see, it

is not possible to rely solely on the scaled goodness of fit measure because this metric is

essentially degenerate as the number degrees of freedom is reduced. More specifically, as

t1 → t2 the metric tends to yield smaller and smaller values even when scaled due the

reduced number of data points used for fitting the model. However, since plateaus are

observed in certain values of t1 our results can be trustworthy when analysing the cost

function through a local perspective rather than a global one. This leads to an expanded

nonlinear parameter set Φ = {m,ω, tc, t1}. The L2 cost function to minimise generalises

expression (1.10) in Appendix A to make explicit the beginning time t1 of the time interval

in the optimisation problem. In order to make different windows [t1, t2] comparable, we

normalise the sum of squares of the residuals by the number t2 − t1 of points in the sum

[124]

χ2(Φ) := F2(m,ω, tc, t1) =
1

t2 − t1

t2∑
i=t1

ri(Φ)2 , with ri(Φ) = y(t)i − flppls(Φ, t)i ,

(2.1)

where flppls(Φ, t)i ≡ LPPLS(t) is defined by expression (1.6) in Chapter 1. The cali-

bration of the parameters Φ is performed by following the same procedure as explained in

Subsection (1.2.3) of Chapter (1).
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2.1.2 Hessian matrix, its eigenvalues and eigenvectors quantifying rigid-

ity vs. sloppiness

Since we are interested in the relative parameter variations and their corresponding

impact upon χ2, each parameter [m,ω, tc, t1] ∈ Φ was standardized using

Φ̃i =
Φi − 〈Φi〉
σ(Φi)

, (2.2)

where 〈Φi〉 and σ(Φi) denotes respectively the median and the standard deviation of pa-

rameter i within its respective theoretical bound (see conditions 1-3 in Sec. 1.2.1). This

transformation ensures that the mean of Φ̃i is 0 and its standard deviation is equal to 1

for all 4 nonlinear parameters. This allows us to compare their sloppiness [23] based on a

study of the Hessian matrix given by Eq. (2.13) in Appendix A.

Once the optimal parameter set Φ∗ is obtained and after standardisation, we

computed the Jacobian J(Φ∗) defined by (2.9) using Eq. (2.14) in Appendix A. For small

residuals r, the Hessian matrix about the best-fit is then approximated by Eq. (2.12) using

JᵀJ . Recall that the Hessian matrix provides a quantification of the shape of the cost func-

tion in parameter space. The spectrum of eigenvalues {λi} and their associated eigenvectors

{~vi} of the Hessian matrix embody the information on the directions in parameter space

that are best determined. Large eigenvalues correspond to rigid parameters (or combination

of parameters), i.e., for which a small variation entails a relatively large change of the cost

function. In contrast, small eigenvalues identify the “sloppy” parameters (or combination

of parameters) that are poorly constrained, so that a rather large variation of their value

does not change much the cost function. Geometrically, one can picture the cost function

as made of wide valleys with elongated flat profiles along the eigenvectors with small eigen-

values, and of sharp narrow valleys along the eigenvectors with large eigenvalues. If, as we
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find below, a given eigenvector is dominated by one of the parameters, its corresponding

eigenvalue determines the rigidity vs. sloppiness of that parameter (rigid if the eigenvalue

is relatively large and sloppy if small).

In practice, fits whose spread between the largest and the smallest eigenvalue sur-

passes roughly three orders of magnitude are considered sloppy [74]. Generally, this results

from a near degenerate Hessian matrix (see Eq. (2.10)), where changes in a given parameter

do not lead to an increase of the cost function since this change can be compensated by

that of another parameter along the sloppy direction. It is important to keep in mind, how-

ever, that even though large parameter uncertainty does in general exist, the macroscopic

behavior of the system is not necessarily compromised [9, 122], given that predictions rely

on rigid directions of the model.

2.1.3 Construction of synthetic LPPLS bubbles

To gain insight about the parameter structure of the extended LPPLS model and

thus establish a solid background to our empirical analysis, we generate synthetic price

time series. The synthetic price time series (a realisation is depicted in figure 2.1(a)) are

obtained by using formula (1.10) with parameters given by the best LPPLS fit within the

window w ∈ [t1 = Jan. 1981: t2 = Aug. 1987] of the bubble that ended with the Black

Monday 19 Oct. 1987 crash. These parameters are (m = 0.44, ω = 6.5, C1 = −0.0001,

C2 = 0.0005, A = 1.8259, B = −0.0094, tc = 1194). To the deterministic component

describing the expected log-price given by expression (1.10) and denoted by flpplss(φ, t),

we add a stochastic element according to

ln[P (t)] = flpplss(φ, t)

(
1 + ε(t) σ

max(lppls(t))

)
, (2.3)
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where t = [1, . . . , N = 1100]. This corresponds to multiplicative (or proportional) noise

term with ε ∼ N (µ, σ2) and σ = 0.1, µ = 0. The black stochastic line in figure 2.1(a)

represent ln[P (t)] given by (2.3).

For each synthetic bubble price time series, we calibrated it with Eq. (1.10) by min-

imizing expression (2.1) in windows [t1, t2], scanning t2 from 1981/01/01 to t2 = 1987/08/12,

with t1 varying from t1 = Jan. 1981 up to 60 business days before t2, i.e. up to t1,max =

t2 − 60 for each fixed t2. Then, the Hessian matrix was approximated about the best-fit

parameters for each t1 and its corresponding eigenvalues were calculated.

2.1.4 Sloppiness and Rigidity of tc vs. t1 using synthetic price time series

We now extend the initial sloppy-rigid analysis performed in the LPPLS framework

by [19], in order to test which one of the two parameters, beginning t1 or the forecasted end

t̂c of a bubble, is the most sloppy, i.e., has the largest uncertainty.

For illustration of the typical situation found in these synthetic tests (to be ex-

tended below), we perform the calibration of synthetic noisy price time series in the full

window shown in figure 2.1 corresponding to [t1 = Jan. 1981 to t2 = Aug. 1987] (repre-

sented as [Date = 1 : Date = 1100]). For a given realisation, we calculate the Hessian

matrix and the corresponding eigenvalues and eigenvectors. We consider both the case of

a fixed t1 with cost function (1.10) (bottom rows of table 2.1) and of the extended cost

function (2.1) endogenizing t1 as a parameter to be determined (top rows of table 2.1). The

entries of the two Hessian matrices are given in the columns on the left of the table and

their eigenvalues in the central column λ.

Note first that the smallest eigenvalue is of the order 10−8 times the largest eigen-

value, exemplifying the sloppy nature of the calibration. In the right columns of the table,

the components of the corresponding eigenvectors show that the largest eigenvalue is mainly
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determined by parameter m, the second largest one is mainly controlled by parameter ω and

the smallest eigenvalue is always mainly associated with parameter tc, confirming that the

end of the bubble is very difficult to determine as the cost function is essentially degenerate

in the direction of tc in parameter space.

Interestingly, for the extended cost function, one can observe that the eigenvalue

dominated by parameter t1, while being smaller than the two others associated with m and

ω, is approximately 4000 times larger that the eigenvalue describing the sloppiness of tc.

This is a first illustration that t1 is much more rigidly determined (or depending on taste

much less sloppy) than tc. Indeed, using a geometrical intuitive interpretation, contour lines

of the cost function form approximate ellipses whose axis lengths are inversely proportional

to the square root of their corresponding eigenvalue λ (axis length ' 1/λ
1
2 ). Thus a factor

4000 translates into a size of the axis along tc about 60 times larger than the axis along t1.

In other words, in this illustration, the uncertainty on t1 is about 60 times smaller than on

tc.

Does this result hold for other time windows and in particular far from the end of

the bubble? To investigate this question, we perform the same exercise of calibrating the

LPPLS formula in windows [t1, t2], varying t1 from Date = 1 (about four years before the

crash) to Date = 1040 days (close to the crash). The blue circles and red squares in Fig

(2.1) display the obtained normalised eigenvalues λ3 and λ4 in logarithm scale, associated

respectively to t1 and tc. By ‘normalised’, we mean that each eigenvalue obtained for a

given calibration is divided by the largest one (i.e. that associated mainly with m). By

repeating this process 100 times, confidence bounds for the eigenvalues for each t1 can be

determined and are depicted by the error bars. Figure 2.1 confirms that t1 is always more

rigid that tc by far at all times t2. It is particularly noteworthy that the situation for tc does

not improve in absolute terms or relative to t1 even when getting closer and closer to the
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true end of the bubble: while the determination of the beginning t1 of the bubble can be

reasonably estimated, that of the end tc remains much more elusive. One can also observe

a rather stable behavior of these two eigenvalues when t1 spans 1 to 600 days. Interestingly,

the vast majority of fits performed during this time window correctly qualify the underlying

time series as being in a bubble regime.

For Date = t1 > 600, one can observe a fast drop of the eigenvalues associated

with t1 and tc, which can be explained by the average negative curvature of the log-price

associated with the first large log-periodic oscillation. This negative curvature confounds

the information on the existence of the supposed super-exponential bubble and thus on the

determination of both its beginning (t1) and its end (tc). When the average curvature of

the log-price becomes positive again, one can observe a jump of the two eigenvalues upward,

back to almost the same level as before the first jump down. This is followed by a further

decrease of the eigenvalues as t1 approaches too close to the true tc.

The lower part of panel (a) of figure 2.1 checks that the two smallest eigenvalues

λ3 and λ4 are indeed mostly representing respectively the directions along t1 and tc of the

cost function. To quantify that this is the case, let us denote ~v (t1,λ3) the component on

t1 of the third vector associated with the third largest eigenvalue λ3. Similarly, let ~v (tc,λ4)

be the component on tc of the fourth vector associated with the smallest eigenvalue λ4.

Analogously, ~v(Φj , λi) is the component on parameter Φj of the eigenvector associated with

the eigenvalue λi. Let us introduce the weights

Ct1,λ3 =
|~v (t1,λ3)|∑4

j=1

√
~v (Φj , λ3)2

, Ctc,λ4 =
|~v (tc,λ4)|∑4

j=1

√
~v (Φj , λ4)2

. (2.4)

These weights Ct1,λ3 and Ctc,λ4 are shown in the lower part of panel (a) of figure 2.1 and

confirm that the relative contributions of parameter t1 (resp. tc) in the eigenvector along
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λ3 (resp. λ4) is never smaller than ≈ 90% (respec. 99%).

The distributions of the normalized eigenvalues λ2/λ1, λ3/λ1 and λ4/λ1 over the

ensemble of t1 values for a fixed t2 and a single log-price realisation are depicted in figure

2.1(b). The dashed lines show the mean values of the three distributions. This confirms

that t1 is much more rigid than tc across all windows and that the hierarchy from rigid to

sloppy is from m,ω, t1 to tc.

For the fixed Date t2 = 150, figures 2.1(c)-2.1(h) show cross-sections of the cost

function for parameters m, ω, t1 and tc. The shape of the cost function exhibits the valley

patterns whose relative extensions in different directions are quantified by the eigenvalues, as

discussed above. Figs. 2.1(c) and 2.1(d) show that, for parameters m vs. ω and m vs. tc, the

elliptic contour lines close to the cost function minimum are aligned approximately along the

parameter axes. In contrast, for the parameter space of tc vs. ω, the largest eigen-direction

is along the diagonal direction. This feature expresses the fact that parameters ω and tc

are strongly correlated in the calibration process. In practice, this implies the existence of

several values of tc that are consistent with a low cost value, given that parameter ω (see Fig

2.1(e)) can be tuned to take this variation into account. Thus, this interdependency should

be considered properly when constructing confidence intervals for ω and tc, as correctly

pointed out by [19].

For robustness, a sensitive analysis was performed around the best solutions of t̂∗1

and t̂∗c . By taking into account the sample size, the box-plot shown in figure 2.1(a) gives

the corresponding χ2 variation when each t1 ∈ t̂∗1 and tc ∈ t̂∗c are used as input parameters

in Eq. 2.1. Results confirm that changes in t1 leads to cost variations ranging from -4% to

4% while changes in t̂∗c yields a negligible change. This is due to the compensation provided

by the correlation between ω and the critical time parameter (see figure 2.1(e)) previously

mentioned.
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Finally, the coloured pdf ′s in Fig 2.1(a) were constructed over the qualified fits

(according to the filtering criteria of Sec 1.2.1) of the ensemble of noise realisations for a

fixed t̄2. The fact that the pdf(t̂∗1) is wider than pdf(t̂∗c) is not contradicting our key result

that t1 is much better estimated than tc for a specific realisation. In a real life situation, one

can only analyse one single realisation given by history. In contrast, the coloured pdf ′s in Fig

2.1(a) provide artifactual information, i.e. on an ensemble of statistically equivalent price

trajectories differentiated only by the different realisations of the noise process. The fact

that the pdf(t̂∗1) is wider than pdf(t̂∗c) thus inform us that there is more variability of t1 than

tc from one realisation to another one. This results from the structure of log-periodicity,

with slow oscillations at early times and fast oscillations close to tc.

2.2 Empirical tests

2.2.1 Data: eight historical bubbles

In this section, we perform the same procedure as described in the previous section

on real bubble events. Scanning a time interval extending from several years before until the

burst of each bubble, we first determine the time t̄2 at which the price reached its maximum

before the crash starts to develop. We fix this time as the end of our time window of analysis.

Obviously, this procedure is not correct for forecasts as it uses future information (the fact

that t̄2 was the maximum before the crash) but is useful to reduce the number of degrees of

freedom for our purposes. Further down, we drop this assumption and incorporate random

t′2s into the analysis (see 2.2.3). For this fixed t̄2, our fitting windows scan t1 using daily

observations ranging from some t1,i=1 until t1,t̄2−60, where the unit of time is one day, which

are used as input for the t1 parameter during the calibration process (2.1).

We have chosen a representative set of eight well-known bubbles, augmented by
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the synthetic bubbles given by (2.3) for comparison.

• Shanghai Stock Exchange Composite Index bubble ending in October 2007

(SSEC):

This bubble has been documented and studied by [55]. For t̄2 = 10 Oct 2007, our

fitting windows scan t1 using daily observations ranging from t1,i=1 = 2005/01/01

until t1,t̄2−60 = 2007/08/10. Converting from calendar time to time counted in unit of

days, we have t1,i=1 = 1 and t̄2 = 676. Thus, there are 616 different possible windows

for the fixed end time t̄2 = 676, the different windows corresponding to the different

t1,1 = 1, t1,2 = 2, . . . , t1,t̄2−60 = 616, which are used as input for the t1 parameter

during the calibration process (2.1). Note that the smallest (resp. largest) window

has a duration of 60 (resp. 676) days.

• S&P500 Index bubble ending in October 2007 (SP):

This bubble has been documented and studied in [115, 104, 105]. The same procedure

as described for the previous bubble was applied to the S&P500. With the choice

t̄2 = Jul.15 2007, our fitting windows scan t1 using daily observations ranging from

t1,i=1 = 2002/01/01 to t1,t̄2−60 = 2007/05/01. This yields a total of N = 1332 different

possible values of t1 over which to perform the calibration process (2.1).

• S&P500 Index bubble ending on Black Monday, October 19, 1987 (BM):

This bubble has been documented and studied by [107]. Choosing t̄2 = Aug.15 1987,

our fitting windows scan t1 using daily observations ranging from t1,i=1 = 1981/01/01

until t1,t̄2−60 = 1987/06/12. This yields a total of N = 1674 different possible values

of t1 over which to perform the calibration process (2.1).

• Bovespa Index bubble ending in December 2003:

Choosing t̄2 = Dec.15 2003, our fitting windows scan t1 using daily observations
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ranging from t1,i=1 = 1998/06/22 until t1,t̄2−60 = 2003/10/14. This yields a total of

N = 1940 different possible values of t1 over which to perform the calibration process

(2.1).

• S&P500 Index short-term bubble ending in February 1997:

With the choice t̄2 = Feb.13 1997, our fitting windows scan t1 using daily observations

ranging from t1,i=1 = 1991/08/24 to t1,t̄2−60 = 1997/05/01. This yields a total of

N = 1940 different possible values of t1 over which to perform the calibration process

(2.1).

• Shanghai Stock Exchange Composite Index bubble ending in June 2015:

A detailed real-time diagnosis and post-mortem analysis of the Shanghai 2015 bub-

ble and subsequent crash can be found in [112]. With t̄2 = Jun.10 2015, our fit-

ting window scan t1 using daily observations ranging from t1,i=1 = 2009/12/18 until

t1,t̄2−60 = 2015/04/11 thus yielding a total of N = 1940 different possible values of t1

over which to perform the calibration process (2.1).

• NASDAQ (dot-com bubble) ending in February 2000

Searching for the beginning of this bubble at t̄2 = Feb.20 2000, we scan t1 using

daily observations ranging from t1,i=1 = 1994/09/01 until t1,t̄2−60 = 1999/12/24 thus

yielding a total of N = 1940 different possible values over which to perform the

calibration process (2.1).

• NIKKEI Index bubble ending in January 1999:

With the choice t̄2 = Dec.10 1989, our fitting windows scan t1 using daily observations

ranging from t1,i=1 = 1984/06/19 to t1,t̄2−60 = 1989/10/11. This yields a total of

N = 1940 different possible values of t1 over which to perform the calibration process

(2.1).



Chapter 2: Birth or Burst of Financial Bubbles: Which one is easier to diagnose? 32

For each of these eight empirical time series, the corresponding residuals r(t)’s

defined in (2.1) are obtained for each window [t1, t̄2]. Except from moments where fits are

not qualified, the residuals are well-behaved and are approximately normally distributed,

as one can see via the normality testes given in Table (2.5).

2.2.2 Analysis of the cost function χ2(Φ) and its Hessian

For the eight empirical bubbles, figure 2.2 presents the pdf’s of the normalized

eigenvalues λ2/λ1, λ3/λ1 and λ4/λ1 of the Hessian matrix H|∗(Φ), over the ensemble of t1

values scanned in the analysis. As in table 2.1 obtained for a synthetic bubble, we find

almost systematically that the largest eigenvalue is dominated by parameter m. The colors

of the pdf’s encode the parameter that dominates its corresponding eigenvalue: green for

m, grey for ω, blue for t1 and red for tc. One can observe that the normalized λ3 (blue

pdf) associated predominantly with t1 are systematically much larger than the values of

the normalized λ4 (red pdf) associated predominantly with tc. This confirms for these eight

empirical bubbles the conclusion obtained in the synthetic tests. Moreover, we find that

more than 80% of the windows give a normalized λ2 > 10−3, allowing us to conclude that

ω (and a fortiori m) is a relatively rigid parameter.

Overall, the eigenvalues λEi ≡ λi, for i = [m,ω, t1, tc] exhibit a mixture of jumps

intercalated with intervals of stable downward trends as the window length shrinks and

t1 approaches t2. When using the original cost function (1.10), the same pattern for the

contribution of the parameters to the eigenvectors is observed as well as the same behaviour

of the eigenvalues as a function of t1. The overall sloppiness does not change substantially

when using the extended cost function F2 (expression (2.1)) instead of F1 (see definition

(1.12)).

Figure 2.4 displays three two-dimensional cross-sections of the cost function χ2(Φ∗)
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for the eight empirical bubbles along the three different pairs of structural parameters

(m,ω), (tc,m) and (tc, ω). The corresponding values of the Hessian matrix, eigenvectors

and eigenvalues are summarised in Table 2.3. Under the same conditions, Table 2.4 gives

the values of the Hessian matrix, of the eigenvalues λ and associated eigenvectors ~v using

the original cost function (1.12) without t1. Applying the standard unit-root Augmented

Dickey-Fuller and Phillips-Perron tests to the residuals of the best fits confirms that they are

mean-reversing, in agreement with the condition proposed by [70] (see Table 2.5). Figure

2.4 shows the same ellipse-shaped structure as obtained previously in our synthetic tests

described in section 2.1.3 and the same order of the importance of the parameters m,ω, t1

and tc associated respectively from the largest eigenvalue to the smallest one. This structure

is also robust when using the LPPLS cost function without t1 as a parameter to calibrate

(see Table 2.4).

The dependence of the cost function χ2(Φ) for the same eight studied empirical

bubbles along the three different pairs of parameters (t1,m), (t1, ω) and (t1, tc) is shown

in figure 2.5. One can observe a much more complicated landscape than in figure 2.4 with

multiple local minima associated with the introduction of the parameter t1. Figure 2.5

demonstrates that the normalised cost function exhibits an overall decrease as t1 increases,

because the calibration has a smaller number of degrees of freedom to explain for smaller

t2 − t1. This tends to bias the estimation of t1 upward, i.e., to underestimate the true

duration of the bubble. Figures 2.5 and 2.6 exemplify that tc has very little impact on the

value of χ2(Φ) once t1 is given. In other words, one can really visualise here the sloppiness

of tc compared with the relatively much larger rigidity of t1. This feature is absent for the

pairs (t1,m) and (t1, ω), as small changes in m and ω often lead to significant variations

of the cost function, in agreement with the information contained in the corresponding

eigenvalues. One can also observe that, for certain values of t1, the cost function exhibits



Chapter 2: Birth or Burst of Financial Bubbles: Which one is easier to diagnose? 34

clear minima as a function of tc, supporting previous claims that the end of financial bubbles

may be predictable only at certain time intervals, i.e., in “pockets of predictability” [105].

2.2.3 Visualisation of the relative rigidity of t1 vs. the slopiness of tc using

their pdf’s

The stability of t1 relative to tc for the the eight empirical bubbles described

in section 2.2.1 is visualised in figure 2.7. For a given t̄2 (black vertical dashed line in

each panel), the blue filled function represents the pdf of the qualified calibrated t̂∗1’s in a

search over the grey interval up to t̄2 − 30 days. The red filled function represents the

corresponding pdf of qualified calibrated t̂∗c ’s. It is pleasant to observe that the pdf of t̂∗1 is

where one would visually locate a priori the start of the bubble, as this is the time when

the price starts to present evidence of a faster-than-exponential growth. The pdf of t̂∗c is

not too far from the true time of the change of regime but is often too late, except for the

bubble on the Ibovespa index.

The sensitivity analysis performed around the best solution of t̂∗1 and t̂∗c demon-

strates that t1 is even more important than tc for the calibration, relative to the study

performed on synthetic data. Specifically, changes in t1 lead to fluctuations of the nor-

malised sum of squared residuals spanning the interval (-2.0% to 2.0%), (0.0% to 1.0%),

(-0.5% to 1.0%), (-2.0% to 2.0%), (0.0% to 1.75%), (0.0% to 2.5%), (0.0% to 2.0%), (0.0%

to 3.0%), respectively for the SSEC, SP, BM and IBovespa, SP-1997, SSEC-2015, NASDAQ

and NIKKEI bubbles. In contrast, changes in tc have negligible impact on the cost function.

Even accounting for their errors bars, one can observe that λ3 is at least two

orders of magnitude larger that λ4 for all t1’s, corroborating the results of Sec. 2.1.4. The

parameters t1 and tc contribute respectively to λ3 and λ4 more than 35% throughout the

analysed periods. Taken together, these features strengthen the evidence of the greater
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sloppiness of tc compared to t1, which makes the determination of the end of bubbles much

more difficult that their beginning.

Finally, it is important to check how the above results generalise for different

“present” times t2, mimicking a real time situation of a developing bubble. As seen in

figure 2.8, we consider four different values of t2 shown by the vertical dashed black lines

in each panel. Note that these four choices cover most of the duration of the bubbles. For

each t2, we search the optimal t1 that minimises the cost function up to 600 days prior t2.

This intervals in which t1 is scanned are represented by the different shades of grey, one per

value of t2.

One can observe that the pdf’s of t̂∗c are quite wide and with several modes, except

for the bubble on the S&P500 that burst in 2007. These modes are localised at times

when the markets corrected, in addition to finding a neighbourhood of the true ends of the

bubbles. In contrast, the pdf’s of t̂∗1 are monomodal, very narrow and pinpoint a time when

the markets start their significant ascent. For instance, for the S&P500 Index during the

1980’s, our analysis identifies two possible modes for the end of the bubble, one occurring

in the last quarter of 1985 associated with a significant drawdown and the other being close

to the crash on Oct. 19, 1987. Conversely, the narrow pdf of t̂∗1 identifies the beginning of

the bubble around mid-1984. A similar situation is observed for the SSEC Index as well as

for the synthetic case.

The existence of several modes of the pdf’s of t̂∗c can be traced to the discrete

scale invariance of the log-periodic oscillations [102], associated with the the occurrence

of corrections or plateaux decorating the super-exponential growth, each of them being

interpreted as a possible candidate for the end of the bubble by the calibration procedure.

When used to diagnose bubbles, this confirms that the LPPLS model can determine t1

significantly more accurately than tc.



Chapter 2: Birth or Burst of Financial Bubbles: Which one is easier to diagnose? 36

2.3 Conclusion

We have presented systematic tests of the precision and reliability with which the

beginning and end of a bubble can be determined. This has required using a specific bubble

model, the log-periodic power law singularity (LPPLS) model, which represents a bubble

as a transient noisy super-exponential price trajectory decorated by accelerated volatility

oscillations. One of the quality of the LPPLS model is to contain the end time tc of the

bubble as a defining parameter, which can thus be estimated over various time windows.

In order to estimate the beginning of a bubble, we have proposed to endogenise in the cost

function the parameter t1 defining the beginning of the time window that provides the best

goodness of fit and satisfy the LPPLS model conditions. The cost function quantifying

the quality of fit of the LPPLS model has been extended to include t1. Using the Fisher

Information matrix, we have quantified the parameter uncertainty associated with the de-

termination of both t1 and tc. Using both synthetic data and eight historical bubble cases,

we find overwhelming evidence that the beginning of bubbles is much better constrained

that their end. This is quantified by calculating the eigenvalues of the Hessian matrix,

which characterise the shape of the cost function in the different directions in parameter

space. Parameters associated with large eigenvalues are “rigid”, i.e. they tend to be well

estimated. In contrast, parameters associated with small eigenvalues are “sloppy”, as large

changes of their values do not impact the cost function, which is degenerate along their

direction in parameter space. We find that the eigenvalues for which t1 contributes most

are several order of magnitudes larger than the eigenvalues for which tc contributes most.

Practically, this implies that the beginning of financial bubbles are comparatively much

easier to determine using LPPLS than their ending time tc. Our results are robust over all

eight empirical bubbles and many synthetic tests, as well as when changing the time t2 (the
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“present”) of analysis.

Building on the initial sloppy-rigid analysis of the LPPLS model performed by [19],

our results corroborate and extend those obtained by [70] when studying the beginning

of Black-Monday bubble of 1987. Our analysis gives support to the empirical evidence

among practitioners (in particular hedge-funds [49]), who tend to correctly diagnose on-

going bubbles but in general fail to time their end.

As a side result, we have found that two structural parameters of the LPPLS

model, the exponent m controlling the super-exponential growth of price and the angular

log-periodic frequency ω describing the log-periodic acceleration of volatility, are very rigid.

This suggests that the LPPLS model is a reasonable candidate for describing the generating

process of prices during bubbles [110].

Finally, contrary to the claim in the literature that bubbles are not suppressed

by arbitrageurs because they fail to agree on the beginning of the bubble [1], our findings

suggests that bubbles persist due to the difficulty of synchronizing on the end of bubbles.
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Appendix A: calibration of the extended set of 4 nonlinear

parameters Φ = {m,ω, tc, t1}

We compute the first-order partial derivatives of Eq. (2.1) - i.e. the Gradient

vector ~5χ2(Φ) - with respect to each parameter as follows:

∂χ2(Φ)

∂m
=

2 ln(tc − t)(tc − t)m [ sin (ln(tc − t)ω) + cos(ln(tc − t)ω)−B ]

t2 − t1

× [ (tc − t)m sin (ln(tc − t)ω + cos(ln(tc − t)ω)−B)

t2 − t1
(2.5)

+
C1 + C2 +A ]

t2 − t1

∂χ2(Φ)

∂ω
=
−2 ln(tc − t)(tc − t)m [ sin (ln(tc − t)ω − cos(ln(tc − t)ω) ])

t2 − t1

× [ (tc − t)m sin (ln(tc − t)ω + cos(ln(tc − t)ω)−B)

t2 − t1
(2.6)

+
C1 + C2 +A ]

t2 − t1

∂χ2(Φ)

∂tc
=
−2(tc − t)m−1 [ (C1ω − C2m) cos (ω ln(tc − t)) +Bm)(tc − t)m

t2 − t1

× (C2 sin(ω ln(tc − t)) + C1 cos(ω ln(tc − t))
t2 − t1

(2.7)

+
−B) +A]

t2 − t1

∂χ2(Φ)

∂t1
=

(−y + C2(tc − t)m sin(ln(tc − t)ω) + C1(tc − t)m cos (ln(tc − t)ω)

(t2 − t1)2

+
B(tc − t)m +A)2

(t2 − t1)2
. (2.8)
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These first-order partial derivatives are collected by the Jacobian matrix J(Φ)(N×m),

J(Φ) =


∂ri
∂Φi

...

∂ri
∂Φj

 ≡
[

∂ri
∂m

∂ri
∂ω

∂ri
∂tc

∂ri
∂t1

]ᵀ
j=1,2,...,m;
i=1,2,...,N ;

, (2.9)

where ri(Φ) = y(t)i − flppls(Φ, t)i are defined in Eq. (2.1).

Embedded within a m-dimensional Euclidean space, the Gradient vector points

towards directions in which the cost increases more rapidly. At a given local minimum,

the minimisation problem should not only display small ~5χ2(Φ) values but also, the cost

curvature should be convex and the residuals approximately zero. Formally, this idea is

expressed as

∆χ2(Φ) =
1

2
~5(Φ)ᵀH(Φ∗)~5(Φ) ≥ 0, (2.10)

where H(Φ∗) denotes the Hessian matrix expressed at the best-fit parameters. Bold letters

denote either matrices or vectors. This special structure of the sum of squares of residuals

allows one to approximate H(Φ∗) in terms of the fitting residuals using,

∂χ2(Φ)

∂ΦiΦj
=

m∑
i=1

(
ri
∂2ri(Φ)

∂Φi∂Φj
+
∂ri(Φ)

∂Φi

∂ri(Φ)

∂Φj

)
. (2.11)

Since Eq. (2.10) holds, we therefore skip the calculation of second-order derivatives

and compute H(Φ∗) solely using the Jacobian [74, 124],

H|∗ ≡ JᵀJ =
N∑
i=1

(~5ri(Φ∗))(~5rj(Φ∗))ᵀ. (2.12)
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At the best-fit, the Hessian is always symmetric, positive-definite and has entries

according to

H
χ2(Φ∗)
i,j

=



∂2ri(Φ)
∂m,∂m

∂2ri(Φ)
∂m,∂ω

∂2ri(Φ)
∂m,∂tc

∂2ri(Φ)
∂m,∂t1

∂2ri(Φ)
∂ω,∂m

∂2ri(Φ)
∂ω,∂ω

∂2ri(Φ)
∂ω,∂tc

∂2ri(Φ)
∂ω,∂t1

∂2ri(Φ)
∂tc,∂m

∂2ri(Φ)
∂tc,∂ω

∂2ri(Φ)
∂tc,∂tc

∂2ri(Φ)
∂tc,∂t1

∂2ri(Φ)
∂t1,∂m

∂2ri(Φ)
∂t1,∂ω

∂2ri(Φ)
∂t1,∂tc

∂2ri(Φ)
∂t1,∂t1


. (2.13)

Derivatives are calculated using a centered finite-difference scheme,

χ2(Φ∗)′ ≈ χ2(Φ∗ + h)− χ2(Φ∗ − h)

2h
, (2.14)

with step-size h varying according to information provided by the Gradient. The choice of

h should neither be too small or too large.
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lppls synthetic
Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v

m ω tc t1 m ω tc t1
m 9.20e-1 8 1.00e0 -9.99e-1 -4.40e-2 -9.73e-5 -4.37e-4
w 4.05e-2 3.70e-03 2.07e-3 -4.40e-02 9.98e-1 -2.05e-3 -9.22e-3
tc 8.98e-5 2.02e-08 5.12e-07 1.06e-4 8.43e-4 -9.19e-3 5.27e-4 -9.99e-1
t1 4.04e-4 1.07e-06 2.40e-08 9.87e-05 5.37e-7 1.88e-4 -2.05e-3 -9.99e-1 -5.08e-4

Hessian, H(φ∗) λ Eigenvectors, ~v
m ω tc m ω tc

m 5.91e-2 1.00e0 9.98e-1 3.59e-2 1.69e-3
ω -1.96e-3 4.71e-3 7.84e-2 3.60e-2 9.99e-1 1.54e-2
tc 9.78e-5 -7.53e-5 1.41e-6 2.35e-6 1.13e-3 1.55e-2 9.99e-1

Table 2.1: Hessian matrix (left columns), eigenvalues λ (middle column) and corresponding eigen-

vectors ~v (right columns), for the best LPPLS fits of the synthetic price time series generated as

explained in section 2.1.4 using χ2(φ) and χ2(Φ) in the full window shown in Fig. 2.1(a) correspond-

ing to [t1 = Jan. 1981 to t2 = Aug. 1987] (represented as [Date = 1 : Date = 1100]). The top rows

correspond to the extended cost function (2.1) endogenizing t1 as a parameter to be determined.

The bottom rows correspond to the case of a fixed t1 with cost function (1.10).
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S&P 500(BM)
t∗1 ≈Mar. 1984, t2 ≈ Aug. 1987

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 9.20e-1 1.00e0 -9.99e-1 -1.90e-2 -3.81e-4 -9.81e-3
ω 1.68e-2 3.70e-2 4.05e-2 -2.02e-2 9.90e-1 2.07e-3 1.36e-1
tc 3.45e-4 8.20e-7 9.87e-4 4.90e-3 7.07e-3 1.35e-1 -1.64e-1 -9.77e-1
t1 8.90e-3 4.63e-3 5.96e-4 5.12e-3 9.65e-4 -8.34e-4 -2.05e-2 -9.86e-1 1.63e-1

S&P 500(SP )
t∗1 ≈ Dec. 2003, t2 ≈ Jul. 2007

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 9.20e-1 1.00e0 -9.99e-1 -2.12e-2 -6.61e-4 -1.21e-3
ω 1.320e-2 3.00e-1 3.26e-1 -2.13e-2 9.99e-1 -8.57e-6 3.18e-2
tc 6.09e-4 7.85e-6 1.87e-5 2.31e-3 -5.59e-4 -3.18e-2 3.78e-2 9.98e-1
t1 9.12e-4 9.50e-3 8.07e-5 2.43e-3 1.65e-5 -6.41e-4 1.20e-3 9.99e-1 -3.78e-2

SSEC
t∗1 ≈ Feb. 2005, t2 ≈ Oct. 2007

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 5.22e-1 1.00e0 -9.99e-1 -1.26e-2 -3.75e-5 -1.74e-3
ω 6.32e-3 2.28e-2 4.35e-2 -1.26e-2 9.99e-1 3.01e-4 2.33e-2
tc 1.95e-5 7.03e-6 9.81e-5 3.67e-3 1.44e-3 2.34e-2 -9.82e-4 -9.99e-1
t1 9.02e-4 4.98e-4 1.98e-6 1.93e-3 1.87e-4 3.22e-5 2.78e-04 -9.99e-1 9.89e-4

IBovespa
t∗1 ≈ Jun. 2003, t2 ≈ Jan. 2004

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 2.60e-1 1.00e0 -9.99e-1 -4.00e-3 -3.84e-6 -3.86e-5
ω 1.01e-3 2.03e-02 3.95e-2 -4.00e-3 9.99e-1 2.30e-7 2.12e-4
tc 2.09e-6 6.16e-9 9.82e-6 3.77e-3 3.77e-5 2.12e-4 -1.02e-3 -9.99e-1
t1 1.12e-05 2.02e-6 1.10e-6 9.82e-4 3.77e-5 3.80e-6 2.67e-8 -9.99e-1 1.02e-3

Table 2.2: Hessian matrix, eigenvalues and corresponding eigenvectors for the best LPPLS fits
using Eq (2.1) of the financial bubbles described in section 2.2.1 in the time windows [t∗1 : t2] given
in the table for each bubble. The numbers in boldface indicate the parameters that contribute the
most to their eigenvectors.
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S&P 500(1997)
t∗1 ≈ Jul. 1996, t2 ≈ Feb. 1997

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 1.98e-1 1.00e0 -9.66e-1 -2.58e-1 -6.15e-5 -7.89e-3
ω 3.85e-2 6.40e-2 2.60e-1 -2.57e-1 9.61e-1 4.34e-4 1.00e-1
tc 9.31e-6 9.77e-6 1.03e-4 2.05e-2 1.82e-2 -9.88e-2 3.91e-2 9.94e-1
t1 2.65e-4 5.23e-3 1.65e-4 4.78e-3 4.63e-4 -6.63e-4 3.43e-3 9.99e-1 -3.90e-2

SSEC (2015)
t∗1 ≈Mar. 2014, t2 ≈ Jun. 2015

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 6.55e-1 1.00e0 -9.80e-1 -1.98e-1 -3.94e-3 -7.08e-4
ω 1.25e-1 6.40e-2 5.68e-2 -1.98e-1 9.79e-1 -1.38e-2 3.59e-2
tc 2.74e-3 8.25e-6 7.53e-5 5.73e-3 6.39e-3 -3.5e-2 7.76e-3 9.99e-1
t1 2.21e-4 1.32e-3 1.25e-5 3.95e-3 8.38e-5 6.67e-3 -1.30e-2 -9.99e-1 7.26e-3

NASDAQ
t∗1 ≈ Jan. 1996, t2 ≈ Feb. 2000

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 9.07e-1 1.00e0 -9.93e-1 -1.12e-1 -8.27e-4 -1.01e-2
ω 1.01e-1 2.55e-2 1.53e-2 -1.12e-1 9.92e-01 -6.00e-03 5.01e-2
tc 7.65e-4 2.05e-7 4.01e-6 7.56e-4 4.52e-3 5.07e-2 -3.45e-2 -9.98e-1
t1 9.22e-3 1.72e-3 2.74e-5 8.23e-4 2.22e-6 1.34e-3 -7.62e-3 -9.99e-1 3.42e-02

NIKKEI
t∗1 ≈ Jan. 1988, t2 ≈ Dec. 1989

Hessian, H(Φ∗) λ/λmax Eigenvectors, ~v
m ω tc t1 m ω tc t1

m 9.20e-1 1.00e0 -9.99e-1 -4.40e-2 -9.73e-5 -4.38e-4
ω 4.05e-2 3.70e-3 2.07e-3 -4.40e-2 9.98e-1 -2.05e-3 -1.80e-2
tc 8.98e-5 2.02e-8 5.12e-7 1.07e-3 1.23e-3 -1.80e-2 8.76e-5 -9.99e-1
t1 4.04e-4 1.07e-6 2.40e-8 9.87e-4 5.37e-7 1.87e-4 -2.05e-3 -9.99e-1 -5.04e-5

Table 2.3: Hessian matrix, eigenvalues and corresponding eigenvectors for the best LPPLS fits
using Eq (2.1) of the financial bubbles described in section 2.2.1 in the time windows [t∗1 : t2] given
in the table for each bubble. The numbers in boldface indicate the parameters that contribute the
most to their eigenvectors.
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(a) Synthetic LPPLS: λt1 vs. λtc (b) pdf(λ2, λ3, λ4)

(c) χ2(tc = ‘1194′,m, ω, t1 = 150) (d) χ2(tc,m, ω ≈ 6.3, t1 = 150) (e) χ2(tc,m ≈ 0.44, ω, t1 = 150)

(f) χ2(tc = ‘1194′,m, ω ≈ 6.3, t1) (g) χ2(tc = ‘1194′,m ≈ 0.44, ω, t1) (h) χ2(tc,m ≈ 0.44, ω ≈ 6.3, t1)

Figure 2.1: Quantification of the relative sloppiness of tc and t1 in synthetic data: (panel 2.1(a)): a

synthetic noisy LPPLS price time series generated as described in the main text is shown with the black

continuous line. Here, the x-axis denote values of the beginning t1 of the window in which the calibration is

performed at a fixed t̄2. The blue circles and red squares show the normalised eigenvalues (λ) of the Hessian

matrix H(Φ∗) estimated at the best-fit, which correspond mainly to the directions t1 and tc in parameter

space, (See Fig (2.7) for precise quantification). Errors bars for each parameter represent λEi ± σ(λEi ) over

100 realisations (corresponding to 100 generations of the noise). The relative contribution (see Eq. 2.4) of

t1 and tc at eigenvalues λ3 and λ4 is depicted using coloured lines within the grey-shaded area. Coloured

pdf ’s denote qualified values of t1 and tc at t̄2. The inset box-plot shows the normalised cost change in %

terms when t1 (respectively tc) are perturbed over the ensemble of t̂∗1 (respectively t̂∗c). Panel 2.1(b) shows

the distributions over the ensemble of t1 values of the Hessian eigenvalues for the aggregated LPPLS fits

performed in the synthetic data. From top to bottom, the y-axis display the hierarchy (rigid to sloppy) of

parameters that govern the model output. Panels 2.1(c)-2.1(h): cross-sections of the cost function χ2(Φ) at

the best-fit window (w ≡ ||t1∗ : t2∗||, i.e. for the window starting at the fitted t1 for the fixed t2 = 150) in

the planes (m,ω), (tc, ω), (tc,m), (t1,m), (tc, ω) and (t1, tc) respectively.
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Figure 2.2: Probability density functions (pdf) of the normalized eigenvalues λ2/λ1, λ3/λ1 and λ4/λ1 over
the ensemble of windows obtained by scanning t1 for the eight empirical bubbles described in section 2.2.1.
The horizontal dashed lines indicate the mean values of the distributions. The colors of the pdf ’s encode
the parameter that dominates its corresponding eigenvalue: green for m (λ/λmax = 0 = 1.00e0), grey for ω,
blue for t1 and red for tc.
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Figure 2.3: Cross-sections of the cost function χ2(Φ) for the eight studied empirical bubbles described in

section 2.2.1 along the three different pairs of structural parameters (m,ω), (tc,m) and (tc, ω). Small (resp.

large) values for the cost function correspond to lighter (resp. darker) colours and depict parameter domains

giving better fits.
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Figure 2.4: Cross-sections of the cost function χ2(Φ) for the S&P500, SSEC, NASDAQ and NIKKEI

Indexes empirical bubbles described in section 2.2.1 along the three different pairs of structural parameters

(m,ω), (tc,m) and (tc, ω). Small (resp. large) values for the cost function correspond to lighter (resp.

darker) colours and depict parameter domains giving better fits.
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Figure 2.5: Cross-sections of the cost function χ2(Φ) for the eight studied empirical bubbles described in

section 2.2.1 along the three different pairs of parameters (t1,m), (t1, ω) and (t1, tc), outlining the dependence

on the parameter t1 representing the beginning of the bubble. Small (resp. large) values for the cost function

correspond to lighter (resp. darker) colours and depict parameter domains giving better fits.
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Figure 2.6: Cross-sections of the cost function χ2(Φ) for the eight studied empirical bubbles described in

section 2.2.1 along the three different pairs of parameters (t1,m), (t1, ω) and (t1, tc), outlining the dependence

on the parameter t1 representing the beginning of the bubble. Small (resp. large) values for the cost function

correspond to lighter (resp. darker) colours and depict parameter domains giving better fits.
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Figure 2.7: : Quantification of the relative sloppiness of tc and t1 for the eight empirical bubbles described in section 2.2.1. The logarithm of their
price as a function of time is shown by the black continuous line in each panel. The blue circles and red squares show the normalised eigenvalues
λE3 and λE4 of the Hessian matrix H(Φ∗) estimated for the best-fit, respectively mainly associated with t1 and tc, as a function of t1 for a fixed t̄2
indicated by the black vertical dashed line. The errors bars represent ± one-sigma interval around the mean values, obtained over 100 estimations. The
relative contribution defined by expression (2.4) of t1 to the eigenvalue λ3 and of tc to λ4 are shown using vertical coloured lines inside the grey-shaded
area. The box-plots in the inset show the normalised cost change in percent when t1 (respectively tc) are sampled over the ensemble of calibrated t̂∗1
(respectively t̂∗c).
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Figure 2.8: Analysis of the eight bubbles described in section 2.2.1 as well as for a synthetic bubble, for four different values of t2 shown by the

vertical dashed black lines in each panel. The red (resp. blue) filled curve represents the pdf of t̂∗c (resp. t̂∗1) over the set of time windows obtained

from the four t2’s by scanning t1 over their corresponding grey shaded area, each of the same width of 600 days. The pdf’s are represented using a

kernel method with bandwidth ≈ 0.1 year.
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SSEC
t∗1 ≈ Feb. 2005, t2 ≈ Oct. 2007

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 1.46e-1 1.00e0 9.99e-1 2.32e-2 1.24e-4
ω 3.32e-3 3.41e-3 2.28e-2 2.31e-2 9.98e-1 4.62e-2
tc 1.46e-5 1.55e-4 1.00e-5 1.93e-5 9.49e-4 4.62e-2 9.98e-1

S&P500 (SP )
t∗1 ≈ Dec. 2003, t2 ≈ Jul. 2007

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 1.21e-2 1.00e0 9.99e-1 3.15e-2 1.80e-3
ω 3.46e-4 1.22e-3 9.95e-2 3.15e-2 9.99e-1 2.54e-2
tc 2.10e-5 3.15e-5 8.98e-7 5.81e-6 9.98e-4 2.55e-2 9.99e-1

S&P500 (BM)
t∗1 ≈Mar. 1984, t2 ≈ Aug. 1987

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 3.24e-1 1.00e0 9.99e-1 4.07e-2 3.02e-3
ω 1.22e-2 2.54e-2 7.70e-2 4.08e-2 9.98e-1 4.56e-2
tc 9.33e-4 1.10e-3 1.71e-3 5.12e-3 1.16e-3 4.57e-2 9.98e-1

IBovespa
t∗1 ≈ Jun. 2003, t2 ≈ Jan. 2004

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 1.21e-2 1.00e0 9.83e-1 1.81e-1 -8.095009e-03
ω 1.80e-3 2.67e-3 1.88e-1 1.80e-1 9.82e-1 4.578182e-02
tc 1.17e-4 8.36e-5 9.23e-5 6.96e-3 1.62e-2 4.35e-2 9.989187e-01

‘ S&P500 (1997)
t∗1 ≈ Jul. 1996, t2 ≈ Feb. 1997

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 9.16e-4 1.00e0 9.99e-1 3.12e-2 1.33e-2
ω 2.62e-5 6.83e-5 7.86e-2 3.35e-2 9.98e-1 2.55e-1
tc 1.16e-5 -1.77e-5 6.72e-6 2.15e-3 2.15e-3 2.56e-1 9.66e-1

SSEC (2015)
t∗1 ≈Mar. 2014, t2 ≈ Jun. 2015

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 1.57e-1 1.00e0 9.99e-1 3.67e-2 4.09e-3
ω 5.55e-3 6.71e-3 4.13e-2 3.69e-2 9.98e-1 4.58e-2
tc 6.34e-4 3.17e-4 1.25e-4 6.95e-4 2.39e-3 4.60e-2 9.98e-1

NASDAQ
t∗1 ≈ Jan. 1996, t2 ≈ Feb. 2000

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 4.11e-1 1.00e0 9.99e-1 1.65e-2 1.27e-3
ω 6.46e-3 2.13e-2 5.14e-2 1.65e-2 9.99e-1 1.43e-2
tc 5.19e-4 3.13e-4 5.44e-6 9.39e-7 1.03e-3 1.44e-2 9.99e-1

NIKKEI
t∗1 ≈ Jan. 1988, t2 ≈ Dec. 1989

Hessian H(φ∗) λ/λmax Eigenvectors ~v
m ω tc m ω tc

m 8.72e-4 1.00e0 9.85e-1 1.68e-1 4.14e-3
ω 1.30e-4 1.32e-4 1.23e-1 1.69e-1 9.85e-1 -1.87e-2
tc -3.30e-6 -2.65e-6 5.44e-8 4.48e-7 9.21e-4 1.91e-2 9.99e-1

Table 2.4: Hessian matrix, eigenvalues and corresponding eigenvectors for the best LPPLS fits

for the four studied empirical bubbles described in section 2.2.1 using Eq (1.12). The numbers rep-

resented in boldface identify the parameters that contribute most to their corresponding eigenvalue.
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AR(1) residuals (~r) test
Index Damping Number of oscillations LPPLS conditions Dickey-Fuller Phillips-Perron

Synthetic LPPLS 3.36 5.27 Satisfied -3.420 (10−3) -3.610 (10−3)
SSEC 1.04 3.91 Satisfied -4.653 (10−3) -4.642 (10−3)
S&P 500(SP ) 1.15 5.13 Satisfied -4.710 (10−3) -4.702 (10−3)
S&P 500(BM) 1.41 4.02 Satisfied -3.641 (10−3) -3.641 (10−3)
IBovespa 1.85 3.47 Satisfied -4.620 (10−3) -4.610 (110−3)
S&P 500(1997) 1.15 2.32 Satisfied -4.710 (10−3) -4.702 (10−3)
SSEC (2015) 1.39 2.86 Satisfied -4.710 (10−3) -4.702 (10−3)
NASDAQ 1.32 2.63 Satisfied -4.710 (10−3) -4.702 (10−3)
NIKKEI 1.03 2.51 Satisfied -4.710 (10−3) -4.702 (10−3)

Table 2.5: Diagnosis of the LPPLS fits with calibrated parameters Φ∗ for the four studied empirical

bubbles described in section 2.2.1 and one synthetic data. We easily reject the hypothesis that the

residuals are unit-root at the 99% confidence level. Values in brackets give the p-values of the test

statistic.



Chapter 3

Lagrange regularisation approach

to compare nested data sets and

determine objectively financial

bubbles’ inceptions

3.1 Introduction

There is an inverse relationship between the tendency of a model to overfit data

and the sample size used. In other words, the smaller the data sample size, the larger

the number of degrees of freedom, the larger is the possibility of overfit [73]. Due this

characteristic feature, one cannot compare directly goodness-of-fit metrics, such as the

Residual Sum of Squares (RSS) := χ2(Φ) or its normalized version RSS/(N-p) := χ2
np(Φ),

of statistical models over unequal sized samples for a given parametrisation Φ. Here, N

denotes the sample size while p is the number of degrees of freedom of a model. This is

54
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particularly problematic when one is specifically interested in selecting the optimal sub-

sample of a dataset to calibrate a model. This is a common problem when calibrating time

series, when the model is only valid in a specific time window, which is unknown a priori.

Our motivation stems from the question of determining the beginning of a financial bubble,

but this question is more generally applicable to time series exhibiting regime shifts that

one is interested in localising precisely.

In the literature, there are solutions for proper model selection such as the Lasso

[121] and Ridge regressions [78], where the cost function contains an additional penalisation

for large values of the estimated parameters. Well-known metrics such as the AIC and BIC

are also standard tools for quantifying goodness-of-fit of different models [2] and for selecting

the one with the best compromise between goodness-of-fit and complexity. However, results

stemming from these methodologies are only comparable within the same data set.

There seems to be a gap in the literature about the proper procedure one should

follow when comparing goodness-of-fit metrics of a model calibrated to different batches of a

given data set. In order to fill this gap, we propose a novel metric for calibrating endogenised

end points and compare nested data sets. The method empirically computes the tendency

of a model to overfit a data set via what we term the “Lagrange regulariser term” λ. Once λ

has been estimated empirically, the cost function can be corrected accordingly as a function

of sample size, giving the Lagrange regularisation of χ2
np(Φ). As the number of data points

or the window beginning- or end-point is now endogeneised, the optimal sample length can

then be determined. We empirically test the performance of the Lagrange regularisation of

χ2
np(Φ), which defined χ2

λ(Φ) as the regularised Residual Sum of Squares, in comparison

with the naive χ2(Φ) and χ2
np(Φ) itself using both linear and non-linear models as well as

synthetic and real-world time-series.

This paper is structured as follows. Section (3.2) explains the motivation behind
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the proposed Lagrange regularising term. Moreover, we provide details of the derivation of

λ as well as the analytical expression for computing the tendency of a model to overfit data.

In Section (3.3), we make use of a simple OLS regression to test the empirical performance

of the Lagrange regularisation of χ2
np(Φ) on the problem of optimal sub-sample selection.

Section (3.4) shows how the regulariser can be used alongside with the LPPLS model of

financial bubbles in order to diagnose the beginning of financial bubbles. Empirical findings

are given in Sec. (3.4.1) and Section (3.5) concludes.

3.2 Formulation of calibration with varying window sizes:

How to endogenize t1 and make different window sizes

comparable

Let us consider the normalised mean-squared residuals, defined as the sum of

squares of the residuals divided by the number t2− t1 of points in the sum corrected by the

number of degrees of freedom p of the model,

χ2
np(Φ) :=

1

(t2 − t1)− p

t2∑
i=t1

ri(Φ)2 , (3.1)

with

ri(Φ) = ydatai − ymodeli (Φ) , (3.2)

where Φ denotes the set of model parameters to fit including a priori the left end point t1

of the calibration window. The term ymodeli (Φ) corresponds to the theoretical model and

ydatai is the empirical value of the time-series at time i.

For a fixed right end point t2 of the calibration window, we are interested in
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comparing the results of the fit of the model to the empirical data for various left end

points t1 of the calibration window. The standard approach assumes a fixed calibration

window [t1, t2] with N = t2 − t1 + 1 data points. In order to relate the two problems, we

consider the minimisation of χ2
np(Φ) at fixed t2− t1 (for a fixed t2) as minimising a general

problem involving t1 as a fit parameter augmented by the condition that t2 − t1 + 1 = N is

fixed. This reads

Min χ2
λ(Φ) , (3.3)

with

χ2
λ(Φ) :=

1

(t2 − t1)− p

t2∑
i=t1

ri(Φ)2 + λ(t2 − t1) , (3.4)

where we have introduced the Lagrange parameter λ, which is conjugate to the constraint

t2 − t1 + 1 = N . Once the parameters Φ are determined, λ is obtained by the condition

that the constraint t2 − t1 + 1 = N is verified.

Since data points are discrete, the minimisation of (3.4) with respect to t1 reads

0 = χ2
λ(Φ)(t1 + 1)− χ2

λ(Φ)(t1) =
1

(t2 − t1 − p− 1)

t2∑
i=t1+1

ri(Φ)2 − 1

t2 − t1 − p

t2∑
i=t1

ri(Φ)2 − λ

=
1

t2 − t1 − p

(
1 +

1

t2 − t1 − p
+O

(
1

(t2 − t1 − p)2

)) t2∑
i=t1+1

ri(Φ)2 − 1

t2 − t1 − p

t2∑
i=t1

ri(Φ)2 − λ ,

= − 1

t2 − t1 − p
rt1(Φ)2

(
1 +O

(
1

t2 − t1 − p

))
+

1

t2 − t1 − p
χ2(Φ)

(
1 +O

(
1

t2 − t1 − p

))
− λ .

(3.5)

Neglecting the small terms O
(

1
t2−t1−p

)
leads to

χ2
λ(Φ) = rt1(Φ)2 + λ(t2 − t1 − p) . (3.6)



Chapter 3: Lagrange regularisation approach to compare nested data sets and determine
objectively financial bubbles’ inceptions 58

Expression (3.6) has the following implications. Consider the case where all

squared terms ri(Φ)2 in the sum (3.1) defining χ2
λ(Φ) are approximately the same and

independent of t1, which occurs when the residuals are thin-tailed distributed and the

model is well specified. Then, we have

ri(Φ)2 ≈ r2 , ∀i , including rt1(Φ)2 = r2 , (3.7)

and thus

χ2
np(Φ) ≈ r2 . (3.8)

Expressing (3.6) with the estimation (3.7) yields

χ2
λ(Φ) ≈ r2 + λ(t2 − t1 − p) . (3.9)

Comparing with (3.8), this suggests that varying t1 is expected in general to introduce a

linear bias of the normalised sum χ2
np(Φ) of squares of the residuals, which is proportional

to the size of the calibration window (up to the small correction by the number p of degrees

of freedom of the model). If we want to compare the calibrations over different window

sizes, we need to correct for this bias.

More specifically, rather than fixing the window size t2 − t1 + 1 = N , we want to

determine the ‘best’ t1, thus comparing calibrations for varying window sizes, for a fixed

right end point t2. As a consequence, the Lagrange multiplier λ is no more fixed to ensure

that the constraint t2 − t1 + 1 = N holds, but now quantifies the average bias or “cost”

associated with changing the window sizes. This bias is appreciable for small data sample

sizes. It vanishes asymptotically as N →∞, i.e. limN→∞λ = 0.

In statistical physics, this is analogous to the change from the canonical to the
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grand canonical ensemble, where the condition of a fixed number of particles (fixed number

of points in a fixed window size) is relaxed to a varying number of particles with an energy

cost per particle determined by the chemical potential (the Lagrange parameter λ) [45]. It

is well-known that the canonical ensemble is recovered from the grand canonical ensemble

by fixing the chemical potential (Lagrange multiplier) so that the number of particles is

equal to the imposed constraints. Idem here.

How to determine the crucial Lagrange parameter λ? We propose an empirical

approach. When plotting χ2
np(Φ) as a function of t1 for various instances, we observe that

a linearly decreasing function of t1 provides a good approximation of it, as predicted by

(3.6) (for λ > 0). The slope can then be interpreted as quantifying the average bias of the

scaled goodness-of-fit χ2
np(Φ) due to the reduced number of data points as t1 is increased.

This average bias is clearly dependent on the data and of the model used to calibrate

it. We can thus interpret the average linear trend observed empirically as determining

the effective Lagrange regulariser term λ that quantifies the impact on the goodness-of-fit

resulting from the addition of data points in the calibration, given the specific realisation

of the data and the model to calibrate. Thus, to make all the calibrations performed for

different t1 comparable for the determination of the optimal window size, we propose to

correct expression (3.1) by subtracting the term λ(t2 − t1) from the normalised sum of

squared residuals χ2
np(Φ) given by Eq. (3.1), where λ is estimated empirically as the large

scale linear trend. Here, we omit the p correction since it leads to a constant translation for

a given model with given number of degrees of freedom. Such a large scale linear trend of

χ2
np(Φ) as a function of t1 has been reported for a number of financial bubble calibrations

in [31]. Our proposed procedure thus amounts simply to detrend χ2
np(Φ), which has the

effect of making more pronounced the minima of χ2
np(Φ), as we shall see below for different

models.
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To summarise, endogenising t1 in the set of parameters to calibrate requires to

minimize

χ2
λ(Φ) = χ2

np(Φ)− λ(t2 − t1) (3.10)

=
1

(t2 − t1)− p

t2∑
i=t1

ri(Φ)2 − λ(t2 − t1) , (3.11)

with,

ri(Φ) = ydatai − ymodeli (Φ) , (3.12)

where λ is determined empirically so that χ2
np(Φ) − λ(t2 − t1) has zero drift as a function

of t1 over the set of scanned values. The obtained empirical value of λ can be used as a

diagnostic parameter quantifying the tendency of the model to over-fit the data. We can

thus also refer to λ as the “overfit measure”. When it is large, the goodness-of-fit χ2(Φ)

changes a lot with the number of data points, indicating a poor overall ability of the model

to account for the data. [31] observed other cases where χ2(Φ) is constant as a function

of t1 (corresponding to a vanishing λ), which can be interpreted in a regime where the

model fits robustly the data, “synchronizing” on its characteristic features in a way mostly

independent of the number of data points.

3.3 Application of the Lagrange regularisation method to a

simple linear-regression problem

Consider the following linear model:

Y = βX + ε, (3.13)
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with explanatory variable of length (N × 1) denoted by X = {x1, x2, . . . , xN}, regressand

Y = {y1, y2, . . . , yN} and error vector ε ∼ N (0, σ2). Bold variables denote either matrices

or vectors. Fitting Eq. (3.13) to a given data set Y data consists on solving the quadratic

minimisation problem

β̂ = argmin
β

χ2(Φ), (3.14)

where Φ are parameters to be estimated and the objective function χ2(Φ) is given by

χ2(Φ) =
N∑
i=1

|Y data
i − (Y model

i − βXi)|2 (3.15)

= ||Y data − (Y model − βX)||. (3.16)

The solution of Eq. (3.14) with (3.16) for a given data set of length N reads

β̂ = (X ′X)−1X ′Y . (3.17)

Let w∗ ⊆ Y data and have length ≤ N. w∗ ∈ [τ : t̄2] thus denotes the optimal

window size one should use for fitting a model into a data set of length N for a fixed end

point := t2 and an optimal starting point := τ .

In order to show how the goodness-of-fit metric χ2(Φ) fails to flag the optimal

τ -portion of the data set where the regime of interest exists and how delicate is χ2
np(Φ)

for diagnosing the true value of the transition time τ , 20000 synthetic realisations of the

process (3.13) were generated, with X := t ∈ [−200,+1], in such a way that Y data displays

a sudden change of regime at τ = −100. In the first half of the dataset [−200,−100], the

data points are generated with β = 0.3. In the second half of the dataset [−101, 0], the

data points are generated with β = 0.6. After the addition of random noise ε ∼ N (0, 1),
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each single resulting time-series was fitted for a fixed end time t̄2 = 1 while shrinking the

left-most portion of the data (t1) towards t2, starting at t1 = −200,−199, . . . , t2 − 3. For

the largest window with t1 = −200, there are t2− t1 + 1 = 1− (−200) + 1 = 202 data points

to fit. For the smallest window with t1 = t2 − 3, there are t2 − t1 + 1 = 4 data points to

fit. For each window size w, the process of generating synthetic data and fitting the model

was repeated 20000 times, allowing us to obtain confidence intervals.

As depicted by Fig. (3.1), the proposed methodology is able to correctly diagnose

the optimal starting point := τ associated with the change of slope. While the χ2(Φ) metric

monotonously decreases and the χ2
np(Φ) metric plateaus from t = −100 onwards, χ2

np −

λ(t2 − t1) monotonously increases over the same interval, thus marking a clear minimum.

The variance of the metric χ2
λ(Φ) also increases over this interval. Specifically, the metric

χ2(Φ) tends to favor the smallest windows and therefore overfitting is prone to develop

and remain undetected. The metric χ2
np(Φ) suggests τ ≈ −90 after 20000 simulations,

which is 10% away from the true value τ = 100. Moreover, the dependence of χ2
np(Φ) as a

function of t1 is so flat for t1 ∈ [−100 : −40] that any given value of τ within this period

is statistically significant. For this simulation study, χ2
np(Φ) ranges for 0.134 to 0.135 for

t1 ∈ [−100 : −60], so as to be almost undistinguishable over this interval of possible τ

values. As we shall see later on, the performance of χ2
np(Φ) degrades further to resemble

that of the χ2(Φ) metric when dealing with more complex nonlinear models such as the

LPPLS model. On the other hand, our proposed correction via the Lagrange regulariser

λ provides a simple and effective method to identify the change of regime and the largest

window size compatible with the second regime. The minimum is very pronounced and

clear, which is not the case for χ2
np(Φ).
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3.4 Using the Lagrange regularisation method for Detecting

the Beginning of Financial Bubbles

In the previous Section, we have proposed a novel goodness-of-fit metric for in-

ferring the optimal beginning point or change point τ (for a fixed end point t̄2) in the

calibration of a simple linear model. The application of the Lagrange regulariser λ allowed

us to find the optimal window length w∗ = [τ : t2] for fitting the model by enabling the

comparison of the goodness-of-fits across different w values. We now extend the application

of the methodology to a more complex non-linear model, which requires one to compare fits

across different window sizes in order to diagnose bubble periods on financial instruments

such as equity prices and price indexes.

3.4.1 Empirical analysis

We apply our novel goodness-of-fit metric to the problem of finding the beginning

times of financial bubbles, defined as the optimal starting time t1 obtained by endogenising

t1 and calibrating it. We first illustrate and test the method on synthetic time series and

then apply it to real-world financial bubbles. A Python implementation of the algorithm is

provided in the appendix.

Construction of synthetic LPPLS bubbles

To gain insight about the application of our proposed calibration methodology on

a controlled framework and thus establish a solid background to our empirical analysis, we

generate synthetic price time series that mimic the salient properties of financial bubbles,

namely, a power law-like acceleration decorated by oscillations. The synthetic price time

series are obtained by using formula (1.6) with parameters given by the best LPPLS fit
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within the window w ∈ [t1 = 1 Jan. 1981: t2 = 30 Aug. 1987] of the bubble that ended

with the Black Monday 19 Oct. 1987 crash. These parameters are m = 0.44, ω=6.5, C1 = -

0.0001, C2=0.0005, A=1.8259, B= -0.0094, tc = 1194 (corresponding to 1987/11/14), where

days are counted since an origin put at t1 = Jan. 1981. To the deterministic component

describing the expected log-price given by expression (1.6) and denoted by fLPPLS(φ, t),

we add a stochastic element to obtain the synthetic price time series

ln[P (t)] = fLPPLS(φ, t) + σε(t), (3.18)

where ε(t) ∼ N (0, σ0) noise, σ0 = 0.03 and t = [1, . . . , N = 1100].

To create a price time series with a well-defined transition point corresponding to

the beginning of a bubble, we take the first 500 points generated with expression (3.18) and

mirror them via a t → t1 − t reflection across the time t1 = 1 Jan. 1981. We concatenate

this reflected sequence of 500 prices to the 1100 prices obtained with (3.18) for t ≥ t1, so

that the true transition point corresponding to the start of the bubble described by the

LPPLS pattern is t1 = 1 Jan. 1981. The black stochastic line on the top of figure (3.2)

represent this union of the two time-series. This union constitutes the whole synthetic time

series on which we are going to apply our Lagrange regularisation of χ2
λ(Φ) in order to

attempt recovering the true start time, denoted by the hypothetical time t1 = 1 Jul. 1911.

For each synthetic bubble price time series, we thus calibrated it with Eq. (1.6)

by minimizing expression (3.1) in windows w = [t1, t2], varying t2 from 1912/07/01 to

t2 = 1913/01/01, with t1 scanned from t1 = Jan. 1910 up to 30 business days before t2, i.e.

up to t1,max = t2−30 for each fixed t2. The goal is to determine whether the transition point

τ we determine is close (or even equal to) the true hypothetical value t1 = 01 Jul. 1911 for

different maturation times t2 of the bubble. The number of degrees of freedom used for this
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exercise as well as for the real-world time series is p = 8, which includes the 7 parameters

of the LPPLS model augmented by the extra parameter t1.

Real-world data: analysing bubble periods of different financial Indices

The real-world data sets used consists on bubble periods that have occurred on

the following major Indexes: S&P -5001, IBovespa2 and SSEC3. For each data set and

for each fixed pseudo present time t2 depicted by red vertical dashed lines on Fig. (3.2),

our search for the bubble beginning time τ consists in fitting the LPPLS model using a

shrinking estimation window w with t1 = [t2 − 30 : t2 − 1600] with incremental step-size of

3 business days. This yields a total of 514 fits per t2.

Analysis

Let us start with the analysis of the synthetic time-series4 depicted in Fig. (3.3).

For the earliest t2 = 1912/07/01, our proposed goodness-of-fit scheme is already capable

of roughly diagnosing correctly the bubble beginning time, finding the optimal τ to be

≈ May 1911. In contrast, the competing metric (χ2
np(Φ)) is degenerate as t1 → t2 and is

thus blind to the beginning of the bubble. For t2 closer to the end of the bubble, χ2
np(Φ)

continues to deliver very small optimal windows, proposing the incorrect conclusion that

the bubble has started very recently (i..e close to the pseudo present time t2). This is a

signature of strong overfitting, which is quantified via λ and depicted in the title of the

figure alongside with the bubble beginning time and t2. The Lagrange regularisation of the

χ2
np(Φ) locks into the true value of τ ≈ Jul.1911 as t2 → tc, i.e., as t2 moves closer and

1t2’s = {1987.07.15; 1997.06.01; 2000.01.01; 2007.06.01}

2t2’s = {2000.01.01; 2004.01.01; 2006.01.01; 2007.12.01}

3t2’s = {2000.08.01; 2007.05.01; 2009.07.01; 2015.05.01}

4t2’s = {1912.07.01; 1912.10.01; 1912.11.15; 1913.01.01}
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closer to January 1913 and the LPPLS signal becomes stronger.

We now switch to the real-world time-series. For the S&P -500 Index, see Fig. (3.4),

the results obtained are even more pronounced. While again χ2
np(Φ) is unable to diagnose

the optimal starting date of a faster than exponential log-price growth τ ≡ t1, the Lagrange

regularisation of the χ2
np(Φ) depicted by blank triangles in the lower box of the figure is

capable of overcoming the tendency of the model to overfit data as t1 → t2. Specifically,

the method diagnoses the start of the Black-Monday bubble at t1 ≈ March 1984 and the

beginning of the Sub-Prime bubble at ≈ Aug. 2003 in accordance with [130].

We also picked two pseudo present times t′2s at random in order to check how con-

sistent are the results. To our delight, the method is found capable of capturing the different

time-scales present of bubble formation in an endogenous manner. For t2 = 1997.06.01, the

method suggests the presence of a bubble that nucleated more than five years earlier. This

recovers the bubble and change of regime in September 1992, documented in Chapter 9

of [110] as a “false alarm” in terms of being followed by a crash. Nevertheless, it was a

genuine change of regime as the market stopped its ascent and plateaued for the three fol-

lowing months. For t2 = 2000.01.01, χ2
λ(Φ) diagnoses a bubble with a shorter duration,

which started in November 1998. The starting time is coherent with the recovery after the

so-called Russian crisis of August-September 1998 when the US stock markets dropped by

about 20%. And this bubble is nothing but the echo in the S&P500 of the huge dotcom

bubble that crashed in March-April 2000. More generally, scanning t2 and different intervals

for t1, the Lagrange regularisation of the χ2
np(Φ) can endogenously identify a hierarchy of

bubbles of different time-scales, reflecting their multi-scale structure [110, 36].

For the IBovespa and the SSEC Index (Figures (3.5) and (3.6) respectively), the

huge superiority of the Lagrange regularisation of the χ2
np(Φ) vs. the χ2

np(Φ) metric is

again obvious. For each of the four chosen t2’s in each figure, χ2
λ(Φ) exhibits a well-marked
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minimum corresponding to a well-defined starting time for the corresponding bubble. These

objectively identified t1 correspond pleasantly to what the eye would have chosen. They

pass the “smell test” [101]. In contrast, the χ2
np(Φ) metric provides essentially no guidance

on the determination of t1.

3.5 Conclusion

We have presented a novel goodness-of-fit metric, aimed at comparing goodnesses-

of-fit across a nested hierarchy of data sets of shrinking sizes. This is motivated by the

question of identifying the start time of financial bubbles, but applies more generally to

any calibration of time series in which the start time of the latest regime of interest is

unknown. We have introduced a simple and physically motivated way to correct for the

overfitting bias associated with shrinking data sets, which we refer to at the Lagrange

regularisation of the χ2
np(Φ) := 1

N−pSSR. We have suggested that the bias can be captured

by a Lagrange regularisation parameter λ. In addition to helping remove or alleviate the

bias, this parameter can be used as a diagnostic parameter, or “overfit measure”, quantifying

the tendency of the model to overfit the data. It is a function of both the specific realisation

of the data and of how the model matches the generating process of the data.

Applying the Lagrange regularisation of the χ2
np(Φ) to simple linear regressions

with a change point, synthetic models of financial bubbles with a well-defined transition

regime and to a number of financial time series (US S&P500, Brazil IBovespa and China

SSEC Indices), we document its impressive superiority compared with the χ2
np(Φ) met-

ric. In absolute sense, the Lagrange regularisation of the χ2
np(Φ) is found to provide very

reasonable and well-defined determinations of the starting times for major bubbles such

as the bubbles ending with the 1987 Black-Monday, the 2008 Sub-prime crisis and minor
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speculative bubbles on other Indexes, without any further exogenous information.

Appendix
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Figure 3.1: Different goodness-of-fit measures applied to a shrinking-window lin-
ear regression problem (Eq. 3.13) in order to diagnose the optimal calibration
window length: We simulated synthetic time-series with length N=200 (white circles)
using expression (3.13) with a sudden change of regime at t = −100. We then fitted the
same model (3.13) within shrinking windows (from left to right), i.e. for a fixed t2 = 1,
we shrink t1 from t1=-200 to t1=-3 and show the values of χ2(Φ) (blue), χ2

np(Φ) (green)
and χ2

λ(Φ) (red) metrics as a function of this shrinking estimation window. For each pair
[t2 : t1] (i.e. for each N), the process of generating synthetic data and fitting the model was
repeated 20000 times (resulting on confidence bounds for each metric). For t=[-200:-100],
Yt was simulated with β = 0.3 while from t = [-100:1], β = 0.6 was used. Without loss of
generality, both the data and the cost functions had their values divided by their respec-
tively maximum value in order to be bounded within the interval [0, 1]. A Python script
for generating the figure and performing all calculations can be found on Appendix.
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Figure 3.2: Synthetic and real-world Time-series used in this study
for measuring the performance of different goodness-of-fit metrics
at different t2’s (red lines): Synthetic time-series and Indexes S&P -500,
IBovespa and SSEC with t′2s = {1912.07.01; 1912.10.01; 1912.11.15; 1913.01.01},
t′2s = {1987.07.15; 1997.06.01; 2000.01.01; 2007.06.01}, t′2s =
{2000.01.01; 2004.01.01; 2006.01.01; 2007.12.01} and t′2s =
{2000.08.01; 2007.05.01; 2009.07.01; 2015.05.01} respectively (red dashed vertical lines).
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Figure 3.3: Diagnosing the beginning of financial bubbles by comparing two
goodness-of-fit metrics χ2

np(Φ) vs. χ2
λ(Φ) using the LPPLS model on Synthetic

Time-Series: χ2
np(Φ) is depicted by blank circles in the lower plot while our proposed

metric is depicted by blank triangles. The dashed black vertical lines denotes the minimum
of each goodness of fit metric and therefore represents the optimal τ ≡ t1 for χ2

np(Φ) and
χ2
λ(Φ). For a fixed t2, the log-price time-series of the Index was fitted using a shrinking

window from t1 = [t2−30 : t2−1600] sampled every 3 days. For a fixed t2 and t1, we display
the resulting fit of the LPPLS model (red line) obtained with the parameters solving Eq.
(1.11).
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Figure 3.4: Same as figure 3.3 for the US S&P -500 Index.
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Figure 3.5: Same as figure 3.3 for the Brazilian IBovespa index.
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Figure 3.6: Same as figure 3.3 for the Chinese SSEC index.
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// Python script for computing the Lambda regulariser metric - OLS case.

// Copyright: G.Demos @ ETH-Zurich - 2017.

########################

def simulateOLS():

""" Generate synthetic OLS as presented in the paper """

nobs = 200

X = np.arange(0,nobs,1)

e = np.random.normal(0, 10, nobs)

beta = 0.5

Y = [beta*X[i] + e[i] for i in range(len(X))]

Y = np.array(Y)

X = np.array(X)

Y[:100] = Y[:100] + 4*e[:100]

Y[100:200] = Y[100:200]*8

return X, Y

########################

def fitDataViaOlsGetBetaAndLine(X,Y):

""" Fit synthetic OLS """

beta_hat = np.dot(X.T,X)**-1. * np.dot(X.T,Y) # get beta

Y = [beta_hat*X[i] for i in range(len(X))] # generate fit

return Y
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########################

def getSSE(Y, Yhat, p=1, normed=False):

"""

Obtain SSE (chi^2)

p -> No. of parameters

Y -> Data

Yhat -> Model

"""

error = (Y-Yhat)**2.

obj = np.sum(error)

if normed == False:

obj = np.sum(error)

else:

obj = 1/np.float(len(Y) - p) * np.sum(error)

return obj

########################

def getSSE_and_SSEN_as_a_func_of_dt(normed=False, plot=False):

""" Obtain SSE and SSE/N for a given shrinking fitting window w """

# Simulate Initial Data

X, Y = simulateOLS()

# Get a piece of it: Shrinking Window

_sse, _ssen = [], []
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for i in range(len(X)-10): # loop t1 until: t1 = (t2 - 10):

xBatch = X[i:-1]

yBatch = Y[i:-1]

YhatBatch = fitDataViaOlsGetBetaAndLine(xBatch, yBatch)

sse = getSSE(yBatch, YhatBatch, normed=False)

sseN = getSSE(yBatch, YhatBatch, normed=True)

_sse.append(sse); _ssen.append(sseN)

if plot == False:

pass

else:

f, ax = plt.subplots(1,1,figsize=(6,3))

ax.plot(_sse, color=’k’)

a = ax.twinx()

a.plot(_ssen, color=’b’)

plt.tight_layout()

if normed==False:

return _sse, _ssen, X, Y # returns results + data

else:

return _sse/max(_sse), _ssen/max(_ssen), X, Y # returns results + data

########################

def LagrangeMethod(sse):

""" Obtain the Lagrange regulariser for a given SSE/N"""

# Fit the decreasing trend of the cost function

slope = calculate_slope_of_normed_cost(sse)
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return slope[0]

########################

def calculate_slope_of_normed_cost(sse):

#Create linear regression object using statsmodels package

regr = linear_model.LinearRegression(fit_intercept=False)

# create x range for the sse_ds

x_sse = np.arange(len(sse))

x_sse = x_sse.reshape(len(sse),1)

# Train the model using the training sets

res = regr.fit(x_sse, sse)

return res.coef_

########################

def obtainLagrangeRegularizedNormedCost(X, Y, slope):

""" Obtain the Lagrange regulariser for a given SSE/N Pt. III"""

Yhat = fitDataViaOlsGetBetaAndLine(X,Y) # Get Model fit

ssrn_reg = getSSE(Y, Yhat, normed=True) # Classical SSE

ssrn_lgrn = ssrn_reg - slope*len(Y) # SSE lagrange

return ssrn_lgrn
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########################

def GetSSEREGvectorForLagrangeMethod(X, Y, slope):

"""

X and Y used for calculating the original SSEN

slope is the beta of fitting OLS to the SSEN

"""

# Estimate the cost function pondered by lambda using a Shrinking Window.

_ssenReg = []

for i in range(len(X)-10):

xBatch = X[i:-1]

yBatch = Y[i:-1]

regLag = obtainLagrangeRegularizedNormedCost(xBatch,

yBatch,

slope)

_ssenReg.append(regLag)

return _ssenReg



Chapter 4

On the Predictability of Stock

Market Bubbles: Evidence from

LPPLS ConfidenceTM Multi-scale

Indicators

Bubble formation in financial markets has always been a topic of great interest,

not only from an academic perspective regarding the informational efficiency of markets,

but also for practitioners and policy makers who try to mitigate the negative effects of

wild price fluctuations and subsequent crashes. Clearly, large sums are at stake when

one deals with stock market bubbles. The U.S. market capitalization of firms, as of June

2017, is nearly $25.3 trillion USD (Bloomberg) or 133% of GDP, while the S&P 500 Total

Market Capitalization was $21.3 trillion USD on March 31, 2017. Correspondingly, at

the end of 2016, $15.9 trillion in corporate equities were held by households and non-

profit organizations in the U.S. (Balance Sheet of Households and Nonprofit Organizations

79
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(B.101) in Financial Accounts of the United States.). Given the level of penetration of the

stock market investment in the U.S., a future crash in the stock market is likely to have

widespread negative effects on the U.S. economy ([35, 77]), as it did in the aftermath of the

dotcom bubble in 2000 or of the financial crisis of 2008. Therefore, it is not surprising that

a large literature has been devoted to detecting bubbles in the U.S. stock market, especially

since the 2008 financial crisis (see for example [21, 126, 25, 125] for detailed reviews in

this regard). While significant effort has been spent on explaining how and why bubbles

emerge and sustain over long periods[63], a large number of studies have instead focused on

developing models to reliably detect bubbles. Consequently, the literature provides various

methodologies to detect bubbles that aim to build on the drawback of the existing (earlier)

ones (see for example, [22, 4, 84, 93, 5] for detailed discussions in this regard).

Against this backdrop and given that the S&P500 is one of the most frequently

used stock market indexes to gauge the U.S. stock market performance ([34]), representing

more than 80% of available market capitalization, the objective of this paper is twofold.

First, we present a methodology to detect both positive and negative bubbles 1 for the

S&P500 index using the Log-Periodic Power Law Singularity (LPPLS) model ([56, 110]),

not otherwise possible based on the various bubble detection models cited earlier. We

then introduce the Multi-scale LPPLS confidenceTM indicators to characterise bubbles at

different time scales. Second, having constructed indicators that describe positive and

negative bubbles, we examine the predictive power of short selling activity and market

liquidity over the bubble indicators and provide insight to the predictability of market

booms and crashes using market-based indicators. In our predictive tests, we specifically

focus on measures of short selling activity and market liquidity as recent studies suggest that

1A positive (resp. negative) bubble is defined as an upward (resp. downward) accelerating price followed
by a crash (resp. rally).
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short sellers are informed traders who are able to anticipate future aggregate cash flows and

that short interest is positively related to stock price crash risk (e.g. [26] and [85]). We are

also interested in the predictive ability of market liquidity over boom and crash indicators

as the literature establishes a link between liquidity spikes and market downturns (e.g.

[28, 81]). To the best of our knowledge, this is the first attempt in examining the predictive

ability of market-based indicators over the positive and negative bubbles in the S&P500

index using the LPPLS model. An important finding of this paper is thus to identify some

of the factors contributing to the LPPLS-based bubble indicators, namely short selling and

liquidity. The LPPLS model, which makes it possible to identify positive and negative

bubbles, presents a valuable opening, allowing us to examine the predictability patterns of

market booms and crashes separately.

Our findings show that the LPPLS framework, in the implementation presented

here, is able to successfully capture, ex-ante, some of the prominent bubbles across different

time scales. We observe that some of the great bubbles and subsequent crashes experienced

during the Black Monday, Dot-com, and Subprime Crisis periods are successfully captured

by the bubble indicators, while the long-term negative bubble indicator diagnoses correctly

the transition from a sluggish market to a fast accelerating positive bubble during the mid-

90s when the demand for the “New Economy” stocks developed in full force. One can also

observe that the medium-term negative bubble indicator also shows a strong signal that the

2008 crisis was ending, providing a precursor to the strong rebound that started in March

2009. Examining the predictability of the negative and positive bubble indicators, our pre-

dictive tests reveal several interesting observations. First, we observe that the predictability

patterns differ significantly for booms and busts represented by the positive and negative

bubble indicators, respectively. We find that measures of short selling activity have robust

predictive power over negative bubbles, in line with the view that short sellers are able
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to detect bad news hoarding by managers. The predictive power of short selling activity

is robust to alternative measures of short selling employed in our predictive tests and is

positively related to the negative bubble indicator, predicting the occurrence of negative

bubbles one-month ahead. The predictive power of short selling proxies holds for both the

short- and the long-term horizons which is consistent with the recent finding by [?] that

short interest is positively related to one-year ahead stock price crash risk. On the other

hand, our tests show that market liquidity also has robust predictive power over both the

negative and positive bubbles in the short-term, suggesting that market liquidity measures

can be used to predict the occurrence of both booms and crashes for short horizons. In

short, the evidence points to the predictability of both positive and negative stock market

bubbles via market-based proxies of trading activity.

The remainder of the paper is organized as follows. Section 4.1 explains the

methodology to construct the LPPLS ConfidenceTM indicator, its application to the S&P500

Index and the Markov Switching (MS) model employed in our predictive tests. Section 4.2

presents the empirical findings and Section 4.3 concludes the paper.

4.1 Positive and Negative Bubbles and LPPLS ConfidenceTM

indicators

4.1.1 Capturing Positive and Negative Bubbles

As mentioned earlier, the methodology presented in this paper not only permits

one to decouple the analysis of bubbles into different time-scales, but also allows one to

focus on positive or negative bubbles separately. In the case of positive bubbles, the asset

price grows super-exponentially towards tc and ends with a change of regime (in general

a crash), whereas negative bubbles are the exact y → −y mirror of positive bubbles with
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respect to the horizontal axis and exhibit an accelerating price drop ending with a change

of regime, in general a potential “negative” crash, i.e. a substantial price appreciation (i.e.

price rebound). This feature is captured by the LPPLS model through parameter B with

the estimated parameter B̂ < 0 indicating a positive bubble and B̂ > 0 indicating a negative

bubble. In both positive and negative bubbles, the critical time tc denotes the time at which

the bubble ends.

4.1.2 Definition of LPPLS ConfidenceTM indicators

The LPPLS ConfidenceTM indicator was introduced by [112] and It is also one of

the key indicators powering the Financial Crisis Observatory2 at ETH Zurich. It is defined

as the fraction of fitting windows whose calibrations meet the filtering condition depicted

in Table (7.1). It thus measures the sensitivity of the observed bubble pattern to the 142

time windows of duration from 30 to 750 trading days. A large value indicates that the

LPPLS pattern is found at most scales and is thus more reliable. If the value is close to

one, the pattern is practically insensitive to the choice of the window size dt := t2 − t1. A

small value of the indicator signals a possible fragility since it is presented in a few fitting

windows.

4.1.3 Multi-scale Indicators

In order to incorporate bubbles of different scales into the analysis, we introduce

the Multi-scale LPPLS ConfidenceTM Indicator which is constructed as follows:

• Short-term bubble: The short-term bubble indicator at time t2 is a number ∈ [0, 1]

which denotes the fraction of qualified fits for estimation windows of length dt :=

t2 − t1 ∈ [30 : 90] business days for this t2. As an example, if a fit is qualified

2http://tasmania.ethz.ch/pubfco/fco.html
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at a given window i (i.e. the filtering conditions are met) then we set its index to

Qi = 1. If that is not the case, Qi = 0. For a total of 13 fits ((90 − 30)/5 + 1),

the short-term indicator is simply the average over these 13 windows of their index:

Shortind = 1
13

∑13
i=1Qi.

• Medium-term bubble: The medium-term bubble indicator at time t2 is a number

∈ [0, 1] which denotes the fraction of qualified fits for estimation windows of length

dt := t2−t1 ∈ [90 : 300] business days for this t2. For a total of 43 fits ((300−90)/5+1),

using the same definition of the index Qi for each of these 43 time windows, the

medium-term bubble indicator is simply Mediumind = 1
43

∑43
i=1Qi.

• Long-term bubble: The long-term bubble indicator at time t2 is a number ∈ [0, 1]

which denotes the fraction of qualified fits for estimation windows of length ∈ [300 :

745] business days for this t2. For a total of 90 fits ((745−300)/5+1), using the same

definition of the index Qi for each of these 90 time windows, the long-term bubble

indicator is simply Longind = 1
90

∑90
i=1Qi.

4.1.4 Smoothed LPPLS ConfidenceTM Multi-scale Indicators

The above defined short-term / medium term/ long-term bubble indicators exhibit

significant statistical fluctuations. For the purpose of facilitating the visual interpretation of

these indicators, we perform an exponential smoothing of these LPPLS confidence indicators

via AR(1) moving averages as follows

CLPPLSShort(t) = αshortCLPPLSshort(t− 1) + (1− αshort)Shortind(t) , (4.1)

CLPPLSMedium(t) = αmediumCLPPLSmedium(t− 1) + (1− αmedium)Mediumind(t) ,(4.2)

CLPPLSLong(t) = αlong CLPPLSlong(t− 1) + (1− αlong)Longind(t) . (4.3)



Chapter 4: On the Predictability of Stock Market Bubbles: Evidence from LPPLS
ConfidenceTM Multi-scale Indicators 85

where αshort = 0.980, αmedium = 0.995 and αlong = 0.998 corresponding respectively to time

scales of 50, 200 and 500 days that are in synchrony with the respective time scales of the

short-term / medium term/ long-term bubble indicators. In other words, given the fact that

the short-term bubble indicator is constructed by using time windows of size ∈ [30 : 90]

business days, we perform a smoothing exponential averaging over the last 50 days for

each t2. Similarly, given the fact that the medium-term bubble indicator is constructed by

using time windows of size ∈ [90 : 300] business days, we perform a smoothing exponential

averaging over the last 200 days for each t2. Lastly, given the fact that the long-term

bubble indicator is constructed by using time windows of size ∈ [300 : 745] business days,

we perform a smoothing exponential averaging over the last 500 days for each t2.

The time series of these three smoothed bubble indicators, both for positive and

negative bubbles, are shown in Fig. (4.1) for the period t ∈ [Jan.1973 : Dec.2014] and for

the financial time series obtained by taking the ratio of the S&P500 Index divided by the

capital weighted dividends of the constituting firms.

4.1.5 Predictive Tests

As mentioned earlier, a large value for a confidence indicator suggests that the

LPPLS pattern is found over several time windows and is thus more reliable whereas a

small value for the indicator signals a possible fragility since it is present in only a few

fitting windows. Taking into account the specification of the bubble indicator in which

greater values indicate the presence of a bubble, we utilize a regime switching model that

incorporates market states representing bubble and non-bubble regimes. Therefore, having

computed the positive and negative bubble indicators for short and long time horizons, we

examine the predictive ability of short selling and liquidity-based indicators by estimating
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a Markov Switching predictive model specified as

Ind(t) = γ0,St + γ1,StXt−1 + εt, (4.4)

where Ind(t) is either Shortind(t), Mediumind(t), or Longind(t), St is a discrete regime

variable taking values in (0, 1), following a two-state Markov process and εt is the error

term. Xt−1 is a vector of the predictors measured at the end of month t− 1. As explained

in the next section, the predictive model is applied to alternative proxies for short selling

activity in order to check the robustness of the findings.

Here, we stress that we use the non-smoothed indicators Shortind(t),Mediumind(t)

and Longind(t) as the dependent variables in (4.4), and not the smoothed ones CLPPLS(t).

Using the later would lead to spurious regressions and inaccurate p-values due to their build-

in correlation structure.

4.2 Data and Empirical Findings

4.2.1 Data

The dataset used to construct the LPPLS ConfidenceTM Indicators includes monthly

price-to-dividend (P/D) ratios for the S&P500 Index over the period January 1973 through

December 2014. As mentioned earlier, we focus on the predictive power of short selling and

market liquidity measures over the confidence indicators representing positive and negative

bubbles in the index. For this purpose, we examine various alternative proxies for each

market-based predictor. Short selling activity is measured via two proxies. The first is the

short interest index (SII) of [85] as an aggregate measure of short interest, constructed using

firm-level short interest data. The authors argue that short sellers are informed traders and

show that short interest is arguably the strongest predictor of aggregate stock returns, both
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in- and out-of-sample. The data is available on David Rapach’s website. The second proxy

for short selling activity is the short interest ratio (SIR) by [26], defined as the total number

of shares sold short divided by total shares outstanding from the last month of the fiscal

year. The authors show that this ratio is positively related to one-year ahead stock price

crash risk. Following [26], we calculate this ratio using short interest data from Compustat.

Evidence that associates high stock market volume with periods of high market

volatility has already been well-established in the literature (e.g. [66, 42, 62]). Therefore,

we use liquidity as a control variable in our predictive tests in order to check the robustness

of the predictive ability of short selling measures. Following a number of studies including

[3] and [7], we use the stock market turnover (TURNO) as a proxy for market liquidity.

We compute monthly turnover values as the number of shares traded divided by shares

outstanding for all NYSE and AMEX firms from the CRSP files. Following [27], we detrend

the monthly log turnover series by subtracting a one-year backward moving average of log

turnover, yielding a triangular moving average of turnover growth rates.

4.2.2 Empirical Findings

Figure (4.1) presents the estimated positive and negative multi-scale LPPLS confidenceTM

bubble indicators for the S&P500 index divided by dividends. The short, medium and long-

term bubble indicators are depicted in different colors and the log price-to-dividend ratio

for the S&P500 index is represented as the black solid line. Note that a large value for the

indicator indicates that the LPPLS pattern is found for many windows in the corresponding

scale range (of short-term, medium-term and long-term) and is thus more reliable. Looking

at Figure (4.1), we observe remarkable “spikes” in the smoothed indicators at the eve of

regime changes. For example, the long-term indicator successfully captures, ex-ante, all
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the great bubbles and subsequent crashes suffered by the S&P500 index (Black-Monday

- 1987, Dot-com - 2000 and Subprime - 2008) when using a threshold ≥ 50%. Similarly,

the negative long-term indicator remarkably shows the start of a positive bubble at the

beginning of 1995 where its value reaches ≈ 1. The exponential damping structure after

each peak is due to the AR(1) smoothing explained in section 4.1.4.

It is also interesting to notice the number of small bubbles (green shaded region

on the upper panel) permeating the bubbly period that stretches from 1994 to the burst

of the dot-com bubble in 2000. Note also that throughout this period, the positive long-

term indicator is ever increasing as well as the medium-term indicator, thus suggesting the

maturation of the bubble towards instability across several distinct time-scales. Overall,

these results support our claim that the LPPLS framework is a flexible tool for detecting

bubbles across different time-scales.

Having constructed the series of positive and negative bubble indicators, we next

examine their predictability using the regime-switching specification in Eq.(4.4). Table 4.2

reports the estimates for the Markov Switching model for the short-term bubble indicator,

Shortind.
3 Panels A and B report the findings when short selling activity is measured

by the short interest index of [85] and the short interest ratio of [26], respectively. The

two-state specification identifies two distinct regimes corresponding to bubble and non-

bubble market states for each indicator series. Examining the findings for the negative

bubble indicators, we see that short sellers indeed have significant predictive power over

market crashes, consistent across both measures of short selling activity in Panels A and B.

The model yields positive and highly significant estimates for both short selling measures,

suggesting that higher level of short selling activity predicts the occurrence of negative

3The model is estimated using the non-smoothed bubble indicators explained in section 4.1.3 as the
smoothed indicators may lead to spurious regressions and inaccurate p-values, as already mentioned.
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bubbles in the short term. As expected, none of the short selling proxies have predictive

significance in the case of the non-bubble regimes. Consistent with the positive coefficients

observed for the negative bubble indicators, we see that the short interest ratio, defined as

the total number of shares sold short divided by total shares outstanding, has predictive

power over the positive bubble indicator with a negative coefficient, suggesting that higher

short selling activity predicts lower occurrence for a positive bubble.

Similarly, examining the estimated coefficients for turnover, we see that market

liquidity also commands significant predictive ability over both the negative and positive

bubble indicators. The significant predictive power observed for turnover is consistent

with the finding by [79] that market liquidity has a prevalent effect on stock bubbles and

that liquidity shocks provide warning signals of impending bubble collapses. Interestingly

however, the highly significant and positive estimates observed for turnover indicate that

high market turnover can serve as a predictor of bubble occurrence in either direction,

i.e. a booming or collapsing market condition. [96] also highlights the connection between

available liquidity and rising asset prices. His argument stresses that strong balance sheets

induce banks to increase their lending which, In turn, raises asset prices, leading to stronger

balance sheets and so forth.

The findings for the medium- and long-term bubble indicators reported in Tables

4.3 and 4.4 further confirm the predictive power of short selling proxies over dropping

markets (i.e. negative bubbles) across both the short and long horizons. We observe highly

significant and positive coefficient estimates for both short selling proxies in the models

for the negative bubble indicator, suggesting that short selling activity predicts greater

occurrences of negatively trending markets over both short and long time scales. This

finding is not inconsistent with [26] who document that short interest is positively related

to one-year ahead stock price crash risk. To that end, our results confirm short sellers’
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predictive ability over developing market loss risks which are successfully captured by our

implementation of the LPPLS framework presented in this study.

Interestingly, however, while market turnover retains its predictive ability in the

medium term, we observe that the sign of the estimated coefficients for turnover in Table

4.3 flips to negative, suggesting that high turnover predicts lower occurrence of bubbles (in

either direction) in the medium term. Similarly, in the case of the long term bubble indicator

reported in Table 4.4, turnover loses its significance for the negative bubble indicator. These

observations suggest that market liquidity has only a transient and relatively short-term

impact on prices, which is detected for the short-term indicator, but not for the longer

time scales of the bubble indicators, which are themselves more robust to detect the overall

bubble sentiment at long-time scales.

Overall, our findings suggest that market-based indicators can indeed be utilized

to predict the occurrence of market booms and collapsing market regimes, implied by the

significant predictive ability observed for short selling proxies for negative bubble regimes

across both the short and long horizons. On the other hand, market liquidity is found to pre-

dict the occurrence of both decreasing and booming market conditions while its predictive

power is limited to shorter time horizons. These findings are encouraging news for market

regulators as the results show that short selling proxies can be used to model and moni-

tor negative bubble market conditions, while market liquidity can be used to supplement

forecasting models for both boom and bust market conditions.

4.3 Conclusion

This paper has examined the predictability of stock market booms and crashes via

an application of the LPPLS ConfidenceTM Multi-scale Indicators to the S&P500 index.
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First, we presented a methodology to detect positive and negative bubbles for the S&P500

index using the Log-Periodic Power Law Singularity (LPPLS) model ([56, 110]), something

not possible by other bubble detection models. Next, we provided insight to the predictabil-

ity of market booms and crashes using market-based indicators by examining the predictive

power of short selling activity and market liquidity over the constructed bubble indicators.

To the best of our knowledge, this is the first attempt in examining the predictive ability of

market-based indicators over the positive and negative bubbles in the S&P500 index using

the LPPLS model.

Our findings suggest that the LPPLS framework is able to successfully capture, ex-

ante, some of the prominent bubbles across different time scales. We show that some of the

great bubbles and subsequent crashes experienced during the Black Monday, Dot-com, and

Subprime Crisis periods are successfully captured by the constructed bubble indicators. Our

predictive tests indicate that measures of short selling activity have robust predictive power

over negative bubbles, in line with the previous studies that short sellers have predictive

ability over stock price crash risks. The predictive ability of short selling activity is robust

to alternative measures of short selling as well as to short and long time horizons, consistent

with the recent finding by [26] that short interest is positively related to one-year ahead

stock price crash risk. On the other hand, our tests show that market liquidity has robust

predictive power over both the negative and positive bubbles, however in the short-term,

suggesting that market liquidity measures can be used to predict the occurrence of both

booms and collapses for short horizons. We have thus identified short selling and liquidity

as two important factors contributing to the LPPLS-based bubble indicators. The evidence

overall points to the predictability of both positive and negative stock market bubbles via

market-based proxies of trading activity and can be used as a guideline to model and monitor

bubble conditions in stock markets.



Chapter 4: On the Predictability of Stock Market Bubbles: Evidence from LPPLS
ConfidenceTM Multi-scale Indicators 92

Figure 4.1: Positive (upper panel) and negative (lower panel) multi-scale LPPLS Confidence
bubble indicator. The black continuous line denotes the logarithm of the monthly Price over
Dividend (P/D) time-series for the S&P500 Index from January 1973 to December 2014.
The short, medium and long-term bubble indicators are depicted in green, magenta and red
respectively. We refer to Sec. (4.1) for the construction of the indexes.

10

20

30

40

50

60

70

80

90

100

ln
(P
/D

)

ln(P/D)

1974 1979 1984 1989 1994 1999 2004 2009 2014
10

20

30

40

50

60

70

80

90

100

ln
(P
/D

)

ln(P/D)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
os
.
C
on
fi
d
en
ce
In
d
ic
a
to
rShort−term bubble ind. (pos.)

Medium−term bubble ind. (pos.)

Long−term bubble ind. (pos.)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
eg
.
C
on
fi
d
en
ce
In
d
ic
a
to
rShort−term bubble ind. (neg.)

Medium−term bubble ind. (neg.)

Long−term bubble ind. (neg.)



Chapter 4: On the Predictability of Stock Market Bubbles: Evidence from LPPLS
ConfidenceTM Multi-scale Indicators 93

Table 4.1: Search space and filter conditions for the qualification of valid LPPLS fits.
Within the JLS framework, the condition that the crash hazard rate h(t) is non-negative

by definition translates into a value of the Damping parameter m|B|
ω|C| larger than or equal to

1.

Item Notation Search space Filtering condition 1 Filtering condition 2

3 nonlinear parameters m [0, 2] [0.01, 1.2] [0.01, 0.99]
ω [1, 50] [6, 13] [6, 13]
tc [t2 − 0.2dt, [t2 − 0.05dt, [t2 − 0.05dt,

t2 + 0.2dt] t2 + 0.1dt] t2 + 0.1dt]
Number of oscillations ω

2 ln | tc−t1t2−t1 | — [2.5, +∞) [2.5, +∞)

Damping m|B|
ω|C| — [0.8, +∞) [1, +∞)

Relative error pt−p̂t
p̂t

— [0, 0.05] [0, 0.2]
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Table 4.2: The predictive ability of short interest and turnover on the short–term bubble
indicator, Shortind(t).

Panel A: Short selling activity measured by the short interest index of Rapach et al. (2016)

Negative Bubble Positive Bubble

Regime 1 (bubble regime)

Constant 0.2988*** (0.0122) 0.4502*** (0.0131)
Short interest index, SII 0.0870*** (0.0122) 0.0167 (0.0127)

Turnover 0.5402* (0.2317) 2.1897*** (0.2292)

Regime 2 (non-bubble regime)

Constant 0.0082*** (0.0012) 0.0099*** (0.0026)
Short interest index, SII 0.0007 (0.0012) -0.001 (0.0029)

Turnover -0.0167 (0.0167) 0.0838** (0.0365)

AIC -4.211 -2.593
log L 1067.960 661.050

Panel B: Short selling activity measured by the short interest ratio of Callen and Fang (2015)

Negative Bubble Positive Bubble

Regime 1 (bubble regime)

Constant 0.1235*** (0.0241) 0.5046*** (0.0199)
Short interest ratio, SIR 9.9473*** (1.7216) -2.0706*** (0.5316)

Turnover 0.5620*** (0.2010) 2.0469*** (0.2273)

Regime 2 (non-bubble regime)

Constant 0.00650*** (0.0018) 0.0137*** (0.0037)
Short interest ratio, SIR 0.071153 (0.0478) -0.129462 (0.0966)

Turnover -0.016927 (0.0180) 0.0815** (0.0356)

AIC -4.136 -2.616
log L 1042.885 662.960

Note: This table reports the estimates for the Markov Switching model specified in Eq.(4.4). Market
liquidity is measured by stock market turnover, computed as the number of shares traded divided by shares
outstanding for all NYSE and AMEX
firms from the CRSP files. Following Campbell et al. (1993), we detrend the log turnover series by subtracting
a one-year backward moving average of log turnover. Panels A and B report the findings for when short
selling activity is measured by the short interest index of Rapach et al. (2016) and the short interest ratio
of Callen and Fang (2015), respectively. The numbers in parentheses are the standard errors. ∗∗∗, ∗∗, and ∗

represent significance at 1, 5, and 10 percent, respectively.
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Table 4.3: The predictive ability of short interest and turnover on the medium–term bubble
indicator, Mediumind(t).

Panel A: Short selling activity measured by the short interest index of Rapach et al. (2016)

Negative Bubble Positive Bubble

Regime 1 (bubble regime)

Constant 0.1613*** (0.0100) 0.571*** (0.0164)
Short interest index, SII 0.0421*** (0.0065) -0.0303* (0.0171)

Turnover -0.5756*** (0.0806) -2.6188*** (0.2745)

Regime 2 (non-bubble regime)

Constant 0.0046*** (0.0009) 0.0101*** (0.0018)
Short interest index, SII 0.0008 (0.0009) -0.0021 (0.0018)

Turnover -0.0239* (0.0126) -0.0123 (0.0291)

AIC -4.840 -3.389
log L 1226.355 861.355

Panel B: Short selling activity measured by the short interest ratio of Callen and Fang (2015)

Negative Bubble Positive Bubble

Regime 1 (bubble regime)

Constant 0.107*** (0.0099) 0.6521*** (0.0184)
Short interest ratio, SIR 1.9061*** (0.1914) -5.8897*** (0.4582)

Turnover -0.7668*** (0.1086) -2.3249*** (0.1473)

Regime 2 (non-bubble regime)

Constant 0.0036*** (0.0012) 0.0108*** (0.0026)
Short interest ratio, SIR 0.0242 (0.0304) -0.0576 (0.0687)

Turnover -0.0202* (0.0116) -0.0194 (0.0255)

AIC -4.958 -3.473
log L 1248.589 877.131

Note: This table reports the estimates for the Markov Switching model specified in Eq.(4.4). Market
liquidity is measured by stock market turnover, computed as the number of shares traded divided by shares
outstanding for all NYSE and AMEX
firms from the CRSP files. Following Campbell et al. (1993), we detrend the log turnover series by subtracting
a one-year backward moving average of log turnover. Panels A and B report the findings for when short
selling activity is measured by the short interest index of Rapach et al. (2016) and the short interest ratio
of Callen and Fang (2015), respectively. The numbers in parentheses are the standard errors. ∗∗∗, ∗∗, and ∗

represent significance at 1, 5, and 10 percent, respectively.
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Table 4.4: The predictive ability of short interest and turnover on the long–term bubble
indicator, Longind(t).

Panel A: Short selling activity measured by the short interest index of Rapach et al. (2016)

Negative Bubble Positive Bubble

Regime 1 (bubble regime)

Constant 0.5143*** (0.0128) 0.5297*** (0.0111)
Short interest index, SII 0.0379*** (0.0128) 0.0152 (0.0085)

Turnover -0.3156 (0.2553) -1.4654*** (0.1753)

Regime 2 (non-bubble regime)

Constant 0.0069*** (0.0020) 0.0092 (0.0020)
Short interest index, SII 0.0014 (0.0019) -0.002 (0.0019)

Turnover -0.0217 (0.0275) 0.0074 (0.0228)

AIC -3.186 -3.217
log L 810.157 818.126

Panel B: Short selling activity measured by the short interest ratio of Callen and Fang (2015)

Negative Bubble Positive Bubble

Regime 1 (bubble regime)

Constant 0.4347*** (0.0203) 0.5447*** (0.0158)
Short interest ratio, SIR 2.516*** (0.4817) -0.3782 (0.3294)

Turnover 0.2515 (0.2661) -1.3063*** (0.1675)

Regime 2 (non-bubble regime)

Constant 0.0039 (0.0030) 0.0062** (0.0029)
Short interest ratio, SIR 0.0908 (0.0768) 0.1091 (0.0770)

Turnover -0.0139 (0.0269) 0.0063 (0.0282)

AIC -3.202 -3.208
log L 809.589 811.064

Note: This table reports the estimates for the Markov Switching model specified in Eq.(4.4). Market
liquidity is measured by stock market turnover, computed as the number of shares traded divided by shares
outstanding for all NYSE and AMEX
firms from the CRSP files. Following Campbell et al. (1993), we detrend the log turnover series by subtracting
a one-year backward moving average of log turnover. Panels A and B report the findings for when short
selling activity is measured by the short interest index of Rapach et al. (2016) and the short interest ratio
of Callen and Fang (2015), respectively. The numbers in parentheses are the standard errors. ∗∗∗, ∗∗, and ∗

represent significance at 1, 5, and 10 percent, respectively.



Chapter 5

Modified Profile Likelihood and

Interval Forecast of the End of

Financial Bubbles

5.1 Introduction

Financial bubbles and their subsequent crashes provide arguably the most visible

departures from well-functional efficient markets. There is an extensive literature (see e.g.

the reviews of [64]1,[55, 25, 125]) on the causes of bubbles as well as the reasons for bubbles

to be sustained over surprising long period of times. One of these views emphasises the role

of herding behaviour on bubble inflation [58]. When imitation is sufficiently strong, a high

demand for the asset pushes the price upwards, which itself, and somewhat paradoxically,

increases the demand, propelling further the price upward, and so on, in self-fulfilling posi-

tive feedback loops. In such regimes, the market is mainly driven by sentiment and becomes

1Long version at http://arXiv.org/abs/0812.2449
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detached from any underlying economic value. This process is intrinsically unsustainable

and the mispricing ends at a critical time, either smoothly (with a correction phase) or

abruptly (via a crash). The formulation of this hypothesis of collective herding behav-

ior within rational expectations theory resulted in the so-called Log-Periodic Power-Law

Singularity (LPPLS) model, which has been used for many successful ex-post and ex-ante

predictions of bubble bursts (see e.g. a partial list in [116] and a recent implementation for

the Chinese bubble and its burst in 2015 [112]).

Notwithstanding a number of improvements concerning the calibration of the LP-

PLS model, including meta-search heuristics [117] and reformulation of the equations to

reduce the number of nonlinear parameters [38], the calibration of the LPPLS model re-

mains a bottleneck towards achieving robust forecasts and a matter of contention [20, 116].

In this context, the aim of the present paper is to present a fundamental revision of the

calibration procedure of the LPPLS model. Specifically, we deviate from the traditional or-

dinary least squares (OLS) calibration that provides point estimates of parameters, which

has been used since the introduction of the model in 1999 [56, 57]. Instead, we employ a

rigorous likelihood approach and, for the first time to the best of our knowledge, we provide

interval estimates of the parameters, including the most important critical times of market

regime changes.

We deliberately avoid dwelling on the derivation of the model and its foundations,

and take it as given. We do not discuss supporting evidence and critiques of the model, nor

address how to apply the LPPLS model to construct robust signals for extensive backtests

or real-time ex-ante predictions. These questions require extensive analyses and are beyond

the scope of the present manuscript. See [60, 55, 116, 112, 127] for investigations in these

directions.

The purpose of the present chapter is methodological, and the main focus is on
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the statistical aspects of the theory and the corresponding mathematical derivations. One

of the major advances of this paper is to formulate the calibration procedure so that the

critical time tc is the major parameter of interest in the likelihood inference, while other

model parameters are treated as so-called nuisance parameters. Of course, these other

parameters are also intrinsic to the model but their existence contributes to the variance

of the parameter of key interest. Such reformulation of the calibration procedure has its

roots in an original idea proposed by [38], which was however developed in a crude way and

without the proper statistical methodology.

The problem of dealing with nuisance parameters and of quantifying their im-

pact on the uncertainty of the parameter of interest is not new in Statistics. However, to

our knowledge, it has not been elaborated before in quantitative finance. Frequentist and

Bayesian statistical schools have different views on this problem. The main debate between

the supporters of likelihood-based versus Bayesian approaches is whether one should maxi-

mize over nuisance parameters (such as in simple profile likelihood) or integrate them out.

Both approaches have their pros and cons. In general, the method of profile likelihood

is known to often provide biased estimations. However, use of the Bayesian (or integra-

tion) approach requires specification of the prior distribution of the parameters, which

leads to an extra uncertainty in inference. Under certain conditions, when the full likeli-

hood function has a complex structure, the two methods can lead to dramatically different

estimations [100, 16].

We will base our approach on the so-called modified profile likelihood proposed

by [11] as a higher-order approximation to either a marginal or conditional likelihood func-

tion. Being unable to calculate the modified profile likelihood exactly due to strong model

nonlinearity, we will employ the approximation suggested by [88], which is equivalent to

the exact form up to errors of order O(n−1) for moderate deviations and of order O(n−1/2)
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in the large deviation sense, where n is the number of data points. The advantage of this

method is that it takes the middle ground in the maximization-vs-integration debates: as

shown by [92], the modified profile likelihood arises naturally from a non-Bayesian inference

with an integrated likelihood and could even be considered as an approximation to a certain

class of integrated likelihood functions. At the same time, it does not require specifying a

prior density of the nuisance parameters, which makes it perfectly suitable in our case.

In the following, we will guide the reader from the well known OLS calibration

procedure and its formulation as a likelihood problem, to the lesser known “profile like-

lihood” and then to the “modified profile likelihood”, which has been essentially ignored

in the applied literature. The modified profile likelihood allows one to improve the like-

lihood inference by accounting for the uncertainty of the nuisance parameters. Having a

strong methodological emphasis, we will discuss all concepts and, more important, their as-

sumptions and limitations in all necessary details. While this paper focuses on the LPPLS

model, our general presentation and its specific implementation on the LPPLS model makes

it useful as a general guide for likelihood inference in many other models of quantitative

finance.

The paper is organized as follows. Section 5.2 presents the Ordinary Least Squares

(OLS) method that has been used until now as the standard calibration tool of the LPPLS

model, in particular for the estimation of the critical time tc of the end of the bubble. Section

5.3 introduces the Likelihood and Profile Likelihood approaches. Section 5.4 presents the

general concept of the modified profile likelihood and provides a very useful approximated

expression for it. Parameter estimation uncertainties and the corresponding likelihood in-

tervals are then derived. Section 5.5 applies the modified likelihood profile to estimate

confidence intervals of the nuisance parameters m and ω as well as the damping variable.

Section 5.6 presents the method of aggregation of the calibrations from different scales and
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illustrates the whole methodology on synthetic price time series. This section ends with

the application of the method on three well-known historical financial bubbles. Section 5.7

concludes.

5.2 Nonlinear regression and Ordinary Least Squares fitting

5.2.1 Estimation of the critical time

In practical applications, the calibration of the LPPLS model often aims at fore-

casting the critical time tc, because it is, by construction of the LPPLS model, the end of

the bubble regime. This suggests to develop a special treatment for tc. In this spirit, [38]

suggested to reformulate the optimization problem (1.13) by subordinating the logperiodic

angular frequency ω and power law exponent m to tc:

t̂c = arg min
tc

F2(tc), (5.1)

where

F2(tc) = min
ω,m

F1(tc,m, ω), {m̂(tc), ω̂(tc)} = arg min
m,ω

F1(tc,m, ω) (5.2)

and F1(tc,m, ω) is given by (1.12).

In general, such extra subordination dramatically reduces the number of local

extrema of the cost-function. As we will see later from Figure 5.4, when the price trajectory

displays a pronounced increase, the function F1(tc,m, ω) almost always presents just one

minimum along the m direction and 3-4 local minima along the ω direction in the range 2 <

ω < 20 (which may actually be relevant to capture higher harmonics of the logperiodicity

structure [129, 128]). Further, this method allows one to avoid sloppy directions in the
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(tc, ω) plane, where the cost-function has a very long valley along the diagonal tc ∼ ω, as

illustrated in Figure 3b of [38] and in Figure 1.1.

At the expense of a small increase of computational complexity, beyond its sim-

plification, the cost-function given by equation (5.2) provides a substantial improvement in

inference from the model. Namely, in addition to the point estimate (5.1), expression (5.2)

allows one to analyze the whole profile of the cost function F2(tc) and the dependence of the

estimates m̂ and ω̂ as a function of the critical time tc. In particular, one can identify all

the extrema of F2(tc) and their corresponding m(tc) and ω(tc), from which expert judgment

of the plausible scenarios can follow.

As an example, we consider the recent bubble and following collapse of the Chi-

nese market, when the Shanghai Composite Index (SSE Composite) appreciated by ap-

proximately 150% between mid-2014 and mid-2015, peaked on June 12, 2015 and then lost

32% to its first well-defined bottom reached on July 8, 2015. This bubble was detected

by the Financial Crisis Observatory (FCO) at ETH Zürich and further documented and

dissected in [112]. We use data provided by Thomson Reuters Dataworks Enterprise (see

Section 5.6.3 for discussions). Figure 5.1 presents the dynamics of the SSE Composite index

together with the best LPPLS fit according to the OLS regression within the time window

of t2 − t1 = 180 calendar days ending at the date of t2 =June 12, 2015 when the market

peaked.

In order to understand the “microstructure” of LPPLS fits, we employ the three-

step subordination procedure (1.10)–(1.12), (5.1)–(5.2) and study the dependence of the

cost-function F2(tc) as well as m̂(tc), ω̂(tc) and damping D̂(tc) (see Fig. 5.2). One can

see that the global (best) solution with estimated critical time t̂c of July 7, 2015 (with

F2 = 0.0597) is not the only minimum, and a second local minimum is found at tc = June

18, 2015 (with F2 = 0.0604), which suggests a second plausible scenario. Despite almost
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Figure 5.1: Price trajectory of the SSE Composite Index during the bubble of 2014–2015.
The red vertical line denotes the date of the analysis (t2 = 2015-06-12). Red and green
solid lines correspond to the best and second best (see Figure 5.2) LPPLS fit in the window
[2014-12-15, 2015-06-12] and their extrapolations to t > t2. The vertical red and green
dashed lines indicate the position of the critical times tc for these two fits: 2015-07-08 and
2015-06-18 respectively. The shaded red areas delineate the likelihood interval of tc at a 5%
cutoff together with the shape of the modified profile likelihood (see Sections 5.4–5.4.4 and
Figure 5.3).
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Figure 5.2: Profiles of the cost function F2(tc) and parameters m̂, ω̂ and damping D̂ =
m|B|/ω|C| as a function of tc. The solid red vertical line indicates the date of analysis
(t2 = 2015-06-12), the red and green dotted vertical lines correspond to the dates of the
best and alternative solutions (2015-07-08 and 2015-06-18 respectively). The horizontal
dotted line gives the level of the threshold (1.2.1) for the logperiodic angular frequency
parameter (ω > 6) that separates “qualified” fits from “not qualified” ones. The filled red
and green circles show the point estimates of the model parameters — for the best and
alternative fits, respectively.
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identical values of the cost functions (sum of squared errors of residuals), we might reject

the suboptimal solution on the basis of the fact that its logperiodic angular frequency falls

outside of the empirical constraint (1.2.1) (ω̂ = 7.18 for the optimal solution and ω̂ = 5.85

for the suboptimal). Both solutions are associated with damping parameters that are below

the constraint D ≥ 1 (D̂ = 0.8 for the optimal and D̂ = 0.83 for the suboptimal solution),

but they are both compatible with the relaxed constraint (1.2.1) (note that the value for

the optimal solution is very close to the boundary of this constraint).

This case study exemplifies the essence of the problem of dealing with multiple and

almost equivalent optimal solutions that point to quite different future scenarios. Above

we have invoked previous experience [60] to reject the second scenario. However, this is not

fully satisfactory from a theoretical view point. Moreover, past experience can be tainted

by the use of the sub-optimal calibration procedure based on the original formulation of the

model (1.4). To boot, past experience may not contain all possible situations, and surprises

that are superficially of the “unknown unknown” type [69, 120] from the point of view

of past experience might actually be understandable and knowable with the appropriate

conceptual and theoretical framework [111].

The question we further investigate below is: How can we resolve between these

two scenarios if we do not have (or do not want or trust to use) any prior information on

what are plausible parameter values? In other words, how can we provide a quantitative

estimation of how much one scenario is less likely than another?

5.3 Likelihood and Profile Likelihood

The OLS regression (1.10) represents the so-called normal estimation of the model

parameters, i.e. provides Maximum Likelihood Estimates (MLE) under the assumption that
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the error term ε(τi; tc, ψ) is normally distributed. The likelihood has then a well-known form:

L(tc, ψ, s) = (2πs)−n/2 exp

(
−SSE(tc, ψ)

2s

)
→ max

tc,ψ,s
, (5.3)

where s = σ2 is a variance of the residuals ε(τi; tc, ψ) and n is the number of data points.

By definition the likelihood is meaningful only up to an arbitrary positive constant, thus

below we will omit such constant pre-factors. The MLE of the parameters {t̂c, ψ̂}, where

ψ = {m,ω,A,B,C1, C2}, is obtained straight from (5.3): considering the logarithm of the

likelihood (lnL(tc, ψ, s)), one immediately arrives at (1.10) and an estimate for σ2 is

σ̂2 ≡ ŝ =
1

n
SSE(t̂c, ψ̂). (5.4)

Despite the equivalence of the MLE and OLS approaches in terms of computations,

the MLE requires an explicit distributional assumption for the error term ε. This implies

that the inference of ψ is implicit with the likelihood approach, while further work with

some sampling method is needed in the least squares approach.

As discussed above, we are mostly interested in the inference of the critical time

tc while the other parameters η = {ψ, s} ≡ {m,ω,A,B,C1, C2, s} can be considered as

nuisanse parameters that are useful insofar that they allow to adapt the model to the

variability of the data. The elimination of nuisance parameters is a well-known statistical

problem, which amounts to concentrating the likelihood around a single parameter of inter-

est while accounting for the extra uncertainty resulting from the estimation of the nuisance

parameters. Unfortunately, there is no technique that is efficient for all situations [15], in

particular because it is not always meaningful to discuss the uncertainty in one parameter

independently from that of all others.

As already mentioned, in the Bayesian approach, the elimination of the nuisance
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parameters corresponds to integrating them out. Its proper implementation requires speci-

fying the prior distribution of all parameters {tc, η}, calculating the posterior and then in-

tegrating out the nuisance parameters η from the posterior to derive the posterior marginal

distribution of tc. The major limitation of the Bayesian approach is indeed a specification of

the prior. We will not pursue this way directly. However, as shown in Section 5.4, we will be

able to capture the idea of integration over the nuisance parameters within a non-Bayesian

framework.

One commonly used practice of elimination of nuisance parameters is based on

a factorization of the complete likelihood into a product of the so-called marginal and

conditional likelihood functions [65]. When available, this approach results in a genuine

likelihood, i.e. the genuine probability of the observed data conditional on the parameter

of interest (tc). However, this approach requires transforming the sufficient statistics into a

minimal sufficient statistics that has to be factored into two terms T and A. One of these

terms, either the marginal distribution of T or the conditional distribution of T conditioned

on A (which is then called ancillary for tc), depends only on tc, but not on η (see discussions

in [82] and for example [14, 89]). Given that the LPPLS model (1.6) is highly nonlinear, it

is not possible to find such factorization.

A simpler method is to construct the so-called profile likelihood (also known as a

concentrated likelihood in the econometric applications). It consists in replacing the nuisance

parameters by their MLE at each fixed value of the parameter of interest. Given the joint

likelihood L(tc, η), the profile likelihood Lp(tc) is defined as

Lp(tc) = max
η

L(tc, η) ≡ L(tc, η̂tc), (5.5)

where η̂tc = arg maxη L(tc, η) is a MLE for η for a fixed value of tc. The profile likelihood
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is often treated as a regular likelihood for further inference of tc, i.e. one can normalize it,

compute likelihood intervals or compare likelihood ratios.

The profile likelihood approach is technically identical to the analysis of the profile

cost function F2(tc) discussed in Section 5.2. Indeed, the MLE of ψ̂tc is given by the

solution of the OLS (1.10): the estimates of m̂tc and ω̂tc are derived from (5.2) where

Âtc , B̂tc , Ĉ1,tc , Ĉ2,tc are given by (1.13). Finally, the form of ŝtc is similar to (5.4), where t̂c

is replaced by tc. Moreover, the value of Lp(tc) can be directly derived from F2(tc). Indeed,

the estimation of ŝtc defined in (5.4) can be represented as

ŝtc =
1

n
SSE(tc, ψ̂) ≡ 1

n
F2(tc), , (5.6)

and, after plugging (5.6) to (5.3) according to (6.6) we obtain:

Lp(tc) ∝
(
ŝtc
)−n/2 ∝ (F2(tc)

)−n/2
, (5.7)

where we have omitted all constant terms. Since the likelihood (5.3) is meaningful only up

to a constant, one usually considers the relative likelihood (respectively, relative profile like-

lihood or relative modified profile likelihood that will be defined later), which is normalized

to 1 by its maximum and thus takes value in [0, 1]:

R(tc) =
L(tc)

maxtc L(tc)
. (5.8)

Figure 5.3 (blue curves) presents an example of the relative profile likelihoodR(tc) calculated

for the case discussed in Section 5.2 and presented in Figure 5.2. One can observe the

same two extrema found with function F2(tc), which correspond to very close values of

the likelihood (Rp(t
(1)
c ) = 1 for the best solution t

(1)
c = 2015-07-08 and Rp(t

(2)
c ) = 0.64 for



Chapter 5: Modified Profile Likelihood and Interval Forecast of the End of Financial
Bubbles 108

0.0
0.2
0.4
0.6
0.8
1.0

R
p
,m

(t
c
)

10
8
6
4
2
0

ln
R
p
,m

(t
c
)

0.5
0.6
0.7
0.8
0.9
1.0

m
(t
c
)

4
5
6
7
8
9

ω
(t
c
)

Jun
2015

Jul Aug

08 15 22 29 06 13 20 27 03
0.70
0.75
0.80
0.85
0.90
0.95
1.00

D
(t
c
)

Figure 5.3: The top panel shows the relative profile likelihood (blue) and modified profile
likelihood (red) as a function of the critical time tc. The second panel from the top shows the
corresponding log-likelihoods. The red shaded area corresponds to the likelihood interval
of tc at the 5% probability level (see Section 5.4.4). The three bottom panels give the point
MLE parameter estimates of the model, m, ω and D, as a function of the critical time tc
(same as in Figure 5.2). Blue lines present point MLE estimates of the parameters and blue
shaded areas correspond to their approximated likelihood intervals at the 5% probability
level (see Section 5.5). The red continuous vertical line indicates the date of analysis (t2 =
2015-06-12). The dashed red and green vertical lines correspond to the dates of the best
and alternative solutions (2015-07-08 and 2015-06-18 respectively).

the alternative solution t
(2)
c = 2015-06-18). The likelihood ratio Rp(t

(1)
c )/Rp(t

(2)
c ) = 1.56 is

not large enough to warrant preferring one maximum over the other. The inference based

on a point OLS (or MLE) estimate can thus be quite misleading. In fact, the interval of

“acceptable” values for tc (the likelihood interval to be discussed in Section 5.4.4) is very
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broad, which confirms that a point estimation is far from reflecting the full picture.

5.4 Modified Profile Likelihood

5.4.1 General form of the modified profile likelihood

As discussed above, the profile likelihood is often treated as a regular likelihood but

in fact it is not a genuine likelihood function. Specifically, it treats the nuisance parameters

at a fixed value η̂tc as if they were known. It may thus overstate the amount of information

about tc and the inference on tc based on Lp(tc) may be grossly misleading if the data contain

insufficient information about η (in particular when η is high-dimensional as in our case,

which can lead to an overprecise profile likelihood). Moreover, under certain conditions,

the profile likelihood can provide unstable estimates with respect to small changes in the

observed data. At the same time, more robust marginal and conditional likelihoods are not

available in cases like ours.

In order to overcome this fundamental limitation of the profile likelihood, a se-

ries of adjusted versions have been proposed (see for instance, [29, 40, 13, 33] for general

discussions). Most of them require orthogonality between the parameter of interest (tc)

and nuisance parameter (η). In our case, orthogonality does not hold and, in order to

come up with a parametrization η̃ that would be orthogonal to tc, one needs to solve a

system of differential equations [29], which is nearly impossible to do analytically in our

multi-dimensional non-linear case. Then, the most flexible approach is arguably the one

proposed by [11], who introduced the so-called modified profile likelihood as a higher-order

approximation to either a marginal or a conditional likelihood function (both derivations

are possible).

The modified profile likelihood amounts to introducing an extra modulating factor
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M(tc) to the profile likelihood:

Lm(tc) = M(tc)Lp(tc) = |I(η̂tc)|
−1/2

∣∣∣∣ ∂η̂∂η̂tc
∣∣∣∣Lp(tc), (5.9)

where η̂tc is a MLE of the nuisance parameters η at a fixed value of tc; I(η̂tc) is the corre-

sponding observed Fisher information matrix on η assuming that tc is known:

I(η̂tc) = − ∂2 lnL(tc, η)

∂η∂ηT

∣∣∣∣
η=η̂tc

, (5.10)

where ηT stands for the transpose of η; ∂η̂/∂η̂tc denotes a matrix of the first partial deriva-

tives of the full MLE of the nuisance parameters η with respect to the MLE calculated at a

fixed value of tc; finally, | · | denotes the absolute value of a matrix determinant. Here and

in the following, we assume that the parameters form a column vector, thus second order

derivatives of the form (5.10) define a matrix.

The term |I(η̂tc)|
−1/2, which describes the curvature of the likelihood, can be con-

sidered as a penalty that subtracts from the profile log-likelihood “undeserved” information

due to the estimation of the nuisance parameter η. And the Jacobian term J(tc) = |∂η̂/∂η̂tc |

is needed to make the modified profile likelihood invariant with respect to the transforma-

tions of the nuisance parameters [82]. Practically, this term is extremely difficult to evaluate

as its calculation requires writing down the MLE of the nuisance parameter η̂ as a function

of η̂tc and some ancillary statistic. In the general case, finding a suitable ancillary statistic

is highly non-trivial, which dramatically hinders the analytical derivation of the correction

term and thus limits the direct application of (5.9) .

Though the modified profile likelihood is not a genuine likelihood function, it

is a rather good approximation to it, and it possesses a number of important properties

that distinguishes it from the profile likelihood. First, its score function is asymptotically



Chapter 5: Modified Profile Likelihood and Interval Forecast of the End of Financial
Bubbles 111

unbiased, having bias and information bias of order of O(n−1), i.e. the first and second

Bartlett identities are satisfied up to the first order [33]. In contrast, for the regular profile

likelihood, this is not true: these biases do not vanish and are typically of the order of O(1).

In particular, the failure of the second Bartlett identity for the profile likelihood means that

the log-likelihood ratio statistic based on the profile likelihood will not be asymptotically

chi-square distributed as the standard log-likelihood ratio [67]. Second, as just mentioned,

due to the Jacobian term, Lm(tc) is invariant with respect to a reparametrisation of the

model (such as the variable change (1.5)). Further, the modified profile likelihood does

not require orthogonality of tc and η and, as we see further, its approximation can be

calculated without specification of the ancillary statistic. Finally, [92] has shown that the

modified profile likelihood can be considered as an approximation to a class of integrated

likelihood functions and very naturally arises from a non-Bayesian inference with integrated

likelihood. But, in contrast to the Bayesian approach or integrated likelihood functions, the

modified profile likelihood does not require specification of a prior density for the nuisance

parameters — the main limitation that hampered us from pursuing this direction.

5.4.2 Inference on the errors variance

The importance of the modified profile likelihood cannot be overstated, given that

it is considered one of the breakthroughs in modern parametric inference [32]. Perhaps the

best illustration of the power of this method relates to the estimation of the variance s = σ2

in nonlinear regressions such as (5.3). It is well known that the standard estimation (5.4)

or (5.6) is biased and it should be corrected to account for the number of degrees of freedom,

i.e. the number of free parameters to estimate. The modified profile likelihood provides

this correction as follows.

For the time being, let us consider s as a parameter of interest and all the other
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parameters λ = {tc,m, ω,A,B,C1, C2} as nuisance parameters. Parameters s and λ are not

only informationally orthogonal, but the estimation of λ does not depend on s at all (since λ

is given straightforwardly from the OLS method). Thus, λ̂s ≡ λ̂ and |∂λ̂/∂λ̂s| ≡ 1. Having

taken care of the Jacobian, we only need to calculate the observed Fisher information I(ŝλ).

Straight from (5.3), we can derive the vector of first derivatives of the log-likelihood

— the so-called score function S(λ):

S(λ) =
∂ lnL(s, λ)

∂λ
= − 1

2s

∂SSE(λ)

∂λ
. (5.11)

The negative second derivative gives us the observed Fisher information matrix whose de-

terminant reads

|I(λ)| =
∣∣∣∣−∂2 lnL(s, λ)

∂λ∂λT

∣∣∣∣ =

(
1

2s

)pλ ∣∣∣∣∂2SSE(λ)

∂λ∂λT

∣∣∣∣ , (5.12)

where pλ = dimλ = 7 is the dimension of the nuisance parameter space. Before plug-

ging the expression (5.12) into (5.9) in order to obtain the modified profile likelihood

of s, notice that (i) the matrix of second-order derivatives ∂2SSE(λ)/∂λ∂λT in (5.12)

does not depend on the parameter of interest s explicitly and (ii) the OLS estimation

λ̂s ≡ λ̂ = {t̂c, m̂, ω̂, Â, B̂, Ĉ1, Ĉ2} also does not depend on s. Thus, the determinant of

∂2SSE(λ)/∂λ∂λT is a constant with respect to the variable s and therefore can be omitted.

Then, the modified profile likelihood of s can be expressed in the following form:

Lm(s) ∝ s(n−pλ)/2 exp

(
−SSE(λ̂)

2s

)
, (5.13)

which leads to the following MLE for s:

ŝ =
1

n− pλ
SSE(λ̂). (5.14)
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The denominator n−pλ, which is different from n in (5.4), not only removes the bias of the

estimator, but also results in a better likelihood-based inference of s when it is needed.

5.4.3 Approximation of the modified profile likelihood

Given all the remarkable properties of the modified profile likelihood, it has one

very serious limitation, briefly mentioned above. Namely, for many realistic models, it is

extremely difficult to calculate the Jacobian in (5.9). In order to get an intuition about the

nature of the difficulty, it is useful to express it in the following form (see e.g. [82]):

J(tc) ≡
∣∣∣∣ ∂η̂∂η̂tc

∣∣∣∣ =
|I(η̂tc)|

|C(tc, η̂tc ; t̂c, η̂)|
, (5.15)

where the matrix C(tc, η̂tc ; t̂c, η̂) is given by the second-order derivatives of a log-likelihood

L(tc, η̂tc ; t̂c, η̂, a) that includes a new parameter a that is ancillary for {t̂c, η̂}, i.e. {t̂c, η̂, a}

is a sufficient statistic of the model:

C(tc, η̂tc ; t̂c, η̂) =
∂2 lnL(tc, η̂tc ; t̂c, η̂, a)

∂η̂tc∂η̂
T

. (5.16)

In contrast to the observed Fisher information, which is also defined as a second-order

derivative (5.10) calculated at a specific MLE η̂tc , the calculation of C (5.16) is much more

complicated because, in the general case, it requires a reformulation of the log-likelihood in

order to introduce an explicit dependence on the MLEs η̂tc and η̂. In the case of inference

of the variance s presented in Section 5.4.2, we used the orthogonality of s and λ, which

resulted in λ̂s ≡ λ̂. In contrast, for the inference on tc, there is no closed form expression for

J(tc). And, as discussed above, we cannot use the adjusted profile likelihood [29] because

orthogonalization of the nuisance parameters with respect to tc is not feasible either.

In order to calculate expression (5.9), several approximation of Lm were proposed
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(see e.g. [12, 98, 88, 41, 99] and [91, 80] for reviews). We will use the approximation to

the modified profile likelihood proposed by [88]. This approximation requires only the

covariance of score functions of the nuisance parameters and is thus fairly easy to compute.

As shown in [88], this approximation is invariant under the reparametrization of the model,

is stable in the sense of conditional inference and agrees with the exact J(tc) (5.15) to order

O(n−1) in the moderate deviation sense and to order O(n−1/2) in the large deviation sense,

where n is the number of data points. Another famous approximation by [12] agrees with

the exact form of Lm only to O(1) in the large deviation sense and thus is not asymptotically

better than the simple profile likelihood Lp.

[88] suggested to approximate the matrix (5.16) with the covariance matrix of

score functions of the following form:

C(tc, η̂tc ; t̂c, η̂) ≈ Σ(tc, η̂tc ; t̂c, η̂) (5.17)

where

Σ (tc;1, η1; tc;2, η2) = E(2)

 ∂ lnL(tc, η)

∂η

∣∣∣∣tc=tc;1
η=η1

∂ lnL(tc, η)

∂ηT

∣∣∣∣tc=tc;2
η=η2

 . (5.18)

Here the expectation E(2)[·] is taken with respect to the probability distribution of error

term ε(τ ; tc;2, η2) that corresponds to the parameters {tc;2, η2}. In contrast to the exact form

(5.16), here we need only the score functions, which have expressions similar to (5.11). When

calculation of (6.23) is too complicated, one can exploit the independence of observations

ε(τi; tc, η) and replace the covariance matrix (6.23) by its asymptotically equivalent sample

estimation [90]:

Σ̂ (tc;1, η1; tc;2, η2) =
n∑
i=1

∂f(τi; tc, η)

∂η

∣∣∣∣tc=tc;1
η=η1

∂f(τi; tc, η)

∂ηT

∣∣∣∣tc=tc;2
η=η2

, (5.19)
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where

f(τ ; tc, η) = −1

2
ln(2πs)− 1

2s

(
ln p(τ)− LPPLS(τ ; tc, ψ)

)2
(5.20)

is a contribution from an individual observation to the log-likelihood. Of course, the ad-

justment (6.23) based on the theoretical covariance is superior to the sample-based estima-

tion (5.19), in particular in cases of small sample size [90, 17]. For our purposes, we will

use the exact form (6.23), which can be calculated in closed form. Finally, plugging (6.23)

into (5.15) and (5.9), we obtain the desired approximated expression for Lm(tc):

Lm(tc) ≈
|I(η̂tc)|

1/2∣∣Σ(tc, η̂tc ; t̂c, η̂)
∣∣Lp(tc) . (5.21)

In this expression (6.24), the profile likelihood Lp(tc) is given by the previously

calculated expression (5.7). The observed Fisher information I(η̂tc) and the covariance

matrix Σ(tc, η̂tc ; t̂c, η̂) are given in Appendix 5.7. Omitting terms that do not depend on tc,

the final expression for Lm(tc) is given by:

Lm(tc) ∝

(
ŝtc
)−(n−p−2)/2

∣∣∣∣∣
n∑
i=1

∂2LPPLS(τi; tc, ψ)

∂ψ∂ψT

∣∣∣∣∣
1/2

ψ=ψ̂tc∣∣∣∣∣∣
n∑
i=1

∂LPPLS(τi; tc, ψ)

∂ψ

∣∣∣∣ tc=tc
ψ=ψ̂tc

∂LPPLS(τi; tc, ψ)

∂ψT

∣∣∣∣tc=t̂c
ψ=ψ̂

∣∣∣∣∣∣
, (5.22)

where p = dimψ = 6. Following [90], let us introduce the rectangular n× p matrix

Xij(tc, ψ) =
∂LPPLS(τi; tc, ψ)

∂ψj
(5.23)
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and the square p× p matrix

Hij(tc, ψ) =

n∑
k=1

(
ln p(τk)− LPPLS(τk; tc, ψ)

)∂2LPPLS(τk; tc, ψ)

∂ψi∂ψj
, (5.24)

where ψj denotes the j-th element of the nuisance parameter vector {m,ω,A,B,C1, C2}.

Then, expression (5.22) simplifies into

Lm(tc) ∝
∣∣XT (tc, ψ̂tc)X(tc, ψ̂tc)−H(tc, ψ̂tc)

∣∣1/2∣∣XT (t̂c, ψ̂)X(tc, ψ̂tc)
∣∣ (

ŝtc
)−(n−p−2)/2

, (5.25)

where ŝtc is the MLE estimate of the variance (5.6) (it is not the adjusted estimate (5.14)),

ψ̂tc is a vector of MLE estimates for the LPPLS parameters at a fixed value of tc and {t̂c, ψ̂}

are full MLE estimates of the parameters. The expressions of the first-order and second-

order partial derivatives that are needed for (5.23) and (5.24) are given by (5.48) and (5.49)

in Appendix B.

As a concrete illustration, we consider the 2015 bubble in Chinese markets already

discussed in Sections 5.2–5.3. The red curves in the two top panels of figure 5.3 show the

modified profile likelihood obtained from expression (5.25). It is particularly interesting

that the adjustments to Lm(tc) have significantly changed the picture, since the “alterna-

tive” extremum has now a higher likelihood than the best OLS solution (Rm(t
(2)
c ) = 1.

versus Rm(t
(2)
c ) = 0.91). Thus, accepting the OLS point estimate would bias t̂c by 19

days. The likelihood ratio is now even smaller than for the simple profile likelihood,

Rm(t
(2)
c )/Rm(t

(1)
c ) = 1.096, and both extrema are almost equally likely.

5.4.4 Likelihood Intervals and Confidence Intervals

The major improvement of the standard MLE interpretation (5.3) over the OLS (1.10)

is the fact that MLE provides a direct estimation of the uncertainty in estimated parame-
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ters. In other words, MLE can provide not just the point estimate of θ but a range estimate

of values that are possible given the observed data. Such inference is based on the likelihood

ratio R(θ), introduced earlier in the form of the relative likelihood (5.8) defined as the ratio

of the likelihood normalized by its maximum value. When R(θ0) is sufficiently small, the

hypothesis that the parameter could have a value θ = θ0 can be rejected as “unsupported

by the data”.

However, the question of “how small is sufficiently small?” often does not have a

rigorous solution and strongly depends on the problem. Many authors suggest to choose

some rather arbitrary cutoff and consider values of likelihood ratio above this cutoff to define

a so-called likelihood-based confidence interval or likelihood interval (LI). For example, many

authors including [39]suggested that parameter values θ for which L(θ̂)/L(θ) = 1/R(θ) > 15

should be declared “implausible”, where θ̂ is the standard MLE.

In regular one-parameter models, one can create a frequentist confidence interval,

based on a probability-based calibration. For example, the log-likelihood ratio test statistic

−2 lnR(θ) can be then approximated using Wilk’s theorem, and an approximate p-value

is given by the χ2-distribution with one degree of freedom. Further, for regular likelihood

functions, i.e. those that are well-approximated by a quadratic function, one can define a

confidence interval (CI) around MLE θ̂ solely based on the observed Fisher information.

For example, a standard error would have the form I−1/2(θ̂) and 95% CI would be given by

θ̂ ± 1.96I−1/2(θ̂) (Wald confidence interval).

For our applications, these approaches are not perfectly suited. First, as can be

seen in Figure 5.3, the profile and modified profile likelihoods are not regular: they are

asymmetric and can be even multi-modal, so that the Wald CI does not provide a mean-

ingful representation of parameter uncertainty. For the same reason, the calibration of the

distribution of the test statistic under the null hypothesis is not straightforward and would
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be computationally very difficult given the dimensionality of the parameter space and the

complexity of the LPPLS model (1.6). Finally, within our domain of application, an in-

terpretation of the frequentist probability-based confidence intervals is not very intuitive.

Indeed, giving the idiosyncratic nature of a bubble, in order to make sense out of the proba-

bilistic intervals, one needs to involve a many-worlds interpretation, where price trajectory

is shared among multiple universes.

For all the reasons mentioned above, we choose to operate with likelihood intervals

that are more intuitive in our context and are not subjected to the assumptions of regularity.

Following Fisher’s suggestion, we define the likelihood interval at the 5% cutoff:

LI(tc) =

{
tc : Rm(tc) =

Lm(tc)

Lm(t̂c)
> 0.05

}
. (5.26)

The two top panels of Figure 5.3 show such 5% modified profile likelihood intervals for the

case of 2015 Chinese bubble.

5.5 Filtering and likelihood intervals for nuisance parameters

Similarly to the inference on the critical time tc, let us apply the modified profile

likelihood approach to estimate the likelihood intervals (LIs) of parameters m and ω. This

is of interest in particular because m and ω are used in the filtering conditions (1.2.1).

Three different ways of inference on m and ω exist. First, we could consider m

(respectively, ω) as the sole parameter of interest and ηm = {tc, ω,A,B,C1, C2, s} (respec-

tively, ηω = {tc,m,A,B,C1, C2, s}) as the vector of nuisance parameters. Then, an analysis

similar to that developed in Sections 5.4–5.4.4 would provide the corresponding modified

profile likelihood and LIs for these two parameters. However, keeping in mind that the
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parameter of main interest is the critical time tc, we would need to somehow associate the

inferred LIs for m (ω) with the corresponding values of tc.

A second approach consists in targeting the vector θ = {tc,m, ω}, while ηθ =

{A,B,C1, C2, s} becomes the vector of nuisance parameters. The general framework re-

mains the same as before. However, the computational complexity increases substantially,

since the modified profile likelihood Lm(θ) is a 3-dimensional function. And the analysis of

such function is not straightforward, with many 2D-cross-sections needed to obtain a suit-

able understanding of the topology in four dimensional space. Or we would need another

layer of profile or modified profile likelihood to be calculated.

Here, we employ a third approach. For any fixed value of tc, we consider a re-

duced LPPLS formula that is parameterized solely with the vector {m,ω,A,B,C1, C2}.

We then calculate a modified profile likelihood Lm(m; tc) (respectively Lω(ω; tc)) with

ηm = {ω,A,B,C1, C2, s} (respectively, ηω = {m,A,B,C1, C2, s}) as the vector of nuisance

parameters. The expression for Lm(·) is then similar to (5.25). For example, Lm(m; tc) has

the form

Lm(m; tc) ∝
∣∣XT

m(tc,m, φ̂tc,m)Xm(tc,m, φ̂tc,m)−Hm(tc,m, φ̂tc,m)
∣∣1/2∣∣XT

m(t̂c, m̂, φ̂)Xm(tc,m, φ̂tc,m)
∣∣ (

ŝtc,m
)−(n−p−2)/2

,

(5.27)

where φ = {ω,A,B,C1, C2}, p = dimφ = 5, {t̂c, m̂, φ̂} is the full MLE of all parameters

of the LPPLS model and φ̂tc,m is the MLE of φ at fixed values of {tc,m}. Finally ŝtc,m =

SSE(tc,m, φ̂tc,m)/n and the matrice Xm is obtained from X (5.23) by removing the first

column and the matrix Hm is the principal submatrix of H (5.24), obtained by removing its

first row and first column. Targeting ω, the expression for Lm(ω; tc) is also given by(5.27)

up to a replacement of m by ω, where Xω is obtained from X by removing the second

column, and Hω is obtained from H by removing the second column and second row.
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Figure 5.4: Profile of the cost function F (·) (black line, left scale), profile likelihood Lp(·)
(blue line, right scale) and modified profile likelihood (red line, right scale) for the power law
exponent m (top panel) and logperiodic angular frequency ω (bottom panel) for tc =2015-
06-17. Note that the profile and modified profile likelihood almost coincide. The red shaded
intervals represent the likelihood intervals LI(·) at the 5% cutoff. The vertical blue dashed
lines delineate the approximated likelihood intervals (5.29) at the 5% cutoff.

Figure (5.4) presents the profile and modified profile likelihoods for the parameters

m and ω in the case considered before (Figures 5.1–5.3) for the fixed value of tc =2015-06-17.

It is interesting to note that the SSE profile of parameter m at a fixed tc is unimodal in the

range of interest. Moreover, our tests show that this is typically the case for a broad range

of values 0 < m . 3. The SSE profile for ω is multimodal, but when the price trajectory

exhibits a clear upward trend with a substantial price appreciation over the window of

calibration [t1, t2] (e.g. when the price increase is substantially larger than the volatility),

then the best solution ω̂ is often clearly delineated and the likelihood profile is essentially

unimodal, i.e. the alternative solutions are implausible (as in Figure 5.4).

In Figure (5.4), it is almost impossible to distinguish the profile likelihood from
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the modified profile likelihood in the visible range of values. The values at which the log-

likelihoods start to disagree, i.e. for Rm(·; tc) = lnLm(·; tc)/ lnLm(̂·; tc) . −15, cannot be

been seen in this linear scale representation. We have found that this situation is typical

for many other cases. This very close agreement means that the profile likelihood Lp(·; tc)

is already a good approximation to either the marginal or the conditional likelihood so that

we could use it directly for the inference of likelihood intervals. Moreover, the peak of the

profile likelihood can often be well approximated by a quadratic function, allowing use to

use this approximation for an analytical evaluation of LI2.

In contrast to the estimated likelihood, the negative curvature of the profile like-

lihood function of a parameter ηi is not equal to [I(η̂tc)]i,i, where I is the observed Fisher

information matrix (5.38), but to ([I−1(η̂tc)]i,i)
−1 (see e.g. derivations in [51]). One can

prove that [I(η̂tc)]i,i ≥ ([I−1(η̂tc)]i,i)
−1, which means that the observed Fisher information

of the profile likelihood is smaller than or equal to the observed Fisher information on

the estimated likelihood. This illustrates the fact that the nuisance parameter η has to

be estimated and thus adds to the uncertainty of the parameter of interest. Taking this

approximation of the curvature into account, we can write the following Taylor expansion

for the profile likelihood of m and ω at a fixed tc:

lnLp(m; tc) ≈ lnL(tc, η̂tc) −1
2([I−1(η̂tc)]1,1)−1(m− m̂tc)

2,

lnLp(ω; tc) ≈ lnL(tc, η̂tc) −1
2([I−1(η̂tc)]2,2)−1(ω − ω̂tc)2,

(5.28)

2We need to mention that this is not always the case, and a bi-modal structure of both profiles on m and
ω is also possible, though rare. Moreover, in some cases, the second-order approximation of the modified
profile likelihood might completely change the estimation of these parameters (see Appendix 5.7).
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and thus the likelihood intervals at a cutoff of level c are given by

LI(m; tc) =
{
m :

Lp(m;tc)
Lp(m̂;tc)

> c
}

= {m : |m− m̂tc | < ∆m;tc} , ∆m;tc =
√
−2 ln c [I−1(η̂tc)]1,1,

LI(ω; tc) =
{
ω :

Lp(ω;tc)
L(ω̂;tc)

> c
}

= {ω : |ω − ω̂tc | < ∆ω;tc} , ∆ω;tc =
√
−2 ln c [I−1(η̂tc)]2,2.

(5.29)

Here, I(η̂tc) has the form (5.38) (Appendix A), and its submatrix of partial derivatives can

be written in a matrix form similar to the numerator in (5.25). These likelihood intervals

for c = 0.05 are indicated with dashed vertical lines in Figure 5.4, and one can see that they

provide a very good approximation for the true LIs based on the modified profile likelihood

for m and ω at a fixed tc (red shaded areas).

The likelihood interval for the damping parameter D = m|B|/ω|C| is slightly more

difficult to calculate. Because D does not enter LPPLS expression (1.6) directly, we first

need to perform a variable change, e.g. by replacing the vector η = {m,ω,A,B,C1, C2, s}

with ζ = {D,ω,A,B,C1, C2, s}. Under such reparametrization, the observed Fisher infor-

mation matrix (5.38) is transformed into

I(ζ) = JTDIη(η(ζ))JD, (5.30)

where JD = ∂η/∂ζ is the Jacobian matrix of the transform from η to ζ, whose its full

expression is given by (5.50) in Appendix C. Finally, the likelihood interval for the damping

parameter is

LI(D; tc) =
{
D : |D − D̂tc | < ∆D;tc

}
, ∆D;tc =

√
−2 ln c

[
I−1(ζ̂tc)

]
1,1
. (5.31)

As discussed above, the modified profile likelihood (5.9) for the main parameter tc of interest

is invariant with respect to such transformations of the nuisance parameter vector η.
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We are now in position to discuss the overall results presented in Figure 5.3. The

first important observation is that, in view of the determined likelihood intervals, the re-

jection of the “suboptimal” solution is no more warranted (given that LI(ω) = {5.47 <

ω < 6.07}). Observe that the optimal solution now easily fits in the extended interval of

the damping parameter constraint (1.2.1). Second, it is interesting to compare the interval

widths (2∆) representing the uncertainty of the different parameters. In the particular ex-

ample presented in Figure 5.3, the power law exponent m is the most uncertain parameter

with 2∆m;tc ≈ 0.3, which is about 40% of the estimated value m̂tc . The damping param-

eter D, which is proportional to m, also has a fairly broad likelihood interval with width

2∆D;tc ≈ 0.17, which is about 20% of the estimated value D̂tc . Finally, the uncertainty of

the logperiodic angular frequency is 2∆ω;tc ≈ 0.63, which is about 7% of ω̂tc . In general, the

widths 2∆ of the likelihood intervals strictly depend on the specific realisation of the data,

but our extensive tests have shown that the above observations typically hold. Finally, it

is interesting to document that such rather large uncertainty in the nuisance parameters

does not result in a dramatic change of the likelihood intervals for the parameter of interest

tc. And while the modified profile likelihood corrects the shape of the distribution, the

intervals (5.26) for the profile and modified profile likelihoods at a 5% cutoff agree rather

well in this and many another cases.

5.6 Application of the methodology

In the previous Sections 5.3–5.5, we have developed a framework to infer the

critical time tc from the LPPLS model, which includes parameter estimation together with

its confidence interval, as well as the confidence intervals of the relevant nuisance parameters

within a fixed calibration window [t1, t2]. However, for real life applications, one cannot
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limit oneself to the analysis of a single time-scale, because financial time-series result from

complex generating processes, from volatility clustering of the simplest form to multifractal

models, subjected to regime-shifts leading to non-trivial scaling structures. In order to

understand the complexity of such phenomena through the prism of some model like LPPLS,

one needs to apply this model at different scales simultaneously, and also consider the

evolution of the model parameters in time.

In this section, we extend the analysis of the LPPLS model to the scale-domain

t2 − t1 and provide illustrations of the application of the methodology both to synthetic

case and real price series.

5.6.1 Aggregation of time-scales

By time scale, we mean the width ∆t ≡ t2 − t2 of the time window in which the

analysis is performed. The aggregation of analyses performed at different time-scales is not

a trivial problem, whose difficulty starts with the mere computational complexity of non-

linear models. Usually, the application of the model at several time scales proportionally

increases the computational time, and the output data that needs to be analyzed also

increases manifold. Further, in order to make the analysis operational, one needs a method

for aggregating the massive amount of parameter information for the construction of the

predictive features or signals. Then, the next step is to perform a full-scale back-testing

of the constructed signals for understanding their predictive power. These challenging

operational steps go beyond the scope of the present methodological paper, and will be

reported elsewhere. Some practical aspects are already discussed in [112], where multi-

scale signals were used for ex-ante forecasting the crash in Chinese markets in June 2015.

[117] also presented a multi-scale analysis with LPPLS, in which the different scales were

combined via a pattern recognition algorithm. Here, we will focus on the descriptive analysis
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and visualization aspects.

The analysis of the modified profile likelihood in Sections 5.4–5.5 was aimed at

estimating the likelihood intervals (LI) of the critical time tc as well as of the logperiodic

angular frequency ω, power law exponent m and damping D, which contribute to the fil-

tering criteria (1.2.1). A multi-scale approach would require analysis of these outputs for

different values of window sizes ∆t = t2 − t1. One of the most natural ways is to construct

the modified profile likelihood Lm(tc; ∆t) independently for different window sizes ∆t. Be-

cause the absolute value of the likelihood depends on the amount of data, it does not make

sense to compare value of Lm for different ∆t directly. For comparison, we will use the nor-

malization as in (5.8), and will apply it for each window size ∆t independently, constructing

the relative multi-scale modified profile likelihood R(tc,∆t) = Lm(tc; ∆t)/maxtc Lm(tc; ∆t).

The structure of R(tc,∆t) then directly provides with scale-dependent likelihood intervals

LI(tc; ∆t) for the critical time tc.

In order to illustrate this approach, we construct modified profile likelihoods for

∆t varying from 60 to 700 days and for tc varying from t2 − 50 to t2 + 150 days. The

scale-dependent likelihood intervals are presented in red color in Figure 5.5 (red profiles are

identical in both panels) for the same t2=2015-06-12 that was used for illustration earlier

in the paper. One can see the same bi-modal structure for ∆t = 180 as reported earlier,

which suggests two possible scenarios for the end of the bubble: tc = t2 + 5 and tc = t2 + 25

(days). Figure 5.5 gives an illustrative overview of the structure of the inferred critical

time tc broken down in three time scales: (i) short time scales (∆t ≤ 160) suggest that the

price trajectory is at its peak already and the critical time is close to the date of analysis

tc ≈ t2 (with the MLE of tc being a few days before t2); (ii) intermediate time scales

(180 ≤ ∆t ≤ 350) suggest two main scenarios in which the critical time is clustered around

20-30 or 60-90 days in the future; and (iii) large scales ∆t > 350 do not give stable clusters.
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Figure 5.5: Two-dimensional structure of the relative multi-scale modified profile likelihood
R(tc,∆t) at the date t2=2015-06-12, corresponding to multiple calibrations of the model
with different window sizes ∆t. The horizontal axis gives the value tc − t2 with the solid
red vertical line indicating the case where tc is coincident with the date of analysis. Each
horizontal slice of the plot gives in color code the dependence of the individual modified
profile likelihoods of the model (as in Figure 5.4) calculated for a given window size ∆t =
t2− t1 (vertical axis) as a function of tc− t2. The shaded red area corresponds to likelihood
intervals LI(tc) of the critical time at the 5%, 50% and 95% cutoff (from lightest to darkest
colors). The shaded blue area denotes values of (tc,∆t), where the constraints on the
nuisance parameters (1.2.1) are not met. The left panel corresponds to the case when only
MLE parameters are considered for filtering, the right panel corresponds to the case when
likelihood intervals (5.29) and (5.31) are taken into account.

Figure 5.5 also provides important insights on the range of values (tc; ∆t) for

which the parameters obey the theoretical constrains (1.2.1) — below we will refer to them

as qualified fits. In the left panel, the blue shaded area indicates when LPPLS fits can

be rejected based solely on the MLE values of m,ω and D (“strict filtering”). In the

right panel, we take additionally into account the likelihood intervals of these parameters

(see Section 5.5) and show only the region where these intervals have no overlap with the

constraints (1.2.1) (“confidence-aware filtering”). These cases differ quite dramatically, in

the sense that strict filtering falsely rejects a substantial number of fits that correspond to
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credible alternative scenarios. As discussed in [112], choosing the proper filters is one of the

key ingredients for constructing successful signals. Being a very broad subject, constructing

and testing useful filters goes beyond the scope of present paper. For the time being, we

stress how crucial it is to take into account data-induced uncertainty when constructing

signal filters.

Let us now describe some of the potential numerical issues that often arise in

such complicated optimization problems. First, because the search for tc is constrained in

a pre-defined bounded interval, the real maxtc Lm(tc; ∆t) might lie outside of it, so that

the numerical procedure might pick up a value at the boundary of the search space on tc.

Normalising Lm(tc) to 1 at this boundary point, this may result in having a wide range

of high values of R(tc,∆t) close to this boundary, leading to a spurious likelihood interval

LI(tc). In the example above, this is exactly what happens for ∆t > 550 (red profiles at the

top-right of Figure 5.5), where the maximum of the modified profile likelihood is beyond

the search range (tc > t2 + 150) and the inference on the likelihood intervals is completely

misleading.

Another problem is the potential bad convergence of the optimization of the nui-

sance parameters in (6.6), which dramatically affects the value of Lp(tc) and thus Lm(tc).

Usually, this situation occurs for large values of tc − t2, especially when tc − t2 is not

small compared with the window size ∆t. However, it highly depend on the structure of

the residuals and the numerical method might not converge even for moderate values of

tc − t2. What makes this issue complicated is that there is no simple way of detecting

bad convergence, neither algorithmically nor even visually in plots like Figure 5.5. It often

results in some kind of discontinuities in the plot, but not always. Take for instance the

case ∆t = 470 − 480, where an apparent discontinuity of likelihood intervals is in fact the

consequence of a continuous transition of one maximum of the likelihood to another when
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increasing ∆t.

As with all non-linear optimization problems, there is no “silver bullet” to address

such numerical issues. Measures such as increasing the region of search or the precision

of numerical methods do not always help. Especially when one performs fully automated

analyses, it is highly recommended to carefully validate each step of the procedure and take

outputs with a grain of salt, not hesitating to “triple-check” any suspicious results.

5.6.2 Synthetic tests

In order to gain insight about the likelihood inference of the critical time (tc)

during a growing bubble and establish a solid background for our empirical analysis, we

first test our methodology on synthetic time series, where the underlying process follows

the LPPLS structure. Specifically, we generate the log-price as

ln[P (t)] = LPPLS(t) + σε(t), (5.32)

where LPPLS(t) is given by (1.6) with t0c=1975-02-09, m0 = 0.8, ω0 = 9, φ0 = 0 and

A0 = 8, B0 = −0.015, C0 = 0.0015 (i.e. with low damping D0 = 0.88), ε(t) is an iid N(0,1)

noise and σ0 = 0.03. The resulting price trajectory is illustrated in Figure 5.6.

With the goal of understandings the evolution of the parameters as a function

of the “present” time t2 (the time of analysis) for such a synthetic bubble, we apply our

methodology to construct a multi-scale modified profile likelihood (see Section 5.6.1 and

Figure 5.5) at different dates t2 increasing towards the end of the bubble at t0c . The resulting

multi-scale profiles are shown in insets of Figure 5.6. Far from the critical time (insets 1 and

2: t0c−t2 = 192 and 161 days respectively), the critical time cannot be identified even in such

a clean synthetic case with weak noise (partially because we are limiting the search space to
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Figure 5.6: Synthetic price time series (5.32) together with multi-scale modified profile
likelihoods calculated at various dates t2. Each inset shows contour plots of the likelihood
intervals at 5%, 50% and 95% cutoff levels (as in Figure 5.5). The red shaded area denotes
values of (tc,∆t) where the constrains on the nuisance parameters (1.2.1) are met when
likelihood intervals (5.29) and (5.31) are taken into account (i.e. red color denote these
parts of the contour plots that are not covered by blue area in Figure 5.5). The solid
vertical line corresponds to tc = t2, and the dashed vertical line shows the true critical time
tc = t0c . Values of t2 used for the analyses are indicated in the inset titles. They are also
shown with vertical gray lines in the plot with the price trajectory.

tc < t2 + 150 days). Even when t0c − t2 enters the range < 150, the parameters continue to

exhibit a large uncertainty. One can observe that fits for different scales progressively build

a consensus, as the likelihood peaks aggregate around the true critical time with a narrow

likelihood interval around it. This is first observed for the large scales ∆t > 300 − 400

(insets 3 and 4 for t0c − t2 = 131 and 100 days respectively), and this consensus spreads to

smaller scales of ∆t ∼ 100− 300 (insets 5 and 6 for t0c − t2 = 70 and 39 days respectively).

Another remarkable fact is that, once the critical time is passed and the price

trajectory switched to a crashing regime (t2 > t0c , inset 7), all scales confirm this occurrence

by fixing the MLE t̂c ≈ t0c with an extremely narrow likelihood interval, and this anchoring

holds for a large time interval. The same effect is observed in the analysis of real data
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Figure 5.7: Same as Figure 5.6 for the S&P500 index that shows a strong bubble of US
markets developing in the second half of the 1980’s, which culminated with the Black
Monday crash of Oct. 19. 1987.

presented in Section 5.6.3 — even when the ex-ante forecast of the end of the bubble might

be difficult or inconclusive, the change of the price direction can be identified quite reliably

within a few days of the switching point.

5.6.3 Case-studies

We now provide examples of the application of the procedure described in previous

sections to several well-known historical bubbles: (i) the rally in the US markets in the

second half of the 1980’s culminating with the Black Monday crash of Oct. 19. 1987, (ii)

the dot-com bubble in the IT sector in the US culminating with a crash in April 2000, (iii)

the Chinese bubble of 2014-2015 that peaked in June 2015.

We use the daily closing prices of the S&P 500, NASDAQ and SSEC indices

provided by Thomson Reuters Dataworks Enterprise (DWE). We only consider business

days, ignoring weekends and one-day holidays. However, for extended holidays (such as the
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Figure 5.8: Same as Figure 5.6 for the Chinese bubble of 2014-2015 that peaked in June
2015.
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Figure 5.9: Same as Figure 5.6 for the dot-com bubble in the IT sector in the US culminating
with a crash in April 2000
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Chinese New Year in 2015, when exchanges were closed over February 7-13), we fill the gaps

with the closing price of the previous day. For calibrations using business time such data

preprocessing would not be necessary.

Employing the procedure explained in Sec. 5.6.2, we obtain Figures 5.7-5.9. In

each of these three figures, the main graph shows the price time series P (t) together with

vertical dashes lines that identify remarkable turning points of the price dynamics. In the

case of the S&P 500, we show two different vertical dashed lines associated with the two

peaks of the index preceding the crash. The seven thin vertical lines indicate the position of

the seven t2 values chosen for the construction of the Likelihood intervals of tc. The seven

insets show contour plots of the likelihood intervals at 5%, 50% and 95% cutoff levels (as

in Figure 5.6).

Figures 5.7 for the S&P 500 shows that the Profile Likelihhod of tc as a function of

time scale ∆t ≡ t2 − t1 and “present time” t2 is very similar to those obtained in synthetic

tests. As early as t2 = 1987-04-15, one can visualize the high Likelihood of t̂c ≈ Oct. 1987

over almost all time scales. Interestingly, the Likelihood interval narrows down as t2 ap-

proaches the end of the bubble. Moreover, there is an increase of the number of qualified

fits (those where constrains on the model parameters (1.2.1) are met when likelihood in-

tervals (5.29) and (5.31) are taken into account — shown as the red-shaded region) at t2

increases. These two results can be rationalized by the fact that more information relevant

to the identification of the bubble become available as more data are used.

As shown in figure 5.8, similar observations carry over to the SSEC bubble ending

in June 2015, albeit with a smaller number of qualified fits. One can observe that the

analyses performed for the time scales ∆t ∈ [400, 500] and ∆t ∈ [100, 200] provide a correct

diagnostic of the end of the bubble with a narrow confidence interval. The time scale

∆t ∈ [400, 500] correctly locks in on the true peak as early as April 2015.
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Figure 5.9 shows the same analysis for the dotcom bubble that developed in the

NASDAQ Index. At t2 = 2000-02-09, the time scales ∆t ∈ [100, 350] correctly lock in on

the true peak ≈ April 2000. The other intermediate time scales give an estimation t̂c of

the end of the bubble that agrees with the empirical value within the 95% confidence of

the likelihood intervals.. All estimates on different t2’s appear to be either unqualified or

signalling a different value for the change of regime to occur.

Overall, these empirical results exhibit the following behaviors: (i) for t2 far from

tc, there are fewer qualified fits and different scales tend to provide distinct estimates t̂c;

(ii) when approaching the true tc, the Likelihood intervals for t̂c start to align, with the

formation of clusters associated with different possible scenarios; (iii) rather close to the true

tc, one can often observe a strong cluster around t̂c ≈ t2 and a narrow likelihood interval.

On the other hand, the fact that different time scales used for fitting the LPPLS

model tend to suggest different values of t̂c is important to keep in mind, as this observation

is in contrast with the behavior obtained for synthetic time-series. This is likely due to

“model error”, i.e., the simple LPPLS model (1.4) is only an approximation of the unknown

true generating process of the price dynamics. For instance, earlier works [113, 59, 46, 128]

have pointed out the important of including higher harmonics and more complex forms

generalising this simple first-order LPPLS formula (1.4).

We thus stress the importance of employing filtering criteria to decrease the prob-

ability of the occurrence of errors of type I (“false positives”). The Likelihood Method has

been shown to provide more reliable interval estimates for the critical time than simple OLS

point estimates, in particular as t2 approaches tc.
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5.7 Concluding remarks

We have presented a detailed methodological study of the application of the mod-

ified profile likelihood method proposed by [11], with the goal of tackling the instabilities

and uncertainties occurring in the calibration of nonlinear financial models characterised

by a large number of parameters. We have taken the Log-Periodic Power Law Singularity

(LPPLS) model as an example for the application of the methodology. This is motivated

by the claims of the LPPLS model to provide useful estimations of the end of bubbles and

their crashes, which can be interpreted as critical times tc. One of our major advances has

been to formulate the calibration procedure in a way such that the critical time tc of a given

bubble becomes the major parameter of interest in the likelihood inference. In contrast, the

other model parameters are treated as nuisance parameters. While the problem of dealing

with nuisance parameters is not new in Statistics, the present article is, to our knowledge,

the first one in quantitative finance that elaborate in details how to deal with them to

obtain better inference on the target parameter (here tc). We have shown that it is possible

to bypass the strong nonlinearity of the model by using a very precise approximation for

the modified profile likelihood. This has allowed us to provide a systematic construction of

the parameter estimation uncertainties and of the corresponding likelihood intervals, both

for the target parameter tc and for the other so-called nuisance parameters. We have also

introduced the importance of performing the calibrations at multiple time scales, i.e., in

time windows of many different sizes typically from 100 to 750 days. This has led us to

provide representations to aggregate the results obtained from the calibrations at different

time scales, thus obtaining a multi-scale picture of the possible scenarios for the develop-

ment of on-going bubbles. We have tested the methodology on synthetic price time series

and on three well-known historical financial bubbles.
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Derivation of the approximated modified profile likelihood for

the LPPLS model

We derive the approximated expression for the modified profile likelihood (6.24)

of the LPPLS model (1.6). The parameter of interest is the critical time tc and nuisance

parameters η = {ψ, s} include both the vector ψ = {m,ω,A,B,C1, C2} of other LPPLS

parameters and the variance s of the error term.

Observed Fisher information

The calculation of the observed Fisher information matrix I(η̂tc) is straightforward.

According to (5.10), it can be written in the form of a block matrix:

I(η̂tc) = −

`ψ,ψ(η̂tc) `ψ,s(η̂tc)

`Ts,ψ(η̂tc) `s,s(η̂tc)

 , (5.33)

http://www.python.org
http://www.numpy.org/
http://www.scipy.org/
https://www.stanford.edu/~mwaskom/software/seaborn
https://www.stanford.edu/~mwaskom/software/seaborn
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where `·,·(η̂tc) denotes the respective second partial derivatives of the log-likelihood lnL(tc, ψ, s)

evaluated at the point η̂tc = {ψ̂tc , ŝtc}. For the likelihood (5.3), the first partial derivatives

are given by:
∂`

∂ψ
= − 1

2s

∂SSE(tc, ψ)

∂ψ
;

∂`

∂s
= − n

2s
+

SSE(tc, ψ)

2s2
.

(5.34)

In turn, the second partial derivatives read:

∂2`

∂ψ∂ψT
= − 1

2s

∂2SSE(tc, ψ)

∂ψ∂ψT
;

∂2`

∂ψ∂s
=

1

2s2

∂SSE(tc, ψ)

∂ψ
;

∂2`

∂s2
=

n

2s2
− SSE(tc, ψ)

s3
.

(5.35)

The MLE η̂tc is given by the global maximum of lnL(tc, η) for fixed tc, so ψ̂tc is given by a

global minimum of SSE(tc, ψ), thus:

`ψ,s(η̂tc) =
∂2`

∂ψ∂s

∣∣∣∣
η=η̂tc

=
1

2ŝ2
tc

∂SSE(tc, ψ)

∂ψ

∣∣∣∣
ψ=ψ̂tc

= Θ, (5.36)

where Θ = {0, 0, 0, 0, 0, 0}T is the vector of zeros. Taking into account (5.6), we can write

for the third term in (5.35):

`s,s(η̂tc) =
∂2`

∂s2

∣∣∣∣
η=η̂tc

=
n

2ŝ2
tc

− SSE(tc, ψ̂tc)

ŝ3
tc

= − n

2ŝ2
tc

. (5.37)
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Finally, plugging (5.36) and (5.37) into (5.33), we obtain the following form for the observed

Fisher information:

I(η̂tc) =


1

2ŝtc

∂2SSE(tc, ψ)

∂ψ∂ψT

∣∣∣∣
ψ=ψ̂tc

Θ

ΘT n

2ŝ2
tc

 =


1

ŝtc

n∑
i=1

∂2LPPLS(τi; tc, ψ)

∂ψ∂ψT

∣∣∣∣
ψ=ψ̂tc

Θ

ΘT n

2ŝ2
tc

 ,

(5.38)

and its determinant

|I(η̂tc)| =
n

2ŝp+2
tc

∣∣∣∣∣
n∑
i=1

∂2LPPLS(τi; tc, ψ)

∂ψ∂ψT

∣∣∣∣∣
ψ=ψ̂tc

, (5.39)

where p = dimψ = 6.

Covariance matrix

Here, we calculate the covariance matrix Σ(tc, η̂tc ; t̂c, η̂) (6.23). For this, we will

first evaluate the general form of the matrix (6.23) and then substitute (tc, η̂tc) and (t̂c, η̂).

Similarly to the Fisher information, the matrix Σ (6.23) can be written in a block form:

Σ (tc;1, η1; tc;2, η2) = E(2)


`ψ(1)`Tψ(2) `ψ(1)`s(2)

`s(1)`Tψ(2) `s(1)`s(2)


 , (5.40)

where `·(1) symbolically denotes the first partial derivative (5.34) of the log-likelihood eval-

uated at (tc;1, η1) = (tc;1, ψ1, s1); similarly, `·(2) is evaluated at (tc;2, η2) = (tc;2, ψ2, s2).

Given (1.10), the partial derivative of the SSE that enters (5.34) has the form:

∂SSE(tc, ψ)

∂ψ
= −2

n∑
i=1

εi
∂LPPLSi

∂ψ
, (5.41)

where we have denoted εi = ε(τi; tc, ψ) and LPPLSi = LPPLS(τi; tc, ψ).
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Let us first consider the cross-terms in (5.40). We substitute (5.41) into (5.34) and

then into (5.40). Then, after replacing the product of sums with the double sum and using

the linearity of the expectation operation, we have:

E(2)[`ψ(1)`s(2)] = − n

2s1s2

n∑
i=1

E(2)[εi]
∂LPPLSi

∂ψ

∣∣∣∣tc=tc;1
ψ=ψ1

+
1

2s1s2
2

n∑
i=1

n∑
j=1

E(2)[εiε
2
j ]
∂LPPLSi

∂ψ

∣∣∣∣tc=tc;1
ψ=ψ1

.

(5.42)

As discussed in Section 5.4.3, the expectations in (5.42) are taken with respect to the

probability distribution that corresponds to the parameters {tc;2, η2}, in other words under

the assumption that ε ∼ N(0, s2). Thus E(2)[εi] = E(2)[εiε
2
j ] = 0, and the cross-term is equal

to the zero-vector: E(2)[`ψ(1)`s(2)] = Θ. Similarly for the second cross-term of (5.40):

E(2)[`s(1)`Tψ(2)] =
(
E(2)[`ψ(1)`s(2)]

)T
= ΘT . (5.43)

Let us now consider the second derivatives with respect to the variance parameter

s. Proceeding in the same way as above, we obtain:

E(2)[`s(1)`s(2)] =
n2

4s1s2
− n

4s2
1s2

n∑
i=1

E(2)[ε
2
i ]−

n

4s1s2
2

n∑
j=1

E(2)[ε
2
j ] +

1

4s2
1s

2
2

n∑
i=1

n∑
j=1

E(2)[ε
2
i ε

2
j ].

(5.44)

Taking into account that E(2)[ε
2
i ] = s2, E(2)[ε

4
i ] = 3s2

2 and E(2)[ε
2
i ε

2
j ] = s2

2 (when i 6= j), we

obtain:

E(2)[`s(1)`s(2)] =
n

2s2
1

. (5.45)
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Finally, the submatrix term reads:

E(2)[`ψ(1)`Tψ(2)] =
1

s1s2

n∑
i=1

n∑
j=1

E(2)[εiεj ]
∂LPPLSi

∂ψ

∣∣∣∣tc=tc;1
ψ=ψ1

∂LPPLSj
∂ψT

∣∣∣∣tc=tc;2
ψ=ψ2

=
1

s1

n∑
i=1

∂LPPLSi
∂ψ

∣∣∣∣tc=tc;1
ψ=ψ1

∂LPPLSi
∂ψT

∣∣∣∣tc=tc;2
ψ=ψ2

, (5.46)

where we have accounted for the fact that E(2)[εiεj ] = 0 when i 6= j.

The final expression is obtained by combining (5.43),(5.45) and (5.46) to (5.40)

and evaluating the result at (tc, η̂tc ; t̂c, η̂):

|Σ(tc, η̂tc ; t̂c, η̂)| =

∣∣∣∣∣∣∣∣∣∣
1

ŝtc

n∑
i=1

∂LPPLSi
∂ψ

∣∣∣∣ tc=tc
ψ=ψ̂tc

∂LPPLSi
∂ψT

∣∣∣∣tc=t̂c
ψ=ψ̂

Θ

ΘT n

2ŝ2
tc

∣∣∣∣∣∣∣∣∣∣
=

n

2ŝ2+p
tc

∣∣∣∣∣∣
n∑
i=1

∂LPPLSi
∂ψ

∣∣∣∣ tc=tc
ψ=ψ̂tc

∂LPPLSi
∂ψT

∣∣∣∣tc=t̂c
ψ=ψ̂

∣∣∣∣∣∣ , (5.47)

where p = dimψ = 6. Note that a similar expression presented in [90] contains a typo-

graphical error in the power of the variance term.

Partial derivatives of the LPPLS function

We present here the analytical expressions of the first and second partial derivatives

of the LPPLS function (1.6), which are necessary for the calculation of the modified profile

likelihood (5.22)–(5.24).
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The first-order derivatives have the following forms:

∂LPPLS/∂m = |tc − t|m ln |tc − t|
[
B + C1 cos

(
ω ln |tc − t|

)
+ C2 sin

(
ω ln |tc − t|

)]
;

∂LPPLS/∂ω = |tc − t|m ln |tc − t|
[
− C1 sin

(
ω ln |tc − t|

)
+ C2 cos

(
ω ln |tc − t|

)]
;

∂LPPLS/∂A = 1;

∂LPPLS/∂B = |tc − t|m;

∂LPPLS/∂C1 = |tc − t|m cos
(
ω ln |tc − t|

)
;

∂LPPLS/∂C2 = |tc − t|m sin
(
ω ln |tc − t|

)
.

(5.48)

The second-order derivatives ∂2LPPLS/∂ψi∂ψj , which are needed for the calculation of

the matrix H (5.24), have the following form (omitting equivalent symmetrical entries, i.e.:

∂2LPPLS/∂m∂ω ≡ ∂2LPPLS/∂ω∂m):

∂2LPPLS / ∂m2 = |tc − t|m (ln |tc − t|)2
[
B + C1 cos

(
ω ln |tc − t|

)
+ C2 sin

(
ω ln |tc − t|

)]
;

∂2LPPLS / ∂m∂ω = |tc − t|m (ln |tc − t|)2
[
− C1 sin

(
ω ln |tc − t|

)
+ C2 cos

(
ω ln |tc − t|

)]
;

∂2LPPLS / ∂m∂B = |tc − t|m ln |tc − t|;

∂2LPPLS / ∂m∂C1 = |tc − t|m ln |tc − t| cos
(
ω ln |tc − t|

)
;

∂2LPPLS / ∂m∂C2 = |tc − t|m ln |tc − t| sin
(
ω ln |tc − t|

)
;

∂2LPPLS / ∂ω2 = −|tc − t|m (ln |tc − t|)2
[
C1 cos

(
ω ln |tc − t|

)
+ C2 sin

(
ω ln |tc − t|

)]
;

∂2LPPLS / ∂ω∂C1 = −|tc − t|m ln |tc − t| sin
(
ω ln |tc − t|

)
;

∂2LPPLS / ∂ω∂C2 = |tc − t|m ln |tc − t| cos
(
ω ln |tc − t|

)
.

(5.49)

All other second-order partial derivatives are equal to zero.
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Jacobian matrix for the damping parameter

The Jacobian matrix for the parameter transformation from η = {m,ω,A,B,C1, C2, s}

to ζ = {D,ω,A,B,C1, C2, s}, where D = m|B|/ω|C| has the following form

JD =
∂η

∂ζ
=



ω|C|
|B|

D|C|
|B| 0 −Dω|C|

B|B|
DωC1
|B||C|

DωC2
|B||C| 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



, (5.50)

where |C| =
√
C2

1 + C2
2 .

Illustration of the differences between profile and modified

profile likelihood intervals of nuisance parameters

Figure (5.10) illustrates a situation in which the approximate likelihood inter-

vals (5.29) are misleading. It presents the profile and modified profile likelihoods for the

nuisance parameters m and ω obtained by calibrating the LPPLS model to the Chinese

SSEC Index in the time window from t1=2006-05-04, t2=2007-10-31 and at the fixed tc=

2007-11-20. In contrast to the typical situation shown in Figure 5.4, one can clearly observe

a bi-modal structure of the profile likelihoods of the nuisance parameters. Such bi-modal

structure cannot be well described by intervals derived from a Fisher information-based

likelihood. Moreover, this figure illustrates a case when the second-order modified profile
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Figure 5.10: Profile of the cost function F (·) (black line, left scale), profile likelihood Lp(·)
(blue line, right scale) and modified profile likelihood (red line, right scale) for the power
law exponent m (top subplot) and the logperiodic angular frequency ω (bottom subplot)
for tc=2007-11-20. The red shaded intervals show the likelihood intervals LI(·) at the 5%
cutoff level. Vertical blue dashed lines denote approximated likelihood intervals (5.29) at
the 5% cutoff level. The calibration of the LPPLS model is performed on the Chinese SSEC
Index for the bubble that bursts in June 2015.

likelihood suggests different estimated value of m and ω compared with the standard MLE:

profile and modified profile likelihood have maxima at different points (similarly to the

situation of the critical time in Figure 5.3).

While these situations are rather rare according to our experience, one needs to

be aware that the approximate relations (5.29) might not reflect the full complexity of the

structure of residuals.



Chapter 6

Hierarchical calibration of sloppy

statistical models based on

information geometry

6.1 Introduction

Parameter estimation in nonlinear dynamic models remains a very challenging

problem due to its nonconvexity and ill-conditioning. In this paper, we stress that model,

data and optimisation approach form a new complex system and point to the need of a

theory that addresses this problem more generally. We show how information geometry-

based estimations alongside with Profile Likelihood inference ensure the optimal trade-off

between bias and variance allowing the incorporation of prior knowledge in a systematic

way.

Properly calibrating multi-parameter models cannot be considered a trivial task.

A successful calibration is not only data dependent but it is also a function of the proper

143
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choice the the minimization algorithm (derivative-based algorithms vs. simplex methods),

the imposition (or not) of boundaries on parameter values, proper starting values and of-

course on the structure of the model itself. Given the non-linear interaction among its

different parts, model calibration can be viewed as a complex system and thus urges for a

theory that addresses this problem more generally [118].

The more prone it is to a phenomena denoted sloppiness [74], i.e. parameter non-

identifiability. A model it is said to be sloppy whenever it’s output sensitivity to certain

parameter variations is ∼ 0 such as statistical inferences based on estimates is prone to

significant uncertainty. This is the case whenever parameters have compensatory effects

(i.e. collinearity) and thus cannot be individually identified. As we shall see, the sensitive

(rigid) and sloppy (or poorly determined) parameters of a model can be diagnosed through

the FIM eigenvalues.

According to [123], sloppiness is intrinsically a parametric issue rather than a

model one. While the statistical uncertainty in each individual parameter might be infinite,

the data places constraints on combinations of the parameters making the model still very

useful. More precisely, on a macroscopic perspective a model it is still able to display low

estimation uncertainty even with large individual parameter uncertainty if the directions of

predictions on parameter space are constrained by data, which is often the case [74].

Instead of forgeting about precise estimates, In this chapter we argue that these

parameter estimates should not be neglected. We stress that individual parameter uncer-

tainty can be drastically reduced and practical non-identifiable parameters can be made

identifiable via the employment of the proper parameter estimation technique. Our reason-

ing presented here is very much important for anyone who is not only interested on fitting

models to data but rather obtaining precise parameter estimates.

The literature on how to enhance parametric estimation precision is vast [11, 12,
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32]. Techniques such as profiling the likelihood function and concentrating the likelihood

of a given parameter θ are examples where the nuisance parameters (i.e. unimportant)

optimal values are constrained on fixed values of the parameter of interest.

By aligning information from Eigenvalues and Eigenvector of the FIM with a

powerful estimation technique we show that calibrating models in a hierarchical fashion yield

superior parameter estimates. The methodology is tested on a simple GARCH(p,q) model

with distinct estimation techniques: Quasi-Likelihood (QML), Profile-Likelihood (LP) and

Modified Profile-Likelihood (MPL). Results from a Monte Carlo simulation study suggests

that I) profiling sloppy parameters with the MPL estimator yields superior estimates but

when one uses MPL for each parameter of a practical non-identifiable model and then

combine results of all estimates yields the supreme result.

The paper is structured as follows. Using a GARCH(1,1) model, Section (6.2)

presents the reasoning behind the eigenvalues and eigenvectors of the Fisher Information

Matrix and how these metrics can be used as a tool for picking the right focal parameter to

“rigidify” a practical non-identifiable estimation problem. The results of our Monte-Carlo

simulation studies are depicted in Sec. (6.2.3) and we conclude in Sec. (6.3).

6.2 The Hierarchical Calibration Technique: Models and Es-

timators

In this section we define the models, likelihood estimators and the Monte Carlo

horse-race study employed in this paper in order to show that the way one proceeds to

calibrate a model matters if he or she expects to obtain proper results. We explore the cal-

ibration of a GARCH(p,q) model using following estimators: Quasi-Maximum Likelihood,

Profile Likelihood and Modified Profile Likelihood using different focal parameters.
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6.2.1 The GARCH(p,q) model

The benchmark model in the literature for modelling conditional volatility pro-

cesses observed on excess returns := rt of financial time-series is the GARCH(p,q) model.

Assuming a zero conditional mean for rt, the model takes the following form

rt =
√
σ2
t εt, εt ∼ iid(0, 1), (6.1)

σ2
t = ω + γr2

t−1 + βσ2
t−1, (6.2)

for t = [1, 2, . . . , T ] and p, q = 1. While parameter q denotes the order of the lagged

(transformed) conditional variance, p refers to the symmetric innovation. The constrains

ω > 0, γ ≥ 0, β ≥ 0 and (γ + β) < 1 are imposed to guarantee that the unconditional

variance of rt remains finite, whereas its conditional variance σ2
t evolves over time [124].

The normal likelihood for the GARCH(1,1) model reads

f(r|θ) =
T∏

t=p+1

1√
2πσ2

t

exp

(
− r2

t

2σ2
t

)
, (6.3)

where θ = [ω, γ, β]. We refer to estimates obtained by maximising (6.3) as the conditional

maximum-likelihood estimates (MLEs) under normality assumption of innovations εt. In

our implementation, we maximise the logarithm of (6.3) which is easier to handle. This

yields the conditional log-likelihood function,

L(rt|θ) =

T∑
t=p+1

[
−1

2
ln(2π)− 1

2
ln(σ2

t )−
1

2

r2
t

σ2
t

]
, (6.4)

∝ −
T∑

t=p+1

[
1

2
ln(σ2

t ) +
1

2

r2
t

σ2
t

]
, (6.5)

where the term ln(2π) is omitted because it does not involve any parameter.
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There is no closed-form solution for the MLE estimates so a common approach

consists in the usage of numerical methods for solving the following optimisation problem:

L(θ̂) = arg max
θ
L(rt|θ), (6.6)

Local search algorithms rely on information from the first and second order partial

derivatives of the likelihood function 6.5 in order to update θ̂. At the best-fit values of

θ ≡ θ∗, the first-order partial derivatives of Eq. 6.5 reads

∂L(rt|θ)

∂ω
=

T∑
t=p+1

(
r2
t

σ2
t

− 1

)
∂σ2

t

∂ω

1

σ2
t

, (6.7)

∂L(rt|θ)

∂γ
=

T∑
t=p+1

(
r2
t

σ2
t

− 1

)
∂σ2

t

∂γ

1

σ2
t

, (6.8)

∂L(rt|θ)

∂β
=

T∑
t=p+1

(
r2
t

σ2
t

− 1

)
∂σ2

t

∂β

1

σ2
t

, (6.9)

where,

∂σ2
t

∂ω
= 1 + β

∂σ2
t−1

∂ω
, (6.10)

∂σ2
t

∂γ
= r2

t−1 + β
∂σ2

t−1

∂γ
, (6.11)

∂σ2
t

∂β
= σ2

t−1 + β
∂σ2

t−1

∂β
. (6.12)

Meanwhile, second-order derivates evaluated at the optimal parameter values θ∗,

∂2L(rt|θ)

∂θ∂θ′

∣∣∣∣
θ=θ∗

=
T∑

t=p+1

[
∂2L(rt|θ)

∂θ∂θ′

]
, (6.13)

are given by
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∂2L(rt|θ)

∂θ∂θ′
=



∂2L(rt|θ)
∂2ω

∂2L(rt|θ)
∂γ∂ω

∂2L(rt|θ)
∂β∂ω

∂2L(rt|θ)
∂γ∂ω

∂2L(rt|θ)
∂2γ

∂2L(rt|θ)
∂β∂γ

∂2L(rt|θ)
∂β∂ω

∂2L(rt|θ)
∂β∂γ

∂2L(rt|θ)
∂2β


where each entry reads,

∂2L(rt|θ)

∂θ∂θ′
=

(
r2
t

2σ2
− 1

2σ2
t

)
∂σ2

t

∂θ∂θ′
+

(
1

2σ2
t

r2
t

σ3
t

)
∂σt
∂θ

∂σt
∂θ′

. (6.14)

At the best-fit values Eq. (6.13) is negative definite. Through the eigenvalues (λ)

and eigenvectors of the Fisher Information Matrix, a natural parameter ordination in terms

of importance appears and can be captured by the Sloppy degree := Sd metric, defined as

follows:

|Sd| := log

(
λi
λmax

)
∀ i = {1, . . . , dim(θ)}, (6.15)

where λ is the eigenvalue of the i-th parameter ∈ θ. The metric is rich in information

about the landscape of the likelihood function at θ̂ and such information is the backbone

of dimension-reduction techniques such as PCA [61]. |Sd| can be interpreted as follows:

Assume parameter β ∈ θ displays |Sd| = 4. Embedded on the Euclidian Space at <++,

the metric stresses that the parametric region of a given model about the best-fit value is

1/
√

10−Sd ≡ 1/
√

10−4 longer than wider suggesting therefore a significant uncertainty on

parameter inference due to multi-collinearity issues (parameter β and one or more predictor

variables in a multiple regression model are highly correlated). Such statement holds true

for any value of |Sd| ≤ 3 [74] but it reality the threshold value varies depending on the

model. In order to visualise this feature, we show the contours of constant cost of the
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Likelihood function (6.5) for different combinations of GARCH parameters γ and β while

optimising ω̂ (Fig. 6.1(b)). Around the best-fit region (depicted by the blue dashed line

closer to the centre of the maxima) we can observe that values of γ and β can be slightly

exchanged without interfering significantly on the behaviour of the Log-Likelihood.

By simulating 10000 times the conditional volatility process given by Eq. (6.2) with

distinct initial parametrisation θ = {~ω,~γ, ~β}1 and different sample sizes N ∈ [100:1000] we

report pdf(Sd) and the parameter ranking of the model on the left-hand side of Fig. (6.1).

A clearly hierarchy arises as a result: ω has Rank = 0 and therefore stands as the most rigid

parameter, followed by γ and β. Such ordination suggests, as mentioned previously, that

disturbances on rigid parameter ω yields a more severe impact upon the likelihood function

than the remaining parameters hence parameter ω̂ can be estimated from data with very

low uncertainty while β̂ cannot.

To understand why this happens, recall that the GARCH process describes the

conditional covariance at time t as a function of lagged cross-products of errors and condi-

tional expectations of these cross-products. Obviously both “explanatory variables” share

much common information and in the neighborhood of the optimum, where conditional

expectations achieve the closest fit to their arguments, are deemed to be very similar. As a

consequence, point-estimates of the parameters will often be highly correlated and impre-

cise, as suggested by the eigenvalues of the FIM (Fig. 6.1(a)) and the quasi-flat landscape

of the log-likelihood plotted at the optimal value of ω and different combinations of γ and

β (Fig. 6.1(b)).

1The parametrisation used was the following: ~ω = {0.03, 0.06, 0.09}, ~γ = {0.06, 0.03, 0.01} and ~β =
{0.9, 0.85, 0.86}.
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Figure 6.1: GARCH(1,1) parameters (θ) ranked according to |Sd| (Fig. A) and Contours of

Constant Cost (Fig. B): GARCH(1,1) parameters were ranked according to their sloppy degree (see Eq.

6.15) (left hand-side upper panel) from more important (Rank = 0) to less important (Rank = 2) based

on the ensemble of 10e3 Monte Carlo simulations of a GARCH(1,1) process with different sample sizes T

∈ [100:1000] and different parametrization for θ. The density of the sloppiness degree of each parameter θ

calculated for each simulation of length T through the Hessian matrix (|Sd|) is shown at the lower layer of

Fig. 6.1(a). Larger values of |Sd| imply a larger parameter uncertainty and vice-versa.

6.2.2 The estimators of the hierarchical methodology

Information Geometry obtained via Eigenvalues and Eigenvectors of the FIM are

indeed a very informative for understanding the parametric structure of a model and how it

adapts to empirical data. Besides combining this geometrical information with Likelihood

estimators, this section provides an in-depth explanation behind the Quasi-Likelihood, Pro-

file Likelihood and Modified Profile Likelihood estimation methodologies. It will become

clear for the reader why our proposed calibration technique is the way to go when one is

interested on parametric inferences.

As mentioned in the previous Section, there are moments when one is interested

on obtaining more robust and precise estimates of the parameter of interest := φ̂. In such

scenarios the Profile-Likelihood estimator can be used. The method replaces the nuisance

parameters (i.e. unimportant) by their MLE at each fixed value of the parameter of interest.

Assume for the moment that φ = γ, then nuisance parameters would be η = [ω, β] while
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for φ = ω, then η = [γ, β].

Given the joint Likelihood L(φ, η), the Profile Likelihood Lp(φ) is formally defined

as

Lp(φ|η) = arg max
η
L(φ, η) ≡ L(φ, η̂φ), (6.16)

where η̂φ is a MLE for nuisance for a fixed value of φ. The profile likelihood of φ (also

known as concentrated likelihood) thus reads

Lp ∝ (ŝφ)−
T
2 ∝

(
Lp(φ|η)

)−T
2
, (6.17)

with s = 1
T L(φ). We normalise the Log-Likelihood to 1 by its maximum so that L(φ|η̂) ∈

[0, 1],

L̄p(φ|η̂) =
L(φ|η̂)

maxφL(φ|η̂)
. (6.18)

Profiling the Likelihood function is prone to estimation bias, specially when the

sample does not provide enough information about η [90]. A solution to overcome this

issue consists on using the Modified Profile Likelihood [13]. Recently, this methodology was

successfully applied for the problem of quantifying the uncertainty permeating changes of

regime of financial time-series [36].

By adding a modulating factor := M(φ) to Lp(φ|η̂), the Modified Profile Likeli-

hood estimator reads

Lmp(φ) =M(φ)Lp (6.19)

= |I(η̂φ)|−
1
2

∣∣∣ ∂η̂
∂η̂φ

∣∣∣Lp(φ), (6.20)
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where I(η̂φ) is the Fisher Information matrix (FIM) approximated at the best-fit

parameters η assuming φ known. The FIM reads

I(η̂φ) = −∂
2 lnL(φ, η)

∂η ∂η′

∣∣∣∣∣
η=η̂

. (6.21)

Meanwhile, the Jacobian term :=
∣∣∂η̂/∂η̂φ∣∣ works as an “Invariance preserving”

quantity which keeps the modified profile likelihood invariant with respect to transforma-

tions of the nuisance parameters [80]. Precisely, this term denotes a matrix of the first

partial derivatives of the full MLE of the η with respect to the MLE calculated at a fixed

value of φ̄.

Calculating the Jacobian term is not an easy task. We follow [88] who suggested

approximating the matrix
∣∣∂η̂/∂η̂φ∣∣ via the covariance matrix of the score function (i.e. the

first order derivatives of the likelihood function with respect to parameters, see Eq. 6.7),

that is

C(φ, η̂φ; φ̂, η̂) ≈ Σ(φ, η̂tc ; φ̂, η̂) (6.22)

where

Σ (φ1, η1;φ2, η2) = E(2)

 ∂ lnL(φ, η)

∂η

∣∣∣∣φ=φ1
η=η1

∂ lnL(φ, η)

∂ηT

∣∣∣∣φ=φ2
η=η2

 . (6.23)

Given the non-linear nature of the GARCH process, the term Lm(φ) thus has the

following form,

Lm(φ) ≈
|I(η̂φ)|−

1
2∣∣∣Σ(φ, η̂φ; φ̂, η̂)
∣∣∣Lp(φ|η̂) . (6.24)

6.2.3 Comparsion of esimators using the GARCH(1,1) model

In order to show just how important the parameter ordination is when calibrating

models, we proposed a simulation study where different calibration methods and Likelihood
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estimators are employed to the problem of fitting synthetic time-series. We generated

synthetic time-series of a GARCH(1,1) model := ~Y plus random noise ε ∼ N (0, 1) using

random parametrization θ satisfying restrictions enumerated on Sec. (6.2.1). The resulting

time series ~Yg was in turn fitted using the same model with different estimators / estimation

methodologies.

Let us now define a family of distinct estimators Φ that will be used for calibrating

the GARCH(1,1) model unto ~Yg and whose performance will be evaluated via the metric

χ2, defined below. Each estimator e ∈ Φ reads:

• e1 := Lqml(θ) : The simple Quasi-Maximum Likelihood estimator.

• e2 := Lmp(ω|η̂) : The Modified Profile Likelihood estimator with φ = ω. Here the

rigid parameter is the first one to be calibrated while η = {γ, β} are in turn estimated

jointly and conditional on a fixed value of ω̄.

• e3 := Lmp(β|η̂) : The Modified Profile Likelihood estimator with φ = β. We now

choose the sloppiest parameter of the GARCH(1,1) model namely β to be φ now. After

the estimate of β̂ is obtained via the Modified Profile Likelihood estimator, nuisance

parameters are estimated jointly via Quasi-Maximum Likelihood and conditional on

β̂.

• e4 := Lmp(ω|η̂; γ|η̂;β|η̂) : Here we estimate all and each parameter θ via Lmp and re-

group them in the end of the exercise in order to yield the set θ̂. More specifically, each

parameter estimation is performed independently of the others for the same synthetic

realization and grouped at the end yielding θ̂.

• e5 := Lp(ω|η̂) : The Profile Likelihood estimator with φ = ω. Same as e2 but

parameter estimation is performed using the Profile Likelihood estimator instead of

the Modified version.
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• e6 := Lp(β|η̂) : The Profile Likelihood estimator with φ = β. Same as e3 but pa-

rameter estimation is performed using the Profile Likelihood estimator instead of the

Modified version.

• e7 := Lp(ω|η̂; γ|η̂;β|η̂) : A concurrent version of method e4 but now the estimator Lp

is used instead of Lmp. Parameters ∈ θ are estimated one at a time and then compiled

at the end of the exercise by the set θ̂.
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Figure 6.2: Monte-Carlo simulation experiment for measuring the performance
of estimators e ∈ Φ via metric 6.25: For each sample size N ∈ [100:1000] we simulate
synthetic time-series of a GARCH(1,1) process from the DGP (6.2) plus random noise
ε ∼ N (0, 1). The resulting synthetic data is in turn fitted using each estimator e ∈ φ.
For each N we repeat the previous mentioned process of generating and fitting synthetic
data 400 times for increments on N of 50 units; N={100, 150, 200, . . . , 1000}. We depict
the evolution of the first and second moments of the metric

√
χ2 for each value of N using

continuous and dashed lines respectively. For clarity, the inset plot restrict the interval of
N to {100 : 300} and

√
χ2 to {0.5 : 4.5}.

Recall that our main interest is to validate some hypothesis: I) can the usage of
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information geometry yield superior parameter estimates than simply estimating all param-

eters of a model jointly? and II) can we enhance the performance of the Modified Profile

Likelihood estimator depending on the choice of φ? In order to test these hypothesis we

will make use of a performance metric for computing just how biased estimator e ∈ Φ is for

a given realisation of ~Yg. This can be achieved for each estimator e via

χ2[Le(θ)] =

dim(θ)∑
θi

[(
Le(θ̂i)− θ∗i

θ∗i
, ~Yg

)2]
, (6.25)

with θ∗ = {ω = 0.03; γ = 0.06;β = 0.9}. In order to obtain reliable statistics we undertook

the following Monte-Carlo procedure: for each synthetic generated time-series ~Yg of size N

we fit the GARCH(1,1) model using each estimator e ∈ Φ. The process is repeated 400

times for each combination of N and ~Yg using N = {100, 150, 200, . . . , 1000}. Results are

depicted on Fig. (6.2) where the mean value of
√
χ2 for each estimator e is shown via

continuous line and its corresponding standard deviation via dashed lines.

The superior performance clearly steams from estimator e4. Specially for small

samples, the estimator is able to retrieve true parameters from synthetic data roughly two

times more precisely than the second best choice, e8. Relative to the classical Quasi Maxi-

mum Likelihood estimator e1, the best estimation technique yields a 6 order of magnitude

precision gain, without taking the variance into account.

It is interesting to notice just how the choice of φ and the estimator technique

impact the metric in terms of the first two moments (mean and variance), specially for

small samples. Compare for example estimators 2 and 3; if one chooses to profile the

sloppiest parameter (β) through the Modified Profile Likelihood estimator instead of the

most rigid one (ω) the estimator variance turns out to be smaller than the mean of
√
χ2.

This exercise clearly shows that prior information matters and that Lmp(β|η̂) is as good
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as Lp(ω̂, γ̂, β̂) simply by taking geometrical information into consideration. In other words,

the quality of results depend directly on the structure of the cost function of the model

under consideration.

6.3 Conclusion

Our results suggest that profiling parameters always yield superior estimates in

terms of precision and lower variance. However, depending on the nature of the problem one

is facing these results can vary. More precisely, while the usage of information geometry for

calibrating parameters of a practical non-identifiable model leads to superior results, this is

not true when one is facing either identifiable problems (e.g. OLS or ARMA-like models)

or a structural non-identifiable one (Sum of Decaying Exponentials), given their intrinsic

parametric geometry.

We conclude stressing the existence of a hierarchy of parameter importance on

statistical models that can be explored in order to improve estimates. Depending on the

nature of the problem, information geometry can provide the necessary information for

retrieving parameters from practical non-identifiable multi-parameter models (e.g. GARCH

model and the LPPLS model).

It is important to stress that new models and more simulations studies with dif-

ferent parametrisation are required in order to attest the universality of our claim.



Chapter 7

Ongoing Diagnosis and

Post-Mortem Analysis of the SSEC

2015 Bubble

7.1 Introduction

Mainly as a result of massive investments in real-estate and infrastructures over

the past three decades, China’s economy has moved from being largely closed to becoming

a major global player. China’s average annual GDP growth was 13% between 2000 and

2008, but has been slowing down to 7.8% in 2009 and to the estimate of 7% in 2015.

Accompanying this stellar growth, Chinese stock markets have experienced a roller

coaster dynamics, with two large bubbles bursting respectively from May 2005 to Oct. 2007

and from Nov. 2008 to Aug. 2009 [55]. The latest bubble started around mid-2014 (see the

analysis below for a qualification) and has recently started crashing in mid-June 2015. This

last bubble corresponded to an approximate 150% growth in just one year. This growth of

157
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Chinese stocks was all the more remarkable as it occurred at the time when the Chinese real

estate market along with the overall economy was cooling significantly. This bubble can

be seen as a result of a strong leverage that is disconnected from the realities of economic

activity and corporate earnings. About 7% of China’s population has been active in this

stock market frenzy, profiting from the easy access to credit to invest in the stock markets.

An interesting specificity of Chinese stock markets is that insurance firms and pension funds

that are traditionally stabilising investors by their buy-and-hold strategies are essentially

absent in the Chinese investing universe. As a consequence, about 90 millions of small and

medium size Chinese investors constitute the main drivers of the stock markets, making it

much more susceptible to rumours, imitation, speculations and crowd effects. In fact, there

are many indications that the Chinese government has encouraged small retail investors

to join in investing in the stock market, driving it up for a while but also catalysing its

fragility. One should however temper this negative view by noting that Chinese households

have most of their wealth in real-estate so that a crash cannot have the impact it would

have in Western markets. Moreover, the spillover effect on Western markets should be

minimal as most foreign investors cannot participate, removing their well-known unstable

strategies of investing late and withdrawing at the time the crash to enhance the severity

of corrections.

Since its peak on June 12, 2015, the SSEC (Shanghai composite index) has lost

32% to its bottom reached on July 8, 2015 and has since moved sideway with a large

volatility. The smaller Shenzhen stock market has lost 41% over the same period. The

Chinese government has taken unprecedented measures aimed at stopping the descent.

Particularly, the benchmark lending and deposit rates have been cut several times by the

People’s Bank of China (PBoC) and are now at record lows, margin lending rules have been

relaxed, a de-facto suspension of new IPOs has been declared, and “malicious short-selling”



Chapter 7: Ongoing Diagnosis and Post-Mortem Analysis of the SSEC 2015 Bubble 159

has been announced to be probed, and so on. Wild swings have continued to develop. On

Monday July 27, 2015, Shanghai stocks lost 8.5%, thus suffering its worst one-day loss since

2007.

Fig. 7.1 compares visually the bubble that ended in 2007 to the present 2015

bubble, both on the Shanghai stock market (top panel). One can observe very similar

price trajectories. In contrast, a similar comparison for the Hong Kong market (bottom

panel) shows that the market development in the last year has not followed the same type

of bubble behaviour as occurred before and until 2007. This is notwithstanding the fact

that, on Nov. 10, 2014, the China Securities Regulatory Commission jointly with the Hong

Kong Securities Regulatory Commission announced that a connection between the two stock

markets would officially start on Nov.17 2014, which grants foreign investors unprecedented

access to China’s tightly controlled capital market. This is likely due to the fact that,

in fact, mainland Chinese investors were the main traders in the Shanghai stock market

while the Hong Kong market is much more open to foreign investors. The difference can

thus be traced to the divergence on the views of China’s prospects between domestic and

foreign investors as well as the hope for quick gains fuelling speculation among retail Chinese

investors. The decline in July 2015 suffered by the Hong Kong stock market demonstrates

the spillover effect from the Shanghai market to the Hong Kong market, mainly via the

so-called “Shanghai-Hong Kong stock connect” programme launched on Nov.17 2014.

In this chapter, we describe the remarkable success of the real-time diagnostic of

the bubble regime that was obtained in our Financial Crisis Observatory (FCO: available

at: tasmania.ethz.ch/pubfco/fco.html) that we are currently running at ETH Zürich.

The analysis is based on the Johansen-Ledoit-Sornette (JLS) [56] model, which is built

on (i) the economic theory of rational expectation bubbles, (ii) behavioral mechanisms

of imitation and herding of investors and traders and (iii) the mathematical formulation

tasmania.ethz.ch/pubfco/fco.html
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Figure 7.1: top panel: For the Shanghai stock market, comparison between the bubble
that ended in October 2007 and the present one ending in June 2015. bottom panel: Same
as top panel for the Hong Kong stock market. The blue line extended by dotted black line is
the price time series within the window of [2006.07.19, 2008.03.25]. The red line corresponds
to the window of [2014.03.13, 2015.07.29]. The blue dotted vertical lines Tc = 2007.10.16
(for Shanghai market) and Tc = 2007.10.30 (for Hong Kong market) represent the peak
dates in 2007. The red dotted vertical lines Tc = 2015.06.12 (for Shanghai market) and
Tc = 2015.04.28 (for Hong Kong market) represent the peak dates in 2015.

of the Log-Periodic Power Law Singularity (LPPLS) that describes the critical approach

towards a tipping point in complex systems. The early warning signals that were reported

in real time ex-ante provide strong additional supportive evidence for the relevance of the

LPPLS-based methodology in the diagnostic of bubbles. We here document how the real-

time predictions were presented in the automated analysis of the FCO, as well as in our

monthly FCO Cockpit report of June 2015, where we have warned that Chinese equities

were in bubble territory with the highest possible readings, that the price path followed

was not sustainable and a correction was due. These results add to previous accounts of

similar ex-ante advanced warning and predictions performed for the two previous financial

bubbles in two most important Chinese stock indexes, Shanghai (US ticker symbol SSEC)

and Shenzhen (SZSC), (i) from mid-2005, bursting in October 2007 and (ii) from November

2008, bursting in the beginning of August 2009 [55].

The article is organised as follows. Section 7.2.1 introduces the DS LPPLS Confi-
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dence and DS LPPLS Trust indicators, as well as the functioning of the FCO. Section 7.3

describes how the real-time diagnostic of the SSEC bubble was performed and communi-

cated to the public and offers a summary of the evidence. Section 7.4 gives a complementary

post-mortem analysis on the nature and value of the LPPLS methodology to diagnose the

SSEC bubble and its termination. Section 7.5 concludes.

7.2 Methodology

7.2.1 LPPLS calibration and indicators

The model is calibrated on the data using the Ordinary Least Squares method,

providing estimations of all parameters tc, ω, m, A, B, C1, C2 in a given time window of

analysis. We use the robust procedure proposed by [38], which reduces the estimation to just

three nonlinear parameters m, ω and tc. For each fixed data point t2 (corresponding to a

fictitious “present” up to which the data is recorded), we fit the price time series in shrinking

windows (t1, t2) of length dt := t2−t1 decreasing from 750 trading days to 125 trading days.

We shift the start date t1 in steps of 5 trading days, thus giving us 126 windows to analyse

for each t2. In order to minimise calibration problems and address the sloppiness of the

model (1.10) with respect to some of its parameters (and in particular tc), we use a number

of filters to condition the solutions, which are summarised in Table 7.1. These filters derive

from the empirical evidence gathered in investigations of previous bubbles [55]. Only those

calibrations that meet the conditions given in Table 7.1 are considered valid and the others

are discarded.

From the ensemble of qualified fits, we construct two DS bubble indicators as

follows.

• DS LPPLS Confidence: It is the fraction of fitting windows for which the LPPLS
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Item Notation Search space Filtering condition 1 Filtering condition 2

3 nonlinear parameters m [0, 2] [0.01, 1.2] [0.01, 0.99]
ω [1, 50] [2, 25] [2, 25]
tc [t2 − 0.2dt, [t2 − 0.05dt, [t2 − 0.05dt,

t2 + 0.2dt] t2 + 0.1dt] t2 + 0.1dt]
Number of oscillations ω

2 ln | tc−t1t2−t1 | — [2.5, +∞) [2.5, +∞)

Damping m|B|
ω|C| — [0.8, +∞) [1, +∞)

Relative error pt−p̂t
p̂t

— [0, 0.05] [0, 0.2]

Table 7.1: Search space and filter conditions for the qualification of valid LPPLS fits.
Within the JLS framework, the condition that the crash hazard rate h(t) is non-negative

by definition translates into a value of the Damping parameter m|B|
ω|C| larger than or equal to

1.

calibrations satisfy the filtering condition 1 in Table 7.1. It measures the sensitivity

of the observed bubble pattern to the time scale dt. A large value indicates that the

LPPLS pattern is present at most scales and is thus more reliable. A small value

signals a possible fragility of the signal since it is present only in a few time windows.

• DS LPPLS Trust: Because the calibration is an attempt to disentangle the LPPLS

signal from an unknown realisation of the residuals, it is important to assess the

sensitivity of the results to different instances of these residuals. We thus resample

100 times the residuals and add them to the calibrated LPPLS structure to generate

100 synthetic price time series that proxy for 100 supposed independent realisations

of equivalent price patterns. The DS LPPLS Trust indicator is the median level over

the 126 time windows of the fraction among the 100 synthetic time series that satisfy

the filtering condition 2 in Table 7.1. It measures how closely the theoretical LPPLS

model matches the empirical price time series, 0 being a bad and 1 being a perfect

match. As a rule of thumb, a value of DS LPPLS Trust larger than 5% indicates

that the price process is not sustainable and there is a substantial risk for a critical

transition to occur.
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7.2.2 Financial Crisis Observatory

These two indicators ‘DS LPPLS Confidence’ and ‘DS LPPLS Trust’ constitute

the core measures provided in the analyses presented daily on the website of the Financial

Crisis Observatory (FCO) at ETH Zurich (tasmania.ethz.ch/pubfco/fco.html). Started

in August 2008 in reaction to the on-going financial crisis, the FCO has the ambition to

test and quantify rigorously, in a systematic way and on a large scale, the hypothesis that

bubbles can be diagnosed before they burst and their end can be predicted probabilistically

ex-ante. Before the launch of the daily watch of bubble indicators, a number of experiments

have been performed, such as the financial bubble experiments.

The FCO provides the real-time values of the ‘DS LPPLS Confidence’ and ‘DS

LPPLS Trust’ indicators, which are updated daily on 21 world stock markets, commodities,

US sectors and US firms (our intra-group version developed for research purposes monitors

a much larger number, approximately 25’000 assets). Every morning, the FCO system auto-

matically acquires asset prices of the previous day and generates the DS LPPLS Confidence

and Trust indicators for the previous day as described above. These daily updates have

been freely available to anyone since 2012 and enjoy a suite of followers among private and

professional investors. The philosophy driving the FCO is that only advanced forecasts can

be free of data-snooping and of other statistical biases of standard ex-post tests. And it is

up to everyone to assess the quality and usefulness of the indicators.

7.3 Real-time diagnostic of the 2015 SSEC bubble

The 2015 Shanghai bubble has been tracked and diagnosed in real-time with two

different versions of our methodology that we now summarise.

tasmania.ethz.ch/pubfco/fco.html
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7.3.1 The real-time daily FCO ‘DS LPPLS Confidence’ and ‘DS LPPLS

Trust’ indicators

Fig. 7.2 shows a screenshot of the FCO website interface taken on Aug. 4, 2015,

showing all monitored assets available to the public since 2012. Whenever our method

detects a bubbly signature in the underlying price time series, a red bar is displayed. Each

day, the screen is shifted by one day to include the new information, in a real causal time

setting. For the 2015 SSEC bubble, one can observe that red bars form two clusters. The

first one is from Dec. 1, 2014 to Jan. 1, 2015 and announced correctly the correction that

occurred in January 2015. The second cluster starts on Apr. 4, 2015 and culminates on

Jun. 17, 2015 with the start of the crash. This second cluster is actually made of two

sub-structures, as shown in Fig.7.3.

Fig. 7.3 shows the value of the ‘DS LPPLS Confidence’ indicator in red together

with the SSEC index in blue from July 2013 to July 2015. This graph could be retrieved

each day up to the time of the observation, providing a real-time diagnostic of the on-going

bubble. The website allows one to travel back in time to visualise the signal as was available

at any time in the past. Note that the three peaks of the indicator anticipate shortly each

the following most significant corrections exhibited by the SSEC index.

7.3.2 FCO cockpit reports

From February 2014 (with a gap for May to September 2014), and with an uninter-

rupted monthly periodicity since October 2014, we release so-called ‘FCO cockpit reports’

that provide a global status of the major bubbles developing in the world in all asset classes.

The methodology is similar to that developed for the ‘DS LPPLS Confidence’ and ‘DS LP-

PLS Trust’ indicators presented above but is more coarse-grained to shape a general view

of the developing bubble risks.
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Figure 7.2: Snapshot of the FCO website (tasmania.ethz.ch/pubfco/fco.html) on Aug.
4, 2015. The SSEC index corresponds to the row emphasised by the rectangle with the
white frame (fourth row in the ‘World Markets’ section), which covers the time interval
from August 2014 to Aug. 4, 2015. Our first diagnostic of a “bubbly” SSEC Index occurred
Dec. 2014 and persisted until Jan. 2015, when a change of regime indeed occurred (see
Fig. 7.5). Afterwards, the signal re-appears even stronger on early April 2015 and persisted
until the eventual burst of the bubble on June 16, 2015. Note the consistency of the bubble
signal during this later period.

The FCO Report of June 1st, 2015 warned about the overheated Chinese market

(Fig. 7.4): “... The observation is no surprise: Chinese stocks are in bubble territory.

Clearly, the rise in the last year is not sustainable”. The table on the right side of Fig. 7.4

shows that the ‘DS LPPLS Confidence’ and ‘DS LPPLS Trust’ indicators were the highest

among all other signals for world equity indices.

7.3.3 Summary of the FCO early warnings

Fig. 7.5 shows the SSEC index from May 2014 to July 2015 and illustrates how

a LPPLS analysis works. The coloured curves covering the rainbow-coloured spectrum

represent the LPPLS fits of the SSEC index from Dec. 2014 to May 25, 2015 (indicated by

tasmania.ethz.ch/pubfco/fco.html


Chapter 7: Ongoing Diagnosis and Post-Mortem Analysis of the SSEC 2015 Bubble 166

Figure 7.3: ‘DS LPPLS Confidence’ indicator in red (right scale) together with the SSEC
index in blue (left scale) from July 2013 to July 2015, as could be retrieved each day up to
the time of the observation, providing a real-time diagnostic of the on-going bubble. After
correctly diagnosing a change of regime to occur on early 2015, the DS-Confidence Indicator
signalled an even larger upcoming correction by late April and early June 2015. Retrieved
from the FCO website on June 16, 2015.

The FCO Cockpit –  
Global Bubble Status June 1st, 2015 

When looking at Global Equities 
over the last three months we 
see: 
•  Mainland Chinese stocks 

outperforming, even after 
the most recent correction; 

•  Hong Kong stocks relaxing 
after the April rally; 

•  US stocks going sideways; 
•  European stocks relaxing 

after their rally in the first 
quarter; 

•  Brazilian stocks sliding 
back. 

Shenzhen%

EURO%STOXX%
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Hang%Seng%

S&P500%

Source: Thomson Reuters Eikon, Chair of Entrepreneurial Risk ETH Zurich 
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The FCO Cockpit –  
Global Bubble Status June 1st, 2015 

Asset Class – Equities Country Indices 
Equities(Country(Indices Yearly(Return DS(LPPL(Trust DS(LPPL(Confidence Country
Positive(Bubbles
SZSE$100$Index 125% 42% 40% China
Shanghai$SE$Composite$Index 126% 34% 25% China
FTSE$China$25$Index 35% 17% 16% China
Budapest$SE$Index 17% 14% 16% Hungary
TOPIX$Stock$Price$Index 39% 11% 6% Japan
Shanghai$SE$50$Index 110% 11% 5% China
Hang$Seng$Index 19% 9% 18% Hong$Kong

General Observation: 
 
The observation is no surprise: Chinese stocks are in bubble territory. Clearly, the rise in the 
last year is not sustainable; 

Figure 7.4: Reproduction of the diagnostic of the SSEC bubble in the FCO Cockpit report
of June 1, 2015.

the boundary with the grey domain), which illustrates how the LPPLS model could extract

useful information on May 25, 2015 on the possible subsequent developments. Other earlier

and later dates between May 2015 and June 2015 give similar results. The different coloured

curves correspond to different weights given to the deviations from the pure LPPLS model,
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allowing us to assess the robustness of the calibration of the LPPLS model. They exemplify

a quite remarkable match with the expected LPPLS structure. The smoothed double-

humped curve filled with red represents the distribution of critical times tc at which the

bubble was anticipated on May 25, 2015 to burst. It turned out that the first peak of the

estimated probability for the critical time coincides with the time when the SSEC peaks

and then started to drop. The second high peak coincided with the time of fastest drop of

the index. The bottom panel shows the returns of the SSEC index together with a robust

estimation of the crash hazard rate (the probability that the crash will occur per unit time,

conditional on not yet having occurred). The colors from green to red encode the strength of

the crash hazard rate, and indicate an increasing danger for a crash to occur as the bubble

was developing. The inset in the top panel shows the return time series as embodied by the

deterministic component of the LPPLS fits and can be compared with the bottom panel.

7.4 Complementary post-mortem analysis

This section presents additional results that provide complementary insights on

the nature and value of the LPPLS methodology to diagnose the SSEC bubble and its

termination.

Fig. 7.6 summarises in its two panels the two ways of diagnosing bubbles using

the LPPLS model. In the top panel, we show the distribution of predicted tc’s as well as

estimated beginning of the bubble. This is obtained by scanning over several t1’s (grey

shaded region) for different t2’s (black dashed vertical line). This allows us to determine

that the SSEC bubble began as early as April 2014 (blue probability density function (pdf)

in Fig 7.6) and that this unstable trajectory would be unlikely to persist past June 2015

(red pdf in Fig. 7.6).
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Figure 7.5: Summary of various indicators obtained by the LPPLS analysis performed at
time t2 = May 25, 2015 on the SSEC index that crashed in June 2015. See text for details.
Note that the distribution of tc’s does not match exactly that shown in figure 7.6, which is
obtained by averaging over a number of different t2, thus showing some dependence of the
results on the “present” time used for the analysis. This should be expected since different
times are associated with different information. Even if details are different, the most
striking point is however the overall robustness of the diagnostic and the quite remarkable
convergence to the correct period for the predicted crash.

In the lower panel of Fig. 7.6, the times at which the SSEC index is deemed to

develop dangerously in a bubble are indicated by the DS LPPLS Confidence indicator shown

as the black histogram together with the projections (coloured doted lines) of the LPPLS

fits for different t1’s and for the t2 indicated by the vertical dashed line. The “hazard zone”

is a function of the DS LPPLS Confidence indicator: the darker the red, the higher is the

probability for a significant change of regime to occur.

Fig. 7.7 provides additional information on the nature of the optimisation process

via the two-dimensional cross-sections of its cost function in the space of the three nonlinear

parameters m,ω and tc of the LPPLS formula (1.10). This analysis allows us to provide an

estimation of the typical confidence interval for tc.

Fig. 7.8 suggests first a way to combine the ‘DS LPPLS Confidence’ and ‘DS
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Figure 7.6: top panel: For each vertical dashed line t2, we fit the LPPLS model for all
windows of duration from 400 days to a minimum of 125 trading days prior to t2, scanned
daily. This search range for the beginning of the bubble t1 is shown as the grey shaded
regions. The optimal values for the bubble starting date t1 are represented by the blue
probability density distribution pdf(t̂∗1). It is pleasant to observe that this pdf is concen-
trated in a time interval where, visually, the acceleration of the SSEC index is starting. The
forecasted critical times depicted by the red pdf(t̂∗c) present a strong probability measure at
the time of the crash. The coloured lines illustrates the remarkable LPPLS characteristics
of the SSEC index. bottom panel: The DS LPPLS Confidence (black pdf) successfully
captures moments when the Index was bubbly. Values of the crash hazard rate h(t) inform
us about both the confidence and consistency of the critical time parameter tc estimated
over several windows (depicted here by coloured dashed lines). The darker the red shaded
region, the higher is the probability of a change of regime to occur.
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Figure 7.7: Three cross-sections of the cost function landscape as a function of pairs formed
from the three nonlinear parameters m,ω and tc of the LPPLS formula (1.6) obtained in
the time window w = [2014.06.20, 2015.05.12]. The best-fit parameters are depicted by the
red vertical lines. The cost function is convex in the space m,ω (bottom panel), showing
a rather precise determination of the log-periodic angular frequency ω associated with the
clear characteristic spells of log-price accelerations and corrections before the crash. In the
two top panels, one can observe the existence of a secondary minimum for tc, associated
with the possibility of a scenario in which the crash of June-July 2015 would have been less
severe and only an episode before a strong rebound followed by a latter even more severe
crash. The shape of the cost function allows us to determine the following 90% confidence
interval for the critical time tc, namely [2015.06.01, 2015.08.01], as could be determined on
2015.05.12.

LPPLS Trust’ indicators defined in section 7.2.1 to obtain perhaps a better diagnostic of

the bubble development. This is performed by taking the product of DS LPPLS Confidence’

indicator shown in the top panel and of the ‘DS LPPLS Trust’ indicator shown in the middle

panel to form the confidence-trust product indicator shown in the bottom panel.

The bottom panel of Fig. 7.8 suggests a provoking interpretation. Here, the times

when the People’s Bank of China (PBoC) cut its benchmark lending rates are shown with
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the blue and green arrows. Notice how they coincide systematically with the end of plateaus

or of the corrections that have punctuated the development of the bubble. Just looking at

this data, one cannot escape the impression that the bubble may have been engineered, or

at least catalysed, by the PBoC and its monetary policy. Given that the upbeat growth

of the Chinese economy in the previous decades based on investment in real-estate and

infrastructure has significantly abated, and given that the Chinese government is interested

in diversifying the source of funding of both public, semi-public and private organisations,

it is natural that the stock market would become both the witness as well as the engine of a

transition towards a more capitalistic economy. Here, there is an analogy with the Western

stock markets, which since 2008 have been supported and pushed up by the easy money

policy of central banks. The reasoning is that a booming stock market is good for investors,

for firms and for consumers, via the wealth spillover and the confidence effect. Pursuing

this line of reasoning would however seem to be in contradiction with the theory underlying

our claim in this article that the bubble was diagnosable and was actually diagnosed in

advance. It would seem to tell that the bubble was due to the exogenous influence of the

PBoC and not to the endogenous self-organisation of the markets resulting from positive

feedbacks between herding investors. Indeed, this exogenous story would be valid if we would

consider central banks as impervious to the travails of mere mortals agitating themselves on

the stock markets. In fact, as argued already with the Russian crisis and crash in August

1998 [?], central banks tend to be actually ‘slaved’ to the stock markets [?, ?], so that their

actions have to be considered as an endogenous component of the whole.
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2014.11.22: PBoC cut benchmark lending rate by 40 basis points to 5.6%;
cut benchmark deposit rate by 25 basis point to 2.75%.

2015.06.28: PBoC cut benchmark lending rate by 25 basis points to 4.85%; 
cut benchmark deposit rate by 25 basis point to 2%.

2015.05.11: PBoC cut benchmark lending rate by 25 basis points to 5.1%; 
cut benchmark deposit rate by 25 basis points to 2.25%

2015.04.20: PBoC cut benchmark deposit rate by 10 basis point to 2.4%2015.03.01: PBoC cut benchmark lending rate by 25 basis points to 5.35%;
cut benchmark deposit rate by 25 basis point to 2.5%.

Figure 7.8: top panel: ‘DS LPPLS Confidence’ indicator (red) together with the SSEC
index. middle panel: ‘DS LPPLS Trust’ indicator (red) together with the SSEC index.
bottom panel: Product of the two above indicators and times when the People’s Bank of
China (PBoC) cut its benchmark lending rates (blue and green arrows).

7.5 Conclusion

Since the crash that started on June 17, 2015, the Chinese government has taken

many unusual steps to stop it. For instance, on July 8, 2015, the central bank pledged to

help maintain market stability, and Chinese stock regulators banned company officers and

major shareholders from selling shares in listed companies. The following reasons can be

invoked to understand the growing importance of stock markets for China, its economy, for

the investors and people and for its government. First, the performance of the stock market

will become increasingly correlated with economic growth, via the wealth effect mechanism

and the use of stock markets by firms to fund their growth. The progressive trend towards

privatisation of state-owned enterprises, the reduction of the reliance on bank lending, and

the improvement of the pricing of capital relies on well-functioning and attractive stock

markets. Moreover, in the medium term goal of the internationalisation of the renminbi,

there is a need for the stock markets to rise in order to attract foreign investors. There are
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more political reasons also fostering the needs for a rising stock market, namely to reward

China’s elites for their support to the government’s agenda by replacing previous sources of

revenues associated with well-connected insider profits and booming property markets. The

stock markets embody the “China dream” of successful entrepreneurship and the Chinese

way towards capitalism, which can only succeed in the eyes of the Chinese public if the

stock markets continue to grow in importance and in valuation.

For all these reasons, it is likely that the three large bubbles and crashes that have

punctuated the ascent of the Chinese stock market in the last decade are just the vanguards

of many more and larger bubbles to come. Hence, the FCO with its vision to provide

advanced warnings is likely to become even more relevant and important in the future. We

look forward to continuing improving the methodology and reporting our progress on the

publicly accessible FCO website at ETH Zurich, as well as in specific publications.



Chapter 8

Conclusion

In this thesis, different technologies for diagnosing and forecasting speculative

financial bubbles were pursued. Among many models proposed by the literature, we focused

our efforts on refining the JLS-LPPLS model [56], which stands out from its peers due to

its intrinsic parameter tc, which represents in calendar days the most probable date of a

future change of regime occurring on a financial instrument. Moreover, the model is rooted

in an elegant complex-system framework in which financial markets are viewed as an out-

of-equilibrium dynamical system and subject to both herding and positive feedback; major

drivers of speculative bubbles.

Based on this framework, we were able to provide insightful contributions for the

financial bubbles and crashes literature which are summarised below. Chapter 2 proposes

a novel methodology for quantifying the uncertainty permeating the birth and burst of

speculative bubbles (t1 := birth of the bubble and tc := burst). Our results show that

speculative manias persist even in the presence of fully Rational Expectation agents (see

[18]) due to the lack of consensus regarding tc rather than t1, as argued by [1]. Given

different expectations with regards to tc, a synchronisation among agents for selling the
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bubbly financial instrument is not observed and thus bubbles are allowed to grow. As

a bonus, we find that the structural parameter of the LPPLS model, the exponent m

controlling the super-exponential growth of price, are very “rigid” according the Hessian

matrix analysis, which supports the LPPLS model as a reasonable candidate for describing

the generating process of prices during bubbles.

Chapter 3 provides a novel technique which allows one to compare goodness of fit

of a model using different sample sizes. By adding a penalty term to the cost function which

is proportional to the overfit tendency of a model, one can select the optimal sub-sample

in which models should be fitted. When applied to the LPPLS model, the method allows

one to automatically make statistically significant inferences regarding the starting date of

speculative bubbles.

On Chapter 4, a methodology for diagnosing in real-time the multi-scale aspect

of price exuberance during speculative bubbles is proposed. A core result of this section

consisted in showing that the LPPLS framework is able to successfully capture, ex-ante,

some of the prominent bubbles across different time scales and that market-based proxies

of trading activity can be used as a guideline to model and monitor bubble conditions in

stock market.

While Chapters 2-4 main focus lays on diagnosing financial bubbles inceptions’,

Chapters 5-6 make use of Information Geometry in order to enhance the estimation accuracy

of the crash date, tc and to show how eigenvalues and eigenvectors of the Fisher Information

Matrix can be explored in order to overcome the problem of parametric non-identifiability.

Specifically, Chapter 5 proposes a three-step calibration approach for retrieving t̂c where

all remaining LPPLS’ parameters are treated as nuisance. We then employ a sophisticated

Likelihood estimator, namely, the Modified Profile Likelihood, which adjusts the original

Profile Likelihood to take into account the sloppy nature of tc. Results are excellent in
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terms of estimations accuracy, specially for small samples (N ≤ 200). Another core results

of this Section is that the methodology allows one to construct robust Likelihood Confidence

Intervals around parameter estimates.

We then found that this hierarchical structure of how models should be calibrated

goes beyond the LPPLS model. Moreover, in Chapter 6 we make use of a GARCH(p,q)

model to show that the combination of a sophisticated Profile Likelihood estimator with the

optimal focal parameter (chosen via the Eigenvalue - Eigenvector hierarchy of the Fisher

Information Matrix) is extremely important to obtain precise parameter estimates, specially

for small samples (N ≤ 200). We have also found that practical non-identifiable optimi-

sation problems can be made practical identifiable ones via this methodology. Testing the

robustness of the methodology to different model classes is still an open question which is

worthwhile to be pursued.

Finally, Chapter 7 provides supportive evidence for the relevance of the LPPLS-

based methodology in the diagnostic of bubbles. The chapter documents how the real-time

predictions of the Shanghai Composite Index (SSEC) December 2015 bubble were presented

in the automated analysis of the FCO, as well as in their FCO Cockpit report of June 2015.

A complementary post-mortem analysis of the nature and value of the LPPLS methodology

in diagnosing the SSEC bubble and its termination is also given.

It is important to stress that our work was mainly data driven and contrary to

the standard paradigm of efficient markets, which explains price movements by the arrival

of new information. Instead, we have worked with the notion of speculative bubbles where

the price of an asset systematically detaches from the fundamental value over an extended

period of time and is severely subject to both positive feedback and herding mechanisms.

Moreover, we focused solely on endogenous bubbles occurring on financials instruments and

completely neglected any exogenous triggering factors even thought we are aware of the
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reflexivity nature of financial markets [37].

In order to enhance our current capacity to diagnose bubbles and forecast crashes,

future research could make use of techniques such as Deep-Learning and Neural Networks

on top of the LPPLS methodology in order to learn the intricate non-linear relationships

between fundamental valuation metrics (i.e., earnings, debt to equity ratio, future earnings

...etc) and price fluctuations of a security. Finally, the results obtained in this thesis are of

great practical importance to Portfolio Managers, Macroeconomists and Central Bankers

alike given the unique capacity of the framework to dynamically detect bubbles and forecast

major changes of regime.
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