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ABSTRACT

Drawdowns offer a more natural measure of the financial market dynam-
ics than fixed time-scale measures, as they take sudden persistences of suc-
cessive daily drops into account. While the vast majority of drawdowns
follow fat-tailed distributions, previous studies report evidence that the
very largest drawdowns in a variety of financial markets are much more
unrestrained than expected and belong to a different statistical distribu-
tion than the bulk of the drawdowns. We extend this concept of “Dragon
Kings” by putting drawdowns into the financial context of their time, tak-
ing the observed time-varying volatility of returns into account. We define
realised volatility as the standard deviation of returns in a moving time
window, and extend upon this by estimating the standard deviation with
robust estimators of scale, which are more resistant to extreme outlier re-
turns. We find that Rousseeuw and Croux’s estimator S, [42] has both
theoretical advantages and performs very well on real financial data.

Our study comprises eight time series (three stock market indices, one
currency, two government bonds and two commodities) and we follow
two approaches to describe drawdowns with respect to the volatility at
their time: we adjust drawdowns by the volatility, and we segregate draw-
downs happening during the same volatility regimes, i.e. we group draw-
downs with similar volatility levels together. We do not find any signif-
icant new properties of the distributions by adjusting drawdowns. How-
ever, segregating drawdowns a) confirms Dragon Kings found in the whole
population of drawdowns; b) makes these Dragon Kings more pronounced,
i.e. distributions of drawdowns during different volatility regimes exhibit
in most cases more obvious deviations and outliers than the distributions
of the whole population; c) possibly finds new Dragon Kings, which are
not visible in the distributions of the whole population. This tells us that
studying distributions of drawdowns separately during different volatility
regimes reinforces the idea of the existence of Dragon Kings, with the ex-
tension that they do not need to be necessarily absolute extreme draw-
downs, but “relative extreme” in their financial context.
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1 INTRODUCTION

“Errors of Nature, Sports and Monsters correct the under-
standing in regard to ordinary things, and reveal general forms.
For whoever knows the ways of Nature will more easily notice
her deviations; and, on the other hand, whoever knows her de-
viations will more accurately describe her ways.”

FRANCIS BACON, NOVUM ORGANUM, 1620'

Systems with a large number of interconnected parts self-organise their dy-
namics and internal structures to the extent that they exhibit — as a whole
— surprising new properties not obvious from the properties of their indi-
vidual parts. The complex system approach takes these “emergent” prop-
erties into account by studying the interconnections and relationships of
the mutually interacting individual parts and is nowadays ubiquitous in
most of the scientific disciplines, such as in biology (e.g. ecology, evolu-
tion, neurobiology), geology (e.g. earthquakes, weather, erosion), econ-
omy and social sciences (e.g. markets, cognition, interacting agents).

1 Book I, aph. 29. Cited in [24].



A Gaussian world called Mediocristan

Mediocristan, an idea conceived by Taleb [51], is a mythical land inhabited
by economists and other social scientists. They live in this land because
they accept the crucial idea that the world’s events fit neatly beneath a
Gaussian bell curve of outcomes — not because they are mediocre them-
selves. In fact, they believe that extreme events, such as market crashes
and other major discontinuities in our economy and society, are so rare
that we can ignore them. Inhabitants of Mediocristan start by discarding
extreme outcomes, such as in the lively discussion about the world’s peak
oil production [35] : “Remember that barring any unforeseen tragedy [...]
the supply will not drop suddenly, meaning that the price will not rise
suddenly” On the other hand, those concerned about the possible severe
consequences resulting from peak oil focus on extreme outcomes.

Black swans in Extremistan

In Taleb’s mythical world the peak oil believers, who know that it is worth
taking out insurance against seemingly unlikely events, if their impact
could be very severe, are placed in the land of Extremistan. In that world
extreme events — “Black Swans” — are still rare, but are very important to
take into account, since their consequences are so considerable that they
could change the course of history.

This is how one of the most remarkable emergent properties of natu-
ral and social systems is the punctuated occurrence of rare large events,
which often dominate the organisation and lead to huge alterations. The
pervasive statistical feature of these systems and assumed signature of self-
organising mechanisms at the origin of a hierarchy of scales is a probability
distribution function with a power law dependence as a function of event
sizes [44, 45].

A probability distribution function of returns P(x) exhibiting a power
law tail is such that

Ca
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P(x) o

for large x, possibly up to some large limiting cut-off. The exponent «, the
so-called “tail index”, characterises the nature of the tail. In the case of
financial returns, the tail index is estimated to fall into the range of 2 to 4
(8,14, 15, 31, 38]. For a < 2, one speaks of a “fat tail” for which the variance
is theoretically not defined.



Power law distributions incarnate the notion that tail events, i.e. events of
large impact, are not exceptional events, rather they belong to the same
statistical distribution as their smaller siblings — like the belief that a
great earthquake is just a smaller one that grows larger. This suggests com-
mon generating mechanisms of a population described by power law dis-
tributions. Consequently, there is no way to predict large events as they
share the same attributes with the smaller ones. This is the view embraced
by Taleb, where extreme events are reduced — rather pessimistically —
to “unknown unknowns’, and by Bak et al. in their formulation of self-
organised criticality [4, 5].

Dragon Kings beyond power laws

However, evidence suggests that there is more beyond mere power law dis-
tributions, since in a wide range of complex systems extreme events are
much more unrestrained than expected by the extrapolation of the power
law distribution in their tails and belong to a different statistical distribu-
tion — different from the bulk of the distribution. These anomalous events
can be termed genuine “outliers”, events to be removed to obtain reliable
statistical estimations, or even “kings” [28] or “dragons” [46], in analogy
to the fortune of kings, which appear to exist beyond the Zipf law wealth
distribution of their subjects, and to stress coexistence of a completely dif-
ferent kind of species, whose presence has profound significance.

Empirical evidence of the existence of these “Dragon Kings” has been
found in the distribution of city sizes, material failure processes, hydro-
dynamic turbulences, epileptic seizures in humans, earthquakes and —
most interestingly for our study — in the distribution of financial mar-
ket drawdowns (see [46] for a general overview on the concept of Dragon
Kings conceived by Sornette et al.). These Dragon Kings reveal the exis-
tence of mechanisms of self-organisation and are often associated with a
neighbourhood of what can be called equivalently a phase transition, bi-
furcation, catastrophe or tipping point. Their status emerges in general
from the existence of positive feedbacks that amplify the role of certain
events and carry a unique fingerprint in form of a log-periodic power law
[20, 25, 30]. That latter property opens the door to methods for the predic-
tion of phase transitions, such as the forecast of the termination of finan-
cial bubbles [43, 50].



Drawdowns: Transient bursts of dependence

The characterisation of anomalous large financial market moves is of pro-
found importance for risk management and portfolio allocation. Although
most of the time, negative and positive changes balance each other out, “ex-
treme variations are so high that they represent a significant part of loss
or profit at the end of any period’, as Mandelbrot pointed out [29].

It is widely accepted that the tails of the distribution of asset returns fol-
low approximately a power law. But this is only part of the truth, since
the claim is to characterise the statistics of extreme events. Financial re-
turns defined at fixed time scales, based on the assumption that consecu-
tive daily returns are independent, are revealing only a part of the variabil-
ity of financial time series, while a major risk component is missing. In
contrast, financial crashes (extreme events) are transient bursts of depen-
dence between successive large losses.

A simple example clarifies the claim: Consider a crash as a sequence
of three successive drops of 10% each, summing up to a total loss of 30%.
A single drop of 10% can be seen to happen on average every four years
or with a probability of 10~* (with data from the Nasdaq composite index,
assuming 250 trading days a year). Accordingly, the probability of three
such events in a row is (1073)3 = 10, an excessively rare recurrence of
roughly four million years.

We see that decomposing large crashes into small independent events at
fixed time scales misses the underlying dynamics of the market. However,
the analyses in [21-25] report evidence that the very largest drawdowns
in exchange markets, major world stock markets, bond markets and com-
modity markets are Dragon Kings (outliers), notwithstanding the fact that
the very largest drops at fixed time scales (e.g. daily returns) are not out-
liers most of the time. Therefore, drawdowns offer a more natural measure
of the financial market dynamics than fixed time-scale measures, as they
take sudden persistences of successive daily drops with additional corre-
lated amplification of the drops into account. In addition, for two-thirds
of the identified Dragon Kings, it has been found that crashes can be con-
sidered as possible ends of bubble regimes [23], which are preceded by a
faster-than-exponential unsustainable growth regime. Mechanisms lead-
ing to this growth regime with positive feedbacks include among others
portfolio insurance trading, option hedging, momentum investment and
imitation-based herding.

The implication for risk management is that common techniques, such
as Value-at-Risk and Extreme Value Theory that focus only on one-day



extreme events occurring in a given period of time may not be the most
important or most relevant measures of large risks. More light should be
shed on the distribution of drawdowns and its outliers, since large losses
are often the result of transient correlations leading to large cumulative
losses that make these outlier-drawdowns much more frequent than ex-
pected from the extrapolation of the return distributions in their tails.

Previous research by Sornette and co-workers on the detection of Drag-
on Kings in financial time series was focused on the distribution of draw-
downs in unadjusted series of daily returns. The results have been found
to be robust with respect to change in various measures of drawdowns, in
particular which allow for a certain degree of fuzziness in the definition
of cumulative losses [22, 23].

In early works by Johansen and Sornette [21], drawdowns were defined
as continuous decreases of the price at the close of each trading day (daily
close). Hence, a drawdown was exclusively composed of negative returns,
since any positive return marked the end of a drawdown, no matter how
small the increase. “Pure drawdowns” composed by this definition were
highly sensitive to noise and failed to account for the full intensity of cumu-
lative market drops. Coarse-grained drawdowns as defined in [23] ignore
increases below a certain threshold, which would terminate a “pure draw-
down” Hence, these “e-drawdowns” allow fluctuations below a threshold
€ in the time series. The threshold is fixed over time and proportional to
the volatility, defined as standard deviation o, over the entire time series
of returns, with a coeflicient ¢, chosen from the observation of data. For-
mally, the threshold is defined as € = ¢, - 0.

Recent attempts [34] to empirically determine whether Dragon Kings
in financial returns are present at all time scales, concluded that there is
no evidence for extreme outliers in high frequency data at one minute
resolution. However, at daily time scales outliers are clearly present. These
results suggest that the feedback mechanisms leading to Dragon Kings
require a certain time for escalation and confirm the significance of the
previous research on drawdowns and Dragon Kings.

Crashes and their financial context

In another recent approach [29] the question of identifying crashes in fi-
nancial markets is further discussed with respect to the observed instabil-
ity of the standard deviation of returns over time. Here, Le Bris’ innova-
tive approach is to put crashes into the financial context of their time. In
other words, all previous attempts investigated the presence of drawdowns



and outliers time-independently, implying a constant volatility, and thus,
a constant risk scenario over time. However, as a strong drawdown in
tough, highly volatile market conditions has less negative impact for the
investors than in stable conditions, a crash should represent a significant
discrepancy with what was previously observed, not with what was “on
average” throughout the time series observed.

A simple (exaggerated) example illustrates the point: Consider a drop
of 20% when the volatility is 10%, and a drop of 2% when the volatility is
0.1%. The former is just a 2 standard deviations event, whereas the latter
is a gigantic 20 standard deviations event.

Le Bris presents a method to adjust the time series of returns relative
to its financial context by defining the adjusted return r; 44juseq at time ¢
as the difference between the (unadjusted) return r, and the average re-
turn y,_,— previously observed over the time context T, divided by the
standard deviation o;_;,_7 previously observed over the time context T.
Thus:

Yy — Ui-1t-T
Ttadjusted =
Ot-1,t-T
This adjustment of returns is equivalent to a “rolling standardisation” lead-
ing to a standard score, which allows a direct comparison of returns with
different averages and standard deviations. The unit of measurement of
the adjusted returns is the standard deviation, or “risk”.

Our present study attempts to systematically extend this simple idea to
the Dragon King detection methodology by investigating the impact of
volatility that varies over time. To do this, we will follow two different
approaches: We will adjust drawdowns by volatility at their time, similar
to Le Bris” approach, and we will group drawdowns that happened during
similar “volatility regimes” together, to investigate only distributions of
drawdowns at similar market conditions. For both approaches we will
employ the same methodology to detect outliers as successfully done in
previous studies.

We will start in chapter 2 with a general discussion on volatility, in or-
der to define a robust method to construct a time series of time-varying
volatility. In chapter 3 we will reinvestigate the definitions of pure and
coarse-grained drawdowns, particularly to take into account a variable
level of volatility and noise. In chapter 4 we will present a methodology to
detect Dragon Kings in distributions of drawdowns, either taking volatil-
ity into account or ignoring it, and adopting some tools previously used
for other cases than drawdowns. In chapter 5 we will apply these concepts



of volatility, drawdowns and Dragon King detection to various financial
time series. In chapter 6 we will conclude with the following question in
mind: whether Dragon Kings in distributions of drawdowns taking a vari-
able volatility into account are in line with the results from previous stud-
ies or give an even better insight into the nature of returns, drawdowns,
Dragon Kings and extreme risks, with the goal to develop more adequate
measures of risk in the future.

Just as Francis Bacon observed in the 17th century, we propose that
the distribution of drawdowns and its outliers reveal fundamental mecha-
nisms and properties of the financial markets.






VOLATILITY

Evolving volatility is a dominant feature observed in most financial time
series and a key parameter used by market participants in many financial
risk analyses. It is a measure of the variability of financial returns and a
very popular proxy for risk. There is an extensive literature on the estima-
tion of parametric volatility models (e.g. GARCH, M1DAs and others, see
(6, 10, 16, 52]). However, these approaches have in common the fact that
they are modelled to give ex ante estimates of the volatility and strongly
rely on assumptions about distributions and other attributes of the time
series.

Our aim is to define a robust estimator for volatility to capture the mar-
ket dynamics and risk investors were faced with over the time of the time
series. Since drawdowns (further discussed in chapter 3) carry only infor-
mation about loss in absolute terms, a measure for volatility at the time
drawdowns occurred will put the magnitude of absolute loss in relation
to the actual volatility regime, i.e. to the actual market risk scenario at
the time of the drawdowns. Hence, we need approaches to estimate the
evolving volatility that are robust to distributional assumptions and have
a sound statistical basis with reasonable precision properties, because “[in]
analysing data, we do not want to even attempt to represent its stochastic
behaviour accurately; rather we wish to choose techniques that spare us
this essentially impossible task,” as Morgenthaler and Tukey pointed out
[36]. However, literature on these simpler, for our study more appropri-
ate, non-parametric models is scarce, and usually the standard deviation
is chosen as the conventional non-parametric volatility estimator.

Recent attempts by Randal [39] to construct more sophisticated non-
parametric volatility estimates have shown that there is room for improve-
ment on the accuracy of the results, in particular with respect to the re-
sistance to outliers. These approaches are claimed to be simple, cheap to
compute and tailored to fat-tailed distributions, since the standard devi-
ation as reasonable estimator of scale for the volatility may be inefficient
for non-gaussian distributions.

With Morgenthaler and Tukey in mind, we begin in section 2.1 with an
overview of the problem of robust scale estimation, and then present in
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section 2.2 a simple, powerful and non-parametric approach to construct
estimators of time-varying historical volatility. This is a general purpose
technique for estimating volatility, no attempt has been made to build pre-
dictive or stochastic volatility estimates. The approach is non-parametric,
since it can be applied to time series without modelling underlying price
processes. For a more detailed discussion on this and more advanced tech-
niques please refer to Randal’s study [39]. The approach we consider here
is based on a moving time window of standard deviation estimates — the
“realised” or “historical” volatility. In section 2.3 we introduce the concept
of volatility regimes and section 2.4 concludes this chapter on volatility
with a brief discussion of the time-varying volatility using our approaches
we have presented in this chapter. As an actual example we will look at the
time around the October 1987 crash (“Black Monday”).

2.1 ROBUST SCALE ESTIMATION

Volatility is a measure of the variability of financial returns. In statistical
terms, variability is the dispersion of some sample observations, quanti-
fied by a robust measure of scale.

If a robust estimator of scale is largely unaffected by a small number
of large changes in the data, i.e. by outliers, and by any number of small
errors, e.g. rounding errors, it is called resistant, at the cost of lower sta-
tistical efficiency when outliers or errors are not present [39]. The resis-
tance to outliers is usually of greater interest, and, in addition, a robust
estimator is a suitable estimator for non-normal data. Hence, robust es-
timators of scale are particularly applicable to financial data, which often
features the three properties we want to protect against: occasional outlier
values, many small errors (induced by properties of financial markets such
as discrete price intervals and discontinuous trading) and underlying non-
normality. In general, robust estimators of scale are used to complement
or replace conventional estimates such as the sample standard deviation.

Below, we will present different estimators of scale for the sample ob-
servations X = (Xj, ..., X,). First, the non-robust, but most commonly
used standard deviation in section 2.1.1; second, Gini’s mean difference,
another non-robust but commonly used estimator in section 2.1.2; third,
the sample interquartile range (IQR) in section 2.1.3; fourth, the median
absolute deviation (MAD) and a modification in section 2.1.4; and fifth,
the trimmed sample in section 2.1.5. In section 2.1.6 finally, the statistical



performance of the estimators presented here will be briefly assessed on
their efficiency.

211 Sample standard deviation

The most commonly used scale estimator is the sample standard deviation
sx defined as

sX:\l ! 1.Zn:(Xi_X)2 (2.1)

n-1%9I

with the sample mean
.1
X==>'X; (2.2)
nia

The sample standard deviation is closely related to the sample variance
s%, which is the minimum variance unbiased estimator for the variance
parameter o2 for Gaussian data. Despite these excellent qualities for well-
behaved data, and the fact that the sample variance will be unbiased for
the underlying variance generally for random samples, evidence shows
us that this estimator is not robust, since it is heavily affected by single
outliers [39].

2.1.2 Ginil's mean difference

Gini's mean difference with absolute inter-point differences is a similar
estimator as the sample standard deviation and forms the basis of robust
estimation of risk in the financial literature [39]. It is defined as

GX:mZlel_XJ‘ (23)

This estimator is also not very robust, since the absolute differences be-
tween every pair of observations are taken into account. Outlying values
will result in many inter-point distances being large, with Gx inflated as a
result. However, using the absolute differences between every pair rather
than the squared differences to the mean in the standard deviation reduces
the impact of large differences.

In order to use Gini’s mean difference as a consistent estimator Sy for
the estimation of the standard deviation (normal distribution), it has to
be scaled with the factor kg, such that §x = k¢ - Gx. It can be derived that
ks = 0.8862.

11
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2.1.3 Sample interquartile range

The most commonly used robust scale estimator is probably the interquar-
tile range (1QRr), which measures the difference between a distribution’s
upper and lower quartiles. It is also called the “midspread” or “middle
fifty”, and is defined as the difference between the third and the first quar-
tiles

IQRx = Q3 - Q (2.4)

where Q; is the 75th percentile and Q; the 25th percentile. In order to use
the 1QR as a consistent estimator, the scaling factor is k;or = 0.7413, such
that §x = kjqr - IQRx.

The sample interquartile range is resistant to outliers, since it ignores
the most extreme 25% of each tail in the observations and is the simplest
estimator of scale considered here, since it is very cheap to compute.

2.1.4 Median absolute deviation and S,

The median absolute deviation (MAD) is another robust scale estimator
and is along with the interquartile range, one of the most commonly used
robust scale estimators. It is defined as the median of the absolute devia-
tions of the observations X about their median

MADyx = med; |X,~ - med]-Xj| (2.5)

where med;X; denotes the median of the sample observations X;. In or-
der to use the MAD as a consistent estimator, the scaling factor is kyap =
1.4826, such that §x = kyuap - MADy.

Like the sample interquartile range, the median absolute deviation is
also very resistant to outliers and cheap to compute. However, contrary to
the interquartile range where the quartiles do not need be equally far away
from the centre, the MAD takes a symmetric view on dispersion, since it
first estimates a central value (the median) and then attaches equal impor-
tance to positive and negative deviations from it [42]. In other words, the
MAD corresponds to finding the symmetric interval around the median
that contains 50% of the observations. For asymmetric distributions this
does not seem to be a natural approach. Because of this drawback, Rouss-
eeuw and Croux [42] introduce a new scale estimator, which can be seen
as an analog of Gini’s mean difference, where the mean values are replaced
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by the median values. We will denote this estimator here as S,, x and define
it as

S,.x = med; {medj|Xi - Xj|} (2.6)

where we compute for each X; the median med; of | X;— X[, for each X; (j =
1, ..., n). This yields n medians med;, the median med; of which gives our
final estimator S, x." The scaling factor for this estimator is ks, = 1.1926,
such that §y = kg, - S, x.

Like the MAD, the new estimator S, x is a simple combination of medi-
ans and absolute values, but without the need for any location estimate of
the sample. Instead of measuring how far away the observations are from
a central value, S,, x takes the median of the inter-point distances between
every pair of observations. This is valid for asymmetric distributions, too.

2.1.5 Trimmed sample

As noted before, the sample standard deviation and Gini’s mean difference
are not robust estimators of scale, since they can be heavily influenced by
extreme values. As a simple approach to make these estimators more ro-
bust, we introduce here a method that compensates for this, by dropping
a certain lower and upper percentile from the sample of observations. For
example, in a 98% trimmed sample, the smallest and largest 1% of the obser-
vations would be ignored for the estimation. We will denote a p% trimmed
sample as X(P),

Thus, for the estimation of scale using the standard deviation (2.10) or
Gini’s mean difference (2.3) only a trimmed sample may be used. This
trimmed sample alters the sample standard deviation in two ways in or-
der to reduce the effects of outliers. First, the sample mean as the loca-
tion estimator is altered and second, the squared deviations about this
new mean will be different. For Gini’s mean difference the effect would
be similar, since the inter-point differences would be smaller. The effect of
the trimmed sample on the standard deviation and Gini’s mean difference
as estimators of scale is therefore similar to the sample interquartile range.

A straightforward algorithm for computing (2.6) would need O(n?) computation time.
However, Rousseeuw and Croux [7] have constructed a more efficient O(nlogn)-time
algorithm.

13
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2.1.6  Tukey's triefficiency

To assess the statistical performance of the scale estimators introduced
before, we present here the results from [39]. A comprehensive overview,
discussion and a detailed description of the methodology to assess the
performance of these estimators can be found there. The estimators are
assessed by their minimum relative efficiency over Tukey’s three corners —
three sampling situations to reflect the three extreme cases of importance
to robust statistics [36]:

1. STANDARD NORMAL DISTRIBUTION
Described as “unrealistically nice” by Morgenthaler and Tukey.

2. ONE-WILD SITUATION
Also known as 1-wider, where #n — 1 of the observations in a sample
of size n are standard normal and the remaining observation has ten
times the standard deviation of the others.

3. SLASH DISTRIBUTION
An observation that is obtained by dividing a standard normal ran-
dom variable by an independent random variable distributed uni-
formly on the interval [0, 1]. Like the Cauchy, the slash distribution
has no mean or variance due to its slowly decaying tails.

All three theoretical distributions are symmetric: the standard normal has
rapidly decaying tails; the one-wild has a single outlying, but otherwise
well behaved value (in the upper or lower tail with equal probability); and
the slash, with its infinite mean and variance, has very slowly decaying
tails. In practice, most samples from the one-wild will be highly asymmet-
ric, with the presence of the single outlier. An estimator that copes well
in all three situations can be suitably used either when the data is well be-
haved, or in the presence of occasional outliers, or when the data is very
fat-tailed, or some combination [39].
The sample efficiency eff(S) of a scale estimator S(X) is defined as

eff(S) =

sample variance of In g, ...,In g,
sample variance of In §(X);, ...,InS(X),

-100% (2.7)

using m independent realisations of the observations X = (Xj,...,X,),
where ¢; is the maximum likelihood scale estimate used as an “close-to-
optimal” reference and S(X); the scale estimate for sample i.> The “trieffi-
ciency” is the minimum efficiency of the estimator over the three corners,

2 See [39] for further details on the maximum likelihood scale estimates.
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Table 2.1: Average efficiencies (%) for the estimators of scale, based on 100 real-
isations of the efficiencies, each estimated from m = 20000 samples
of size n = 20 for the three corner cases (std. normal, one-wild and
slash distributions). The estimators are defined in sections 2.1.1 to
2.1.5. (Results obtained from [39], table 2.8)

ESTIMATOR NORMAL ONE-WILD SLASH TRIEFFICIENCY

Sy 100.0 11.4 7.5 7.5
Gy 98.0 26.7 11.4 114
IQRy 39.4 42.4 84.0 39.4
MADy 37.8 40.5 87.3 37.8
Sp.x 54.7 55.9 95.8 54.7
sy, X9 80.9 88.1 42.1 42.1
sy, X(00) 65.0 70.8 76.1 65.0

and the best trieflicient estimator will have the maximum triefficiency. We
would expect the triefficiency of this estimator to be less than 100% since
no single estimator will be optimal at all three corners.

The efficiencies for the sample standard deviation sx (2.1), Gini’s mean
difference Gx (2.3), sample interquartile range IQRx (2.4), median abso-
lute deviation MADy (2.5), S, x (2.6), and the sample standard deviation
of a 95% and 90% trimmed sample (X(°>), X(°0)) are presented in table
2.1. We notice that both the sample standard deviation and Gini’s mean
difference have a very poor performance for the one-wild and slash dis-
tributed data, while Gini’s mean difference performs slightly better in both
cases. However, both estimators are highly efficient for normal data. As
expected, the robust estimators 1QR, MAD and Rousseeuw and Croux’s es-
timator S, x, which depend primarily on order statistics, perform in the
opposite way: their efficiency for normal distributed data is the worst and
for slash distributed data the best. Under the criterion of triefficiency, the
IQR is more robust than the MAD, i.e. the 1QR is generally more suitable.
However, the MAD performs better for slash distributed data, while it per-
forms only slightly worse than the 1Qr for one-wild data. The S,, x estima-
tor out-performs the 1Qr and MAD in all three cases and has the second
best triefficiency of all studied estimators. Only the sample standard devi-
ation from a 9o% trimmed sample has a better triefficiency, but still lower
efficiencies for the one-wild and slash data than the robust estimators. Fi-
nally, for the sample standard deviation from a 95% trimmed sample the
efficiency is very high for the one-wild, but very low for the slash.
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Since the estimators are assessed only over Tukey’s three corner cases
and the distributions of drawdowns are somewhere in between of these
corners, the estimators’ performances shown in table 2.1 should not be
taken as a determinant of which estimator to choose. Therefore, to clarify
the effect of these estimators on the distribution of drawdowns, we will
present an example with real financial data at the end of this chapter.

2.2 REALISED VOLATILITY

Volatility estimates for real data are difficult to appraise since the true
volatility is unobservable. A popular non-parametric, model-free estima-
tor of time-varying volatility that provides a useful framework for this
problem is the “realised” or “historical” volatility estimator. The realised
volatility is basically the sample standard deviation of returns over a rolling
time window of a given size. This measure gives us a powerful ex post
estimate of the volatility. Since we are interested in capturing the actual
market dynamics and not the market participants’ assessment of future
volatility, it gives us insight into what actually took place in the market. It
has been prominent in empirical studies of stock returns [37] and plays an
important role used to estimate “historical” volatility as a basis for evalua-
tion of volatility forecasting techniques [12].

We define the realised daily volatility o, r at time ¢ over the time window
of size T for the time series of n daily returns r = (ry, ..., 7,) (3.1) as

OLT = Sr(1,T) (2.8)

where s,(; ) denotes the standard deviation (2.1) of the sample of returns
falling into the time window r(t,T) = (r.r,...,71). Note that in our
definition we are not taking into account the return at time ¢.3

Using daily data in our case, a time series of model-free volatility esti-
mates can be constructed by taking returns spanning over any number of
days T into account. However, when choosing the number of past obser-
vations, an important tradeoff has to be made. If the volatility is calculated
over along time frame with a large number of observations, e.g. taking the
daily returns over the past year, many local properties of volatility, such as
volatility clustering and leverage effect, tend to disappear. On the other

In this paper, “volatility” refers to the volatility o; r at daily time scale in percentage units.
Hence, the annualised volatility corresponds to 0y 7.aun = 0¢1 - /250, assuming 250
trading days per year.



hand, by choosing a small number of observations, the measures are sub-
ject to great statistical error. Hence, the span T of the moving window
should be ideally chosen such that the volatility within the local time win-
dow be approximately constant, but the number of observations be suffi-
ciently large to avoid statistical errors.

An important assumption underlying this estimator is that the sample
standard deviation s, r) is a reasonable estimator of scale for the variabil-
ity of returns. However, as we have seen in section 2.1, the sample stan-
dard deviation may be very inefficient for non-Gaussian data. As a con-
sequence, it will provide poor estimates of volatility. Therefore, we seek
to address this problem by replacing the sample standard deviation s, 1
with other robust estimators $,(; y introduced in section 2.1. In addition,
in the following section 2.2.1 we will introduce a more advanced defini-
tion of the sample standard deviation for a moving time window than (2.1).
This definition will allow us to give exponentially decaying weights to the
returns (¢, T). It will not change the standard deviation to become a ro-
bust estimator of scale, but it tries to enhance its performance and follows
approaches used in practice.

221 Exponentially weighted standard deviation

Since the aim is to define a volatility that reflects the market dynamics at a
certain time ¢ without taking into account exceptional events, such as big
rallies and slumps that happened in the close or distant past from ¢, we re-
fine our definition of volatility with equal weights over the previous period
T with exponentially decaying weights over that period. This approach is
similar to the approach introduced by JPMorgan’s RiskMetrics software
[26], where the variance at time ¢ is a weighted average of all past squared
returns, with the weights decaying exponentially back through time with
the recursion

0; = woy+ (1= w)r? (2.9)

Our definition will help us to improve the characterisation of the market at
every time step, giving more importance to the market events in the very
close past than to the events that happened in the far past. Hence, we will
extend the common definition (2.1) of the sample standard deviation in
order to be able to assign different weights to each of the returns r; falling
into the time window of size T, such thatr; = t —iwithi =1,..., T. We
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define the weighted sample standard deviation s, ry,, with weights w; of
the sample of returns falling into the time window r(t, T') as

1 & _
St T)w = \l T L (r; =)’ (2.10)

with the weighted mean
T
Ty = Z wir; (2.11)
i=1
and the sum of the squared weights

W, = Z w? (2.12)

such that 1/T < W, < 1. Note that we are using normalised weights w;
such that 3", w; = 1. For the special case with equal weights w; = 1/T, the
weighted standard deviation (2.10) equals the common standard deviation
(2.1) with the common mean (2.2).

Exponentially decaying weights

Let us now define the exponentially decaying unnormalised weights with
damping constant w as w! = w’~!. A usual choice for the damping constant
is w = 0.94 (e.g. in RiskMetrics) or

w = 1 — 2.1
T+1 (213)
The sum of the unnormalised weights is
T T T
. 1-
Ywi=> 0= @ (2.14)

By dividing the unnormalised weights w/ by that sum, we get the the ex-
ponentially decaying normalised weights w; for the time window T with
damping constant w:

B 1-w
T 1-wT

i-1

Wi (2.15)



2.3 VOLATILITY REGIMES

As we will discuss in depth later in chapter 4, our aim is to (a) adjust,
i.e. divide, drawdowns by the volatility at their time, and (b) to segregate
drawdowns that occur at different volatility regimes. The purpose of this
concept is, that we will be able to assign to every drawdown a certain
volatility regime. In other words, we will be able to group drawdowns that
happened during similar market or risk conditions together, and separate
drawdowns that happened during different conditions.

To clarify the point, let us reconsider our example from chapter 1: Con-
sider two events, first, a drawdown of 20% when the volatility is 10%, and
second, a drawdown of 2% when the volatility is 0.1%. The first drawdown
is 2 times larger than the volatility, the second is 20 times larger. Did these
two drawdowns happen during similar market conditions? Probably not,
since the second event happened at a time with a volatility, i.e. with a “risk’,
100 times smaller. Therefore, we propose to analyse the nature of these
drawdowns separately, as they seem to belong to different market and risk
conditions. Note, that we are only interested in the relative magnitude of
the volatilities at different times, the absolute values of volatility are not per-
tinent (the volatility in the second event would be still 100 times smaller
than in the first). We will now present an approach to determine different
volatility regimes.

In this context, a volatility regime is defined as a set of volatility obser-
vations with the same level. If we have k volatility regimes V; with k cor-
responding volatility levels L; (i = 1,..., k) in a time series of n volatility
observations o; (t = 1, ..., n), we define

Vi={o/|0,€L;} (2.16)

as the ith volatility regime. A time series of n volatility observations could
have theoretically » different values of volatility. Therefore, and to allow
for a certain degree of granularity, we define a volatility level L as an inter-
val L; = [Il;,u;) and Ly = [Ii, uy ] with a certain lower bound (I;) and upper
bound (u;) of volatility, similar to a binning of volatility observations with

The exact values of the scaling factors k for the different estimators of scale to obtain a
consistent estimator $x for the standard deviation are therefore of little importance for
our study, too.
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granularity k to reduce the effects of observation errors. We will set the
lower and upper bounds for every volatility regime such that

l; = mtin o+ (i-1)h (2.17)

u; = mtin o, +ih (2.18)

with the interval width h = (max; o,—min, 0;)/k for t = 1, ..., n. The centre
value for each regime is then

h

ci=1li+ 5 (2.19)

For the sake of clarity when dealing with different granularities k, we will
denote the volatility regime V; (i = 1,..., k) as V.

2.4 VOLATILITY IN REAL FINANCIAL DATA

In this chapter we have presented three robust estimators of scale, namely
the sample interquartile range (2.4), the median absolute deviation (2.5),
and Rousseeuw and Croux’s estimator S, x (2.6). We have also presented
two well known non-robust estimators, the sample standard deviation
(2.1) and Gini’s mean difference (2.3), with the possible addition of trim-
ming the sample on both tails (section 2.1.5). In section 2.1.6 we have dis-
cussed the efficiency of these estimators with respect to Tukey’s three cor-
ner cases. We then have introduced a popular method to construct a time
series of time-varying volatility, the realised volatility (2.8), with the pos-
sible addition of assigning exponentially decaying weights to the returns
when using the standard deviation (2.10), and have finally defined the term
“volatility regime” in section 2.3.

As mentioned earlier, an important assumption underlying the realised
volatility estimator is that the sample standard deviation s, ;1) is a reason-
able estimator of scale for the variability of returns. However, the sam-
ple standard deviation will provide poor estimates of volatility for non-
Gaussian data. Since the distribution of returns is fat-tailed, this will most
certainly be the case, even more around points in the time series of re-
turns with exceptional outlier returns. Therefore, we are going to address
this problem by replacing the sample standard deviation s,(, 1) with other
estimators $,(; 1) and with the standard deviation s,(; 1, with exponen-
tially decaying weighted returns. We will qualitatively compare the effects



of these three robust and three non-robust estimators (additionally with
trimmed samples) on the time series of the realised volatility around the
Black Monday crash (October 1987), in addition to the quantitative com-
parison testing Tukey’s triefficiency we have done in section 2.1.6.

Figure 2.1 shows the volatilities using the different non-robust estima-
tors of scale (Gini’s mean difference and exponentially weighted standard
deviation) for the S&P 500 index from 1950 to 2000 in panel (a) and for a
detail around the October 1987 crash from mid-1983 to mid-1992 in panel
(b). Figure 2.2 shows the volatilities using the same estimators of scale as
in figure 2.1 but using 90% trimmed samples of returns. Figure 2.3 shows
the volatilities using the different robust estimators of scale (1Qr, MAD and
S,n.x). In all cases the sample standard deviation (2.1) is shown as a refer-
ence (black line) and the rolling time window is set to a size of T' = 125
trading days (roughly half a year).

Let us start with the estimators in figure 2.1. Since the standard devi-
ation is statistically not a robust estimator of scale, it can be heavily in-
fluenced by extreme values. We can see this undesirable effect on the esti-
mated volatility in figures 2.1 to 2.3 (b) (black lines), showing the computed
volatility using the sample standard deviation before and after the crash in
October 1987. Due to a single extreme value in the sample of returns within
the moving time window at Black Monday the estimated volatility jumps
up to a level almost three times higher than just before the crash and re-
mains at this elevated level for the span of the time window. This kind of
pattern is also clearly visible at the end of 1989. One could tentatively con-
clude that this volatility behaviour does not truly reflect the risk percep-
tion during the time of these “artefacts”. The exponentially weighted stan-
dard deviation (figure 2.1, blue line) exhibits a noisier behaviour by over-
and undershooting with respect to the equally weighted standard devia-
tion. Especially at the time of extreme values it strongly overreacts, since
the large returns at the very edge of the time window are much stronger
weighted than the past (smaller) returns. However, as intended, the volatil-
ity decays faster from its elevated level. Gini’s mean difference (figure 2.1,
red line) has a behaviour like the standard deviation, exhibiting a similar
effect of artefacts. However, these elevated volatility levels are not as high
as for the standard deviation, but still clearly visible due to a lack of fast
decay.

The volatilities computed using the same estimators as just discussed,
but with 90% trimmed samples of returns (i.e. with samples of size 0.9T =
112), are almost identical to each other (figure 2.2). This is especially true
for the standard deviation (green line) and Gini’s mean difference (red
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line) with trimmed samples. As expected, the overall volatility levels for
the trimmed samples are lower than for the standard cases, since the devi-
ations about the mean are smaller and the trimmed estimators are not cor-
rected with a scaling factor k like the robust estimators. However, apart
from that, the instantaneous jumps followed by constant elevated levels
have disappeared, as clearly visible for the artefact at the crash of 1989, such
that the three volatility times series appear to be smoother. The volatility
estimations with the standard deviation and Gini’s mean difference from
trimmed samples are almost identical with the estimation using the expo-
nentially weighted standard deviation from trimmed samples (blue line),
such that the previously identified artefact- and overshooting-behaviour
have disappeared, respectively. Thus, one can deduce, that these estimates
reflect more accurately the risk perception than the non-trimmed esti-
mates.

Let us turn now to the volatility estimates using the robust estimators of
scale (figure 2.3). Like the non-robust estimators with trimmed samples,
the volatility estimates using the sample interquartile range (blue line), the
median absolute deviation (red line), and Rousseeuw and Croux’s estima-
tor S, x are very similar. However, there are still particular features visible
for each estimator. The volatilities using the IQR and MAD are more noisy
than S, x and exhibit very small, but visible peaks.

In general, at first glance, the volatility distributions of the robust estima-
tors seem to follow very closely the distributions using the non-robust esti-
mators from trimmed samples. Coming back to Tukey’s triefliciency, let us
remember (table 2.1), that the exponentially weighted standard deviation
with 90% trimmed samples (sx, X(®?) and Rousseeuw and Croux’s esti-
mator S, x have the two highest triefficiencies (65.0 and 54.7, respectively),
and, as noted before, more accurate for the distribution of returns, the ef-
ficiency for the slash distributed data is the overall highest for S, x (95.8)
and the highest for sy, X(®*) among the non-robust estimators (76.1).

Figure 2.5 (a) directly compares the volatilities using the two estimators
sx, X0 (blue line) and S, x (red line). For this case, we have scaled both
distributions to fit the interval [0, 1] to compare the distributions indepen-
dently from their overall levels. As we can see, the volatility distributions
of the two estimators have indeed a remarkable similarity.> In panel (b)
we have plotted the corresponding volatility regimes. For this purpose,
we have set k = 10, i.e. we show the distribution of 10 volatility regimes

Appendix A: See figure A.2 for the same plot as in figure 2.5 (a), but with time windows
T =20 (one month) and T = 250 (one year). Here, the volatility distributions for the two
estimators are very similar, too (low absolute deviations).



Wi ..., Vi for the two estimators of scale. Again, apart from a few dates,
almost all dates fall into the same volatility regime for both estimators.

This corroborates our quantitative and qualitative assessment of both
estimators as suitable estimators of scale for the distributions of financial
returns, and thus as appropriate estimators for realised volatility. As we
will discuss in chapter 4, we will be able to use both estimators to adjust
drawdowns by the volatility at their time, and to segregate drawdowns
that occur during different volatility regimes. Therefore, and due to the
similarity of the volatilities with both estimators, we will tentatively pick
S, x as our scale estimator of choice.

The choice of the size of the time window T is a bit more subtle. As
we can see by comparing figures 2.5 (a), A.2 (a) and A.2 (b), the volatil-
ities with a very small time window T = 20 are very noisy with strong
peaks. Figure 2.4 shows the corresponding volatility regimes for T = 20
and T = 250 (S, x). We see that for the small time window T = 20, most of
the events fall into the first two volatility regimes, quickly alternating be-
tween the two, without showing a moving tendency as for the bigger time
window T = 250. Another important issue to keep in mind when choos-
ing the size of the time window is the concept of drawdowns we are going
to work with (see chapter 3). During a small time window T = 20 (approx-
imately one month) only around 5 to 10 drawdowns, i.e. essential market
events, occur (assuming a typical drawdown length of around 2 to 4 days).
This small number of essential market events seems to be too small to rep-
resent and generate the general market dynamics. On the other hand, a
long time window T = 250 has the potential to wash out short-term mar-
ket dynamics, being influenced by market events at the far edge of the
window.

Hence, we conclude that realised volatility time series constructed with
very small time windows T do not reflect general the market dynamics
and tendencies we are looking for in the distribution of the volatility. A
robust and adequate compromise in terms of accuracy of short-term mar-
ket dynamics and long-term tendencies is a time window of around half a
year.

Appendix A: Figure A.1 shows the relative deviations of the volatilities with T' = 20 and
T = 250 from our reference with T' = 125, representing the errors we are accepting by
choosing T =125.
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Figure 2.1: S&P 500 index (grey). Realised volatilities using different estimators
of scale (time window T = 125): Sample standard deviation (black),
exponentially weighted standard deviation with w (2.13) (blue), and
Gini’s mean difference (red).
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Figure 2.2: S&P 500 index (grey). Realised volatilities using different estima-
tors of scale (time window T = 125) with 90% trimmed samples
of returns: Sample standard deviation (non-trimmed, black), expo-
nentially weighted standard deviation (blue), Gini’s mean difference
(red), and sample standard deviation (green).
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Figure 2.3: S&P 500 index (grey). Realised volatilities using different estimators
of scale (time window T = 125): Sample standard deviation (black),
IQR (blue), MAD (red), and S, x (green).
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Figure 2.5: S&P 500 index (grey). (a) Realised volatilities using two estimators
of scale (time window T = 125): Exponentially weighted standard
deviation with 9o% trimmed samples (sx, X (90), blue), and S, x
(red), as well as the absolute deviations between the two (black). The
y-axis is scaled to [0,1]. (b) Corresponding volatility regimes with
k =10.



DRAWDOWNS

A drawdown on a daily time scale is defined as a continuous decrease in
the price over consecutive days.! In other words, a drawdown is the cumu-
lative loss from the last (local) maximum of the price to the next (local)
minimum of the price. Since drawdowns are composed of returns with the
same sign, they embody transient dependencies of successive returns and
capture the effect successive losses have on each other. The distribution
of drawdowns constructed in this way is therefore a persistent process of
losses. Notice that following this definition all drawdowns are followed by
drawups, which in turn are followed by drawdowns. This property of strict
alternation illustrates the alternating flow of losses and gains investors are
faced with on an elastic time scale.

By definition, the distribution of returns in a Bachelier-Samuelson [3]
world does not capture this persistence, as it measures only the returns’
frequency neglecting the relative positions of returns as they reveal them-
selves over time. The two-point correlation function has the same lack of
information, as it measures an average linear dependence over the whole
time series, while transient bursts of dependence may only appear at cer-
tain times, e.g. at very large runs. Hence, that feature will be washed out
by the global averaging procedure (see [18, 41, 48] for an in-depth study).

In early studies [21, 24], drawdowns were simply defined as a continuous
decrease of the price at each successive trading day (daily close), terminat-
ing a drawdown by any increase of the price. However, drawdowns con-
structed following this definition (pure drawdowns) are sensitive to noise,
i.e. random uncorrelated and correlated fluctuations of the price. Simu-
lations adding noise to the time series that were analysed, indicate that
the distributions of drawdowns are robust to i.d.d. noise of “reasonable”
magnitude [24].

A recent study [34] investigated distributions of drawdowns at smaller
than daily timescales, i.e. constructing drawdowns from high-frequency 1,

The explicit reference to drawups will be neglected in this chapter and throughout this
study, since they are only different in their sign and constructed in an analogous way to
drawdowns. A drawup is thus a drawdown for a market agent with a short position on
that market.
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15 and 60 minutes data. However, it was found that distributions of draw-
downs at daily timescale exhibit more valuable information about bursts
of dependence than drawdowns from high-frequency data, as no evidence
of a change of regime was found for high-frequency data. The results sug-
gest that the positive feedback mechanisms that allegedly lie at the origin
of the largest drawdowns require a certain time to build up and their re-
sults cannot be observed at high levels of granularity. Hence, in this study,
our investigations will continue to focus on daily timescales.

In this chapter we formally define pure drawdowns (section 3.1) and
present the concept of coarse-grained drawdowns to take noise into ac-
count (section 3.2). In section 3.3, we introduce a theoretical approach
to the expected distribution of drawdowns that motivates our study of
Dragon Kings in chapter 4.

3.1 PURE DRAWDOWNS

We define the return at time ¢ in this context as

ry= l”(Pt+1) - l”l(Pt) (3.1)

with the price p, at time ¢ in the time series. A pure drawdown (“p-draw-
down”) D, starting at time t with length / (number of days) is thus a sum
of negative returns (r~) in absolute terms:

-1
Dt,l == Z rt_+i (3-2)
i=0

Thus, at day ¢ + | we reach a local price minimum, which is the starting
date of a new drawup.

3.2 COARSE-GRAINED DRAWDOWNS

There are two straightforward ways to define coarse-grained drawdowns,
price coarse-grained and temporally coarse-grained drawdowns; previous

research by Sornette and co-workers focused on price coarse-grained draw-
downs. Here, we will briefly introduce the concept of temporally coarse-
grained drawdowns, but will continue to focus on price coarse-grained

drawdowns, with the introduction of a modification to the “traditional”
approach.



321  Temporally coarse-grained drawdowns

In temporally coarse-grained drawdowns (“7-drawdowns”) price increas-
es of any size within a certain time horizon 7 may be ignored, i.e. draw-
downs are only terminated after more than 7 consecutive price increases
regardless of magnitude. Consequently, for 7 = 0 we obtain pure draw-
downs. Since the sensitivity to noise can be adjusted only in terms of the
number of days, i.e. in integers, time horizons 7 greater than one or two
days with increases of any size may seem unreasonable to justify depen-
dencies of successive returns. Due to this lack of a finer sensitivity to noise,
this method will not be further discussed in this paper.

3.2.2 Price coarse-grained drawdowns

In price coarse-grained drawdowns (“e-drawdowns”) relative increases of
the price below a certain threshold e may be ignored, i.e. drawdowns are
only terminated at positive price fluctuations above the threshold. In such
a sequence of negative returns and conditional positive returns the local
minimum will be selected to mark the ending of a drawdown, in order to
maintain a dependency of successive negative returns. Consequently, for
€ = 0 we obtain pure drawdowns. An e-drawdown D . is thus defined as

-2
— + —
Dy = _<rt + Z rt+|—€i + rt+l—1) (3.3)
i=1

with strictly negative (r~) starting and ending returns, and negative or
conditional positive (7€) returns inside the sequence of returns.

Fixed e-threshold

The magnitude of the threshold € lends room to various definitions. Pre-
vious research fixed the threshold throughout the time series and defined
it in units of the global volatility:

Ef = €0 " Oglob (3-4)

The threshold is thus proportional to the volatility calculated for the en-
tire series of returns, gy, (in previous research always using the standard
deviation sx). The coefficient ¢, is chosen from the observation of data,
but should be kept smaller than 1, since large fluctuations contribute to
the global volatility. Hence, € should be smaller than oy, to avoid breaks
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of transient bursts of dependence we are looking for. It was shown in past
studies [23] that the choice of setting €, between o (pure) and 0.5 give rea-
sonable and robust results that improve upon pure drawdowns.

Variable e-threshold

If we accept the assumption of time-varying volatility, there is one major
drawback when using coarse-grained drawdowns with a fixed threshold e/
that is proportional to the global volatility calculated for the entire series of
returns, og.p. Absolute returns in times with a realised volatility o; r below
04106 are expected to be smaller than in times with a volatility above 0y,.
Therefore, while constructing drawdowns, the threshold will be exceeded
less often in times where 0,7 < 040y than in times where 0,7 > 0gj0p.
Hence, we expect drawdowns constructed in times where o, 1 < 04105 to
be longer than in times where 0,7 > 0g0. In figure 3.1 (a) we see that
this is actually the case. Drawdowns at times with volatility below the
global volatility (black line) are much longer than drawdowns at times
with volatility above the global one.

To cope with that problem, we introduce here a variable threshold in
terms of the realised volatility at the time of a drawdown starting at time
t, to adapt the threshold more accurately to the time-varying volatility:

€ (t) =€ 0u7 (3.5)

The variable threshold we define is thus proportional to the transient vola-
tility o, r at time ¢ as defined by (2.8), which indicates the magnitude of the
volatility just before the start of a drawdown. Hence, the threshold e” will
be fixed for the returns inside a drawdown, since these returns are depen-
dent and should therefore correspond to the same volatility regime. The
coefficient €, will be chosen in an analogous way as for the fixed thresh-
old.

In figure 3.1 (b) we see that the lengths of the drawdowns and drawups
are distributed more evenly than using the fixed threshold e/. The e"-
drawdowns at times where o+ > 0,0, are now longer than ¢/-drawdowns,
and shorter at times where 0,7 < 0,405. Hence, we can conclude that us-
ing the variable threshold e” to construct price coarse-grained drawdowns
is an improvement upon the fixed threshold e/ and coherent with the as-
sumption of time-varying volatility.

We will denote the value of € in the index of ¢/ and €”, e.g. €}  is a variable threshold €”
with €9 = 0.5.
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3.2 COARSE-GRAINED DRAWDOWNS \
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Figure 3.1: Lengths of fixed and variable threshold coarse-grained drawdowns

and drawups at times with different realised volatility (S&P 500 in-

dex). (a) With fixed threshold e();_s. (b) With variable threshold e ..

In both cases volatility o, 1 calculated with S,, x (T = 125). The black

line marks the global volatility o, (calculated with sx).
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3.3 DISTRIBUTION OF DRAWDOWNS

As discussed in this chapter, the concept of price drawdowns is salient for
a direct measurement of the cumulative loss an investment decision can
incur and to quantify the worst-case scenario of an investor going long
at the local high (beginning of a drawdown) and going short at the next
minimum (end of the drawdown). Therefore, it is important to know if
there is any structure in the distribution of drawdowns. It is important to
keep in mind, that, in contrast to returns, drawdowns are not defined over
a fixed time scale, since they embody dependencies through the same sign
variations. Drawdowns may last for only one day or for longer periods,
such as a week. Their distribution measures how successive drops can
influence each other and construct a persistent process.

It can be shown [24] that the distribution of drawdowns for indepen-
dent returns is asymptotically exponential when the distribution of the
independent returns does not decay more slowly than an exponential, i.e.
belong to the class of exponential or super-exponential distributions. In
contrast, for sub-exponentials (such as stable Lévy laws, power laws and
stretched exponentials) the tail of the distribution of drawdowns is asymp-
totically the same as the distribution of the individual returns.

In several studies [1, 28, 32, 47, 49] stretched exponentials have been
found to offer an accurate quantification of returns to capture a possible
sub-exponential behaviour. Since stretched exponentials contain the ex-
ponential law as a special case (exponent z = 1in (4.5), chapter 4) and by
the fact that it has been successfully used as a model for the distribution
of drawdowns, we shall take the stretched exponential law as our prelim-
inary candidate distribution for drawdowns, with the the power law and
lognormal distributions as possible alternative models [33]. In chapter 4
we will discuss the different models in more depth.
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DRAGON KINGS

Dragon Kings in financial markets are extreme events in the distribution
of drawdowns and drawups. As elaborated in chapters 1 and 3, drawdowns
(and their counterpart drawups) are better adapted to capture the risk
perception of market participants, and therefore they better reflect the re-
alised market risks.

As analysed in [21-24], it can be demonstrated that the distributions of
drawdowns efficiently diagnose financial crashes, i.e. special events asso-
ciated with specific bubble regimes that precede them, which are seen as
Dragon Kings.! About 99% of drawdowns can be represented nicely by a
common distribution with a tail slightly fatter than an exponential distri-
bution, whereas the remaining events have been found to be statistically
different, i.e. the hypothesis that they belong to the same distribution as
the 99% bulk of the population of the drawdowns is rejected at the 99.9%
confidencelevel [22, 25]. It has been found that two-thirds of these Dragon

Kings identified are stock market crashes, which were preceded by large
bubbles.

Itis important to stress that there is no unique methodology to diagnose
Dragon Kings in general. They can be observed directly in the form of ob-
vious breaks or bumps in the tail of size distributions, as in the example of
the distribution of city sizes or material failure and rupture processes, or
the distributions have to be compared at different resolution scales, as in
the example of the distribution of turbulent velocity fluctuations. Another
mechanism is found in the strong coupling regime of coupled heteroge-
neous oscillators of relaxation, where the statistics of epileptic seizures in
human subjects and in animal models closely resemble that observed for
earthquakes, i.e. Dragon Kings correspond here to so-called “characteris-
tic earthquakes”. One more way is the construction of new observables
that capture more appropriately the dynamics of the system, as — in the
case of our study — in the distribution of price drawdowns.

The evidence of Dragon Kings encompasses exchange markets, the major world stock
markets, commodity markets and government bond markets. The results have been
found robust with respect to various measures of pure and coarse-grained drawdowns.
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The goal of our study is to corroborate the evidence of the existence of
Dragon Kings in financial markets by taking into account the time-varying
volatility. However, testing for Dragon Kings, or more generally for a
change of regime in the population of drawdowns, is a subtle new prob-
lem that requires new techniques. In section 4.1 we present our approach
to that problem with a set of tools to test for outliers or a change of regime.
In section 4.2 we finally present the innovative approach on Dragon Kings
in financial markets by taking the time-varying volatility into account.
Specifically we will present two different approaches, first, a straightfor-
ward adjustment, and second, an approach by segregating and diagnosing
Dragon Kings that occur at different volatility regimes.

4.1 TOOLS TO TEST FOR DRAGON KINGS

In this section we present a set of tools to test generally for a change of
regime in the population of drawdowns to provide evidence for the exis-
tence of Dragon Kings. Most of these tools have already been successfully
used in approaching this problem [21-24, 32, 34].

In section 4.1.1 we provide a starting point by looking at the complemen-
tary cumulative distribution function of drawdowns. In section 4.1.2 we
present a parametric statistical test to discriminate between the null hy-
potheses stretched exponential or power law and modifications of these
models that describe deviations in the tail. In section 4.1.3 we apply the
uniformly most powerful unbiased test between the lognormal and the
power law, which has been successfully applied in the debate about the
distribution of city sizes [33] and present Hill’s inverse tail index estimate.

411 Complementary cumulative distribution function

A starting point in the analysis of the distribution of drawdowns to diag-
nose Dragon Kings is to check for underlying models that describe the
form of the distribution as closely as possible. Obvious breaks or bumps
in the tail of the distributions may then be detected directly in the form of
deviations and statistical outliers.

In our case, we will study the complementary cumulative distribution
function (ccpk) of (the absolute size of) drawdowns. Specifically, this dis-
tribution function expresses how often the random variable of drawdowns
is above a particular level, or — in terms of “survival function” — it cap-



37

tures the probability that the emergence of bursts of dependence that lead
to the creation of drawdowns will survive beyond a specific size. The com-
plementary cumulative distribution function is defined as

F.(x)=P(X>x)=1-F(x) (4.1)

where F(x) is the cumulative distribution function of drawdowns. This
function is monotonically decreasing and F.(0) = P(X > 0) = L

In particular, the analysis of the complementary cumulative distribu-
tion function of drawdowns can be split into two steps, first, the classi-
fication of unknown distributions, and second, the detection of obvious
deviations and outliers.

Classification of unknown distributions

The semi-logarithmic and logarithmic representations of F.(x) can be a
very powerful first tool to classify the unknown distributions in order to
assign appropriate underlying models. As discussed in chapter 3, possible
candidate models are particularly the power law and the stretched expo-
nential model, as well as conceivably the lognormal model.

A distribution of drawdowns following a power law model would ap-
pear as a straight line in the log-log representation and as convex curve in
the log-linear representation. On the other hand, a distribution following
an exponential model would appear as a straight line in the log-linear rep-
resentation, while the stretched exponential with an exponent < 1 would
appear as a convex curve.

Detection of obvious deviations and outliers

The complementary cumulative distribution function is the simplest tool
to discriminate “by eye” different regimes in the population of drawdowns.
These changes of regime can be suspicious breaks and bumps that qualify
as obvious outliers and Dragon Kings. Furthermore, a change of regime
could be indicated by a deviation from the bulk of the population in the
distribution, suggesting that Dragon Kings obey a different distribution
than the bulk. After classifying the distribution for some possible underly-
ing model, more sophisticated and adequate (parametric) statistical tests
can be applied to discriminate different regimes.
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4.1.2 Likelihood-ratio test for nested hypotheses

Here, we formulate a test in the spirit of [11, 22]. This test is aimed at
the question of whether there is a threshold rank of drawdowns below
or above which the null stretched exponential model or power law model
can be rejected. In other words, in order to qualify the existence of outliers
in the distribution of drawdowns, we perform this test tailored to estimate
the significance of the curvature seen in the distributions (in the log-linear
or log-log representation respectively).

Let us formally introduce the general framework of hypothesis testing
within a parametric formulation.

The sample Xj, ..., X,, has a probability density distribution (PDF) p(x|6),
where 0 is a vector corresponding to the set of free parameters in the pDF.
In general, we consider two hypotheses corresponding to two sets of pa-
rameters 6 = (60, ..., 0;):

H,: The parameters 0,, ..., 0 belong to some k-dimensional parameter
space ©;: 0 € ©,

Hy: One of the parameters 0, ..., 0 is equal to zero, whereas the other
parameters can vary in the same (k —1)-dimensional space as in H;.
We denote this subset in parameter space as ©,: 0 € ©,. Evidently,
®,; contains Q.

Let us denote the maximum likelihood under H; as L; (i = 0,1):

Li = max[p(Xi[6)...p(X,[6)] (42)
where the maximum is taken over 0 in the parametric space ©;.

By construction L, < L, since adding one or several parameters cannot
decrease the quality of the fit to the data. A theorem by Wilks [40] states
that the test statistic T

T=-2lnA (4.3)

with the maximum likelihood ratio A = Ly/L;, which is asymptotically
distributed as x? with one degree of freedom as » tends to infinity. Using
the log-likelihood In Ly and In L; we can formulate (4.3) as

T=-2(InLy-InLy) (4.4)

Thus, the test is based on this test statistic T' by comparing Hy and H,. If T
is large, L, is significantly larger than L, which means that adding a param-
eter significantly improves the quality of the fit. On the other hand, if T is



small, L; is not much larger than L, which means that the additional pa-
rameter does not much improve the fit. The corresponding p-value gives
the probability of exceeding T by chance.

Let us now introduce the specific tests for our stretched exponential and
power law models.

Stretched exponential model

The stretched exponential for the sample of drawdowns Xj, ..., X,, (rank 1
biggest drawdown, rank n smallest drawdown) corresponds to a straight
line in the log-linear representation of In P versus x? with the cumulative
distribution

P(x|6) = P(x = 0) exp (—-Bx* + Cx*) (4.5)

where 0 = (B, z, C). Accordingly, the “pure” stretched exponential distri-
bution (SE) corresponds to the case where C = 0.

The choice of the parametrisation (4.5) with a correction Cx?* where
the exponent is twice that of the first term in the exponential is taken to
avoid introducing two additional parameters and as the natural measure
of a curvature in the log-linear plot of In P versus x? that would qualify
the simple stretched exponential as a straight line. We will refer to that
general case where C # 0 as modified stretched exponential (MSE). We
thus have our hypotheses

Hy: C=0(sE)
H;: C + 0 (MSE)

and we define

Psp(x) = Ase(t) exp (-Bx%) (4.6)
PMSE(x) = AMSE(t) exp (—BXZ + szz) (47)

as two complementary cumulative distribution functions of drawdowns
defined for the drawdowns at rank t (here, lower threshold rank) up to the
maximum rank #. This corresponds to the interval [0, X;] of drawdowns.

Hence, the corresponding density distribution functions are pse(x) =
—dPsp(x)/dx and pyse(x) = —dPysp(x)/dx. The normalising factors
Asp(t) and A g (t) are different and functions of the lower cut-off rank
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t since psg(x) and pyse(x) must be normalised to 1in the interval [0, X ].
This normalisation condition gives
1
ASE(t) = l—exp (_BXf) (48)
B 1
 1-exp (-BX? + CX%)

Anse(t)

(4.9)

The maximum likelihood estimation of the best parameters for the candi-
date stretched exponential model (4.6) is done as a minimisation of

—lnLO = - ZlnPSE(Xi)
i=t
(4.10)
= - [InAg(t) +1In(BzX7") - BX?]
i=t
with respect to B and z. Similarly, the estimation for the candidate modi-
fied stretched exponential model (4.7) is done as a minimisation of

~InL,=- Z [In Apse(t) +1In (BzX7' - 2CzXF ) - BX? + CX¥]

i=t

(4.11)

with respect to B, z and C. Finally, the maximised log-likelihood In L,
and In L, will be used in (4.4) to determine the test statistic T and the
corresponding p-value.

Technically, the minimisation is done with the downhill simplex min-
imisation algorithm. In order to secure that the maximum likelihood es-
timation does indeed retain the parameter values of the global maximum,
the downhill simplex minimisation algorithm will be applied with a wide
range of start values in the search.>

Power law model

In the spirit of the stretched exponential model, we now introduce a simi-
lar test based on the power law model, where a power law in the tail corre-
sponds to a straight line in the log-log representation of In P versus In x.
For convenience we will introduce a different notation. We take the
logarithm of the drawdowns D;, such that X! = In D,. Note, that for this
model we are going to use an upper threshold rank ¢, compared to the

2 We use a total of 1000 combinations of start values for B, z and C.
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lower threshold for the stretched exponential model, as we are going to
look only at the drawdowns in the far tail. Hence, we are going to shift the
truncated sample of ¢ log-drawdowns X], ..., X; to X; = X! - X, such that
X; = 0. Our sample of log-drawdowns is thus Xj, ..., X; with the cumula-
tive distribution

P(x|0) = P(x =0)exp (—Bx + sz) (4.12)

where 6 = (B, C). Accordingly, the “pure” power law distribution (pL)
corresponds to the case where C = 0.

The choice of the parametrisation (4.12) with a correction Cx? is analo-
gous to the one for the stretched exponential model. We will refer to the
general case where C # 0 as modified power law (MpL). We thus have the
hypotheses Hy: C = 0 (pL) and H;: C # 0 (mpL). We define

PPL(x) = APL exp (—BX) (413)
PMPL(-x) = AMPL exp (—BX + sz) (414)

as two complementary cumulative distribution functions defined for the
log-drawdowns at rank 1 up to the cut-off rank ¢. This corresponds to the
interval [ X, = 0, X; | of log-drawdowns with the normalising factors

1
" 1-exp(-BX))
1
1-exp (-BX; + CX?)

App (4.15)

Aypr = (4.16)

Thus, the maximum likelihood estimation of the best parameters of the
candidate models (4.13) and (4.14) is done as a minimisation of

t

—IDLQZ—Z(IHAPL'l'lnB—BX,') (417)
i=1

~InL; == [InAyp +In (B -2CX;) - BX; + CX?] (4.18)

i=1

with respect to B, and B, C, respectively.

The minimisation will be done with the same minimisation algorithm
as for the stretched exponential model. Likewise, the test statistic T and
the corresponding p-value will be determined with (4.4) using the max-
imised log-likelihood In L, and In L,.

4
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4.1.3 Power law versus lognormal distribution

The power law and the lognormal distribution are often difficult to dis-
tinguish. Although both distributions exhibit a distinct behaviour in the
tails, the lognormal can easily be mistaken for a power law over a range
which can cover several decades [33]. Both distributions may be gener-
ated by Gibrat’s law of proportional growth, which can be generalised by
a general class of self-similar fragmentation processes [27], yet with some
additional apparently innocuous but actually profound intricacy for the
power law. Power law distributions are regularly varying, whereas the
limit behaviour of lognormal distributions characterises a rapidly decreas-
ing function at infinity. Therefore, both distributions exhibit qualitatively
different behaviours in their upper tails. The lognormal density in the up-
per tail goes to zero faster than any power law density. However, writing
the lognormal density as

1 _(nx-p)? 1 “ qa# _Inx
e 2 = e 2 o x 2T (4.19)
xXo\/2m oV2an

f(x) =

we observe that the lognormal distribution is superficially like a power law
with a slowly increasing effective exponent

a(x) = ﬁln( al ) (4.20)

ez

This shows us that the lognormal distribution decays at infinity faster than
any power law, since the apparent exponent «(x) diverges with x. Hence,
with o2 large enough, a(x) varies so slowly as to give the impression of
constancy over several decades in x.

Since we are interested in extreme drawdowns, i.e. in the behaviour of
the tail of the distributions, we present in this section Hill’s inverse tail in-
dex estimate a~! and a uniformly most powerful unbiased test in the spirit
of [33] aimed to discriminate between the power law and the lognormal
distribution at a certain threshold. A tail in the distribution of drawdowns
following a power law suggests that the tail is fatter than in the case of alog-
normal distribution and that particularly large drawdowns occur far more
often than a lognormal distribution would suggest. In this case, Dragon
Kings would follow a power law, whereas the bulk of drawdowns would
follow a lognormal distribution.
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Hill’s inverse tail index estimate

Hill’s inverse tail index estimate a~! for power law distributions is the best
unbiased estimator for the inverse of the tail index [17].3 It is defined as

A 14
a’l= P Zln D; —-In D, (4.21)
i=1

with the upper threshold drawdown rank ¢.

Plotting Hill’s estimate as a function of the threshold rank ¢ will help us
to discriminate between the power law and the lognormal distribution in
the tail up to the threshold. An approximately constant estimate a1, i.e. a
plateau in the plot, will then reinforce the validity of a power law. On the
other hand, a decaying estimate will reinforce a deviation from the power
law in the tail or in the higher ranks.

Uniformly most powerful unbiased test

The test that addresses the question, whether the power law or lognormal
model holds in the tail, considers the null hypothesis that, beyond some
threshold ¢, the upper tail of the distribution is power law (pL) distributed,
against the alternative that it is (truncated) lognormal (LN) distributed:

Ho: fo(x) = fpr(xs )
Hy: fi(x) = fin(x;a, B)

with

1
xa+1

fri(xsa) =«a

for x > t with « > 0, and

for x > t with & € R, 8 > 0, where @(-) denotes the cumulative distribu-
tion function of the normal distribution.

Note, that this is equivalent to testing the null hypothesis that the upper
tail of the distribution of the logarithm of the drawdowns D; is exponen-
tial against the alternative that it is a (truncated) normal. For this prob-
lem the clipped sample coefficient of variation ¢ = min(1, ¢) provides the

(4.22)

3 Itis not possible to get an unbiased estimate for .
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uniformly most powerful unbiased (UmPU) test [33] (for a detailed deriva-
tion of this test, please refer to [9, 13]). The sample coefficient of variation
¢ = sx/x is the ratio of the sample standard deviation to the sample mean,
with the sample of log-drawdowns X; = In D;.

The critical point of the test can be derived with very high accuracy by
a saddle point approximation. The likelihood equations can be reduced to

2 —yh(y) +y*+0.5 »

() - (424
with y = a/ (2\/3) and
h(x) = —SPCEX) (4.25)

2/ (1- @ (Vx))

The left part of (4.24), ¢2, is the empirical squared coefficient of variation,
whereas the right part is the model squared coefficient of variation C?2. The
solution of (4.24) is J = $(c). The test statistic W* can then be derived as

L(p)®

W*=W(p)+2L(p) + W0)

(4.26)

with
W(9) = n[2In (2h(p) (R(P) - §)) +29” = 29h(P) +1] (4.27)
for c <1, W(y) =0 for ¢ >1,and
1. [9R(D)(29% - 4Ph() + 2h()? + 3) - 3h(P) +1
1)~ Lin yh(7) (2 ? ()’A) A(zy) ; ) -3h()
2h() -9) W)

It can be established that the asymptotic distribution of W* is a 50:50 mix-
ture of the constant 0 and y? distribution with one degree of freedom.

(4.28)

4.2 DRAGON KINGS AND VOLATILITY

In this section we systematically extend the methodology presented to di-
agnose Dragon Kings to empirically answer the question whether the ef-
fect of time-varying volatility on drawdowns and Dragon Kings has the



potential to enhance the previous methodology or is in line with previous
results. As mentioned in section 4.1, the methodology and tools we pre-
sented can be performed independently from our innovative approaches
of taking time-varying volatility into account or following the “traditional”
approach. They can be generally applied to any kind of distributions of
drawdowns. Therefore, we will apply these tools to two approaches. First,
in section 4.2.1 we introduce a straightforward approach by adjusting draw-
downs, second, in section 4.2.2 we introduce the concept of grouping draw-
downs that happened during the same volatility regimes together.

4.2 Distributions of adjusted drawdowns

The most straightforward approach, and similar to Le Bris” idea we have
shown in chapter 1, is to construct distributions of volatility-adjusted draw-
downs. For this case, we define adjusted drawdowns D; as

o1, T

Dy (4.29)
with the unadjusted drawdown D starting at time ¢ and the realised volatil-
ity o, at that time over the time window T as defined in (2.8). Since we
defined the realised volatility at time ¢ over a time window T without tak-
ing the return at time ¢ into account, the drawdown D, will be adjusted
by the volatility just before the starting return at time ¢. Thus, the volatil-
ity used to adjust a drawdown will not be “contaminated” by the proper
drawdown.* The idea of this adjustment is very simple: A drawdown at a
time of high volatility will be smaller after adjustment than a comparable
drawdown at a time of low volatility, since a high level of volatility indi-
cates a generally higher level of risk, and thus, an acclimatised perception
of smaller loss. The aim of this is to detect Dragon Kings we could not
detect without adjustment, i.e. drawdowns of absolute smaller size with
low volatility that disappeared in the bulk of the distribution. After adjust-
ment, these drawdowns would appear to be outliers of bigger event size
(lower ranks), and thus, qualify for Dragon Kings. We see this effect of
the adjustment for drawdowns with different volatilities in figure 4.1. Panel
(a) shows the drawdowns per volatility before adjustment, and panel (b)
shows the same drawdowns after adjustment, which can be regarded as a
division by the abscissa.

The subtraction of the average return y, (in Le Bris’ normalisation, chapter 1) from D,
can be safely ignored here, since it is close to zero and only a very small fraction of a
drawdown composed of several returns.
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Hence, constructing distributions of adjusted drawdowns D; and analys-
ing them with the tools from section 4.1, will enable us to directly compare
our results, where we take the volatility in form of adjustment into account,
with the previous results.

4.2.2 Drawdowns during different volatility regimes

A different approach, but with the same aim, is to look separately at draw-
downs during different volatility regimes. Here, we do not just adjust the
size and rank ordering of all drawdowns to better reflect their different
levels of volatility, but we completely segregate them according to their
volatility. What we called before the population of drawdowns, will be
subdivided into smaller populations composed of drawdowns with the
same level of volatility, i.e. occurring during the same volatility regimes.
In these sub-populations then, we will perform our Dragon King detec-
tion methodology to find changes of (population) regimes per volatility
regime. In other words, we ask if each population of drawdowns occur-
ring during the same volatility regime (our sub-population) is composed
of a bulk and a Dragon King population. On the other hand, this would
show us that the Dragon King regimes we find in the entire population
of drawdowns are just composed of a few extreme cases — mostly during
high volatility regimes where extreme cases have to be relatively bigger in
size. As a result, these few extreme cases just happen to appear as a differ-
ent regime that is not composed of all extreme cases, including relatively
“smaller” extreme cases during low volatility regimes.

Formally we will assign to every drawdown D, a volatility regime V;, as
defined in (2.16), such that the volatility o; at the time of the beginning of
the drawdown belongs to V; (i = 1, ..., k). We will then construct k distri-
butions of drawdowns that have the same volatility regime V; assigned.

If the simple adjustment is not powerful enough to make the relatively
smaller cases more pronounced as outliers, and the distribution of draw-
downs just gets washed out or flattened, we hope that the separation of
drawdowns by volatility regime will be able to provide support for the
concept of Dragon Kings in financial markets, by clearly showing us that
certain events of absolute smaller size are in fact extreme events, too. How-
ever, a major drawback of this approach is that the distributions will be
composed of fewer drawdowns, and as a consequence, the Dragon King re-
gimes would be composed of a much smaller number of drawdowns than
in the case where we take the entire population. Our parametric tools (sec-
tions 4.1.2 and 4.1.3), where we check for a particular underlying model in
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Table 4.1: Quantities (#) and ratios (%) of drawdowns in each volatility regime
Vi (k = 3,5,10) with centre volatility value ¢; (S&P 500 index). In all
cases €; s and volatility calculated with S,, x (T =125).

VOLATILITY REGIMES DRAWDOWNS
Vi Ci # %
1 0.52 1126 66.7
2 0.99 494 29.3
3 1.46 68 4.0
1 0.42 591 35.0
2 0.70 687 40.7
3 0.99 302 179
4 1.27 83 49
5 1.55 25 15
1 0.35 135 8.0
2 0.49 456 27.0
3 0.63 394 233
4 0.77 293 174
5 0.92 195 11.6
6 1.06 107 6.3
7 1.20 51 3.0
8 1.34 32 19
9 1.48 14 0.8
10 1.62 11 0.7

the upper tail beyond a certain threshold, could simply fail because of too
small samples. Hence, we expect to obtain suitable results only through
the visual inspection of the complementary cumulative distribution func-

tion (section 4.1.1).

In this procedure, the number k of volatility regimes has to be freely
chosen. The number should be as big as necessary to have enough dif-
ferent levels that appropriately reflect the variability of the volatility, but
as small as possible to have enough drawdowns in each volatility regime.
We will tentatively choose k = 5,10. As a possible extension to this ap-
proach, and to overcome the aforementioned major drawback, we could
chose a very small number of volatility regimes, e.g. k = 3, to avoid very
small numbers of drawdowns in the volatility regimes, and then adjust the
drawdowns within each volatility regime. This would in fact be a combina-
tion of our two approaches, by first coarsely separating all drawdowns into
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“low”, “middle” and “high” volatility regimes (k = 3), and then adjusting
them on an individual basis by their proper volatility.

Table 4.1 lists the quantities and ratios of drawdowns in each volatility
regime, for the three cases k = 3,5,10 (S&P 500 index from 1950 to 2000,
sample size of 12718 returns, with a total of 1688 drawdowns, compare also
with figure 4.1). As we can see, already for k = 3 the high volatility re-
gime (V3) consists only of a very small number of drawdowns (68, 4.0%),
but two-thirds (1126, 66.7%) of all drawdowns belong to the low volatil-
ity regime (V;). Here, an adjustment within the three regimes could be
appropriate to further pronounce outliers within a big sub-population of
1126 drawdowns. For k = 10 the upper four regimes consist of less than
100 drawdowns. The choice k = 5 seems to be the best compromise of
quantities per volatility regime and distribution of different volatility lev-
els, where a maximum of 40.7% belong to one regime (V,). Hence, we
conclude that the choice of k gives room for adjustment to specific time
series, taking k = 5 as a starting point. With small numbers of volatility re-
gimes, i.e. large quantities of drawdowns within one volatility regime, an
adjustment within the regimes could be appropriate.
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Figure 4.1: Non-adjusted and adjusted drawdowns at times with different re-
alised volatility (S&P 500 index). (a) Before adjustment. (b) After
adjustment by the volatility. In both cases € 5 and volatility o r cal-
culated with S, x (T = 125).






DATA ANALYSIS

After having introduced the theoretical frameworks for volatility (chapter
2), drawdowns (chapter 3) and Dragon Kings (chapter 4), we will apply
them on real financial data.

The focus of the data analysis will be to investigate the effect of taking
time-varying volatility into account on the detection of Dragon Kings. We
will compare these results with results obtained without taking volatility
into account by comparing the quantities and the actual Dragon Kings di-
agnosed. An important question we will try to answer is how pronounced
these outliers appear in the distributions of drawdowns, i.e. how distinc-
tive the changes of regime manifest themselves in the populations of draw-
downs, since the more prominent the outliers are, or the more pronounced
the deviations appear in the tails of the distributions, the more it will help
us to develop a better perception for extreme financial risks. Before dis-
cussing the results of the analysis in section 5.3, we will describe the time
series data we will analyse in section 5.1, and define the combinations of
parameters and tools we use for the analyses in section 5.2.

51 DATA

In our study to diagnose Dragon Kings taking time-varying volatility into
account, we will use a selection of eight daily time series, covering a large
part of the financial markets, i.e. major stock market indices, foreign ex-
change, government bonds and commodities. Below, we will briefly de-
scribe the time series we consider for this study. In table 5.1 the time series
are listed with starting and ending dates, as well as the sample sizes (num-
ber of price observations).

Stock market indices

We will study three major stock market indices (daily close) from around
the world, namely the S&P 500 (U.S. ), FTSE 100 (U.K.) and the Hang Seng
Index (Hong Kong). Out of these indices, the HSI is the most volatile
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index, while the S&P 500 appears to be the most stable index with the
lowest average volatility. The HSI's average volatility is around 75% and
45% higher than the S&P 500 and FTSE 100, respectively.' It is worthwhile
to note, that the HSI is composed of only 43 companies, compared to the
other two indices with 100 and 500 constituent companies.

Foreign exchange

The foreign exchange market is by far the largest market in terms of vol-
ume. Of all possible pairs of currencies we will study the Japanese Yen
(JPY) in currency units per U.S. dollar (USD), acknowledging the leading
role of the U.S. dollar. Under the Bretton Woods system established after
World War II, only the U.S. dollar had a direct gold parity, whereas the gold
content of the other currencies was established only indirectly, by means
of a fixed parity with the dollar. Fluctuations were to be confined to a nar-
row 1% band. Due to international pressure in the early 1970s, the dollar
was devalued with respect to gold, and then by 1973 the Bretton Woods sys-
tem collapsed completely [23]. Hence, the time series we use start in the
late 1970s to ignore the turmoils before the collapse of the Bretton Woods
system.”

Government bonds

We will study the prices of two government bonds, a U.S. Treasury se-
curity (T-Note, 10 years maturity), which has become the security most
frequently quoted when discussing the performance of the U.S. govern-
ment bond market and is used to convey the market’s take on longer-term
macroeconomic expectations, and a German government bond (Bundes-
anleihe, 30 years maturity).

Commodities

Commodity markets have seen an upturn in the volume of trading in re-
cent years. Global physical and derivative trading of commodities on ex-
changes increased more than a third in 2007 to reach 1684 million con-
tracts. Agricultural contracts trading grew by 32% in 2007, while precious

Average volatilities ¢ ~ 1.35 (HSI), 0.77 (S&P 500), 0.96 (FTSE 100), robust for different
scale estimators and time windows.

The exchange rates are noon buying rates in New York for cable transfers (U.S. Federal
Reserve).
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Table 5.1: Time series data for this study, indicating the starting dates, as well
as the sample size. All series end on 2010-10-01.

TIME SERIES START DATE SIZE

STOCK MARKET INDICES

S&P 500 1950-01-03 15286
Hang Seng Index (HSI) 1969-11-24 10660
FTSE 100 1984-04-02 6696

FOREIGN EXCHANGE
JPY/USD 1978-01-03 8232

GOVERNMENT BONDS
U.S. T-Note 1967-01-03 11414
German gov. bond (GER Bund)  1986-06-20 6336

COMMODITIES
Gold 1976-08-02 8915
Wheat 1985-06-03 6610

metals trading grew by 3% [19]. Especially through the use of futures con-
tracts and derivatives, commodities are popular as an investment and sub-
ject to speculation. Here, we will study the price time series of gold and
wheat to have representatives of the precious metal and agricultural com-
modities. Gold is the most popular of all precious metals as an investment
and is very important throughout the world as a vehicle for monetary ex-
change.> Among the grains soy, corn, oats etc., wheat is one of the grains
with the highest trading volume.*

5.2 PARAMETERS

We discussed so far the concepts of volatility, drawdowns and Dragon
King detection. Each of these concepts is bound to some kind of parame-
ter, i.e. the realised volatility depends on the choice of the scale estimator
and of the size of the time window, drawdowns depend on the method

Gold prices from the London bullion market, a wholesale over-the-counter market for
gold and silver.

Wheat prices from the Kansas City Board of Trade (spot values of the 5000 bushels Hard
Red Winter Wheat No. 2 contract).
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and degree of coarse-graining, and Dragon King detection on the tools
we presented.

For the realised volatility we will use the S, x estimator of scale (2.6)
as consistent estimator Sy for the standard deviation with the time win-
dows T = 20,125,250. For each of the three volatility estimates we con-
struct pure drawdowns and €;j ;-drawdowns. We both use non-adjusted
(“traditional”) drawdowns and volatility-adjusted drawdowns as defined
by (4.29). However, in order to be able to better compare these draw-
downs, we scale the non-adjusted drawdowns by the average volatility o,
i.e. we simply divide each non-adjusted drawdown by the same number,
without changing the distributions. For each of these four distributions
of drawdowns (per volatility estimate) we apply our Dragon King detec-
tion tools: First, the complementary cumulative distribution functions
(ccprF) in logarithmic and semi-logarithmic representation; second, the
likelihood-ratio (Wilks) test for nested hypotheses (stretched exponential
and power law models); third, the unified most powerful unbiased (umprU)
test to discriminate between the power law and lognormal model; and
fourth, Hill’s inverse tail index estimate to further check the validity of
the power law model. We further apply for each of the three volatility
estimates our approach of taking distributions of drawdowns during k dif-
ferent volatility regimes, as introduced at the end of chapter 4 (section
4.2.2). For this purpose we define three different levels of granularity for
the volatility regimes, namely k = 3, 5,10. Again, for each of the volatility
regimes V;/, we separate the non-adjusted’ and volatility-adjusted p and
€y s-drawdowns. For each of these four distributions of drawdowns per
volatility regime V; (i.e. 4k = 72 distributions of drawdowns per volatil-
ity estimate) we finally generate the cCDFs.

To provide an overview, in table 5.2 we summarise in a hierarchical way
the tools we apply to the distributions of drawdowns with the different
combinations of parameters. For the sake of completeness, all the result-
ing figures and tables for the different parameters and tools for each time
series can be found in appendices B to F.°

In this case, we scale non-adjusted drawdowns by the centre volatility value ¢;y, in-
stead of the average volatility o, to better compare non-adjusted and adjusted drawdowns
within the volatility regimes V;y.

To keep the number of figures and tables as small as possible, but without sacrificing the
clarity of the information, we combine in almost all cases non-adjusted and volatility-
adjusted drawdowns, keeping p- and e-drawdowns separate, and in some cases, all four
kinds of drawdowns, into one single figure and table.
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Table 5.2: Parameters and tools for the data analysis. Parameters: Volatil-
ity (vor) with the estimator of scale §x and time window T; p/e-
drawdowns (pD), non-adjusted/adjusted (n/a); and volatility re-
gimes (VR), whole population (-) or V; ;. Tools, applied/non-applied
(e/-): ccDF, logarithmic (LL) and semi-logarithmic (sL); uMPU test
power law versus lognormal (pL-LN); Hill’s estimate ocA‘l; and Wilks
test, stretched exponential (se) and power law model (pL).

PARAMTERS TOOLS
VOL DD VR CCDF UMPU HILL WILKS
Sx T ple nla Vi LL SL PL-LN a-! SE PL
Sux 20 p n - ° ° ° ° ° °
Vl...3/3 i i - - - -
Vi..s/5 o d - - - -
Vl...lO/lO i i - - - -
a - o ° ° [ ° °
Vi3 i d - - - -
Vi.s/s i d - - - -
Vl..,10/10 i b - - - -
65.5 n - ° ° ° ° ° °
Via d d - - - -
Vi.s/5 i o - - - -
Vi..10/10 o d - - - -
a - ° ° ° [ ° °
Vl...s/s i i - - - -
Vi.s/5 o o - - - -
Vl...lO/lO i i - - - -
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250
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5.3 RESULTS

In this section we will present the most important features of the results
from our analyses. We will start with a thorough presentation of the re-
sults of the S&P 500 index in section 5.3.1 and then briefly present the
main results of the remaining stock market indices (section 5.3.2), foreign
exchange (section 5.3.3), government bonds (section 5.3.4) and commodi-
ties (section 5.3.5).

531  S&P 500

Please refer to appendix B for the complete set of figures and tables of the
S&P 500 index.

VOLATILITY The volatilities for the three time window sizes are shown
in figure B.1, with average volatilities around o.77 for all T. The non-ad-
justed and adjusted p- and e-drawdowns with their volatilities are shown
in figures B.2, B.3 and B.4 (T = 20,125,250, respectively). We see that
for T = 20 most of the drawdowns fall into the volatility range of around
0.25-2.5, while the upper bound of this range decreases with increasing T,
compressing the distribution of drawdowns closer to the average volatil-
ity. This effect arises from the fact of large peaks in the distribution of
realised volatility for small T. For a larger T, the bulk of the drawdowns
is more symmetrically distributed around the average volatility, reducing
the skewness of the distribution of volatility. This can also be seen in ta-
bles B.4, B.26 and B.48, showing the distribution of drawdowns within
different volatility regimes (k = 3,5,10). The larger the time window size,
the more drawdowns fall into the volatility regimes with volatility levels
around the mean volatility.

ccpF  In figures B.5, B.6 and B.7 the complementary cumulative distri-
bution functions (ccpF) in log-log (a) and log-linear representations (b)
are shown. As expected, the distributions of non-adjusted p-drawdowns
are identical for the three time window sizes, since they are constructed
and distributed independently of the volatility. At first glance, the distri-
bution follows a slightly concave curve in the logarithmic representation
giving first evidence of a stretched exponential behaviour where we could
identify two obvious outliers in the tail. By comparing p-drawdowns with
e-drawdowns, we observe that for T = 20 and 125 the distributions fol-



low a straight line in the logarithmic representation with a rather smooth
convex behaviour in the semi-logarithmic representation. For T = 250,
the distribution resembles more closely the distribution of non-adjusted
p-drawdowns. This behaviour is expected, since, with increasing T, the
volatility time series becomes asymptotically flat, i.e. at the extreme T = n,
with 7 being the sample size of returns, the volatility would be at a con-
stant level. The difference of the distributions of volatility-adjusted and
non-adjusted drawdowns is rather subtle. However, we observe that the
adjustment has a “smoothing” effect, eliminating bumps and deviations.
E.g. if we take the distribution of non-adjusted p-drawdowns around the
drawdown size of 10%, we see a very obvious break, which does not ap-
pear in the adjusted distribution. In the adjusted distribution this break
does not appear. The bump between 15% and 20% in the distribution of
non-adjusted e-drawdowns with T = 125 disappears after adjustment, too.
Hence, in this case of the S&P 500, the adjustment seems to produce qual-
itatively more immaculate distributions, suggesting to be a better founda-
tion for parametric tests.

EXTREME DRAWDOWNS Tables B.1, B.2 and B.3 list the largest draw-
downs up to rank 15. Taking non-adjusted p-drawdowns as reference, 12,
11 and 12 (T = 20,125,250, respectively) out of the top 15 non-adjusted
e-drawdowns are the same events.” The picture looks very different for
the adjusted drawdowns, where only 2, 5 and 5 (p-drawdowns) and 1, 5
and 5 (e-drawdowns) out of the top 15 are the same as for non-adjusted p-
drawdowns. However, 10, 9 and 7 out of the top 15 adjusted e-drawdowns
are the same as for the adjusted p-drawdowns. We see that the largest
drawdown events seem to be robust when comparing non-adjusted p- and
non-adjusted e-drawdowns, as well as comparing adjusted p- and adjusted
e-drawdowns. Cross-comparing non-adjusted and adjusted drawdown
events reveals larger discrepancies. However, this result is expected, since
all but 1-3 events (T = 20: 1970-04-01, T = 125,250: 1962-05-15, 1970-
04-01, 1978-10-11) out of the top 15 non-adjusted drawdowns happened at
times with above-average volatility. Hence, the volatility-adjustment de-
creases the magnitude (increases the rank) of these drawdowns in a much
stronger way, such that they disappear from the top 15 ranking. We see this
in figure 5.3 (a), showing the probability density functions (pDF) of the

We regard two drawdowns as the same event, if they start on the same date, or if they
overlap, e.g. the drawdown starting on 2009-02-09 with 9 days length (non-adjusted e-
drawdown rank 5, T' = 20) is the same event as the drawdown starting on 2009-02-12
with 6 days length (non-adjusted p-drawdown rank 10, T = 20).
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volatilities of the top 15 non-adjusted and adjusted e-drawdowns. Com-
paring the four kinds of drawdowns with different T, taking T = 125 as
reference, we see that for T = 20, 15, 13, 8 and 8 (non-adj. p-, non-adj. e-,
adj. p- and adj. e-drawdowns, respectively), and for T = 250, 15, 14, 10 and
12 drawdowns are the same events as in the equivalent top 15 drawdowns
with T = 125. This tells us that, first, the distributions of non-adjusted
p-drawdowns are — as mentioned earlier — identical for all T, second,
non-adjusted e-drawdowns are rather robust for all T, third, adjusted e-
drawdowns are also quite robust for all T, but more robust with increasing
T. Thelast point is in line with our previous observation, that with increas-
ing T the volatility time series becomes asymptotically flat, decreasing the
differences between the distributions of adjusted and non-adjusted draw-
downs.

HILL'S ESTIMATOR As mentioned earlier, we have identified by eye a
stretched exponential and power law behaviour in the tails. Figures B.8,
B.9 and B.10 show Hill’s inverse tail index estimates. In all cases, they fluc-
tuate in the range of ranks 10 up to 100 around 0.3, suggesting a power
law behaviour in the tail with a tail index around 3. This is in line with
the literature [8, 14, 15, 31, 38] for the distributions of returns, rather than
drawdowns. However, if we assume the returns to be independent with a
power law tail with exponent « = 3, then we can predict that the distribu-
tion of drawdowns is also a power law with the same exponent. More in-
terestingly, for the first few ranks, up to around rank 10, the inverse tail in-
dex estimates exhibit a strong instability, especially for the p-drawdowns,
whereas the e-drawdowns seem to be more stable in the lower ranks.

UMPU TEST  Figures B.11, B.12 and B.13 show the results of the umpu
test to discriminate between the power law and the lognormal distribu-
tion. In all cases, the test selects the power law up to the first 100 ranks.
However, for the first few ranks, the p-value seems to be unstable, espe-
cially for adjusted p- and e-drawdowns. Hence, both Hill’s estimator and
the uMPU test show instability for the first few ranks. This can be an indi-
cator for some change of regime or just due to the inability of the tests to
work with small samples in the far tail. In the latter case, the umPU test
would prefer the power law in the tail, and this will occur even more if
there is a Dragon King regime, since then the power law is closer to a fat-
ter tail than the lognormal. Hence, we could imagine the drawdowns to be
distributed lognormal-like in the bulk, power law-like in an intermediate
tail and a Dragon King regime for the few extreme drawdowns, and the
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UMPU test would just confirm that the 100 smaller ranks follow a power
law instead of lognormal distribution.

LIKELIHOOD-RATIO TEST  Figures B.14, B.15 and B.16 show the results
of the likelihood-ratio test for nested hypotheses (stretched exponential
model). The test confirms the existence of two populations, one that de-
scribes the distribution of the smallest drawdowns (around rank 1000 up-
wards) better as stretched exponential (C = 0), and one that describes
the larger drawdowns (around rank 1000 downwards) better as modified
stretched exponential (C # 0). The test results for the power law model
are shown in figures B.17, B.18 and B.19. In all cases, the p-value never
decays beyond 5-10% to be able to reject the null (C = 0), suggesting a
“pure” power law behaviour. However, the p-value sharply decays down to
around 20% after the first 3 to 5 ranks. For the volatility-adjusted cases, the
declines are generally stronger than for the non-adjusted cases, with the
sharpest drop in the case of adjusted p-drawdowns with T = 250, where
the p-value reaches its lowest point at just above 10%. After the p-values de-
cay, the p-values rise again at around rank 50 and remain at levels close to
100%. We can see in the logarithmic representations of the ccpr that the
increases of the p-values happen to be at a point of inflection, where the
logarithmic ccprs turns convex. Hence, although we formally cannot re-
ject the null in order to describe the distributions as modified power laws
(C # 0), we clearly see a change of regime after the first few drawdowns
in form of a declining p-value. This can be seen as a strong indicator for a
Dragon King regime for the first few ranks.

VOLATILITY REGIMES  Until now, we have seen the results for the dis-
tributions of the whole population of non-adjusted and volatility-adjusted
drawdowns. Let us now turn to the distributions of drawdowns during dif-
ferent volatility regimes. Figures B.21-B.23 (T = 20), B.42-B.44 (T =125)
and B.63-B.65 (T = 250) show the ccprs for the volatility regimes with
k = 3, tables B.6-B.8, B.28-B.30 and B.50-B.52 list the corresponding top
10 ranked drawdowns.® The figures starting at B.25, B.46 and B.67 show
the ccpFs for the volatility regimes with k = 5 (tables starting at B.12, B.32
and B.54), and the figures starting at B.31, B.52 and B.73 show the ccprs
for the volatility regimes with k = 10 (tables starting at B.16, B.38 and
B.60). Let us start with the small k = 3. We see in the ccprs of almost
all volatility regimes V;/; for all T strong indicators for outliers or changes

8 Only figures and tables for V;; are shown if they consist of more than 10 drawdowns
(see tables B.4, B.26 and B.48 for the quantities of drawdowns within volatility regimes).
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of regime. This is especially true for our combined approach of adjust-
ing drawdowns within volatility regimes, since the effect of adjustment
is rather strong for a small k with broad ranges of volatility levels. For
the first volatility regime V;/3, we see in tables B.6, B.28 and B.50 that the
top ranks coincide with the ranks of the corresponding drawdowns in the
whole population (see column Rk). For the adjusted p- and e-drawdowns,
virtually all ranks coincide very well. However, for non-adjusted p- and
e-drawdowns with T' = 250 the discrepancies are quite large. This effect
arises from the fact that the volatility levels get narrower with increasing
T, e.g. the upper bounds of the volatility levels of V;/; decrease from 1.97
over 1.29 to 0.99 (T = 20,125, 250, respectively). Since we identified ear-
lier in the ranking of the whole population (tables B.1, B.2 and B.3) that
most of the largest drawdowns happen at times with volatilities above 0.99,
and since the volatility-adjustment generally emphasises drawdowns with
small volatility, the absence of these drawdowns in V;/; with T' = 250 can
be explained. In other words, with increasing T, the drawdowns get more
evenly and finer distributed over the k volatility regimes. We see this by
taking k slices from figures B.2, B.3 and B.4, as shown in figure 5.1, where
we have taken the extreme cases T = 20 and T = 250 (e-drawdowns) and
have drawn the slices for k = 3 and k = 10 to illustrate our point. For the
volatility regimes V,3, as well as V35, we see in tables B.7, B.29 and B.51,
as well as B.8, B.30 and B.52, that there are large discrepancies in the top
ranks with the ranks of the corresponding drawdowns in the whole pop-
ulation. However, the events are robust throughout the different kinds of
drawdowns and time window sizes.
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Figure 5.1: S&P 500 index. e-Drawdowns at times with different realised volatil-

ity. (a) T = 20; (b) T = 250. Volatility-adjusted (red) and non-
adjusted (blue), indicating k = 3 (bottom grey) and k = 10 (top
grey) volatility regimes.
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EXTREME DRAWDOWNS (VOLATILITY REGIMES) As mentioned ear-
lier, we see in all cases strong indicators for outliers and changes of regime.
Let us take from each of the four kinds of drawdowns the top 7;/; ranked
drawdowns from each volatility regime V;/; and combine them into an
overall ranking.® Tables B.5, B.27 and B.49 list these 15 largest drawdowns
combined into a single ranking. We see that in most cases the first 5-10
ranks coincide with the ranks from the whole population. These results
are consistent four all four kinds of drawdowns and robust for all T. How-
ever, with increasing T, the ranks coincide even more with the ranks from
the whole population, telling us that the very largest drawdowns in each
volatility regime with T = 250 can be found within the very largest draw-
downs of the whole population. We see that most of the drawdowns at
ranks 10-15 are high-volatile events from 2008 and early 2009, which can
be found only at higher ranks within the whole population. Figure 5.2
shows the S&P 500 index for the time around 2008-2009, indicating the
bubble bursting in 2008. Hence, the events at ranks 10-15 are huge losses
that occurred after — but not immediately after — the burst of the bubble.
For the volatility regimes with k = 5, 10, the results are in line with the re-
sults obtained for k = 3. However, the effect of adjustment is much weaker
with increasing k, since the volatility levels are much narrower. The distri-
butions of non-adjusted and adjusted drawdowns are thus almost identi-
cal. In general, in almost all volatility regimes we see again strong indica-
tors for outliers and changes of regime. Tables B.9, B.31 and B.53 (k = 5)
and B.15, B.37 and B.59 (k = 10) list the 15 largest drawdowns combined
into a single ranking, where, like for k = 3, the first 5-10 ranks coincide
with the ranks of the whole population. The higher ranks are events from
around 2008 and 2009, however, not as exclusively as for k = 3, i.e. events
from the 1960s and 1970s are also present. As we can see in figure 5.3 (b), in
the combined rankings drawdowns with low and high volatility are more
evenly spread than in the whole population. To summarise the findings
from the analysis of volatility regimes for the S&P 500, we confirm that
the largest drawdowns combined from each volatility regime (especially
for larger k) are — as expected — from a broader range of dates, since
more dates with low and high volatility are taken into account. Again, it
is important to stress, that the distributions of drawdowns during differ-

The choice of n;/; should coincide with the actual number of Dragon Kings detected
in each volatility regime V;/;. However, since we detect obvious outliers by eye, and to
obtain a combined ranking of exactly 15 drawdowns, we generally choose 1,3 = {6, 5, 4},
nis =1{4,4,3,2,2} and ;39 = {2,2,2,2,2,1,1,1,1,1}, with n; ;. = 0 if there are less than
10 drawdowns in Vjj.
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ent volatility regimes appear to exhibit a power law-like behaviour with
strong indicators for outliers, deviations and changes of regime in the tails.
In other words, it appears that there are more outliers than the 5-10 out-
liers we identify in the ccpFs of the whole population of drawdowns (fig-
ures B.5, B.6 and B.7). Furthermore, the results appear to be robust for
p- and e-drawdowns (generally a minimum of 70% of the combined top
15 drawdowns are the same events for p- and e-drawdowns). There are
discrepancies in the distributions of drawdowns for specific volatility re-
gimes with different T. However, the aggregate (combined) results appear
to be robust for different T, with more robust results for larger T."°
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Figure 5.2: S&P 500 index from 2004 to 2010 (logarithmic price scale).

10 To avoid too much clutter in the results, we will focus the study of volatility regimes for
the remaining time series on the two extreme cases T' = 20 and T = 250, since the results
appear to be rather robust for different time window sizes.
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Figure 5.3: S&P 500 index (T = 20). Probability density functions (PDF) of
the volatilities for the non-adjusted (blue) and adjusted (red) e-
drawdowns from (a) the top 15 ranks of the whole population, (b)
the combined top 15 ranks of the volatility regimes with k = 3,5, 10.



5.3.2 Stock market indices

Please refer to appendix C for the figures and tables of the stock market
indices (Hang Seng Index and FTSE 100).

VOLATILITY  As mentioned earlier, the Hang Seng Index is with a mean
volatility of 1.35 the most volatile stock market index in our study. Espe-
cially in the 1970s and in the recent years, the volatility has been very high,
with levels ranging from 2-4. For both the Hang Seng Index and the FTSE
100, the distributions of drawdowns across the different volatilities show
the same patterns we already encountered, where — with increasing T —
the distributions of drawdowns get compressed closer to the mean volatil-
ity. This behaviour confirms that for larger T the distribution of the volatil-
ity becomes less fat tail and less skewed.

WHOLE POPULATION Inthelogarithmic representations of the ccDF of
the Hang Seng Index we identify a very straight line for all T, suggesting
a power law behaviour in the tail. The adjustment seems to have a similar
smoothing effect as for the S&P 500, while the shape of the distribution
appears to be the same for all T (figure C.6). For the FTSE 100, the distri-
butions are more distinct for different T', where larger deviations appear al-
ready at higher ranks (around drawdown sizes of 9%). However, the adjust-
ment seems to have a smoothing effect on these deviations (figure C.59).
The largest drawdowns are robust for different measures of noise, i.e. gen-
erally at least 10 out of the top 15 ranked drawdowns are the same events
for non-adjusted p- and e-drawdowns. Adjusted p- and e-drawdowns are
even more robust among themselves, and comparing drawdowns with the
equivalent drawdowns with other T shows very high robustness, too. In
general, for larger T the different kinds of drawdowns become more and
more similar. This confirms the pattern we identified for the S&P s500.
The inverse tail index estimates confirm in all cases a power law-like be-
haviour for the first 100 ranks, with tail indices around 2.5-3.5. However,
the adjusted cases exhibit a very unstable behaviour for the first 10 ranks,
where the inverse tail index reaches 0.5-0.6, indicating a fatter tail for the
first few ranks (figure C.9). The UMPU test results are in line with Hill’s
estimates, choosing the power law for the first 100 ranks. However, for
the FTSE 100 we notice a behaviour that we find across all non-adjusted
drawdowns for all T, where around drawdown sizes 8-9% the p-value de-
cays below 5-10% and increases again around drawdown sizes at 7-8%,
indicating some kind of deviation in the tail, which is not present for ad-

65



66

justed drawdowns (figure C.65). Indeed, this coincides with the deviation
and smoothing we identified earlier in the ccpr. The likelihood-ratio test
results for the stretched exponential model are pretty straightforward, se-
lecting the modified model (C # 0) for drawdowns larger than around 5%.
This suggests the existence of a pure stretched exponential model (C = 0)
for the smaller and a fatter than stretched exponential behaviour for the
larger drawdowns. However, it appears that the p-values are more unsta-
ble for p-drawdowns, suggesting less disruptive deviations in the distribu-
tions around smaller drawdown sizes, or, in other words, smoother devia-
tions for e-drawdowns (figure C.15). The results for the power law model
show again significant declines of the p-value after the first few ranks, and
significant increases at ranks around 100, suggesting a wilder than power
law-like behaviour for the very largest drawdowns (figure C.71).

VOLATILITY REGIMES  The study of the volatility regimes reveals simi-
lar results as for the S&P 500. We see for almost all volatility regimes and
time window sizes power law-like distributions with strong indicators for
outliers and deviations, e.g. for Vo (HSI, T = 250, figure C.44) we see a
very straight line in the logarithmic representation of the ccpr with sig-
nificant outliers in the tail, and V7, (HSI, T = 250, figure C.50) seems to
be a volatility regime without any significant outliers. The combined top
15 ranked drawdowns from all volatility regimes are very consistent with
the rankings of the whole population, with a very robust behaviour for
non-adjusted p- and e-drawdowns, as well as the inclusion of drawdown
events from a broader range of volatilities. Comparing the rankings be-
tween non-adjusted and adjusted drawdowns reveals a robust behaviour,
too, e.g. 11 out of 15 e-drawdowns are the same in the non-adjusted and
adjusted cases for the combined ranking of V; 5,5 (FTSE 100, T = 20, ta-
ble C.51). With increasing T, we find again that the combined rankings
become even more consistent with the rankings of the whole population
for all kinds of drawdowns. For V; 55 (FTSE 100), but with T" = 250 (table
C.70), we find 14 out 15 matching non-adjusted and adjusted e-drawdown
events. This confirms that the analysis of distributions of drawdowns dur-
ing different volatility regimes is much more robust with larger T.

5.3.3 Foreign exchange

Please refer to appendix D for the figures and tables of the foreign ex-
change (JPY/USD).



VOLATILITY The exchange rate of the Japanese Yen against the U.S. dol-
lar is low-volatile, with an average volatility at around o0.57 for all T, while
the bulk of the drawdowns lies in the range of around 0.3-0.8 (figure D.3).

WHOLE POPULATION The ccprs appear to follow a power law, with
straight lines in the logarithmic representations and constant inverse tail
index estimates around o.3 for the lower ranks and for all T. Contrary to
the time series already discussed, the adjustment appears to emphasise the
tails of the distribution, especially for smaller T (figure D.5). The results
of the umPU test confirm a power law behaviour for the first 100 ranks,
and the test appears to be sensitive to deviations in the far tail around
rank 20, e.g. in figure D.12 we see a strong indicator for a change of regime
around that rank. The likelihood-ratio test results for both the stretched
exponential model and the power law model are in line with the results
for the time series we have discussed so far. A fatter than pure stretched
exponential behaviour is selected for drawdowns larger than around 3%,
and a significant decline of the p-value for the power law model in the
first few ranks suggests a wilder than power law-like behaviour of the very
largest drawdowns. However, there are no significant different behaviours
of the tests for non-adjusted and adjusted drawdowns.

VOLATILITY REGIMES  We find the same patterns as for the other time
series we discussed. In almost all volatility regimes the ccprs exhibit a
power law-like behaviour with strong indicators for outliers and devia-
tions, suggesting the existence of changes of regime within different volatil-
ity regimes, e.g. for V35 (T = 250, figure D.41). The patterns for the rank-
ings of the combined top 15 drawdowns from each volatility regime are
also in line with our previous observations, showing a robust behaviour
for the equivalent rankings of the whole population. Comparing the com-
bined rankings of p- and e-drawdowns with each other reveals larger dis-
crepancies, e.g. in the case of k = 5 with T = 250, only 8 drawdowns are
the same for the 15 largest combined p- and e-drawdowns (table D.28). A
possible reason could be the fact that there are very long e-drawdowns
in this time series, e.g. the non-adjusted e-drawdown at combined rank
9, staring at 2006-04-10, lasts over 26 trading days. Hence, the choice of
€0 = 0.5 could be too large for this time series. However, comparing the
combined ranks of non-adjusted and adjusted e-drawdowns reveals again
a robust behaviour, sharing 12 out of 15 drawdown events.
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5.3.4 Government bonds

Please refer to appendix E for the figures and tables of the government
bonds (U.S. T-Note and German government bond).

VOLATILITY  The average volatility of the U.S. T-Note is around 0.85 for
all T, with a volatility constantly growing over the period of the time series,
starting in the 1960s at a low level at around o.5 and recently reaching its
highest levels in the range of 1.5-3.5. The bulk of the drawdowns lies in the
range of around o0.1-2. The German government bond is by far the lowest-
volatile time series in our study, with an average volatility around o.31, be-
ing rather stable over the recent years. The bulk of the drawdowns lies
in the range of around 0-0.6, i.e. a much smaller range than for the other
time series. For T = 250, we see a rather harsh lower bound at around 0.13,
caused by the very constant low volatility spanning over several months
around 1990 and 1992-1993 (compare figures E.59 and E.62).

WHOLE POPULATION  For the German government bond we see in the
ccDFs a very strong effect of the volatility-adjustment, emphasising a very
distinctive outlier regime, especially for T' = 20 (figure E.63). However,
across all T, the smoothing effect of the adjustment we identified for other
time series is not as salient (figures E.64 and E.65). The rankings of the
15 largest drawdowns reveal our usual patterns: non-adjusted p- and e-
drawdowns, as well as adjusted p- and e-drawdowns are rather robust,
non-adjusted e-drawdowns are very robust across all T, and generally, con-
sistencies increase with increasing T. The inverse tail index estimates of
the U.S. T-Note are again constantly fluctuating around o.3, with slightly
higher values for the non-adjusted drawdowns, i.e. the tail indices of the
non-adjusted drawdown distributions are slightly lower than the indices
of the adjusted ones. Hill’s estimates of the German government bond un-
derline the particular shape of the distribution for this time series. We
observe mainly two behaviours that are new in our study, first, the esti-
mates do not fluctuate at such a constant level as in the other time series,
i.e. a plateau validating a power law is not as apparent, second, the esti-
mates for the adjusted drawdowns are with values over 0.4 much higher
than for the non-adjusted drawdowns, where the values are in the range of
0.2-0.3. This large discrepancy arises from the strong effect of adjustment
we identified before. Hence, strong changes of regime can be seen in the
adjusted cases (figures E.66, E.67, E.68).



VOLATILITY REGIMES The distributions of drawdowns during differ-
ent volatility regimes show in almost all cases strong indicators for outliers
and deviations, and the rankings confirm the patterns of consistency we
already identified for other time series. However, for the very low-volatile
German government bond, we see the effect of choice of the time window
size on segregating drawdowns into different volatility regimes, since for
T = 20 the largest drawdowns are distributed across all volatility levels
(figure E.60), but for T' = 250 most of them are at the harsh lower bound
(figure E.62). Hence, the combined rankings across different T are not as
robust as for the other time series, e.g. for k = 5, only 7 out of 15 draw-
down events are the same in the combined rankings for T' = 20 and 250.
The reason for this could arise from the fact that the volatility range for
the German government bond is very narrow, obviating the claimed need
of segregating drawdowns into different volatility regimes. Hence, for this
time series, the results by adjusting the whole population by the volatility
could be more appropriate.

535 Commodities

Please refer to appendix F for the figures and tables of the commodities
(gold and wheat).

VOLATILITY  The volatility of the gold price was very high in the early
1980s and was rising again over the recent years. The average volatility for
the whole time series is around 0.87, with the bulk of the drawdowns lying
in the range of 0.2—2. The average volatility for the wheat price is with 1.33
quite high and was rising over the recent years, while the bulk of the draw-
downs lies in the range of 0.5-2. However, here we see a weakness of the
estimator of scale, where some clustering appears around specific times,
e.g. the artefact in the volatility time series around 1990 produces the clus-
ters at the lower volatility bound in figure E57. For the adjustment, this
may produce distorted results, but for the study of the volatility regimes,
this effect can be safely ignored.

WHOLE POPULATION  Since most of the largest drawdowns for gold are
at high-volatile times (figure F.3), the adjustment decreases the size of the
largest drawdowns, making the tails of the ccprs less pronounced for all
T, i.e. the adjustment appears to produce smoother distributions with less
obvious outliers (figure F.6). Because of this, the events in the rankings
of the 15 largest adjusted drawdowns are very distinct to the non-adjusted
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cases, e.g. for T = 125, only one drawdown event from the 15 largest ad-
justed drawdowns is also present within the 15 largest non-adjusted p-
drawdowns. For the other time series discussed, we already found this pat-
tern, however, not as strong as here. For wheat, the volatility-adjustment
appears to have the smoothing effect we already encountered, probably
because of the largest drawdowns for wheat are distributed more evenly
across middle and high volatility levels (figure F.56). Hill’s inverse tail
index estimates for gold and wheat are again very particular compared
to all time series in our study, since the estimates for the non-adjusted
drawdowns do not fluctuate around a plateau in the lowest ranks and ap-
pear to decay towards o. However, for the adjusted cases for gold, the
estimates fluctuate around a constant level in the range of 0.1-0.2 in the
lowest ranks. Figures F9 (gold) and F.62 (wheat) are two remarkable ex-
amples. The uMPU test confirms this non-power law behaviour in some
cases, where the null (power law) is rejected after a few ranks. However,
in these cases, the p-value fluctuates, without clearly selecting the power
law or lognormal distribution (figures F.12 and F.65). On the other hand,
the likelihood-ratio test results for both commodities are in line with the
results of the time series we already discussed. Although the p-value for
the power law model does not decay as much as for the other time series,
a change of regime after the first few ranks is clearly visible (figures F.18
and F.71).

VOLATILITY REGIMES  The study of the volatility regimes for gold un-
derlines the main idea of the concept. Since we observed that most of the
largest drawdowns for gold are at high-volatile times, we still find outliers
at the low volatility regimes. Even for the small k = 3, the distributions in
Vi3 indicate the existence of outliers (figures F.21and F.35). For larger k the
lower volatility regimes indicate even stronger outliers (figure F.46). Con-
sequently, the combined rankings of the volatility regimes are less robust
with respect to the rankings of the whole population, since the combined
rankings include many low-volatile drawdowns, which are not included in
the rankings of the whole population, due to their absolutely smaller size,
e.g. ranks 11-15 in table F.34 are low-volatile drawdowns (non-adjusted e-
drawdowns). The results for wheat are in line with the main observations
we have made so far, especially revealing some possible low-volatile out-
liers.



CONCLUSIONS

We started our study with the aim of answering the question of whether
Dragon Kings in distributions of drawdowns taking a time-varying volatil-
ity into account give an even better insight into the nature of returns, draw-
downs, Dragon Kings and extreme risks.

Our approach to answering that question consisted in first defining the
term “volatility” to construct robust and sound time series of volatility
varying over time. We then applied our concept of volatility to coarse-
grained drawdowns sensitive to noise and to a set of tools to detect Dragon
Kings. Our tools were mainly designed to confirm particular distribu-
tional behaviours of the bulk of the drawdowns and to find indicators for
changes of regimes for the extreme drawdowns in the tail of the distribu-
tions. To test the effect of time-varying volatility we introduced two ap-
proaches. First, by “adjusting” or “normalising” drawdowns by the volatil-
ity at their time, and second, by “segregating” drawdowns into different
“volatility regimes” — populations, which are characterised by the same
level of volatility, or in other terms, by “conditioning” drawdowns by the
volatility. Both approaches are not mutually exclusive, such that we also
followed a combined approach of segregation and adjustment.

Our empirical analysis comprised eight time series, i.e. three stock mar-
ket indices (S&P 500, HSI, FTSE 100), one currency (Japanese Yen), two
government bonds (U.S. and Germany) and two commodities (gold and
wheat). We defined a set of combinations of parameters, to test the influ-
ence these parameters have on the results obtained. To characterise the
volatility, we have chosen the robust estimator of scale S, x and time win-
dow sizes of T' = 20 (one month), 125 (half year) and 250 (one year). We
worked with two levels of noise for coarse-grained drawdowns, namely
pure-drawdowns (no noise) and our newly defined variable €”-drawdowns
with €y = 0.5. We set the granularity of volatility regimes to k = 3,5 and
10, and generally worked with non-adjusted and adjusted drawdowns.

Our parametric tests confirmed the results of previous studies that dis-
tributions of drawdowns can be described very well by stretched exponen-
tials and power laws in the tails, usually up to around rank 100 and with
tail indices around 3, matching the power law behaviour of returns.
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Checking the robustness of the different parameters, we found that the
choice of T is the most crucial factor in the whole study, because it af-
fects not only the adjustment and the volatility regimes, but also the €”-
drawdowns. However, we found that p- and e’-drawdowns are in the
same way very robust, as p- and e¢/-drawdowns turned out to be very ro-
bust in previous studies. Hence, we believe that due to the theoretical ad-
vantages, €'-drawdowns are a straightforward extension to coarse-grained
drawdowns. The results of studying volatility regimes turned out to be
more robust with both increasing k and T, with the disadvantage of de-
creasing sample sizes with larger k.

The effect of adjustment is manifold and non-conclusive: we found for
most time series that the adjustment appears to smooth the distributions
of drawdowns. Only for the Japanese Yen and for the German government
bond we did find that the adjustment actually emphasised the tails, mak-
ing outliers more obvious and pronounced. Interestingly, both of these
times series are very low-volatile, but at this point, we are not able to con-
firm any connection between these characteristics.

The results of studying drawdowns separately during different volatility
regimes are more promising: We find power law-like distributions with
strong indicators for outliers and changes of regime for almost all volatil-
ity regimes, independent of the granularity k and time window size T'. De-
pending on the time series studied, we find two remarkable features. The
first feature follows from the high consistency we found when comparing
the rankings of the whole population of drawdowns and the combined
rankings of the largest drawdowns from each volatility regime, i.e. we
found that especially for larger T'most of the events of the 15 largest draw-
downs from each ranking match with each other. This tells us that Dragon
Kings we already identified in the whole population of drawdowns are not
only confirmed by looking at combined rankings of the largest drawdowns
from each volatility regime, but also more pronounced than in the whole
population. In other words, the distributions of drawdowns during differ-
ent volatility regimes exhibit in most cases more obvious deviations and
outliers. The second remarkable feature we found follows from the few
largest drawdowns in the combined rankings that are not present in the
overall rankings. Here, we possibly found new Dragon Kings at times with
low volatility, i.e. Dragon Kings of absolutely smaller size, but of extreme
relative size in their context.

The synthesis of both features tells us that studying distributions of draw-
downs separately during different volatility regimes reinforces the idea of
the existence of drawdowns that appear to belong to a different popula-



tion than the bulk, with the extension that Dragon Kings do not need to
be necessarily absolute extreme drawdowns, since we confirmed known
“absolute” Dragon Kings and possibly found new “relative” Dragon Kings.

This conclusion gives rise to questions that remain unanswered. Here
we propose several lines of work to continue this study:

The adjustment appears to have some smoothing effect on the dis-
tributions of drawdowns such that parametric tests could benefit
from these more immaculate distributions. Future research could
investigate if there are indeed mechanisms and processes yielding
smoother distributions.

We identified that the volatility, especially through the choice of
the time window size and scale estimator, is the most crucial fac-
tor when following the approach of volatility regimes. Hence, we
propose to further investigate the concept of volatility with more so-
phisticated methods. Since literature in this area is very rare, we pro-
pose to consider Randal’s [39] “iterated ¢-volatility estimator”, which
chooses the t-distribution with five degrees of freedom as a candi-
date for the data generation process for returns. His results appear
to be promising, even if the underlying distribution of returns is not
the ts-distribution. Another approach is to use the robust scale es-
timators in conjunction with an adaptive time window size T, such
that the volatility within the local time window be approximately
constant.

We introduced a methodology to check for Dragon Kings across
different volatility regimes through the concept of combined rank-
ings, taking a fixed number 7,/ of the largest drawdowns within
each volatility regime V;/;x and combining them into one ranking.
As we already mentioned, the actual Dragon Kings detected in each
volatility regime should be combined. This is just a shortcut method,
since we do not have good tests for outliers or changes of regimes
for small samples in the tails. Hence, research should focus on new
methods and tools to detect Dragon Kings even for small samples;
we saw that the likelihood-ratio test for the power law model failed,
probably because of samples in the tail being too small.

Another focus should be to streamline the methodology to check
for Dragon Kings across different volatility regimes. Here, the effect
of the granularity k could be further investigated, e.g. by testing for
Dragon Kings across different “resolution scales” k.
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| CONCLUSIONS

The results of our study can be regarded as a success, since we simply con-
firm the existence of Dragon Kings. However, we encourage a more opti-
mistic take on the results, since we found evidence for possibly new, un-
known Dragon Kings. Therefore, an important next step should be to link
our concept of volatility regimes and Dragon Kings to the theory of ex-

ogenous and endogenous crashes, i.e. LPPL-bubbles [23], and fearful and
fearless bubbles [2].



A VOLATILITY PARAMETERS

The figures in this appendix complement the analysis and figures in chap-
ter 2 dealing with the parameters for the realised volatility.
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Figure A.1: S&P 500 index (grey). Relative volatility deviations of volatilities
with time windows T = 20 (blue) and T = 250 (red) from the refer-
ence with time window T = 125 (S, x, scaled to [0, 1]), showing the
negative and positive 10% (black —-).
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Figure A.2: S&P 500 index (grey). Realised volatilities using two estimators
of scale: Exponentially weighted standard deviation with 90%
trimmed samples (sx, X (90) blue), and Snx (red), as well as the
absolute deviations between the two (black). The y-axis is scaled to
[0,1]. (a) Time window T = 20; (b) T = 250.
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