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ETH Zürich

April 17, 2013



Abstract

We study the application of the large deviations theory (LDT) to fat tailed
distributions and in particular to power law distributions. According to
the large deviations theory, when a sample exhibits a large deviation in the
mean, or some other moment, then it should be because one of the variables
takes an extensive value, that can almost alone result to the deviation.

We test the theory’s assumptions in the context of stock market returns,
whose distribution’s tail can be approximated with a power law. Our find-
ings include that returns are ”democratically” distributed in larger scales,
but that large deviations from an expected, or fundamental average return
are plentiful when zooming in smaller time intervals. We show that these
deviations can usually be associated with a few extremely large, outlier re-
turns and also examine if the large deviations theory can be used to identify
these outliers. Furthermore we explore the possibilities of utilizing large de-
viations for predicting the index’s behaviour and discuss the shortcomings
of such an attempt.



Oh, the hand of a terrible croupier is that touch on the sleeves of his dreams:
all in his life of what has looked free or random, is discovered to’ve been un-
der some Control, all the time, the same as a fixed roulette wheel-where only
destinations are important, attention is to long-term statistics, not individ-
uals: and where the House always does, of course, keep turning a profit...

Thomas Pynchon, Gravity’s Rainbow
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Chapter 1

Introduction

Suppose we throw a die n times and calculate the mean value of the n
random values, x =

∑6
i=1 ifi, which according to the law of large numbers

should be x → 3.5, since fi = 1/6 and i = 1, ..., 6. Now we may go on to
think about calculating the probability of observing a mean value other than
3.5 and in particular a considerably larger value, such as x ≥ 4 and also ask
what will be the numbers to which the frequencies fi converge. This now
conditional probability will concentrate in the neighbourhood of a specific
point, that can be computed through the minimization of a functional I(f),
which in this case will be

I(f) =

6∑
i=1

filn
( fi

1/6

)
(1.1)

Then the conditional probability is given by

p ' e−nI(f∗),

meaning that when n is large, p is concentrated where I(f) is minimal. When
no constraints are imposed, I(f) is minimal for I(f) = 0 and we go back
to the law of large numbers. But when a constraint -for instance coming
from our observations- exists, then a different set of frequencies will minimize
I(f). In our case minimizing equation (1.1) under e.g. an observed deviation
of the mean x =

∑6
i=1 ifi = 4 yields f1 = 0.103, f2 = 0.122, f3 = 0.146,

f4 = 0.174, f5 = 0.207, f6 = 0.246 [1].
This is a basic example of the problems that large deviations theory

deals with, which was first introduced as a unified theory by Varadhan [2] in
1966. Large deviations theory is concerned with the study of probabilities
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of rare events and provides a set of methods to derive such results. Since
extremal events have been found to play an increasingly major role in many
settings [3], large deviations theory has become a field of active study and
finds numerous applications, including financial ones.

Recently the problem of large deviations of power law distributions has
been addressed [4], concluding to the very interesting result that when a large
deviation is observed, the frequency distributions should remain unchanged,
except for the appearance of a single large event that will bear almost alone
the responsibility for this large deviation. The study of power laws is also
at the heart of research interest, as they are part of a class of distributions
that are termed fat-tailed, that have been associated with many phenomena
where extreme events make their presence felt. Thus the large deviations
theory seems to provide a really intriguing theoretical explanation as to why
such extreme events occur.

An interdisciplinary approach of finance from economists, physicists and
mathematicians have set it as a prominent area among those where power
law distributions have a role to play. In this thesis we will focus on the
distribution of returns of stock prices, whose tail is characterized by a power
law decay, with an exponent that is usually estimated to be close to µ ' 3
[5]. This trait of stock market returns is believed to be associated with many
interesting features that the market exhibits, including extreme events such
as bubbles and crashes [6].

If the power law description of the distribution of returns is justified,
then the predictions of the large deviations theory should at some extent
be realized at stock markets. In a nutshell, what we expect to find is that
whenever returns appear to deviate from a fundamental return, that this
should be because of one or few extremely large returns. Further inquiry
includes the direct linking between theory and empirical evidence and an
attempt to find practical uses, like predicting potential crashes. There is
a number of points to consider when making such an attempt, from how
firmly the power law behaviour is established to what one should identify
as fundamental return. Throughout the rest of this study we tackle each
of these questions from several prospectives, in an attempt to examine the
large deviations theory within a real context.

Beginning with the next two chapters we provide the mathematical foun-
dation for our study. This includes an introduction to power law distribu-
tions and the formulation of large deviations theory with respect to them.
Also we devote a few pages to the likelihood function, which through its
numerous applications will be used in the chapters that follow. Chapter 4
introduces power law distributions in finance and examines the conditions
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that need to be satisfied, in order for the large deviations theory to be
applied. The main part of our study is presented in chapter 5, where we
detect large deviations in financial data and compare the results with the
predictions of the large deviations theory. At the next chapter, we attempt
a different approach and through logical reasoning try to find potential ap-
plications for large deviations of fat tailed distributions. We also deal with
the shortcomings of our study. Chapter 7 concludes.
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Chapter 2

Power laws and large
deviations

2.1 PDF’s and power laws

A probability distribution function (pdf) P (x) of X is defined such that the
probability to find X in an interval ∆x around x is P (x)∆x. The probability
to find X between a and b is then given by

P(a < X < b) =

b∫
a

P (x)dx, (2.1)

We also define the cumulative distribution function as

FX(x) = P(X ≤ b) =

b∫
−∞

P (x)dx, (2.2)

Here, we are mainly interested in power law distributions of the kind

P (x) ∝ Cµ
x1+µ

, (2.3)

Power laws are of particular importance to the study of complex systems
[7] and their behaviour is largely defined by the value of µ. Depending on
the existence or not of the distribution’s mean and variance we find three
different regimes:

• µ > 2: Both the mean and the variance are finite.
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• 1 < µ ≤ 2: The mean is finite and the variance is not defined.

• µ ≤ 1: Both the mean and the variance are not defined.

Power law distributions with µ ≥ 2 obey the Central Limit Theorem,
which roughly states that ”the sum, normalized by 1/

√
N of N random

independent and identically distributed (i.i.d.) variables of zero mean and
1finite variance σ2 is a random variable with a pdf converging to the Gaus-
sian distribution with variance σ2” [8]. On the other hand power laws with
0 < µ < 2, which are termed heavy tail distributions, converge to another
class of distributions, called Lévy laws.

2.2 Large Deviations Theory

The Central Limit Theorem, when applicable, provides a good approxima-
tion (the Gaussian law) only for the center of the pdf of a sum of a large
number N of random variables, leaving its tail subject to further investi-
gation. Large deviations theory deals with the problem, calculating the
probabilities of rare events at the tail of the pdf2. Considering the sum
of N i.i.d. random draws from a distribution Q(x), we are interested in
calculating the probability of events

E =
1

N

N∑
i=1

g(Xi), (2.4)

where g(x) is a function that satisfies the law of large numbers (e.g. by
substituting g(x) = x in the above sum we calculate the sample mean) and
E ∈ [g, g + δg]. If 〈g〉 =

∫
dxg(x)Q(x) 6∈ [g, g + δg], then the event is

considered not typical. For N →∞ the probability of finding such events is
given by

P (E) ∝ expNI(g) dx, (2.5)

where I(x) is the so called Cramér or rate function. We can consider that
the large deviation is realized as a typical i.i.d. sample from a modified pdf

P ∗(x) =
1

Z(β)
Q(x)e−βg(x), (2.6)

1This condition can be relaxed to include cases like power laws with µ = 2
2We provide here only an outline of Large deviations theory, mostly following [4]. For

a more thorough treatment, see [8] and [9]
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where Z(β) is a normalization constant (known in statistical physics as the
partition function) and β is chosen such that

∫
dxP ∗(x)g(x) = g. To il-

lustrate the previous statements, consider the simple case where g(x) = x,
then equation (2.5) gives the probability of observing a sample mean differ-
ent than the mean (x 6= 〈x〉), while equation (2.6) states that such a large
deviation in the mean can be thought of as a sequence drawn independently
from P ∗(x). The Cramér function is given by

I(x) = DKL(P ∗||G),

where DKL(P ∗||G) is the Kullback-Leibler divergence for the distribution
P ∗(x) that minimizes it [10]. It is always I(x) ≥ 0, where I(x) = 0 is
realized when the distribution remains unchanged, 〈g〉 = g. This description
is sufficient if the pdf of g(X) decays at least as fast an exponential, for
N →∞. In the case of pdf’s that decay slower than an exponential, called
fat tail distributions, we have to deploy a different strategy. The reason is
that for distributions of this kind the quantity eβxP (x) (see function (2.6))
diverges for all β > 0, when x→∞.

2.3 Large Deviations for Power Laws

We again consider a power law distribution

P (x) ∝ Cµ
x1+µ

,

then (2.6) becomes

P ∗(x) =
1

Z(β)

Cµ
x1+µ

e−βg(x), (2.7)

with a normalization constant

Z(β) =

∞∑
x=0

Cµ
x1+µ

e−βg(x), (2.8)

We can easily show that Z(β) is finite only if β ≥ 0. We now consider the
expected value of g(X) under distribution (2.7), using the -well known from
statistical physics- relation

Eβ(g(X)) = − d

dβ
logZ(β), (2.9)
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from where we find that Eβ(g(X)) is a decreasing function of β and Eβ=0(g(X)) =
〈g(x)〉. Those results are reminiscent of a phase transition [4] and suggest
that there are two regimes, above and below 〈g(x)〉, which need to be treated
separately.

• g(x) ≤ 〈g(x)〉

When the conditional value is smaller than the unconditional, then there
is always a value of β(x) that satisfies Eβ=0(g(X)) = g(x) ≤ 〈g(x)〉, meaning
that deviations can occur in a ”democratic” way. To achieve this, one may
truncate the pdf by an exponential function (cut-off), in order to reduce its
expected value.

For example consider the pdf N = 1/M1+2/3. Introducing instead the
gamma distribution N = 1/M1+2/3exp(−βM) leads to a cut-off at suffi-
ciently large values. This is exactly the case where we wish to impose the
finiteness of the maximal energy that may be released in the Earth, as a
condition to the Gutenberg-Richter power law distribution of earthquake
seismic moment releases([8] sec. 3.3.5).

• g(x) > 〈g(x)〉

For conditional values larger than the unconditional, equation (2.9) would
require a value β < 0, something that is not acceptable in our analysis since
(2.8) is finite only if β ≥ 0. A different approach is required.

It turns out that such large fluctuations can be realized if a single variable
X∗i accumulates the largest part of the average, by taking an extensive value
[4]. Then

g(X∗i ) ' 〈g(x)〉+N(g(x)− 〈g(x)〉), (2.10)

The rest of the variables are typical (meaning that if we only considered
them, then it would be g(x) = 〈g(x)〉). Thus, the probability to observe
g(x) depends only on the probability P (X∗i ) (as the non-deviating values
will appear with probability one) and since there are N different ways to
choose i∗, is at least

NP (X∗i ) =
NCµ

(X∗i )1+µ
, (2.11)

or in the simple case of g(x) = x, where we can directly substitute X∗i

NP (X∗i ) =
NCµ

(N(x− 〈x〉) + 〈x〉)1+µ
, (2.12)
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The Cramér function of equation (2.5) is shown to be zero. This means
that the pdf is unchanged, but there is one large event that is singular and
of sufficient amplitude to change 〈g(x)〉 into g(x). This application of large
deviations theory to power law distributions appears to provide a plausible
explanation for the appearance of extreme events that dominate the weight
of the power law distribution and are found at the tail of the pdf. These
events are also known as Dragon-Kings [11], a concept that is discussed later.

2.3.1 Power Laws with µ < 1

Equation (2.12) is problematic if µ < 1, since the standard natural condi-
tioning moment (the mean) is not defined. To tackle this problem we first
remember that the invariant quantity is the probability P (x)∆x and not just
the pdf. Therefore P (x)∆x = P (y)∆y and we can proceed with a change of
variables. If for example we set y = xa, then we get

c∫
b

1

x1+µ
dx =

c′∫
b′

1

a

1

y1+µ/a
dy, (2.13)

We then define the coefficient rn =
∑N
i=1 xi
MN

, where MN is the largest
observation. For µ < 1, rn is on the order of unity [12]. This means that the
major contribution to the sum is made by the maximal observation (a sort
of spontaneously occurring large deviation) or in other words we observe a
”condensation” for a single x-realization. That allows us to assume that this
condensation of a large amplitude for a single x-realization also occurs in the
case of upward conditioning, so we can choose a, such that it corresponds to
some moment of order less than µ (e.g. a = 1/2) and calculate 〈xa〉 instead
of 〈x〉, as

〈xa〉 =

c∫
b

xa

x1+µ
dx =

c′∫
b′

1

a

y

y1+µ/a
dy (2.14)

We therefore impose a conditional moment of order q = a, (xa) instead of
q = 1, (x) and compare xa with 〈xa〉, which can be computed analytically
through (2.14). Following the same methodology as before we again have
two distinct cases:

• xa > 〈xa〉
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The largest event again accommodates the large deviation, where we
now consider that g(x) = xa = y, instead of g(x) = x. The equivalent of
equation (2.11) for y = xa will be

NP (Y ∗i ) =
NCµ

(Y ∗)1+µ/a
=

NCµ

((X∗i )a)1+µ/a
,

because, as seen from (2.14), the pdf after the change of variables is no
longer the same. Then, through (2.10) we get (X∗)a = 〈xa〉+N(xa − 〈xa〉)
and subsequently X∗ = (〈xa〉+N(xa−〈xa〉))1/a. Finally, we substitute X∗,
getting

NP (Y ∗i ) =
NCµ

(〈xa〉+N(xa − 〈xa〉))1+µ/a
, (2.15)

• xa ≤ 〈xa〉

Here once more the distribution needs to be truncated by an exponential
cut-off, i.e.

P (y) =
1

a

e−βy

y1+µ/a
,

leading to

P (x) = P (y)
dy

dx
=
e−βx

a

xa+µ
xa−1 =

e−βx
a

x1+µ
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Chapter 3

Likelihood

3.1 The likelihood function

Statistical inference refers to the concept of inducing general statements or
laws, on the basis of data observations. Given a specific dataset, one tries
to find those probabilistic models that can better describe her observations,
but which can also satisfactorily forecast the outcome of future events.

To this end the likelihood function is an important statistical tool, that
can be used to summarize data. It is defined such that the likelihood of a
hypothesis/distribution after observing a set of data, is equal to the proba-
bility of the data given the hypothesis. If f(x|θ) denotes the joint pdf of the
sample X = (X1, ..., XN ), given a distribution that is a function of θ, then
the likelihood function, given that x = X is observed, is

L(θ|x) = f(x|θ), (3.1)

thus being the same in form as a pdf, where the only distinction is which
variable is considered fixed and which is varying. The way of using the
likelihood function as a means of data reduction is provided by the likelihood
principle, which states that for two different samples X = (X1, ..., XN ) and
X ′ = (X ′1, ..., X

′
N ), for which there exists a constant C(x, y), such that

L(θ|x) = C(x, y)L(θ|x′), (3.2)

then the conclusions drawn from x and x′ should be identical. If L(θ1|x) =
2L(θ2|x), then in some sense θ1 is 2 times as plausible than θ2

1. Then if
(3.2) holds true, L(θ1|x′) = 2L(θ2|x′), so whether we observe the sample X

1This is a consequence of the Law of Likelihood which is discussed in section (3.3)
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or X ′ (or any other) we will conclude that θ1 is 2 times as plausible as θ2
([13], chapter 6.3). This allows us to use the likelihood function to compare
different models, in order to see which one is most likely to describe our
observations. This idea of comparing different models based on their relative
likelihoods is further discussed at the third part of this chapter.

3.2 Maximum-likelihood estimation

Maximum-likelihood estimation (MLE) is a method used when a model is
believed to satisfactorily describe our data observations and we are interested
in estimating its specific parameters. We can rewrite equation (3.1) such
that

L(θ|x) = L(θ1, ..., θk, |x1, ..., xN ) =

N∏
i=1

f(xi|θ1, ..., θk) (3.3)

where θ1, ..., θk are the parameters we want to estimate. For each sample
point, let θ̂ be a parameter value at which L(θ|x) attains its maximum as
a function of θ, then a maximum-likelihood estimator of the parameter θ
based on a sample X is θ̂. The maximum-likelihood estimator corresponds
to the parameter point for which the observed sample is most likely. For a
differentiable likelihood function, the maximum-likelihood estimator can be
found through

∂

∂θi
L(θ|x) = 0 (3.4a)

∂2

∂θ2i
L(θ|x) < 0 (3.4b)

with i = 1, ..., k. It is sometimes easier to compute the maximum-likelihood
estimator of a likelihood function by finding the maximum of the logarithm
of L, known as the log-likelihood function:

lnL(θ1, ..., θk, |x1, ..., xN ) =

N∑
i=1

lnf(xi|θ1, ..., θk) (3.5)

The peaks of the likelihood and of the log-likelihood will coincide, as the log
function is monotonically increasing.
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3.2.1 MLE for a power-law distribution

We will consider data that are believed to be power law distributed. In this
case they are expected to obey a pdf that has the form

P (x) =
Cµ
x1+µ

For the distribution to be fully described, the two parameters Cµ and µ have
to be determined. For that purpose, the maximum likelihood estimator µ̂
is generally preferred over alternatives like graphical methods, because in
the limit of asymptotically large samples it has desirable features like being
unique, consistent and asymptotically efficient [14]. The above equation can
be rewritten as

P (x) =
µ

xmin

( x

xmin

)−µ−1
(3.6)

where xmin is the minimum value for which power-law behaviour holds. The
log-likelihood of the data given such a power law model is then

lnL(µ|x) =
N∏
i=1

µ

xmin

( xi
xmin

)−µ−1
Using the maximum likelihood estimation that was described earlier we find
the maximum likelihood estimator (also known as Hill estimator [15])

µ̂ = N

[ N∑
i=1

ln
xi
xmin

]−1
(3.7)

This is the value of µ that corresponds to the power-law that is most likely
to have generated the data.

3.2.2 Determining the lower bound xmin

The task of determining the threshold xmin is not trivial and one has to
consider the boundaries of power law behaviour. As can be seen from equa-
tion (3.7), the selection of xmin also affects the scaling parameter µ. The
simplest way to find this lower bound is to plot the PDF (or CDF) of the
distribution on a log-log diagram and to place xmin there where a straight
line begins, but this method is subjective and sensitive to small fluctuations
[16].
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As an alternative we can choose xmin, such that it makes the probability
distribution of the data and the best-fit power-law model as similar as possi-
ble above xmin[17]. This is achieved by calculating the Kolmogorov-Smirnov
statistic, which is the maximum distance between the empirical CDF corre-
sponding to the data for a given xmin and that of the power law that best
fits the data for x ≥ xmin,

Dn = max
x≥xmin

|S(x)− FX(x)|,

and then selecting the xmin that minimizes Dn. The Kolmogorov-Smirnov
statistic provides good results and its only shortcoming is that it is sensitive
to the number of data points in the distribution tail. Good results can be
achieved if ∼ 1000 or more observations are available in this part of the
distribution[17], otherwise yielding slightly larger estimates for xmin. We
should have that in mind when calculating the two parameters Cµ and µ for
stock market returns in the next chapter.

3.3 Comparing the fit of different models

An important related concept, that was already used in (3.1) is the law of
likelihood which roughly states that ”When comparing two hypotheses for
a particular dataset (i.e. that a random random variable X takes the value
x according to the pdf’s f1,2), then f1(x) > f2(x) suggests that the first
hypothesis is more likely and the likelihood ratio gives the degree to which
the observation x supports the first hypothesis against the second one” [18]:

Λ =
L(H1|X = x)

L(H2|X = x)
=
f1(X = x|H1)

f2(X = x|H2)
. (3.8)

In practice the above likelihood ratio is considered a reliable statistical test
to compare the fit of two models, if one of them (the null model) is a special
case of the other (the alternative model), usually with the latter having
more degrees of freedom. The null hypothesis is rejected if the value of the
likelihood ratio is too small, otherwise there is no support to consider a more
complicated model.

When the models under consideration are not related (i.e. one is not a
nested case of the other), the likelihood ratio does not suffice to make an
assumption on their relative goodness of fit and other methods need to be
used. One such method is given by the Akaike Information Criterion, which
is grounded in information entropy and the concept of Kullback-Leibler in-
formation [20]:
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AIC = 2k − 2lnLm, (3.9)

where k corresponds to the independently adjusted parameters within the
mode and Lm is the maximized likelihood. Given a set of candidate mod-
els for the observed data, the one with the minimum AIC value is to be
preferred.

3.4 Distribution of large deviations

We now turn again to the case of power-law pdf’s. Supposing that we observe
a large deviation in the mean or in some other moment, of the general form
g(x) > 〈g(x)〉, then we may use the likelihood ratio to estimate the model
that best describes the data. Potential candidates are a power law where the
deviation is equally distributed, or if we follow the reasoning of section (2.2),
then there will be one event that is accommodating the largest proportion
of the deviation. In the following we present how to calculate the likelihood
in the case of no or one outliers.

1 The large deviation is equally distributed

All N observed variables are typical and subject to a power-law distribution.
The likelihood for such a configuration is then

L0 =

N∏
i=1

Cµ

x1+µi

(3.10)

2 The large deviation concentrates on the largest event

The N − 1 smaller variables are typical, but the largest one X∗ causes the
large deviation and is described by the formula X∗ = 〈x〉+N(x−〈x〉). The
likelihood that such a configuration describes our observations is then

L1 =
NCµ

(N(x− 〈x〉) + 〈x〉)1+µ
N−1∏
i=1

Cµ

x1+µi

(3.11)

where the first RHS term is given by equation (2.12), while the rest variables
obey to the initial power-law pdf.

Since we are only interested in seeing which of the likelihoods is larger
-and not in their absolute values-, we can ignore the terms that are the same
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in both (3.11) and (3.10) as they cancel out, and compare only the following
likelihoods:

L′0 =
Cµ

X1+µ
N

(3.12a)

L′1 =
NCµ

(N(x− 〈x〉) + 〈x〉)1+µ
(3.12b)

for which we get the following likelihood ratio:

Λ =
(N(x− 〈x〉) + 〈x〉)1+µ

NX1+µ
N

(3.13)
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Chapter 4

Distribution of stock market
returns

The large deviations theory that was described in the second chapter could
find an interesting application at financial markets. For instance we should
expect that a market crash is more likely to be the result of one or a few
large returns, as opposed to many smaller ones. If this is true, then an
observed deviation from the fundamental return per unit period of an asset
could be deemed as the development of a bubble and could eventually lead
to a crash. We explore these possibilities in the next chapters, while here
we present all the conditions that would make such an approach valid.

As the whole of the previous discussion presupposes that the large devia-
tions theory is to be applied to power law distributions, we should investigate
if a power law can describe sufficiently a particular dataset. We therefore
comment on the appearance of power laws in finance and then focus on the
dataset that was used for this study, examining how could well it could be
fit by a power-law. We also develop an equivalent to the well-known Gini
coefficient for stock returns as a means of measuring the inequality of returns
in large scales and test it on the particular dataset.

4.1 Power laws in finance

Our interest in power laws stems from the fact that they seem to be ubiqui-
tous in nature, appearing in plenty of physical, economic and social systems
[21]. The latter are examples of complex systems, which arise from the
collaborative action of a large number of mutually interacting parts, lead-
ing to some distinct macroscopical behaviour, in this case a power law. A
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celebrated example comes by Pareto, who discovered that the extreme dis-
tribution of income and wealth can be described by a power law.

In recent decades many properties of financial markets have been stud-
ied and were found to be approximated by power laws. This is particularly
true for high frequency economic variables, while it appears to be an en-
dogenous property of markets [22]. Examples include the distribution of
trading volume of the largest stocks at several stock markets [23] and the
autocorrelation of signs of trading orders [22].

The vast majority of research on the subject has aimed at understanding
the distribution of empirical returns of financial time series. Here we will
consider log-returns, defined as

r = log(pr(t+ ∆t))− log(pr(t)) (4.1)

where pr(t) refers to the stock market index (it could also refer to the trans-
action price of a particular stock, etc.) at a certain time. Log-returns are
generally believed to obey a power law, although this description is adequate
only for the tail of the distributions. The main body of the distribution is
usually better described by a log-normal or exponential distribution. In
particular a stretched-exponential distribution is found to be better over
the whole quantile range, but a power law suffices for the upper quantiles
[3]. Depending on what are the lower quantiles of the distributions of re-
turns that are taken into consideration, the tail index µ of the cumulative
distribution seems to take two different values, either µ = 1.4− 1.7 or µ ' 3
[3]. This suggests that the tails of the returns distribution are certainly
heavier than the tails of a Gaussian or of an exponential distribution.

All of the above indicate that the application of the large deviations the-
ory on power laws is a tricky task when it comes to returns of financial time
series. Returns that are not sufficiently described by a power-law (usually
that is small returns) should be filtered out in order to achieve better results.

4.2 Data used

For the needs of this thesis we have studied the S&P500 (Standard & Poors
500) index and in particular the E-Mini S&P500 index, which is a stock
market index for futures contracts. The notional value of one contract is 50
times the value of the S&P500 stock index. Our data span from January 1,
1998 to June 15, 2012 and this particular dataset was chosen because it has
been studied numerous times and a power law behaviour at the tales is now
well-established.
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We have chosen to study 5-min and 60-min returns. Although one could
suggest that studying high-frequency (e.g. 5-min) returns and then just
performing 12 convolutions of the pdf of returns at the 5-min time scale
should give us the pdf of the 60-min returns, this is not true at it leads
to less fat tails than what is actually observed. This happens because the
returns are not independent and identically distributed, but are subject to
volatility correlations [3].

One usually does not expect to observe dissimilarities in the distribution
of positive and negative returns [24], although there are certain phenomena
which are mainly linked only with one of the two categories of returns (such
as the leverage effect, which is discussed later in greater detail). Here, we
have chosen to treat negative and positive returns separately, thus we have
studied 313475 positive 5-min returns and 268239 negative 5-min returns,
yielding a total of 581714 5-min returns. Correspondingly there are 31133
positive 60-min returns, 29879 negative 60-min returns and a total of 61012
60-min returns. In the next two sections of this chapter the dataset is
subjected to a number of tests with respect to large deviations.

4.3 Power law fitting to the data

A first, rather rough way to determine if an empirical distribution follows a
power law is to sketch its complementary cumulative distribution function
(CCDF) in a log-log diagram. If part of the distribution falls on a straight
line, then one can assert that a power law holds for that part, with the scaling
parameter µ given by the absolute slope. This crude method is usually not
sufficient, but we can still obtain an estimate of which returns are of interest,
as one can see in figure (4.1). It is only returns above a certain threshold.

We next attempt to determine the threshold, as well as the scaling pa-
rameter that corresponds to the slope of the straight line in the diagram.
It should be noted that our intention is not to strictly determine if a power
law is the best distribution to fit the data, but to approach the data from
different viewpoints and then reason on what part of it should be tested for
heavy-tail distributions large deviations. This will become clearer in next
chapters.

To calculate the scaling parameter we employ the maximum likelihood
estimation method that was described in the second chapter. It is for the
maximum likelihood values that the distance between the true model and the
assumed model reaches its minimum [25]. We will examine three cases: 1.
No minimum threshold rmin, i.e. all returns are considered to be power law
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Figure 4.1: Complementary cumulative distribution for the E-Mini S&P500
5-min positive returns. The red line separates the 95% smaller returns from
the 5% largest ones and the green line corresponds to the threshold deter-
mined by the method proposed by Clauset et al.

distributed, 2. we only consider returns at the 95% quantile (since returns
above the 95% quantile are sufficiently described by a power law [3]), 3. the
minimum threshold is determined according to the method developed by
Clauset et al. [17] described at section 3.2.2. The results are presented in
the following table:

Positive Returns Negative Returns
5-min 60-min 5-min 60-min

No rmin 1.26 1.28 1.26 1.28

95% quantile 3.71 3.63 3.64 3.73

Clauset 4.02 3.77 4.26 3.91

Table 4.1: Estimation of the scaling parameter µ with the three different
methods

The scaling parameters that are estimated for no rmin describe a dis-
tribution with a much heavier tail than the one that is actually observed
and can be easily discarded. The estimation given by the Clauset method
determines rmin too strictly and fits a power law only to the ∼1% larger
returns, thus neglecting a large part of the straight line of the CCDF. This
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can be a problem when there are not enough data points, therefore for the
rest of this study we will adopt the scaled parameter values that are found
for the 95% quantile, which are slightly smaller1.

4.4 Gini coefficient for log-returns

In our attempt to assess the impact that the largest return(s) have when
large deviations from the fundamental return occur, it is worthwhile to first
examine if such large returns exist. As a means to do so we introduce an
equivalent to the well-known Gini coefficient, which is a measure of sta-
tistical dispersion; It measures the inequality among values of a frequency
distribution, in our case among returns. Schematically it is the area enclosed
by the line of equality and the Lorentz curve.

Returns ri are arranged in non-decreasing order (ri ≤ ri+1). The Gini
coefficient is then defined as [26]

G =
2
∑N

i=1 iri

N
∑N

i=1 ri
− N + 1

N
(4.2)

where the sum is performed over all N returns. The value of the Gini
coefficient is bounded by the values 0 and 1 and as one can easily observe
lower values correspond to greater equality, meaning that the total growth
(decline) of the index is more democratically distributed among positive
(negative) returns.

A first step is to calculate the Gini coefficient for the whole timespan of
15 years that we examine, as well as for each of the individual years. This
way we can find an estimate of the relative dispersion of the returns and also
see whether the coefficient remains constant, or if it fluctuates depending on
the state of the market. We get the following extremal values:

Positive Returns Negative Returns
5-min 60-min 5-min 60-min

Maximum annual value 0.538 0.575 0.534 0.569

Minimum annual value 0.367 0.464 0.368 0.474

15-year value 0.469 0.527 0.472 0.536

Table 4.2: Gini coefficient. Summary of the calculations for yearly distribu-
tion of returns.

1For a discussion on the continuous growth of the Hill estimator please refer to Malev-
ergne and Sornette [25].
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Figure 4.2: The Gini coefficient(here for 5-min positive returns) corresponds
to the area between the line of perfect equality and the Lorenz curve. Blue
line: Lorentz curve for the maximum annual Gini coefficient value, red line:
Lorentz curve for the minimum annual Gini coefficient value, green line:
Lorentz curve for the total span of 15 years

Here we should remember that we are interested in power-law distributed
returns and this is not the case for small returns. If we are to test the validity
of the large deviations theory we should concentrate mainly on the tails.
Therefore we will also consider the Gini coefficient for the 95% quantile of
the returns, which yields the results:

Positive Returns Negative Returns
5-min 60-min 5-min 60-min

15-year value 0.214 0.217 0.203 0.188

Table 4.3: Gini coefficient for the 95% quantile of returns

Two comments should be made here: 1. The Gini coefficient is larger
for the whole body of returns, than for those at the tail of the distribution,
hinting towards the well-known fact (as can be confirmed by looking at
figure (4.1) (CCDF)) that small returns contribute little to the average index
growth. 2. The relative equality in size among larger returns suggests that
-at least at large scale- there are no outliers with a large enough magnitude,
so as to dominate above others. This somewhat disheartening remark obliges
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us to zoom into smaller scales (than at the whole distribution of returns)
and this is what we will do in the next chapters.

Before doing so, it is worth calculating the Gini coefficient of a power-
law with an index index µ = 3.71 which we found in the previous section
for 5-min positive returns. Power-law distributed random numbers can be
generated from a uniform distribution of real random numbers r through
[17]

r = rmin(1− x)
−1
µ−1 (4.3)

where rmin = 0.000288. We generated 5 × 106 i.i.d. power law distributed
numbers and found that the Gini coefficient in this case is G = 0.226, very
close to the value G = 0.214 for the 95% upper 5-min positive returns. After
plotting the corresponding Lorentz curves (since the two distributions may
have similar Gini coefficients but still different significantly) we see that they
almost coincide, even for the largest returns, despite the fact that returns
are correlated and not iid. The conclusion is that if we consider only returns
in high quantiles, then the conditions for testing the large deviations theory
on power laws are valid.

Figure 4.3: Comparison of the Lorentz curves for (blue) power law-
distributed synthetic data and for (red) the 95% quantile of 5-min positive
returns
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Chapter 5

Deviations of stock market
returns

5.1 Empirical and fundamental rates of return

Financial markets and in particular stock markets offer fertile ground to test
the large deviations theory that was discussed in the first chapter. Suppose
that an investor makes an estimate about the average growth of a stock
market index 〈r〉, of say 5% annual growth. Instead she notices that the
realized rate of return r greatly surpasses this value, so for instance a 10%
annual growth is observed. As discussed previously, returns approximately
follow a power law distribution, thus by applying the reasoning of the first
chapter she should expect that this abnormal growth rate is probably due to
one or only a few extremely large gains. The same also applies for negative
returns, so one should expect that a crash will more likely be the result of
only one (or a few) large loss(es).

Let’s examine more carefully a few details in the above stream of ar-
guments. Firstly, as we already know the whole body of the distribution
of returns cannot be described by a power law, which does so sufficiently
only for the tail. So when we observe a large deviation of the kind that was
just described, how can one be sure that a power law is there, allowing the
application of the large deviations theory? The obvious solution would be
to discard all returns that do not fall in the tail, the ones that are below the
95% quantile in accordance with what we accepted earlier. But this could
lead to strange situations, where each of the accepted last N returns (see
for instance equation (2.12)) at a specific time frame is too far apart from
the others and it is doubtful whether we can associate a large growth with
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a large return that occurred much older in time.
Secondly we tacitly accepted that a fundamental, or average stock mar-

ket return exists, or at least that it is easy for an investor to approximately
calculate it. In practice, defining a fundamental return is a multifold prob-
lem, that reflects the difficulty of using some average of past returns to
make long term return forecasts. The simplest approach is to accept as
fundamental return the empirical return on stocks corresponding to a very
long period, although it is now accepted that stock returns should not be
expected to remain constant over time [27]. Problems with this approach
include that the returns are very noisy and the difficulty of choosing between
the geometric average and the arithmetic average [28].

The above remarks are valuable when considering large deviations of
stock market returns. We say that a large deviation is observed at a specific
time t when the empirical average of the last N returns is (much) larger
than the expected average return, or

r > 〈r〉

5.1.1 Values for 〈r〉 and r

• Expected average return 〈r〉

We use three methods to estimate 〈r〉 for the E-Mini S&P index. The process
is repeated for both positive and negative (with inverted sign) 5-min and
60-min returns:

1. We consider 〈r〉 to be the arithmetic average for the 15-years period
that is studied. Returns that are not in the tail of the distribution are
therefore also taken into consideration.

2. We equate 〈r〉 with the mean of the power law, whose pdf is deter-
mined by the values of µ and xmin that were found in the previous chapter
for the 95% quantile, or

〈r〉 =

∞∫
rmin

µ
( r

rmin

)−µ
=
µrmin
µ− 1

, 1

3. We consider 〈r〉 on a rolling basis, as a simple moving average spanning
the last 1000 returns. This way a deviation is defined as a departure from
the recently observed trend.

1If µ < 1 then we have to employ the method that was described in chapter 2.3.1
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The first method has the advantage of providing conclusions about the
whole range of results, which can be an asset when one does not know if
recent returns can be considered to be power-law distributed, an approach
that in practice is indeed not feasible. If we want to be strict we have
to consider only deviations above the mean of the power-law distribution
that describes returns in higher quantiles. Thus, the second method allows
us to focus on only large deviations and examine potential differences in
behaviour at this regime. A problem with the above two approaches is that
they consider the distribution of returns to remain steady as time passes.
In fact financial indexes rise faster than exponential [29] and the average
return will be considerably different when considering two periods of the
same length that are e.g. 10 years apart. To deal with that problem we
employ the last method. Here, observing that most of the last 1000 returns
were relatively large means that we can assume that we are close to the
power law regime.

• Empirical average of the last N return 〈r〉

The empirical average is calculated as a simple moving average for the last
N = 50, or N = 100 returns. As N becomes larger, finding a large return far
away in the tail that will be almost solely responsible for the large deviation
from the fundamental price becomes all the more unlikely and as we will
shortly encounter this is already visible for the above values of N .

5.2 Examining large deviations

When discussing the Gini coefficient for stock market returns we found that
they are fairly equally distributed, when considering all returns for the 15-
years examined period. As a benchmark we note that the largest 1% 5-min
positive returns amount to about 5.4% of all returns, while when considering
only the 95% quantile the largest 1% returns correspond to 4.4% of all
returns at this quantile. This hints towards the fact that at larger scales,
the market rise or fall is not dominated by only a few returns. We now turn
to smaller scales.

We begin by calculating the quantities R1 = rmax
Nr and R2 = rmax+rmax−1

Nr
(with rmax−1 being the second largest among the last N returns) on moving

time windows, for r > 〈r〉. We then plot R1 and R2 against r−〈r〉
〈r〉 . This way

we will see if large deviations occur in the way that they are described in the
second chapter. Here the results for 5-min positive returns are presented,
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while the rest of the plots are found in the appendix. Only datapoints that
are at least N/2 time steps apart are presented, to avoid correlation effects.

A first look at the plots shows that there is indeed a difference at smaller
scales, where in most cases the largest return is responsible for a significant
percentage of the observed deviation. When considering the largest among
the 100 returns that lead to a deviation (figures 5.4-5.6), we can directly
compare it with the largest 1% of all 5-min positive returns and find it to
be at least as large and usually larger (more than 10% of the total sum of
returns). For N = 50 (figures 5.1-5.3) the largest return accounts for an even
larger percentage of the deviation and the explanation is simple, in that the
latter has to be only half as big as the one for 100 returns to amount for the
same percentage of the deviation, thus it need not be at the far tail of the
power law distribution. Apart from this remark the plots for N = 50 and
N = 100 are qualitatively similar.

Small deviations from the mean 〈r〉 are quite common, while large de-
viations -depending on how the mean 〈r〉 was calculated- can reach up to 9
times the size of the expected average return. We observe that in general
most deviations are characterized by R1 ∼ 0.1, but in numerous cases R1

is much bigger, with the largest return being almost solely responsible for
the deviation. These returns-outliers are more common close to small values
of r−〈r〉

〈r〉 and the trend is that they become less important as the deviation
becomes larger.

This means that our theory is only partially verified by the data, since
large outliers become more uncommon at larger deviations, a behaviour that
is at odds with what we expected in the first place. However, a look at figure
(5.2), where we only consider deviations above the mean of the power-law
distribution that describes returns in the 95% quantile shows that the trend
for decreasing magnitude of R1 is no longer present, an interesting remark
since as we have argued, it is these returns that can be better approximated
by a power law. But is there a direct way to test the theory in this regime?
We recall equation (2.10) from where we get

rmax = N(r − 〈r〉) + 〈r〉,

and consequently

R1 =
rmax
Nr

=
N(r − 〈r〉) + 〈r〉

Nr
= 1− 〈r〉

r
+
〈r〉
Nr

=

1 +
〈r〉(1/N − 1)

r
= 1 +

1/N − 1
r−〈r〉
〈r〉 + 1

, (5.1)
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Figure 5.1: The figure shows the magnitude of the largest return among the
last 50 returns versus the deviation of the last 50 5-min positive returns
from the mean 〈r〉. The mean is calculated as the average over the whole
body of returns.

Figure 5.2: The figure shows the magnitude of the largest return among the
last 50 returns versus the deviation of the last 50 5-min positive returns
from the mean 〈r〉. The mean is calculated for the power law distribution
corresponding to the 95% quantile of returns. The black line corresponds to
the function R1

( r−〈r〉
〈r〉
)

= 1− 49
50/(

r−〈r〉
〈r〉 + 1).
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Figure 5.3: The figure shows the magnitude of the largest return among the
last 50 returns versus the deviation of the last 50 5-min positive returns
from the mean 〈r〉. The mean is calculated as the average over the last 1000
returns.

Figure 5.4: The figure shows the magnitude of the largest return among the
last 100 returns versus the deviation of the last 100 5-min positive returns
from the mean 〈r〉. The mean is calculated as the average over the whole
body of returns.
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Figure 5.5: The figure shows the magnitude of the largest return among the
last 100 returns versus the deviation of the last 100 5-min positive returns
from the mean 〈r〉. The mean is calculated for the power law distribution
corresponding to the 95% quantile of returns. The black line corresponds to
the function R1

( r−〈r〉
〈r〉
)

= 1− 99
100/(

r−〈r〉
〈r〉 + 1).

Figure 5.6: The figure shows the magnitude of the largest return among the
last 100 returns versus the deviation of the last 100 5-min positive returns
from the mean 〈r〉. The mean is calculated as the average over the last 1000
returns.
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Figure 5.7: The figure shows the magnitude of the two largest returns among
the last 50 returns versus the deviation of the last 50 5-min positive returns
from the mean 〈r〉. The mean is calculated as the average over the whole
body of returns.

Figure 5.8: The figure shows the magnitude of the two largest returns among
the last 50 returns versus the deviation of the last 50 5-min positive returns
from the mean 〈r〉. The mean is calculated for the power law distribution
corresponding to the 95% quantile of returns.
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Figure 5.9: The figure shows the magnitude of the two largest returns among
the last 50 returns versus the deviation of the last 50 5-min positive returns
from the mean 〈r〉. The mean is calculated as the average over the last 1000
returns.

Figure 5.10: The figure shows the magnitude of the two largest returns
among the last 100 returns versus the deviation of the last 100 5-min positive
returns from the mean 〈r〉. The mean is calculated as the average over the
whole body of returns.
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Figure 5.11: The figure shows the magnitude of the two largest returns
among the last 100 returns versus the deviation of the last 100 5-min pos-
itive returns from the mean 〈r〉. The mean is calculated for the power law
distribution corresponding to the 95% quantile of returns.

Figure 5.12: The figure shows the magnitude of the two largest returns
among the last 100 returns versus the deviation of the last 100 5-min positive
returns from the mean 〈r〉. The mean is calculated as the average over the
last 1000 returns.
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suggesting that R1 should be an increasing function of the relative deviation.
Thus figures (5.2) and (5.5) also depict this function, for N = 50 and N =
100 respectively. Despite the existence of a noisy upper trend in the data,
the function quickly rises above them and can be used to approximate them
only for very small deviations. A last comment for this method, is that we
notice R1 to be relatively large, with R1 ∼ 0.1− 0.3 when N = 50.

In the third method (figure 5.3) 〈r〉 is calculated on a rolling basis and
this is probably the best approximation, since really old or future returns
do not affect the average. Interestingly with such a configuration the largest
deviations correspond to a realized rate of return that is at most four times
as big as the expected average, or r−〈r〉

〈r〉 > 3. At such a setting outliers are
also present, again with a small tendency to become less important as the
deviation becomes larger.

Plots (5.7-5.12) show the relative magnitude of the two largest returns
among N. A comparison between e.g. figures (5.1) and (5.7) shows that the
second largest return is usually not sufficiently large to make R2 much larger
than R1 and is a further confirmation that in general (and especially when
the sample is small, e.g. N = 50 as opposed to N = 100) the largest return
prevails over all others.

5.3 Large returns as outliers

As we have shown by now, power law distributions on their own do not
usually allow for extreme events. However, the previous section shows that
when stock-market returns at smaller scales are examined, we may notice
that a large gain/loss may be responsible for the average index behaviour,
sometimes making up to as high as half of the total gain/loss.

This is only one of the many cases, where a power-law distribution is
accompanied by the existence of one (or a few) rare extreme event, that
dominates over all others, subsequently leading to an alteration of the sys-
tem’s properties. There have been two approaches to understand the nature
of such events. The first one holds the view that all small, large and ex-
treme events belong to the same population and are governed by the same
mechanism. This view suggests that extreme events, found at the very end
of the tail of power-law distributions, are virtually unpredictable, as there
is no way to diagnose early what separates them from their smaller siblings.
This line of arguments can be traced back to the notion of ”Self-organized
criticality”2.

2For example Bak and Paczuski [30] after studying the collapsing of sandpiles that
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Recently, another approach has appeared suggesting that extreme events
(termed Dragon-Kings) may actually be statistically and mechanistically
different from the rest of the distribution [11]. The consequences of such an
assumption are direct, as rare and catastrophic events (like abrupt changes
in weather regimes or in our case, financial crashes) may be within the reach
of predictability. Empirical evidence confirms that in many systems Dragon-
Kings coexist with power-law distributions, yet the real challenge remains
to understand the mechanisms that produce them and to develop tools that
can detect them (see also [31]).

By applying the large deviations theory on the power law that describes
them, we see that a few returns can significantly move quantities like the
mean of the distribution upwards, something which is partially confirmed
in the previous section. In particular, by claiming that a few gains/losses
should be responsible for large deviations, we implicitly suggest that these
returns are special and should be considered as outliers. Therefore, we
propose that the few extreme returns that we noticed are Dragon-Kings and
as such, they are not described by the same power law as the rest of the
distribution, but rather by equation (2.12).

Λ =
L(DK|Data)

L(PL|Data)
. (5.2)

We present the plots for 5-min positive returns, since the plots for other
types of returns are qualitatively similar. The colorbar shows the relative
magnitude of the largest return (among the last N) as calculated in the
previous section. It is evident that for small deviations the likelihood ratio
is in many cases Λ > 1, suggesting that they should be the result of the
appearance of a single large return. This reflects the form of equation (2.12)
and suggests that -according to our previous discussion- a relatively small,
largest return can alone result to a small deviation from the mean. We
remember (e.g. figure (5.1) that indeed it was for small deviations that the
higher values of R1 are observed.

Since the two cases are related, we can apply the likelihood ratio method
that was presented earlier3 as a way to examine if a large return should be

follows a power law P (s) ∝ s−τ , (where s is the number of sand grains at which a collapse
is observed) argue that long-term predictions are not possible and that avalanches may
occur at any time, being an unavoidable and intrinsic part of the sandpile dynamics.

3We will find that the two likelihoods may be many orders of magnitude different and
given that the two models are related, the likelihood ratio test suffices for our purposes. A
more rigorous approach would require to use the Akaike information criterion or similar,
but here it is not deemed necessary.
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Figure 5.13: Likelihood ratio against the deviation of the last 50 5-min
positive returns from the mean with 〈r〉. The mean is calculated as the
average over the whole body of returns. The colorbar shows R1 (the relative
magnitude of the largest return among the last 50 ).

Figure 5.14: Likelihood ratio against the deviation of the last 50 5-min
positive returns from the mean 〈r〉. The mean is calculated as the power
law distribution corresponding to the 95% quantile of returns. The colorbar
shows R1 (the relative magnitude of the largest return among the last 50 ).
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Figure 5.15: Likelihood ratio against the deviation of the last 50 5-min
positive returns from the mean 〈r〉. The mean is calculated as the average
over the last 1000 returns. The colorbar shows R1 (the relative magnitude
of the largest return among the last 50 ).

Figure 5.16: Likelihood ratio against the deviation of the last 100 5-min pos-
itive returns from the mean 〈r〉. The mean is calculated as the average over
the whole body of returns. The colorbar shows R1 (the relative magnitude
of the largest return among the last 100 ).
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Figure 5.17: Likelihood ratio against the deviation of the last 100 5-min
positive returns from the mean 〈r〉. The mean is calculated as the power
law distribution corresponding to the 95% quantile of returns. The colorbar
shows R1 (the relative magnitude of the largest return among the last 100 ).

Figure 5.18: Likelihood ratio against the deviation of the last 100 5-min
positive returns from the mean 〈r〉. The mean is calculated as the average
over the last 1000 returns. The colorbar shows R1 (the relative magnitude
of the largest return among the last 100 ).
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considered an outlier among its neighbours, or if it comes from the same
distribution as the rest of the returns. If the ratio is Λ > 1 then it is more
likely that the largest return is a Dragon-King:

If we want to be more strict and study only the largest deviations (i.e.
r−〈r〉
〈r〉 > 0.5), then Dragon-Kings are more clearly identifiable. The method

we suggest depends highly on how 〈r〉 was calculated, but in general suggests
that for large deviations a return could be classified as a Dragon King when
R1 > 0.2 − 0.4 (see figures 5.13-5.15). As we move to larger deviations
the likelihood of observing a Dragon-King decreases faster than the one of
having just a regular large return (that comes from a power law) and this
makes it more difficult to observe one.

What is worth noting, is the formation of two different clusters among
deviations, that is observable in most of the plots (e.g. figures 5.15 and 5.18).
Deviations with a relatively large ratio Λ -that is close to 1 or larger- group
together, as opposed to those having Λ � 1 which form a different cluster.
This fact cannot be omitted as it suggests the existence of two different
market regimes. However, an unambiguous distinction is not possible.

Having the knowledge of the two last sections we may now conclude
that the assumption of outlier returns leading to large deviations is partially
confirmed by the data, where such returns are present even if a distinction
from normal returns is not always easy. In particular, this behaviour occurs
especially when r−〈r〉

〈r〉 is not big, but instead we observe extremely large

deviations ( r−〈r〉〈r〉 � 0.5) to be the product of the collaborative effort of
more than one returns. This could be evidence of special market behaviour
(other than the power law distribution of returns) that causes the largest
deviations to occur and we will refer to such possibilities at the end of the
next chapter.
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Chapter 6

Can large deviations be
utilized?

6.1 Large deviations and crashes

We will now attempt to make use of previous discussions and calculations.
In particular if the large deviations theory for power laws holds true then
a large loss at the market should be expected to be concentrated on one or
a few negative returns. The empirical study of the previous chapter cannot
back up that assumption1 when the observed mean is far from the expected
average rate of return, but it does so for deviations near it. Thus, it is worth
investigating if smaller crashes can be related to previous deviations.

Another way of looking at large positive deviations is as if it represents a
bubble under development. The fundamental return is of course only known
approximately and captured by some distribution, so one can suppose that
the realized returns are just fluctuating, but as time goes by it becomes
more and more clear that they are deviating upwards2 and it is probable
that investors and other parties of interest will believe that a bubble is being
formed. Therefore, the combination that i) a bubble has begun developing
and ii) that the agents realize the deviation from the expected fundamental
value and attribute it to a bubble, yields a high probability that they will
try to sell their assets before the bubble crashes, which eventually leads to
mechanisms such as herd-selling [34]. This is simply a manifestation of the
efficient markets hypothesis [35], with the exception that investors have not

1(see the appendix for negative returns which are of particular interest here)
2Several models have been proposed to explain such overpricing on behaviouristic terms

[32] or other amplification mechanisms [33]
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access to perfect information.
If such a causal relation exists, then an observed short-term deviation

should be followed by really large negative returns and the correction will
appear in the form of one or a few finite steps. This is tested in the next
section. Additionally this stream of arguments could also explain why ex-
tremely big outliers were not observed in the previous section. If no crash
has occurred while the bubble is small, the case may be that it may never
happen, so the market enters a systemic large deviation phase. A larger
correction is now less probable according to the power law distribution of
returns and this mechanism could explain the existence of long lived bubbles.

6.2 Large deviations as precursors

Let us now answer the question if large deviations can be used as precursors
of crashes. To this end, two methods are developed that will lead to a more
or less definitive conclusion. In the following two methods we will use the
Spearman’s rank correlation coefficient as a measure of correlation [36]. It
measures if there is a monotonic relationship between two variables and is
defined as

ρ =

∑
i=1(xi − x)(yi − y)√∑

i=1(xi − x)2
∑

i=1(yi − y)2

where xi,yi are the respective ranks of each pair of observations, among
other components of sets X and Y .

6.2.1 1st Method

The E-Mini S&P500 index is expected to peak at the time that the large
deviation occurs, as previously it was rising and afterwards negative returns
should follow. If a large positive deviation is likely to be followed by a crash,
or at least a considerable decline, then it should be close to a local maximum
and this should become increasingly observable for larger deviations. We
consider the index value at N + 1 time frames, with N/2 of them before the
large deviation and N/2 after it and compute the large deviation’s index

rank among its neighbours. This is then plotted against r−〈r〉
〈r〉 . We also

calculate the correlation between the rank and the deviations.
By observing the plots, we can say that there is no discernible pattern

and the rank of the large deviation is more or less evenly allocated among
all N values. There is also no dependence on N or on the magnitude of the

40



Figure 6.1: The plot depicts the rank among the 100 neighbouring returns
of the return for which the deviation occurs, against the corresponding de-
viation. 〈r〉 is calculated as a 15-years average.

Figure 6.2: The plot depicts the rank among the 250 neighbouring returns
of the return for which the deviation occurs, against the corresponding de-
viation. 〈r〉 is calculated as a 15-years average.

41



Rank (100 returns) Rank (250 returns)

15-years average -0.0053 0.0116

Power-law mean for 95% quantile -0.0058 0.0733

Average over last 1000 returns 0.0248 0.0257

Table 6.1: Correlation coefficient for the rank of the index at the time
that the large deviation occurs, among 100 and 250 neighbouring returns,
with respect to the corresponding deviation size. 5-min positive returns are
examined. The left column describes the method that was used to estimate
〈r〉.

deviation. The correlation coefficient estimations further support that, so
the first method does not give rise to believe that previous considerations
were true.

6.2.2 2nd Method

If a large deviation signals the late phase of a bubble development, then some
time later the index should have decreased, therefore a large negative return
is to be observed after some time (if we consider the log-return of the index
between the appearance of the large deviation and several time steps later,
e.g. after N=50 5-min time steps). We calculate these long-term returns and

then plot them against r−〈r〉
〈r〉 . We also compute the correlation coefficient

between the returns and the deviations, expecting it to be negative (large
positive deviations should be followed by negative returns).

10 time steps 50 time steps

15-years average 0.0022 0.0264

Power-law mean for 95% quantile 0.0683 0.0497

Average over last 1000 returns -0.0303 0.01865

Table 6.2: Correlation coefficient for the size of the return that occurs 10
and 50 5-min time steps after the large deviation, against the corresponding
deviation. The left column describes the method that was used to estimate
〈r〉.

Again, the case is that the index can equiprobably either rise or fall after
a large deviation, as no sign of order is found in the plots. The close-to-
zero correlation coefficients also support this. We can conclude that the
expectation that the market should mostly go down after a large deviation
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Figure 6.3: Plot of the size of the return that occurs 10 timesteps return
after the large deviation has occurred, with respect to the corresponding
deviation size. 5-min positive returns are examined. 〈r〉 is calculated as a
15-years average.

Figure 6.4: Plot of the size of the return that occurs 50 timesteps return
after the large deviation has occurred, with respect to the corresponding
deviation size. 5-min positive returns are examined. 〈r〉 is calculated as a
15-years average.
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is not justified by the data.

6.3 Large deviations and other market properties

The failure to find support for our assumptions forces us to reconsider
whether conditions at stock markets are appropriate to test the large de-
viations theory. And since we made no claim against it, we have accepted
that returns and thus large deviations are homogeneously distributed (sim-
ilar to synthetic power law data) and that there is no particular reason to
expect a large deviation at a particular moment in time.

Nevertheless, plotting large deviations against time and comparing it
with the market status at the time shows the opposite. As figure (6.5) shows,
large deviations are heavily concentrated at periods of big drawdowns and
this behaviour is the same for 5-min and 60-min positive returns, hinting
towards the systemic nature of the phenomenon. What is more interesting
(compare figures (6.5) and (6.6)) is the striking resemblance of the distribu-
tion of both positive and negative deviations, which indicates that there is
something special about the periods that the market is going down.

This can be associated with the so-called leverage effect, or volatility
asymmetry. It has been observed that the volatility of stock prices (and thus
of returns) increases when its price drops [37]. Several attempts have been
made to understand the leverage effect, like the retardation of price updates,
as the reference price seems to reflect a moving average of the price over the
past few months [38], a clear departure from our consideration that returns
are i.i.d. Furthermore, it was shown that the leverage effect is stronger,
although it decays faster, in indexes (and that is the focus of our study)
than in individual stocks [39].

So when considered in comparison with large deviations, it is natural to
assume that the leverage effect prevails over the presumed effect that we
would expect to observe because of them. It is much clear now, that the
increased volatility of returns when there are losses in the market leads to
numerous large (both positive and negative) returns, that in turn lead to
a large aggregate deviation. This deviation however has now considerably
different characteristics than the ones we studied, since it is the result of
many events and cannot be associated to just one large return. This could
also provide an explanation as to why we found most large deviations to
have a low ratio R1 = rmax

Nr (see figures (5.1-5.6)).
More empirical evidence against our original claim that one return can

be enough to lead to a large deviation comes from time-varying correlations
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Figure 6.5: The first two graphs show the distribution of large deviations
for 5-min and 60-min positive returns respectively, over the 15-years period
examined. The bottom graph shows the E-Mini S&P500 index for the same
period.
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Figure 6.6: The first graph shows the distribution of large deviations for 5-
min negative returns (if we treat them with inverted sign), over the 15-years
period examined. The bottom graph shows the E-Mini S&P500 index for
the same period.
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between returns. Such correlations have been observed to increase substan-
tially during periods of high market volatility (such as when the market
over- or underperforms) [40]. This suggests that spotting a return that dif-
fers considerably from its counterparts is more unlikely than usual when
r � 〈r〉.

Another phenomenon that may have a counter-effect to what we ex-
pected from our analysis is the market momentum. Having mostly empirical
support, is refers to the tendency for rising (falling) prices to rise (fall) even
further, so that a portfolio (which could represent the index) is expected to
be profitable following periods of market gains [41]. In other words, mo-
mentum suggests that when certain assets overperform (or deviate in our
terminology) we should expect them to continue to rise and not to lead to
large drawdowns. Although largely understood as a behavioural effect, it
is still observable when agents are rational and markets are efficient [42],
thus providing a substantial obstacle to the capabilities of large deviations
as predecessors of crashes.
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Chapter 7

Conclusions

In this paper we examined large deviations of power law distributions,
traced such deviations in the distribution of stock market returns and ex-
amined both empirical facts and potential applications. In principal what
we tested was whether the concentration of large deviations for fat tailed
distributions may lead to counterintuitive results, showing that phenomena
such as sharp changes or strongly uneven fluctuations can arise as a result
of pure randomness[4], in the form of one large outlier or Dragon-King.

To this end we first pointed out the difficulties of transforming the math-
ematical formulation of the large deviations theory into a guide for studying
stock market returns. Our findings could then be concluded in that large
deviations of stock markets exist and that they can be partially attributed
to only one large outlier. The proposed mechanism that we considered as
responsible for large deviations dominates at smaller deviations, but usually
does not suffice to explain the largest ones. An attempt to make use of
our assumptions proved largely unsuccessful, but led to interesting remarks
about the markets’ characteristics, that reduce the ability of the large devi-
ations theory to extract practical conclusions.

Of course, since this was only an early attempt, further inquiry could
shed light to perspectives that were omitted from this study. One such would
be to consider other power law distributions, for instance should a sudden
overall increase in internet traffic (which is also approximated by a power law
distribution [21]) be attributed to just a couple of large outlier sites? And
if we stick to stock market returns, many parameters, such as the choice of
this particular dataset, the way that the expected average was approached,
what type of returns were considered etc. are subject to revision. Probably
even the fact that we favoured a power law distribution instead of some
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other fat-tailed one (e.g. a stretched exponential distribution) could lead to
remarkably different results.

Notwithstanding these changes, we saw in the previous chapter that
the nature of stock markets poses additional difficulties and such obstacles
need to be filtered out, in a way that is far from trivial. Yet, even with
the existence of such problems, large deviations of stock market returns are
present and their implication is definitely worth investigating, including the
mechanisms that create them, the ability to predict and utilize them and
foremost the consequences that they may lead to.
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Appendix A
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Figure A.1: Largest return vs large deviation - 60-min positive, N=50, 〈r〉:
long-term average

Figure A.2: Largest return vs large deviation - 60-min positive, N=50, 〈r〉:
power law mean

Figure A.3: Largest return vs large deviation - 60-min positive, N=50, 〈r〉:
short-term average
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Figure A.4: Largest return vs large deviation - 60-min positive, N=100, 〈r〉:
long-term average

Figure A.5: Largest return vs large deviation - 60-min positive, N=100, 〈r〉:
power law mean

Figure A.6: Largest return vs large deviation - 60-min positive, N=100, 〈r〉:
short-term average
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Figure A.7: Largest return vs large deviation - 5-min negative, N=50, 〈r〉:
long-term average

Figure A.8: Largest return vs large deviation - 5-min negative, N=50, 〈r〉:
power law mean

Figure A.9: Largest return vs large deviation - 5-min negative, N=50, 〈r〉:
short-term average
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Figure A.10: Largest return vs large deviation - 5-min negative, N=100, 〈r〉:
long-term average

Figure A.11: Largest return vs large deviation - 5-min negative, N=100, 〈r〉:
power law mean

Figure A.12: Largest return vs large deviation - 5-min negative, N=100, 〈r〉:
short-term average
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Figure A.13: Largest return vs large deviation - 60-min negative, N=50, 〈r〉:
long-term average

Figure A.14: Largest return vs large deviation - 60-min negative, N=50, 〈r〉:
power law mean

Figure A.15: Largest return vs large deviation - 60-min negative, N=50, 〈r〉:
short-term average
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Figure A.16: Largest return vs large deviation - 60-min negative, N=100,
〈r〉: long-term average

Figure A.17: Largest return vs large deviation - 60-min negative, N=100,
〈r〉: power law mean

Figure A.18: Largest return vs large deviation - 60-min negative, N=100,
〈r〉: short-term average
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Figure A.19: Two largest returns vs large deviation - 60-min positive, N=50,
〈r〉: long-term average

Figure A.20: Two largest returns vs large deviation - 60-min positive, N=50,
〈r〉: power law mean

Figure A.21: Two largest returns vs large deviation - 60-min positive, N=50,
〈r〉: short-term average
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Figure A.22: Two largest returns vs large deviation - 60-min positive,
N=100, 〈r〉: long-term average

Figure A.23: Two largest returns vs large deviation - 60-min positive,
N=100, 〈r〉: power law mean

Figure A.24: Two largest returns vs large deviation - 60-min positive,
N=100, 〈r〉: short-term average
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Figure A.25: Two largest returns vs large deviation - 5-min negative, N=50,
〈r〉: long-term average

Figure A.26: Two largest returns vs large deviation - 5-min negative, N=50,
〈r〉: power law mean

Figure A.27: Two largest returns vs large deviation - 5-min negative, N=50,
〈r〉: short-term average
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Figure A.28: Two largest returns vs large deviation - 5-min negative, N=100,
〈r〉: long-term average

Figure A.29: Two largest returns vs large deviation - 5-min negative, N=100,
〈r〉: power law mean

Figure A.30: Two largest returns vs large deviation - 5-min negative, N=100,
〈r〉: short-term average
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Figure A.31: Two largest returns vs large deviation - 60-min negative, N=50,
〈r〉: long-term average

Figure A.32: Two largest returns vs large deviation - 60-min negative, N=50,
〈r〉: power law mean

Figure A.33: Two largest returns vs large deviation - 60-min negative, N=50,
〈r〉: short-term average
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Figure A.34: Two largest returns vs large deviation - 60-min negative,
N=100, 〈r〉: long-term average

Figure A.35: Two largest returns vs large deviation - 60-min negative,
N=100, 〈r〉: power law mean

Figure A.36: Two largest returns vs large deviation - 60-min negative,
N=100, 〈r〉: short-term average
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