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Executive Summary

Over the last years, there has been increasing criticism of fundamental asset pricing labels, such as
the Capital Asset Pricing Model (CAPM) or its extended version Fama-French Three-Factor Model as
well as of theories such as the Efficient Market Hypothesis (Avramov & Chordia, 2006). Behavioral
economists and other scientists have argued that due to a process of simplification – based on a number
of strong assumptions such as the predictability and rationality of investor behavior - those asset pric-
ing models are unable to explain numerous financial market anomalies which seem to stem from the
behavioral irrationality of the investor (Fama, 1998). There is evidence that overconfidence, overreac-
tion as well as other behavioral biases and risk-based sources are the cause of one of the most important
asset pricing anomalies: “momentum” (Blitz, Hanauer, & Vidojevic, 2017) (Daniel, Hirshleifer, & Sub-
rahmanyam, 1998).

According to Jegadeesh & Titman (1993): “if stock prices either overreact or underreact to informa-
tion, then profitable trading strategies that select stocks based on their past returns exist”. Indeed, the
two most popular trading investment styles are the “contrarian” by De Bondt & Thaler (1985) and “mo-
mentum” documented for the first time by Jegadeesh & Titman (1993), which aim to achieve benefits
from the “mean-reversion effect” (for the former) and the “short-term return persistence” anomalies
(for the latter).

Momentum was first defined and documented in 1993 in a paper by Jegadeesh & Titman (1993); it
was described by Fama & French (1993) as “the premier unexplained anomaly”. Momentum consists
in the persistence of a linear trend in the log-price process and there is empirical evidence across coun-
tries and time as well as asset classes (Fama & French, 1993). Nowadays, momentum-based strategies,
i.e. strategies based on the D (delta) factor are widely implemented by asset managers.

Recently, Ardila, Forrò, & Sornette (2015) reported the evidence of an important novel effect comple-
menting momentum: “acceleration”, which is defined as the change in momentum and is quantified by
“the first difference of successive returns”, i.e. by the gamma (G) parameter. Ardila, Forrò, & Sornette
(2015) defined acceleration as “transient (non-sustainable)” phenomenon related “to positive feedbacks
influencing the price formation, which is prevalent during “special market regimes”. Furthermore, it
emerged that acceleration is related with procyclical mechanisms such as psychological and behavioral
aspects. The study revealed that, on average, G-allocations have a positive performance and according
to different parametrizations outperform momentum-based strategies in about two out of three cases.

This research is an extension of the previous paper by Ardila, Forrò, & Sornette (2015) and it aims firstly
to develop better proxies to detect the D and the G parameter; successively two investment strategies
(the Long-Short and the Relative Strength Weighted Portfolio) are optimized according to the D or the G
factor to investigate portfolio performance. Three kind of detection methodologies are implemented to
quantify the momentum and the acceleration effect: the simple, the trend-based and the wavelet trans-
form (i.e. the Maximum Overlap Discrete Wavelet Transform, MODWT) approach. By applying the
simple approach, the D and the G parameter are quantified as in the paper by Ardila, Forrò, & Sornette
(2015), i.e. momentum is defined as the f -months cumulative return while acceleration is measured
as the f -months difference in momentum. Moreover, since according to previous literature, “momen-
tum” is defined as a short/medium-term persistence in log-returns, the trend-based detection aims to
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improve the detection of the D factor using time series analysis tools as moving averages. Hence, a first
trend-based approach implements an Exponential Moving Average to extrapolate the time series trend
(i.e. momentum) whilst removing irregular fluctuations and noises. Moreover, a second trend-based
detection estimates the trend as the difference between a short and a long Simple Moving Average.
Thereafter, acceleration is computed as in the simple approach. According to Lera & Sornette (2017)
and Shao & Ma (2003) the n-derivative of a signal is given by its convolution with a wavelet having n-
vanishing moments. Since the momentum effect (D) might also be represented as the “velocity” of stock
prices, it can be quantified by the first derivative of the log-price time series. Moreover, acceleration (G)
might be defined (as in physics) as a change in velocity and it can be modelled by the second derivative.
Hence, according to previous literature, in order to detect the delta factor, a wavelet transform using a
Daubechies function with one vanishing moment (also named Haar wavelet function) is applied. Fur-
thermore, the acceleration factor is captured by the detail coefficients of a MODWT performed with a
Daubechies function with two vanishing moments (Db2). Moreover, the investigation is also executed
using winsorized data.

Finally, a new hybrid portfolio optimization strategy which aims to consider both the momentum and
the acceleration effect as factors for optimization has been developed, namely the D/G (Delta-Gamma)
optimization. This strategy is an extension to the ”traditional” time-series momentum strategy. More
precisely, by applying the D/G optimization, a long and a short portfolio are constructed selecting
stocks according to two conditions: the direction of momentum (“delta condition”) and the direction
of acceleration (“gamma condition”); moreover, equal-weights or relative G-weights are applied. More
precisely, the long portfolio buys stocks with a positive momentum (i.e. a positive D) and having an
upward accelerating price (i.e. a positive G), both factors are detected over the same formation period
or at the same resolution level. Moreover, the short portfolio sells stocks having a negative momentum
(i.e. a negative D) and a downward accelerating price (i.e. a negative G ).

The investigation has been performed considering the U.S. equity market over two different periods
in time: the distant past (1984-2002) and the recent past (2001-2016).

This study adds convincing evidence about the lower or even negative performance of momentum (as
well as the acceleration) strategies, during the recent past (2001-2016), a period of time characterized by
the dramatic impact of the global financial crisis (2007-2009) and therefore by a more volatile financial
market regime. Previous literature on ”momentum crashes” under unstable and stressed market states
is sufficient to explain this outcome. Furthermore, on average, an improved portfolio performance
is possible using D and G factors detected through the trend-based as well as the Maximum Overlap
Discrete Wavelet Transform approach. Additionally, an important contribution is given by the newly
developed hybrid D/G strategy. Indeed, there is significant evidence that implementing the hybrid
portfolio optimization, i.e. a more ”flexible” but more ”selective” investment strategy which considers
both the momentum and the acceleration as factors for optimization and which does not invest in a con-
stant number of assets allows us to even gain good returns during stressed and more volatile market
regimes.
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1 Insight on Financial Market Anomalies: Momentum and Acceleration Effect

1 Insight on Financial Market Anomalies: Momentum and
Acceleration Effect

1.1 Introduction

Recently, the efficiency of financial markets has been questioned by many economists (Avramov &
Chordia, 2006). Under debate is the Efficient Market Hypothesis (EMH) - a cornerstone theory of
finance- which posits that security market movements follow a random walk and the flow of infor-
mation is efficiently accounted for in the stock value so that neither the past stock performance analysis
(technical analysis) nor the consideration of financial news as “company earnings” or “asset values”
(fundamental analysis) allows investor to predict stock prices and accordingly gain superior returns
(Burton, 2003).
In fact, over the last few years, several financial publications have claimed evidence of the existence
of financial market anomalies, i.e. particular ”cross-sectional time series patterns” which are in con-
tradiction with the EMH and supposedly can not be explained by fundamental asset pricing theories
such as for example the Capital Asset Pricing Model (CAPM) or the Fama-French Three-Factor Model
(Keim, 2006). Behavioural economists argue that due to over-simplification and strong assumptions,
those fundamental asset pricing labels are unable to describe some financial market anomalies which
seem to originate from investors’ irrational behaviour as well as psychological effects (Fama, 1998).

“Momentum” is one of the most common anomalies, which consists in short-term return persistence
and seems to originate from behavioural biases such as overconfidence and overreaction. At the begin-
ning of the 21st Century economists started to believe that stock prices might be partially predictable
on the basis of their past performance as well as fundamental metrics and that it was even feasible to
earn risk-adjusted returns using technical as well fundamental indicators (Burton, 2003). Nowadays,
technical as well as fundamental metrics are widely used among asset managers during portfolio op-
timization. The “momentum-based” strategy is one of the most widely implemented investment styles.

Nevertheless, Ardila, Forrò, & Sornette (2015) demonstrated that there is a significant “novel effect
complementing momentum”: “acceleration”, defined as the change in momentum and quantified by
“the first difference of successive returns”, i.e. the gamma (G) parameter. The purpose of this research
is to further investigate the acceleration effect and the G-parameter.

The first chapter aims to give a short introduction to fundamental asset pricing models as well as their
inefficiency to explain particular financial market anomalies, which seem to originate from investor
behavioural biases. The second section of this chapter briefly introduces the main features of some fi-
nancial market anomalies and alternative risk premiums stemming from them. Specifically, there is an
introduction and a literature review of the most important anomaly, namely “momentum”, as well as
the new factor, i.e. acceleration. Additionally, in the last section, the research question as well as the
structure of the following chapters and the data set are defined.

Page 1 University of Zurich, Empirical Finance, September 21, 2018



1 Insight on Financial Market Anomalies: Momentum and Acceleration Effect

1.2 Financial Asset Pricing Models

Risk, risk-based pricing in financial markets as well as project valuations are the main features of
modern financial theory, where risk is seen as the principal component for value generation (Volkart,
2011). Assuming that returns are normal or log-normal distributed, the Modern Portfolio Theory (MPT)
(Markowitz, 1952) reveals that risk-averse individuals select a portfolio of assets according to two stock
price characteristics: return and risk (variance). In other words, investors have a mean-variance util-
ity function and for an expected level of return they invest in the portfolio having the lower variance
(Volkart, 2011). Moreover, Markowitz (1952) suggested that it is possible to achieve benefits in terms
of risk reduction by focussing not only on the characteristics of a single asset but including more assets
in the portfolio. Indeed, due to imperfectly correlated securities, a well-diversified portfolio lowers the
idiosyncratic (asset-specific) risk to almost zero and its variance might be described only by the beta
(systematic/market risk) of each single asset. Assuming that all investors have the same preferences,
they would choose the same optimal portfolio and the asset prices are the result of this equilibrium.

The Capital Asset Pricing Model (CAPM) is a pioneer label of the Modern Portfolio Theory and a cor-
nerstone of asset pricing. The Three-Factor Fama-French model as well as multi-factor models are ex-
tensions of the CAPM (Investopedia, 2018a). All these models assume that investors behave rationally
and that their behaviour does not influence securities prices (Krause, 2001).

1.2.1 The Capital Asset Pricing Model (CAPM)

The Capital Asset Pricing Model is one of the most famous labels in finance, developed during the 60’s
by Treynor (1962), Sharpe (1964) and Lintner (1965). It aims to estimate the theoretical adequate rate of
return of a risky asset. More precisely, it suggests that cross-sectional differences in average returns are
determined only by the market risk which is measured through the parameter “beta” (bi).

This parameter measures the sensitivity of the return of a risky asset in relation to the return of the
market portfolio. The beta designs how the stock price co-varies with market price movements and
it can theoretically take any value. Frequently, this number fluctuates between +0.5 and +1.5 (Volkart,
2011). This one period (static) model - commonly used in asset pricing - relies on several strong as-
sumptions such as the predictability and rationality of investor behaviour, who are risk-adverse, have
similar expectations regarding future outcomes and have mean-variance preferences. Additional state-
ments are the existence of a risk-free asset so that one can borrow and lend at the risk-free rate and the
completeness of financial markets, which have no friction: transaction costs and taxes are equal to zero
(Investopedia, 2018a).

Under the CAPM the expected return of a risky security E(ri) is given by (Volkart, 2011):

E(ri) = r f + bi
�
E(rm)� r f

�
(1)

where r f is the risk-free rate, bi is the beta parameter and E(rm) is the expected return of the market
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portfolio.

1.2.2 The Arbitrage Pricing Theory

Multi-factor models are an alternative to CAPM and are based on the Arbitrage Pricing Theory (APT)
developed by Ross in 1976. Both, the CAPM and the APT state that risk can be divided into unique
and market risk. However according to the APT, the price of a security is determined by many sources
of risk rather than one (Ross, 2017). In other words, in contrast to CAPM, where stock returns are
explained only by one independent variable “beta”, in the multi-factor models the sensitivity of the
“beta” parameter is split into different risk-factors (b1, b2, b3, ...) (Volkart, 2011). More precisely, the
APT model states that the risk-premium originates from different external sources and not only market
risk.

According to the APT model, the return of a security (ri) is determined by several factors, as is shown
by the following equation (Volkart, 2011):

ri = ai + bi1 ⇤ F1 + bi2 ⇤ F2 + bi3 ⇤ F3 + ... + bkn ⇤ Fn + #i (2)

where Fn is the return of a specific factor and #i is the regression residual.

Multi-factor models are more realistic and are based on fewer assumptions but they are harder to
implement because - unlike the CAPM- there is no indication about which factors should be consid-
ered. In fact, stock returns are attributable to several factors, some systematic (macroeconomic) and
other industry or company-specific and using factor analysis and statistical investigations it is possi-
ble to determine which are the most relevant current factors and which of them to select for pricing
a singular security (Investopedia, 2018b) (Volkart, 2011). The criticism regarding pioneering models
in Modern Portfolio Theory is strong and behavioural economists have demonstrated the inefficiency
of those models to explain some financial anomalies, finding sources in investors’ behavioural biases.
As is explained in the next section, recently, there has been a trend in new labels to include anomalies
and inefficiencies and obtain more realistic asset pricing estimations. An example is the Three-Factor
model, which is a multi-factor model developed by Fama & French (1993) that aims to describe the
differences in cross-sectional return according to firm size and book-to-market parameter. Moreover,
some financial anomalies have been integrated in the multi-factor models as additional factors, such as
for example momentum.

1.3 Introduction and Literature Review on Financial Market Anomalies

According to fundamental financial theories, participants in financial markets behave rationally and
seek to maximize their wealth. Nevertheless, emotions and psychology can influence decisions and
have an impact even on financial markets as well (Investopedia, 2018c). Over the last few years, several
investigations in the field of behavioural finance – a relatively new discipline linking economy and fi-
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nance with psychology – have aimed to explain, using assumptions of the neoclassical financial theory,
the systematic divergence of asset prices and returns from predictions by fundamental labels (Volkart,
2011).

According to Volkart (2011), an anomaly in the point of view of financial managers is each factual
observation which conflicts with market efficiency and the rationality of market participants and which
leads to significant material or financial consequences to the company. In financial exchanges, anoma-
lies are “cross-sectional and time series patterns in security returns that are not predicted by a central
paradigm or theory” (Keim, 2006). Nowadays, there are a lot of recognized financial anomalies such as
for example the January effect, the time instability of risk premium, the value and the size effect, the
Equity Premium Puzzle or momentum (Volkart, 2011). In fact, for example, it appears that small-cap
companies outperform large companies and “value” stocks (with high book-to-market value, B/M ra-
tio) beat “growth” stock (with lower B/M ratio) (Blin, Lee, & Teiletche, 2017).

Due to the inefficiency of the CAPM in describing risk-contingent differences in returns, further re-
search by Fama & French (1993) demonstrated that - with the inclusion of additional firm-specific fac-
tors such as company size and company value in this fundamental label - it is possible to obtain a better
explanation of the power of return differences. As market capitalisation and book-to-market equity
seems to have an impact on risk-premiums, the Three-Factor Fama-French model extends the CAPM
with two related additional parameters: the Small-Minus-Big (SMB) and the High-minus-Low (HML).
The size factor (SMB) plus the book-to-market factor (HML) combined with the market risk factor de-
scribe the expected risk premium of a risky asset in the following way (Fama & French, 1993):

E(ri)� r f = bi,m
�
E(rm)� r f

�
+ bi,SMB ⇤ SMB + bi,HML ⇤ HML (3)

The expected risk premium (E(ri) � r f ) is given not only by the sensitivity of the risky asset accord-
ing to the expected market risk premium movements (bi,m) but also by the sensitivity of the firm size
(bi,SMB) as well as its book-to-market ratio (bi,HML) (Avramov & Chorida, 2006).

It is not clear if the outperformance tendency originated by SMB or HML factors might be a man-
ifestation of market efficiency or inefficiency. Explanations sustaining the efficiency side define this
abnormal excess return deriving from small-cap as a result of additional business risk and the higher
cost of capital, which are characteristic of small companies. Theories supporting inefficiency claim that
the origin of this outperformance might originate in company mispricing by market participants: the
adjustment in the long-run of the value generates an excess return (Burton, 2003).

Moreover, even specific behavioural characteristics of market participants seems to influence share
prices movements and be a driver of anomalies. For example, De Bondt & Thaler (1985) demonstrated
that people “tend to overreact to unexpected and dramatic news events”. This leads to a mean-reversion
in stock prices: previous losers tend to outperform previous winners. This is due to an over-reaction
in the long-term which is the origin of the “mean reversion effect” (De Bondt & Thaler, 1985). Later,
Jegadeesh & Titman (1993) demonstrated that - controversially - there is a short-term return persistence:
“momentum”. Indeed, increasing share prices continue to increase and falling prices keep falling. Re-
cently, several economists investigated the origin of momentum and the opportunity to achieve profits
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implementing momentum-based strategies. Behavioural aspects of investor such as herding, transient
positive feedback, under and over-reactions seems to be potential sources of this anomaly (Jegadeesh
& Titman, 1993).

Additionally, in their “Overconfidence Model”, Daniel, Hirshleifer & Subrahmanyam (1998) explain
how “overconfidence” bias – when the subjective confidence of one’s own knowledge and ability is
greater than the actual objective performance – as well as “self-attribution” bias - when successful out-
comes are attributed to their own abilities but losses are seen as a “pech” - are further explanations of
“momentum” and “reversal” in share prices. For their investigation, they used two sample of investors:
informed and uninformed; the informed suffered from overconfidence and self-attribution bias. The bi-
ased self-confidence increased strongly after each successful trade; meanwhile negative outcomes were
attributed to “pech” (Volkart, 2011) (Barberis & Thaler, 2003) (Hens & Bachmann, 2011).

According to Jegadeesh & Titman (1993): “if stock prices either overreact or underreact to informa-
tion, then profitable trading strategies that select stocks based on their past returns exist”.

Indeed, the two most popular trading investment styles are the “contrarian” by De Bondt & Thaler
(1985) and “momentum” documented for the first time by Jegadeesh & Titman (1993), which aim to
achieve benefits from the “mean-reversion effect” (for the former) and the “short-term return persis-
tence” anomalies (for the latter). The contrarian strategy is seen as the strategy adopted by smart in-
vestors to beat the market and it consists “in buying past losers and selling past winners” (Jegadeesh &
Titman, 1993). Contrarian investors believe that markets over-react and that herding behaviour leads
to the mispricing of securities. According to Roncalli (2017) this investment style is also defined as
value investing, where the intrinsic value (calculated fundamental value) is compared to the market
value: undervalued assets are purchased and overpriced assets sold. Controversial, momentum-based
strategies are associated to “naı̈ve” investors who simply follow the trend of buying past winners while
selling past losers – contradicting the “buy low and sell high” rule (Roncalli, 2017) (Blin, Lee & Teiletche,
2017).

1.3.1 Alternative Risk Premium

Those strategies are examples where investors seek to achieve “Alternative Risk Premia” (ARP) – in this
case - implementing investment schemes based on assets’ past returns. According to Naya & Tuschmid
(2017), Alternative Risk Premia (ARP) are “systematic or rule-based strategies” and “value” or “size”
also belong to the ARP family (Blin, Lee & Teiletche, 2017). The main idea is that investors should
be rewarded for exposure to systematic (not diversifiable) risks. As opposed to traditional risk fac-
tors (such as equity or duration premium), ARP constitute compensation for “non-traditional” risks
such as for example equity size, company value, interest rate and momentum. The ARP principle is
based on the idea that the return of a risky security can be described by a multi-factor model where
each factor describes a specific risk that should be remunerated by an adequate premium. The uni-
verse of Alternative Risk Premia is wide and selection might be difficult, also because of the low
grade of homogeneity. Momentum, company size or book-to-market value are already established
factors used by many asset managers; however, the gamma (G) parameter is a new factor which might
give additional explanatory power to stock returns (Hamdan, Pavlowsky, Roncalli, & Zheng, 2016).
In the following sections there is a deeper insight on the momentum effect as well as the new detected
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acceleration phenomena.

1.3.2 The Momentum Effect

The momentum risk premium is one of the most important ARP and it was first documented by Je-
gadeesh & Titman (1993). In their paper, they stated that “over an intermediate horizon of three to
twelve months, past winners on average continue to outperform past losers” Roncalli (2017). Accord-
ing to Jegadeesh & Titman (1993), over the period between 1965 and 1989, trading strategies based on
cross-sectional momentum (“relative strength” strategies1) achieved significant abnormal returns in the
US market. However, others economists demonstrated evidence of momentum across asset classes and
countries.

More precisely, in their study, Jegadeesh & Titman (1993) developed a J-month/K-month strategy which
consists in ranking (ascending) stocks according to their J-months past returns and creating ten equally
weighted decile portfolios; furthermore, there is a long position in the top decile (the “losers”) and a
short position in the bottom decile (the “winners”); both portfolios are hold for K-months. One of the
most proficient investments was a six-month holding portfolio optimized by selecting stocks according
to the past six-month returns (6-month/6-month strategy); the average compounded yearly excess re-
turn was around 12.01% (Jegadeesh & Titman, 1993).

The authors stated that performance by the relative strength portfolios seems not to originate from
the systematic risk or a “lead-lag” effect resulting from a delayed reaction of stock prices to common
factors but to a reaction to firm-specific news (Jegadeesh & Titman,1993). Moreover, long-term over-
reaction and short-term under-reaction are too simplistic to uniquely describe the return patterns of
relative strength momentum, i.e. the “initial positive and later negative portfolio performance”. Ac-
cording to Jegadeesh & Titman (1993) it is instead the observed investor behaviour of buying past
winners and selling past losers that might lead to a temporary price over-reaction which diverge from
its long-run value. Alternatively, the authors suppose that it is possible “that the market under-reacts
to information about the short-term prospects of firms” (such as earnings forecasts) but “overreacts to
information about their long-term prospects” (vague or unclear information) and they reveal that there
might be other explanation to their results.

As an alternative to the return patterns explanations of Jegadeesh & Titman (1993) regarding the cross-
sectional momentum, there are other theories which attempt to explain the origin of the momentum
profits. Recently, behavioural economists suggest that an over-reaction originating from the psycho-
logical feedback mechanism can be a source of momentum profitability (Burton, 2003).The positive
feedback trading hypothesis (PFTH) is seen as an important explanation for momentum in financial
markets and the idea is that “time traders” buy an asset simply due to its price increase; if a large num-
ber of investors behave in this way, there is buying pressure on the asset that drives the stock value
even higher inducing more people to buy it (Liang, 2012). As is explained in the paper by DeLong,
Shleifer, Summers,& Waldmann (1990) noise trading, i.e. irrational investors, who despite having no
inside information, trade according to noise believing that there is an information value in it - might
also lead to a divergence of prices from their fundamental value and investors might gain a premium

1 Relative Strength investment strategies consist in comparing the performance of a security against a selected benchmark (a market index
or a group of similar securities) in order to identify top-performing stocks in the universe of potential securities (Investopedia, 2018d).
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as compensation for the self-created risk. Positive feedback is a sort of noise trading where “trend-
chasers reinforce movement in stock prices even in absence of fundamental information”, which leads
to temporary returns followed by a sub sequential reversion effect in the long-term (Chan, Jegadeesh,
& Lakonishok, 1996).

Contrary to behavioural models, according to Crombez (2001), even in efficient markets with rational
investors the presence of information noise might be the origin of financial market anomalies. Other
particular explanations regarding the momentum effect are for example the idea of compensation for
systematic crash risk exposure (Ruenzi, & Weigert, 2018).

As was already mentioned above, momentum-based investment consists in buying securities that have
performed well and selling those that have performed poorly. It is an established and very popular
trading strategy widely used in investment industry (Roncalli, 2017). There follows a short insight on
two additional investment styles based on the conventional momentum of Jegadeesh & Titmann (1993):
the “time series momentum” and the “idiosyncratic momentum”.

Beyond the cross-sectional momentum, which is based on the “relative” performance of stocks, i.e.
selecting securities that outperformed their peers (going long only with the best-performing decile
portfolio) or selling securities which underperformed (going short with the worst-performing decile
portfolio), we can also find other momentum-based strategies such as the “time-series momentum” of
Moskowitz et al. (2012), which is based on the “absolute” performance, i.e. only on an asset’s own past
return. However, if in the conventional strategy of cross-sectional momentum, the number of stocks in
the winner or loser portfolio is constant, with the time-series momentum this number varies with the
state of the market. According to Moskowitz et al. (2012), there is evidence of a “time series momentum
effect” across futures contracts and several major asset classes, however the authors demonstrated that,
consistent with the assumption of short-term under-reaction combined with long-term over-reaction,
the time series momentum “partially reverses after one year” (Moskowitz et al., 2012). However, ac-
cording to Bird, Gao & Yeung (2017), if on the one hand both styles of momentum strategies generate
positive performances, on the other hand, due to the fact that “the information in the momentum sig-
nals is concentrated in the tails of the return distribution”, the time-series momentum might be defined
a better strategy.

Additionally, Blitz, Hanauer, & Vidojevic (2017) developed another strategy, which consists in selecting
stocks according to their idiosyncratic (abnormal) past returns and not according to their total past per-
formance as was done previously. This strategy is called ” idiosyncratic momentum” and the authors
demonstrated that it is ”priced in the cross-section of stock returns” and that ”it cannot be subsumed by
any of the established asset pricing factors, including conventional momentum”. Indeed, the idiosyn-
cratic momentum should be considered an additional factor in asset pricing. This investment style
seems to generate, on average, comparable performance with cross-sectional (conventional) momen-
tum. Nevertheless, it boats of the half of the volatility as well as ”lower non-linear crash risk exposure”
and its performance is less influenced by market dynamics. Moreover, the authors documented the id-
iosyncratic momentum not only in international equity markets but even in Japan, where the effective-
ness of conventional momentum was never confirmed. The underreaction hypothesis as a source of the
premium of idiosyncratic momentum is supported by their empirical studies. Controlling for known
forecasting variables for asset returns, conventional momentum ”predicts high short to medium-term
returns” but it becomes significantly negative within one year. Controversely, the idiosyncratic mo-
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mentum forecasts high short and long-term returns and the authors demonstrated that it is feasible to
use idiosyncratic momentum to differentiate between ”past total return winners that are prone to long
term reversal and those that are not”. Since conventional and idiosyncratic momentum factors are not
uniquely significantly and since there is ambiguity about the underlying mechanism linking both mo-
mentum phenomena, it is important to say that the authors designed both kinds of momentum styles
as complementary and not as substitutes.

Moreover, Fama & French (2012) even included the conventional momentum factor in their previously
developed Three- Factor model, which improved the explanatory power of the multi-factor model.

1.3.3 The Acceleration Effect

A recent research by Ardila, Forrò, & Sornette (2015) reported evidence that there is an innovative
effect complementing momentum, ”acceleration”, which is defined as ”the first difference of sucessive
returns” quantified by the parameter gamma (G). It was shown over the last 25 years, acceleration
has been an important driver for momentum profits. Moreover, their research revealed that G-based
strategies are profitable and considering different parametrizations beat momentum-based strategies
in more than two-thirds of cases.

1.4 Research Purpose

This research is an extension of the previous paper by Ardila, Forrò, & Sornette (2015) and it aims to
improve the detection of the G-factor in order to check if it is possible to obtain higher portfolio return
using G-based portfolio optimization in the distant past (1984-2002) or in today’s financial market en-
vironment (2001-2016). The second chapter aims to develop better proxies to detect the acceleration
factor in daily log-returns. More precisely, three methods are implemented in order to quantify acceler-
ation: a simple, a trend-based and a wavelet transform approach. The gamma parameter is computed
for each security using different formation periods. Furthermore, the purpose of the third chapter is
to set up portfolios based on the G-parameters in order to check their performance and compare it to
momentum-based portfolios. Additionally, a hybrid portfolio - based on both, the momentum and the
acceleration factor - is developed.

Moreover, this investigation might be a starting point for other analyses such as for example the idea
to use “idiosyncratic” momentum as a basis to compute the G-factor or compute the acceleration factor
not in an absolute quantification but relative, i.e. as a percentage of change in momentum.

1.5 Data

The detection of the acceleration effect has been studied using split and dividend-adjusted daily log-
returns of the component of two important indices representing the U.S. market: the Dow Jones Indus-
trial Average (DJIA) and the Standard and Poor 500 (S&P500). Firstly, there is momentum as well as
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acceleration detection using daily returns of 30 companies belonging to the Dow Jones Industrial Av-
erage (DJIA) from 5 January 1999 until 30 December 2016. The Dow Jones includes “blue chip” stocks,
i.e. security with high capitalization and with a long history of paying out dividends in both good and
bad financial time (Zacks, 2018). However, since it is the second-older U.S. index it has disadvantages
because the companies included are not necessarily the most significant in the market. For this reason,
it is less suitable to represent the whole U.S. market. On the other side, the Standard and Poor 500 in-
cluded 500 U.S. companies with high capitalization (more than $5.3 billion) and high liquidity, therefore
it is suitable to represent the United market. The detection is done using split and dividend-adjusted
daily log-returns of 376 companies in the Standard and Poor 500 (S&P500) between 5 January 1999 and
16 May 2014 (Sharptrader, 2017).

The portfolio optimization is simulated using the daily detected parameters firstly for the Dow Jones
components and after for the S&P500 companies. The first two years of data are removed due to esti-
mation window constraints; for this reason the simulating portfolios start on 2 January 2001 until the
availability of the detected data: 30 December 2016 for the DJIA and 16 May 2014 for the S&P500.

In order to have an additional comparison, detection as well as portfolio optimization has been im-
plemented, also using a dividend-adjusted daily log-return of 21 companies included in the Dow Jones
Industrial Average between 30 December 1981 and 31 December 2002 (i.e. between 1982 and 2002).

The Dow Jones Industrial Average (1999-2016) data set was downloaded from the Wharton Research
Data Servies (WRDS) database while the Standard and Poor 500 stocks universe (2001-2014) as well
as the DJIA (1982-2002) data set was acquired from Bloomberg Professional. This investigation is per-
formed using MATLAB. Several key sections of the code are available in the attachment.
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2 The Acceleration Effect and the Gamma Factor: Detection

The aim of this research is to employ different methods to detect the acceleration effect quantified by
the gamma factor (G) in stock prices; it will be used later as a constraint in portfolio optimization or as
an additional factor in asset pricing models. More precisely, the following three methods are employed
for detection: a simple, a trend-based and a wavelet transform approach. Moreover, according to Welch
(2017), “winsorized rates of returns predict their own future realization better than equivalents based
on unwinsorized rates of returns”; therefore, some investigations are implemented twice, i.e. using
unwinsorized as well as winsorized time series. Winsorizing methodology as well as each detection
approach are explained in the following section. Furthermore, the MATLAB code for momentum as
well as gamma detection and successive portfolio optimization is available from the author; each main
part of this code is briefly transcribed and described in the Appendix.

2.1 Simple Detection

2.1.1 Approach

As per the paper by Ardila, Forrò & Sornette (2015) the first approach to detect the acceleration factor
(G), consists simply of the first difference in returns (ri,t( f )), i.e. the change in momentum between two
points in time:

Gi,t( f ) = Di,t( f )� Di,t� f ( f ) (4)

where momentum is defined with the parameter delta (D) and is computed using the following equa-
tion:

Di,t( f ) = ri,t( f ) = ln
✓

Si,t
Si,t� f

◆
(5)

and Si,t is the price of the stock i at the end of the day t. Moreover, the parameter f defines the for-
mation period (expressed in days) used to estimate the momentum and the acceleration factor. The
delta is the f -days cumulative log-return (momentum) of the stock i. The study is performed using
daily or monthly data, i.e. the parameters t and f are expressed in days or months.

Since the original data set is in daily log-returns (ri,k), the f -days cumulative return (momentum) or
Di,t( f ) of a security i at the day t is given by the following equation:
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Di,t( f ) = ri,t( f ) =
t

Â
t� f+1

ri,k (6)

2.1.2 Assumptions

According to Swingtradeystems (2018), a trading month consists on average of 21 days and a trading
year or respectively a quarter (three months) are on average 252 resp. 63 days. Therefore, on the basis
of daily returns, monthly returns have been calculated applying the Equation (6) with a time-step ( f )
of 21 days. Moreover, a period of 126 days defines approximately a time frame of six months. This
assumption is applied to each analysis performed in this research.

As was done in the paper by Ardila, Forrò & Sornette (2015) and also according to previous litera-
ture as for example Jegadeesh & Titman (1993), the momentum as well as the acceleration factor are
computed using different formation periods ( f ) of three, six and twelve-months (i.e. approximately 63,
126 and 252 days). Additionally, given the availability of daily data, a five-day period (i.e. a week) as
well as a one-month formation period have been considered too.

Detection of the delta and gamma parameters is also executed by operating with winsorized data,
which consists in removing outliers from the data set by setting a lower and an upper bound for return
values and replacing each value outside these limits with the corresponding threshold value Welch
(2017). According to Welch (2017) an absolute winsorization level of 10-15% is adequate to filter daily
stock returns. However, for large stocks, a more conservative absolute level of 25-50% is recommended.
Hence, considering the presence of large stocks in this research and taking into account the fact that ac-
celeration depends directly on return values, a conservative level of 20% is chosen. Winsorization is an
additional analysis which has only been applied to selected portfolios.

2.2 Trend-based Detection

2.2.1 Approaches and Assumptions

According to previous literature, “momentum” is defined as a short/medium-term persistence in log-
returns. Therefore, a second approach to detect acceleration (i.e. a change in momentum) in stock
returns is to firstly extrapolate the time series trend (i.e. momentum) whilst removing irregular fluctu-
ations and noises.

The trend is estimated on the basis of standardized stock prices Si,t which are calculated by invert-
ing the Equation (5) and inserting the earliest daily log-return (ri,t=1) and a standardized starting price
(Si,t=0) equal to 100 as is shown in the following equation:

Si,1 = Si,0 ⇤ exp(ri,1) = 100 ⇤ exp(ri,1) (7)
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Successive stock prices are computed analogously; Si,t is calculated by applying the above equation
and inserting the previously calculated Si,t�1:

Si,t = Si,t�1 ⇤ exp(ri,t) (8)

The trend-based detection is performed through moving averages (MA), which are a common tech-
nique implemented by asset managers in order to assess momentum. Two types of MA are executed in
order to better estimate the trend (momentum) and compute the delta and gamma parameters.

The first procedure for trend-based detection is Simple Exponential Smoothing (SES), also named Ex-
ponential Moving Average (EMA). It aims to estimate a “cleaned” trend of stock prices which is used
as an input variable in the Equation (5) to compute the delta parameter. The gamma factor is calculated
on the basis of the computed delta factor by applying the Equation (4). The momentum as well as the
acceleration parameters are detected using a formation period of five days (one week) as well as one,
three, six and twelve months.

Subsequently, considering the fact that “Simple Moving Average Crossovers” are widely adopted as
a signal to buy or sell a security, a second trend-based approach which defines momentum (i.e. the
delta) as the difference between long-term (slower) and a short-term (faster) asymmetric simple mov-
ing average (SMA) is employed (Bruder, Dao, Richard & Roncalli, 2011).

The next section gives a short overview on the Simple Moving Average (SMA) and the Simple Ex-
ponential Smoothing (SES) as well as the Moving Average Crossovers approach.

Simple Moving Average

The Simple Moving Average (SMA) is a kind of linear filter and it simply computes the average price
of an asset over a selected number of periods (lag) in order to remove irregular price fluctuations and
estimate the local mean (Investopedia, 2018e) (Chatfield, 2004).

Using a symmetric simple moving average approach, the time series trend (xi,t) is calculated with the
following equation (Chatfield, 2004):

SMAq(Si,t) = xi,t(q) =
+q

Â
r=�q

ar ⇤ Si,t+r (9)

where ar = 1
2q+1 is the set of equal weights with Â ar = 1 and q is the number of previous and fol-

lowing days to be included in the “average” window.
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Moreover, an alternative kind of simple moving average, which is defined as “asymmetric SMA”, is
used as technical trading rules. It consists of a simple moving average over the last K trading periods
(here it is given in days) and it is shown by the following formula (Chatfield, 2004):

SMAK(Si,t) = xi,t(K) =
1
K

0

Â
r=�K+1

Si,t+r (10)

Usually, common moving average lengths (lag) which can be applied to any plot time-frame (minute,
day, weeks, etc.) are 20, 50, 100 as well as 200. For example, a 20-day lag “it follows the price more
closely” and it might be used as an analytical tool for short-term trading. Nevertheless, the estimated
trend lags the original time series, i.e. potential reversals or changes in trend are “only seen with a delay
(lag)” (Learndatasci, 2018).

Using the Simple Moving Average Crossovers approach, two asymmetric simple moving averages of
50-days and 200-days on stock price series (Si,t) are performed in order to compute the delta factor (D).
Afterwards, the G-parameters are computed using the Equation (4). The actual procedure is clearly
explained in the corresponding paragraph (Bruder, Dao, Richard & Roncalli, 2011).

Simple Exponential Smoothing

Since current and recent prices are more relevant than distant data points, exponential smoothing is a
weighted moving average where weights are higher for recent prices and their rate of decrease is expo-
nential (Investopedia, 2018f). Therefore, using a SES the “lag” problem of the estimated series is greatly
reduced (Learndatasci, 2018).

According to Chatfield (2004), when using the SES procedure, the estimated time series trend (xi,t)
is:

SESK(Si,t) = xi,t(K) =
•

Â
j=0

a ⇤ (1 � a)jSi,t�j (11)

where a is a constant and 0 < a < 1. The weights (a) are calculated with the following formula:

a =
2

K + 1
(12)

where K is the “lag” parameter (i.e. the window size). In order to extrapolate the trend (momentum)
from the daily (unwinsorized and winsorized) price series, this study employed a set of exponential
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moving averages with different lag parameters of 20, 50, 100. Afterwards, on the basis of the filtered
series (the trend), the delta as well as the gamma parameters are detected applying the Equations (5)
resp. (4) and using a formation period of one, three, six and twelve months.

Given the exponential weighting which is decreasing at the rate j, this approach seems to be more
effective in determining the trend than a SMA 2 and it is a useful method when we are dealing with
non-seasonal data. Moreover, the SES is more responsive and more adequate to describe changes in
trends (here defined as acceleration) (Chatfield, 2004).

Simple Moving Averages Crossovers

As was explained previously, a shorter simple moving average is faster and follows the price more
closely, indicating more reversal signals (as well as more false signals) than a longer SMA. Moreover, the
larger the lag parameter, the greater the delay in the estimated trend (see Figure A1 in the Appendix).
The asymmetric simple moving average is a common technical indicator in order to determine trend
reversal (i.e. regime shifts in momentum), i.e. the crossover of a short (as for example 10-days) and a
long (20-days) moving average on a chart is an indication of changes in the trend (see Figure A2 in the
Appendix) (Bruder, Dao, Richard & Roncalli, 2011).

An example is the “death cross” indicator, which results when a short-term (SMA50) moving aver-
age crosses a long-term moving average (SMA200) from above, signaling a downward trend (bearish
signal). The opposite indicator (bullish signal) is the “golden cross” and is given by the crossover of
the two SMAs but on the opposite sense, i.e. the short SMA50 crosses the long SMA200 from below. In
the former case the trend shifts down after the crossover and in the latter situation the trend reverses
positively (Investopedia, 2018f) (Investopedia, 2018g).

Therefore, the second trend-based approach to detect the gamma parameter is to firstly calculate the
momentum as the difference between a 50-day simple moving average and a 200-day simple moving
average (Bruder, Dao, Richard, & Roncalli, 2011):

Di,t = SMA50�200(Si,t) = SMA50(Si,t)� SMA200(Si,t) (13)

A negative SMA50�200(Si,t) or delta (momentum) indicates that the long-term moving average is lo-
cated above the short-term and is assumed to be a signal of a downtrend. A positive SMA50�200(Si,t) is
supposed to be an indicator of a bullish market. Afterwards, it is possible to compute the G-factor using
the calculated Di,t and Di,t� f as input variables in the Equation (4).

The Moving Average (MA) as well as other statistical methods rely on the assumptions of normally
distributed and stationary stock price series. However, asset prices are mostly non-stationary and
non-linear and through the application of time series decomposition techniques it might be possible

2 However, the SMA has the advantage that it allows to find easier resistance and support areas, i.e. stock prices limits (below or above)
which stock prices series have difficult to cross and which once they are touched the prices reverse (Investopedia, 2018h)
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to detect the delta and the gamma parameters more accurately and to test whether it is possible to in-
crease the portfolio performance or to improve prediction power in asset pricing models (Jothimani,
Shankar, & Yadav, 2015). More precisely, many statistical models such as the Autoregressive (AR) or
the Autoregressive Moving Average (ARMA) might be insufficient tools to analyze non-stationary time
series such as stock prices. Furthermore, successive procedures such as the Generalized Autoregres-
sive Conditional Heteroskedastic (GARCH) aim to model the change in volatility but are not able to
capture irregular financial market phenomena (Jothimani, Shankar, & Yadav, 2015). A recent approach
is the Maximum Overlap Discrete Wavelet Transform (MODWT) which might be useful to gain more
accuracy during the time series decomposition and analysis and in this investigation it might increase
the precision of the detected delta and G-parameter. The MODWT method as well as the underlying
assumptions regarding its use for this investigation are explained in the next section.

2.3 Wavelet Transform Detection (MODWT)

2.3.1 Wavelet Transform Overview and Approach

Wavelet transform (WT) is a useful mathematical tool which makes it possible to decompose a time
series into time-frequency (or time-scale) components and it helps to investigate localized variations
of the signal that is incorporated in the time series (Math is in the air, 2017). Moreover, according to
(Shao & Ma, 2003) by using the appropriate wavelet function, the wavelet transform approach enables
us to directly compute the n-derivative of the input function. In this section there is a short overview
on wavelet transform and how this method is implemented in order to detect the momentum as well
as the acceleration factor in stock prices.

The main idea behind the WT is that a signal can be modelled using scaling and translation of an
“oscillating wave”, i.e. a real function the shape of which is similar to a wave in a limited interval of
time (Math is in the air, 2017).

In general, the mother wavelet y(t) 2 L2(R) is a function which must satisfy two main conditions:
admissibility and regularity. The admissibility requirement states that the function can be used to re-
structure a signal without losing information or in a mathematical way that the integral of the function
must be equal to zero (Ortega & Khashanah, 2014):

Z +•

�•
y(t)dt = 0 (14)

Under the admissibility condition, a signal can be completely reassembled through a set of coefficients
of the wavelet transform, which capture information at different frequency (scale) and time resolutions.
Moreover, under the regularity conditions (Ortega & Khashanah, 2014), the wavelet has “finite energy”.
In other words, the wavelet function activity is limited to the interval [�T, T] and outside this range
is equal to zero. It guarantees that the energy is the same for all scales. Mathematically, the regularity
condition is given by the following equation:

Page 15 University of Zurich, Empirical Finance, September 21, 2018



2 The Acceleration Effect and the Gamma Factor: Detection

Z +•

�•
|y(t)|2dt < • (15)

that, if normalized results in

Z +•

�•
y2(t)dt = 1 (16)

There are many wavelet functions available which differ in shape and size. An example are Daubechies,
Morlet, Symlet or the Biorthogonal wavelets (Alexander & Poularikas, 1998)(Misiti M., Misiti, Y., Op-
penheim & Poggi, 2015). Another important property of a wavelet function is the number of vanishing
moments. A wavelet y(t) 2 L2(R) possess n-vanishing moments if it satisfies the following equation
(Shao & Ma, 2003):

Z +•

�•
tky(t)dt = 0 f or 0  k  n (17)

or alternatively, it is orthogonal to a polynomial of n � 1 degrees, i.e. every polynomial with a de-
gree of n � 1 or less can be suppressed (it integrates to zero) by convolution with the mother wavelet
and the polynomial features are caught solely by the father wavelet (Ramsey, 2002). This is very use-
ful for data compression because if the signal is mostly smooth the wavelet transform output will be
sparse, which means that many wavelet coefficients are equal to zero. The non-zero coefficients repre-
sent discontinuities or non-smooth parts (Nason, 2008).

The Continuous Wavelet Transform (CWT)

Wavelet transform is used in different fields such as for example in biology and physics and it finds
a fundamental application in image compression but also in denoising of non-stationary signals (Ver-
doliva, 2014). There are two types of WT: Continuous Wavelet Transform (CWT) and Discrete Wavelet
Transform (DWT) and they differ according to how (i.e. which kind of discretization) the wavelets are
scaled or shifted and the underlying algorithm.

Briefly, the continuous wavelet transform coefficients (Yy
x (t, s)) result from a convolution between a

signal x(t) and a mother wavelet (y⇤)as is shown by the following simplified equation (Polikar, 1996):

CWTy
x (t, s) = Yy

x (t, s) =
1p

s

Z
x(t)y⇤

✓
t � t

s

◆
dt (18)
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As was already mentioned, two key concepts of WT are scaling and shifting and they are executed
by applying the scaling (s) and the shifting (k) factors as is shown in the following equation:

scaling : y

✓
t
s

◆
with s > 0 (19)

shi f ting : f(t � k) with k > 0 (20)

The scaling factor is a positive value, which stretches or shrinks the function y in time. This factor
is inversely proportional to the equivalent wavelet frequency, hence an s = 2 reduces its frequency by
a half (or by an octave). A large scale factor (s > 1), stretches the wavelet so that it takes low-frequency.
On the other hand, a small scale factor (0 < s < 1) shrinks the wavelet and gives rise to a function with
higher frequency. The low-frequency wavelet is good to model slow variations in the signal (trend)
while the contracted high-frequency wavelet is better to catch the localized changes (or noises). More-
over, using the shifting factor (k) , it is possible to advance the wavelet function in time along the signal
and align it; this makes it possible to capture the features of the signal (MathWorks,2018a).

The Discrete Wavelet Approach (DWT)

The Discrete Wavelet Transform (DWT) is a suitable tool for signal denoising and makes it possible to
decompose the time series into time and frequency domains. DWT is an extension of the Fourier Trans-
form, which is a procedure for data analysis, representing data as the sum of different sine waves with
infinite lifespan. Unfortunately, the Fourier approach only considers time and frequency separately, i.e.
it only decomposes the signal in frequency spaces and is unable to detect time-variant characteristics
so that anomalies and local or transient effects in the signal are not precisely localized and detected3

(MathWorks,2018a). Since the acceleration effect is assumed to be an anomaly arising from transient
positive feedbacks which are prevalent only during special market regimes (i.e. from localized events
in the time series), wavelet transform might be a better proxy than the Fourier analysis to quantify
more precisely the associated G-factor. As wavelets are limited functions in frequency and time inter-
vals, signal decomposition into wavelet domain rather than into frequency domain through the Fourier
Transform, gives a better resolution in the corresponding domain (George Dallas, 2014).

The DWT is based on “dyadic scaling and shifting” (MathWorks, 2018a) where the scaling factor is
in the form of 2j (with j being the level parameter, an integer such as for example, j = 1, 2, 3, 4, . . . )
and the translation is given by the parameter k in the following way: 2jk (with k = 1, 2, 3, 4, . . . ). The
underlying process of the DWT is multiscale or multiresolution analysis, more precisely the Mallat

3 The Fourier transform is affected by the Heisenberg’s Uncertainty Principle, which states that ”you can know where a particle is or how
fast it is going but not both”. For this reason, in order to acquire more certainty about the position, you must have more uncertainty
about its speed. This uncertain is named ”resolution”. This happens in the Fourier Transform: you can know with certainty the
frequency or the time of the signal but not both contemporaneously. Therefore, Fourier Transform has “a lack of resolution between
time and frequency domain”, i.e. is not able to catch with certainty the instantaneous frequency, which is an important feature in signal
processing (George Dallas, 2014)
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pyramidal algorithm, where detail (dj,k) and coarse (scale or approximation) coefficients (aj,k) are com-
puted for each scale recursively. Using a simplified description, the multiscale procedure enables us to
decompose a discrete series of real number x = (x1, x2, . . . , xn) of length equal to n = 2J (with J being
an integer larger than zero) in two sequences using two kind of operation: addition and subtraction be-
tween non-overlapping pairs. The two coefficients for the first (finer) scale (d1,k and a1,k) are calculated
in the following way (Nason, 2008):

d1,k = x2k � x2k�1 (21)

a1,k = x2k + x2k�1 (22)

where k = 1, 2, . . . , 1/n.

“Coarse “detail and smoother scale coefficients for the following scale can be calculated using the co-
efficient series (a1,k) as input variables and by applying the same procedure. We can also see these
computations differently: the former as a differentiation and the latter as a (simple moving) average
smoothing operation (without the division by 2); however, both are applied to non-consecutive pairs.
Moreover, without some modification these formulas are not energy preserving, i.e. the modulus4 of
is not equal to the sum of the modulus of the coefficient. Therefore, the DWT approach is based on
the multiresolution analysis but filtering is performed through appropriate wavelet functions which
satisfy the admissibility/energy requirement and which enable us to decompose and reconstruct the
signal properly. The Haar wavelet, developed in 1909, is the first and the simplest wavelet function and
it is derived from a modification of the Equations (21) and (22) in the following way (Nason, 2008):

dj,k = a(x2k � x2k�1) (23)

aj,k = a(x2k + x2k�1) (24)

with a = 1/
p

2.

More precisely, the DWT approach works with the Mallat (pyramidal) algorithm (see Figure 3 in the
Appendix) and the multi-scale decomposition is performed by two fundamental wavelets (filters): the
mother wavelet (y) and the father wavelet (f). The multiscale information is extracted through two “ba-
sis” wavelets which are determined by the following operations (Jothimani, Shankar, & Yadav, 2015):

4 The modulus of a vector x is given by: ||x||2 = Ân
i=1 x2

i (Nason, 2008).
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yj,k = 2�
j
2 y

✓
t � 2jk

2j

◆
(25)

fJ,k = 2�
J
2 f

✓
t � 2Jk

2J

◆
(26)

with j = 1, 2, . . . , J and k 2 Z.

The fundamental mother wavelet performs as a high-pass filter which is used to represent high-frequency
components or abnormal deviations from the trend and it generates a “child” basic wavelet yj,k that is
used in order to calculate the detail coefficients (dj,k). The father wavelet, which integrates to one, gen-
erates another corresponding basis wavelet fJ,k implemented to compute the “scaling” (approximation)
coefficients (aj,k) ; it acts as a low-pass filter representing the long scale smooth features of the signal.

From a simplified mathematical point of view, the discrete wavelet transform is a convolution between
a signal (x(t)) and the impulse response function of the corresponding filter. The output is a sequence of
coefficients representing the projection of the function onto the wavelet basis. The DWT decomposition
coefficients aj,k and dj,k are computed in the following way (Jothimani, Shankar, &Yadav, 2015):

aJ,k =
Z

x(t)fJ,k (27)

dj,k =
Z

x(t)yj,k (28)

with j = 1, ...J.

The approximation coefficient captures the trend of the signal while the detail coefficients are able
to catch localized and faster variations (noises). The signal can be represented through the sum of the
detail (dj) coefficients of each scale and the approximation coefficient of the finer scale (aJ) which are
computed using the wavelet transformation process (Ramsey, 2002):

x(t) = Â
k2Z

aJ,kfJ,k(t) +
J

Â
j=1

Â
k2Z

dj,kyj,k(t) (29)

or

x(t) = AJ + DJ + DJ�1 + ... + D1 (30)
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where

AJ = Â
k

aJ,kfJ,k(t) (31)

Dj = Â
k

dj,kyj,k(t) (32)

The DWT enables us to decompose the signal in order to zoom in and to obtain a different “amount
of detail information”, i.e. resolution (Polikar, 1996). The signal decomposition and reconstruction are
done by sub- and upsampling operations, which make it possible to change the scale. Subsampling
by a factor ”n” means reducing the samples n times (1/n) (Polikar, 1996) (Haddadi, Abdelmounim, El
Hanine, & Belaguid, 2014). In the above case, the decomposition is obtained with a dyadic scale and
each subsampling decreases the sample by a factor of n = 2 (see Figure A3 in the Appendix). The up-
sampling enables us to reconstruct the signal (Haddadi, Abdelmounim, El Hanine, & Belaguid, 2014).
Since it is based on the Mallat (pyramidal) algorithm, the DWT approach is different to a discretized
CWT, where the computation is still challenging and it results in redundant information. It consists in
passing the time domain of a signal through different high-frequency and low-frequency filters (Polikar,
1996).

The Maximum Overlap Discrete Wavelet Transform (MODWT)

The Maximum Overlap Discrete Wavelet Transform (MODWT) is an extension of the DWT, which
makes it possible to gain resolution in the signal and is useful when the data set length has not a dyadic
lenght ; however it loses the property of orthogonality (Ramsey, 2002). It is also named “non-decimate
DWT” or “time-invariant DWT”; it is able to handle each sample size of without dyadic length require-
ments and is not affected by the problem of “circular shift5 ”. Indeed, the DWT is highly dependent on
the origin of the analyzed signal and a small shift in the starting point changes the output, so that an
alignment of the signal with time is difficult; on the other hand, the MODWT is translation invariant
(Dghais & Ismail, 2013) (Ortega & Khashanah, 2014). Moreover, the MODWT considers the difference
at each scale and not only on a dyadic scale (i.e. non-overlapping differences), so that each variability of
the signal and the whole information can be captured by the coefficient more appropriately. Addition-
ally, it uses a different algorithm during the scale transform, which does not down-sample and insert
zero between coefficients. Hence, the scale number as well as wavelet coefficients at each transform is
the same as the number of sample observations (Gallegati, 2008).

It is possible to obtain the MODWT coefficients by rescaling the DWT coefficient in the following way
(Gallegati, 2008):

5 The circular shift problem comes about when “a small shift in origin affects the outputs generated” (Jothimani, Shankar & Yadav, 2015).
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ãJ,k =
aJ,k

2j/2 (33)

d̃j,k =
dj,k

2j/2 (34)

Wavelets are an adequate tool for signals having low-frequency features in long durations and a few
high-frequency features in short durations (Polikar, 1996). Due to the time-invariant property as well
as the fact that the MODWT do not requires a dyadic length of the signal and gives as output as many
coefficients as the input series, i.e. the output is easier to interpret for time signal analysis, therefore this
method has been applied in order to detect the momentum as well as the acceleration factor. Moreover,
it is more appropriate than the DWT because it considers each difference in the data at any scale. For
appropriate portfolio-optimizations (in order to have full information to create portfolios in the next
chapter) it is very important that there be no down-sampling in the number of observations. Given the
large number of observations, the loss of orthogonality should not have a significant impact.

2.3.2 MODWT detection: Assumptions and Procedure

According to Lera & Sornette (2017) and Shao & Ma (2003) the n-derivative of a signal is given by its
convolution with a wavelet having n-vanishing moments. Therefore, a wavelet transform performed
by a mother wavelet function with n-vanishing moments (yn(t)) results in a n-differentiation of the
signal being analyzed. As per the last method, in this section, the momentum as well as the accelera-
tion factor are detected using a non-calibrated as well as a calibrated version of the Maximum Overlap
Discrete Wavelet Transform.

Since the momentum effect (D) might also be represented as the “velocity” of stock prices, it can be
quantified by the first derivative of the log-price time series. Moreover, acceleration (G) might be de-
fined (as in physics) as a change in velocity and it can be modelled by the second derivative. Hence,
according to previous literature, in order to detect the delta factor, we performed a wavelet transform
using a Daubechies function with one vanishing moment (also named Haar wavelet function). Fur-
thermore, the acceleration factor is captured by the detail coefficients of a MODWT performed with a
Daubechies function with two vanishing moments (Db2).

The wavelet transform is applied using the natural logarithm of a daily stock price series (Si,t) as input
variable:

x(i, t) = xi,t = ln(Si,t) (35)

Before performing this approach on stock prices series, the MODWT is applied on simulated signals
to calibrate its precision in measuring the first and second derivative. On this purpose the MODWT is
firstly applied on the Gaussian, the Sigmoid and the Gaussian Pulse signals which have been simulated
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with MATLAB and they are represented in the Figures A4-A6.

The first derivative is computed applying the MODWT approach having as mother wavelet the Haar
(or Daubechies 1) function. Moreover, the second derivative is performed similarly but using as mother
wavelet a Daubechies function with two vanishing moments (Db2). Figure A7 and A8 in the Appendix
shows the computation of the first and the second derivative of the Gaussian Signal at different scales;
the MODWT estimation is compared to the ”classical” first order differentiation performed by MAT-
LAB. Figures A9-A12 in the Appendix represent the same approach applied to the Sigmoid and the
Gaussian Pulse signals. It is clear that for all signals the first and second derivative might be approx-
imate quite well. However, the second derivative results using the ”negative” of the MODWT output
performed with a Daubechies function with two vanishing moments.

Therefore, using the MODWT procedure, we can define the D and the G parameters for a specific secu-
rity i in the following way:

Momentum Factor : Di,t(j) = dj,t(i) (36)

Acceleration Factor : Gi,t(j) = �d̂j,t(i) (37)

where dj,t(i) is the detail coefficient calculated using the Haar mother wavelet with one-vanishing mo-
ment and d̂j,t(i) is the detail coefficient calculated using the Db2 mother wavelet with two vanishing
moments, both measured at the level j and with input variable being the signal xi,t.

Moreover, for the second derivative there is a small lag, which is almost the same for each signal and
growth proportionally to the level (j). For this reason, at each level (j), the lag has been recorded from
the pure signals (see in Table A1 in the Appendix) and the wavelet transform on stock price series has
been calibrated as follow:

dc
j,t(i) = dj,t(i + calibration(j, 1)) (38)

d̂c
j,t(i) = d̂j,t(i + calibration(j, 2)) (39)

where the parameter ”calibration(j, derivative)” is the calibration for the scale j for the first and the
second derivative, respectively.

According to Lera & Sornette (2017) and Ardila & Sornette (2016), detail coefficients of different scales
(2j) are able to capture different time-scale components. Considering the daily frequency of the data,
the detail coefficients of the level j = 1 detects the delta and gamma factors within a scale of 2 days.
Furthermore, because the MODWT is based on the dyadic scaling (2j), the level j = 2 is able to estimate
the factors considering a time difference between a scale of 2 (21) and 4 days (22) days and a j = 3
between 4 and 8 days; the conversion of the level (j) in the consequent time-scale which corresponds to
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a daily or monthly periodicity (i.e. the equivalent to the formation period ( f )) is summarized in Table
A2 in the Appendix.

The D and the G parameters have been quantified with different parametrization of the level j. More-
over, in order to detect further time-scale components, a short analysis of monthly prices has been
performed; the conversion of the level (j) in the monthly time-scale is also available in the Table A2.

In conclusion, using the third detection approach, i.e. the wavelet transform method, the delta and
the gamma parameters are computed using a non-calibrated as well as a calibrated version of the Max-
imum Overlap Discrete Wavelet Transform.
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3 The Gamma Factor in Portfolio Optimization

3.1 Portfolio Selection and Construction

This chapter aims to set up portfolios based on the previously detected momentum (D) and acceleration
(G) factors and backtest their performance. As was done in the paper by Ardila, Forrò & Sornette (2015)
two type of portfolio optimization strategies are implemented: the “Long-Short” (LS) and the “Relative
Strength Weighted Portfolio” (RSWP). Both strategies are based on cross-sectional (relative strength)
stock selection. Additionally, a hybrid portfolio optimization, i.e. a D/G (Delta-Gamma) strategy has
been developed.

According to Bird, Gao & Yeung (2017) the portfolio optimization consists of two main tasks: stock
selection and portfolio construction.

Stock selection is the first and most important procedure to be executed during portfolio optimiza-
tion. It consists in identifying stocks in which to invest - long or short -in. It is very important that
the trend or acceleration is identified on time and not too late, hence the formation period f plays an
important role. Therefore, this study is performed using numerous formation periods of five days (one
week) as well as one, three, six and twelve months. Another important aspect during the stock selection
process is the “cut-off” rule, through which securities are included in the winner (or long) portfolio and
in the loser (short) portfolio. The cut-off might depend on a benchmark (as the market past return, i.e.
market momentum or acceleration) as is implemented in the “Relative Strength Weighted Portfolio”
optimization. Alternatively, as was done in the paper by Jegadeesh & Titman (1993), the cut-off rule
consists in ranking the stock according to its past returns (i.e. momentum or acceleration): the winners
and the losers are identifying through a top respectively the bottom percentile of the distribution. The
second selection process takes place in the “Long-Short” portfolio optimization.

The portfolio construction involves three decisions: the holding period (h), portfolio rebalancing and
weights determination (Bird, Gao, & Yeung, 2017). The holding period should be in harmony with
“oscillation” and should “approximate the upward and downward cycle” of typical stocks. In this in-
vestigation, portfolio optimization is based on holding periods of 1, 3, 6 and 12 months. As was done in
the investigation by Ardila, Forrò & Sornette (2015), there is no rebalancing. This means that portfolios
follow the buy and hold strategy. The simulation consists in setting up a portfolio every day and select-
ing stock according to the delta or gamma parameter computed on the previous day using a specific
formation period and, afterwards, holding the portfolio until the last day of the holding period.

Furthermore, equal weights (EW) and market weights (MW) are the most common methods to de-
termine the share of the portfolio, which is assigned to a specific security. Equal weights are applied in
the “Long-Short” portfolio optimization strategy while market weights are explained in the following
section and are used in the “Relative Strength Weighted Portfolio” strategy (Bird, Gao & Yeung, 2017).
In this research, a long-short market-neutral weighting rule is used. This mean that the amounts in the
long and short position are equal: long position securities are bought through the sale of the securities
in the short position, i.e. there is self-financing and it results a zero-cost strategy (BarclayHedge, 2018)
(Investopedia, 2018i).
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The last important parameter is the investment delay ”s” , which specifies the “delay time” of the
trading execution after the portfolio construction, i.e. after the identification of a security as a winner
or loser. In fact, the bid-ask spread might play a role in the pricing of an asset because the stocks that
have performed better (poorly) might be overpriced (under-priced), i.e. the bid-ask spread might be
very high (low). However, the price should move back to “the midpoint of the bid-ask spread” and
postponing the trading might increase performance (Bird, Gao, & Yeung, 2017). In this investigation a
delay of one month (s = 1) and six months (s = 6) are also considered as additional parameters.

Since the original data set includes daily data, as it is stated in section 2.1.2 Assumptions, a month
is approximated to 21 days.

3.1.1 Relative Strength Portfolios

According to “relative strength” strategies which have been briefly explained in the first chapter, one
way to set up a portfolio is to rank the available stocks according to their delta or gamma and select a
top (bottom) percentile creating a long (short) equal-weighted (EW) portfolio. Another way is to create
a portfolio which invest long or short in the universe of securities and which weights are quantified
according to the relative performance to the market (MW).

Long-Short Portfolio

In the Long-Short portfolio optimization strategy, considering the universe of N securities, at each day
t stocks are ranked ascending according to their delta (Di,t�1�s( f )) or gamma (Gi,t�1�s( f )) parameter
computed on the previous day over a specific formation period of f days (or months). More precisely,
as was done in the paper by Ardila, Forrò & Sornette (2015) and similarly to Jegadeesh & Titman (1993)
as well as many other investigations, the ranked stocks are divided into successive sub-groups repre-
senting Q-percentile equal weighted portfolios. This strategy consists in going long for h months in the
top-ranked Q-percentile stocks (usually decile or quintile) and short for h months in the bottom-ranked
Q-percentile stocks. The trading might be delayed by s months after the ranking day.

Portfolios based on the momentum factor can be defined in the following way:

• DL
s, f : defines the long D-based portfolio which includes stocks from the top D-ranked Q-percentile

• DS
s, f : defines the short D-based portfolio which includes stocks from the bottom D-ranked Q-percentile

Portfolios based on the gamma factor can be defined in the following way:

• GL
s, f : defines the long G-based portfolio which includes stocks from the top G-ranked Q-percentile

• GS
s, f : defines the short G-based portfolio which includes stocks from the bottom G-ranked Q-percentile
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More precisely, the performance of the long and the short portfolio at the end of the holding period are
calculated by summing the discretized h-months cumulative log-return of the stocks included in the
respective Q-percentile portfolio. Moreover, the performance of the long and the short equal weighted
sub-portfolios are described by the following notations: pL

t+h�1( f , h, s) and pS
t+h�1( f , h, s) or directly

by the variable GL
s, f (LS)(h) and GS

s, f (LS)(h) for the G-based portfolio optimization and DL
s, f (LS)(h) and

DS
s, f (LS)(h) for the momentum-based strategy.

Considering equal weighting, the total portfolio return (pt+h�1( f , h, s)) is computed in general in the
following way:

pt+h�1( f , h, s) = pL
t+h�1( f , h, s)� pS

t+h�1( f , h, s) (40)

and is also described with the notation Ds, f (LS)(h) or Gs, f (LS)(h). Moreover, the total sum of weights of
the long (+1) and the short (-1) positions is zero (i.e. a market-neutral weighting rule is applied).

Relative Strength Weighted Portfolio

Relative Strength Weighed Portfolio (RSWP) optimization differs from the first strategy in two respects:
the first is that all market stocks are considered for the investment (and not only the best and worst
percentile) and the second that the weights of each security are based on its relative delta or gamma
compared to the market delta or gamma.

Similarly to the investigation carried out by Ardila, Forrò & Sornette (2015), the Relative Strength
Weighted Portfolio constructed thorough the acceleration factor consists firstly in determining weights.
More precisely, at each day t, the weight of a specific security i is determined by comparing its gamma
factor computed the previous day t � 1 (minus a delay of s months, which represents the delay in the
investment) over a formation period of f days or months (Gi,t�1( f )) with the acceleration factor of the
equal weighted index (the market) (Gm,t�1( f )):

wG
i,t( f , s) =

1
N

✓
Gi,t�1�s( f )� Gm,t�1�s( f )

◆
(41)

where

N

Â
i=1

wG
i,t( f , s) = 0 (42)
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Moreover, in order to get market-neutral weights, there is a standardization so that weights of the long
positions (when the gamma of a specific security is larger than the gamma of the market, i.e. weights
are positive) add up to one (+1) and the weights of the short position add up to minus one (-1).

The total G-portfolio performance is measured with the following equation:

pG
t+h�1( f , h, s) =

N

Â
i=1

wG
i,t( f , s) ⇤ ri,t+h�1(h) (43)

where ri,t+h�1(h) is the discretized h-months cumulative return of the security i at time t + h � 1.

The computation of portfolio optimization on the basis of the momentum factor (D) is the same, hence
the G-factors are replaced with the D-parameters. The profit is computed with the following equation:

pD
t+h�1( f , h, s) =

N

Â
i=1

wD
i,t( f , s) ⇤ ri,t+h�1(h) (44)

3.1.2 Hybrid Portfolio: the D/G-Portfolio Optimization

The third portfolio strategy aims to consider both the momentum and the acceleration effect as fac-
tors for optimization. The developed strategy is called “Delta-Gamma” portfolio optimization strategy
(D/G) and is an extension to the “elementary” time-series momentum strategy which invests long in
stocks with a momentum factor greater than zero and short in those with a delta less than zero.

The D/G optimization consists in selecting securities to include in the long and in the short portfo-
lio according to two conditions: the direction of the momentum (“delta condition”) and the direction
of the acceleration (“gamma condition”). Considering the magnitude of the previously detected delta
and gamma factor, each stock is assigned to the long resp. the short portfolio by applying the following
delta and gamma conditions.

The first condition (the delta condition) for the security selection states that:

• At each time t a long portfolio is constructed including securities which have at time t � 1 � s a
momentum (delta) factor (Di,t�1�s( f )) greater than zero computed according to the parametrization
f (i.e. the portfolio includes securities that have shown a positive past trend which is assumed to be
persistent).
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• At each time t a short portfolio is constructed including securities which have at time t � 1 � s a
momentum (delta) factor (Di,t�1�s( f )) less than zero computed according to the parametrization f
(i.e. the portfolio includes securities that have shown a negative past trend which is assumed to be
persistent).

Moreover, the second condition (the gamma condition) considers the acceleration factor of securities selected after
the delta condition and it states:

• In order to still remain included, securities selected in the long portfolio must show at time t � 1 �
s a positive change in momentum (computed over the last f -days), hence the acceleration factor
(Gi,t�1�s( f )) should be positive. This mean that the price of the stock included is rising at an increas-
ing rate (i.e. upward accelerating price) over the last f -days.

• In order to still remain included, securities selected in the short portfolio must show at time t � 1 � s
a negative change in momentum (computed over the last f -days), hence the acceleration factor
(Gi,t�1�s( f )) should be negative. This mean that the price of the stock included is falling at an in-
creasing rate (i.e. downward accelerating price) over the last f -days.

Mathematically, departing from the previously detected delta factor matrix [D( f )] which indicates the
momentum magnitude of each stock i at each day t of the whole universe of stocks (data set), two
signals matrices (one for the long portfolio and one for the short portfolio selection) are originated.
Therefore, applying the delta-condition gives rise to a Long Delta Signal Matrix

�⇥
DLong⇤� and a Short

Delta Signal Matrix
�⇥

DShort⇤�.

Long Delta Signal Matrix
�⇥

DLong( f )
⇤�

(first condition):

Di,t( f ) > 0 �! the signal is one �!
⇥
DLong

i,t ( f )
⇤
= 1 (45)

Di,t( f ) < 0 �! the signal is zero �!
⇥
DLong

i,t ( f )
⇤
= 0 (46)

Short Delta Signal Matrix
�⇥

DShort( f )
⇤�

(first condition):

Di,t( f ) < 0 �! the signal is one �!
⇥
DShort

i,t ( f )
⇤
= 1 (47)

Di,t( f ) > 0 �! the signal is zero �!
⇥
DShort

i,t ( f )
⇤
= 0 (48)

For the long portfolio, the signal is equal to one when the delta (Di,t( f )) is positive and otherwise
zero; viceversa for the short portfolio. Bot, the long and short signal matrices encompass only values of
zero or one.

Thereafter, both signal matrices are multiplied with the previously detected acceleration factor matrix⇥
G( f )

⇤
. Following this procedure, we are able to assess the value of the acceleration6 of each security

6 The securities that are not included after the application of the first condition have a signal parameter of zero in the respective (Long or
Short) Delta Signal matrix and for this reason the multiplication with the acceleration force do not change their inclusion.
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that we have already included; furthermore, it is possible to compare it across the universe of secu-
rities. Hence, there is a Long Gamma Signal Matrix

�⇥
GLong( f )

⇤�
and a Short Gamma Signal Matrix�⇥

GShort( f )
⇤�

:

⇥
GLong( f )

⇤
=

⇥
DLong( f )

⇤
⇤ G( f ) (49)

⇥
GShort( f )

⇤
=

⇥
DShort( f )

⇤
⇤ G( f ) (50)

Successively, the second condition can be applied which discards the stock with a negative (positive)
acceleration factor from the long (short) portfolio:

⇥
GLong( f )

⇤✓⇥
GLong( f )

⇤
< 0

◆
= 0 (51)

⇥
GShort( f )

⇤✓⇥
GShort( f )

⇤
> 0

◆
= 0 (52)

After this procedure we get two signal matrices which are able to indicate which stocks should be
selected at each time t in order to construct the long and the short portfolio. Moreover, at this point
we can decide to invest applying equal weights or according to the acceleration magnitude (“relative
weights”). As was explained in the Relative Strength Weighted Portfolio, weights are standardized so
that they satisfy the market neutral condition, i.e. weight for the long (short) portfolio add up to one
(minus one). It is essential to be aware that when using the D/G optimization, the number of securities
included in the portfolios is not constant. In extreme situations, at some days t, this procedure gives a
non-investment strategy as the optimal strategy (the signal is zero for each stock).

As in long-short portfolio optimization, profits from the long and the short portfolio at the end of the
holding period are calculated by adding the discretized h-months cumulative log-return of the stocks
which are included in the respective portfolios and putting “equal” weights or “relative” standardized
weights.

3.2 Performance Marks and Additional Assumptions

3.2.1 Portfolio Performance

For each optimization strategy, D and G-based portfolios performances are evaluated through the fol-
lowing parameters: the annualized average return (µ [p( f , h)]) of all portfolios set up at each day (or
month) using that specific strategy, the annualized volatility (s [p( f , h)]) of the annualized average re-
turn and the Sharpe Ratio (SR). Additionally, a t-student test has been performed, in order to check the
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statistical significance of the results obtained.

Given the average discrete portfolio return of an h-days investment (µh [p( f , h)]) , it is possible to com-
pute the average annualized return by applying the following formula:

µ [p( f , h)] =
�
1 + µh [p( f , h)]

�252/h � 1 (53)

where h is the number of days of the holding-period.

Furthermore, annualized volatility is calculated as following:

s [p( f , h)] = sh [p( f , h)] ⇤
p

252/h (54)

The Sharpe Ratio is a measure of the risk-adjusted performance and it is computed by the following
equation (Investopedia, 2018j):

SR =
µ [p( f , h)]� r f

s [p( f , h)]
(55)

where r f is assumed to be equal to zero. The Sharpe Ratio is a good measure in order to compare
different investments because it takes into account not only the average return of a strategy (in excess
to the risk free rate) but also the amount of risk (volatility) involved. Therefore, this ratio gives an indi-
cation about the average return for each unity of risk. The higher the SR is, the more return the strategy
gives per unit of risk (DBF, 2018) (InvestingAnswers, 2018). Hence, investors aim to achieve a larger
Sharpe Ratio; while a SR larger than one is considered acceptable, a ratio of two is a sign of a very good
investment and three suggests the performance excellence of the investment strategy (Investopedia,
2018k).

Another interesting metric used to evaluate the performance of a specific portfolio optimization strat-
egy is the Information Ratio (IR). More precisely, the information ratio determines the ability to generate
excess returns in relation to a benchmark, i.e. it is a measure of the risk-adjusted excess return. In this
study, the benchmark is the market return, i.e. the cumulative return of the equal-weighted index in-
cluding all the securities in a stocks universe (data set) over the portfolio holding period (see Equation
60). Hence, the excess return is the excess performance above the return of the market index. The In-
formation Ratio is computed by dividing the excess return by its standard deviation as is show by the
following formula:
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IR =
Rp � Rm

sp�m
(56)

where Rp is the return of the portfolio, Rm is the return of the equal-weighted index over the port-
folio holding period and sp�m is the volatility (i.e. the standard deviation) of the excess return (i.e.
Rp � Rm). A higher IR is desired since its magnitude gives an indication about the strategy consistency.

Moreover, the one sample student’s t-test performed in this research aims to determine if the average
annualized return (µ [p( f , h)]) from portfolio optimization is statistically significantly different from
zero. Therefore, assuming normal distributed portfolio returns, a two-sides t-test is performed and re-
lies on the null hypothesis (H0) that the average annualized portfolio return is equal to zero against the
alternative hypothesis (H1) of an annualized average return different from zero (Stock & Watson, 2012).
The t-value is calculated as follow:

t�value=
µ [p( f , h)]

s [p( f , h)]
p

T
(57)

where T represent the number of observations, i.e. the number of portfolio returns computed. Crit-
ical values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). More precisely, a t-value above the critical value
as for example above 1.96 indicates that the null hypothesis (i.e. return equal to zero) can be rejected
with a confidence of 95% (Stock & Watson, 2012).

3.2.2 Additional Assumptions

Since the delta and gamma factors have been computed using continuous (log-)return (in the simple,
as well as the exponential smoothing and wavelet detection7 ), and since “relative” (or market) weights
are directly determined by the magnitude of the detected factor, there is an additional analysis which,
instead continuous detected factors, implements “discrete” delta (Dd

i,t( f )) and gamma (Gd
i,t( f ) parame-

ters. This short analysis is applied to some RSWP as well as D/G portfolio strategies.

The original factors are converted in the following way:

Dd
i,t( f ) = exp

✓
Di,t( f )

◆
� 1 (58)

Gd
i,t( f ) = exp

✓
Gi,t( f )

◆
� 1 (59)

Lastly, in order to obtain a comparison with the market investment, the return of the equal-weighted

7 Since the crossover detection approach quantifies the momentum directly from price unities, it is not given the continuous form.
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market index (rm,t(h)) has been calculated as follows:

p
f
t+h�1(h, s) = rm,t(h) =

1
N

N

Â
i=1

ri,t+h�1(h) (60)

where N represents the number of assets in the market.
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4 Portfolio Optimization Results

4.1 Results: The Momentum and Acceleration Effect in the 21th Century

4.1.1 Dow Jones Industrial Average (1984-2002)

The first analysis aims to ascertain that strategies based on the momentum factor (such as for example
the Long-Short strategy or the Relative Strength Weighted Portfolio) which have been implemented in
several previous papers are still also generating positive returns in today’s financial market environ-
ment.

To this end, as was carried out in the paper by Jegadeesh & Titman (1993), a first investigation has
the purpose of determining the performance of Long-Short (LS) strategies based on momentum by ex-
amining the universe of stocks (data set) which includes the Dow Jones Industrial Average components
over the period of time starting on 2 January 2001 and ending on 30 December 2016 (recent past) and
comparing it with the ”distant past” performance (i.e. between 1984 and 2002). Moreover, a set of G-
based strategies that were previously studied in the paper by Ardila, Forrò & Sornette (2015) are newly
tested using the Dow Jones Industrial Average data set over the above mentioned investigation win-
dow and compared to strategies based on momentum.

In this section, momentum as well as the acceleration factors, are quantified through the simple ap-
proach. Furthermore, the Relative Strength Weighted Portfolio (RSWP) optimization strategy is also
applied to determine the persistence of these financial market anomalies in stock prices.

Long-Short Portfolio Optimization

Table 1 (in the following page) shows the average annualized return (µ), the annualized volatility (s)
both expressed as a percentage as well as the average annualized Sharpe Ratio (SR) and the significance
test (t-test) for 24 DLS and 24 GLS portfolios having a holding period of one and six months. Moreover,
both factors have been quantified using the simple approach; the long portfolio includes stocks of the
top D or G-ranked (in ascending order) quintile while the short portfolio includes securities of the bot-
tom quintile. Equal weights are applied to each stock in the corresponding portfolio; weights of the
long (short) portfolio add up to +1 (-1), hence market-neutral weights are implemented (it is a zero-cost
strategy). A comprehensive table also including holding periods of three and twelve months (i.e. in-
cluding the performance of 48 DLS and GLS strategies) is available in the attachment (Table A3 in the
Appendix)8.

8 The portfolio optimization strategy is written in the text in this form: FACTORstrategy (detection mode), for example the DLS (WMC)
notation indicates the momentum-based Long-Short portfolio optimization performed using a D-factor detected with the calibrated
MODWT approach on a monthly basis or the GD

RSWP (simple) is the acceleration-based Relative Strength Weighted Portfolio optimization
performed using factors detected with the simple approach and converted in the discrete form. The analysis has been performed
through MATLAB.
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Annualized performance of DLS and GLS (simple)
DJIA (2001-2016)

DLS GLS
s f µ s SR t-test µ s SR t-test

h = 1
1 -4.35 18.31 -0.24 -4.43 -1.42 17.05 -0.08 -1.53

0 3 -3.87 19.29 -0.2 -3.73 0.23 16.38 0.01 0.25
6 -5.44 19.91 -0.27 -5.12 -6.73 19.14 -0.35 -6.63
12 -2.43 21.5 -0.11 -2.09 -1.59 18.57 -0.09 -1.58
1 -1.1 17.45 -0.06 -1.15 -1.15 16.38 -0.07 -1.29

1 3 -3.37 19.03 -0.18 -3.28 0.23 16.75 0.01 0.25
6 -3.41 19.29 -0.18 -3.27 -3.53 18.51 -0.19 -3.53
12 -2.52 21.08 -0.12 -2.2 -1.43 18.27 -0.08 -1.43
1 -1.26 16.46 -0.08 -1.39 -1.3 16.17 -0.08 -1.46

6 3 2.8 17.72 0.16 2.8 -4.2 15.96 -0.26 -4.83
6 4.39 18.4 0.24 4.21 1.97 16.27 0.12 2.16
12 1.66 19.38 0.09 1.53 -1.22 16.28 -0.07 -1.35

h = 6
1 -1.5 16.51 -0.09 -4.03 -0.58 16.38 -0.04 -1.58

0 3 -1.75 17.31 -0.1 -4.48 -1.76 15.31 -0.12 -5.1
6 0.13 19.67 0.01 0.3 -2.52 18.86 -0.13 -5.93
12 -0.47 21.67 -0.02 -0.97 -1.21 18.44 -0.07 -2.9
1 -0.85 15.84 -0.05 -2.36 -0.6 15.61 -0.04 -1.71

1 3 -0.76 18.39 -0.04 -1.82 -2.62 15.82 -0.17 -7.33
6 1.69 20.51 0.08 3.61 -1.27 18.3 -0.07 -3.06
12 0.32 21.75 0.01 0.65 -1.08 18.19 -0.06 -2.63
1 1.77 14.87 0.12 5.14 -0.8 14.84 -0.05 -2.33

6 3 2.07 17.39 0.12 5.14 1 15.69 0.06 2.77
6 1.2 17.41 0.07 2.97 0.53 17.31 0.03 1.33
12 1.76 18.64 0.09 4.09 -1.98 15.59 -0.13 -5.55

Table 1: The figure shows the annualized performance of different Ds, f (LS) and Gs, f (LS) (simple) portfolios set
up considering daily split and dividend-adjusted log-returns of securities included in the Dow Jones
Industrial Average (2001-2016). At each day t stocks are ranked in ascending order according to their
delta (Di,t�1�s( f )) or gamma (Gi,t�1�s( f )) parameters. The long portfolio is constructed buying stocks of
the top-ranked quintile while the short portfolio sells stocks of the bottom-ranked quintile. Equal (market-
neutral) weights are applied and the portfolio is held for h months. D( f ) and G( f )-factors are detected
through the simple approach using different formation periods ( f ) expressed in months. The parameter
s represents the delay in the investment. A one-month period is assumed to correspond to 21 days. The
performance is given as an average annualized return (µ) and annualized volatility (s) both expressed
as a percentage as well as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical
significance of the results. Critical values are: 1.64 (90%), 1.96 (95%) and 2.58 (99%).
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It is clear (see Table 1) that in the recent past, both portfolios ( Ds, f (LS) and Gs, f (LS)) are performing neg-
atively in about half of the scenarios. The DLS (simple) strategy leads to statistically significant positive
returns in 7 out of 24 scenarios. Moreover, it achieves better results when the investment is delayed
by six months (s = 6) and it reaches the maximal average annualized return of 4.39 % for the D6,6(LS)
(simple) portfolio held for one month. As is reported in Table A3 in the Appendix, the DLS (simple)
strategy with a twelve-month holding period (h = 12) always generated positive performance and, in
general, a formation period ( f ) of six or twelve months produced better results than a formation period
of one month for Ds, f (LS) (simple) portfolios.

Gs, f (LS) (simple) portfolios performed negatively in 19 out of 24 scenarios; 9 of them are statistically
significant. The maximal performance (average annualized return) is 1.97% and it results in the G6,6(LS)
(simple) portfolio held for one month. Contrary to the DLS (simple) strategy, a holding period of one
year leads to negative results for GLS (simple) strategy independently of the formation period or the de-
lay in the investment (see Table A3 in the Appendix). Moreover, the GLS (simple) portfolio optimization
only beats the DLS (simple) strategy in situations of negative returns, i.e. in 5 scenarios out of 48 where
the rate of return of the GLS (simple) strategy is statistically slightly less negative than the return of the
DLS (simple).

To gain a deep understanding of the negative performance of the above DLS and GLS (simple) portfolio
optimizations, Tables A4 and A5 in the Appendix indicate the performance of the long and the short
equal-weighted sub-portfolios separately; the former is constructed buying stocks of the top quintile
while the latter invests short in securities of the bottom quintile. It is surprising to see that ”short” sub-
portfolios, which according to the theory of momentum should have a lower (or negative) performance
(because they should track stocks with a negative trend), show on average a positive annualized return
which is greater than the rate of return of long sub-portfolios or, in some cases, short sub-portfolio re-
turns even outperform the rate of return in the long sub-portfolios.

Furthermore, as is shown in Table 2, the LS (simple) strategy computed using a formation period of
one week does not seem to improve the performance of portfolios based on momentum or acceleration.
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Annualized performance of DLS and GLS (simple) DJIA (2001-2016)
( f = 5 days)

DLS GLS
h s µ s SR t-test µ s SR t-test

f = 5 days
0 -3.81 17.47 -0.22 -4.06 -1.85 16.96 -0.11 -2.01

1 3 -1.07 16.45 -0.07 -1.19 -0.68 16.58 -0.04 -0.75
6 -0.95 16.65 -0.06 -1.04 -0.49 15.97 -0.03 -0.56
0 -1.99 16.48 -0.12 -3.83 -1.01 16.28 -0.06 -1.97

3 3 -0.82 16.16 -0.05 -1.59 -0.12 16.4 -0.01 -0.23
6 -0.56 16.07 -0.04 -1.09 0.1 15.64 0.01 0.19
0 -1.13 16.43 -0.07 -3.04 -0.44 16.49 -0.03 -1.17

6 3 -0.44 16.07 -0.03 -1.22 -0.15 16.61 -0.01 -0.39
6 0.63 15.17 0.04 1.79 0.27 15.29 0.02 0.78
0 -0.27 16.56 -0.02 -1.02 -0.03 16.43 0 -0.13

12 3 -0.25 16.07 -0.02 -0.94 -0.09 16.18 -0.01 -0.35
6 0.11 15.68 0.01 0.44 0.13 15.69 0.01 0.5

Table 2: The table shows the annualized performance of different Ds, f (LS) and Gs, f (LS) (simple) portfolios set up
considering the DJIA stocks universe (2001-2016) and using a formation period ( f ) of one week (i.e. five
days). Portfolios have a h-month holding period and the investment might be delayed of s months. The
performance is given as an average annualized return (µ) and annualized volatility (s) both expressed as
a percentage as well as annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58
(99%).
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To have a comparison with a previous time period (distant past), the LS (simple) strategy is applied
to the components of the Dow Jones Industrial Average considering the period of time starting on 23
December 1983 and ending on 31 December 2002 (i.e. 1984-2002). Results for a holding period (h) of
one or six months are available in Table 3 while a complete overview on additional holding periods is
illustrated in Table A6 in the Appendix.

Annualized performance of DLS and GLS (simple)
DJIA (1984-2002)

DLS GLS
s f µ s SR t-test µ s SR t-test

h = 1
1 -13.7 24.91 -0.55 -11.73 -9.17 25.45 -0.36 -7.51

0 3 15.75 28.37 0.56 10.35 -5.48 26.22 -0.21 -4.28
6 22.21 29.54 0.75 13.67 -10.22 26.64 -0.38 -8.04

12 32.95 30.93 1.07 18.6 10.18 27.42 0.37 7.09
1 -3.42 25.97 -0.13 -2.66 -21.51 28.28 -0.76 -16.89

1 3 17.86 29.09 0.61 11.32 -5.15 25.82 -0.2 -4.07
6 26.55 29.26 0.91 16.19 -5.52 26.08 -0.21 -4.32

12 37.89 30.8 1.23 21.05 14.38 27.34 0.53 9.84
1 -1.71 25.5 -0.07 -1.33 -2.37 25.39 -0.09 -1.86

6 3 24.32 28.19 0.86 15.34 -2.74 25.45 -0.11 -2.15
6 38.63 28.59 1.35 22.81 19.2 26.36 0.73 13.22

12 28.12 29.75 0.95 16.58 11.69 26.91 0.43 8.13
h = 6

1 7.13 33.35 0.21 10.16 -1.73 33.36 -0.05 -2.51
0 3 27.91 40.88 0.68 30.98 -3.88 34.03 -0.11 -5.57

6 37.05 39.57 0.94 41.71 -0.46 32.46 -0.01 -0.68
12 45.31 41.36 1.1 48.03 17.34 36.88 0.47 21.83
1 9.86 33.83 0.29 13.72 -0.57 34.57 -0.02 -0.8

1 3 29.64 39.62 0.75 33.75 -3.18 32.88 -0.1 -4.7
6 40.01 38 1.05 46.54 5.04 32.14 0.16 7.47

12 44.56 41.08 1.09 47.52 17.79 36.85 0.48 22.33
1 13.6 32.64 0.42 19.24 -0.6 33.86 -0.02 -0.85

6 3 34.38 39.15 0.88 38.79 5.35 32.28 0.17 7.81
6 38.68 38.56 1 43.94 16.42 34.01 0.48 22.16

12 31.93 39.86 0.8 35.56 16.51 37.26 0.44 20.32

Table 3: The table shows the annualized performance of different Ds, f (LS) and Gs, f (LS) (simple) portfolios set up
using daily split and dividend-adjusted log-returns of securities included in the DJIA considering the
distant past (1984-2002). Portfolios have a h-month holding period and the investment might be delayed
of s months. A one-month period is assumed to correspond to 21 days. The performance is given as
an average annualized return (µ) and annualized volatility (s) both expressed as a percentage as well
as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical significance of the results.
Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 (99%).

According to Table 3, in the distant past (1984-2002), the performance of the DLS (simple) strategy was
significantly positive in 22 out of 24 scenarios and the average positive annualized rate of return ranged
from around 7% to around 45%; this confirms the presence of the momentum effect over the last two
decades of the 20th century in the U.S. securities market. The acceleration factor generated positive
returns in 10 out of 24 cases and it reached a maximal average rate of return of about 16% (annual). Fur-
thermore, considering a holding period of one year (h = 12), the performance of DLS and GLS (simple)
portfolios based on formation windows of three, six and twelve months is always positive (see Table
A6 in the Appendix).

In general, slightly greater portfolio returns are generated using a formation period f of six or twelve
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months for both the DLS and the GLS (simple) portfolio optimizations; while an f of one month always
generates negative returns for the GLS (simple) portfolio and it leads to a lower performance for cor-
responding DLS portfolio. The best performance in terms of Sharpe Ratio derives from the strategies
D6,6(LS) (simple) and G6,6(LS) (simple) using a holding period of one month (h = 1) which reconfirms
what was discovered in the paper by Ardila, Forrò & Sornette (2015). The longer the holding period, the
higher the portfolio performance for both factors; however there is also an increment in the volatility of
the portfolio return and for the momentum strategy, a holding period of one year is no more profitable
if we consider the risk-adjusted annualized return (SR).
Moreover, excluding a formation period of one month f = 1, there are some similarities to what was
discovered in the study by Ardila, Forrò & Sornette (2015). Both DLS and GLS (simple) portfolios are
performing significantly well and the GLS (simple) strategy shows an increase in the rate of return for
longer holding periods. Moreover, it is less likely to find an acceleration effect in the short-term (for f
equal to one or three months) and the best portfolios are the same as in the previous investigation (i.e.
D6,6(LS) and G6,6(LS)). Nevertheless, in this study there is only a significant demonstration that the GLS

(simple) strategy might be more profitable than the DLS (simple) optimization; a possible explanation
is given in the discussion part.

Relative Strength Weighted Portfolio

Tables A7 and A8 in the Appendix report the averaged annualized performance of DRSWP and GRSWP

(i.e. Relative Strength Weighted Portfolio) strategies optimized using the Dow Jones Industrial Average
(DJIA) stocks universe over the period of time between 2001 and 2016 (recent past); factors are detected
through the simple approach. Table A7 in the Appendix is based on D and G factors computed directly
from log-returns, while Table A8 aims to test if the conversion of these factors in discrete form (DD and
GD) might have an impact on the portfolio outcome. In the RSWP strategy, the weight of each stock is
determined by the magnitude of its D or G-parameter compared to the D or G of the market (i.e. to the
factor quantified from an equal weighted index of all stocks in the universe examined (data set)). More-
over, weights of the short and the long positions have been standardized in order to get market-neutral
weights, i.e. weights of stocks in the long (short) portfolio add up to +1 (-1) so that total weights add
up to zero (i.e. it is a zero-cost strategy).

Comparing Table A7 and A8 in the Appendix, it appears that the RSWP (simple) strategy based on
discrete factors (DD and GD) always beats the RSWP strategy computed directly through continuously
detected factors (D and G). For this reason only results of DD

RSWP and GD
RSWP (simple) strategies are de-

scribed and the discrete version of the RSWP strategy is applied to further analysis.

Table A8 indicates that a a holding period (h) of one month leads to negative portfolio returns in more
than half of the parametrizations for both DD

RSWP and GD
RSWP (simple) portfolios. As was already estab-

lished using the Long-Short strategy, the best performance is generated by the RSWP (simple) portfolios
DD

6,6(RSWP) and GD
6,6(RSWP) held for one month. However, the annualized Sharpe Ratios generated by

the RSWP (simple) strategy (SR = 0.35 for the DD
6,6(RSWP) and SR = 0.37 for the GD

6,6(RSWP)) are greater
than the corresponding Sharpe Ratios generated by the LS (simple) strategy (0.24 and 0.12).
The return of the GD

RSWP (simple) portfolio optimization is significantly negative in half of the parametriza-
tions while positive statistically significant returns are always generated by the strategy GD

6,6(RSWP)
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(simple) for each holding period (h). The DD
RSWP (simple) strategy generated a positive significant av-

erage annualized return in over half the scenarios. A negative performance arises mainly when factors
are detected over a short formation period ( f ) or when there is no delay in the investment execution.
However, a one-year holding period leads to statistically significant positive returns for all kind of
parametrizations for the momentum strategy. Considering the whole number of parametrization (see
Table A8), GD

RSWP (simple) strategies over-perform DD
RSWP (simple) in 6 scenarios out of 48 (all statisti-

cally significant) where 5 of them are in circumstances of negative return and one scenario regards the
best-performing portfolio: GD

6,6(RSWP).

Table A9 in the Appendix reconfirms that a portfolio optimization based on factors detected with a
formation period ( f ) of one week is not associated to significantly (greater) positive annualized returns.

The RSWP strategy has also been backtested in the distant past, i.e. in the time period between 1984
and 2002, using the data set including the DJIA components; Table A10 shows the DD

RSWP and GD
RSWP

(simple) performances. The annualized return of DD
RSWP as well as GD

RSWP (simple) strategies are very
large compared to the return generated in the recent past (between 2001 and 2014) by the same strategy;
the same also appeared using the Long-Short strategy.
Considering holding periods of one and six months, the DD-factor generated an average statistically
significant positive return (annualized) in 21 scenarios out of 24. As has been documented in previous
analyses in this study, a formation period ( f ) of one month always generates a worse performance for
the DD

RSWP (simple) portfolio. GD
RSWP (simple) performances are always positive and greater if one uses

a formation period ( f ) of one year. The best returns are generated by postponing the investment by
six months (s = 6). However, the GD

RSWP is more profitable than DD
RSWP (simple) strategy only in two

scenarios. The best performance in terms of Share Ratio appears in the following (simple) portfolios:
DD

6,6(RSWP) and GD
6,6(RSWP), both with a one month holding period (h = 1). Another aspect to be consid-

ered is that the volatility increases strongly with the holding period.

To sum up, in general, the average annualized return generated by the RSWP (simple) strategy (i.e.
the investment which considers the whole universe of stocks) is greater than the return with the LS
(simple) strategy. Moreover, applying both portfolio optimization strategies, there was no acceleration
effect in the short-term (i.e. using a formation period of one or three months) while a formation period
( f ) of 6 or 12 months generated better returns for both factors. Additionally, in the recent past (2001-
2016), a delay in the investment of six months (s = 6) leads (in general) to improvements for both,
momentum and the acceleration-based strategies.

4.1.2 Standard and Poor 500 (2001-2014)

As demonstrated in the previous section, it appears that nowadays (in the recent past) it has not been
possible to obtain such great returns - through portfolio optimizations based on momentum and the ac-
celeration factor - as was possible at the end of the last century (when momentum was first discovered).
Therefore, this section aims to conduct a similar analysis using split and dividend-adjusted log-returns
of the components of the Standard and Poor 500 considering the period between the year 2001 and the
year 2014 (recent past).
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Long-Short Portfolio Optimization

Table A11 in the Appendix reports the performance of DLS and GLS (simple) portfolios. More precisely,
the strategy invests long in the top-ranked decile (according to the D or the G parameter) and short in
the bottom-ranked decile.

Results are fairly similar as in the analysis of the Dow Jones Industrial Average data set. However,
here it is more clearly visible that there is a negative performance for both, DLS and GLS (simple) strate-
gies. Indeed, the momentum leads to a statistically significant positive performance only in 2 cases out
of 48, while the GLS(simple) strategy generated a positive average annualized return in 3 cases out of
48. It is interesting to see that despite the overall negative performance, the previously documented
best-performing LS (simple) portfolios D6,6(LS) and G6,6(LS) both held for one month are performing
well and they exhibit an average annualized return of 2.68% and a SR of 0.12 (for the DLS) and a rate of
return of 3.58% and a SR of 0.18 (for the GLS strategy).
Furthermore, considering a holding period of one month GLS beats the DLS (simple) strategy in 8 out
of 12 scenarios while a holding period of one year leads to negative returns in all scenarios for both
strategies. In general, GLS (simple) optimizations are more profitable (or less negative) than DLS in 18
out of 48 scenarios; all of them are statistically significant.

Relative Strength Weighted Portfolio

Furthermore, as was already documented by Ardila, Forrò & Sornette (2015) regarding the G-factor:
an investment which considers the whole universe of stocks and not only securities having extreme
returns is more profitable. This can also be reconfirmed by Table A12 in the Appendix, which illustrates
the portfolio performance of different RSWP (simple) strategies optimized by the DD

RSWP and GD
RSWP

performed by applying different parametrizations. This study is executed by investing in the compo-
nents of the Standard and Poor 500 in the recent past (2001-2014).

The DD
RSWP strategy generated a statistically significant positive performance in 33 out of 48 scenar-

ios; 17 of them are statistically significant. Moreover, 25 GD
RSWP (simple) portfolio optimizations out of

48 generated a positive performance and 20 of them are statistically significant. As in previous analyses,
the best performance is generated by DD

6,6(RSWP) and GD
6,6(RSWP) (simple) portfolios held for one month:

the average annualized rate of return amounts to 1.33% (SR= 0.20) for the DD
RSWP strategy and 15.31%

(SR= 0.27) for the GD
RSWP strategy. Moreover, portfolio optimizations based on the acceleration effect

beat momentum strategies in 26 out of 48 cases; 23 of them are statistically significant.

Considering longer investments (h) of six or twelve months, what was already discovered in the paper
by Ardila, Forrò & Sornette (2015) is more evident: the acceleration leads to better portfolio performance
compared to the momentum factor in more than half of the parametrizations.
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Short Conclusion

To sum up, Table 4 in the next pages provides an overview of the average annualized return (µ), the an-
nualized volatility (s) both expressed as a percentage as well as the annualized Sharpe Ratio (SR) and
the significance test (t-test) for the best performing LS (simple) and RSWP (simple) portfolios optimized
for the momentum or the acceleration factor, i.e. the D6,6 and G6,6 (simple) portfolios with a holding pe-
riod (h) of one month. The table aims not only to compare the divergences in the average annualized
rate of return between D and G portfolios but also between different optimization strategies (i.e. the LS
and the RSWP strategy) as well as over two different periods in time: the distant past (1984-2002) and
the recent past (2001-2014/2016)

Annualized performance of different D6,6 and G6,6
LS (simple) and RSWP (simple) portfolio optimizations

D6,6 G6,6
Strategy µ s SR t-test µ s SR t-test

h = 1
LS - DJIA (2001-2016) 4.39 18.4 0.24 4.21 1.97 16.27 0.12 2.16
LS - DJIA (1984-2002) 38.63 28.59 1.35 22.81 19.2 26.36 0.73 13.22

RSWP - DJIA (2001-2016) 5.9 16.92 0.35 6.11 6.01 16.24 0.37 6.47
RSWP - DJIA (1984-2002) 49.97 35.12 1.42 23.11 19.33 25.14 0.77 13.95
LS - S&P500 (2001-2014) 2.68 21.77 0.12 1.98 3.58 19.9 0.18 2.88

RSWP - S&P500 (2001-2014) 3.43 17.03 0.2 3.23 15.31 56.66 0.27 4.12

Table 4: Comparison of the performance of different D6,6 and G6,6 LS (simple) and RSWP (simple) portfolio opti-
mizations using the S&P500 as well as the DJIA stocks universe for the distant and the recent past. The
analysis is performed with daily split and dividend-adjusted log-returns and portfolios are constructed
on a daily basis using a formation period of six months; the investment is delayed by six months after
the portfolio construction and the portfolio is held for one month. Weights of the LS as well as the RSWP
strategy have been standardized to get market-neutral weights (i.e. it is a zero cost strategy). A one-month
period is assumed to correspond to 21 days. The performance is given as an average annualized return
(µ) and annualized volatility (s) both expressed as a percentage as well as annualized Sharpe Ratio (SR).
A t-test is employed to check the statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96
(95%) and 2.58 (99%).

Table 4 reconfirms what was discovered in the paper by Ardila, Forrò & Sornette (2015), i.e. that the
G-factor might generate better performances than D-based (simple) portfolios. Moreover, it is possible
to see that strategies based on momentum as well acceleration lead to a lower performance in today’s
market environment compared to the two last decades of the 20th century in the U.S. market. Fur-
thermore, as it was already documented by Ardila, Forrò & Sornette (2015) and as has already been
reconfirmed, an investment which considers the whole universe of stocks (i.e. the RSWP strategy) and
not only securities having extreme returns (i..e the LS strategy) is more profitable.

4.1.3 Trend-based Portfolio Optimization

This section describes the outcome of a short analysis that aims to determine if trend-based detection
approaches, i.e. the Exponential Moving Average (EMA) and the Simple Moving Average Crossovers
(crossovers) implemented in the quantification of the momentum as well as the acceleration factor,
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might have an influence on the performance of D and G Long-Short or RSWP portfolios.

The investigation is executed for the DJIA stocks universe (data set) considering the distant past (be-
tween 1984 and 2002), i.e. a period of time when the momentum effect appeared to be more evident.The
EMA detection approach has been tested using Long-Short optimizations while for the crossover de-
tection approach both strategies (i.e. RSWP and LS) are implemented.

Dow Jones Industrial Average (1984-2002)

Table A13 illustrates the performance of Long-Short portfolios based on factors detected through the
EMA detection for a holding period of one or six months. The long portfolio buys stocks in the top-
ranked quintile (according to the D or G-factor) while the short portfolio sells stocks in the bottom
quintile. Moreover, three different moving averages windows (K) of 20, 50 and 100 days have been
applied to compute the factors.

Table A13 in the Appendix indicates that the trend-based detection (EMA) leads to better results for
the DLS (EMA) strategy in 42 out of 44 scenarios compared DLS (simple) portfolios (for the comparison
see Table A6 in the Appendix). Moreover, cleaning stock prices with an Exponential Moving Average
computed over a window of 100 days (K = 100) generated better performances than using shorter
windows. However, the implementation of the EMA approach has no benefits in terms of volatility,
which is quite similar as in the portfolio DLS (simple) portfolio. Furthermore, the use of an Exponential
Moving Average also improved the performance of GLS portfolios. Indeed, in 30 out of 44 cases, the GLS

(EMA) strategy generated statistically significant annualized returns which outperform the same strat-
egy based on G-factors detected with the simple approach. Similarly, as was reported in Table A6 in the
Appendix, there is no significant evidence that strategies based on the acceleration are more profitable
than momentum. The best performing portfolios are the same as previously, i.e. the D6,6(LS) and the
G6,6(LS), both with factors detect using the EMA approach with a moving average window (K) of 20
days.

Another approach implemented for the detection of the delta and gamma factor is the ”crossovers”
approach, which computes the momentum (D) as the difference between a short (50 days) and long
(200 days) asymmetric Simple Moving Average applied to stock prices. Thereafter, the acceleration (G)
is computed as the f -months difference in momentum.

Table A14 in the Appendix illustrates the annualized performance of Long-Short as well as the RSWP
optimizations constructed on the basis of D and G-factors detected with the crossover methodology.
We can observe that using the crossover detection approach, there is no improvement in terms of per-
formance for the DLS (crossovers) strategy, since using the simple approach with a formation period
( f ) of six or twelve months (more frequently twelve) the DLS (simple) strategy generated a greater
risk-adjusted performance (see Table A6). A similar conclusion is arrived at by using the RSWP opti-
mization, i.e. a portfolio constructed on a D-factor detected using the simple approach over a formation
period ( f ) of twelve months always showed higher Share Ratios (see Table A10), except for the scenario
designed for a one-month holding period (h = 1) and no delay in the investment (s = 0) where the
crossover detection outperformed the simple approach for all formation periods ( f ).

It is interesting to observe, that the performance of Long-Short and Relative Strength Weighted Port-
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folio strategies based on the G-factor is strongly significantly positive (in the distant past) if this factor
is detected through the crossover approach, i.e. it is quantified on the basis of a D computed as the
difference between a short and a long SMA. As is illustrated in Table A14 in the Appendix, a longer
formation period ( f ) improves the performance of acceleration-based portfolio for both optimization
the, LS (crossover) and the RSWP (crossover) strategies. Moreover, the RSWP strategy always gener-
ated better returns than the LS strategy; this is an additional confirmation of what was discovered in
the previous paper and already reconfirmed in the previous section with the simple approach. Ad-
ditionally, compared to the simple approach (see Table A6 and A10 in the Appendix), LS, as well as
RSWP strategies based on a G-factor detected with the crossover approach, always outperforms the cor-
responding strategy where factors are quantified through the simple approach. Furthermore, a G-factor
computed using the crossovers approach over a formation period ( f ) of six or twelve months generated
a higher return compared to optimization performed with the D-factor in 6 (5) set of parametrizations
(h, s) out of 6 for the RSWP (LS) strategy.

To sum up, time series tools (such as moving averages) which allow us to clean irregular fluctuations
from stock prices and to estimate the trend might lead to an improvement in terms of portfolio per-
formance for D and G-based optimizations - not only in the past but also in today’s financial market
environment. In particular, the asymmetric simple moving average crossover allows us to increase the
performance of G strategies.

4.2 Wavelet Transform and Portfolio Optimization

This section describes the performance of portfolios optimized on the basis of D and G-factors detected
through the Maximum Overlap Discrete Wavelet Transform (MODWT) approach. The investigation is
executed using daily and monthly data and it aims to test if the wavelet approach might lead to better
results in terms of portfolio performance. In the following analyses, both factors are detected through
the MODWT approach, i.e. momentum is defined as the first derivative of the logarithm of the stock
price series and it is quantified by the magnitude of detail coefficients (dj) of a MODWT performed by
a Haar (Db1) mother wavelet while the second derivative (acceleration) is detected by the negative of
detail coefficients ((�1) ⇤ d̃j) of a MODWT performed by a Daubechies function with two vanishing
moments (Db2).

The first part of this section determines the impact of implementing wavelet-based optimization strate-
gies on the portfolio performance in the distant past (1984-2002); the investigation is executed using
the Dow Jones Industrial Average (DJIA) stocks universe (data set). Thereafter, there is a short inves-
tigation to understand the influence of the level of resolution (j) on the rate of return of wavelet-based
portfolios. Moreover, an additional analysis aims to implement a calibrated version of the MODWT ap-
proach to increase the accuracy of the quantification of both derivatives (i.e. of the parameters D and G)
and check if there is also an improvement in portfolio performance. Finally, the wavelet-based portfolio
optimization is briefly tested in today’s financial environment, i.e. implementing a Relative Strength
Weighted Portfolio strategy using the Standard and Poor 500 (S&P500) universe of stocks considering
the recent past (2001-2014).
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4.2.1 Dow Jones Industrial Average (1984-2002)

The wavelet-based portfolio optimization is first tested for the universe of stocks consisting in securi-
ties included in the DJIA; the investigation is executed on a daily (W) and a monthly (WM) basis (i.e.
using daily or monthly stock prices (logarithm)). Since the start of 1984 until February 2002 a portfolio
is set up each day (or month) according to D or G-factors detected using the MODWT approach and
considering different levels of resolution (j), a delay in the investment (s) of one or six months as well
as different portfolio holding periods (h). First, portfolios are constructed according to the Long-Short
strategy. Thereafter, the Relative Strength Weighted Portfolio optimization is applied.

Table A15 in the Appendix indicates the annualized performance of DLS (W) and GLS (W) portfolios
where the investment is computed on a daily basis and factors are extracted through the MODWT from
the logarithm of the daily stock price series. According to previous papers, the momentum as well as
the acceleration effect seem to be more evident over longer formation periods, such as for example be-
tween three and twelve months; the implementation of analysis which considers monthly data might
improve the detection of factors and therefore the portfolio optimization. Indeed, a MODWT approach
performed using monthly stock prices allows to detect D and G-factors over longer time-scales (at is
explained in Table A2). Table A16 thus illustrates the results for the performance of DLS (WM) and GLS

(WM) strategies, i.e. optimization that implements factor detected through the MODWT approach on
a monthly basis.

As expected, Table A15 in the Appendix confirms that DLS (W) strategy (performed with daily data)
achieved on average a very low rate of return which is not even comparable to returns from standard
momentum investing (i.e. returns from the DLS (simple) strategy, see in Table A6 in the Appendix).
However, as reported in Table A16 in the Appendix, a wavelet-based detection performed on a monthly
time-scale (i.e. computing the derivatives from monthly stock price series) leads to a similar or even
better performance than the ”simple” momentum investing strategy.

The following table (Table 5 in the following page) includes a comparison between the ”traditional”
(simple) and the wavelet-based DLS (WM) portfolios having a holding period of one month (h = 1).
The long portfolio buys stocks from the top D-ranked quintile while the short portfolio sells stocks
from the bottom D-ranked quintile. Equal (market-neutral) weights are applied for both, the long and
the short portfolio. The total (long plus short) annualized portfolio performance in percentage terms
(i.e. µ, s) as well as the Sharpe Ratio (SR) are represented here below.

As is illustrated in Table 5, a D-factor detected through the wavelet approach at the resolution level
four (j = 4) always improved the average annualized return for scenarios with no or a one month delay
in time in the investment execution (s = 0 and s = 1) of a portfolio held for one month. However, for
a delay in the investment of one month (s = 1) even factors detected at the resolution levels j = 2 and
j = 3 generated an increased annualized performance. Moreover, Table A16 reports that for a holding
period (h) of three months the wavelet-based strategy is more profitable only if the investment is not
delayed (s = 0). For a longer holding period as (h = 6) there is just a slight improvement obtained
through wavelet-based momentum detection when the investment is postponed by one month but for
a holding period of one year, a D computed at a resolution level of j = 3 always improved performance
in comparison to the standard momentum strategy (see Table A6 in the Appendix for the comparison).
Momentum-based Long-Short portfolios constructed using a D-factor detected with the wavelet-based
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approach are statistically and significantly positive in 35 out of 36 scenarios (see Table A16 in the Ap-
pendix).

Annualized performance of Ds,j(LS) (WM) and Ds, f (LS) (simple)
DJIA (1984-2002)

DLS (simple) DLS (wavelet (WM))
s f (j) µ s SR t-test µ s SR t-test

h = 1
1 (1) -13.7 24.91 -0.55 -11.73 -15.51 23.74 -0.65 -3.07

0 3 (2) 15.75 28.37 0.56 10.35 13.63 29.45 0.46 1.9
6 (3) 22.21 29.54 0.75 13.67 23.5 31.13 0. 76 2.98
12 (4) 32.95 30.93 1.07 18.6 37.08 30.9 1.20 4.51
1 (1) -3.42 25.97 -0.13 -2.66 -8.03 29.25 -0.27 -1.24

1 3 (2) 17.86 29.09 0.61 11.32 25.99 30.99 0.84 3.27
6 (3) 26.55 29.26 0.91 16.19 30.01 30.09 1 3.84
12 (4) 37.89 30.8 1.23 21.05 41.19 30.8 1.34 4.94
1 (1) -1.71 25.5 - 0.07 -1.33 -4.95 24.39 -0.20 -0.89

6 3 (2) 24.32 28.19 0.86 15.34 20.84 27.76 0.75 2.96
6 (3) 38.63 28.59 1.35 22.81 35.26 30.16 1.17 4.36
12 (4) 28.12 29.75 0.95 16.58 27.56 29.85 0.92 3.54

Table 5: Comparison between the performance of ”traditional” Ds, f (LS) (simple) and wavelet-based Ds,j(LS) (WM)
portfolio optimizations performed on the DJIA (1984-2002) for a one-month holding period. The first
portfolio examined is constructed optimizing for D-factors detected with the simple approach while the
second is a wavelet-based portfolio set up on a monthly basis (WM). Moreover, factors are detected for
different formation periods f (expressed in months) or different resolution levels (j), which according to
the time-scale conversion are approximately comparable. The actual investment might be delayed of s
months after the portfolio construction. A one-month return is assumed to correspond to the cumulative
return over the previous 21 days. The performance is given as an average annualized return (µ) and
annualized volatility (s) both expressed as a percentage as well as annualized Sharpe Ratio (SR). Critical
t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).

A similar result is also documented for GLS (W) portfolios optimized through the MODWT approach:
daily data do not lead to a general increment in annualized risk-adjusted profitability in comparison to
the simple approach (see Table A15 in the Appendix and Table A10 in the Appendix for comparison).
However, a G-factor detected on a monthly basis (see Table A16 in the Appendix) might positively in-
fluence the performance compared to the simple approach (see Table A6 in the Appendix) mostly for
portfolios with short holding periods.

Therefore, Table 6 illustrates a comparison between the ”traditional” (simple) and the wavelet-based
GLS (WM) strategy considering a holding period of one month.
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Annualized performance of Gs,j(LS) (WM) and Gs, f (LS) (simple)
DJIA (1984-2002)

GLS (simple) GLS (wavelet (WM))
s f µ s SR t-test µ s SR t-test

h = 1
1 (1) -9.17 25.45 -0.36 -7.51 -30.63 29.59 -1.04 -5.31

0 3 (2) -5.48 26.22 -0.21 -4.28 -16.06 27.57 - 0.58 -2.75
6( 3) -10.22 26.64 -0.38 -8.04 -5.7 22.95 -0.25 -1.11
12 (4) 10.18 27.42 0.37 7.09 12.12 26.64 0.45 1.88
1 (1) -21.51 28.28 -0.76 -16.89 32.5 29.2 1.11 4.24

1 3 (2) -5.15 25.82 -0.20 -4.07 12.45 28.92 0.43 1.77
6 (3) -5.52 26.08 -0.21 -4.32 17.94 28.07 0.64 2.57
12 (4) 14.38 27.34 0.53 9.84 15.51 26.83 0.58 2.35
1 (1) -2.37 25.39 -0.09 -1.86 -31.14 30.08 -1.04 -5.25

6 3 (2) -2.74 25.45 -0.11 -2.15 -10.28 27.17 -0.38 -1.71
6 (3) 19.2 26.36 0.73 13.22 6.58 25.84 0.25 1.06
12 (4) 11.69 26.91 0.43 8.13 11.07 27.7 0.40 1.64

Table 6: Comparison between the performance of ”traditional” Gs, f (LS) (simple) and wavelet-based Gs,j(LS) (WM)
portfolio optimizations performed on the Dow Jones Industrial Average (1984-2002) for a one-month hold-
ing period. The first portfolio examined is constructed optimizing for G-factors detected with the simple
approach while the second is a wavelet-based portfolio set up on a monthly basis (WM). Moreover, fac-
tors are detected for different formation periods f (expressed in months) or different resolution levels (j),
which according to the time-scale conversion are approximately comparable. The actual investment might
be delayed of s months after the portfolio construction. A one-month return is assumed to correspond to
the cumulative return over the previous 21 days. The performance is given as an average annualized
return (µ) and annualized volatility (s) both expressed as a percentage as well as annualized Sharpe Ratio
(SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).

Indeed, Table 6 shows that the return of the GLS (WM) portfolio with a holding period of one month
outperforms ”traditional” GLS portfolio optimization, when the investment has no or a one month delay
in time; the latter allows us to obtain a statistically significant risk-adjusted return (SR) of 1.1. More-
over, Table A16 shows that for a longer holding period of three months the wavelet-based strategy only
outperforms the classical one for s = 0 and s = 1 while for a six-month and one-year holding period it
is not more profitable.

Table A17 and A18 in the Appendix shows the performance of Relative Strength Weighted Portfolios;
the former is an analysis executed using daily data while the latter implements monthly stock prices.
Results in Table A17 (daily data) are quite similar to using the Long-Short strategy based on the wavelet
approach: there is not a significant scenario where the wavelet-based (daily) RSWP (W) strategy gen-
erated better performance than the simple approach (see Table A10 in the Appendix for a comparison).
However, it is interesting to see that at a resolution level of j = 4, the annualized performance is quite
similar to the return generated by the ”traditional” (simple) portfolio constructed using a formation
period ( f ) of one month. This is a logical consequence, since the MODWT performed through daily
data is able to detect the momentum as well as the acceleration factor from a time-scale of two-days
(i.e. a change in price (or return) within two days) at a resolution level of j = 1 until a time-scale of 16
days at a resolution level of j = 4 (i.e. first and second order price changes within 8 and 16 days), i.e. it
detects factors over very short formation periods.

The very low or even negative performance of the MODWT approach computed with daily prices
indicates that both the momentum and the acceleration effect do not exist at a very short scale. For this
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reason, a formation period of two weeks or one months is too short to detect both factors adequately,
this was also confirmed in Table 2 and Table A9 in the Appendix, where the formation period was one
week.

Table A18 illustrates wavelet-based RSWP performances obtained using monthly data. The outcome for
DRSWP (WM ) portfolio optimization is much similar to what is documented according to the classical
momentum (see Table A10 in the Appendix), however the wavelet-based approach slightly outper-
forms the simple approach only in three set of parametrization (h, s) out of nine. According to Table
A18 in the Appendix, the GRSWP (WM) strategy never outperforms the corresponding ”traditional”
GRSWP (simple) strategy, except for one scenario, which was already document using the Long-Short
strategy: the RSWP portfolio optimized for a G-factor detected at the resolution level j = 1 and having
one month holding period after a delay in the investment of one month, i.e. G1,1(RSWP) (WM) with h = 1.

This short investigation revealed that the wavelet-based portfolio performance is higher when the fac-
tor detection is performed on a monthly basis (i.e. from monthly stock prices). Moreover, the MODWT
approach only leads to significant improvements for investments with a short holding period (h = 1)
for both factors. Otherwise, results are very similar to the ”traditional” momentum and acceleration
investing (i.e. the simple approach).

4.2.2 The Influence of the Resolution Level (j) in Portfolio Optimization

In the previous section, we observed that the resolution level (j) plays the same role as the formation
period ( f ) in ”traditional” investments optimized with factor detected applying the simple approach.
Indeed, using daily data, even a resolution level of j = 4 (i.e. which considers first and second order
price changes over a time-scale between 8 and 16 days) was not adequate to capture the momentum as
well as the acceleration factor. However, optimizations performed with monthly data generated similar
(or in some cases) even better results as in optimizations based on the simple detection approach. This
analysis is performed implementing Relative Strength Weighted portfolios.

Therefore, here there is a short investigation which aims to emphasize the role of the parameter j (i.e.
the resolution level) and to demonstrate that even using daily data it is possible to achieve reasonable
portfolio results by increasing the resolution level (see Table A19 in the Appendix). For example, a
resolution level of j = 8, i.e. a time-scale between 128 days (or approximately six months) and 256
days ( one year), generated a quite similar return as in the simple approach or as in wavelet-based
optimizations performed on a monthly basis. Indeed, Table A19 in the Appendix illustrates that the
performance of both factors increases with the resolution level (j) on a daily basis. For a holding period
of one month, despite the fact that portfolio performance generated by a level j = 8 is quite significant
and very similar to the simple approach, the (daily) wavelet-based detection does not lead to higher
results (compared to Table A10 in the Appendix) for both DD and GD portfolios. However, if we con-
sider a holding period of six months, a DD-factor detected on a daily time-scale at a resolution level
j = 8 improved the performance in comparison to the ”traditional” simple portfolio when there is no
or a one month delay in time (s = 0 and s = 1). Moreover, for the same holding period, the GD-factor
detected at the resolution level (j = 8) increases the performance of the portfolio delayed by six months
(s = 6), which achieves an annualized risk-adjusted profitability (SR) of 0.52 outperforming the simple
approach.
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Furthermore, this section also reconfirms that momentum (but also acceleration) is a financial anomaly
which can be documented through cumulative past returns of securities over a window (or a formation
period f ) of three-twelve months (or by applying resolution levels of j equal to 2, 3 and 4 to monthly
data). Indeed, as can be seen in Table A20 in the Appendix (monthly data), further resolution levels
generated a lower or clearly negative performance for the momentum factor, i.e. a j equal to 5 or 6 (i.e.
j = 6 defines a time-scale between 2 and a half years and 5 and a half years) generated lower perfor-
mances while a portfolio computed using a delta factor detected at the resolution level j = 7 always
performs negatively. The GD-factor is more sensitive and it performs negatively in each scenario where
j is equal to 6 or 7.

However, it is interesting to observe (Table A20 in the Appendix) that if we construct GD portfolios,
using a GD-factor detected through the MODWT (monthly) at a resolution level j equal to 5 (i.e. a time-
scale between 16 and 32 months), performance is always much better compared to what we obtain with
a formation period of one year ( f = 12) in the simple approach (see Table A10 in the Appendix) and also
compared to a level of j = 4, except for the scenario of a one month holding period and a one month
delay in the investment where the fourth resolution level generated an higher return (see Table A18 in
Appendix). This might be an indication that the acceleration effect is more evident in the medium-term,
i.e. between one and 2 and a half years. For this reason, computing the GD-factor using larger formation
periods or through a MODWT approach at higher resolutions levels, seems to give rise to an increment
in portfolio performance.

4.2.3 Calibration of the Wavelet Approach

The application of the MODWT approach on pure signals (see Section 2.3.2) to compute the first and
the second derivative revealed that this approach should be calibrated because both derivatives are ap-
proximately similar as using the traditional differentiation approach but lagged in time. As is visible
in Figure A7-A12 in the Appendix, the lag is similar for each of the three pure signals; therefore, it has
been recorded from pure signals to calibrate factors used in the portfolio optimization.

Table A21 in the Appendix illustrates the performance of the calibrated wavelet-based (WMC) RSWP
strategy, i.e. executed by optimizing for calibrated D and G-factors. As previously, the data set investi-
gated is the DJIA for the distant past, i.e. between 1984 and 2002 (period of time when the momentum
effect was largely documented). The investigation is performed with monthly data.

If we look at the performance of RSWP (WMC) strategy (Table A22) for a holding period (h) of one
month or six months and we compare it with the non-calibrated version (see Table A18 in the Ap-
pendix), we can observe that calibrated factors might improve portfolio performance. More precisely,
strategies based on a calibrated momentum (DRSWP (WMC)) achieved a greater annualized perfor-
mance compared to non-calibrated DRSWP (WM) portfolio optimizations when there is no or a one
month delay in the investment, while it is never profitable for a delay of six months. A similar conclu-
sion is shown by comparing the DRSWP (WMC) strategy to the ”traditional” DRSWP (simple) strategy
(see Table A10 in the Appendix), i.e. a calibrated MODWT might increase the annualized return and de-
crease the volatility; this leads to an increment in risk-adjusted profitability for the momentum strategy.
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GRSWP(WMC) strategies always generated better performances than classical (simple) or non-calibrated
optimizations for a holding period of six months. While for a holding period of one month they are
never more profitable than ”traditional” or non-calibrated investments.

To conclude, the following table (Table 7) aims to compare the annualized Share Ratio of DRSWP and
GRSWP strategies optimized for simple or wavelet-based detected factors. The first portfolio is the ”clas-
sical” RSWP (simple) strategy where factors are computed on a daily basis using different formation
periods. Moreover, a second portfolio is constructed on a monthly basis by optimizing for wavelet-
based detected factors (WM). The last portfolio is constructed using factors quantified with the cali-
brated wavelet approach form monthly stock price series (WMC).

Comparison of annualized Sharpe Ratios (SR): simple and wavelet-based detected factors
DJIA (1984-2002)

D G
s j (f) SR SR SR SR SR SR

simple wavelet (WM) wavelet (WMC) simple wavelet (WM) wavelet (WMC)
h = 1

1 (1) -0.67 -0.79 1.61 -0.41 -0.94 -0.91
0 2 (3) 0.64 0.41 1.83 -0.25 -0.67 -0.32

3 (6) 0.9 0.81 1.64 -0.35 -0.24 0.21
4 (12) 1.29 1.2 1.66 0.53 0.43 0.3
1 (1) -0.06 -0.3 -0.17 -0.78 1.17 -0.21

1 2 (3) 0.88 1.1 1.89 -0.11 0.57 1.07
3 (6) 1.03 0.87 1.36 -0.21 0.55 1.01
4 (12) 1.34 1.32 1.73 0.55 0.53 0.51
1 (1) -0.02 -0.11 0.39 0.07 -0.98 -0.98

6 2 (3) 1 0.65 0.83 -0.2 -0.51 -0.32
3 (6) 1.42 1.28 0.85 0.77 0.26 0.13
4 (12) 1.14 1.01 0.97 0.58 0.41 0.38

h = 6
1 (1) 0.37 0.32 0.52 -0.01 0.02 0.06

0 2 (3) 0.76 0.69 0.85 -0.07 -0.09 0.32
3 (6) 0.93 0.92 0.96 0.01 0.43 0.55
4 (12) 1.04 1.05 1.22 0.52 0.47 0.49
1 (1) 0.42 0.39 0.39 0.03 0.04 0.07

1 2 (3) 0.8 0.73 0.73 -0.06 -0.07 0.34
3 (6) 1 1 0.86 0.19 0.51 0.53
4 (12) 1.02 1.02 1.14 0.52 0.48 0.53
1 (1) 0.51 0.47 0.39 0.03 0.07 0.07

6 2 (3) 0.94 0.85 0.73 0.2 0.13 0
3 (6) 0.98 0.98 0.92 0.46 0.11 0.15
4 (12) 0.83 0.78 0.77 0.51 0.38 0.51

Table 7: The figure shows the average annualized Sharpe Ratio of three different DRSWP and three different GRSWP
strategies considering holding periods (h) of one and six months. The investigation is executed through
daily or monthly split and dividend-adjusted log-returns of securities included in the DJIA (1984-2002).
The first portfolio examined is constructed optimizing for discretized factors detected with the simple
approach (DD and GD). Moreover, there are two wavelet-based portfolios set up on a monthly basis.
The first portfolio (”wavelet (WM)”) is constructed according to D and G-factors computed through the
MODWT approach while the second (WMC) implements a calibrated version of those parameters. Factors
are detected for different formation periods f (expressed in months) or different resolution levels (j),
which according to the time-scale conversion are approximately comparable. The actual investment might
be delayed of s months after the portfolio construction. A one-month return is assumed to correspond to
the cumulative return over the previous 21 days. The performance is given as an average annualized
return (µ) and annualized volatility (s) both expressed as a percentage as well as annualized Sharpe Ratio
(SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).
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Here, it is clearly visible that the calibrated wavelet-based DRSWP (WMC) strategy outperforms the
”normal” wavelet-based (WM) as well as the traditional (simple) strategy when there is no or a one
month delay in time for a holding period of one month and it allows to generate very high risk-adjusted
returns. Furthermore, the calibrated GRSWP (WMC) portfolio optimization is profitable for the scenario
of a one month holding period and a delay in the investment of one month or for six months holding
period and no or a delay in the investment of one month. Otherwise, it generated a similar or a lower
annualized performance compared to the simple approach.

Nevertheless, as was documented previously and reported in Table A20 in the Appendix, the RSWP
strategy optimized for a non-calibrated G-factor detected through a Maximum Overlap Discrete Trans-
form at the resolution level j = 5 generated a Sharpe Ratio of 0.6 (s = 0), 0.63 (s = 1) and 0.68 (s = 6)
for portfolios having a holding period of one month and 0.54 (s = 0), 0.55 (s = 1) and 0.51 (s = 6)
for a holding period of six months. Hence, an acceleration factor detected through the non-calibrated
MODWT approach at the level j = 5 slightly improved the risk-adjusted returns compared to ”tradi-
tional” GRSWP (simple) strategies in 5 set of parametrizations (h, s) out of 6 or it generated a similar or
more frequently a higher performance than wavelet-based calibrated portfolio optimization (see Table
A21), except for the scenario of a one month holding period and a one month delay in time where the
Sharpe Ratio of the calibrated GRSWP (WMC) portfolio is 1.07 for a resolution level j = 2.

4.2.4 Wavelet-based Portfolio optimization - Today

This short section aims to determine if the calibrated version of the Maximum Overlap Discrete Wavelet
Transform might also improve the performance of D and G portfolio in today’s financial market envi-
ronment. For this reason, the calibrated wavelet-based RSWP strategy is back-tested using the S&P500
stocks universe, considering the recent past (2001-2014).

As is shown in Table A22 in the Appendix and as was already documented in the distant past, the
calibrated wavelet-based DRSWP (WMC) outperforms the ”traditional” DRSWP (simple) strategy when
there is no or a one month delay in the investment for holding periods of one and six months (i.e. it
improved the results in 4 out of 6 scenarios); moreover in these scenarios a D-factor detected at the
resolution level (j) equal to two or three is always more profitable.

The conclusion regarding GRSWP (WMC) portfolio optimization is the same; contrary to the D strat-
egy, the GRSWP (WMC) strategy also generated a higher risk-adjusted return than the ”traditional”
GRSWP (simple) optimization in the scenario of six month delay in the investment for a holding period
of one month (i.e it leads to better results in 5 out of 6 scenarios). The GRSWP (WMC) strategy beats
the calibrated DRSWP (WMC) optimization in 4 out of 6 scenarios. The best risk-adjusted return for
the DRSWP (WMC) strategy is about 0.68 and it can be seen in the portfolio held for one month where
the investment is not delayed and at a resolution level (j) equal to two. The best SR of calibrated G
portfolios is about 0.50 and is generated by a portfolio held for one month after a delay of six months
in the investment execution and the portfolio is optimized for factors detected at the resolution level
j = 4 . Both Sharpe Ratios are statistically significant. The calibrated GRSWP (WMC) strategy generated
a positive annualized return in 16 out of 24 scenarios, 6 of them are statistically significant while the
DRSWP (WMC) optimization in 16 out of 24 scenarios, 4 statistically significant.
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4.3 Hybrid D/G Portfolio Optimization Strategy

As was demonstrated in previous analyses performed in this study, in today’s financial environment
(i.e. in the recent past) portfolios based on the momentum or the acceleration factor return lower per-
formances (sometimes even negative) compared to the distant past (i.e. the last two decades of the
20th century). Therefore, it seems not to be possible to gain superior returns by investing according to
the momentum or to the newly discovered effect which complements momentum, i.e. acceleration. A
possible explanation is that nowadays both factors might be not adequate to track the performance (or
the trend) in stock prices, because the persistence in returns is shorter and the trend (the momentum)
seems to reverse more quickly. A deeper explanation is given in the discussion part in the next chapter.

The D/G strategy which has been newly developed in this study considers both factors simultaneously
and it aims to achieve benefits by investing in upward or downward trending stocks before the trend
reverses. More precisely, this strategy consists in buying stocks (go long) not only when the cumulative
past return (the momentum) is positive but only if those stocks show increasingly positive past returns
(i.e. upward accelerating stock price). Moreover, the short portfolio aims to tracks stock which per-
formed badly in the past and whose price is falling at an increasing rate (i.e. downward accelerating
stock price).

The D/G portfolio optimization strategy is first implemented using a D and a G-factor detected with
the simple approach. Moreover, additional D/G portfolios are optimized through non-calibrated as
well as calibrated factors detected with the Maximum Overlap Discrete Wavelet Transform approach
on a daily or on a monthly basis.

This strategy is tested in two different time periods: between 1984 and 2002 (distant past) and be-
tween 2001 and 2014 (recent past).

Moreover, a short study aims to investigate potential sources of the success (in terms of portfolio per-
formance) of the newly developed D/G optimization, i.e. it aims to enhance differences between the
hybrid and the Long-Short strategy in the number of stocks over time included in the long and short
sub-portfolios. Finally there is a short comparison of the Information Ratio (IR) resulting from the D/G
strategy as well as from the best LS and RSWP simple and wavelet-based strategies.

4.3.1 Hybrid D/G Strategy: Simple Approach

D/G Strategy in the Distant Past (1984-2002)

Table 8 shows the performance of D/G (simple) portfolios having a holding period of one and six
months where factors are detected with the simple approach using different formation periods ( f ). This
strategy consists in buying a long portfolio and selling a short portfolio. The long portfolio includes
stocks having a positive momentum (D( f )) at the time t computed over the previous f months; more-
over, the selected stocks must have a positive acceleration (G( f )) at time t quantified using the same
formation period. The short portfolio sells stocks having a negative D( f ) and additionally a negative
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G( f ) at the time t. Moreover, the investment might be delayed by one or six months after the portfolio
construction. Two kind of weighting rule are applied: the first portfolio is based on equal weights (EW)
whilst the second applies relative ”Gamma” weights (GW or G-weights), which are computed accord-
ing to the relative magnitude of the acceleration factor across all stocks in the corresponding (long or
short) portfolio. Moreover, weights of the long and the short portfolio have been standardized in order
to obtain market-neutral weights. A complete table including also holding periods of three and twelve
months is available in the attachment (Table 23 in the Appendix).

Annualized performance of D/G (simple)
DJIA (1984-2002)

D/G (EW) D/G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 33.93 24.35 1.39 24.24 27.91 28.13 0.99 17.65

0 3 36.91 25.13 1.47 25.28 29.73 28.57 1.04 18.38
6 32.56 26.85 1.21 21.2 31.63 30.63 1.03 18.11

12 37.68 29.03 1.3 22.28 35.44 34.22 1.04 17.92
1 43.91 24 1.83 30.66 53.77 27.78 1.94 31.4

1 3 47.81 22.81 2.1 34.67 52.89 26.98 1.96 31.9
6 60.54 24.32 2.49 39.53 69.24 28.04 2.47 38.2

12 77.71 25.16 3.09 46.62 88.03 31.01 2.84 41.63
1 29.32 24.24 1.21 21.11 32.45 28.24 1.15 19.83

6 3 27.85 23.33 1.19 20.95 29.01 26.98 1.08 18.79
6 30.86 25.11 1.23 21.33 40.23 29.48 1.36 22.9

12 29.44 25.99 1.13 19.77 39.48 32.45 1.22 20.48
h = 6

1 50.48 31.91 1.58 68.71 63.67 43.5 1.46 62.09
0 3 47.15 29.49 1.6 69.87 51.18 33.75 1.52 65.76

6 51.59 31.51 1.64 70.97 58.27 37.46 1.56 66.61
12 57.48 31.64 1.82 77.9 65.86 40.82 1.61 68.19
1 49.08 33.39 1.47 63.84 64.13 45.9 1.4 59.1

1 3 44.85 29.61 1.52 66.32 50.22 34.87 1.44 62.43
6 50.7 32.61 1.56 67.34 59.18 38.94 1.52 64.82

12 55.23 31.62 1.75 75.02 65.96 41.46 1.59 67.08
1 4.98 31.13 0.16 7.54 15.92 40.58 0.39 18.02

6 3 6.11 31.94 0.19 8.99 11.92 39.82 0.3 13.87
6 10.19 34.2 0.3 13.87 17.97 39.45 0.46 20.83

12 10.47 33.51 0.31 14.53 20.96 41.35 0.51 23.02

Table 8: Performance of D/G (simple) portfolio optimizations performed using components of the DJIA (1984-
2002) for a holding period of one and six months. This strategy consists in buying a long portfolio and
selling a short portfolio. The long portfolio includes stocks having a positive momentum (D( f )) at the time
t computed over the previous f months; moreover, the selected stocks must have a positive acceleration
(G( f )) at time t quantified using the same formation period. The short portfolio sells stocks having a
negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule are applied:
equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed by
one or six months after the portfolio construction. A one-month period is assumed to correspond to 21
days. The performance is given as an average annualized return (µ) and annualized volatility (s) both
expressed as a percentage as well as annualized Sharpe Ratio (SR). A t-test is employed to check the
statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).

It is clear (see Table 8) that this strategy worked very well in the distant past, indeed the average annual-
ized return is positive in 24 out of 24 scenarios and all results are statistically significant. If we take into
consideration additional holding periods of three and twelve months (see Table 23 in the Appendix),
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the average annualized return is positive in 44 (46) out of 48 scenarios for the equal-weighted (GW)
strategy. Negative performances are generated by a holding period (h) of three months and a delay in
the investment (s) of six months. Moreover, due to a decrease in the return and an increase in volatility,
a holding period of twelve months generated the lower risk-adjusted performance for both the EW and
the GW strategies. In general, the equal-weighted D/G (simple) portfolio has a lower volatility and
achieves a maximal average annualized return of 77.71% and an annualized risk-adjusted return (SR)
of 3.09 using a formation period ( f ) of 12 months, holding the portfolio for one month with a delay in
the investment (s) of one month while the same portfolio constructed using G-weights gave rise to a
greater annualized return of 88.03% but due to an increase in volatility the Share Ratio (SR) is 2.84. EW
portfolios outperform GW portfolios in 17 out of 24 scenarios but never when the holding period is six
months (h = 6) and the investment is delayed by six months (s = 6).

On average, considering shorter holding periods of one or three months, a delay in the investment
(s) of one or six months is profitable but with an increase in the holding period (as for example h = 6), a
delay decreases risk-adjusted profitability. This means that D/G (simple) portfolios are able to capture
an increase (decrease) in the stock price that in the long-term seems to disappear. For this reason, hold-
ing the portfolio for too long or delaying the investment might adversely influence performance.

Compared to previous DLS and GLS (simple) strategies (see Table A6 in the Appendix), the equal-
weighted (EW) D/G (simple) strategy leads to profitable returns and it outperforms the DLS (simple)
portfolio optimization in 32 out of 48 scenarios, all of them statistically significant. The DLS (simple)
strategy beats the (EW) D/G (simple) strategy when the holding period is long and there is an additional
delay in the investment. Moreover, the best D6,6(LS) (simple) portfolio held for one month generated
a greater averaged annualized return compared (D/G)6,6 (simple) with a one month holding period.
Similar results are shown by the comparison of G-weighted (GW) D/G (simple) portfolios with the
DLS(simple) strategy. However, using G-weights it is possible to achieve a higher Sharpe of 1.36 for the
(D/G)6,6 portfolio. Furthermore, D/G (simple) returns are always larger than returns of the GLS (sim-
ple) strategy, except for the scenario where the newly developed strategy generated negative returns
(i.e. when h = 3 and s = 6).

Furthermore, if we compare the performance of the new hybrid strategy to DD
RSWP (simple) or GD

RSWP
(simple) optimizations (see Table A10 in the Appendix), we can observe a similar pattern: both (EW
and GW) D/G (simple) strategies significantly outperform the DD

RSWP (simple) strategy in 34 out of 48
scenarios. An underperformance of the D/G (simple) strategy is generated by longer holding periods or
a delay in the investment. Moreover, the GW (D/G)6,6 (simple) portfolio underperform the best DD

RSWP
(simple) strategy, i.e. the DD

6,6(RSWP) (simple) portfolio. Conclusions regarding the comparison between
the hybrid strategy and the GRSWP (simple) strategy are the same as above.

D/G Strategy in the Recent Past (2001-2016)

Table 9 in the next page illustrates the average annualized performance of D/G (simple) equal-weighted
(EW) and G-weighted (GW) portfolios with a one and a three month holding period built considering
the Dow Jones Industrial Average stocks universe in the recent past (2001-2016). Table A24 in the Ap-
pendix gives a complete overview of an additional holding period of six months.
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Annualized performance of D/G (simple)
DJIA (2001-2016)

D/G (EW) D/G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 -37.3 29.81 -1.25 -28.06 -44.89 35.78 -1.25 -29.67

0 3 -34.1 27.83 -1.23 -26.9 -42.22 32.8 -1.29 -29.86
6 -41.2 29.46 -1.4 -32.21 -47.46 34.93 -1.36 -32.77

12 -50.32 31.88 -1.58 -38.93 -53.53 37.97 -1.41 -35.71
1 114.2 24.71 4.62 57.98 124.3 28.26 4.4 53.87

1 3 117.2 23.68 4.95 61.63 122.3 28.13 4.35 53.5
6 138.4 25.6 5.41 64.13 151.1 29.86 5.06 58.4

12 135.5 24.35 5.56 66.42 158.4 29.26 5.41 61.49
1 0.98 20.99 0.05 0.84 8.89 24.16 0.37 6.36

6 3 -1.25 20.43 -0.06 -1.1 3.59 23.64 0.15 2.69
6 -1.25 19.29 -0.07 -1.17 5.98 21.81 0.27 4.8

12 3.37 18.41 0.18 3.24 5.31 21.33 0.25 4.37
h = 3

1 60.55 21.17 2.86 74.7 57.54 25.15 2.29 60.22
0 3 62.76 20.68 3.04 78.83 58.61 24.64 2.38 62.46

6 65.55 25.6 2.56 66.04 65.16 31.5 2.07 53.4
12 58.61 20.86 2.81 73.76 61.5 26.33 2.34 60.88
1 24.29 20.48 1.19 34.25 24.43 23.71 1.03 29.74

1 3 24.74 19.34 1.28 36.88 23.97 23.25 1.03 29.8
6 29.42 23.63 1.25 35.38 31.65 29.01 1.09 30.8

12 25.44 19.32 1.32 37.9 28.98 24.6 1.18 33.53
1 56.39 23.33 2.42 62.82 66.58 26.07 2.55 64.64

6 3 57.03 23.82 2.39 62.1 67.3 26.79 2.51 63.5
6 55.21 19.33 2.86 74.46 68.24 22.04 3.1 78.08

12 59.8 19.75 3.03 77.97 69.08 22.95 3.01 75.74

Table 9: Performance of D/G (simple) portfolio optimizations performed using components of the DJIA (2001-
2016) for a holding period of one and six months. This strategy consists in buying a long portfolio and
selling a short portfolio. The long portfolio includes stocks having a positive momentum (D( f )) at the time
t computed over the previous f months; moreover, the selected stocks must have a positive acceleration
(G( f )) at time t quantified using the same formation period. The short portfolio sells stocks having a
negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule are applied:
equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed by
one or six months after the portfolio construction. A one-month period is assumed to correspond to 21
days. The performance is given as an average annualized return (µ) and annualized volatility (s) both
expressed as a percentage as well as annualized Sharpe Ratio (SR). A t-test is employed to check the
statistical significance of the results. Critical values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).

It interesting to see that this strategy also leads to positive returns in today’s financial market envi-
ronment (recent past) and it generated significantly positive averaged annualized returns in 18 out of
24 scenarios for the equal-weighted D/G (simple) strategy and in 20 out of 24 if G-weights (GW) are
applied. Negative returns are generated mostly by a holding period of one month and no delay in
the investment. However, delaying the investment by one month (s = 1) and holding the portfolio
for one month (h = 1) makes it possible to achieve very high Share Ratios which vary from about
4.62 to about 5.56 (with f =12) for the EW D/G (simple) strategy and from about 4.34 to about 5.41 for
the GW D/G (simple) strategy. Moreover, a holding period of three months also generated very good
performances and it always outperforms portfolios with holding periods of six months (see Table A24
in the Appendix). The EW strategy outperforms the GW D/G (simple) strategy in 23 out of 36 scenarios.

If we compare the results of the D/G (simple) strategy to DLS or GLS (simple) portfolio optimizations
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(see Table A3 in the Appendix) as well as to the DRSWP or GRSWP (simple) strategies (see Table A8 in the
Appendix), we can observe that the hybrid strategy is always much more profitable than both previous
optimizations, except for the scenario where the hybrid strategy is performing negatively. More pre-
cisely EW and GW D/G (simple) portfolios outperform DLS or GLS (simple) or DRSWP or GRSWP (simple)
strategies in 30 (EW) or 32 (GW) out of 36 scenarios. Moreover, the hybrid strategy also performed
better than the long and short sub-portfolio of the LS (simple) strategy observed separately (see Table
A4 and A5 in the Appendix).

Table A25 in the Appendix shows the performance of D/G (simple) portfolios constructed using the
data set which includes the components of the Standard and Poor 500 in the recent past (2001-2014).
We can observe that applying this strategy to a larger market, there is a decrease in the annualized
portfolio volatility as well as in the number of the negative returns (which are generated only by the
scenario h = 1 and s = 0). Nevertheless, there is also a reduction in the magnitude of positive re-
turns but despite that the strategy remains very profitable and allows us to achieve average annualized
returns between 54% and 75% (i.e. SR of about 2.04 and 2.75) investing for one month (h = 1) and
delaying the investment by one month (s = 1), using ”relative” G-weights. Moreover, considering a
larger market the GW strategy seems to be more profitable than the EW D/G (simple) strategy: indeed
it outperforms the equal-weighted investment in 28 out of 36 scenarios. As before, holding the stocks
too long (h = 6) has a negative impact on performance.

As was shown previously, the D/G (simple) strategy outperforms previous DLS and GLS (simple) and
DRSWP and GRSWP (simple) strategies in each scenario, but not in the scenario where the hybrid strategy
generated negative returns (see Table A11 and A12 in the Appendix for a comparison).

To sum up, the D/G (simple) strategy seems to be significantly profitable in today’s market environ-
ment. A holding period of three months seems to be adequate and always leads to high positive an-
nualized returns. However, investing with one month delay (s = 1) and holding the portfolio for one
month (h = 1) allows us to achieve the maximum performances, i.e. very high Sharpe Ratio which
varies from a minimum of 2.76 (investing using the S&P500 stocks universe) to a maximum of 5.41 (for
the DJIA stocks universe) using a formation period ( f ) of one year. Moreover, we can see that holding
the stock for too long (six or twelve months) is not profitable in the D/G (simple) strategy. This strategy
also generated higher returns in the distant past, but the best performance arose in the recent past.

4.3.2 Hybrid D/G Strategy: Wavelet Approach

This section implements a series of EW and GW D/G strategies which are optimized for factors de-
tected through the Maximum Overlap Discrete Wavelet approach. For this analysis, only the recent
past is considered, i.e. investment are back-tested in the period of time between 2001 and 2016.

First, the investment strategy is tested for the DJIA stocks universe and considering D and G-factors
detected through the wavelet approach on a daily (W) or on a monthly (WM) basis (i.e. applying
the wavelet transform on daily or monthly stock price series). Moreover, calibrated daily (WC) and
monthly (WMC) factors are also implemented. Afterwards, the hybrid strategy is also optimized by
considering the S&P500 stocks universe for non-calibrated and calibrated factors.
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Dow Jones Industrial Average (2001-2016)

First, the investment strategy is tested for the DJIA stock universe.

Tables A26-A29 in the Appendix show the average annualized performance of equal-weighted (EW)
and G-weighted (GW) D/G portfolios constructed using the Dow Jones Industrial Average stock uni-
verse and considering the period of time between 2001 and 2016 (recent past). Tables A26 and A27 in
the Appendix are optimized for factors detected from daily stock price series while Tables A28 and A29
implement factors detected on a monthly basis (from monthly price series). Furthermore, Tables A26
and A28 use a non-calibrated D and a G-factor while Tables A27 and A29 are optimized for calibrated
factors.

Irrespective of the calibration or the time-scale of detection (daily or monthly), EW and GW D/G port-
folios display negative returns for a holding period (h) of one month and no or six months delay in the
investment. Moreover, very low returns are generated for a ”long” holding period of six months (h = 6)
in comparison to ”shorter” holding periods of one or three months. As was shown previously, by imple-
menting the D/G (simple) strategy a holding period of three months always leads to positive averaged
annualized returns, which are relatively high for no or a delay of six months in the investment; how-
ever, the best risk-adjusted performance was investing by using the D/G (simple) strategy for a period
of one month (h = 1) but delaying the investment by one month (s = 1) after portfolio construction.
Furthermore, equal-weighted hybrid strategies outperform the relative-weighted (G-weighted) strate-
gies in more than half the scenarios; however when factors are detected on a monthly basis, the GW
portfolios might lead to higher SR compared to EW portfolios.

Moreover, if we consider only the ”best” scenarios, i.e. a one month holding period with one month
delay in the investment ( h = 1 and s = 1) and three months holding periods with no or six months
delay (h = 3 with s = 0 or s = 6), there is not a clear pattern about the influence of the resolution
level j to the portfolio performance. In general higher resolution levels (j) such as for example j = 4
and j = 5 seem to improve the risk-adjusted return; however, sometimes the highest Sharpe Ratio is
obtained using a resolution level of j = 3.

Furthermore, comparing Table A26 with Table A28 in the Appendix, we can observe that on average
detecting factors on a monthly time-scale (using monthly stock price series) improves the performance
of the portfolios compared to a daily time-scale and an additional calibration of the detected factors (see
Table 29 in the Appendix) might further raise portfolio performance. Indeed, considering a holding pe-
riod of three months, D/G (WMC) portfolios optimized for calibrated factors detected on a monthly
time-scale generated higher risk-adjusted returns compared to non-calibrated D/G (WM) portfolio in
9 out of 15 scenarios; if we considers only the ”best” scenario, i.e. a one month holding period and a
one month delay in the investment execution, the calibrated version generated an higher risk-adjusted
return in comparison to the non-calibrated strategy in 4 out of 5 cases.

More precisely, if we look only at the previously defined ”best” parametrizations (h = 1, s = 1), a D/G
(W) strategy, i.e. a portfolio optimized with not-calibrated factors detected on a daily basis, achieved the
maximal annualized Sharpe Ratio of about 4.47 for a resolution level j = 3 using equal weights while
the same portfolio optimized for calibrated factors detected at the same resolution level improves the
Sharpe Ratio to 4.4. Furthermore, in the best scenario, the risk-adjusted profitability generated might
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further rise if we construct a D/G (WM) portfolio (optimized for non-calibrated factors detected on a
monthly time-scale), i.e. the annualized Sharpe Ratio reached the value of 5.26 for the G-weighted port-
folio (GW) when factors are detected at the resolution level j = 5. Finally, implementing calibrated
factors detected on a monthly basis at the level j = 5, the (GW) D/G (WMC) portfolio generated the
overall higher risk-adjusted return of 5.76 in the best scenario.

Comparing D/G (simple) portfolios (see Table A24 in the Appendix) to wavelet-based D/G portfolios
(see Table A27-A29 in the Appendix), it appears that factors detected using a wavelet transform per-
formed on a daily time-scale do not improve the portfolio performance compared to simple detected
factors. However, using monthly time series as input variables for the wavelet transform, it is possible
to reach portfolio performances that are more similar to the performance of the D/G (simple) portfolio
and if the factors are calibrated there is a significant improvement in the portfolio return compared to
the simple approach (see Table A29 in Appendix). Indeed, the calibrated (GW) D/G (WMC) portfolio
reached a Sharpe Ratio of about 5.76 in the ”best” scenario, which is higher compared to the risk-
adjusted return of the (EW) D/G (simple) portfolio (SR=5.56); moreover, the wavelet-based strategy
optimized for calibrated factors detected at resolution levels of j = 3 and j = 4 increased the risk-
adjusted profitability not only in the best scenario but also for other parametrizations compared to the
simple approach, except for a holding period of three months with a delay in the investment of six
months, where the strategy based on the simple approach outperforms the calibrated wavelet-based
optimization, i.e. the D/G (WMC) portfolios.

Standard and Poor 500 (2001-2014)

Tables A30 and A31 report the performance of equal-weighted (EW) and G-weighted (GW) D/G strate-
gies optimized using the data set including stocks from Standard and Poor in the period of time be-
tween 2001 and 2014. Portfolios have a holding period of one or three months and factors are detected
through the MODWT approach. Moreover, Table A30 shows the results of portfolios optimized for
non-calibrated factors while Table A31 shows the performance of wavelet-based calibrated D/G (WMC)
strategy.

Performances are very similar as previously, i.e. as for D/G strategies constructed using the DJIA stocks
universe. More precisely, the average annualized return is fairly negative if the investment is only held
for one month and is not delayed in time. Moreover, lower or even negative annualized returns also ap-
pear if the investment is delayed by six months and the holding period is very short (h = 1). However,
as before, the best performance is given by a one-month holding period and a delay in the investment
of one month: the portfolio implementing non-calibrated factors reached the maximal Sharpe Ratio of
about 2.72 (in the GW portfolio) while the calibrated portfolio (GW) generated an annualized return
of about 2.88. Considering a three-month holding period, factors detected at the resolution level j = 4
generated improved performance compared to other resolution levels; moreover, on average calibrated
portfolios show a higher annualized risk-adjusted performance. Finally, comparing wavelet-based D/G
strategies to DLS and GLS (simple) or DRSWP or GRSWP (simple) strategies (see Table A11 and A12),
we can observe that the hybrid strategy generated strong improvements in terms of annualized perfor-
mance in the S&P500 stocks universe, except for the scenario when it generated a negative return (h = 1
and s = 0).
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To sum up, the calibrated wavelet transform approach performed on a monthly basis allows us, on
average, to also increase performance for the D/G portfolio optimization strategy

4.3.3 D/G Strategy: Number of Assets in the Portfolio

It has been demonstrated through back-tests, that the hybrid D/G strategy was able to generate very
high risk-adjusted returns in the distant past and it performs even better in today’s financial market
environment. This newly developed strategy does not invest in a constant number of assets as happens
in the Long-Short strategy (where the long and the short portfolio always contains the same number of
securities according to a selected percentile) or as happens in the RSWP strategy, which invests in all
stocks of a market. This strategy has the purpose of picking up ”booming” or ”falling” securities which
are generating increasingly positive or negative returns as quickly as possible in order to benefit from
the short-term upward or downward price acceleration. Therefore, this section briefly investigates the
composition of the best simple and the best wavelet-based D/G portfolio by determining the number
of assets over the time in the long and in the short sub-portfolios. This analysis is performed using the
DJIA stocks universe for the recent past, i.e. between 2001 and 2016. The best portfolio generated by
the D/G (simple) strategy as well as by the wavelet-based approach is the same and it is defined with
the following parametrization: a one year holding period ( h = 1), one month delay in the investment
execution after the portfolio construction (s = 1) and the simple approach implemented a formation
period ( f ) of one year while the wavelet approach detected the factor on a monthly basis at the resolu-
tion level (j = 3).

The first chart (see Figure 1 in the next page) indicates the number of assets over the time in the long
D/G (simple) sub-portfolio. More precisely, at each day t, a long portfolio is built according to the hy-
brid strategy, i.e. the long portfolio buys stocks with a positive momentum (i.e. a positive D) plus an
upward accelerating price (i.e. a positive G); both factors are detected with a simple approach over a
formation period ( f ) of one year. It is clear that there is a cyclical ”trend” in the number of stocks held
in the long portfolio.

The second chart (Figure 2 in the next page) illustrates the number of assets over the time in the short
(D/G)1,12 sub-portfolio. As previously, at each day t a short sub-portfolio is built according to the hy-
brid strategy, i.e. the short portfolio sells stocks having a negative momentum (i.e. a negative D) and a
downward accelerating price (i.e. a negative G ), both factors are detected with a simple approach over
a formation period ( f ) of one year. As for the long sub-portfolio, the number of assets included in the
short sub-portfolio seems also to have a cyclical behaviour. Furthermore, there is a symmetric relation
between the long and the short cyclical pattern.

Moreover, Figure A13 in the Appendix gives a joint overview of the two previous charts, i.e. it rep-
resents the number of assets over the time in the long (blue line) and in the short (orange line) sub-
portfolios.
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Figure 1: The chart indicates the number of assets in the (D/G)1,12 long sub-portfolio for optimizations performed
between 2001 and 2016 and using the universe of securities (data set) including the component of the
Dow Jones Industrial Average. More precisely, at each day a long sub-portfolio is built according to the
hybrid strategy, i.e. the long portfolio buys stocks with a positive momentum (i.e. a positive D) and with
an upward accelerating price (i.e. a positive G), both quantified over the last f = 12 months. Factors are
detected with the simple approach. The portfolio has a holding period of one month (h = 1); moreover,
the investment is delayed in time of s = 1 months. This analysis is performed using MATLAB.

Figure 2: The chart indicates the number of assets in the (D/G)1,12 short sub-portfolio for optimizations performed
between 2001 and 2016 using the universe of securities (data set) including the component of the Dow
Jones Industrial Average. More precisely, at each day a short sub-portfolio is built according to the
hybrid strategy, i.e. the short portfolio sells stocks having a negative momentum (i.e. a positive D) and a
downward accelerating price (i.e. a positive G), both quantified over the last f = 12 months. Factors are
detected with the simple approach. The portfolio has a holding period of one month (h = 1); moreover,
the investment is delayed in time by s = 1 months. This analysis is performed using MATLAB.
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In general, we can notice that there are four different ”patterns” in the number of assets in the long or
the short sub-portfolio: the first pattern starts in 2001 until the start of 2003, the second is between 2003
and 2007, the third between the end of 2007 and the middle of 2010 and the last between the second
quarter of 2010 and 2016.

More precisely, considering a market of 30 securities (i.e. the Dow Jones Industrial Average), between
2001 and 2002, there is a downward trend in the number of securities included in the long portfolio, i.e.
in 2001 this number fluctuated between 10 and 15 but in 2002 there was first a significant increase to 20
and then a fall to zero. The short portfolio behaves in the opposite direction: in general, there was an
upward trend which reached 28 securities for the short portfolio in 2003.

Moreover, in 2003 the number of securities in the long portfolio increased again to 30 and then fluc-
tuated around 10-12 securities until the end of 2006 when this number rose again to around 29. Con-
versely, for the short portfolio after the growth of 2003, there was a strong decrease in the number of
securities and then this number fluctuated between 5-10 securities before dropping to zero at the end
of 2006. The strong, long and weak short holding behaviour continued until the first and the second
quarter of 2007.

After the second quarter of 2007, a new pattern started which was more volatile: there was first a
significant decrease in the number of assets held in the long portfolio and a significant increase in the
number of securities in the short portfolio. We can notice that from 2008 until the second quarter of
2009, the D/G strategy was investing predominating short (i.e. during the financial crisis). Thereafter,
in the second half of 2009, there was a strong decrease in the number of assets in the short portfolio to
give space to an investment focussed on the long side. The transition lasted until around the second
quarter of 2010. Thereafter, from the second half 2010 and 2016, there was an assessment of the number
of assets held in both sub-portfolio, i.e. the number of stocks in the long sub-portfolio fluctuated be-
tween about 5 and 20 (with some exceptions to 25 stocks) while the short sub-portfolio counted about
5 and 10 securities. The only particularity is a short increment (decrease) int he number of stocks in the
short (long) portfolio at the end of 2014.

Furthermore, Figure A14-A16 in the Appendix illustrates the same analysis performed with the best
wavelet-based D/G portfolio which is optimized for D and G factors detected from monthly stock price
series using the MODWT approach. Figure A14 illustrates the number of assets in the long D/G sub-
portfolio while Figure A15 in in the short D/G sub-portfolio. Finally, Figure A16 gives a joint overview
of the number of securities in each sub-portfolio, where the number of stocks in the long are sketched
by the blue line and the amounts of securities in the short sub-portfolio by the orange line. The con-
clusion are very similar as above, since portfolios have been constructed on a monthly frequency (i.e.
each month), the line is smoother and represents lower variation. The patterns explained above are also
quite clear by investing using the wavelet-based approach. Here one can clearly see the predominantly
short investment during the financial crisis. Moreover, we can observe that on average the number of
stocks in the long portfolio fluctuates between 5 and 20 while the average number of securities in the
short sub-portfolio oscillated between 0 and 10 with some exception, i.e. some peaks above 15 or even
three peaks above 25.

To give a general overview of the number of assets in both portfolios, the long sub-portfolios have
an average number of assets equal to 13 while the maximal securities held in a long sub-portfolio is
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30 and the minimum is zero. Furthermore, the short portfolio has an average number of assets (be-
tween 2001 and 2016) equal to 8.3 and the maximal number of securities held in the short portfolio is
29 while the minimum is zero. This means that there are circumstances where this strategy invests only
long or short in but on average the number of securities held in the long (short) portfolio is 13 and 8.3.
To sum up, unlike the Long-Short strategy which invests in a constant number of securities or unlike
the RSWP strategy which invests in the whole market, the D/G strategy does not invest in a constant
number of securities. Moreover, this short study documented a cyclical pattern in the number of stocks
included in the long or short sub-portfolio.

4.3.4 D/G Information Ratio: Comparison with other Strategies

In order to have a further comparison between the D/G strategy and LS or RSWP optimizations, below
there is a short analysis comparing the Information Ratio of the best performing portfolios. Each month,
a portfolio having a holding period of one month is constructed according to a selected strategy and
using a specific stocks universe (DJIA or S&P500), considering the distant and the recent past. More-
over, the monthly performance of the equal-weighted market index (including all the securities in the
implemented data set) is computed to calculated the excess return of the selected strategy. The section
3.2.1 Performance Marks gives an explanation about the Information Ratio.

Table 10 shows the IR for the best performing Ds, f (simple) and Gs, f (simple) portfolios as well as the
Ds,j (WM), Gs,j (WM) portfolios optimized using the LS and the RSWP strategies and considering the
S&P500 as well as the DJIA stocks universe for two different period of time: the distant past (1984-2002)
and the recent past (2001-2014/2016). Moreover, Table 11 shows the IR for the D/G strategy computed
using factors detected with the traditional (simple) and the calibrated wavelet approach (WMC).

Comparison of the Information Ratio (IR)
of the best performing LS and RSWP strategies

IR
Strategy D6,6(simple) G6,6(simple) D6,4(WM) G6,4(WM)

h = 1
LS - DJIA (1984-2002) 0.04 -0.15 -0.05 -0.18
LS - DJIA (2001-2016) -0.03 -0.03 -0.09 -0.08

LS - S&P500 (2001-2014) -0.08 -0.08 -0.11 -0.12
RSWP - DJIA (1984-2002) 0.09 -0.2 0.01 -0.17
RSWP - DJIA (2001-2016) -0.02 -0.02 -0.08 -0.08

RSWP - S&P500 (2001-2014) -0.09 0.02 -0.13 -0.13

Table 10: Comparison of the Information Ratio (IR) of the best performing Ds, f (simple) and Gs, f (simple) as well
as Ds,j (WM) and Gs,j (WM) LS and RSWP strategies using the S&P500 as well as the DJIA stocks universe
and considering the distant (1984-2002) and the recent past (2001-2014/2106).

As demonstrated in Table 11 (in the following page), in today’s financial environment (2001-2014/2016)
the DLS or GLS as well as DRSWP or GRSWP strategy optimized for factors detected with the simple or
the wavelet approach (WM) do not generate a positive Information Ratio; this means that the portfolio
performance is lower than the benchmark return (i.e. the market return). However, using the D/G
strategy it is possible to achieve adequate risk-adjusted excess returns in today’s financial environment.

Page 61 University of Zurich, Empirical Finance, September 21, 2018



4 Portfolio Optimization Results

Comparison of the Information Ratio (IR) of the best performing
D/G strategies

IR
Strategy (D/G)1,12(simple) (D/G)1,3(WMC)

h = 1
DJIA (1984-2002) 0.49 0.45
DJIA (2001-2016) 1.13 0.90

S&P500 (2001-2014) 0.49 0.45

Table 11: Comparison of the Information Ratio (IR) of the best performing (D/G)s, f (simple) and (D/G)s,j (WMC)
portfolios using the S&P500 as well as the DJIA stocks universe considering the distant (1984-2002) and
the recent past (2001-2014/2106).

4.4 Winsorization and Portfolio Performance

In this section, a few selected portfolio optimizations are performed using winsorized split and dividend-
adjusted log-returns. More precisely the D/G as well as the RSWP strategy is implemented using the
DJIA or S&P500 stocks universe (winsorized), in order to test if the winsorization approach (which is
explained in the section 2.1.2 Assumptions) might improve the portfolio return.

Table A32 in the Appendix reports the performance of (DD
RSWP)

wins and (GD
RSWP)

wins (simple) strate-
gies performed using winsorized returns considering the S&P500 stocks universe (2001-2014). If we
compare it with the performance of non-winsorized DD

RSWP and GD
RSWP (simple) portfolio optimizations

(see Table A12 in the Appendix), we can observe a slight improvement mostly in scenarios with nega-
tive returns. The winsorized (DD

RSWP)
wins (simple) strategy generated improved results in 16 out of 24

scenarios whilst the winsorized (GD
RSWP)

wins (simple) strategy improved the performance in 12 out of 24
scenarios. DD

RSWP (simple) strategy outperformed the non-winsorized corresponding strategy mostly
for a holding period of six months but it always performs better for a holding period of one month and
a delay in the investment of six months. Furthermore, the winsorized (GD

RSWP)
wins (simple) optimiza-

tion always generated greater results when the factor is detected over a formation window of f = 12
months for a holding period of six months.

Moreover, Table A33 reports the performance of winsorized (DD
RSWP)

wins (WMC) and (GD
RSWP)

wins

(WMC) portfolio optimizations performed using the S&P500 stocks universe. The winsorization ap-
proach lead to a better performance compared to non-winsorized optimizations in 18 out of 24 scenarios
for momentum-based portfolio but never in the scenario of a month holding period and no delay in the
investment (see Table A22 in the Appendix for a comparison). Moreover, the winsorized (GD

RSWP)
wins

(WMC) strategy increased the performance compared to non-winsorized GD
RSWP (WMC) in 14 out of 24

and it outperforms the winsorized (DD
RSWP)

wins (WMC) strategy in 12 out of 24. Furthermore, we can
observe that using the winsorization methodology, the number of negative returns in the momentum-
based strategy is drastically reduced, for example the non-winsorized DD

RSWP (WMC) investment gener-
ated a negative average annualized return in 8 scenarios out of 24 while the corresponding winsorized
strategy only in 3 scenarios. However, applying the winsorization to the acceleration ( (GD

RSWP)
wins

(WMC)) strategy it decreased the number of scenarios showing negative returns only by one.

Table A34 and A35 in the Appendix reports the annual performance of the winsorized (D/G)wins (sim-
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ple) portfolio optimization performed using the DJIA stocks universe; the former considers the recent
past (2001-2016) while the latter the distant past (1984-2002).

Comparing Table A34 with Table A24 we can observe, that the winsorization approach generated on
average the same performance as the corresponding non-winsorized optimization. There is only one
scenario where the use of winsorized log-returns as an input variable might increase the portfolio per-
formance and it is the scenario characterized by a month holding period and a month delay in the
investment for a D and a G-factor detected using formation periods ( f ) of six and twelve months. More-
over, this is also confirmed by comparing Table A35 to Table A23 in the Appendix, i.e. the performance
of the winsorized (D/G)wins (simple) strategy is similar to the previous corresponding non-winsorized
strategy; however, we can find 5 scenarios out of 24 where winsorization generated a slightly improved
performance.

To conclude, applying the winsorization approach, it is possible to decrease the number of scenarios
having negative performance but it seems not to be possible to achieve a significant increase in the
profitability of both the RSWP and the D/G portfolio optimization.
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This research investigated two important financial market anomalies which seemed to stem from the
behavioural irrationality of investors: the momentum and the acceleration effect (Fama, 1998). Con-
cluding my investigation, I will aim to give a critical explanation and interpretation of the D and G
portfolio optimization results which have been performed considering the U.S. equity stocks market.

The main evidence documented in this study is that in today’s financial environment (i.e. in the recent
past) portfolios based on the momentum (D) or the acceleration factor (G) are returning lower (some-
times even negative) performances compared to the distant past (i.e. the last two decades of the 20th
century). However, a new hybrid strategy has been developed, i.e. the D/G strategy, which generated
very good performances also in the today’s financial market regime.

To give a general overview regarding portfolio optimization results: by applying different D or G-based
investment strategies and considering a large number of parametrizations, it is interesting to see that
this study reconfirms several facts already documented in the paper by Ardila, Forrò & Sornette (2015)
as well as in previous articles about momentum strategies (Jegadeesh & Titman, 1993, 2001). In particu-
lar, there is evidence that investment strategies according to the D or G parameter in the whole universe
of stocks and not only in securities having extreme returns are more profitable. Moreover, G-allocations
seem to perform better in the long-term (i.e. for longer investment holding periods) while there is no
acceleration in the short-term, i.e. it is less or even not profitable to detect the G-factor over a short
formation period (of one or three months). Unlike the paper by Ardila, Forrò & Sornette (2015), there is
little evidence that an acceleration-based portfolio outperforms momentum; a possible explanation is
given later in this section. Furthermore, similarly to previous researches, a strategy which invests with a
delay of six months after portfolio construction performed with factors detected using the ”traditional”
simple approach over a formation period of six months generates the best performance in term of risk-
adjusted return, if we hold the portfolio for one month. This is the most proficient strategy already
documented by Jegadeesh & Titman (1993), i.e. the 6/6 momentum strategy in this study denominated
as D6,6-allocation. However, if we compare the momentum as well as the acceleration performance of
the last two decades to the performance of the two last decades of the 20th century (1980-2000), there
is a strong reduction in the portfolio return which is not even fair comparable with the distant past
profitability.

Additionally, this study developed two tools to improve the detection of the D and the G-factors: the
trend-based and the wavelet-approach. As was stated in the previous section, the trend-based (EMA)
detection increased the performance of both the momentum and the acceleration portfolios in most
scenarios while computing the momentum using the Simple Moving Average Crossovers approach al-
lows to increase the performance of G-allocations. Furthermore, the MODWT approach performed on a
monthly basis (WM) generated an improvement in the performance for both factors only for short-term
investments with one-month and with no or one-month delay in the investment execution while the cal-
ibrated version of the MODWT approach seems to further increase the risk-adjusted return. However,
since the calibration shifts the stock’s price series backwards (i.e. it corrects the lag), its implementation
in the portfolio optimization requires firstly a forecast and an estimation of future stock prices; there-
fore, this approach is not directly applicable. Moreover, by analysing the behaviour of the portfolio
performance for strategies optimized with the Maximum Overlap Discrete Wavelet Transform tool at
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a different resolution levels (i.e. time-scale), it is clearly visible that momentum is more evident over a
period of three-twelve months while portfolios based on the acceleration factor achieve a higher return
when the G is measured over a formation period between 16 and 32 months. Furthermore, applying the
winsorization approach, it is possible to decrease the number of scenarios having negative performance
but it seems not to be possible to achieve a significant increase in the profitability

Nevertheless, even using better tools to quantify the momentum or the acceleration factor, the dis-
crepancy between the distant past and recent past performance remains significant. The fact that the
momentum strategy is not profitable by the start 21st century was also documented for example by
the following paper: Jegadeesh and Titman (2011), Essay UK (2018), Hwang & Rubesam (2008) and
Abourachid, Kubo& Orbach (2017). The first part of this section indicates four possible interpretations
for the lower or even negative performance of momentum and acceleration allocations.

The first suggested explanation regarding the lower recent performance of D and G portfolios (the
first two decades of the 21st century) assumes that there are potential biases affecting the endoge-
nous structure of this investigation, i.e. the sample selection bias and survivorship bias (Investopedia,
2018m). The sample selection bias happens when non-random data is selected for a study. Moreover,
the survivorship bias belongs to the sample selection bias group and it might only be common dur-
ing back-testing tasks if securities with data available for the whole investigation period are selected
(Investopedia, 2018n). Indeed, this analysis is performed considering companies which were included
in the DJIA or S& P500 index for the whole length of the analysis; therefore, companies which failed
during the investigation period as well as new included stocks have not been considered. This might
have an impact on both the momentum and the acceleration allocations performance, since for example
potential profits deriving from shorting stocks exhibiting a drop in the price which led to a default are
missed. Moreover, the lower evidence of the G-profitability over D might also stem from selection bias:
the acceleration has been previously documented as a ”transient (non-sustainable)” phenomenon re-
lated “to positive feedbacks influencing the price formation” and since securities involved in particular
events might be discarded from the analysis, a portion of this profit might be lost. However, since the
data set for the distant past is also affected by selection bias, but there is evidence of momentum in this
time period, this bias might not be the only cause of the temporal divergence in the performance, in
particular for momentum strategies.

A second interpretation of the discrepancy in the performance of D or G strategies between the dis-
tant and the recent past might be found in the data mining bias. While data mining indicates an action
to find and extract patterns from a large volume of historical data to build predictive financial models
or to develop winning investment strategies, the data mining bias consist in remaining erroneously
stuck in such data mining practice (Investopedia, 2018m). Indeed intergenerational data mining, i.e.
the on-going use of information already revealed in prior financial papers might be ineffective, since it
might happen that when a phenomenon is widely recognized from market participants, the implemen-
tation of trading strategies geared to anticipating and taking advantages of this effect has an impact on
the stock price which will be adjusted for the anomaly, i.e. the effect is priced into the stock value (In-
vestopedia, 2018m). Thus, the momentum effect has been largely investigated and momentum-based
strategies are widely adopted. Moreover, since acceleration is an effect which complements momen-
tum, the data mining bias might negatively affect also G-profits.

However, as is stated in the paper by Hwang & Rubesam (2008): ”Considering that momentum has
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been very popular in academic works as well as in practice since the seminal paper by Jegadeesh & Tit-
man (1993), we wonder why it took such a long time for investors to erode the profit opportunity from
simple momentum strategies. If the market is efficient, its participants are expected to act quickly in
exploiting arbitrage opportunities if momentum is not related to priced risk”. The authors illustrated a
possible explanation for the delayed erosion of momentum profits in the late 1990s: not all market par-
ticipants are able to easily perform momentum strategies since the short (i.e. the loser) portfolio might
mainly include small cap companies which are illiquid. However, the study by Hwang & Rubesam
(2008) also suggests a complementary explanation which might also be adequate to interpret the results
obtained in this research. More precisely, investigating the U.S. equity market between 1927 and 2006
with a multi structural breaks model, they documented that ”momentum profits are driven from dif-
ferent sectors in different periods” as for example by the energy sector during the period of time (1977-
1982) or the financial sector (1982-1994). Thus, according to Hwang & Rubesam (2008), momentum only
generated significantly positive profits during certain time periods and this strategy performed poorly
since the last structural break of the year 2000. Therefore, an explanation for delayed disappearance
(considering that momentum was firstly reported in 1993) might be found in the unexpected hi-tech
and telecom stocks bubble in the late 1990s. More precisely, according to Hwang & Rubesam (2008), at
the start of the 1990s the momentum premium increased due to the inclusion of booming high-tech and
telecom stocks in the long (winners) portfolio while the ”old-economy” was sold, i.e. the momentum
was driven by winners. Afterwards, after the ”burst of the bubble”, momentum profit was still high
for a few years since the ”previous inflated” high-tech and telecom prices dropped and they were se-
lected in the looser portfolio (Hwang & Rubesam (2008)). Moreover, since the momentum strategy also
consists in shorting stocks, as was stated previously, according to the authors in the last decade of the
20th century due to the complexity of this operation investors were not induced to invest according to
this strategy; however, due to the profits deriving from momentum investing during the telecom bub-
ble, the strategy became more popular and the number of hedge funds increased. Due to the entrance
into the market of these specialized financial institutions which were easily able to undertake active
trading strategies (such as momentum) at lower costs and with fewer constraints, momentum (as well
as acceleration) profits might be cancelled by successive price adjustments in the market following the
widespread implementation of this strategy.

Additionally, a fourth and final interpretation relies on the assumption that momentum and acceler-
ation anomalies also continue to persist in today’s financial environment but, as in the paper by Daniel
et al. (2012), their performance is affected by ”turbulent” (i.e. more volatile) financial market regimes.
In particular, the paper by Daniel et al. (2012) revealed that the performance of the momentum strategy
is ”highly left skewed and significantly leptokurtic 9”, i.e. it is characterized by ”infrequent but larger
loss”. According to Daniel et al. (2012), this distribution might be drawn by a ”mixture of distribu-
tions”, more precisely, by two hidden states: a ”calm” and a ”turbulent” market state. Previous studies
by Abourachid, Kubo,& Orbach (2017) or by Maheshwari & Dhankar (2017) documented a profound
low profitability of the momentum strategy during the global financial crisis period (2007-2009), gen-
erally defined as ”momentum crash”. Moreover, according to Maheshwari & Dhankar (2017) market
volatility is “almost twice during financial crisis” compared to ”calm” market regimes, i.e. the pre-
and post-crisis period. Therefore, the low return of D and the G strategies is consistent with those
previous studies as well as with the theory of momentum crashes in ”turbulent” market regimes. In
particular, according to Daniel et al. (2012), the poor performance of momentum during turbulent and

9 A leptokurtic distribution is characterized by an excess positive kurtosis (kurtosis >3) and by fatter tails (Statistic How To, 2018).
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more volatile markets might be attributed to ”strong short-term reversal effects instead of trend con-
tinuation”. Fortunately, as is stated in the paper by Daniel et al. (2012), turbulent market regimes are
predictable and, therefore, the negative performance of momentum strategies can be avoided. Further-
more, as per the papers by Daniel & Moskowitz (2016), there is an additional interesting explanation
regarding the low performance of momentum strategies outside the normal (”calm”) market environ-
ment; indeed, the author stated that: ”in panic states, following multi-year market drawdown and in
periods of high market volatility, the price of past losers embodies a high premium”. This mean that
in the final phase of ”turbulent” market regimes, i.e. during the rebound phase, the looser portfolio
”experience strong gains” and due to the shorting of those assets a momentum crash is generated, i.e.
the momentum profit is reversed. This is also confirmed in this study by the fact that the performance
of the short sub-portfolio computed using the Long-Short ”traditional” strategy in the previous section
was at least greater than the long portfolio performance considering the recent past; this outcome sup-
ports the contrarian investment strategy which, as was explained in the first chapter, consists in buying
past losers and selling past winners. Moreover, since the acceleration effect is computed directly by
the momentum factor, the bad performance of acceleration-based (G) strategies in the recent past might
also be related to the state of the market, i.e. by the fact that the recent past includes the severe impact
of the global financial crisis.

Therefore, in my opinion, relying purely on past trends (i.e. on the direction of the trend) without
deeply observing the pattern of the trend as well as shifting regimes, might lead to setting up a port-
folio whose profit reverses within the investment period, mainly during ”turbulent” market regimes.
Therefore, in my view, it might still be possible to achieve profits by implementing strategies based on
the technical analysis also during a stressed and a more volatile financial environment, but we should
be more aware of the stocks which should be selected in the long or short portfolio.

Hence, from my perspective, investing according to the momentum or the acceleration factor sepa-
rately, without considering their relationship, might lead to unsuccessful investment as well as missed
potential profitable investments. Therefore, observing both signals at the same time might help to elu-
cidate patterns which might not otherwise be detected. An example is, if selecting a security to include
in the short portfolio only using the parameter G, i.e. we are going to include it if the G is negative
(or strongly negative), however if this security still has a positive D we might incur a loss in the short
term: the security is characterized by positive returns which decrease over time and shorting a portfolio
with positive return is not profitable (i.e. this asset has a decreasing upward price over the formation
window). The same happens if we buy a portfolio with a positive acceleration but whose momentum
is still negative: a security having decreasing negative returns (or a decreasing downward price).

As was explained previously, the D/G is an extension to the “elementary” time-series momentum strat-
egy which invests long in stocks with a momentum factor greater than zero and short in those with a
delta less than zero. The developed hybrid strategy aims to consider both factors simultaneously and it
consists in selecting securities to include in the long and in the short portfolio according to two condi-
tions: the direction of the momentum (“delta condition”) and the direction of the acceleration (“gamma
condition”). For each security, a signal is generated according to its D and its G factor and it indicates
which kind of trading activity is appropriate: buy, sell or not invest. Furthermore, according to the
magnitude of the acceleration factor one can choose to assign ”relative” G-weights to securities in the
corresponding long or short portfolio.
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In my opinion, the success of the D/G strategy is due to two important aspects; firstly the hybrid strat-
egy gives a clear signal about which kind of stocks to select, i.e. securities with a lower probability to
definitely reverse their trend in the short-term and which have a potential growth (or drop in case of
shorting securities) prospect; secondly a large part of the success is attributed to the fact that the hybrid
strategy allows the number of stocks in each portfolio to vary over time. Therefore it might be a better
strategy than to just invest in a constant number of stocks having extreme returns or in the whole mar-
ket; this allows us to keep track of the general market movements and does not include securities which
display an uncertain past performance (as for example positive momentum and negative acceleration).
As was shown in the previous chapter (section 4.3.3 D/G Strategy: Number of Assets in the Portfolio),
there is a cyclical pattern in the number of stocks held in the long or in the short D/G sub-portfolio
over time. It is clear that under a distressed market regime (as for example the worldwide financial
crisis 2007-2009) this strategy predominantly invests short. Moreover, it is interesting to see that a good
positive performance is possible by investing for three months, while longer holding periods lead to a
decrease in performance levels. This might indicate that if a stock price has a positive increasing past
(or negative decreasing) past performance, this will continue for a period of around three months and
thereafter the trend comes to an end, i.e. holding the portfolio too long is not profitable.

However, another important aspect that should be highlighted is the divergence of performance be-
tween the distant and the recent past if we apply the D/G for a one-month holding period. Indeed,
if in the distant past a D/G portfolio held for one month had a positive performance for each kind of
further parametrization (i.e. for each formation period and each delay in the investment), conversely
in the recent past the strategy generated strong negative returns if the investment was not delayed in
time but it generates the overall highest performance by delaying the investment by one month (as was
described in the previous section). My point of view is that waiting for one month before implementing
the strategy might be more profitable because it allows us to avoid ”transient” short-term reversal and
to gain an extra profit deriving from readjustment from this short-term drop. However, this is only a
hypothesis and further analysis should be performed to investigate this divergence.

Therefore, since D/G strategy is more ”flexible” as it do not invest in a constant number of stocks and
is more ”selective” because it only invests in a portion of stocks previously selected by the momentum
strategy, it allow us to avoid momentum crashes originate by volatile and ”turbulent” market regimes.

To sum up, the momentum as well as the acceleration profitability might depend on the ”state” of
the market (Cooper, Gutierrez,& Hameed, 2004). More precisely, as is documented by previous studies
such as the paper by Daniel et al. (2012), momentum crash is possible in more volatile and ”turbulent”
financial regimes. Therefore, this might be an explanation for the relatively low performance of D and G
strategies in the recent past, which is characterized by the dramatic impact of the global financial crisis
(2007-2009). However, this study adds evidence, that selecting stocks according to both the momentum
and the acceleration factors allows us to even generate a high return in a stressed financial environ-
ment. Indeed, the D/G strategy performed well not only in the distant past but also in the recent past.
However, to test the practical implementation of the delta-gamma strategy, further simulations which
consider transaction costs as well as additional market frictions should be executed.

Moroever, this analysis might be a starting point for further investigations, such as for example test-
ing the relation between the number of stocks held in each sub-portfolio to macroeconomics variables
as well as other financial indicators. Furthermore, another interesting analysis might be to measure
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acceleration not in an absolute quantification but in a relative quantification: as the percentage change
in momentum or to implement the idiosyncratic momentum to detect the G-factor.
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Summarizing, this research revealed the profitability of momentum and acceleration-based portfolio
optimization strategies considering the recent (2001-2016) and the distant past (1983-2002) and using
different detection proxies to quantify the momentum (D) as well as the acceleration (G) factor: the
”traditional” (simple), the trend-based and the wavelet transform (i.e. the Maximum Overlap Discrete
Wavelet Transform) approach; moreover, the winsorization methodology is also applied. Additionally,
a new hybrid strategy has been developed, i.e. the D/G (Delta-Gamma) allocation and it aims to con-
sider both the D and G to optimize portfolios.

There are two main evidences documented in this study, i.e. the lower profitability of D and G-based
strategies in today’s financial environment (i.e. in the recent past, 2001-2016) compared to the distant
past (i.e. the two last decades of the 20th century) and the good performance of the D/G allocation,
which generated a good return in the distant past and performs even better in today’s financial regime.

On average, the implementation of additional proxies to detect the momentum and the acceleration
effect revealed that the trend-based as well as the wavelet transform approach, in particular the (cal-
ibrated) MODWT performed on a monthly basis (i.e. using monthly stock prices as input variable),
allows us to improve the performance of D, G as well as D/G allocations; however the return of D and
G strategies remains very low in today’s financial environment. Moreover, the calibrated version of the
MODWT approach requires a forecast of future stock prices in order to be implemented, i.e. it is not
directly applicable.

This study adds convincing evidence about the negative performance of momentum (as well as the
acceleration) strategies during ”turbulent” and more volatile market regimes, i.e. in the analysis per-
formed on the recent past (2001-2016), a period of time characterized by the dramatic impact of the
global financial crisis (2007-2009). Moreover, there is significant evidence that implementing the hy-
brid D/G portfolio optimization, i.e. a more ”flexible” but more ”selective” investment strategy which
considers both momentum and acceleration as factors for the optimization and does not invest in a con-
stant number of assets allows us to even gain a good return during stressed and more volatile market
regimes.
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Appendix

Appendix

All figures and tables were created using MATLAB by the author, unless otherwise specified. The
MATLAB code as well as the data sets are available from the author.

The portfolio optimization strategy is written in this form: FACTORstrategy (detection mode), for ex-
ample the DLS (WMC) notation indicates the momentum-based Long-Short portfolio optimization per-
formed using a D-factor detected with the calibrated MODWT approach on a monthly basis.

Figures

Figure A1: The Simple Moving Average (SMA) is a good tool to remove the noise from stock prices.
Nevertheless, there is a lag between the original price series and its SMA signal. A shorter
SMA (blue) (K = 20) is faster and follows the price more closely, indicating more reversal
signals (as well as more false signals) than a longer SMA (red) (K = 100). Moreover, the
larger the lag parameter, the greater the delay in the estimated trend. Source: Learndatasci
(2018).
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Figure A2: The asymmetric simple moving average is a common technical indicator to determine trend
reversals (i.e. a reversal in the momentum). The crossover of a short (as for example 50-
days) and a long (200-days) moving average on a chart is an indication of a change in trend.
This figure shows an example of ”death cross” for the share price of Apple on the August
26 2016, hence when the short (50-days) moving average (green) of the Apple stock price
crossed below the longer (200-days) moving average (red). The Death Cross indicates a neg-
ative reversal in the future trend; indeed, the Apple stock price (black) fell. Moreover, it
is clear how this tool might anticipate future changes in trends (i.e. the chart shows a po-
tential upcoming ”golden cross” which indicates a positive reversion in the trend). Source:
ETFDailyNews (2016).
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Figure A3: The Discrete Wavelet Transform works with the Mallat (pyramidal) algorithm. The multi-
scale decomposition is performed by two fundamental wavelets (filters): the mother wavelet
(i.e. the high-frequency filter here represented by the function (h [j])) and the father wavelet
(i.e. the low frequency filter, here g [j]). The signal is simultaneously filtrated by a low-pass
and a high-pass function; since there is a relation (”quadrature mirror”) between the two
filters, the sample is automatically divided in two parts: a high-frequency series which is
extracted with the high-pass function (i.e. the detail coefficient) and a low-frequency part
(i.e. approximation coefficients). Both series have half of the length of the original signal,
i.e. at each level there is a subsampling by a factor of two. This procedure is repeated
at each level j and it allows us to extract further high-frequency detail and approximation
coefficients. The signal must have a dyadic length of 2J . Soruce: Wikipedia (2018).

Figure A4: Gaussian Signal simulated using MATLAB. The symmetric Gaussian Signal is determined
by two parameters: the volatility (s) and its center (µ) and it is given by the following func-
tion: f (x; µ, s) = exp(�(x�µ)2

2s2 ). The above Gaussian Signal has been simulated with a µ = 0
and a s = 5. Source: MATLAB(2017b).
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Figure A5: Gaussian Pulse Signal simulated using MATLAB. The Gaussian Pulse signal is defined by
three parameters: the time array (t), the center frequency (herz) ( f c) and the fractional band-
width (bw > 0). This signal has been simulated using the following values: f c = 500000 and
a bw = 0.6. It gave rise to a 50kHz Gaussian RF pulse with a bandwidth equal to 60%. The
signal is sampled at a rate of 1MHz and the pulse is truncated where the envelope drops
40dB below the peak. Source: MATLAB(2017b).
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Figure A6: Sigmoid Signal simulated using MATLAB. The Sigmoid Signal is an S-shaped curve gener-
ated by the following function: f (x; [a c]) = 1

1+exp(�a(x�c)) . The parameter ”c” indicates the
”center” whilst the parameter ”a” determines how much the function is open to the right
and to the left. The above Signal has been simulated with the following parameters: c = 4
and a = 10. Source: MATLAB(2017b).
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Figure A7: The figure shows the first derivative of the Gaussian Signal computed with two different ap-
proaches. The dotted line shows the first derivative computed through the common numer-
ical approach while the red line illustrates the output, i.e. detail coefficients at different reso-
lution levels (j), of the Maximum Overlap Discrete Wavelet approach performed through the
Haar (also named Daubechies function with one vanishing moment, Db1) mother wavelet.
It is clear that the Wavelet Transform is a good tool to compute the first derivative which is
approximated quite well compared to the numerical method, except for a small lag in time.
This analysis as well as the figure are performed using MATLAB.
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Figure A8: The figure illustrates the second derivative of the Gaussian Signal computed with two dif-
ferent approaches. The dotted line shows the second derivative computed through the com-
mon numerical approach while the red line illustrates the output, i.e. the negative of de-
tail coefficients at different resolution levels (j), of the Maximum Overlap Discrete Wavelet
approach performed through a Daubechies function with two vanishing moments (Db2)
mother wavelet. It is clear that the Wavelet Transform is a good tool to compute tool also for
the calculation of the second derivative which is approximated quite well compared to the
numerical method, except for a small time lag, which is slightly larger as in the computation
of the first derivative. This analysis as well as the figure are performed using MATLAB.
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Figure A9: The figure shows the first derivative of the Sigmoid Signal computed with two different ap-
proaches. The dotted line shows the first derivative computed through the common numer-
ical approach while the red line illustrates the output, i.e. detail coefficients at different reso-
lution levels (j), of the Maximum Overlap Discrete Wavelet approach performed through the
Haar (als named Daubechies function with one vanishing moment, Db1) mother wavelet.
The first 5 (16) detail coefficients at the resolution levels j=1,2 ( j=3,4) have been normalized
to zero since their magnitude is an abnormal result deriving from the ”overlapping” effect of
the MODWT approach. It is clear that the Wavelet Transform is a good tool to compute the
first derivative which is approximated quite well compared to the numerical method, except
for a small time lag. This analysis as well as the figure are performed using MATLAB.
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Figure A10: The figure illustrates the second derivative of the Sigmoid Signal computed with two dif-
ferent approaches. The dotted line shows the second derivative computed through the
common numerical approach while the red line illustrates the output, i.e. the negative
of detail coefficients at different resolution levels (j), of the Maximum Overlap Discrete
Wavelet approach performed through a Daubechies function with two vanishing moments
(Db2) mother wavelet. The first 20 (40) detail coefficient at the resolution levels j=1,2 (j=3,4)
have been normalized to zero since their magnitude is an abnormal result deriving from the
”overlapping” effect of the MODWT approach. It is clear that the Wavelet Transform is a
good tool also for the calculation of the second derivative which is approximated quite well
compared to the numerical method, except for a small time lag, which is slightly larger as
in the computation of the first derivative. This analysis as well as the figure are performed
using MATLAB.
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Figure A11: The figure shows the first derivative of the Gaussian Pulse Signal computed with two dif-
ferent approaches. The dotted line shows the first derivative computed through the com-
mon numerical approach while the red line illustrates the output, i.e. detail coefficients
at different resolution levels (j), of the Maximum Overlap Discrete Wavelet approach per-
formed through the Haar (also named Daubechies function with one vanishing moment,
Db1) mother wavelet. It is clear that the Wavelet Transform is a good tool to compute the
first derivative which is approximated quite well compared to the numerical method, ex-
cept for a small time lag. This analysis as well as the figure are performed using MATLAB.
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Figure A12: The figure illustrates the second derivative of the Gaussian Signal computed with two dif-
ferent approaches. The dotted line shows the second derivative computed through the
common numerical approach while the red line illustrates the output, i.e. the negative
of detail coefficients at different resolution levels (j), of the Maximum Overlap Discrete
Wavelet approach performed through a Daubechies function with two vanishing moments
(Db2) mother wavelet. It is clear that the Wavelet Transform is a good tool also for the
calculation of the second derivative which is approximated quite well compared to the nu-
merical method, except for a small time lag, which is slightly larger as in the computation
of the first derivative. This analysis as well as the figure are performed using MATLAB.

Page 88 University of Zurich, Empirical Finance, September 21, 2018



Appendix

Figure A13: The chart indicates the number of total assets in the (D/G)1,12 (simple) portfolio for op-
timizations performed between 2001 and 2016 using the universe of securities (data set)
including the component of the Dow Jones Industrial Average. The blue line shows the to-
tal assets held in the long sub-portfolio while the orange line the number of securities held
in the short sub-portfolio. More precisely, at each day a long and a short sub-portfolio is
built according to the hybrid strategy, i.e. the long sub-portfolio buys stocks with a positive
momentum (i.e. a positive D) and with an upward accelerating price (i.e. a positive G) and
the short sub-portfolio sells stocks having a negative momentum (i.e. a positive D) and a
downward accelerating price (i.e. a positive G), both quantified over the last f =12 months.
Factors are detected with the simple approach. The portfolio has a holding period of one
month (h = 1); moreover, the investment is delayed in time by s = 1 months. This analysis
is performed using MATLAB.
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Figure A14: The chart indicates the number of assets in the (D/G)1,3 (WM) long sub-portfolio for op-
timizations performed on a monthly basis between 2001 and 2016 using the universe of
securities (data set) including the component of the Dow Jones Industrial Average. More
precisely, at each month a long sub-portfolio is built according to the hybrid strategy, i.e.
the long portfolio buys stocks with a positive momentum (i.e. a positive D) and with an
upward accelerating price (i.e. a positive G), both quantified at the resolution level j = 3.
Factors are detected with the MODWT approach. The portfolio has a holding period of one
month (h = 1); moreover, the investment is delayed in time by s = 1 months. This analysis
is performed using MATLAB.

Figure A15: The chart indicates the number of assets in the (D/G)1,3 (WM) short sub-portfolio for op-
timizations performed on a monthly basis between 2001 and 2016 using the universe of
securities (data set) including the component of the Dow Jones Industrial Average. More
precisely, at month day a Short portfolio is built according to the hybrid strategy, i.e. the
short portfolio sells stocks having a negative momentum (i.e. a positive D) and a down-
ward accelerating price (i.e. a positive G), both quantified at the resolution level j = 3.
Factors are detected with the MODWT approach. The portfolio has a holding period of one
month (h = 1); moreover, the investment is delayed in time by s = 1 months. This analysis
is performed using MATLAB.
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Figure A16: The chart indicates the number of total assets in the (D/G)1,3 (WM) portfolio for optimiza-
tions performed on a monthly basis between 2001 and 2016 using the universe of securities
(data set) including the component of the Dow Jones Industrial Average. The blue line
shows the total assets held in the long portfolio while the orange line the number of securi-
ties held in the short portfolio. More precisely, at each day a long and a short sub-portfolio
is built according to the hybrid strategy, i.e. the long portfolio buys stocks with a positive
momentum (i.e. a positive D) and with an upward accelerating price (i.e. a positive G)
and the short portfolio sells stocks having a negative momentum (i.e. a positive D) and a
downward accelerating price (i.e. a positive G), both quantified at the resolution level j = 3.
Factors are detected with the MODWT approach. The portfolio has a holding period of one
month (h = 1); moreover, the investment is delayed in time by s = 1 months. This analysis
is performed using MATLAB.
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Tables

Detail coefficients calibration (MODWT)

Calibration Calibration
Level (j) First Derivative (time units) (i) Second Derivative (time units) (i)

1 1 4
2 2 5
3 3 10
4 6 20
5 8 25

Table A1: According to simulated pure signal, there is a lag in the first and second derivative computed
with the MODWT approach. The first derivative is computed applying a MODWT with a
Haar (also named Daubechies 1) mother wavelet function (Db1) whilst the second derivative
is calculated through a Daubechies function with two vanishing moments (Db2). Since the
lag is almost the same for each signal and growth proportional to the level (j), it might be
measured in order to calibrate both derivatives in stock prices during the wavelet detection.
This table shows the magnitude of the lag according to the first and the second derivative and
according to the resolution level j. Since the MODWT is applied to daily or monthly stock
prices, the lag is given in time units (i), i.e. days or months. The analysis is performed using
MATLAB.

Conversion of the MODWT resolution level (j) to
scale and time-scale format

Level (j) Scale ( 2j) Time-Scale in days (months) ( f )
1 2 within 1 and 2 days (months)
2 4 within 2 and 4 days (months)
3 8 within 4 and 8 days (months)
4 16 within 8 and 16 days (months)
5 32 within 16 and 32 days (months)
6 64 within 32 and 64 days (months)
7 128 within 64 and 128 days (months)
8 256 within 128 and 256 days (months)

Table A2: The table shows the conversion of different levels of resolution (j) resulting from a Wavelet
Transform decomposition to the respective time-scale (2j) (i.e. the equivalent to the formation
period). For example, a Di,t(j) detected at a level j= 4 quantifies changes in stock log-prices
which results in a time frame between 8 and 16 days (using daily stock prices as input vari-
able) or between 8 and 16 months (performing the analysis with monthly stock prices).
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Annualized performance of DLS and GLS (simple)
DJIA (2001-2016)

DLS GLS
s f µ s SR t-test µ s SR t-test

h = 1
1 -4.35 18.31 -0.24 -4.43 -1.42 17.05 -0.08 -1.53

0 3 -3.87 19.29 -0.2 -3.73 0.23 16.38 0.01 0.25
6 -5.44 19.91 -0.27 -5.12 -6.73 19.14 -0.35 -6.63

12 -2.43 21.5 -0.11 -2.09 -1.59 18.57 -0.09 -1.58
1 -1.1 17.45 -0.06 -1.15 -1.15 16.38 -0.07 -1.29

1 3 -3.37 19.03 -0.18 -3.28 0.23 16.75 0.01 0.25
6 -3.41 19.29 -0.18 -3.27 -3.53 18.51 -0.19 -3.53

12 -2.52 21.08 -0.12 -2.2 -1.43 18.27 -0.08 -1.43
1 -1.26 16.46 -0.08 -1.39 -1.3 16.17 -0.08 -1.46

6 3 2.8 17.72 0.16 2.8 -4.2 15.96 -0.26 -4.83
6 4.39 18.4 0.24 4.21 1.97 16.27 0.12 2.16

12 1.66 19.38 0.09 1.53 -1.22 16.28 -0.07 -1.35
h = 3

1 -2.5 16.94 -0.15 -4.68 -0.87 16.05 -0.05 -1.71
0 3 -3.31 18.5 -0.18 -5.71 -1.26 16.2 -0.08 -2.45

6 -3.28 18.13 -0.18 -5.76 -4.34 18.75 -0.23 -7.41
12 -2.21 20.19 -0.11 -3.47 -0.81 17.41 -0.05 -1.47
1 -2.03 16.44 -0.12 -3.91 -1.11 15.57 -0.07 -2.25

1 3 -2.7 18.52 -0.15 -4.63 -1.93 17.14 -0.11 -3.56
6 -1.7 17.75 -0.1 -3.02 -3.05 17.44 -0.17 -5.55

12 -1.94 20.15 -0.1 -3.05 -0.47 17.71 -0.03 -0.83
1 -0.4 15.62 -0.03 -0.8 -1.19 15.25 -0.08 -2.42

6 3 2.08 18.12 0.11 3.53 -1.08 15.57 -0.07 -2.15
6 1.55 18.39 0.08 2.59 1.21 16.97 0.07 2.2

12 0.87 19.26 0.05 1.39 -2.87 16.52 -0.17 -5.43
h = 6

1 -1.5 16.51 -0.09 -4.03 -0.58 16.38 -0.04 -1.58
0 3 -1.75 17.31 -0.1 -4.48 -1.76 15.31 -0.12 -5.1

6 0.13 19.67 0.01 0.3 -2.52 18.86 -0.13 -5.93
12 -0.47 21.67 -0.02 -0.97 -1.21 18.44 -0.07 -2.9
1 -0.85 15.84 -0.05 -2.36 -0.6 15.61 -0.04 -1.71

1 3 -0.76 18.39 -0.04 -1.82 -2.62 15.82 -0.17 -7.33
6 1.69 20.51 0.08 3.61 -1.27 18.3 -0.07 -3.06

12 0.32 21.75 0.01 0.65 -1.08 18.19 -0.06 -2.63
1 1.77 14.87 0.12 5.14 -0.8 14.84 -0.05 -2.33

6 3 2.07 17.39 0.12 5.14 1 15.69 0.06 2.77
6 1.2 17.41 0.07 2.97 0.53 17.31 0.03 1.33

12 1.76 18.64 0.09 4.09 -1.98 15.59 -0.13 -5.55
h = 12

1 0.27 17.18 0.02 0.95 -0.47 16.16 -0.03 -1.8
0 3 0.39 18.94 0.02 1.25 -0.13 16.21 -0.01 -0.51

6 0.91 21.31 0.04 2.63 -1.52 19.46 -0.08 -4.78
12 1.24 22.12 0.06 3.43 -1.32 18.39 -0.07 -4.42
1 0.6 16.45 0.04 2.24 -0.52 15.65 -0.03 -2.05

1 3 0.46 19.37 0.02 1.47 -0.49 16.63 -0.03 -1.79
6 1.58 21.19 0.07 4.56 -0.92 18.89 -0.05 -2.99

12 1.5 22.04 0.07 4.17 -1.32 18.34 -0.07 -4.39
1 1.36 15.45 0.09 5.3 -0.3 15.53 -0.02 -1.17

6 3 1.12 17.84 0.06 3.79 -0.03 16.26 0 -0.11
6 1.69 18.34 0.09 5.56 -0.19 17.81 -0.01 -0.63

12 1.52 18.29 0.08 5 -1.69 17.48 -0.1 -5.83

Table A3: The figure shows the annualized performance of different Ds, f (LS) and Gs, f (LS) portfolios set up considering daily
dividend-adjusted log-returns of securities included in the Dow Jones Industrial Average (2001-2016). At each day
t stocks are ranked ascending according to their delta (Di,t�1�s( f )) or gamma (Gi,t�1�s( f )) parameters. The long
portfolio is constructed buying stocks of the top-ranked quintile while the short portfolio sells stocks of the bottom-
ranked quintile. Equal weights are applied and the portfolio is held for h months. D( f ) and G( f ) factors are detected
through the simple approach using different formation periods ( f ) expressed in months. Moreover, the investment
might be delayed of s months. A one-month period is assumed to correspond to 21 days. The performance is given
as an average annualized return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe
Ratio (SR). Moreover, a t-test is employed to check the statistical significance of the results. Critical t-values are: 1.64
(90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of DLS(Long) and GLS(Long) (simple)
DJIA (2001-2016)

DLS(Long) GLS(Long)
s f µ s SR t-test µ s SR t-test

h = 1
1 9.63 18.68 0.52 9.02 10.93 20 0.55 9.51

0 3 9.55 17.52 0.54 9.54 11.81 19.37 0.61 10.58
6 8.86 17.14 0.52 9.08 7.92 19.44 0.41 7.19
12 13.09 16.68 0.78 13.53 12.79 17.26 0.74 12.8
1 10.98 18.43 0.6 10.34 12.08 19.89 0.61 10.49

1 3 8.9 17.73 0.5 8.79 10.45 19.51 0.54 9.33
6 10.89 17.24 0.63 10.97 9.17 19.25 0.48 8.34
12 12.39 16.61 0.75 12.88 12.76 17.6 0.73 12.5
1 12.4 19.81 0.63 10.66 13.37 20.02 0.67 11.33

6 3 13.37 18.86 0.71 12.02 9.03 19.66 0.46 7.93
6 15.21 17.5 0.87 14.63 15.75 20.22 0.78 13.09
12 13.71 17 0.81 13.66 11.9 18.05 0.66 11.25

h = 3
1 10.2 17.14 0.59 18.05 11.21 17.94 0.63 18.89

0 3 9.55 17.19 0.56 16.89 10.26 18 0.57 17.29
6 10.37 17.66 0.59 17.8 8.85 20.05 0.44 13.46
12 12.19 15.65 0.78 23.48 12.03 16.15 0.75 22.46
1 10.6 17.93 0.59 17.86 11.46 17.91 0.64 19.28

1 3 10.35 18.34 0.56 17.07 10.04 19.01 0.53 16
6 11.72 17.73 0.66 19.89 9.61 20.21 0.48 14.42
12 11.75 15.66 0.75 22.59 11.93 16.43 0.73 21.83
1 12.21 18.21 0.67 19.87 11.79 18.79 0.63 18.63

6 3 13.24 16.1 0.82 24.29 10.4 17.58 0.59 17.65
6 13.41 15.19 0.88 26.07 14.05 18.43 0.76 22.45
12 13.39 15.37 0.87 25.73 11.21 17.54 0.64 19.01

h = 6
1 10.66 18.9 0.56 24.29 11.46 18.99 0.6 25.91

0 3 11.17 19.48 0.57 24.64 10.14 20.13 0.5 21.71
6 12.53 18.44 0.68 29.12 10.22 20.03 0.51 21.98
12 12.22 16.36 0.75 32.04 11.77 17.13 0.69 29.5
1 11.19 18.93 0.59 25.33 11.86 18.55 0.64 27.36

1 3 11.82 19.8 0.6 25.56 9.72 20.79 0.47 20.12
6 13.51 17.62 0.77 32.71 11.29 18.85 0.6 25.65
12 12.35 16.32 0.76 32.34 11.74 17.26 0.68 29.12
1 13.38 17.79 0.75 31.64 12.05 18.9 0.64 26.91

6 3 12.71 15.78 0.81 33.94 12.39 17.28 0.72 30.23
6 12.4 14.97 0.83 34.91 13.48 20.02 0.67 28.33
12 13.74 14.64 0.94 39.44 10.98 18.01 0.61 25.79

h = 12
1 11.83 19.38 0.61 37.5 11.56 19.73 0.59 36

0 3 11.9 19.12 0.62 38.23 11.14 20.47 0.54 33.43
6 12.43 17.28 0.72 44.17 11.24 18.98 0.59 36.37
12 12.9 15.69 0.82 50.5 11.46 18.07 0.63 38.97
1 12.18 19.07 0.64 39.1 11.63 19.44 0.6 36.66

1 3 12.1 18.64 0.65 39.77 11.17 19.94 0.56 34.31
6 12.85 16.8 0.76 46.83 11.72 18.88 0.62 38.02
12 12.9 15.46 0.83 51.1 11.39 17.9 0.64 38.96
1 13.02 18.58 0.7 42.34 12.02 19.4 0.62 37.43

6 3 12.58 17.29 0.73 43.94 11.99 18.7 0.64 38.73
6 13.32 16.91 0.79 47.56 13.07 20.81 0.63 37.94
12 12.96 15.42 0.84 50.73 10.95 17.51 0.63 37.75

Table A4: The figure shows the annualized performance of different Ds, f (LS) and Gs, f (LS) long sub-portfolios set up considering
daily dividend-adjusted log-returns of securities included in the Dow Jones Industrial Average (2001-2016). At each
day t stocks are ranked ascending according to their delta (Di,t�1�s( f )) or gamma (Gi,t�1�s( f )) parameters. The long
portfolio is constructed buying stocks of the top-ranked quintile. Equal weights are applied and the portfolio is held
for h months. D( f ) and G( f ) factors are detected through the simple approach using different formation periods
( f ) expressed in months. Moreover, the investment might be delayed of s months. A one-month period is assumed
to correspond to 21 days. The performance is given as an average annualized return (µ), annualized volatility (s)
both expressed as a percentage as well as annualized Sharpe Ratio (SR). Moreover, a t-test is employed to check the
statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis has
been performed through MATLAB.
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Appendix

Annualized performance of DLS(Short) and GLS(Short) (simple)
DJIA (2001-2016)

DLS(Short) GLS(Short)
s f µ s SR t-test µ s SR t-test

h = 1
1 14.56 23.14 0.63 10.79 12.51 21.4 0.58 10.11

0 3 13.91 25.04 0.56 9.55 11.56 22.17 0.52 9.05
6 15.05 25.46 0.59 10.12 15.61 23.51 0.66 11.34
12 15.87 26.06 0.61 10.39 14.59 24.69 0.59 10.13
1 12.2 23.19 0.53 9.09 13.37 21.72 0.62 10.58

1 3 12.66 24.62 0.51 8.86 10.21 22.08 0.46 8.05
6 14.76 24.31 0.61 10.38 13.12 22.17 0.59 10.19
12 15.26 25.79 0.59 10.09 14.38 24.25 0.59 10.15
1 13.82 20.49 0.67 11.42 14.85 20.52 0.72 12.2

6 3 10.31 22.42 0.46 7.9 13.76 20.46 0.67 11.38
6 10.4 23.32 0.45 7.66 13.54 20.65 0.66 11.12
12 11.87 23.67 0.5 8.56 13.27 22.12 0.6 10.17

h = 3
1 12.93 22.15 0.58 17.55 12.16 20.87 0.58 17.55

0 3 13.19 22.51 0.59 17.59 11.63 20.91 0.56 16.79
6 13.99 22.47 0.62 18.65 13.63 20.16 0.68 20.28
12 14.64 24.5 0.6 17.85 12.92 22.97 0.56 16.9
1 12.83 21.21 0.6 18.13 12.68 20.6 0.62 18.46

1 3 13.32 21.7 0.61 18.38 12.15 20.31 0.6 17.97
6 13.58 22.23 0.61 18.28 12.95 19.03 0.68 20.39
12 13.89 24.54 0.57 16.92 12.44 22.97 0.54 16.25
1 12.65 20.43 0.62 18.32 13.09 19.56 0.67 19.78

6 3 10.99 22.41 0.49 14.6 11.57 19.76 0.59 17.39
6 11.73 22.87 0.51 15.23 12.73 20.91 0.61 18.01
12 12.45 22.66 0.55 16.27 14.38 21.57 0.67 19.62

h = 6
1 12.25 21.44 0.57 24.51 12.07 20.82 0.58 24.87

0 3 13.03 22.49 0.58 24.79 12.01 19.15 0.63 26.89
6 12.39 23.39 0.53 22.71 12.89 21.29 0.61 25.93
12 12.72 24.86 0.51 21.92 13.05 23.88 0.55 23.4
1 12.08 20.99 0.58 24.62 12.5 21.01 0.59 25.43

1 3 12.63 22.74 0.56 23.73 12.5 19.23 0.65 27.77
6 11.73 23.93 0.49 20.98 12.63 21.42 0.59 25.2
12 12.01 24.75 0.49 20.76 12.89 23.76 0.54 23.17
1 11.51 21.14 0.54 23.02 12.9 20.46 0.63 26.55

6 3 10.53 22.84 0.46 19.53 11.33 20.94 0.54 22.88
6 11.14 22.44 0.5 20.99 12.92 21.5 0.6 25.31
12 11.87 23.12 0.51 21.68 13.08 22.28 0.59 24.72

h = 12
1 11.56 21.77 0.53 32.64 12.04 20.62 0.58 35.86

0 3 11.51 23.13 0.5 30.57 11.27 19.24 0.59 35.98
6 11.52 24.11 0.48 29.35 12.76 22.96 0.56 34.12
12 11.67 24.78 0.47 28.92 12.79 24.29 0.53 32.33
1 11.57 21.81 0.53 32.5 12.16 20.85 0.58 35.72

1 3 11.64 23.35 0.5 30.53 11.66 19.98 0.58 35.73
6 11.27 24.2 0.47 28.52 12.64 23.17 0.55 33.42
12 11.4 24.56 0.46 28.42 12.7 24.38 0.52 31.91
1 11.67 20.91 0.56 33.69 12.32 20.11 0.61 37.01

6 3 11.46 22.37 0.51 30.95 12.02 22.02 0.55 32.98
6 11.63 22.09 0.53 31.79 13.26 21.43 0.62 37.36
12 11.44 22.67 0.5 30.48 12.63 23.01 0.55 33.16

Table A5: The figure shows the annualized performance of different Ds, f and Gs, f short sub-portfolios set up considering daily
dividend-adjusted log-returns of securities included in the Dow Jones Industrial Average (2001-2016). At each day
t stocks are ranked ascending according to their delta (Di,t�1�s( f )) or gamma (Gi,t�1�s( f )) parameters. The short
portfolio is constructed selling stocks of the bottom-ranked quintile. Equal weights are applied and the portfolio is
held for h months. D( f ) and G( f ) factors are detected through the simple approach using different formation periods
( f ) expressed in months. Moreover, the investment might be delayed of s months. A one-month period is assumed
to correspond to 21 days. The performance is given as an average annualized return (µ), annualized volatility (s)
both expressed as a percentage and annualized Sharpe Ratio (SR). Moreover, a t-test is employed to check the
statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).The analysis has
been performed through MATLAB
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Appendix

Annualized performance of DLS and GLS (simple)
DJIA (1984-2002)

DLS GLS
s f µ s SR t-test µ s SR t-test

h = 1
1 -13.7 24.91 -0.55 -11.73 -9.17 25.45 -0.36 -7.51

0 3 15.75 28.37 0.56 10.35 -5.48 26.22 -0.21 -4.28
6 22.21 29.54 0.75 13.67 -10.22 26.64 -0.38 -8.04
12 32.95 30.93 1.07 18.6 10.18 27.42 0.37 7.09
1 -3.42 25.97 -0.13 -2.66 -21.51 28.28 -0.76 -16.89

1 3 17.86 29.09 0.61 11.32 -5.15 25.82 -0.2 -4.07
6 26.55 29.26 0.91 16.19 -5.52 26.08 -0.21 -4.32
12 37.89 30.8 1.23 21.05 14.38 27.34 0.53 9.84
1 -1.71 25.5 -0.07 -1.33 -2.37 25.39 -0.09 -1.86

6 3 24.32 28.19 0.86 15.34 -2.74 25.45 -0.11 -2.15
6 38.63 28.59 1.35 22.81 19.2 26.36 0.73 13.22
12 28.12 29.75 0.95 16.58 11.69 26.91 0.43 8.13

h = 3
1 2.95 25.41 0.12 3.95 -3.1 25.93 -0.12 -4.16

0 3 19.11 29.42 0.65 20.91 -5.63 25.48 -0.22 -7.76
6 27.44 30.07 0.91 28.61 -6.44 27.12 -0.24 -8.38
12 38.39 30.95 1.24 37.65 12.81 27.8 0.46 15.15
1 6.63 26.43 0.25 8.41 0.75 27.12 0.03 0.95

1 3 21 30.24 0.69 22.17 -4.29 26.17 -0.16 -5.72
6 30.77 28.78 1.07 33.11 -1.73 26.24 -0.07 -2.28
12 40.53 30.63 1.32 39.81 14.16 27.52 0.51 16.8
1 10.23 25.9 0.39 12.92 -1 26.64 -0.04 -1.28

6 3 27.06 29.32 0.92 28.58 0.06 24.99 0 0.08
6 36.96 29.8 1.24 37.29 17.51 25.74 0.68 21.72
12 28.01 30.11 0.93 28.72 13.66 27 0.51 16.36

h = 6
1 7.13 33.35 0.21 10.16 -1.73 33.36 -0.05 -2.51

0 3 27.91 40.88 0.68 30.98 -3.88 34.03 -0.11 -5.57
6 37.05 39.57 0.94 41.71 -0.46 32.46 -0.01 -0.68
12 45.31 41.36 1.1 48.03 17.34 36.88 0.47 21.83
1 9.86 33.83 0.29 13.72 -0.57 34.57 -0.02 -0.8

1 3 29.64 39.62 0.75 33.75 -3.18 32.88 -0.1 -4.7
6 40.01 38 1.05 46.54 5.04 32.14 0.16 7.47
12 44.56 41.08 1.09 47.52 17.79 36.85 0.48 22.33
1 13.6 32.64 0.42 19.24 -0.6 33.86 -0.02 -0.85

6 3 34.38 39.15 0.88 38.79 5.35 32.28 0.17 7.81
6 38.68 38.56 1 43.94 16.42 34.01 0.48 22.16
12 31.93 39.86 0.8 35.56 16.51 37.26 0.44 20.32

h = 12
1 14.58 63.48 0.23 15.49 -2.31 68.61 -0.03 -2.27

0 3 46.41 78.7 0.59 39.77 1.04 61.86 0.02 1.13
6 54.9 77.87 0.71 47.55 11.83 65.5 0.18 12.18
12 56.44 81.72 0.69 46.58 28.11 75.28 0.37 25.18
1 16.93 64.38 0.26 17.7 -0.24 70.5 0 -0.23

1 3 46.12 77.78 0.59 39.9 2.37 60.71 0.04 2.63
6 53.87 76.77 0.7 47.22 13.12 66.38 0.2 13.3
12 54.96 81.64 0.67 45.3 28.55 76.18 0.37 25.22
1 15.12 63.82 0.24 15.76 -0.16 67.41 0 -0.16

6 3 39.4 76.25 0.52 34.36 4.82 60.69 0.08 5.28
6 43.77 77.3 0.57 37.65 15.17 65.57 0.23 15.39
12 42.45 77.04 0.55 36.64 26.91 71.95 0.37 24.87

Table A6: The figure shows the annualized performance of different Ds, f (LS) and Gs, f (LS) portfolios set up considering daily
dividend-adjusted log-returns of securities included in the Dow Jones Industrial Average (1983-2002). At each day
t stocks are ranked ascending according to their delta (Di,t�1�s( f )) or gamma (Gi,t�1�s( f )) parameters. The long
portfolio is constructed buying stocks of the top-ranked quintile while the short portfolio sells stocks of the bottom-
ranked quintile. Equal weights are applied and the portfolio is held for h months. D( f ) and G( f ) factors are detected
through the simple approach using different formation periods ( f ) expressed in months. Moreover, the investment
might be delayed of s months. A one-month period is assumed to correspond to 21 days. The performance is given
as an average annualized return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe
Ratio (SR). Moreover, a t-test is employed to check the statistical significance of the results. Critical t-values are: 1.64
(90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB
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Appendix

Annualized performance of DRSWP and GRSWP (simple)
DJIA (2001-2016)

DRSWP GRSWP
s f µ s SR t-test µ s SR t-test

h = 1
1 -3.34 19.46 -0.17 -3.19 -1.54 15.94 -0.1 -1.78

0 3 -3.14 21.2 -0.15 -2.75 -0.47 16.38 -0.03 -0.52
6 -4.35 21.12 -0.21 -3.84 -7.62 19.77 -0.39 -7.3

12 0.14 22.8 0.01 0.11 -2.51 17.84 -0.14 -2.61
1 -2.16 18.02 -0.12 -2.2 -1.58 15.54 -0.1 -1.87

1 3 -4.17 19.91 -0.21 -3.89 -0.71 17.38 -0.04 -0.75
6 -3.14 19.75 -0.16 -2.94 -5.83 17.87 -0.33 -6.11

12 -0.54 21.88 -0.02 -0.45 -1.89 16.78 -0.11 -2.07
1 -1.42 15.97 -0.09 -1.61 -1.75 15.04 -0.12 -2.11

6 3 0.35 16.96 0.02 0.37 -5.22 14.86 -0.35 -6.47
6 5.53 17.26 0.32 5.62 4.92 15.79 0.31 5.49

12 2.59 19.71 0.13 2.33 -0.58 15.61 -0.04 -0.67
h = 3

1 -1.89 17.19 -0.11 -3.49 -0.48 14.58 -0.03 -1.05
0 3 -2.89 18.96 -0.15 -4.85 -1.36 15.4 -0.09 -2.8

6 -2.2 18.66 -0.12 -3.74 -5.07 18.82 -0.27 -8.65
12 0.58 20.98 0.03 0.87 -1.31 16.38 -0.08 -2.52
1 -2.14 16.5 -0.13 -4.1 -0.94 14.74 -0.06 -2.01

1 3 -2.53 18.53 -0.14 -4.33 -1.99 16.79 -0.12 -3.74
6 -1.35 17.88 -0.08 -2.38 -3.79 16.55 -0.23 -7.3

12 0.42 20.99 0.02 0.63 -0.82 16.34 -0.05 -1.58
1 -0.44 14.97 -0.03 -0.91 -1.03 13.81 -0.07 -2.32

6 3 1.71 17.24 0.1 3.05 -1.52 14.56 -0.1 -3.26
6 3.7 17.57 0.21 6.44 3.07 15.49 0.2 6.07

12 2.29 19.6 0.12 3.59 -1.79 15.54 -0.12 -3.59
h = 6

1 -1.18 16.83 -0.07 -3.11 -0.46 14.56 -0.03 -1.4
0 3 -1.26 18.39 -0.07 -3.03 -1.88 14.33 -0.13 -5.83

6 0.32 20.83 0.02 0.68 -3.21 19.02 -0.17 -7.5
12 1.83 22.1 0.08 3.63 -0.86 17.55 -0.05 -2.16
1 -0.91 15.95 -0.06 -2.52 -0.69 14.7 -0.05 -2.08

1 3 -0.84 18.91 -0.04 -1.96 -3.01 15.83 -0.19 -8.42
6 1.91 20.93 0.09 4 -1.27 17.12 -0.07 -3.28

12 2.15 22.14 0.1 4.26 -0.54 16.83 -0.03 -1.41
1 2.13 13.94 0.15 6.61 -0.49 13.22 -0.04 -1.62

6 3 3.24 16.73 0.19 8.34 1.65 14.13 0.12 5.04
6 3.23 16.48 0.2 8.44 1.97 16.31 0.12 5.22

12 3.19 19.08 0.17 7.19 -1.47 14.91 -0.1 -4.31
h = 12

1 0.69 16.52 0.04 2.55 -0.3 14.51 -0.02 -1.28
0 3 1.41 18.58 0.08 4.66 0.11 14.55 0.01 0.46

6 2.16 20.91 0.1 6.34 -1.14 18 -0.06 -3.88
12 3.21 21.28 0.15 9.26 -0.99 16.59 -0.06 -3.68
1 0.89 15.69 0.06 3.46 -0.31 14.3 -0.02 -1.31

1 3 1.38 18.37 0.08 4.6 -0.28 14.94 -0.02 -1.15
6 2.57 20.66 0.12 7.63 -0.53 17.09 -0.03 -1.91

12 3.32 20.99 0.16 9.69 -0.85 16.32 -0.05 -3.2
1 1.53 14.66 0.1 6.28 -0.12 14.83 -0.01 -0.47

6 3 1.99 16.92 0.12 7.11 -0.09 15.3 -0.01 -0.35
6 3.15 16.69 0.19 11.38 0.68 16.46 0.04 2.49

12 3.41 17.78 0.19 11.57 -1.15 15.66 -0.07 -4.43

Table A7: The figure shows the annualized performance of different Ds, f (RSWP) and Gs, f (RSWP) portfolios set up considering
securities included in the DJIA (2001-2016). The Gs, f portfolio is constructed as follows: at each day t, the weight
of a specific security i is determined by the magnitude of its G factor computed the previous day t � 1 � s (where s
represents the delay in the investment in months) over a formation of f months (Gi,t�1( f )) relatively to the G of the
equal weighted index (the market) (Gm,t�1( f )). Hence, wG

i,t ( f , s) =
1
N

(Gi,t�1�s ( f )� Gm,t�1�s ( f )) where
N
Â

i=1
wG

i,t ( f , s) = 0. In order to

get market-neutral weights, there is a standardization, i.e. weights of the long positions add up to one (+1) and the
weights of the short position add up to minus one (-1). The D portfolio is computed similarly. Each portfolio is held
for h months. A one-month period is assumed to correspond to 21 days. The performance is given as an average
annualized return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR).
Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of DD
RSWP and GD

RSWP (simple)
DJIA (2001-2016)

DD
RSWP GD

RSWP
s f µ s SR t-test µ s SR t-test

h = 1
1 -3.2 18.62 -0.17 -3.18 -1.65 15.91 -0.1 -1.91

0 3 -2.94 19.74 -0.15 -2.75 -0.42 15.87 -0.03 -0.48
6 -3.77 19.55 -0.19 -3.58 -7.37 18.71 -0.39 -7.45

12 1.15 21.17 0.05 0.99 -1.35 16.98 -0.08 -1.46
1 -2.09 17.51 -0.12 -2.19 -1.4 15.37 -0.09 -1.67

1 3 -4.04 18.84 -0.21 -3.98 -0.76 16.86 -0.04 -0.82
6 -2.68 18.85 -0.14 -2.62 -6.28 17.92 -0.35 -6.58

12 0.19 20.68 0.01 0.16 -1.03 16.35 -0.06 -1.15
1 -1.25 15.77 -0.08 -1.44 -1.64 14.94 -0.11 -1.99

6 3 0.75 16.58 0.05 0.81 -5.24 14.8 -0.35 -6.53
6 5.9 16.92 0.35 6.11 6.01 16.24 0.37 6.47

12 2.89 19 0.15 2.7 -0.62 15.28 -0.04 -0.73
h = 3

1 -1.82 16.69 -0.11 -3.46 -0.47 14.57 -0.03 -1.02
0 3 -2.77 18.31 -0.15 -4.82 -1.3 15.2 -0.09 -2.7

6 -1.84 17.94 -0.1 -3.25 -5.27 18.4 -0.29 -9.2
12 1.23 20.31 0.06 1.9 -0.63 15.71 -0.04 -1.26
1 -2.1 16.25 -0.13 -4.09 -0.83 14.58 -0.06 -1.78

1 3 -2.42 18.02 -0.13 -4.25 -1.74 16.6 -0.1 -3.3
6 -0.96 17.53 -0.05 -1.73 -4.05 16.82 -0.24 -7.68

12 0.97 20.43 0.05 1.48 -0.36 15.85 -0.02 -0.71
1 -0.35 14.92 -0.02 -0.73 -0.99 13.89 -0.07 -2.22

6 3 2.06 17.15 0.12 3.68 -1.38 14.61 -0.09 -2.93
6 3.91 17.53 0.22 6.81 3.57 15.7 0.23 6.95

12 2.65 19.45 0.14 4.18 -1.7 15.3 -0.11 -3.46
h = 6

1 -1.1 16.26 -0.07 -3 -0.38 14.57 -0.03 -1.15
0 3 -1.14 17.57 -0.06 -2.86 -1.81 13.95 -0.13 -5.74

6 0.73 20.04 0.04 1.6 -3.05 18.04 -0.17 -7.52
12 2.28 21.75 0.11 4.61 -0.37 16.88 -0.02 -0.98
1 -0.82 15.63 -0.05 -2.32 -0.56 14.48 -0.04 -1.7

1 3 -0.67 18.24 -0.04 -1.61 -2.9 15.19 -0.19 -8.47
6 2.29 20.69 0.11 4.85 -1.05 17.01 -0.06 -2.73

12 2.53 21.96 0.12 5.04 -0.21 16.53 -0.01 -0.55
1 2.18 14 0.16 6.72 -0.43 13.24 -0.03 -1.43

6 3 3.37 17.05 0.2 8.52 1.81 14.34 0.13 5.45
6 3.35 16.87 0.2 8.56 2.42 16.66 0.14 6.26

12 3.52 19.45 0.18 7.79 -1.54 14.91 -0.1 -4.51
h = 12

1 0.74 16.56 0.04 2.74 -0.23 14.46 -0.02 -0.99
0 3 1.51 19 0.08 4.88 0.19 14.6 0.01 0.81

6 2.43 21.58 0.11 6.91 -0.9 18.15 -0.05 -3.04
12 3.57 22.21 0.16 9.87 -0.73 16.61 -0.04 -2.72
1 0.94 15.81 0.06 3.64 -0.2 14.26 -0.01 -0.87

1 3 1.49 18.73 0.08 4.88 -0.16 14.92 -0.01 -0.64
6 2.82 21.31 0.13 8.11 -0.27 17.41 -0.02 -0.95

12 3.65 21.74 0.17 10.29 -0.71 16.44 -0.04 -2.66
1 1.59 14.74 0.11 6.52 -0.01 14.9 0 -0.06

6 3 2.13 17.15 0.12 7.48 0.05 15.4 0 0.19
6 3.35 16.98 0.2 11.92 1.05 16.58 0.06 3.83

12 3.75 18.15 0.21 12.48 -1.22 16.16 -0.08 -4.56

Table A8: The figure shows the annualized performance of different Ds, f
D
(RSWP) and Gs, f

D
(RSWP) portfolios set up considering

securities included in the DJIA (2001-2016). The GD
s, f portfolio is constructed as follows: at each day t, the weight

of a specific security i is determined by the magnitude of its (discretized) GD factor computed the previous day
t � 1� s (where s represents the delay in the investment in months) over a formation of f months (GD

i,t�1( f )) with the
(discretized) acceleration factor of the equal weighted index (the market) (GD

m,t�1( f )). Hence, wGD
i,t ( f , s) =

1
N

(GD
i,t�1�s ( f )�

GD
m,t�1�s ( f )) where

N
Â

i=1
wGD

i,t ( f , s) = 0. In order to get market-neutral weights, there is a standardization. The D portfolio

is computed similarly. The portfolio is held for h months. A one-month period is assumed to correspond to 21
days. The performance is given as an average annualized return (µ), annualized volatility (s) both expressed as a
percentage and annualized Sharpe Ratio (SR). Critical values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis
has been performed through MATLAB.
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Appendix

Annualized performance of DD
RSWP and GD

RSWP (simple) DJIA (2001-2016)
( f = 5 days)

DD
RSWP GD

RSWP
h s µ s SR t-test µ s SR t-test

f = 5 days
0 -3.64 18.89 -0.19 -3.58 -1.95 18.36 -0.11 -1.96

1 1 -0.46 16.48 -0.03 -0.51 -0.71 16.55 -0.04 -0.79
6 -0.53 15.78 -0.03 -0.61 -0.75 15.37 -0.05 -0.88
0 -1.73 17.34 -0.1 -3.15 -0.86 16.93 -0.05 -1.6

3 1 -0.26 16.17 -0.02 -0.51 0.13 16.14 0.01 0.25
6 -0.17 15.46 -0.01 -0.34 -0.07 14.73 0 -0.14
0 -0.81 17.21 -0.05 -2.07 -0.33 17.11 -0.02 -0.84

6 1 -0.07 15.76 0 -0.21 -0.04 16.35 0 -0.1
6 1.5 14.83 0.1 4.37 0.18 14.19 0.01 0.54
0 0.38 16.48 0.02 1.43 -0.04 16.02 0 -0.17

12 1 0.49 16.12 0.03 1.85 -0.02 15.74 0 -0.07
6 0.69 15.33 0.05 2.73 0.02 14.85 0 0.07

Table A9: The figure shows the annualized performance of different Ds, f
D
(RSWP) and Gs, f

D
(RSWP) portfolios set up considering

daily dividend-adjusted log-returns of securities included in the DJIA (2001-2016) and using a formation period ( f )
of 5 days (i.e. one week). The portfolio is held for h months and the investment might be delayed of s months. A
one-month period is assumed to correspond to 21 days. The performance is given as an average annualized return
(µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR). A t-test is employed
to check the statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The
analysis has been performed through MATLAB.
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Appendix

Annualized performance of DD
RSWP and GD

RSWP (simple)
DJIA (1984-2002)

DD
RSWP GD

RSWP
s f µ s SR t-test µ s SR t-test

h = 1
1 -14.93 22.21 -0.67 -14.44 -9.67 23.45 -0.41 -8.62

0 3 19.4 30.39 0.64 11.73 -6.08 23.94 -0.25 -5.21
6 32.13 35.9 0.9 15.67 -8.45 24.29 -0.35 -7.23
12 53.21 41.22 1.29 21.03 14.21 26.79 0.53 9.95
1 -1.45 23.83 -0.06 -1.22 -24.47 31.43 -0.78 -17.57

1 3 27.99 31.65 0.88 15.69 -2.69 23.97 -0.11 -2.26
6 37.9 36.65 1.03 17.69 -4.91 23.3 -0.21 -4.3
12 56.51 42.14 1.34 21.57 14.91 27.31 0.55 10.19
1 -0.58 26.74 -0.02 -0.43 1.74 25.97 0.07 1.31

6 3 31.46 31.4 1 17.35 -4.67 23.83 -0.2 -3.95
6 49.97 35.12 1.42 23.11 19.33 25.14 0.77 13.95
12 46.31 40.68 1.14 18.72 17.12 29.54 0.58 10.61

h = 3
1 8.99 28.44 0.32 10.53 -2.69 28.62 -0.09 -3.27

0 3 26.28 31.62 0.83 26.15 -3.78 23.78 -0.16 -5.55
6 37.26 36.09 1.03 31.43 -5.28 23.9 -0.22 -7.76
12 56.17 40.94 1.37 39.65 14.24 26.83 0.53 17.37
1 14.12 29.41 0.48 15.68 1.5 30.44 0.05 1.68

1 3 29.59 32.9 0.9 27.95 -1.66 23.92 -0.07 -2.4
6 40.57 35.64 1.14 34.25 -1.15 23.35 -0.05 -1.7
12 55.86 41.13 1.36 39.18 14.76 28.21 0.52 17.05
1 16.09 29.38 0.55 17.57 0.68 29.34 0.02 0.79

6 3 34.61 31.61 1.1 33.14 -0.99 23.72 -0.04 -1.42
6 47.21 35.14 1.34 39.23 17.07 24.65 0.69 22.14
12 45.08 41.23 1.09 32.11 16.66 28.43 0.59 18.76

h = 6
1 15.64 42.76 0.37 17.04 -0.6 42.63 -0.01 -0.68

0 3 37.09 49.08 0.76 33.66 -2.23 31.1 -0.07 -3.48
6 51.14 55.24 0.93 40.15 0.32 28.02 0.01 0.56
12 67.38 64.79 1.04 43.84 19.75 37.92 0.52 24.05
1 19.08 45.41 0.42 19.38 1.51 46.08 0.03 1.58

1 3 39.59 49.2 0.8 35.59 -1.68 30.1 -0.06 -2.7
6 54.42 54.63 1 42.86 5.49 28.67 0.19 9.11
12 66.54 65.51 1.02 42.78 20.95 40.52 0.52 23.75
1 22.07 42.98 0.51 23.27 1.53 44.3 0.03 1.64

6 3 43.73 46.49 0.94 40.81 6.41 31.84 0.2 9.45
6 51.83 52.64 0.98 42.07 15.16 32.9 0.46 21.21
12 52.91 63.89 0.83 35.32 21.51 42.56 0.51 22.93

h = 12
1 22.07 42.98 0.51 23.27 1.53 44.3 0.03 1.64

0 3 43.73 46.49 0.94 40.81 6.41 31.84 0.2 9.45
6 51.83 52.64 0.98 42.07 15.16 32.9 0.46 21.21
12 52.91 63.89 0.83 35.32 21.51 42.56 0.51 22.93
1 32.5 104.9 0.31 20.85 3.16 109.9 0.03 1.93

1 3 62.24 109 0.57 38.43 4.41 61.01 0.07 4.86
6 77.47 126.4 0.61 41.23 12.76 66.37 0.19 12.94
12 89.86 153.6 0.58 39.36 35.55 92.29 0.39 25.92
1 27.98 95.96 0.29 19.39 2.44 98.83 0.02 1.64

6 3 55.72 106 0.53 34.95 6.75 67.34 0.1 6.66
6 67.52 120.1 0.56 37.4 16.05 70.37 0.23 15.17
12 73.32 141.2 0.52 34.53 37.02 102 0.36 24.14

Table A10: The figure shows the annualized performance of different Ds, f
D
(RSWP) and Gs, f

D
(RSWP) portfolios set up considering

daily securities included in the DJIA (1984-2002). The GD
s, f portfolio is constructed as follows: at each day t, the

weight of a specific security i is determined by the magnitude of its (discretized) GD factor computed the previous
day t � 1 � s (where s represents the delay in the investment in months) over a formation of f months(GD

i,t�1( f ))
with the (discretized) acceleration factor of the equal weighted index (the market) (GD

m,t�1( f )). Hence, wGD
i,t ( f , s) =

1
N

(GD
i,t�1�s ( f )� GD

m,t�1�s ( f )) where
N
Â

i=1
wGD

i,t ( f , s) = 0. In order to get market-neutral weights, there is a standardization. The D

portfolio is computed similarly. Each portfolio is held for h months. A one-month period is assumed to correspond
to 21 days. The performance is given as an average annualized return (µ), annualized volatility (s) both expressed
as a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The
analysis has been performed through MATLAB.
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Appendix

Annualized performance of DLS and GLS (simple)
S&P500 (2001-2014)

DLS GLS
s f µ s SR t-test µ s SR t-test

h = 1
1 -8.07 21.71 -0.37 -6.42 -2.44 18.37 -0.13 -2.23

0 3 -7.75 24.62 -0.31 -5.43 -7.06 17.51 -0.4 -6.93
6 -7.22 28.64 -0.25 -4.33 -10.85 23.54 -0.46 -8.07
12 -4.35 30.76 -0.14 -2.4 -3.3 26.56 -0.12 -2.1
1 -7.03 21.55 -0.33 -5.58 -6.75 18.64 -0.36 -6.2

1 3 -3.16 23.89 -0.13 -2.23 -1.11 16.54 -0.07 -1.12
6 -7.2 28.59 -0.25 -4.32 -5.27 21.26 -0.25 -4.21
12 -5.81 30.73 -0.19 -3.22 -3.57 25.34 -0.14 -2.38
1 -0.69 17.31 -0.04 -0.66 -3.15 16.33 -0.19 -3.19

6 3 -1.02 20.26 -0.05 -0.83 -4.01 19.14 -0.21 -3.48
6 2.68 21.77 0.12 1.98 3.58 19.9 0.18 2.88
12 -2.88 25.44 -0.11 -1.87 -1.87 20.83 -0.09 -1.48

h = 3
1 -4.73 21.78 -0.22 -6.32 -3.88 17.24 -0.23 -6.54

0 3 -3.27 23.71 -0.14 -4 -3.72 17.12 -0.22 -6.3
6 -4.74 28.95 -0.16 -4.77 -5.04 23.44 -0.21 -6.27
12 -3.91 32.21 -0.12 -3.53 -1.43 26.82 -0.05 -1.53
1 -1.05 21.18 -0.05 -1.42 -2.7 19.4 -0.14 -4.01

1 3 -0.57 23.63 -0.02 -0.69 -1.84 16.87 -0.11 -3.13
6 -3.11 26.45 -0.12 -3.39 -2.72 21.75 -0.12 -3.6
12 -3.59 31.1 -0.12 -3.34 0.02 24.7 0 0.02
1 -0.43 15.69 -0.03 -0.77 -1.58 15.8 -0.1 -2.82

6 3 0.43 22.08 0.02 0.55 -1.77 18.62 -0.09 -2.68
6 -0.34 22.68 -0.02 -0.42 1.14 19.22 0.06 1.66
12 -0.02 0.26 0 -2.53 -0.03 0.2 0 -3.73

h = 6
1 -1.96 22.83 -0.09 -3.45 -2.19 18.44 -0.12 -4.79

0 3 -1.7 26.49 -0.06 -2.58 -3.2 18.65 -0.17 -6.94
6 -2.86 33.38 -0.09 -3.45 -3.64 28.04 -0.13 -5.25
12 -4.13 35.21 -0.12 -4.75 -2.35 28.45 -0.08 -3.33
1 -0.96 23.27 -0.04 -1.66 -2.63 20.33 -0.13 -5.2

1 3 -0.93 27.13 -0.03 -1.38 -3.11 19.34 -0.16 -6.48
6 -1.14 31.51 -0.04 -1.45 -1.27 26.29 -0.05 -1.93
12 -4.15 33.64 -0.12 -4.98 -2.24 26.44 -0.08 -3.41
1 2.02 17.61 0.11 4.47 -0.93 17.58 -0.05 -2.09

6 3 0.93 22.2 0.04 1.63 2.19 19.08 0.11 4.48
6 -1.42 23.17 -0.06 -2.42 -0.81 18.42 -0.04 -1.74
12 -0.6 25.11 -0.02 -0.94 -2.39 19.64 -0.12 -4.81

h = 12
1 -0.18 27.65 -0.01 -0.36 -1.18 23.25 -0.05 -2.82

0 3 -0.6 33.63 -0.02 -0.99 -0.57 24.01 -0.02 -1.32
6 -2.7 40.85 -0.07 -3.67 -3.21 34.9 -0.09 -5.1
12 -3.18 40.18 -0.08 -4.4 -2.79 33.57 -0.08 -4.62
1 -0.34 29.02 -0.01 -0.64 -2.02 25.39 -0.08 -4.4

1 3 -0.45 34.69 -0.01 -0.72 -0.04 23.68 0 -0.08
6 -2.48 39.77 -0.06 -3.45 -2.59 32.19 -0.08 -4.45
12 -3.03 39.22 -0.08 -4.28 -2.71 32.15 -0.08 -4.67
1 0.07 20.89 0 0.18 -1.33 20.67 -0.06 -3.49

6 3 -0.8 25.76 -0.03 -1.69 -1.52 21.77 -0.07 -3.8
6 -1.6 25.35 -0.06 -3.44 -0.81 21.01 -0.04 -2.11
12 -1.35 29.31 -0.05 -2.51 -3.03 23.42 -0.13 -7.04

Table A11: The figure shows the annualized performance of different Ds, f (LS) and Gs, f (LS) portfolios set up considering daily
split and dividend-adjusted log-returns of securities included in the Standard and Poor 500 (2001-2014). At each
day t stocks are ranked ascending according to their delta (Di,t�1�s( f )) or gamma (Gi,t�1�s( f )) parameters. The
long portfolio is constructed buying stocks of the top-ranked decile while the short portfolio sells stocks of the
bottom-ranked decile. Equal weights are applied and the portfolio is held for h months. D( f ) and G( f ) factors
are detected through the simple approach using different formation periods ( f ) expressed in months. Moreover,
the investment might be delayed of s months. A one-month period is assumed to correspond to 21 days. The
performance is given as an average annualized return (µ), annualized volatility (s) both expressed as a percentage
and annualized Sharpe Ratio (SR) . Moreover, a t-test is employed to check the statistical significance of the results.
Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of DD
RSWP and GD

RSWP (simple)
S&P500 (2001-2014)

DD
RSWP GD

RSWP
s f µ s SR t-test µ s SR t-test

h = 1
1 -6.56 17.54 -0.37 -6.41 0.4 16.73 0.02 0.39

0 3 -5.23 19.08 -0.27 -4.66 -3.6 16.1 -0.22 -3.78
6 -1.7 21.76 -0.08 -1.31 -4.84 19.7 -0.25 -4.18
12 0.61 23.51 0.03 0.43 6.01 53.88 0.11 1.8
1 -7.27 17.1 -0.43 -7.29 -5.62 15.8 -0.36 -6.05

1 3 -2.07 18.46 -0.11 -1.87 -0.42 15.55 -0.03 -0.45
6 -0.93 20.85 -0.04 -0.75 -2.99 18.46 -0.16 -2.72
12 -1.6 22.45 -0.07 -1.19 0.5 35.23 0.01 0.24
1 0.33 13.01 0.03 0.41 -0.87 12.79 -0.07 -1.11

6 3 -0.69 15.02 -0.05 -0.75 -2.36 16.7 -0.14 -2.32
6 3.43 17.03 0.2 3.23 15.31 56.66 0.27 4.12
12 -0.33 18.46 -0.02 -0.29 -4.59 19.23 -0.24 -3.98

h = 3
1 -4.13 17.34 -0.24 -6.92 -1.71 15.34 -0.11 -3.21

0 3 -1.61 18.47 -0.09 -2.5 -0.81 14.49 -0.06 -1.6
6 0.28 20.48 0.01 0.39 -2.12 19.16 -0.11 -3.19
12 0.17 22.11 0.01 0.22 2.75 40.35 0.07 1.93
1 -0.88 17.22 -0.05 -1.46 -1.42 16.43 -0.09 -2.47

1 3 0.81 18.93 0.04 1.22 1.54 15.16 0.1 2.89
6 0.97 19.34 0.05 1.43 -0.91 18.74 -0.05 -1.4
12 0.46 21.58 0.02 0.61 3.85 45.28 0.08 2.39
1 0.49 12.33 0.04 1.12 1.1 13.3 0.08 2.32

6 3 0.72 16.71 0.04 1.21 -0.71 15.91 -0.04 -1.25
6 1.96 16.54 0.12 3.29 10.01 43.69 0.23 6.2
12 1.38 17.46 0.08 2.2 -5.3 21.29 -0.25 -7.12

h = 6
1 -1.24 18.63 -0.07 -2.67 -0.08 17.6 0 -0.17

0 3 0.13 20.33 0.01 0.26 0.29 17.32 0.02 0.67
6 0.64 23.22 0.03 1.1 0.07 29.32 0 0.1
12 0.16 24.25 0.01 0.27 -1.03 43.6 -0.02 -0.95
1 -0.24 19.2 -0.01 -0.5 -0.56 17.86 -0.03 -1.24

1 3 0.52 20.72 0.03 1 0.12 16.95 0.01 0.28
6 1.36 22.57 0.06 2.4 3.17 36.22 0.09 3.47
12 -0.12 23.56 -0.01 -0.21 -2.54 38.29 -0.07 -2.66
1 2.04 14.54 0.14 5.49 0.89 14.96 0.06 2.32

6 3 1.73 16.68 0.1 4.06 2.37 18.55 0.13 5
6 1.44 17.42 0.08 3.23 5.84 39.19 0.15 5.77
12 3.13 17.81 0.18 6.85 -5.92 24.49 -0.24 -9.63

h = 12
1 0.33 22.78 0.01 0.82 0.82 22.32 0.04 2.04

0 3 0.92 25.74 0.04 2 1.84 24.7 0.07 4.13
6 1.07 28.77 0.04 2.07 2.36 39.03 0.06 3.36
12 1.73 28.52 0.06 3.37 -3.48 49.04 -0.07 -3.95
1 0.41 24.53 0.02 0.93 0.03 23.17 0 0.06

1 3 1.14 26.29 0.04 2.4 3.03 33.93 0.09 4.94
6 1.07 28.14 0.04 2.1 2.5 39.6 0.06 3.5
12 2.23 28.62 0.08 4.31 -4.14 43.26 -0.1 -5.29
1 0.67 17.82 0.04 2.06 0.83 23.65 0.03 1.9

6 3 0.42 18.91 0.02 1.21 0.63 21.99 0.03 1.57
6 1.7 18.78 0.09 4.92 2.07 46.23 0.04 2.44
12 6.82 26.36 0.26 14.07 -1.61 30.21 -0.05 -2.89

Table A12: The figure shows the annualized performance of different Ds, f
D
(RSWP) and Gs, f

D
(RSWP) portfolios set up considering

securities included in the S&P500 (2001-2016). The GD
s, f portfolio is constructed as follows: at each day t, the weight

of a specific security i is determined by the magnitude of its (discretized) GD factor computed the previous day
t� 1� s (where s represents the delay in the investment in months) over a formation of f months(GD

i,t�1( f )) with the
(discretized) acceleration factor of the equal weighted index (the market) (GD

m,t�1( f )). Hence, wGD
i,t ( f , s) =

1
N

(GD
i,t�1�s ( f )�

GD
m,t�1�s ( f )) where

N
Â

i=1
wGD

i,t ( f , s) = 0. In order to get market-neutral weights, there is a standardization. The D portfolio

is computed similarly. Each portfolio is held for h months. A one-month period is assumed to correspond to 21
days. The performance is given as an average annualized return (µ), annualized volatility (s) both expressed as
a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The
analysis has been performed through MATLAB.
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Appendix

Annualized performance of DLS and GLS (EMA) DJIA (1984-2002)

DLS GLS
s K f µ s SR t-test µ s SR t-test

h = 1
0 20 1 -9.82 25.23 -0.39 -8.14 -20.86 25.28 -0.83 -18.29

3 20.13 29.28 0.69 12.6 -5.18 26.72 -0.19 -3.96
6 26.44 29.91 0.88 15.81 -8.27 26.2 -0.32 -6.56

50 1 1.15 26.76 0.04 0.85 -24.71 26.27 -0.94 -21.31
3 21.28 29.44 0.72 13.18 -8.61 25.84 -0.33 -6.93
6 29.73 29.96 0.99 17.53 -6.09 26.13 -0.23 -4.79

100 1 15.04 28.43 0.53 9.9 -26 27 -0.96 -21.98
3 23.54 30.03 0.78 14.17 -10.09 27.02 -0.37 -7.82
6 35.48 29.8 1.19 20.6 -2.12 25.55 -0.08 -1.68

1 20 1 15.85 27.53 0.58 10.71 -13.91 28.09 -0.5 -10.55
3 17.93 29.66 0.6 11.15 -5.93 26.16 -0.23 -4.64
6 29.37 29.7 0.99 17.46 -3.88 25.84 -0.15 -3.04

50 1 26.53 29.3 0.91 16.15 -4.62 27.05 -0.17 -3.47
3 24.22 29.92 0.81 14.56 -8.87 27.09 -0.33 -6.8
6 33.58 29.54 1.14 19.76 -2.59 25.05 -0.1 -2.08

100 1 27.43 29.79 0.92 16.37 -1.24 27.16 -0.05 -0.91
3 29.19 29.48 0.99 17.49 -6.68 26.84 -0.25 -5.11
6 36.37 29.25 1.24 21.39 -0.5 24.88 -0.02 -0.4

6 20 1 1.25 26.46 0.05 0.92 -15.01 26.88 -0.56 -11.83
3 26.64 28.68 0.93 16.38 -3.46 25.32 -0.14 -2.73
6 41.22 29.27 1.41 23.56 23.22 26.57 0.87 15.61

50 1 11.74 27.13 0.43 8.1 -20.65 27.75 -0.74 -16.26
3 31.07 29.51 1.05 18.26 -2.3 25.37 -0.09 -1.81
6 38.58 29.8 1.3 21.86 22.79 26.49 0.86 15.39

100 1 21.88 28.01 0.78 14.03 -22.29 28.3 -0.79 -17.36
3 33.32 29.49 1.13 19.44 2.48 26.49 0.09 1.83
6 36.97 29.93 1.24 20.97 20.83 27.91 0.75 13.45

h = 6
0 20 1 16.08 36.21 0.44 20.66 -3.56 33.7 -0.11 -5.15

3 31.51 41.31 0.76 34.36 -2.83 33.78 -0.08 -4.09
6 40.13 38.24 1.05 46.47 1.76 31.33 0.06 2.7

50 1 25.93 39.38 0.66 30 -4.36 34.01 -0.13 -6.26
3 35.03 40.35 0.87 38.83 -4.82 33.5 -0.14 -7.04
6 43.79 37.89 1.16 50.81 6.32 30.47 0.21 9.87

100 1 34.67 39.66 0.87 39.12 -5.82 34.15 -0.17 -8.37
3 39.38 39.09 1.01 44.67 -3.76 35.06 -0.11 -5.23
6 45.46 38.74 1.17 51.44 11.29 30.72 0.37 17.29

1 20 1 18.69 36.91 0.51 23.38 -2.32 34.24 -0.07 -3.29
3 32.76 40.28 0.81 36.46 -2.46 32.97 -0.07 -3.62
6 42.65 37.22 1.15 50.38 7.34 31.11 0.24 11.18

50 1 28.27 38.8 0.73 32.96 -3.16 34.28 -0.09 -4.48
3 37.13 39.64 0.94 41.63 -3.51 32.73 -0.11 -5.22
6 45.3 37.47 1.21 52.88 11.65 30.76 0.38 17.76

100 1 36.18 38.49 0.94 41.85 -4.55 34.79 -0.13 -6.38
3 41.21 38.2 1.08 47.56 -1.24 33.1 -0.04 -1.81
6 45.54 38.9 1.17 51.19 15.74 31.52 0.5 23.21

6 20 1 22.36 34.4 0.65 29.44 -1.14 33.87 -0.03 -1.61
3 36.45 39.96 0.91 40.14 5.6 32.18 0.17 8.19
6 38.79 38.82 1 43.76 16.63 34.08 0.49 22.38

50 1 30.39 37.15 0.82 36.43 -0.6 33.77 -0.02 -0.85
3 36.97 39.72 0.93 40.9 7.31 32.59 0.22 10.51
6 36.82 38.38 0.96 42.18 15.11 32.72 0.46 21.25

100 1 35.58 38.71 0.92 40.51 0.04 33.74 0 0.05
3 36.4 39.05 0.93 41.01 10.32 34.15 0.3 14.06
6 34.38 38.55 0.89 39.39 14.19 33.12 0.43 19.76

Table A13: The figure shows the average annualized performance of DLS and GLS (EMA) strategies set up using the DJIA
(2001-2016) data set. Factors are detected applying the Exponential Moving Average (EMA) approach, i.e. the
trend is estimated applying a K-days moving average on daily stock prices. The D is quantified as the cumulative
return over the previous f months while the G is computed as the simple f -months difference in momentum.
Each portfolio is held for h months. Factors are detected using different asymmetric moving average windows (K)
expressed in days. The investment might be delayed by s months. A one-month period is assumed to correspond
to 21 days. The performance is given as an average annualized return (µ), annualized volatility (s) both expressed
as a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The
analysis has been performed through MATLAB.
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Appendix

Annualized performance of D and G RSWP and Long-Short (crossovers) strategies
DJIA (1984-2002)

RSWP Long-Short
DD and GD D and G

s f µ s SR t-test µ s SR t-test
h = 1

0 Momentum 66.32 47.78 1.39 21.71 Momentum 30.48 28.83 1.06 18.62
Acceleration Acceleration

1 12.66 44.12 0.29 5.42 1 -1.43 24.99 -0.06 -1.15
3 25.52 44.11 0.58 10.38 3 7.83 25.23 0.31 5.98
6 41.99 45.31 0.93 15.67 6 13.9 26.25 0.53 9.95
12 60.12 49.91 1.21 19.2 12 30.52 26.22 1.16 20.5

1 Momentum 61.17 46.26 1.32 20.96 Momentum 32.14 28.63 1.12 19.61
Acceleration Acceleration

1 42.88 46.36 0.93 15.56 1 14.35 25.82 0.56 10.4
3 35.65 45.84 0.78 13.42 3 15.14 26.66 0.57 10.6
6 51.23 46.09 1.11 18.18 6 20.76 26.16 0.79 14.47
12 66.01 48.08 1.37 21.44 12 31.8 25.91 1.23 21.46

6 Momentum 46.98 44.16 1.06 17.46 Momentum 33.51 28.31 1.18 20.35
Acceleration Acceleration

1 21.99 42.97 0.51 9.18 1 10.91 24 0.45 8.54
3 36.32 41.77 0.87 14.8 3 18.84 24.62 0.77 13.91
6 45.88 42.74 1.07 17.67 6 30.12 25.32 1.19 20.7
12 54.33 46.08 1.18 18.88 12 26.66 25.94 1.03 18.11

h = 6
0 Momentum 67.26 66.57 1.01 42.6 Momentum 38.63 37.32 1.03 45.97

Acceleration Acceleration
1 30.74 65.87 0.47 21.05 1 12.72 37.3 0.34 15.99
3 45.31 65.02 0.7 30.56 3 21.23 37.33 0.55 26.18
6 58.95 62.7 0.94 40.21 6 29.45 36.16 0.81 36.84
12 72.93 66.49 1.1 45.81 12 36.92 35.15 1.05 46.81

1 Momentum 63.71 65.31 0.98 41.29 Momentum 39.03 36.88 1.05 46.86
Acceleration Acceleration

1 33.36 66.25 0.50 22.55 1 15.58 35.49 0.44 20.41
3 48.79 63.64 0.77 33.32 3 23.95 35.97 0.67 30.4
6 61.04 61.64 0.99 42.11 6 32.76 34.99 0.94 41.98
12 72.11 64.73 1.11 46.49 12 36.47 34.33 1.06 47.28

6 Momentum 51.12 60.45 0.85 36.18 Momentum 31.61 32.22 0.98 43.58
Acceleration Acceleration

1 29.66 60.37 0.49 21.91 1 20.26 32.19 0.63 28.63
3 39.68 58.4 0.68 29.71 3 25.01 32.26 0.76 34.91
6 47.3 55.6 0.85 36.66 6 27.53 29.21 0.94 42.22
12 50.54 59.83 0.84 36.18 12 28.56 29.16 0.98 43.78

Table A14: The figure shows the annualized performance of different DLS and GLS (crossovers) as well as DRSWP and GRSWP
(crossovers) portfolios set up considering securities included in the DJIA (2001-2016) where the momentum (D) is
detected using the asymmetric Simple Moving Average (SMA) Crossovers approach on daily stock prices. More
precisely, the D factor is quantified as the difference of a short (50 days) and a long (200 days) SMA while the G
factor is computed as the simple difference in momentum considering different formation periods ( f ) expressed in
months. In the Long-Short Portfolio, at each day t stocks are ranked in ascending order according to their delta
(Di,t�1�s) or gamma (Gi,t�1�s( f )) parameters. The long portfolio is constructed buying stocks of the top-ranked
quintile while the short portfolio sells stocks of the bottom-ranked quintile. Equal weights are applied and the
portfolio is held for h months. In the RSWP, the GD

s, f portfolio is constructed as follows: at each day t, the weight
of a specific security i is determined by the magnitude of its (discretized) gamma factor computed the previous
day t � 1 � s (where s represents the delay in the investment, here expressed in months) over a formation of f
months(GD

i,t�1( f )) with the (discretized) acceleration factor of the equal weighted index (the market) (GD
m,t�1( f )).

Hence, wGD
i,t ( f , s) =

1
N

(GD
i,t�1�s ( f )� GD

m,t�1�s ( f )) where
N
Â

i=1
wGD

i,t ( f , s) = 0. In order to get market-neutral weights, there is a stan-

dardization. The D portfolio is computed similarly. Moreover, the investment might be delayed by s months. A
one-month period is assumed to correspond to 21 days. The performance is given as an average annualized return
(µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR). Critical t-values
are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB
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Appendix

Annualized performance of DLS and GLS (W)
DJIA (1984-2002)

DLS GLS
s j µ s SR t-test µ s SR t-test

h = 1
1 -7.02 25.11 -0.28 -5.77 -1.23 24.41 -0.05 -1.01

0 2 -10.29 25.3 -0.41 -8.53 -2.72 24.38 -0.11 -2.26
3 -11.03 24.9 -0.44 -9.32 -0.24 24.15 -0.01 -0.2
4 -10.97 24.46 -0.45 -9.44 -3.49 25.12 -0.14 -2.82
1 -2.26 24.04 -0.09 -1.9 -0.89 24.16 -0.04 -0.74

1 2 -3.69 24.64 -0.15 -3.03 -1.04 24.39 -0.04 -0.85
3 -5.25 25.1 -0.21 -4.27 -2.28 25.25 -0.09 -1.81
4 -5.92 26.66 -0.22 -4.55 -11.21 26.68 -0.42 -8.83
1 -1.28 24.29 -0.05 -1.04 2.63 24.53 0.11 2.09

6 2 1.4 25.02 0.06 1.09 0.2 24.58 0.01 0.16
3 0.77 25.43 0.03 0.59 2.58 24.44 0.11 2.05
4 -3.36 25.36 -0.13 -2.65 1.14 25.64 0.04 0.87

h = 3
1 -3.24 24.39 -0.13 -4.62 -0.6 24.31 -0.02 -0.85

0 2 -3.93 24.67 -0.16 -5.57 -0.88 24.65 -0.04 -1.23
3 -2.66 25.16 -0.11 -3.68 -0.42 24.72 -0.02 -0.58
4 0.61 25.18 0.02 0.83 0.53 25.64 0.02 0.71
1 -0.42 24.26 -0.02 -0.59 0.19 24.56 0.01 0.26

1 2 0.07 24.91 0 0.1 0.57 24.65 0.02 0.79
3 1.56 25.28 0.06 2.1 0.35 25.86 0.01 0.46
4 3.27 26.02 0.13 4.26 3.01 26.38 0.11 3.88
1 0.01 24.45 0 0.02 1.1 24.39 0.05 1.53

6 2 1.64 25.12 0.07 2.21 0.42 24.54 0.02 0.58
3 3.47 25.79 0.13 4.52 1.45 26.49 0.05 1.84
4 5.47 25.72 0.21 7.08 1.18 26.72 0.04 1.49

h = 6
1 -1.69 31.23 -0.05 -2.62 0.14 31.45 0 0.21

0 2 -1.71 32.33 -0.05 -2.57 0.36 32.17 0.01 0.54
3 -0.12 32.38 0 -0.18 0.2 32.98 0.01 0.3
4 3.37 32.77 0.1 4.93 2.2 32.69 0.07 3.24
1 -0.55 31.28 -0.02 -0.85 0.92 32.03 0.03 1.38

1 2 0.54 32.53 0.02 0.8 1 32.27 0.03 1.49
3 2.27 32.93 0.07 3.3 0.86 33.91 0.03 1.21
4 4.99 32.64 0.15 7.28 2.85 33.3 0.09 4.1
1 0.52 30.55 0.02 0.81 1.35 31.12 0.04 2.06

6 2 2.39 32.2 0.07 3.52 1.11 31.47 0.04 1.67
3 4.91 33.08 0.15 7 1.6 34.11 0.05 2.23
4 7.62 32.11 0.24 11.11 2.3 34.05 0.07 3.2

h = 12
1 -1.13 58.76 -0.02 -1.29 1.16 61.28 0.02 1.28

0 2 0.03 63.13 0 0.03 1.05 61.73 0.02 1.15
3 2.81 62.83 0.04 3.02 1.53 65.43 0.02 1.57
4 7.4 62.07 0.12 8.04 3.67 67.78 0.05 3.65
1 -0.18 58.22 0 -0.21 1.61 61.67 0.03 1.76

1 2 1.85 62.42 0.03 1.99 1.95 61.84 0.03 2.13
3 4.86 63.58 0.08 5.15 2.16 66.72 0.03 2.18
4 9.81 63.44 0.15 10.4 4.66 70.04 0.07 4.47
1 -0.21 54.72 0 -0.25 1.49 59.15 0.03 1.68

6 2 1.88 59.63 0.03 2.1 1.97 59.96 0.03 2.18
3 4.37 62.26 0.07 4.66 2.49 65.13 0.04 2.54
4 8.39 63.22 0.13 8.83 3.62 69.1 0.05 3.48

Table A15: Performance of DLS and GLS (W) optimizations performed using the DJIA (1984-2002) data set. Both factors are
detected using the Maximum Overlap Discrete Wavelet Transform applied to daily stock prices at resolution levels
(j = 1, 2, 3, 4). The D is quantified by detail coefficients (dj,t(i)) calculated using the Haar (also named Daubechies)
mother wavelet with one-vanishing moment (Db1). The acceleration factor (G) is captured by the detail coefficients
((�1)d̂j,t(i)) applying a MODWT performed with a Daubechies function with two vanishing moments (Db2). The
portfolio is held for h months. Moreover, the investment might be delayed by s months. A one-month period
is assumed to correspond to 21 days. The performance is given as an average annualized return (µ), annualized
volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%),
1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of DLS and GLS (WM)
DJIA (1984-2002)

DLS GLS
s j µ s SR t-test µ s SR t-test

h = 1
1 -15.51 23.74 -0.65 -3.07 -30.63 29.59 -1.04 -5.31

0 2 13.63 29.45 0.46 1.9 -16.06 27.57 -0.58 -2.75
3 23.5 31.13 0.76 2.98 -5.7 22.95 -0.25 -1.11
4 37.08 30.9 1.2 4.51 12.12 26.64 0.45 1.88
1 -8.03 29.25 -0.27 -1.24 32.5 29.2 1.11 4.24

1 2 25.99 30.99 0.84 3.27 12.45 28.92 0.43 1.77
3 30.01 30.09 1 3.84 17.94 28.07 0.64 2.57
4 41.19 30.8 1.34 4.94 15.51 26.83 0.58 2.35
1 -4.95 24.39 -0.2 -0.89 -31.14 30.08 -1.04 -5.25

6 2 20.84 27.76 0.75 2.96 -10.28 27.17 -0.38 -1.71
3 35.26 30.16 1.17 4.36 6.58 25.84 0.25 1.06
4 27.56 29.85 0.92 3.54 11.07 27.7 0.4 1.64

h = 3
1 2.52 25.67 0.1 0.73 2.51 26.68 0.09 0.7

0 2 21.51 30.15 0.71 4.98 -2.57 27.26 -0.09 -0.72
3 30.45 29.61 1.03 6.98 8.67 26.05 0.33 2.42
4 39.78 30.8 1.29 8.53 12.9 26.64 0.48 3.48
1 7.76 26.75 0.29 2.12 4.08 27.72 0.15 1.09

1 2 22.31 30.29 0.74 5.11 -3.22 28.93 -0.11 -0.85
3 31.94 28.67 1.11 7.51 11.46 26.1 0.44 3.16
4 40.47 31.39 1.29 8.48 13.92 26.84 0.52 3.7
1 9.58 26.71 0.36 2.57 2.9 26.3 0.11 0.81

6 2 26.3 28.71 0.92 6.21 6.91 28.42 0.24 1.76
3 35.08 30.03 1.17 7.71 8.33 26.75 0.31 2.24
4 27.01 29 0.93 6.3 11.84 26.43 0.45 3.18

h = 6
1 6.98 35.13 0.2 2.06 1.93 34.62 0.06 0.59

0 2 28.32 43 0.66 6.52 -2.53 35.74 -0.07 -0.75
3 38.02 40.16 0.95 9.19 12.76 32.88 0.39 3.98
4 44.24 40.99 1.08 10.35 16.96 37.18 0.46 4.63
1 9.22 33.92 0.27 2.8 3.33 36.01 0.09 0.97

1 2 29.42 41.05 0.72 7.07 -1.96 36.68 -0.05 -0.57
3 39.95 38.85 1.03 9.93 15.49 32.62 0.47 4.82
4 42.75 41.22 1.04 9.96 16.91 37.09 0.46 4.62
1 12.36 32.88 0.38 3.8 7.26 34.57 0.21 2.15

6 2 32.29 39.11 0.83 8 3.48 34.96 0.1 1.03
3 38.08 37.51 1.02 9.73 2.18 31.51 0.07 0.72
4 28.36 39.44 0.72 7.02 12.59 33.44 0.38 3.81

h = 12
1 13.69 65.81 0.21 3.06 7.67 72.43 0.11 1.56

0 2 45.33 80.3 0.56 8.32 1.26 70.18 0.02 0.27
3 56.04 78.96 0.71 10.46 13.7 61.34 0.22 3.29
4 54.67 82.09 0.67 9.81 26.47 73.43 0.36 5.31
1 15.01 65.06 0.23 3.39 9.81 72.37 0.14 1.99

1 2 44.89 77.21 0.58 8.55 2.45 72.25 0.03 0.5
3 54.88 77.08 0.71 10.46 14.87 60.04 0.25 3.64
4 52.76 82.06 0.64 9.45 25.54 72.12 0.35 5.21
1 12.88 62.74 0.21 2.98 8.73 71.53 0.12 1.77

6 2 36.88 73.19 0.5 7.32 2.27 72.92 0.03 0.45
3 46.03 75.93 0.61 8.81 13.14 57.89 0.23 3.3
4 40.6 77.65 0.52 7.6 19.7 67.37 0.29 4.25

Table A16: Performance of DLS and GLS (WM) optimizations performed using the DJIA (1984-2002) data set. Both factors
are detected using the Maximum Overlap Discrete Wavelet Transform applied to monthly stock prices at resolu-
tion levels (j = 1, 2, 3, 4). The D is quantified by detail coefficients (dj,t(i)) calculated using the Haar (also named
Daubechies) mother wavelet with one-vanishing moment (Db1). The acceleration factor (G) is captured by the detail
coefficients ((�1)d̂j,t(i)) applying a MODWT performed with a Daubechies function with two vanishing moments
(Db2). The portfolio is held for h months. Moreover, the investment might be delayed by s months. A one-month
return is assumed to correspond to the cumulative return over the previous 21 days. The performance is given as
an average annualized return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe
Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through
MATLAB.
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Appendix

Annualized performance of DRSWP and GRSWP (W)
DJIA (1984-2002)

DRSWP GRSWP
s j µ s SR t-test µ s SR t-test

h = 1
1 -6.63 23.6 -0.28 -5.79 -1.33 23.45 -0.06 -1.14

0 2 -10.32 23.59 -0.44 -9.18 -2.79 22.4 -0.12 -2.52
3 -10.26 22.55 -0.45 -9.54 0.19 21.92 0.01 0.18
4 -10.44 22.75 -0.46 -9.63 -4.08 23.36 -0.17 -3.55
1 -2.33 21.89 -0.11 -2.14 -0.56 21.99 -0.03 -0.51

1 2 -3.57 22.29 -0.16 -3.25 -0.7 22.3 -0.03 -0.63
3 -4.59 22.8 -0.2 -4.09 -2.08 23.03 -0.09 -1.81
4 -3.96 24.38 -0.16 -3.3 -17.29 33.07 -0.52 -11.34
1 1.67 24.91 0.07 1.31 1.75 27.67 0.06 1.24

6 2 2.69 27.28 0.1 1.92 1.43 25.6 0.06 1.1
3 1.96 27.77 0.07 1.38 2.97 23.6 0.13 2.45
4 -1.53 26.07 -0.06 -1.16 0.88 23.65 0.04 0.73

h = 3
1 -2.51 23.13 -0.11 -3.76 -0.56 23.95 -0.02 -0.81

0 2 -2.36 24.13 -0.1 -3.4 -0.59 25.15 -0.02 -0.81
3 0.58 25.06 0.02 0.79 -0.53 26.01 -0.02 -0.7
4 5.38 26.88 0.2 6.76 -0.96 28.45 -0.03 -1.17
1 0.67 24.02 0.03 0.96 0.39 25.36 0.02 0.53

1 2 2.42 25.65 0.09 3.2 0.91 25.68 0.04 1.21
3 5.23 26.38 0.2 6.68 0.18 27.14 0.01 0.23
4 8.87 27.71 0.32 10.64 0.97 29.76 0.03 1.11
1 1.52 24.95 0.06 2.05 0.58 26.02 0.02 0.75

6 2 3.49 26.69 0.13 4.38 0.35 25.77 0.01 0.47
3 6.24 27.25 0.23 7.6 0.55 27.32 0.02 0.69
4 9.49 27.01 0.35 11.53 0.31 28.78 0.01 0.37

h = 6
1 -0.57 33.35 -0.02 -0.83 0.01 34.83 0 0.01

0 2 0.46 34.06 0.01 0.65 0.02 36.76 0 0.03
3 4.1 35.92 0.11 5.47 -0.22 39.43 -0.01 -0.27
4 9.59 38.97 0.25 11.62 0.3 43.94 0.01 0.33
1 1.19 34.74 0.03 1.64 0.71 38.72 0.02 0.88

1 2 3.48 37.95 0.09 4.39 1.09 39.24 0.03 1.34
3 6.92 39.67 0.17 8.28 0.58 40.85 0.01 0.68
4 11.63 40.92 0.28 13.33 1.04 45.11 0.02 1.1
1 2.12 34.6 0.06 2.91 0.78 37.17 0.02 1.01

6 2 4.89 37.01 0.13 6.23 0.46 38.11 0.01 0.58
3 8.7 38.32 0.23 10.59 1.22 41.09 0.03 1.41
4 13.84 39.58 0.35 16.13 0.81 42.86 0.02 0.9

h = 12
1 0.94 72.48 0.01 0.87 0.68 78.69 0.01 0.59

0 2 3.64 74.94 0.05 3.27 0.34 81.49 0 0.28
3 9.29 78.44 0.12 7.99 0.59 91.61 0.01 0.43
4 17.57 88.03 0.2 13.46 0.75 105.3 0.01 0.48
1 2.53 75.2 0.03 2.26 1.27 85.63 0.01 1

1 2 6.55 82.01 0.08 5.37 1.81 87.32 0.02 1.4
3 12.36 88.53 0.14 9.39 1.76 93.92 0.02 1.26
4 20.74 93.27 0.22 14.96 1.73 107.5 0.02 1.08
1 2.28 74.1 0.03 2.04 1.07 85.85 0.01 0.82

6 2 5.83 79.78 0.07 4.86 1.5 83.76 0.02 1.19
3 10.41 82.75 0.13 8.37 1.73 89.16 0.02 1.29
4 17.15 84.96 0.2 13.43 1.03 98.33 0.01 0.69

Table A17: Performance of DRSWP and GRSWP (W) optimizations performed using the DJIA (1984-2002) data set. Both fac-
tors are detected using the Maximum Overlap Discrete Wavelet Transform applied to daily stock prices at resolu-
tion levels (j = 1, 2, 3, 4). The D is quantified by detail coefficients (dj,t(i)) calculated using the Haar (also named
Daubechies) mother wavelet with one-vanishing moment (Db1). The acceleration factor (G) is captured by the detail
coefficients ((�1)d̂j,t(i)) applying a MODWT performed with a Daubechies function with two vanishing moments
(Db2). The portfolio is held for h months. Moreover, the investment might be delayed by s months. A one-month
period is assumed to correspond to 21 days. The performance is given as an average annualized return (µ), annu-
alized volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64
(90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of DRSWP and GRSWP (WM)
DJIA (1984-2002)

DRSWP GRSWP
s j µ s SR t-test µ s SR t-test

h = 1
1 -16.24 20.47 -0.79 -3.75 -36.42 38.8 -0.94 -4.99

0 2 11.92 28.94 0.41 1.7 -18.82 28.13 -0.67 -3.2
3 29.23 36.25 0.81 3.12 -5.03 21.31 -0.24 -1.05
4 46.18 38.39 1.2 4.38 11.98 27.63 0.43 1.79
1 -8 26.35 -0.3 -1.37 38.53 33.02 1.17 4.35

1 2 45.22 41.21 1.1 4 15.83 27.87 0.57 2.31
3 31.28 36.09 0.87 3.32 13.82 25.07 0.55 2.26
4 51.04 38.76 1.32 4.71 14.66 27.65 0.53 2.16
1 -2.74 23.85 -0.11 -0.5 -37.38 38.29 -0.98 -5.16

6 2 17.9 27.52 0.65 2.59 -13.71 26.85 -0.51 -2.35
3 41.87 32.8 1.28 4.65 6.03 23.54 0.26 1.07
4 35.89 35.68 1.01 3.74 11.74 28.44 0.41 1.69

h = 3
1 8.14 28.25 0.29 2.1 0.44 29.74 0.01 0.11

0 2 24.53 30.68 0.8 5.53 -1.46 24.39 -0.06 -0.45
3 34.37 34.66 0.99 6.65 7.06 22.38 0.32 2.31
4 47.78 35.32 1.35 8.73 13.1 26.67 0.49 3.52
1 12.42 29.16 0.43 3.06 1.74 29.6 0.06 0.44

1 2 25.98 32.41 0.8 5.5 -1.26 26.14 -0.05 -0.36
3 36.96 33.53 1.1 7.32 11.94 23.01 0.52 3.73
4 47.67 34.92 1.37 8.79 13.72 26.63 0.52 3.68
1 14.46 29.23 0.49 3.49 -1.11 29.72 -0.04 -0.28

6 2 30.18 30.07 1 6.72 7.63 25.39 0.3 2.17
3 42.47 31.52 1.35 8.71 6.26 24.59 0.25 1.85
4 34.49 34.76 0.99 6.56 10.9 25.96 0.42 2.99

h = 6
1 13.88 43.12 0.32 3.29 1.05 45.74 0.02 0.24

0 2 33.42 48.37 0.69 6.77 -3.18 33.53 -0.09 -1.01
3 47.15 51.29 0.92 8.77 12.51 29.07 0.43 4.41
4 55.83 53.22 1.05 9.85 18.75 39.51 0.47 4.8
1 16.93 43.5 0.39 3.94 1.66 46.44 0.04 0.37

1 2 34.79 47.87 0.73 7.09 -2.56 34.88 -0.07 -0.78
3 49.56 49.4 1 9.51 14.6 28.89 0.51 5.14
4 53.92 52.77 1.02 9.61 18.76 39.2 0.48 4.83
1 19.42 41.07 0.47 4.71 3 44.58 0.07 0.69

6 2 37.93 44.73 0.85 8.12 4.31 32.65 0.13 1.36
3 45.15 45.92 0.98 9.29 3.15 27.95 0.11 1.16
4 40.01 51.6 0.78 7.4 13.96 36.49 0.38 3.86

h = 12
1 26.03 98.95 0.26 3.88 2.78 110.8 0.03 0.37

0 2 55.21 103.6 0.53 7.85 1.7 69.4 0.02 0.36
3 70.77 113.4 0.62 9.2 12.95 53.77 0.24 3.55
4 74.22 121.3 0.61 9.01 31.15 88.36 0.35 5.19
1 27.99 101.2 0.28 4.07 4.7 107.8 0.04 0.64

1 2 55.52 104.1 0.53 7.84 3.31 74.49 0.04 0.65
3 69.73 111.1 0.63 9.22 14.15 54.09 0.26 3.85
4 71.79 119.2 0.6 8.85 30.39 87.34 0.35 5.11
1 24.16 91.37 0.26 3.84 2.35 101 0.02 0.34

6 2 48.11 97.83 0.49 7.14 2.82 70.36 0.04 0.58
3 59.72 100.8 0.59 8.6 12.73 53.17 0.24 3.48
4 56.54 108.9 0.52 7.54 22.6 82.72 0.27 3.97

Table A18: Performance of DRSWP and GRSWP (WM) optimizations performed using the DJIA (1984-2002) data set. Both factors
are detected using the Maximum Overlap Discrete Wavelet Transform applied to monthly stock prices at resolu-
tion levels (j = 1, 2, 3, 4). The D is quantified by detail coefficients (dj,t(i)) calculated using the Haar (also named
Daubechies) mother wavelet with one-vanishing moment (Db1). The acceleration factor (G) is captured by the detail
coefficients ((�1)d̂j,t(i)) applying a MODWT performed with a Daubechies function with two vanishing moments
(Db2). The portfolio is held for h months. Moreover, the investment might be delayed by s months. A one-month
return is assumed to correspond to the cumulative return over the previous 21 days. The performance is given as
an average annualized return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe
Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through
MATLAB.
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Appendix

Annualized performance of DRSWP and GRSWP (W) DJIA (1984-2002)
considering further resolution levels (j)

DRSWP GRSWP
s j µ s SR t-test µ s SR t-test

h = 1
5 -13.51 22.4 -0.60 -12.85 -29.03 33.74 -0.86 -20

0 6 9.98 26.3 0.38 7.25 -11.3 26.51 -0.43 -8.98
7 31.27 33.74 0.93 16.28 -6.38 22.2 -0.29 -5.91
8 44.37 36.8 1.21 20.22 9.47 24.69 0.38 7.34
5 10.83 25.75 0.42 7.99 29.66 30.74 0.97 17.01

1 6 45.11 37.53 1.20 20.07 -17.14 28.48 -0.60 -13.05
7 31.76 34.29 0.93 16.2 -5.44 21.92 -0.25 -5.07
8 47.24 36.07 1.31 21.71 6.45 24.41 0.26 5.11
5 -4.08 24.61 -0.17 -3.33 -28.7 31.96 -0.90 -20.56

6 6 13.51 26.28 0.51 9.55 -10.44 25.27 -0.41 -8.55
7 41.24 32.07 1.29 21.51 10.04 22.72 0.44 8.33
8 41.02 34.05 1.20 20.16 11.91 25.04 0.48 8.89

h = 6
5 17.87 42.95 0.42 19.29 0.61 44.52 0.01 0.66

0 6 31.36 46.96 0.67 30.09 -1.84 37.39 -0.05 -2.39
7 44.99 50.47 0.89 39.11 4.64 24.65 0.19 8.99
8 58.27 52.3 1.11 47.71 10.2 30.35 0.34 15.86
5 20.11 43.63 0.46 21.22 1.22 43.17 0.03 1.36

1 6 32.42 47.26 0.69 30.77 -1.21 37.21 -0.03 -1.57
7 46.94 48.84 0.96 41.91 7.78 27.39 0.28 13.45
8 57.51 51.96 1.11 47.35 10.65 30.67 0.35 16.33
5 23.19 40.22 0.58 26.06 1.91 41.72 0.5 2.17

6 6 35.44 44.23 0.80 35.33 2.74 36.43 0.08 3.56
7 44.3 45.99 0.96 41.74 5.91 29.66 0.20 9.36
8 41.81 52.52 0.80 34.66 17.39 33.68 0.52 23.63

Table A19: Performance of DRSWP and GRSWP (W) optimizations performed using the DJIA (1984-2002) data set. MODWT
approach (on a daily basis) using additional resolution levels (j = 5, 6, 7, 8). Both factors are detected using the
Maximum Overlap Discrete Wavelet Transform applied to daily stock prices. The portfolio is held for h months.
Moreover, the investment might be delayed by s months. A one-month period is assumed to correspond to 21
days. The performance is given as an average annualized return (µ), annualized volatility (s) both expressed as
a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%). The
analysis has been performed through MATLAB.
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Appendix

Annualized performance of DRSWP and GRSWP (WM) DJIA (1984-2002)
considering further resolution levels (j)

DRSWP GRSWP
s j µ s SR t-test µ s SR t-test

h = 1
5 34.83 35.99 0.97 5.25 20.43 34.07 0.6 2.4

0 6 13.28 33.63 0.4 1.63 -9.21 38.9 -0.24 -1.08
7 -25.36 39.82 -0.64 -3.16 -35.7 38.31 -0.93 -4.93
5 36.77 36.16 1.02 3.82 21.52 34.34 0.63 2.49

1 6 12.05 34.29 0.35 1.45 -9.68 38.71 -0.25 -1.14
7 -26 39.88 -0.65 -3.24 -36.25 38.33 -0.95 -5.01
5 26.51 32.84 0.81 3.11 24.08 35.25 0.68 2.66

6 6 4.09 37.87 0.11 0.46 -13.76 38.27 -0.36 -1.65
7 -29.09 39.98 -0.73 -3.65 -39.11 38.32 -1.02 -5.46

h = 6
5 41.91 53.52 0.78 7.55 30.08 55.44 0.54 5.35

0 6 11.77 66.19 0.18 1.83 -16.5 69.02 -0.24 -2.64
7 -36.49 68.45 -0.53 -6.27 -49.75 59.97 -0.83 -10.25
5 39.59 52.9 0.75 7.23 30.79 56.15 0.55 5.39

1 6 9.9 67.48 0.15 1.51 -17.58 69.04 -0.25 -2.81
7 -37.28 68.47 -0.54 -6.4 -50.48 59.76 -0.84 -10.45
5 26.64 51.59 0.52 5.06 30.12 59.2 0.51 4.95

6 6 1.56 70.19 0.02 0.23 -22.19 69.66 -0.32 -3.53
7 -40.67 68.04 -0.60 -7.04 -54.19 58.85 -0.92 -11.44

Table A20: Performance of DRSWP and GRSWP (WM) optimizations performed using the DJIA (1984-2002) data set. MODWT
approach (on a monthly basis) using additional resolution levels (j = 5, 6, 7). Both factors are detected using the
Maximum Overlap Discrete Wavelet Transform applied to monthly stock prices. A one-month return is assumed
to correspond to the cumulative return over the previous 21 days. The portfolio is held for h months. Moreover,
the investment might be delayed by s months. The performance is given as an average annualized return (µ),
annualized volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR). Critical t-values are:
1.64 (90%), 1.96 (95%) and 2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of calibrated DRSWP and GRSWP (WMC)
DJIA (1984-2002)

DRSWP GRSWP
s j µ s SR t-test µ s SR t-test

h = 1
1 41.9 26.05 1.61 5.94 -30.47 33.32 -0.91 -4.68

0 2 61.2 33.41 1.83 6.36 -10.02 30.85 -0.32 -1.49
3 57.42 35.13 1.64 5.74 5.79 27.34 0.21 0.9
4 55.9 33.71 1.66 5.85 8.74 29.12 0.3 1.26
5 43.94 35.41 1.24 4.55 11.5 25.61 0.45 1.86
1 -4.78 27.95 -0.17 -0.76 -9.51 44.57 -0.21 -0.97

1 2 75.09 39.65 1.89 6.29 35.41 33.16 1.07 4.03
3 46.29 34.11 1.36 4.93 31.57 31.37 1.01 3.85
4 57.51 33.19 1.73 6.07 13.57 26.67 0.51 2.09
5 41.59 35.71 1.17 4.3 10.58 25.4 0.42 1.73
1 10.85 27.72 0.39 1.61 -33.67 34.41 -0.98 -5.05

6 2 31.62 38.13 0.83 3.14 -8.52 26.72 -0.32 -1.43
3 29.11 34.37 0.85 3.23 4.3 32.64 0.13 0.56
4 34.21 35.45 0.97 3.61 10.47 27.87 0.38 1.54
5 27.94 32.71 0.85 3.27 9.21 26.66 0.35 1.43

h = 6
1 22.37 42.7 0.52 5.25 3.13 48.51 0.06 0.68

0 2 43.59 51.28 0.85 8.17 11.26 35.06 0.32 3.3
3 50.67 52.58 0.96 9.14 24.74 45.33 0.55 5.44
4 60.46 49.45 1.22 11.39 17.99 37.09 0.49 4.91
5 47.21 54.97 0.86 8.19 13.53 34.1 0.4 4.06
1 16.35 42.28 0.39 3.92 3.44 47.78 0.07 0.75

1 2 37.74 51.64 0.73 7.08 11.42 33.85 0.34 3.46
3 44.72 51.9 0.86 8.24 23.89 44.91 0.53 5.31
4 56.53 49.48 1.14 10.69 18.61 35.36 0.53 5.31
5 43.67 54.09 0.81 7.74 13.01 33.59 0.39 3.96
1 15.25 38.88 0.39 3.94 2.96 42.45 0.07 0.72

6 2 33.22 45.26 0.73 7.1 0.1 31.44 0 0.03
3 41.83 45.56 0.92 8.73 5.94 40.83 0.15 1.49
4 42.4 55.4 0.77 7.27 17.87 34.91 0.51 5.11
5 27.52 50.09 0.55 5.38 7.84 33.59 0.23 2.38

Table A21: Performance of calibrated DRSWP and GRSWP (WMC) optimizations performed using the DJIA (1984-2002) data set.
Both factors are detected using the calibrated Maximum Overlap Discrete Wavelet Transform applied to monthly
stock prices at resolution levels (j = 1, 2, 3, 4, 5). The D is quantified by calibrated detail coefficients (dc

j,t(i)) cal-
culated using the Haar (also named Daubechies) mother wavelet with one-vanishing moment (Db1). The accel-
eration factor (G) is captured by the calibrated detail coefficients ((-1)d̂c

j,t(i)) applying a MODWT performed with
a Daubechies function with two vanishing moments (Db2). A one-month return is assumed to correspond to the
cumulative return over the previous 21 days. The portfolio is held for h months. Moreover, the investment might
be delayed by s months. The performance is given as an average annualized return (µ), annualized volatility (s)
both expressed as a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and
2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of calibrated DRSWP and GRSWP (WMC)
S&P500 (2001-2014)

DRSWP GRSWP
s j µ s SR t-test µ s SR t-test

h = 1
1 12.13 18.3 0.66 2.28 -2.59 18.33 -0.14 -0.52

0 2 13.83 20.25 0.68 2.33 7.01 32.77 0.21 0.75
3 10.06 22.99 0.44 1.52 1.49 19.89 0.08 0.27
4 5.61 26.34 0.21 0.75 -2.78 31.42 -0.09 -0.32
1 -3.62 22.84 -0.16 -0.58 -16.31 21.38 -0.76 -2.99

1 2 0.14 24.66 0.01 0.02 8.51 17.2 0.49 1.72
3 6.67 21.45 0.31 1.09 5.79 18.63 0.31 1.1
4 3.4 27.17 0.13 0.45 0.67 27.39 0.02 0.09
1 -5.38 15.94 -0.34 -1.23 5.84 15.32 0.38 1.32

6 2 -3.98 18.13 -0.22 -0.8 0.52 16.19 0.03 0.11
3 -2.22 22.18 -0.1 -0.36 -4.99 15.99 -0.31 -1.14
4 -3.37 23.54 -0.14 -0.52 8.97 17.84 0.5 1.72

h = 6
1 3 23.18 0.13 1.12 -3.9 26.2 -0.15 -1.32

0 2 5.57 22.71 0.25 2.12 4.06 31.44 0.13 1.12
3 5.22 21.39 0.24 2.11 7.03 16.49 0.43 3.67
4 2.83 28.1 0.1 0.87 5.78 21.53 0.27 2.32
1 -1.37 32.46 -0.04 -0.37 -2.82 27.12 -0.1 -0.91

1 2 1.23 31.12 0.04 0.34 1.56 19.44 0.08 0.7
3 3.27 22.51 0.15 1.26 5.62 16.22 0.35 2.98
4 0.75 29.93 0.03 0.22 8.11 19.86 0.41 3.49
1 1.89 20.77 0.09 0.78 -0.36 19.63 -0.02 -0.16

6 2 0.2 17.31 0.01 0.1 0.11 16.52 0.01 0.06
3 -1.6 28.27 -0.06 -0.49 -5.29 16.3 -0.32 -2.82
4 -1.57 27.69 -0.06 -0.49 0.77 17.9 0.04 0.37

Table A22: Performance of calibrated DRSWP and GRSWP (WMC) optimizations performed using the S&P500 (2001-2014) data
set. Both factors are detected using the calibrated Maximum Overlap Discrete Wavelet Transform applied to
monthly stock prices at resolution levels (j = 1, 2, 3, 4). The D is quantified by calibrated detail coefficients (dc

j,t(i))
calculated using the Haar (also named Daubechies) mother wavelet with one-vanishing moment (Db1). The accel-
eration factor (G) is captured by the calibrated detail coefficients ((-1)d̂c

j,t(i)) applying a MODWT performed with
a Daubechies function with two vanishing moments (Db2). A one-month return is assumed to correspond to the
cumulative return over the previous 21 days. The portfolio is held for h months. Moreover, the investment might
be delayed by s months. The performance is given as an average annualized return (µ), annualized volatility (s)
both expressed as a percentage and annualized Sharpe Ratio (SR). Critical t-values are: 1.64 (90%), 1.96 (95%) and
2.58 ((99%). The analysis has been performed through MATLAB.
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Appendix

Annualized performance of (EW) and (GW) D/G (simple)
DJIA (1984-2002)

D/G (EW) D/G (GW)
s j µ s SR t-test µ s SR t-test

h = 1
1 33.93 24.35 1.39 24.24 27.91 28.13 0.99 17.65

0 3 36.91 25.13 1.47 25.28 29.73 28.57 1.04 18.38
6 32.56 26.85 1.21 21.2 31.63 30.63 1.03 18.11
12 37.68 29.03 1.3 22.28 35.44 34.22 1.04 17.92
1 43.91 24 1.83 30.66 53.77 27.78 1.94 31.4

1 3 47.81 22.81 2.1 34.67 52.89 26.98 1.96 31.9
6 60.54 24.32 2.49 39.53 69.24 28.04 2.47 38.2
12 77.71 25.16 3.09 46.62 88.03 31.01 2.84 41.63
1 29.32 24.24 1.21 21.11 32.45 28.24 1.15 19.83

6 3 27.85 23.33 1.19 20.95 29.01 26.98 1.08 18.79
6 30.86 25.11 1.23 21.33 40.23 29.48 1.36 22.9
12 29.44 25.99 1.13 19.77 39.48 32.45 1.22 20.48

h = 3
1 49.83 25.45 1.96 57.53 59.81 32.49 1.84 52.69

0 3 45.49 25.66 1.77 52.71 47.17 29 1.63 48.15
6 47.24 25.61 1.85 54.6 51.08 29.1 1.76 51.4
12 59.64 27.81 2.15 61.41 65.63 33.21 1.98 55.74
1 41.01 27.78 1.48 44.37 56.05 35.61 1.57 45.39

1 3 36.12 25.11 1.44 43.84 40.72 29.64 1.37 41.32
6 42.24 26.54 1.59 47.66 47.42 31.41 1.51 44.56
12 52.97 28.42 1.86 54.19 62.16 35.5 1.75 49.7
1 -9.73 25.4 -0.38 -13.51 -0.74 30.91 -0.02 -0.82

6 3 -9.4 25.98 -0.36 -12.75 -6.95 30.4 -0.23 -7.97
6 -4.03 28.33 -0.14 -4.91 3.65 31.89 0.11 3.83
12 -3.84 28.98 -0.13 -4.56 5.07 33.19 0.15 5.09

h = 6
1 50.48 31.91 1.58 68.71 63.67 43.5 1.46 62.09

0 3 47.15 29.49 1.6 69.87 51.18 33.75 1.52 65.76
6 51.59 31.51 1.64 70.97 58.27 37.46 1.56 66.61
12 57.48 31.64 1.82 77.9 65.86 40.82 1.61 68.19
1 49.08 33.39 1.47 63.84 64.13 45.9 1.4 59.1

1 3 44.85 29.61 1.52 66.32 50.22 34.87 1.44 62.43
6 50.7 32.61 1.56 67.34 59.18 38.94 1.52 64.82
12 55.23 31.62 1.75 75.02 65.96 41.46 1.59 67.08
1 4.98 31.13 0.16 7.54 15.92 40.58 0.39 18.02

6 3 6.11 31.94 0.19 8.99 11.92 39.82 0.3 13.87
6 10.19 34.2 0.3 13.87 17.97 39.45 0.46 20.83
12 10.47 33.51 0.31 14.53 20.96 41.35 0.51 23.02

h = 12
1 33.34 55.14 0.6 40.78 49.19 85.24 0.58 38.92

0 3 31.43 45.91 0.68 46.17 37.46 57.9 0.65 43.64
6 36.41 50.34 0.72 48.78 44.88 61.54 0.73 49.19
12 39.91 47.22 0.85 57.01 53.51 69.58 0.77 51.86
1 26.89 53.53 0.5 33.8 44.63 87.25 0.51 34.42

1 3 24.53 46.16 0.53 35.75 31.91 59.91 0.53 35.83
6 29.81 50.1 0.6 40.04 39.25 63.92 0.61 41.32
12 33.17 46.93 0.71 47.57 48.12 70.12 0.69 46.17
1 5.65 51.22 0.11 7.34 22.57 78.26 0.29 19.18

6 3 6.94 52.8 0.13 8.75 16.75 73.32 0.23 15.19
6 14.38 58.3 0.25 16.4 26.36 75.95 0.35 23.09
12 18.5 57.79 0.32 21.29 36.84 83.58 0.44 29.31

Table A23: Performance of D/G (simple) portfolio optimizations performed using the DJIA (1984-2002) stocks universe. This
strategy consists in buying a long portfolio and selling a short portfolio. The long portfolio includes stocks having
a positive momentum (D( f )) at the time t computed over the previous f months; moreover, the selected stocks
must have a positive acceleration (G( f )) at time t quantified using the same formation period. The short portfolio
sells stocks having a negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule
are applied: equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed
by one or six months after the portfolio construction. A one-month period period is assumed to correspond to 21
days. The performance is given as an average annualized return (µ), annualized volatility (s) both expressed as a
percentage as well as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical significance of the
results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).
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Appendix

Annualized performance of (EW) and (GW) D/G (simple)
DJIA (2001-2016)

D/G (EW) D/G (GW)
s j µ s SR t-test µ s SR t-test

h = 1
1 -37.3 29.81 -1.25 -28.06 -44.89 35.78 -1.25 -29.67

0 3 -34.1 27.83 -1.23 -26.9 -42.22 32.8 -1.29 -29.86
6 -41.2 29.46 -1.4 -32.21 -47.46 34.93 -1.36 -32.77

12 -50.32 31.88 -1.58 -38.93 -53.53 37.97 -1.41 -35.71
1 114.2 24.71 4.62 57.98 124.3 28.26 4.4 53.87

1 3 117.2 23.68 4.95 61.63 122.3 28.13 4.35 53.5
6 138.4 25.6 5.41 64.13 151.1 29.86 5.06 58.4

12 135.5 24.35 5.56 66.42 158.4 29.26 5.41 61.49
1 0.98 20.99 0.05 0.84 8.89 24.16 0.37 6.36

6 3 -1.25 20.43 -0.06 -1.1 3.59 23.64 0.15 2.69
6 -1.25 19.29 -0.07 -1.17 5.98 21.81 0.27 4.8

12 3.37 18.41 0.18 3.24 5.31 21.33 0.25 4.37
h = 3

1 60.55 21.17 2.86 74.7 57.54 25.15 2.29 60.22
0 3 62.76 20.68 3.04 78.83 58.61 24.64 2.38 62.46

6 65.55 25.6 2.56 66.04 65.16 31.5 2.07 53.4
12 58.61 20.86 2.81 73.76 61.5 26.33 2.34 60.88
1 24.29 20.48 1.19 34.25 24.43 23.71 1.03 29.74

1 3 24.74 19.34 1.28 36.88 23.97 23.25 1.03 29.8
6 29.42 23.63 1.25 35.38 31.65 29.01 1.09 30.8

12 25.44 19.32 1.32 37.9 28.98 24.6 1.18 33.53
1 56.39 23.33 2.42 62.82 66.58 26.07 2.55 64.64

6 3 57.03 23.82 2.39 62.1 67.3 26.79 2.51 63.5
6 55.21 19.33 2.86 74.46 68.24 22.04 3.1 78.08

12 59.8 19.75 3.03 77.97 69.08 22.95 3.01 75.74
h = 6

1 9.02 21.9 0.41 17.79 7.5 25.88 0.29 12.57
0 3 9.67 22.73 0.43 18.35 7.28 27.33 0.27 11.55

6 9.71 25 0.39 16.75 9.54 31.17 0.31 13.21
12 5.45 20.16 0.27 11.79 6.94 25.16 0.28 11.98
1 18.15 18.39 0.99 41.65 20.27 20.66 0.98 41.2

1 3 17.58 20.45 0.86 36.33 18.35 23.94 0.77 32.34
6 19.52 20.87 0.94 39.35 22.77 26.46 0.86 35.95

12 17.93 18.05 0.99 41.94 21.27 21.93 0.97 40.65
1 10.91 18.81 0.58 24.54 13.48 21.95 0.61 25.83

6 3 10.56 16.89 0.63 26.49 13.26 19.6 0.68 28.48
6 8.88 15.2 0.58 24.83 11.97 17.33 0.69 29.15

12 7.49 15.06 0.5 21.2 8.66 17.53 0.49 21.01

Table A24: Performance of D/G (simple) portfolio optimizations performed using the DJIA (2001-2016) stocks universe. This
strategy consists in buying a long portfolio and selling a short portfolio. The long portfolio includes stocks having
a positive momentum (D( f )) at the time t computed over the previous f months; moreover, the selected stocks
must have a positive acceleration (G( f )) at time t quantified using the same formation period. The short portfolio
sells stocks having a negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule
are applied: equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed
by one or six months after the portfolio construction. A one-month period period is assumed to correspond to 21
days. The performance is given as an average annualized return (µ), annualized volatility (s) both expressed as a
percentage as well as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical significance of the
results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).
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Appendix

Annualized performance of (EW) and (GW) D/G (simple)
S&P500 (2001-2014)

D/G (EW) D/G (GW)
s j µ s SR t-test µ s SR t-test

h = 1
1 -43.68 18.89 -2.31 -49.32 -47.96 23.35 -2.05 -45.23

0 3 -43.63 17.95 -2.43 -51.84 -49.16 21.62 -2.27 -50.56
6 -43.96 17.21 -2.55 -54.59 -48.55 20.74 -2.34 -51.8

12 -45.91 17.32 -2.65 -57.48 -50.24 23.54 -2.13 -47.87
1 32.81 20.44 1.61 23.27 54 26.37 2.05 27.62

1 3 33.89 19.46 1.74 25.15 54.49 25.58 2.13 28.69
6 39.17 18.4 2.13 30.18 61.15 23.71 2.58 34

12 49.04 19.34 2.54 34.76 74.83 27.12 2.76 34.93
1 4.49 20.11 0.22 3.57 7.18 23.43 0.31 4.84

6 3 1.79 19.09 0.09 1.51 3.35 22.72 0.15 2.37
6 6.63 19.49 0.34 5.38 10.91 23.14 0.47 7.33

12 4.66 20.12 0.23 3.69 13.66 25.78 0.53 8.14
h = 3

1 26.03 18.85 1.38 36.14 33.01 23.28 1.42 36.32
0 3 25.08 18.87 1.33 34.89 29.93 24.22 1.24 31.95

6 28.34 17.21 1.65 42.77 35.43 21.22 1.67 42.47
12 32.67 18.95 1.72 44.21 40.41 25.79 1.57 39.28
1 11.75 19.02 0.62 16.88 17.06 24.02 0.71 19.07

1 3 9.59 18.82 0.51 14.04 11.89 24.44 0.49 13.28
6 12.97 17.96 0.72 19.66 17.55 23.05 0.76 20.41

12 14.74 18.49 0.8 21.57 20.31 23.7 0.86 22.77
1 35.04 19.82 1.77 44.14 43.46 23.31 1.87 45.45

6 3 34.88 19.13 1.82 45.56 42.27 23.68 1.79 43.65
6 37.45 18.34 2.04 50.63 44.29 22.1 2 48.73

12 39.96 18.87 2.12 52.13 52.45 25.1 2.09 49.68
h = 6

1 2.83 20.54 0.14 5.47 5.94 25.83 0.23 9.08
0 3 2.39 18.82 0.13 5.05 3.24 23.9 0.14 5.39

6 3.92 18.44 0.21 8.44 6.41 23.09 0.28 10.94
12 4.79 19.93 0.24 9.51 8.05 24.83 0.32 12.74
1 12.41 20.5 0.61 23.46 17.31 25.68 0.67 25.84

1 3 11.24 19.16 0.59 22.81 13.25 25.05 0.53 20.45
6 14.24 19.34 0.74 28.43 18.94 24.55 0.77 29.46

12 15.14 20.44 0.74 28.52 21.51 25.83 0.83 31.62
1 10.86 21.18 0.51 19.62 14.78 25.51 0.58 21.96

6 3 10.81 19.26 0.56 21.46 13.79 23.65 0.58 22.15
6 10.35 19.28 0.54 20.56 11.63 21.79 0.53 20.38

12 12.37 21.49 0.58 21.95 17.74 31.66 0.56 21.1

Table A25: Performance of D/G (simple) portfolio optimizations performed using the S&P500 (2001-2014) stocks universe. This
strategy consists in buying a long portfolio and selling a short portfolio. The long portfolio includes stocks having
a positive momentum (D( f )) at the time t computed over the previous f months; moreover, the selected stocks
must have a positive acceleration (G( f )) at time t quantified using the same formation period. The short portfolio
sells stocks having a negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule are
applied: equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed by
one or six months after the portfolio construction. A one-month period is assumed to correspond to 21 days. The
performance is given as an average annualized return (µ), annualized volatility (s) both expressed as a percentage
as well as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical significance of the results.
Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).
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Appendix

Annualized performance of (EW) and (GW) D/G (W)
DJIA (2001-2016)

D/G (EW) D/G (GW)
s j µ s SR t-test µ s SR t-test

h = 1
1 -35.7 32.37 -1.1 -24.47 -41.66 38.48 -1.08 -25.01

0 2 -36.46 31.09 -1.17 -26.15 -42.38 36.72 -1.15 -26.81
3 -36.36 30.38 -1.2 -26.67 -43.58 36.16 -1.21 -28.24
4 -36.3 31.62 -1.15 -25.57 -42.51 37.95 -1.12 -26.04
5 -36.07 30.96 -1.17 -25.91 -43.38 35.71 -1.22 -28.42
1 113 27.07 4.18 52.54 122.1 31.03 3.94 48.44

1 2 112 25.96 4.32 54.44 120.7 30.12 4.01 49.5
3 113.4 25.37 4.47 56.2 125.7 30.97 4.06 49.55
4 111.5 26.26 4.24 53.6 121.5 29.46 4.13 50.86
5 113.2 25.51 4.44 55.8 123.4 29.09 4.24 52.06
1 -0.45 21.9 -0.02 -0.37 3.91 25.16 0.16 2.75

6 2 -1.21 22.35 -0.05 -0.98 2.93 25.6 0.11 2.03
3 -0.55 22.33 -0.02 -0.45 4.72 26.09 0.18 3.19
4 2.38 21.58 0.11 1.96 8.21 25.36 0.32 5.61
5 -0.64 22.18 -0.03 -0.52 3.46 25.92 0.13 2.36

h = 3
1 58.13 24.2 2.4 63.15 55.9 29.06 1.92 50.86

0 2 58.02 23.28 2.49 65.53 56.02 27.52 2.04 53.8
3 57.94 22.15 2.62 68.79 55.78 26.98 2.07 54.69
4 58.34 22.54 2.59 68.02 56.54 27.09 2.09 55.09
5 59.3 22.17 2.68 70.1 56.6 26.07 2.17 57.3
1 24.36 22.04 1.11 31.91 24.82 26 0.95 27.51

1 2 23.49 21.45 1.1 31.71 23.95 24.87 0.96 27.84
3 24.13 21.19 1.14 32.9 25.46 25.99 0.98 28.17
4 23.18 20.91 1.11 32.12 24.41 24.5 1 28.76
5 24.08 20.7 1.16 33.62 24.52 23.82 1.03 29.71
1 54.84 24.3 2.26 58.88 62.77 27.45 2.29 58.45

6 2 53.54 24.02 2.23 58.37 60.85 27.47 2.22 56.9
3 54.05 24.34 2.22 58.06 62.53 28.1 2.23 56.92
4 56.78 24.07 2.36 61.24 64.28 27.37 2.35 59.79
5 54.99 23.94 2.3 59.91 63.54 27.04 2.35 59.94

h = 6
1 9.18 23.94 0.38 16.56 8.21 28.84 0.28 12.31

0 2 8.73 23.21 0.38 16.25 7.86 27.17 0.29 12.52
3 9.33 22.87 0.41 17.61 8.42 27.03 0.31 13.47
4 8.41 22.46 0.37 16.2 7.76 26.79 0.29 12.54
5 9.02 22.83 0.4 17.07 7.6 26.41 0.29 12.47
1 17.7 20.28 0.87 36.86 19.37 23.59 0.82 34.57

1 2 17.31 19.47 0.89 37.59 18.9 22.12 0.85 35.99
3 18.17 19.82 0.92 38.68 20.45 23.26 0.88 36.9
4 17.71 18.37 0.96 40.71 19.88 20.73 0.96 40.31
5 17.78 19.42 0.92 38.66 19.19 21.77 0.88 37.1
1 9.85 19.39 0.51 21.55 11.41 22.25 0.51 21.67

6 2 9.28 19.3 0.48 20.42 10.66 21.85 0.49 20.65
3 10.13 19.81 0.51 21.67 12.1 23.18 0.52 22.03
4 11.17 19.68 0.57 24.01 12.96 22.84 0.57 23.9
5 10.65 17.85 0.6 25.26 12.72 20.18 0.63 26.55

Table A26: Performance of D/G (W) portfolio optimizations performed using the DJIA (2001-2016) stocks universe. Both fac-
tors are detected using the MODWT applied to daily stock prices at resolution levels (j = 1, 2, 3, 4, 5). The D is
quantified by detail coefficients (dj,t(i)) calculated using the Haar (also named Daubechies) mother wavelet with
one-vanishing moment (Db1). The acceleration factor (G) is captured by the detail coefficients ((�1)d̂j,t(i)) applying
a MODWT performed with a Daubechies function with two vanishing moments (Db2). This strategy consists in
buying a long portfolio and selling a short portfolio. The long portfolio includes stocks having a positive momen-
tum (D( f )) at the time t computed over the previous f months; moreover, the selected stocks must have a positive
acceleration (G( f )) at time t quantified using the same formation period. The short portfolio sells stocks having a
negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule are applied: equal weights
(EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed by one or six months after
the portfolio construction. A one-month period is assumed to correspond to 21 days. The performance is given as
an average annualized return (µ), annualized volatility (s) both expressed as a percentage as well as annualized
Sharpe Ratio (SR). A t-test is employed to check the statistical significance of the results. Critical t-values are: 1.64
(90%), 1.96 (95%) and 2.58 ((99%).
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Appendix

Annualized performance of calibrated (EW) and (GW) D/G (WC)
DJIA (2001-2016)

D/G (EW) D/G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 -41.9 37.29 -1.12 -26.01 -48.07 43.47 -1.11 -26.8

0 2 -42.01 36.55 -1.15 -26.62 -48 43.09 -1.11 -26.98
3 -35.87 33.22 -1.08 -23.99 -40.55 39.34 -1.03 -23.63
4 -35.96 34.31 -1.05 -23.3 -40.42 40 -1.01 -23.15
5 -41.11 34.15 -1.2 -27.7 -51.65 42.1 -1.23 -30.6
1 116.6 26.97 4.33 53.94 126.7 31.05 4.08 49.69

1 2 116.2 26.14 4.45 55.52 125 30.29 4.13 50.46
3 114.8 25.57 4.49 56.23 127.2 31.23 4.07 49.54
4 114 26.03 4.38 54.95 124.5 29.28 4.25 52.05
5 113.3 25.36 4.47 56.18 124.7 29.22 4.27 52.22
1 5.43 23.88 0.23 3.99 11.03 27.67 0.4 6.83

6 2 5.2 24.12 0.22 3.79 11.34 27.77 0.41 6.98
3 1.53 23.63 0.06 1.15 4.94 27.68 0.18 3.14
4 3.5 22.47 0.16 2.76 8.11 26.26 0.31 5.36
5 6.68 23.57 0.28 4.95 16.33 27.84 0.59 9.83

h = 3
1 54.93 28.6 1.92 50.92 52.3 33.76 1.55 41.35

0 2 55.57 28.04 1.98 52.43 52.99 33.1 1.6 42.65
3 59.2 24.74 2.39 62.72 59.43 30.26 1.96 51.45
4 59.96 24.87 2.41 63.06 59.96 29.15 2.06 53.81
5 56.65 25.02 2.26 59.75 51.37 31.66 1.62 43.42
1 23.44 23.66 0.99 28.69 23.68 27.73 0.85 24.71

1 2 23.06 23.11 1 28.92 23.09 26.68 0.87 25.09
3 24.46 21.88 1.12 32.27 26.31 26.95 0.98 28.02
4 24.2 21.17 1.14 33.01 26.14 24.79 1.05 30.27
5 23.79 21.63 1.1 31.81 23.91 25.65 0.93 26.96
1 60.37 25.52 2.37 60.82 69.47 28.74 2.42 60.77

6 2 59.71 25.34 2.36 60.7 68.71 29.03 2.37 59.61
3 56.14 24.54 2.29 59.49 63.82 28.52 2.24 57.05
4 58.17 24.27 2.4 61.98 65.35 27.62 2.37 60.09
5 60.38 24.96 2.42 62.22 72.54 28.89 2.51 62.64

h = 6
1 7.45 27.86 0.27 11.59 6.2 32.96 0.19 8.18

0 2 7.43 27.62 0.27 11.67 6.22 32.42 0.19 8.34
3 9.67 24.89 0.39 16.75 9.67 29.54 0.33 14.12
4 9.56 24.83 0.39 16.62 9.75 29.31 0.33 14.34
5 7.99 25.33 0.32 13.65 5.44 31.65 0.17 7.49
1 19.05 21.5 0.89 37.31 20.92 25.05 0.84 35.03

1 2 19.01 20.98 0.91 38.16 20.77 23.82 0.87 36.58
3 18.78 20.58 0.91 38.47 20.75 24.26 0.86 35.88
4 18.97 19.33 0.98 41.34 21.17 21.96 0.96 40.41
5 19.78 21.11 0.94 39.4 22.36 24.36 0.92 38.37
1 11.02 20.57 0.54 22.66 12.71 23.41 0.54 22.87

6 2 10.98 21.02 0.52 22.09 12.76 23.91 0.53 22.48
3 10.71 20.22 0.53 22.41 12.36 23.71 0.52 21.99
4 11.33 19.75 0.57 24.25 13.02 22.7 0.57 24.16
5 11.38 18.59 0.61 25.86 13.67 21.65 0.63 26.54

Table A27: Performance of D/G (WC) portfolio optimizations performed using the DJIA (2001-2016) stocks universe. Both fac-
tors are detected using the calibrated MODWT applied to monthly stock prices at resolution levels (j = 1, 2, 3, 4, 5).
The D is quantified by calibrated detail coefficients (dc

j,t(i)) calculated using the Haar (also named Daubechies)
mother wavelet with one-vanishing moment (Db1). The acceleration factor (G) is captured by the calibrated detail
coefficients ((-1)d̂c

j,t(i)) applying a MODWT performed with a Daubechies function with two vanishing moments
(Db2). This strategy consists in buying a long portfolio and selling a short portfolio. The long portfolio includes
stocks having a positive momentum (D( f )) at the time t computed over the previous f months; moreover, the se-
lected stocks must have a positive acceleration (G( f )) at time t quantified using the same formation period. The
short portfolio sells stocks having a negative D( f ) and additionally a negative G( f ) at the time t. Two kind of
weighting rule are applied: equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment
might be delayed by one or six months after the portfolio construction. A one-month period is assumed to corre-
spond to 21 days. The performance is given as an average annualized return (µ) and annualized volatility (s) both
expressed as a percentage as well as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical
significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).
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Appendix

Annualized performance of (EW) and (GW) D/G (WM)
DJIA (2001-2016)

D/G (EW) D/G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 -37.66 29.93 -1.26 -6.18 -45.9 36.52 -1.26 -6.54

0 2 -33.2 31.51 -1.05 -5.02 -42.78 38.64 -1.11 -5.63
3 -39.36 35.58 -1.11 -5.49 -48.11 40.2 -1.2 -6.34
4 -41.26 32.7 -1.26 -6.35 -46.35 37.92 -1.22 -6.38
5 -55.89 40.33 -1.39 -7.83 -61.26 41.16 -1.49 -8.84
1 118.5 27.54 4.3 11.67 119.2 30.13 3.96 10.71

1 2 122.7 26.24 4.68 12.56 134.9 31.43 4.29 11.21
3 138.5 27.75 4.99 12.93 164.8 31.87 5.17 12.66
4 103.3 26.61 3.88 10.93 131.5 31.15 4.22 11.11
5 167.4 33.66 4.97 12.12 180.4 34.26 5.26 12.5
1 -4.12 23.18 -0.18 -0.71 2.53 28.01 0.09 0.35

6 2 0.41 19.99 0.02 0.08 8.37 22.64 0.37 1.4
3 0.99 20.92 0.05 0.18 4.8 23.13 0.21 0.8
4 8.19 19.18 0.43 1.62 6.34 20.9 0.3 1.16
5 -3.26 28.17 -0.12 -0.46 0.59 28.48 0.02 0.08

h = 3
1 58.9 21.92 2.69 15.4 55.35 25.61 2.16 12.5

0 2 60.27 23.03 2.62 14.94 56.95 28.57 1.99 11.48
3 65.35 26.78 2.44 13.76 67.05 30.12 2.23 12.5
4 54.35 21.23 2.56 14.84 60.02 24.91 2.41 13.77
5 53.13 33.18 1.6 9.32 49.45 35.01 1.41 8.3
1 24.94 20.31 1.23 7.73 24.88 22.83 1.09 6.86

1 2 29.02 21.31 1.36 8.46 31.01 26.03 1.19 7.36
3 28.68 22.41 1.28 7.96 33.43 25 1.34 8.2
4 20.47 21.23 0.96 6.16 25.84 24.49 1.06 6.62
5 30.18 28.66 1.05 6.52 30.7 30.44 1.01 6.24
1 50.03 23.82 2.1 12.12 58.73 27.96 2.1 11.85

6 2 52.33 23.57 2.22 12.73 63.04 26.72 2.36 13.16
3 56.96 21.04 2.71 15.34 67.83 23.86 2.84 15.67
4 57.99 22.85 2.54 14.35 65.42 25.37 2.58 14.3
5 58.87 26.42 2.23 12.57 64.95 26.5 2.45 13.61

h = 6
1 9.26 21.39 0.43 4.08 6.78 25.42 0.27 2.53

0 2 11.47 22.98 0.5 4.68 9.69 29.47 0.33 3.1
3 9.5 22.67 0.42 3.95 9.81 25.61 0.38 3.61
4 5.69 19.86 0.29 2.73 7.77 22.31 0.35 3.3
5 7.49 31.86 0.24 2.23 6.33 34.35 0.18 1.75
1 18.15 19.1 0.95 8.76 19.46 20.93 0.93 8.54

1 2 19.95 20.29 0.98 9.03 22.44 25.78 0.87 7.95
3 18.92 17.24 1.1 10.1 22.54 19.76 1.14 10.41
4 15.67 18.57 0.84 7.82 18.53 21.6 0.86 7.9
5 21.84 24.14 0.9 8.27 23.39 25.2 0.93 8.46
1 9.52 17.47 0.55 5.05 11.13 21.31 0.52 4.83

6 2 11.42 16.12 0.71 6.54 14.03 18.95 0.74 6.79
3 7.32 15.03 0.49 4.54 9.41 19.37 0.49 4.51
4 10.41 17.46 0.6 5.52 13.48 21.44 0.63 5.78
5 7.13 22.59 0.32 2.94 9.06 23.43 0.39 3.59

Table A28: Performance of D/G (WM) portfolio optimizations performed using the DJIA (2001-2016) stocks universe. Both
factors are detected using the MODWT applied to daily stock prices at resolution levels (j = 1, 2, 3, 4, 5). The
D is quantified by detail coefficients (dj,t(i)) calculated using the Haar (also named Daubechies) mother wavelet
with one-vanishing moment (Db1). The acceleration factor (G) is captured by the detail coefficients ((�1)d̂j,t(i))
applying a MODWT performed with a Daubechies function with two vanishing moments (Db2). This strategy
consists in buying a long portfolio and selling a short portfolio. The long portfolio includes stocks having a positive
momentum (D( f )) at the time t computed over the previous f months; moreover, the selected stocks must have a
positive acceleration (G( f )) at time t quantified using the same formation period. The short portfolio sells stocks
having a negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule are applied: equal
weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed by one or six months
after the portfolio construction. A one-month period is assumed to correspond to 21 days. The performance is given
as an average annualized return (µ), annualized volatility (s) both expressed as a percentage as well as annualized
Sharpe Ratio (SR). A t-test is employed to check the statistical significance of the results. Critical t-values are: 1.64
(90%), 1.96 (95%) and 2.58 ((99%).
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Appendix

Annualized performance of calibrated (EW) and (GW) D/G (WMC)
DJIA (2001-2016)

D/G (EW) D/G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 -40.09 34.35 -1.17 -5.83 -51.63 41.49 -1.24 -6.78

0 2 -31.85 30.31 -1.05 -4.97 -41.04 37.69 -1.09 -5.47
3 -31.44 31.7 -0.99 -4.68 -38.95 36.26 -1.07 -5.32
4 -38.82 31.66 -1.23 -6.07 -40.78 35.62 -1.15 -5.74
5 -54.98 40.43 -1.36 -7.62 -58 42.5 -1.37 -7.86
1 111 26.33 4.22 11.64 110.9 28.78 3.85 10.65

1 2 133.1 28.03 4.75 12.45 152.6 31.76 4.81 12.07
3 147.2 28.45 5.17 13.15 175.2 32.39 5.41 12.98
4 111.2 26.81 4.15 11.45 143.1 31.37 4.56 11.69
5 169.8 32.72 5.19 12.58 189.2 32.81 5.77 13.47
1 1.77 24.53 0.07 0.28 10.51 29.09 0.36 1.36

6 2 1.11 21.05 0.05 0.21 6.74 24.17 0.28 1.06
3 -3.23 18.86 -0.17 -0.68 -0.74 21.45 -0.03 -0.14
4 8.49 18.89 0.45 1.7 3.15 19.83 0.16 0.61
5 -2.83 27.82 -0.1 -0.41 -0.39 28.22 -0.01 -0.05

h = 3
1 57.79 25.93 2.23 12.8 51.92 31.32 1.66 9.68

0 2 65.06 24.34 2.67 15.08 65.89 31.51 2.09 11.77
3 75.44 24.96 3.02 16.62 81.29 28.84 2.82 15.29
4 60.12 22.32 2.69 15.39 70.53 25.39 2.78 15.46
5 55.22 32.19 1.72 9.92 56.57 35.24 1.61 9.25
1 24.12 21.5 1.12 7.08 24.55 25.39 0.97 6.09

1 2 33 22.64 1.46 8.95 37.95 28.49 1.33 8.06
3 35.9 23.11 1.55 9.46 43.6 26.79 1.63 9.69
4 25.92 22.4 1.16 7.26 34.14 25.68 1.33 8.14
5 31.45 27.79 1.13 6.98 35.44 30.55 1.16 7.07
1 55.66 25.44 2.19 12.44 65.76 28.99 2.27 12.57

6 2 52.47 24.78 2.12 12.14 61.86 28.07 2.2 12.33
3 53.26 20.56 2.59 14.82 63.43 24.84 2.55 14.23
4 59.27 22.54 2.63 14.81 64.46 23.89 2.7 15
5 60.51 27.37 2.21 12.41 65.88 27.21 2.42 13.41

h = 6
1 8.24 25.51 0.32 3.05 6.37 32.69 0.19 1.85

0 2 14.78 24.82 0.6 5.55 15.58 33.88 0.46 4.27
3 16.11 23.08 0.7 6.48 19.69 29.31 0.67 6.19
4 10.2 22.25 0.46 4.31 15.12 25.42 0.59 5.53
5 8.81 31.33 0.28 2.66 11.01 36.39 0.3 2.84
1 18.99 19.78 0.96 8.83 22.26 24.58 0.91 8.27

1 2 23.14 21.97 1.05 9.6 27.71 29.87 0.93 8.38
3 22.36 20.62 1.09 9.91 28.39 27.22 1.04 9.41
4 19.55 21.06 0.93 8.53 23.43 24.35 0.96 8.77
5 22.89 24.23 0.94 8.62 26.54 27.68 0.96 8.68
1 11.08 18.19 0.61 5.63 12.67 21.42 0.59 5.45

6 2 12.3 18.29 0.67 6.19 13.96 21.26 0.66 6.03
3 7.19 14.95 0.48 4.48 8.42 17.58 0.48 4.45
4 12.56 17.1 0.73 6.76 14.94 18.82 0.79 7.27
5 9.19 24.57 0.37 3.47 12.14 26.58 0.46 4.21

Table A29: Performance of D/G (WMC) portfolio optimizations performed using the DJIA (2001-2016) stocks universe. Both
factors are detected using the calibrated MODWT applied to monthly stock prices at resolution levels (j =
1, 2, 3, 4, 5). The D is quantified by calibrated detail coefficients (dc

j,t(i)) calculated using the Haar (also named
Daubechies) mother wavelet with one-vanishing moment (Db1). The acceleration factor (G) is captured by the
calibrated detail coefficients ((-1)d̂c

j,t(i)) applying a MODWT performed with a Daubechies function with two van-
ishing moments (Db2). This strategy consists in buying a long portfolio and selling a short portfolio. The long
portfolio includes stocks having a positive momentum (D( f )) at the time t computed over the previous f months;
moreover, the selected stocks must have a positive acceleration (G( f )) at time t quantified using the same forma-
tion period. The short portfolio sells stocks having a negative D( f ) and additionally a negative G( f ) at the time
t. Two kind of weighting rule are applied: equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the
investment might be delayed by one or six months after the portfolio construction. A one-month period is assumed
to correspond to 21 days. The performance is given as an average annualized return (µ), annualized volatility (s)
both expressed as a percentage as well as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical
significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).

Page 119 University of Zurich, Empirical Finance, September 21, 2018



Appendix

Annualized performance of (EW) and (GW) D/G (WM) S&P500 (2001-2014)

D/G (EW) D/G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 -43.11 22.66 -1.9 -8.83 -49.64 25.15 -1.97 -9.62

0 2 -42.51 22.29 -1.91 -8.81 -47.98 23.68 -2.03 -9.75
3 -41.73 18.31 -2.28 -10.46 -45.97 22.07 -2.08 -9.87
4 -46.1 18.68 -2.47 -11.7 -49.27 23.45 -2.1 -10.21
5 -44.12 21.08 -2.09 -9.78 -52.09 24.59 -2.12 -10.53
1 36.67 21.38 1.72 5.35 60.34 27.9 2.16 6.24

1 2 34.84 19.92 1.75 5.5 57.65 23.69 2.43 7.08
3 38.4 19.79 1.94 6.02 60.51 24.11 2.51 7.24
4 45.84 19.71 2.33 7.03 69.95 28.14 2.49 6.97
5 56.64 24.72 2.29 6.69 82.99 30.55 2.72 7.34
1 5.73 21.94 0.26 0.91 9.21 25.62 0.36 1.23

6 2 2.9 19.81 0.15 0.51 6.63 23.63 0.28 0.97
3 1.34 21.2 0.06 0.22 -0.77 23.78 -0.03 -0.12
4 5.85 21.6 0.27 0.94 7.67 24.56 0.31 1.07
5 -1.66 23.04 -0.07 -0.26 6.37 26.08 0.24 0.85

h = 3
1 26.63 23.26 1.15 6.53 33.51 28.18 1.19 6.64

0 2 26.21 19.78 1.33 7.57 31.75 23.8 1.33 7.49
3 29.01 18.28 1.59 8.98 35.9 22.86 1.57 8.71
4 31.18 19 1.64 9.23 38.53 25.28 1.52 8.39
5 34.51 23.31 1.48 8.24 36.8 28.4 1.3 7.17
1 11.76 20.07 0.59 3.5 16.4 24.6 0.67 3.92

1 2 10.87 18.85 0.58 3.45 15.07 22.84 0.66 3.89
3 12.11 19.09 0.63 3.78 13.56 23.75 0.57 3.39
4 17.19 18.49 0.93 5.45 20.96 23.14 0.91 5.24
5 14.44 23.67 0.61 3.61 14.68 30.02 0.49 2.89
1 35.63 22.52 1.58 8.61 41.16 25.59 1.61 8.61

6 2 35.1 18.65 1.88 10.26 44.15 23.18 1.9 10.11
3 34.19 20.33 1.68 9.19 38.67 25.76 1.5 8.1
4 41.7 19.67 2.12 11.34 51.04 24.44 2.09 10.88
5 35.09 23.1 1.52 8.28 40.11 28.54 1.41 7.55

Table A30: Performance of D/G (WM) portfolio optimizations performed using the S&P500 (2001-2014) stocks universe. Both
factors are detected using the MODWT applied to daily stock prices at resolution levels (j = 1, 2, 3, 4, 5). The
D is quantified by detail coefficients (dj,t(i)) calculated using the Haar (also named Daubechies) mother wavelet
with one-vanishing moment (Db1). The acceleration factor (G) is captured by the detail coefficients ((�1)d̂j,t(i))
applying a MODWT performed with a Daubechies function with two vanishing moments (Db2). This strategy
consists in buying a long portfolio and selling a short portfolio. The long portfolio includes stocks having a positive
momentum (D( f )) at the time t computed over the previous f months; moreover, the selected stocks must have a
positive acceleration (G( f )) at time t quantified using the same formation period. The short portfolio sells stocks
having a negative D( f ) and additionally a negative G( f ) at the time t. Two kind of weighting rule are applied:
equal weights (EW) or relative ”Gamma” weights (GW). Moreover, the investment might be delayed by one or six
months after the portfolio construction. A one-month period is assumed to correspond to 21 days. The performance
is given as an average annualized return (µ) and annualized volatility (s) both expressed as a percentage as well
as annualized Sharpe Ratio (SR). A t-test is employed to check the statistical significance of the results. Critical
t-values are: 1.64 (90%), 1.96 (95%) and 2.58 ((99%).
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Appendix

Annualized performance of calibrated (EW) and (GW) D/G (WMC)
S&P500 (2001-2014)

D/G (EW) D/G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 -42.99 22.73 -1.89 -8.76 -49.57 25.33 -1.96 -9.53

0 2 -41.94 22.64 -1.85 -8.52 -47.04 25.52 -1.84 -8.8
3 -41.04 18.7 -2.2 -10.03 -45.12 22.85 -1.97 -9.29
4 -45.7 18.61 -2.46 -11.61 -49.56 24 -2.07 -10.06
5 -44.96 20.69 -2.17 -10.21 -54.13 23.69 -2.29 -11.56
1 35.63 21.46 1.66 5.2 56.81 28.31 2.01 5.86

1 2 34.7 20.21 1.72 5.4 57.62 24.72 2.33 6.79
3 39.61 20.02 1.98 6.12 63.73 24.45 2.61 7.45
4 47.12 19.85 2.37 7.15 72.55 28.9 2.51 6.99
5 56.38 24.26 2.32 6.79 83.11 28.85 2.88 7.78
1 6.54 21.93 0.3 1.03 10.65 25.62 0.42 1.41

6 2 2.9 19.84 0.15 0.51 6.54 23.99 0.27 0.94
3 1.54 21.24 0.07 0.26 -0.26 23.77 -0.01 -0.04
4 6.53 21.84 0.3 1.03 9.17 25.54 0.36 1.23
5 1.77 22.69 0.08 0.28 15.42 25.14 0.61 2.04

h = 3
1 26.29 23.31 1.13 6.44 32.17 28.44 1.13 6.34

0 2 26.34 20.07 1.31 7.49 32.1 24.81 1.29 7.26
3 30.17 18.64 1.62 9.13 38.08 23.51 1.62 8.93
4 31.73 19.27 1.65 9.25 38.79 26.26 1.48 8.12
5 32.73 22.48 1.46 8.15 31.76 27.17 1.17 6.56
1 11.43 20.08 0.57 3.4 15.39 24.92 0.62 3.64

1 2 10.9 19.11 0.57 3.41 15.18 23.55 0.64 3.8
3 13.13 19.38 0.68 4.03 15.59 24.54 0.64 3.74
4 17.78 18.71 0.95 5.56 22.31 24.03 0.93 5.35
5 14.13 22.87 0.62 3.66 14.84 27.52 0.54 3.19
1 35.82 22.37 1.6 8.71 41.62 25.68 1.62 8.67

6 2 35.22 18.66 1.89 10.28 44.42 23.13 1.92 10.19
3 34.57 20.45 1.69 9.23 39.55 26.07 1.52 8.16
4 42.32 19.64 2.16 11.5 51.69 24.33 2.12 11.05
5 37.14 22.76 1.63 8.84 44.53 27.11 1.64 8.71

Table A31: Performance of D/G (WMC) portfolio optimizations performed using the S&P500 (2001-2014) stocks universe.
Both factors are detected using the calibrated MODWT applied to monthly stock prices at resolution levels
(j = 1, 2, 3, 4, 5). The D is quantified by calibrated detail coefficients (dc

j,t(i)) calculated using the Haar (also named
Daubechies) mother wavelet with one-vanishing moment (Db1). The acceleration factor (G) is captured by the cali-
brated detail coefficients ((-1)d̂c

j,t(i)) applying a MODWT performed with a Daubechies function with two vanish-
ing moments (Db2). The long portfolio includes stocks having a positive momentum (D( f )) at the time t computed
over the previous f months; moreover, the selected stocks must have a positive acceleration (G( f )) at time t quan-
tified using the same formation period. The short portfolio sells stocks having a negative D( f ) and additionally
a negative G( f ) at the time t. Two kind of weighting rule are applied: equal weights (EW) or relative ”Gamma”
weights (GW). Moreover, the investment might be delayed by one or six months after the portfolio construction. A
one-month period is assumed to correspond to 21 days. The performance is given as an average annualized return
(µ) and annualized volatility (s) both expressed as a percentage as well as annualized Sharpe Ratio (SR). A t-test
is employed to check the statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and 2.58
((99%).
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Appendix

Annualized performance of winsorized DD
RSWP and GD

RSWP (simple)
S&P500 (2001-2014)

DD
RSWP GD

RSWP
s f µ s SR t-test µ s SR t-test

h = 1
1 -6.5 16.62 -0.39 -6.7 0.09 14.89 0.01 0.09

0 3 -5.13 18.03 -0.28 -4.84 -4.13 13 -0.32 -5.38
6 -2.8 20.04 -0.14 -2.35 -4.77 15.82 -0.3 -5.12
12 -0.81 20.97 -0.04 -0.65 1 20.58 0.05 0.8
1 -6.45 16.58 -0.39 -6.64 -4.86 14.84 -0.33 -5.55

1 3 -1.4 17.6 -0.08 -1.33 0.48 13 0.04 0.62
6 -0.89 19.44 -0.05 -0.76 -0.58 16.7 -0.03 -0.58
12 -1.39 20.79 -0.07 -1.11 -0.64 16.88 -0.04 -0.63
1 0.51 12.64 0.04 0.65 -1.07 12.04 -0.09 -1.45

6 3 0.52 14.12 0.04 0.59 -0.8 12.63 -0.06 -1.04
6 3.11 15.1 0.21 3.31 3.72 16.94 0.22 3.52
12 1.33 17.36 0.08 1.24 2.47 14.58 0.17 2.73

h = 6
1 -1.22 18.55 -0.07 -2.65 -0.2 17.03 -0.01 -0.47

0 3 0.24 20.01 0.01 0.48 -0.28 14.57 -0.02 -0.76
6 1.46 22.6 0.06 2.59 1.1 22.22 0.05 1.97
12 0.58 23.53 0.02 0.99 0.79 18.06 0.04 1.74
1 -0.14 18.96 -0.01 -0.3 -0.69 16.99 -0.04 -1.63

1 3 0.93 19.84 0.05 1.86 0.02 14.82 0 0.06
6 2.35 21.53 0.11 4.33 2.45 21.4 0.11 4.55
12 0.75 22.81 0.03 1.31 0.91 16.36 0.06 2.22
1 1.59 13.03 0.12 4.77 0.73 13.82 0.05 2.08

6 3 1.82 16.14 0.11 4.4 2.52 15.15 0.17 6.49
6 1.28 17.03 0.08 2.95 -0.38 12.57 -0.03 -1.2
12 3.6 17.47 0.21 8.01 1.57 13.88 0.11 4.42

Table A32: Performance of winsorized DD
RSWP and GD

RSWP (simple) portfolio optimizations performed using the S&P500 (2001-
2014) stocks universe for a holding period of one and six months Winsorization consists in removing outliers from
the data set by setting a lower and an upper bound for return values and replacing each value outside these limits
with the corresponding threshold value (Welch, 2017). Winsorization level: 20%. The performance is given as
average annualized return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe
Ratio (SR). Moreover, a t-test is employed to check the statistical significance of the results. Critical t-values are:
1.64 (90%), 1.96 (95%) and 2.58 ((99%). A one-month period is assumed to correspond to 21 days. The analysis has
been performed through MATLAB.
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Appendix

Annualized performance of winsorized DD
RSWP and GD

RSWP (WMC)
S&P500 (2001-2014)

DRSWP GRSWP
s f µ s SR t-test µ s SR t-test

h = 1
1 7.99 15.05 0.53 1.86 -1.12 13.85 -0.08 -0.3

0 3 7.82 15.65 0.5 1.75 -3 13.51 -0.22 -0.82
6 4.61 17.61 0.26 0.93 5.48 18.09 0.3 1.07
12 4.79 21.3 0.22 0.8 5.89 15.47 0.38 1.35
1 0.66 17.68 0.04 0.13 -9.14 14.28 -0.64 -2.42

1 3 2.63 18.84 0.14 0.5 2.03 12.77 0.16 0.57
6 5.04 16.62 0.3 1.07 6.72 13.52 0.5 1.74
12 3.71 21.36 0.17 0.62 5.56 13.41 0.41 1.46
1 -4.54 15 -0.3 -1.1 3.67 11.96 0.31 1.07

6 3 -1.6 14.06 -0.11 -0.41 -0.55 12.07 -0.05 -0.16
6 1.87 17.13 0.11 0.39 -1.97 11.56 -0.17 -0.61
12 -1.06 20.51 -0.05 -0.18 7.57 14.7 0.51 1.77

h = 6
1 3.34 17.08 0.2 1.69 -1.49 18.12 -0.08 -0.72

0 3 4.13 15.69 0.26 2.28 0.46 12.82 0.04 0.32
6 3.97 16.41 0.24 2.09 5.69 14.38 0.4 3.41
12 3.99 21.42 0.19 1.61 8.75 14.65 0.6 5.11
1 0.46 21.46 0.02 0.19 -0.71 18.3 -0.04 -0.34

1 3 1.53 20.31 0.08 0.65 0.7 12.19 0.06 0.5
6 3.46 16.34 0.21 1.83 4.42 13.12 0.34 2.9
12 2.55 22.61 0.11 0.98 9.43 15.49 0.61 5.19
1 2.04 17.92 0.11 0.97 -0.07 14.74 0 -0.04

6 3 2.15 12.68 0.17 1.45 1.25 11.47 0.11 0.93
6 1.94 19.74 0.1 0.84 -1.65 12.19 -0.14 -1.17
12 -0.07 24.23 0 -0.02 0.93 15.91 0.06 0.5

Table A33: Performance of winsorized DRSWP and GRSWP (WMC) portfolio optimizations performed using the S&P500 (2001-
2014) stocks universe for a holding period of one and six months. Winsorization consists in removing outliers
from the data set by setting a lower and an upper bound for return values and replacing each value outside these
limits with the corresponding threshold value (Welch, 2017). Winsorization level: 20%. The performance is given
as average annualized return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe
Ratio (SR). Moreover, a t-test is employed to check the statistical significance of the results. Critical t-values are:
1.64 (90%), 1.96 (95%) and 2.58 ((99%). A one-month period is assumed to correspond to 21 days. The analysis has
been performed through MATLAB.
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Appendix

Annualized performance of winsorized (EW) and (GW) D/ G (simple)
DJIA (2001-2016)

D/ G (EW) D/ G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 -37.3 29.81 -1.25 -28.06 -44.91 35.76 -1.26 -29.71

0 3 -34.18 27.86 -1.23 -26.95 -42.55 32.81 -1.3 -30.15
6 -40.76 29.03 -1.4 -32.23 -46.77 34.31 -1.36 -32.71

12 -50.38 32.01 -1.57 -38.85 -53.4 37.84 -1.41 -35.72
1 114.2 24.7 4.62 58.02 124.3 28.22 4.4 53.94

1 3 117.2 23.64 4.96 61.77 122 28.09 4.34 53.48
6 139.3 25.31 5.5 65.15 153.4 29.54 5.19 59.64

12 136.5 24.3 5.62 66.93 161.3 29.44 5.48 61.89
1 0.97 20.98 0.05 0.83 8.91 24.16 0.37 6.37

6 3 -1.33 20.4 -0.07 -1.18 3.62 23.56 0.15 2.72
6 -1.21 19.11 -0.06 -1.15 5.41 21.63 0.25 4.39

12 3.25 18.58 0.18 3.1 4.69 21.37 0.22 3.87
h = 3

1 60.54 21.17 2.86 74.7 57.51 25.12 2.29 60.26
0 3 62.73 20.72 3.03 78.64 58.38 24.64 2.37 62.23

6 66.14 25.52 2.59 66.76 66.46 31.48 2.11 54.34
12 58.8 20.89 2.82 73.86 62.56 26.27 2.38 61.89
1 24.29 20.47 1.19 34.27 24.41 23.68 1.03 29.76

1 3 24.72 19.41 1.27 36.73 23.95 23.33 1.03 29.68
6 29.23 23.35 1.25 35.6 31.73 28.81 1.1 31.08

12 25.55 19.27 1.33 38.14 29.53 24.68 1.2 34
1 56.4 23.32 2.42 62.84 66.61 26.1 2.55 64.6

6 3 56.97 23.84 2.39 62 67.2 26.82 2.51 63.33
6 55.3 19.34 2.86 74.49 68.1 21.97 3.1 78.17

12 59.48 19.86 3 77.22 68.9 22.99 3 75.42

Table A34: Performance of winsorized D/G (simple) portfolio optimizations performed using the DJIA (2001-2016) stocks uni-
verse for a holding period of one and six months. Winsorization consists in removing outliers from the data set by
setting a lower and an upper bound for return values and replacing each value outside these limits with the corre-
sponding threshold value (Welch, 2017). Winsorization level: 20%. The performance is given as average annualized
return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR). Moreover, a
t-test is employed to check the statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%) and
2.58 ((99%). A one-month period is assumed to correspond to 21 days. The analysis has been performed through
MATLAB.
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Appendix

Annualized performance of winsorized (EW) and (GW) D/ G (simple)
DJIA (1984-2002)

D/ G (EW) D/ G (GW)
s f µ s SR t-test µ s SR t-test

h = 1
1 33.63 24.37 1.38 24.04 28.12 28.04 1 17.82

0 3 36.9 24.91 1.48 25.5 29.87 28.1 1.06 18.77
6 32.68 26.81 1.22 21.3 32.79 29.97 1.09 19.11

12 38.65 29 1.33 22.8 33.94 32.7 1.04 18.05
1 43.77 24.06 1.82 30.51 51.68 27.3 1.89 30.92

1 3 47.29 23.01 2.06 34.06 53.35 27.14 1.97 31.94
6 57.15 23.38 2.44 39.23 64.54 26.57 2.43 38.11

12 79.88 25.31 3.16 47.34 84.93 29.23 2.91 42.98
1 29.21 24.23 1.21 21.05 31.66 27.68 1.14 19.79

6 3 28.81 23.99 1.2 21 29.52 27.29 1.08 18.87
6 30.43 24.44 1.25 21.65 38.83 28.21 1.38 23.22

12 31.02 25.97 1.2 20.72 37.67 30.51 1.24 20.91
h = 3

1 49.24 25.08 1.96 57.78 56.3 30.11 1.87 54.01
0 3 44.98 24.04 1.87 55.71 47.09 27.57 1.71 50.56

6 46.15 24.71 1.87 55.45 49.89 27.91 1.79 52.52
12 61.92 27.45 2.26 64.22 63.82 30.35 2.1 59.58
1 40.39 27.59 1.46 44.06 51.8 33.66 1.54 44.88

1 3 35.45 24.69 1.44 43.85 40.94 29.48 1.39 41.73
6 40.52 24.88 1.63 49.02 44.96 28.82 1.56 46.36

12 55.17 28.36 1.95 56.23 60.66 32.77 1.85 52.75
1 -9.96 25.33 -0.39 -13.89 -3.13 29.36 -0.11 -3.66

6 3 -9.42 26.16 -0.36 -12.69 -7.18 30.22 -0.24 -8.29
6 -5.11 28.01 -0.18 -6.32 1.33 30.81 0.04 1.45

12 -2.23 29.14 -0.08 -2.62 3.69 32.41 0.11 3.81

Table A35: Performance of winsorized D/G (simple) portfolio optimizations performed using the DJIA (1984-2002) stocks uni-
verse for a holding period of one and six months. Winsorization consists in removing outliers from the data set by
setting a lower and an upper bound for return values and replacing each value outside these limits with the corre-
sponding threshold value (Welch, 2017). Winsorization level: 20%. The performance is given as average annualized
return (µ), annualized volatility (s) both expressed as a percentage and annualized Sharpe Ratio (SR). Moreover,
a t-test is employed to check the statistical significance of the results. Critical t-values are: 1.64 (90%), 1.96 (95%)
and 2.58 ((99%). One month period is assumed to correspond to 21 days. The analysis has been performed through
MATLAB.
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Appendix

MATLAB Code

In the following section, there is a short introduction about the MATLAB code which has been devel-
oped to investigate the momentum and acceleration factors as well as the portfolio optimizations. The
main piece of this code is transcribed and explained here below.

The first part of the code allows us to set up investigation variables, as well as to select the detection
approach and the portfolio optimization strategy (the portfolio optimization strategies are explained
later in this section):

% 1.1 SELECT INPUT VARIABLES

dataset = ’DJIA’; % (’SP500’, ’DJIA’, ’DJIA_81’)
factor = ’acc’ %(’acc’ or ’mom’)
detection = ’simple ’ % (’simple’, ’trend�based’, ’wavelet’)
trend= ’C’ ; % (’C’ vs ’EMA’)

w = 1; % (non�winsorized �> 0, winsorized �> 1)
discretefactor = ’yes’; % (convert delta and gamma in discrete form: ’yes’ or ’no’)

pfo = ’RSWP’; % (’LS’, ’RSWP’, ’DeltaGamma’, ’Market’)
LS = ’Total’; % (’Total’, ’Long’, ’Short’)
DGWeights = ’GW’ % (’EW’,’GW’)

DGNumberAssets= ’no’ % (to create a file with number of assets in the long
% or short sub�portfolio)

calibration = ’no’ % (calibration of wavelet coefficient: ’yes’ or ’not’)
Q = 5; % (ex. 10 = decile portfolio, 5 = quintile portfolio)

f5D= 5; % 5 days (i.e. 1 week)
f1M= 21; % 1 month
f3M= 63; % 3 months
f6M= 126; % 6 months
f1Y= 252; % 1 year

More precisely, the first part of the code makes it possible to load the desired data set (Standard and
Poor 500 or two data sets for the Dow Jones Industrial Average over two different time-periods, see the
section 1.5 Data in Chapter 1). Successively, one can choose which ‘factor’ (delta or gamma) to compute
and can select the approach for detection: simple, trend-based or wavelet (daily basis). The trend-
based approach can be executed by applying the Exponential Moving Average (‘EMA’) or the Moving
Average Crossover (‘C’). The computation of the Wavelet approach on a monthly basis required the
corresponding ”monthly” MATLAB code (2).

In order to obtain a winsorization of the data set (i.e. log-returns) the parameter ‘w’ should be set
to 1. Additionally, the simple and the trend-based (EMA) detection quantify the delta and gamma fac-
tors directly from log-return, i.e. in “continuous” form, the factors can be converted in “discrete” form
by inserting the order ‘discretefactor’ = ‘yes’ (see. Section 3.2.2 Additional Assumptions). The second
part of the above code enables us to fix parameters concerning the portfolio optimization ‘pfo’ and it
is explained later in this section. The f -parameter designs the formation period while the parameter K
designs the exponential moving average window for trend-detection; neither parameters is visible here
since this version of the code includes loops which execute computations automatically for different
variables f , K (as well h and s and levj for the portfolio optimization) and the output from each loop
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is automatically stored in a separate file, so that we achieve a comprehensive overview for different
parametrizations.

Here below there is an overview of predetermined parameters as well as the winsorization approach
and other useful parameters which are implemented in further calculations. The variables ‘wname1’
and ‘wname2’ delineate the two wavelet functions applied during the wavelet transform (wavelet de-
tection approach). Moreover, in this section of the code, the h-days cumulative return as well as the
return of the equal market index (equal-weighted average return of the securities in the data set) is
computed.

1.2 FIXED PARAMETERS

nasset = size(ret , 2);

retlength = length(ret);

retTS = fints(date , ret);

dateobj = cdfepoch(date);

retW = ret;

wname1 = ’haar’;

wname2 = ’db2’;

lev = 9;

f5D = 5; % 5 days (one week)
f1M = 21; % 1 month
f3M = 63; % 3 months
f6M = 126; % 6 months
f1Y = 252; % 1 year

% winsorizing
trup = 0.20;

trdown = -0.20;

retW(retW > trup) = trup;

retW(retW < trdown) = trdown;

K1 = 50 ; % for SMA crossovers detection
K2 = 200; % for SMA crossovers detection

% 1.3 CUMULATIVE RETURN (H�DAYS HOLDING PERIOD)

for i = 1: retlength - h+ 1 ;

for j = 1: nasset;

retholding(i, j) = sum(ret(i:i+h-1, j),1);

end

end

% 1.4 WINSORIZED RETURNS SELECTION
if w == 0

retI = ret;

end

if w == 1

retI = retW;

end

% 1.5 MARKET RETURN (Equal Market Index)
returnmarket = sum( exp(retI)-1, 2 ).* 1/ nasset;

returnmarket = log( 1+ returnmarket );

The subsequent part of the program makes it possible to compute the delta and the gamma factor for
the universe of securities in the selected data set as well as for the equal market index according to the
simple detection:

% 2 SIMPLE DETECTION

% 2.1 MOMENTUM � Simple Detection

Page 127 University of Zurich, Empirical Finance, September 21, 2018



Appendix

if strcmp(’simple ’, detection );

for i = 1: length(retI)- f+ 1 ;

for j = 1: nasset;

delta(i,j)= sum(retI(i:i+f-1, j));

end

end

% 2.2 ACCELERATION � SIMPLE DETECTION

if factor == ’acc’;

for i = 1: length(delta)- f+ 1

for j = 1: nasset

gamma(i, j)= delta(i+f-1, j)-delta(i, j);

end

end

end

% 2.3 DELTA AND GAMMA FOR MARKET INDEX � SIMPLE DETECTION
for i = 1: length(returnmarket)- f+ 1 ;

deltamarket(i) = sum(returnmarket(i:i+f-1));

end

deltamarket = deltamarket ’;

if factor == ’acc’;

for i = 1: length(deltamarket)-f+1

gammamarket(i) = deltamarket(i+f-1)- deltamarket(i);

end

gammamarket = gammamarket ’;

end

% 2.4 CONVERT DELTA AND GAMMA IN "DISCRETE"
if strcmp(’yes’,discretefactor)

delta=exp(delta )-1;

deltamarket=exp(deltamarket )-1;

if strcmp(’acc’,factor)

gammamarket=exp(gammamarket )-1;

gamma=exp(gamma )-1;

end

end

end

The code for the trend-based detection (Exponential Moving Average as well as Simple Moving Average
Crossovers) is available here below:

% 3. TREND�BASED DETECTION

if strcmp(’trend -based’, detection );

% 3.1 STOCK PRICES COMPUTATION

if w == 0

[St , tSt] = ret2tick(ret ,100, 1, 1, ’Continuous ’);

St= St(2:end ,:);

end

if w == 1

[St , tSt] = ret2tick(retW ,100, 1, 1, ’Continuous ’);

St= St(2:end , :);

end

[Market , tMarket] = ret2tick(returnmarket ,100, 1, 1,

’Continuous ’);
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Market= Market (2:end , :);

% 3.2 MOMENTUM � SMA CROSSOVERS DETECTION

if strcmp(’C’, trend)

SMAshort= tsmovavg(St , ’s’, K1 , 1);

SMAshort= SMAshort(K1:end , :);

SMAlong= tsmovavg(St ,’s’, K2 , 1);

SMAlong= SMAlong(K2:end , :);

SMAshort= SMAshort(K2 -K1+1:end , :);

delta= SMAshort -SMAlong;

% 3.3 MOMENTUM MARKET� SMA CROSSOVERS DETECTION

SMAshortMarket= tsmovavg(Market , ’s’, K1 , 1);

SMAshortMarket= SMAshortMarket(K1:end , :);

SMAlongMarket= tsmovavg(Market ,’s’, K2 , 1);

SMAlongMarket= SMAlongMarket(K2:end , :);

SMAshortMarket= SMAshortMarket(K2 -K1+1:end , :);

deltamarket= SMAshortMarket -SMAlongMarket;

end

% 3.4 MOMENTUM � EMA
if strcmp(’EMA’,trend)

EMA= tsmovavg(St ,’e’, K, 1);

EMA= EMA(K:end , :);

for i=1: length(EMA)-f;

for j=1: nasset

delta(i, j)= log(EMA(i+f, j)/EMA(i, j));

end

end

% 3.5 MOMENTUM MARKET � EMA
[Market , tMarket] = ret2tick(returnmarket ,100, 1, 1,

’Continuous ’);

EMAmarket= tsmovavg(Market ,’e’, K, 1);

EMAmarket= EMAmarket(K:end , :);

for i=1: length(EMAmarket)-f;

deltamarket(i)= (log(EMAmarket(i+f)/ EMAmarket(i)));

end

deltamarket=deltamarket ’;

end

The delta (momentum) factor can be computed using the Exponential Smoothing (‘EMA’) or the Mov-
ing Average Crossovers (‘C’). Firstly, in section 3.1 of the code, stock prices as well as the price of the
equal weighted market index are computed. Afterwards through the “EMA” approach, the time series
trend is estimated in order to compute the momentum using the Equation 5. Conversely, the Crossovers
methodology computes the momentum as a difference between the two moving averages. The gamma
factor is assessed in the same manner as in the section of the code 2.3. Moreover, since the output of the
‘EMA’ procedure is in continuous form, it might be discretized as in the section of the code 2.4.
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The code for the wavelet detection in MATLAB works as follows:

% 4.1.1 STOCK PRICES ON THE BASIS OF MONTHLY RETURNS

[St , tSt] = ret2tick(retI , 100, 1, 1, ’Continuous ’);

St = St(2: end , :);

[Market , tSt] = ret2tick(returnmarket , 100, 1, 1,

’Continuous ’);

Market = Market (2: end);

St = log(St);

Market = log (Market );

for i = 1: nasset

A{i} = St(:, i);

end

%4.2 MOMENTUM � MODWT (HAAR or DB1)

for i = 1 : nasset

wt1{i}= modwt(A{i}, lev , wname1 );

end

for i= 1 : nasset

delta{i} = wt1{1,i}(levj , :);

end

delta = cell2mat(delta (:));

delta = delta ’;

%4.3 MOMENTUM � MODWT (HAAR or DB1)� Market

wt1Market= modwt(Market , lev , wname1 );

deltamarket = wt1Market(levj , :);

deltamarket = deltamarket ’;

%4.4 ACCELEARATION � MODWT (DB2)
if strcmp (’acc’, factor)

for i= 1 : nasset

wt2{i} = -modwt(A{i},lev , wname2 );

end

for i = 1 :nasset

gamma{i} = wt2{1,i}(levj ,:);

end

gamma = cell2mat(gamma (:));

gamma = gamma ’;

%4.4 ACCELEARATION � MODWT (DB2)� MARKET
wt2Market= - modwt(Market , lev , wname2 );

gammamarket = wt2Market(levj , :);

gammamarket = gammamarket ’;

end

%4.4 CALIBRATION
if strcmp (’yes’, calibration)

if levj == 1

for i = 1: length(delta) -1

delta(i) = delta(i +1);

end

for i = 1: length(deltamarket) -1

deltamarket(i) = deltamarket(i +1);

end

end
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if levj == 2

for i = 1: length(delta) -2

delta(i) = delta(i +2);

end

for i = 1: length(deltamarket) -2

deltamarket(i) = deltamarket(i +2);

end

end

if levj == 3

for i = 1: length(delta) -3

delta(i) = delta(i +3);

end

for i = 1: length(deltamarket) -3

deltamarket(i) = deltamarket(i +3);

end

end

if levj == 4

for i = 1: length(delta) -6

delta(i) = delta(i +6);

end

for i = 1: length(deltamarket) -6

deltamarket(i) = deltamarket(i +6);

end

end

if levj == 5

for i = 1: length(delta) -8

delta(i) = delta(i +8);

end

for i = 1: length(deltamarket) -8

deltamarket(i) = deltamarket(i +8);

end

end

if strcmp (’acc’, factor)

if levj == 1

for i = 1: length(gamma) -4

gamma(i) = gamma(i +4);

end

for i = 1: length(gammamarket) -4

gammamarket(i) = gammamarket( i+4);

end

end

if levj == 2

for i= 1: length(gamma)-5

gamma(i)=gamma(i +5);

end

for i= 1: length(gammamarket )-5

gammamarket(i)= gammamarket(i +5);

end

end

if levj == 3

for i= 1 :length(gamma) -10

gamma(i)=gamma(i +10);

end

for i= 1 :length(gammamarket )-10

gammamarket(i)= gammamarket(i +10);

end

end

if levj == 4

for i= 1: length(gamma) -20

gamma(i)=gamma(i +20);

end
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for i= 1: length(gammamarket) -20

gammamarket(i)= gammamarket(i +20);

end

end

if levj == 5

for i= 1: length(gamma) -25

gamma(i)=gamma(i +25);

end

for i= 1: length(gammamarket) -25

gammamarket(i)= gammamarket(i +25);

end

end

end

end

end

As in trend-based detection, the first part of the above code computes the stock prices departing from
non-winsorized or winsorized daily log-returns. Additionally, the wavelet transform can be applied to
monthly returns which are calculated at the start of the 4. section of the code. Moreover, the MODWT
approach is applied firstly using the Haar wavelet mother and it gives as output the MODWT signal
‘wt1’ which represents the momentum effect, the delta is extrapolated according to different time-scale
(resolution) ‘levels’ (‘levj’) and it might be calibrated. The calibration is measured on the basis of pure
signals (as is explained in the previous chapter). The procedure for the acceleration detection is the
same, however the mother wavelet function is the Daubechies with two vanishing moments and the
calibration magnitude is different.

As was already mentioned above, the first part of the code makes it possible to decide which kind of
optimization strategy to apply (‘pfo’) and which factor to use in order to compute the portfolio return.
Moreover, for the Long-Short strategy, it is possible to compute the return of the long or the short
portfolio separately, indicating the desired (‘Long’ or ‘Short’) portfolio under ‘LS’ instead of ‘Total’. For
the Delta/Gamma strategy, it is possible to decide which kind of weighting rule to use (equal weights
or “gamma-dependent” weights, i.e. ‘EW’ or ‘GW’). Here below are transcribed and explained the main
parts of the three portfolio optimization strategies.

The first strategy is Long-Short portfolio optimization and it consists in ranking the stock (descending)
according to the momentum or acceleration parameter and then to investing long (short) in the top
Q-ranked (bottom Q-ranked) percentile.

% 5.1 PORTFOLIO OPTIMIZATION � LS � LONG/SHORT

if strcmp(’LS’,pfo)

% 2.1 RUN stock rank

if factor == ’mom’

[srtcum , idxcum] = sort(delta , 2, ’descend ’);

end

if factor == ’acc’

[srtcum , idxcum] = sort(gamma , 2, ’descend ’);

end

% PORTFOLIO RETURNS

for i= 1: length(retholding)-h-s

retlong(i) = sum(exp(retholding(i+1+h-1+s,

idxcum(i,round (1: nasset/Q))))-1, 2)

.*1/ round(nasset/Q);
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retshort(i) = (sum(exp(retholding(i+1+h-1+s,

idxcum(i,round(nasset -nasset/Q+1): nasset ))) -1 ,2))

.*1/ round(nasset/Q);

end

retlong= retlong ’;

retshort= retshort ’;

PFreturnLS= retlong - retshort;

end

The second optimization strategy the is the Relative Strength Weighted Portfolio. Weights of each secu-
rity are determined comparing its delta or gamma factor with the corresponding market factor; more-
over, positive and negative weights are divided into two different matrices in order to standardize them
and to obtain market-neutral weights (the sum of weight in the long resp. the short position is +1 and
-1).
% 5.2 PORTFOLIO OPTIMIZATION � Relative Strength Weighted Portoflio (RSWP)

if strcmp(’RSWP’,pfo)

retholdingD=exp(retholding )-1;

if factor == ’mom’

weights = (delta -deltamarket )./ nasset;

end

if factor == ’acc’

weights = (gamma -gammamarket )./ nasset;

end

% computation market�neutral weights
weightpositiveIndicator = weights;

weightpositiveIndicator(weightpositiveIndicator > 0)= 1;

weightpositiveIndicator(weightpositiveIndicator < 0)= 0;

weightnegativeIndicator = weights;

weightnegativeIndicator(weightnegativeIndicator > 0)= 0;

weightnegativeIndicator(weightnegativeIndicator < 0)= 1;

Longweights = weightpositiveIndicator .* weights ;

Shortweights = weightnegativeIndicator .* weights ;

Longweights = Longweights ./sum(Longweights , 2) ;

Shortweights = Shortweights ./-sum(Shortweights ,2) ;

LongReturn= sum(retholdingD(h+1+s:end ,:)

.* Longweights (1:end -h-s,:), 2

);

ShortReturn= sum(retholdingD(h+1+s:end ,:)

.* Shortweights (1:end -h-s,:), 2

);

PFreturn= LongReturn+ShortReturn;

PFreturn(isnan(PFreturn ))=0;

end

Furthermore, in order to better capture the paybacks of the acceleration factor and its synergy with the
momentum effect a third hybrid investment strategy has been developed. It is called Delta-Gamma
strategy and it aims to consider both the momentum and the acceleration effect. The theoretical and
mathematical explanation is given in the section 3.1.2.
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% 5.3 PORTFOLIO OPTIMIZATION � Hybrid Delta�Gamma (DG)

if strcmp(’DeltaGamma ’,pfo)

%first condition long portoflio: if momentum > 0 ��> signal = 1
deltalong = delta;

deltalong(delta > 0) = 1;

deltalong(delta < 0) = 0;

%second condition long portfolio: if gamma < 0 ��> signal = 0
weightlong = deltalong .* gamma;

weightlong(weightlong <0) = 0;

%first condition short portfolio: if momentum < 0 ��> signal = 1
deltashort = delta;

deltashort(deltashort > 0) = 0;

deltashort(deltashort < 0) = 1;

%second condition short portfolio: if gamma > 0 ��> signal = 0
weightshort = deltashort .* gamma;

weightshort(weightshort > 0) = 0;

%Equal Weights (EW)

if strcmp(’EW’, DGWeights)

weightlong(weightlong > 0) = 1;

nassetlong = 1 ./ sum(weightlong , 2);

weightshort(weightshort < 0) = 1;

nassetshort = 1 ./ sum(weightshort , 2);

retholdingD = exp(retholding )-1;

retlong = retholdingD(h+s+1: end ,:)

.* weightlong (1: end -h-s,:);

retlong = sum(retlong ,2)

.* nassetlong (1: end -h-s);

retlong(isnan(retlong )) = 0;

retshort=retholdingD(h+s+1, :).* weightshort (1: end -h-s,:);

retshort=sum(retshort , 2).* nassetshort (1: end -h-s);

retshort(isnan(retshort )) = 0;

PFreturn = retlong -retshort;

%number of asset in each portfolio
if strcmp(’yes’,DGNumberAssets)

longassetinportfolio = mean (1./ nassetlong );

maxlongasset = max(1 ./ nassetlong );

minlongasset = min(1 ./ nassetlong );

shortassetinportfolio = mean(1 ./ nassetshort)

maxshortasset = max(1 ./ nassetshort );

minshortasset = min(1 ./ nassetshort );

end

end

% "Relative" weights (Gamma Weights)

if strcmp(’GW’, DGWeights)

retholdingD = exp(retholding)- 1;

weightlong = weightlong ./ sum(weightlong , 2);

weightshort = weightshort ./ -sum(weightshort , 2);

weightlong(isnan(weightlong )) = 0;

weightshort(isnan(weightshort )) = 0;
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retlong = sum(retholdingD(h+s+1: end , :)

* weightlong (1: end -h-s, :), 2);

retlong(isnan(retlong )) = 0;

retshort = sum(retholdingD(h+s+1, :)

.* weightshort (1: end -h-s, :), 2);

retshort(isnan(retshort )) = 0;

PFreturn = retlong + retshort;

end

end
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