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A B S T R A C T

Drawdowns o�er a more natural measure of the �nancial market dynam-
ics than �xed time-scalemeasures, as they take sudden persistences of suc-
cessive daily drops into account. While the vast majority of drawdowns
follow fat-tailed distributions, previous studies report evidence that the
very largest drawdowns in a variety of �nancial markets are much more
unrestrained than expected and belong to a di�erent statistical distribu-
tion than the bulk of the drawdowns. We extend this concept of “Dragon
Kings” by putting drawdowns into the �nancial context of their time, tak-
ing the observed time-varying volatility of returns into account. We de�ne
realised volatility as the standard deviation of returns in a moving time
window, and extend upon this by estimating the standard deviation with
robust estimators of scale, which are more resistant to extreme outlier re-
turns. We �nd that Rousseeuw and Croux’s estimator Sn [��] has both
theoretical advantages and performs very well on real �nancial data.
Our study comprises eight time series (three stock market indices, one

currency, two government bonds and two commodities) and we follow
two approaches to describe drawdowns with respect to the volatility at
their time: we adjust drawdowns by the volatility, and we segregate draw-
downs happening during the same volatility regimes, i.e. we group draw-
downs with similar volatility levels together. We do not �nd any signif-
icant new properties of the distributions by adjusting drawdowns. How-
ever, segregating drawdowns a) con�rmsDragonKings found in thewhole
population of drawdowns; b)makes theseDragonKingsmore pronounced,
i.e. distributions of drawdowns during di�erent volatility regimes exhibit
in most cases more obvious deviations and outliers than the distributions
of the whole population; c) possibly �nds new Dragon Kings, which are
not visible in the distributions of the whole population. �is tells us that
studying distributions of drawdowns separately during di�erent volatility
regimes reinforces the idea of the existence of Dragon Kings, with the ex-
tension that they do not need to be necessarily absolute extreme draw-
downs, but “relative extreme” in their �nancial context.
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1 I N T R O D U C T I O N

“Errors of Nature, Sports and Monsters correct the under-
standing in regard to ordinary things, and reveal general forms.
For whoever knows the ways of Nature will more easily notice
her deviations; and, on the other hand, whoever knows her de-
viations will more accurately describe her ways.”

������� ����� , ����� ������� , ����1

Systemswith a large number of interconnected parts self-organise their dy-
namics and internal structures to the extent that they exhibit— as a whole
— surprising new properties not obvious from the properties of their indi-
vidual parts. �e complex system approach takes these “emergent” prop-
erties into account by studying the interconnections and relationships of
the mutually interacting individual parts and is nowadays ubiquitous in
most of the scienti�c disciplines, such as in biology (e.g. ecology, evolu-
tion, neurobiology), geology (e.g. earthquakes, weather, erosion), econ-
omy and social sciences (e.g. markets, cognition, interacting agents).

� Book II, aph. ��. Cited in [��].

1
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A Gaussian world called Mediocristan

Mediocristan, an idea conceived by Taleb [��], is amythical land inhabited
by economists and other social scientists. �ey live in this land because
they accept the crucial idea that the world’s events �t neatly beneath a
Gaussian bell curve of outcomes — not because they are mediocre them-
selves. In fact, they believe that extreme events, such as market crashes
and other major discontinuities in our economy and society, are so rare
that we can ignore them. Inhabitants of Mediocristan start by discarding
extreme outcomes, such as in the lively discussion about the world’s peak
oil production [��] : “Remember that barring any unforeseen tragedy [...]
the supply will not drop suddenly, meaning that the price will not rise
suddenly.” On the other hand, those concerned about the possible severe
consequences resulting from peak oil focus on extreme outcomes.

Black swans in Extremistan

In Taleb’s mythical world the peak oil believers, who know that it is worth
taking out insurance against seemingly unlikely events, if their impact
could be very severe, are placed in the land of Extremistan. In that world
extreme events— “Black Swans”— are still rare, but are very important to
take into account, since their consequences are so considerable that they
could change the course of history.
�is is how one of the most remarkable emergent properties of natu-

ral and social systems is the punctuated occurrence of rare large events,
which o�en dominate the organisation and lead to huge alterations. �e
pervasive statistical feature of these systems and assumed signature of self-
organisingmechanisms at the origin of a hierarchy of scales is a probability
distribution function with a power law dependence as a function of event
sizes [��, ��].
A probability distribution function of returns P(x) exhibiting a power

law tail is such that

P(x)∝ Cα

x�+α

for large x, possibly up to some large limiting cut-o�. �e exponent α, the
so-called “tail index”, characterises the nature of the tail. In the case of
�nancial returns, the tail index is estimated to fall into the range of � to �
[�, ��, ��, ��, ��]. For α < �, one speaks of a “fat tail” for which the variance
is theoretically not de�ned.
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Power law distributions incarnate the notion that tail events, i.e. events of
large impact, are not exceptional events, rather they belong to the same
statistical distribution as their smaller siblings — like the belief that a
great earthquake is just a smaller one that grows larger. �is suggests com-
mon generating mechanisms of a population described by power law dis-
tributions. Consequently, there is no way to predict large events as they
share the same attributes with the smaller ones. �is is the view embraced
by Taleb, where extreme events are reduced — rather pessimistically —
to “unknown unknowns”, and by Bak et al. in their formulation of self-
organised criticality [�, �].

Dragon Kings beyond power laws

However, evidence suggests that there is more beyondmere power law dis-
tributions, since in a wide range of complex systems extreme events are
much more unrestrained than expected by the extrapolation of the power
law distribution in their tails and belong to a di�erent statistical distribu-
tion—di�erent from the bulk of the distribution.�ese anomalous events
can be termed genuine “outliers”, events to be removed to obtain reliable
statistical estimations, or even “kings” [��] or “dragons” [��], in analogy
to the fortune of kings, which appear to exist beyond the Zipf law wealth
distribution of their subjects, and to stress coexistence of a completely dif-
ferent kind of species, whose presence has profound signi�cance.

Empirical evidence of the existence of these “Dragon Kings” has been
found in the distribution of city sizes, material failure processes, hydro-
dynamic turbulences, epileptic seizures in humans, earthquakes and —
most interestingly for our study — in the distribution of �nancial mar-
ket drawdowns (see [��] for a general overview on the concept of Dragon
Kings conceived by Sornette et al.). �ese Dragon Kings reveal the exis-
tence of mechanisms of self-organisation and are o�en associated with a
neighbourhood of what can be called equivalently a phase transition, bi-
furcation, catastrophe or tipping point. �eir status emerges in general
from the existence of positive feedbacks that amplify the role of certain
events and carry a unique �ngerprint in form of a log-periodic power law
[��, ��, ��]. �at latter property opens the door to methods for the predic-
tion of phase transitions, such as the forecast of the termination of �nan-
cial bubbles [��, ��].
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Drawdowns: Transient bursts of dependence

�e characterisation of anomalous large �nancial market moves is of pro-
found importance for riskmanagement andportfolio allocation. Although
most of the time, negative and positive changes balance each other out, “ex-
treme variations are so high that they represent a signi�cant part of loss
or pro�t at the end of any period”, as Mandelbrot pointed out [��].
It is widely accepted that the tails of the distribution of asset returns fol-

low approximately a power law. But this is only part of the truth, since
the claim is to characterise the statistics of extreme events. Financial re-
turns de�ned at �xed time scales, based on the assumption that consecu-
tive daily returns are independent, are revealing only a part of the variabil-
ity of �nancial time series, while a major risk component is missing. In
contrast, �nancial crashes (extreme events) are transient bursts of depen-
dence between successive large losses.
A simple example clari�es the claim: Consider a crash as a sequence

of three successive drops of ��� each, summing up to a total loss of ���.
A single drop of ��� can be seen to happen on average every four years
or with a probability of ��−� (with data from the Nasdaq composite index,
assuming ��� trading days a year). Accordingly, the probability of three
such events in a row is (��−�)� = ��−�, an excessively rare recurrence of
roughly four million years.
We see that decomposing large crashes into small independent events at

�xed time scales misses the underlying dynamics of the market. However,
the analyses in [��–��] report evidence that the very largest drawdowns
in exchange markets, major world stock markets, bond markets and com-
moditymarkets are DragonKings (outliers), notwithstanding the fact that
the very largest drops at �xed time scales (e.g. daily returns) are not out-
liersmost of the time.�erefore, drawdowns o�er amore naturalmeasure
of the �nancial market dynamics than �xed time-scale measures, as they
take sudden persistences of successive daily drops with additional corre-
lated ampli�cation of the drops into account. In addition, for two-thirds
of the identi�ed Dragon Kings, it has been found that crashes can be con-
sidered as possible ends of bubble regimes [��], which are preceded by a
faster-than-exponential unsustainable growth regime. Mechanisms lead-
ing to this growth regime with positive feedbacks include among others
portfolio insurance trading, option hedging, momentum investment and
imitation-based herding.
�e implication for risk management is that common techniques, such

as Value-at-Risk and Extreme Value �eory that focus only on one-day
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extreme events occurring in a given period of time may not be the most
important or most relevant measures of large risks. More light should be
shed on the distribution of drawdowns and its outliers, since large losses
are o�en the result of transient correlations leading to large cumulative
losses that make these outlier-drawdowns much more frequent than ex-
pected from the extrapolation of the return distributions in their tails.
Previous research by Sornette and co-workers on the detection of Drag-

on Kings in �nancial time series was focused on the distribution of draw-
downs in unadjusted series of daily returns. �e results have been found
to be robust with respect to change in various measures of drawdowns, in
particular which allow for a certain degree of fuzziness in the de�nition
of cumulative losses [��, ��].
In early works by Johansen and Sornette [��], drawdowns were de�ned

as continuous decreases of the price at the close of each trading day (daily
close). Hence, a drawdown was exclusively composed of negative returns,
since any positive return marked the end of a drawdown, no matter how
small the increase. “Pure drawdowns” composed by this de�nition were
highly sensitive to noise and failed to account for the full intensity of cumu-
lative market drops. Coarse-grained drawdowns as de�ned in [��] ignore
increases below a certain threshold, which would terminate a “pure draw-
down”. Hence, these “є-drawdowns” allow �uctuations below a threshold
є in the time series. �e threshold is �xed over time and proportional to
the volatility, de�ned as standard deviation σr over the entire time series
of returns, with a coe�cient є� chosen from the observation of data. For-
mally, the threshold is de�ned as є = є� ⋅ σr.
Recent attempts [��] to empirically determine whether Dragon Kings

in �nancial returns are present at all time scales, concluded that there is
no evidence for extreme outliers in high frequency data at one minute
resolution. However, at daily time scales outliers are clearly present.�ese
results suggest that the feedback mechanisms leading to Dragon Kings
require a certain time for escalation and con�rm the signi�cance of the
previous research on drawdowns and Dragon Kings.

Crashes and their financial context

In another recent approach [��] the question of identifying crashes in �-
nancial markets is further discussed with respect to the observed instabil-
ity of the standard deviation of returns over time. Here, Le Bris’ innova-
tive approach is to put crashes into the �nancial context of their time. In
other words, all previous attempts investigated the presence of drawdowns
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and outliers time-independently, implying a constant volatility, and thus,
a constant risk scenario over time. However, as a strong drawdown in
tough, highly volatile market conditions has less negative impact for the
investors than in stable conditions, a crash should represent a signi�cant
discrepancy with what was previously observed, not with what was “on
average” throughout the time series observed.
A simple (exaggerated) example illustrates the point: Consider a drop

of ��� when the volatility is ���, and a drop of �� when the volatility is
�.��. �e former is just a � standard deviations event, whereas the latter
is a gigantic �� standard deviations event.
Le Bris presents a method to adjust the time series of returns relative

to its �nancial context by de�ning the adjusted return rt,ad justed at time t
as the di�erence between the (unadjusted) return rt and the average re-
turn µt−�,t−T previously observed over the time context T , divided by the
standard deviation σt−�,t−T previously observed over the time context T .
�us:

rt,ad justed = rt − µt−�,t−T
σt−�,t−T

�is adjustment of returns is equivalent to a “rolling standardisation” lead-
ing to a standard score, which allows a direct comparison of returns with
di�erent averages and standard deviations. �e unit of measurement of
the adjusted returns is the standard deviation, or “risk”.
Our present study attempts to systematically extend this simple idea to

the Dragon King detection methodology by investigating the impact of
volatility that varies over time. To do this, we will follow two di�erent
approaches: We will adjust drawdowns by volatility at their time, similar
to Le Bris’ approach, and we will group drawdowns that happened during
similar “volatility regimes” together, to investigate only distributions of
drawdowns at similar market conditions. For both approaches we will
employ the same methodology to detect outliers as successfully done in
previous studies.
We will start in chapter � with a general discussion on volatility, in or-

der to de�ne a robust method to construct a time series of time-varying
volatility. In chapter � we will reinvestigate the de�nitions of pure and
coarse-grained drawdowns, particularly to take into account a variable
level of volatility and noise. In chapter �we will present a methodology to
detect Dragon Kings in distributions of drawdowns, either taking volatil-
ity into account or ignoring it, and adopting some tools previously used
for other cases than drawdowns. In chapter �we will apply these concepts
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of volatility, drawdowns and Dragon King detection to various �nancial
time series. In chapter � we will conclude with the following question in
mind: whether Dragon Kings in distributions of drawdowns taking a vari-
able volatility into account are in line with the results from previous stud-
ies or give an even better insight into the nature of returns, drawdowns,
Dragon Kings and extreme risks, with the goal to develop more adequate
measures of risk in the future.
Just as Francis Bacon observed in the ��th century, we propose that

the distribution of drawdowns and its outliers reveal fundamental mecha-
nisms and properties of the �nancial markets.





2 V O L AT I L I T Y

Evolving volatility is a dominant feature observed in most �nancial time
series and a key parameter used by market participants in many �nancial
risk analyses. It is a measure of the variability of �nancial returns and a
very popular proxy for risk. �ere is an extensive literature on the estima-
tion of parametric volatility models (e.g. G����, M���� and others, see
[�, ��, ��, ��]). However, these approaches have in common the fact that
they are modelled to give ex ante estimates of the volatility and strongly
rely on assumptions about distributions and other attributes of the time
series.
Our aim is to de�ne a robust estimator for volatility to capture the mar-

ket dynamics and risk investors were faced with over the time of the time
series. Since drawdowns (further discussed in chapter �) carry only infor-
mation about loss in absolute terms, a measure for volatility at the time
drawdowns occurred will put the magnitude of absolute loss in relation
to the actual volatility regime, i.e. to the actual market risk scenario at
the time of the drawdowns. Hence, we need approaches to estimate the
evolving volatility that are robust to distributional assumptions and have
a sound statistical basiswith reasonable precision properties, because “[in]
analysing data, we do not want to even attempt to represent its stochastic
behaviour accurately; rather we wish to choose techniques that spare us
this essentially impossible task,” as Morgenthaler and Tukey pointed out
[��]. However, literature on these simpler, for our study more appropri-
ate, non-parametric models is scarce, and usually the standard deviation
is chosen as the conventional non-parametric volatility estimator.
Recent attempts by Randal [��] to construct more sophisticated non-

parametric volatility estimates have shown that there is room for improve-
ment on the accuracy of the results, in particular with respect to the re-
sistance to outliers. �ese approaches are claimed to be simple, cheap to
compute and tailored to fat-tailed distributions, since the standard devi-
ation as reasonable estimator of scale for the volatility may be ine�cient
for non-gaussian distributions.
With Morgenthaler and Tukey in mind, we begin in section �.� with an

overview of the problem of robust scale estimation, and then present in

9
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section �.� a simple, powerful and non-parametric approach to construct
estimators of time-varying historical volatility. �is is a general purpose
technique for estimating volatility, no attempt has been made to build pre-
dictive or stochastic volatility estimates. �e approach is non-parametric,
since it can be applied to time series without modelling underlying price
processes. For amore detailed discussion on this andmore advanced tech-
niques please refer to Randal’s study [��]. �e approach we consider here
is based on a moving time window of standard deviation estimates — the
“realised” or “historical” volatility. In section �.� we introduce the concept
of volatility regimes and section �.� concludes this chapter on volatility
with a brief discussion of the time-varying volatility using our approaches
we have presented in this chapter. As an actual example we will look at the
time around the October ���� crash (“Black Monday”).

�.� ������ ����� ����������

Volatility is a measure of the variability of �nancial returns. In statistical
terms, variability is the dispersion of some sample observations, quanti-
�ed by a robust measure of scale.
If a robust estimator of scale is largely una�ected by a small number

of large changes in the data, i.e. by outliers, and by any number of small
errors, e.g. rounding errors, it is called resistant, at the cost of lower sta-
tistical e�ciency when outliers or errors are not present [��]. �e resis-
tance to outliers is usually of greater interest, and, in addition, a robust
estimator is a suitable estimator for non-normal data. Hence, robust es-
timators of scale are particularly applicable to �nancial data, which o�en
features the three properties we want to protect against: occasional outlier
values, many small errors (induced by properties of �nancialmarkets such
as discrete price intervals and discontinuous trading) and underlying non-
normality. In general, robust estimators of scale are used to complement
or replace conventional estimates such as the sample standard deviation.
Below, we will present di�erent estimators of scale for the sample ob-

servations X = (X�, ..., Xn). First, the non-robust, but most commonly
used standard deviation in section �.�.�; second, Gini’s mean di�erence,
another non-robust but commonly used estimator in section �.�.�; third,
the sample interquartile range (IQR) in section �.�.�; fourth, the median
absolute deviation (MAD) and a modi�cation in section �.�.�; and ��h,
the trimmed sample in section �.�.�. In section �.�.� �nally, the statistical
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performance of the estimators presented here will be brie�y assessed on
their e�ciency.

�.�.� Sample standard deviation

�emost commonly used scale estimator is the sample standard deviation
sX de�ned as

sX =
���� �

n − �
n�
i=�
�Xi − X̄�� (�.�)

with the sample mean

X̄ = �
n

n�
i=�

Xi (�.�)

�e sample standard deviation is closely related to the sample variance
s�X , which is the minimum variance unbiased estimator for the variance
parameter σ� for Gaussian data. Despite these excellent qualities for well-
behaved data, and the fact that the sample variance will be unbiased for
the underlying variance generally for random samples, evidence shows
us that this estimator is not robust, since it is heavily a�ected by single
outliers [��].

�.�.� Gini’s mean difference

Gini’s mean di�erence with absolute inter-point di�erences is a similar
estimator as the sample standard deviation and forms the basis of robust
estimation of risk in the �nancial literature [��]. It is de�ned as

GX = �
n(n − �)

n�
i=�

n�
j=�
�Xi − Xj� (�.�)

�is estimator is also not very robust, since the absolute di�erences be-
tween every pair of observations are taken into account. Outlying values
will result in many inter-point distances being large, with GX in�ated as a
result. However, using the absolute di�erences between every pair rather
than the squared di�erences to themean in the standard deviation reduces
the impact of large di�erences.
In order to use Gini’s mean di�erence as a consistent estimator ŝX for

the estimation of the standard deviation (normal distribution), it has to
be scaled with the factor kG , such that ŝX = kG ⋅GX . It can be derived that
kG = �.����.
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�.�.� Sample interquartile range

�e most commonly used robust scale estimator is probably the interquar-
tile range (���), which measures the di�erence between a distribution’s
upper and lower quartiles. It is also called the “midspread” or “middle
��y”, and is de�ned as the di�erence between the third and the �rst quar-
tiles

IQRX = Q� −Q� (�.�)

where Q� is the ��th percentile and Q� the ��th percentile. In order to use
the ��� as a consistent estimator, the scaling factor is kIQR = �.����, such
that ŝX = kIQR ⋅ IQRX .
�e sample interquartile range is resistant to outliers, since it ignores

the most extreme ��� of each tail in the observations and is the simplest
estimator of scale considered here, since it is very cheap to compute.

�.�.� Median absolute deviation and Sn

�e median absolute deviation (���) is another robust scale estimator
and is along with the interquartile range, one of the most commonly used
robust scale estimators. It is de�ned as the median of the absolute devia-
tions of the observations X about their median

MADX =medi �Xi −med jX j� (�.�)

where med jX j denotes the median of the sample observations Xj. In or-
der to use the ��� as a consistent estimator, the scaling factor is kMAD =
�.����, such that ŝX = kMAD ⋅MADX .
Like the sample interquartile range, the median absolute deviation is

also very resistant to outliers and cheap to compute. However, contrary to
the interquartile range where the quartiles do not need be equally far away
from the centre, the ��� takes a symmetric view on dispersion, since it
�rst estimates a central value (the median) and then attaches equal impor-
tance to positive and negative deviations from it [��]. In other words, the
��� corresponds to �nding the symmetric interval around the median
that contains ��� of the observations. For asymmetric distributions this
does not seem to be a natural approach. Because of this drawback, Rouss-
eeuw and Croux [��] introduce a new scale estimator, which can be seen
as an analog of Gini’s mean di�erence, where themean values are replaced
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by themedian values. Wewill denote this estimator here as Sn,X and de�ne
it as

Sn,X =medi �med j�Xi − Xj�� (�.�)

wherewe compute for each Xi themedianmed j of �Xi−Xj�, for each Xj ( j =
�, ..., n). �is yields nmedians med j, the median medi of which gives our
�nal estimator Sn,X .� �e scaling factor for this estimator is kSn = �.����,
such that ŝX = kSn ⋅ Sn,X .
Like the ���, the new estimator Sn,X is a simple combination of medi-

ans and absolute values, but without the need for any location estimate of
the sample. Instead of measuring how far away the observations are from
a central value, Sn,X takes the median of the inter-point distances between
every pair of observations. �is is valid for asymmetric distributions, too.

�.�.� Trimmed sample

As noted before, the sample standard deviation andGini’smean di�erence
are not robust estimators of scale, since they can be heavily in�uenced by
extreme values. As a simple approach to make these estimators more ro-
bust, we introduce here a method that compensates for this, by dropping
a certain lower and upper percentile from the sample of observations. For
example, in a ��� trimmed sample, the smallest and largest ��of the obser-
vationswould be ignored for the estimation. Wewill denote a p� trimmed
sample as X(p).
�us, for the estimation of scale using the standard deviation (�.��) or

Gini’s mean di�erence (�.�) only a trimmed sample may be used. �is
trimmed sample alters the sample standard deviation in two ways in or-
der to reduce the e�ects of outliers. First, the sample mean as the loca-
tion estimator is altered and second, the squared deviations about this
new mean will be di�erent. For Gini’s mean di�erence the e�ect would
be similar, since the inter-point di�erences would be smaller. �e e�ect of
the trimmed sample on the standard deviation and Gini’s mean di�erence
as estimators of scale is therefore similar to the sample interquartile range.

� A straightforward algorithm for computing (�.�) would need O(n�) computation time.
However, Rousseeuw and Croux [�] have constructed a more e�cient O(n log n)-time
algorithm.
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�.�.� Tukey’s triefficiency

To assess the statistical performance of the scale estimators introduced
before, we present here the results from [��]. A comprehensive overview,
discussion and a detailed description of the methodology to assess the
performance of these estimators can be found there. �e estimators are
assessed by theirminimum relative e�ciency over Tukey’s three corners—
three sampling situations to re�ect the three extreme cases of importance
to robust statistics [��]:

�. �������� ������ ������������
Described as “unrealistically nice” by Morgenthaler and Tukey.

�. ���-���� ���������
Also known as �-wider, where n − � of the observations in a sample
of size n are standard normal and the remaining observation has ten
times the standard deviation of the others.

�. ����� ������������
An observation that is obtained by dividing a standard normal ran-
dom variable by an independent random variable distributed uni-
formly on the interval [�, �]. Like the Cauchy, the slash distribution
has no mean or variance due to its slowly decaying tails.

All three theoretical distributions are symmetric: the standard normal has
rapidly decaying tails; the one-wild has a single outlying, but otherwise
well behaved value (in the upper or lower tail with equal probability); and
the slash, with its in�nite mean and variance, has very slowly decaying
tails. In practice, most samples from the one-wild will be highly asymmet-
ric, with the presence of the single outlier. An estimator that copes well
in all three situations can be suitably used either when the data is well be-
haved, or in the presence of occasional outliers, or when the data is very
fat-tailed, or some combination [��].
�e sample e�ciency e�(S) of a scale estimator S(X) is de�ned as

e�(S) = sample variance of ln σ̂i , ..., ln σ̂m
sample variance of ln S(X)i , ..., ln S(X)m ⋅ ���% (�.�)

using m independent realisations of the observations X = (X�, ..., Xn),
where σ̂i is the maximum likelihood scale estimate used as an “close-to-
optimal” reference and S(X)i the scale estimate for sample i.� �e “trie�-
ciency” is the minimum e�ciency of the estimator over the three corners,

� See [��] for further details on the maximum likelihood scale estimates.
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Table 2.1: Average e�ciencies (�) for the estimators of scale, based on ��� real-
isations of the e�ciencies, each estimated from m = ����� samples
of size n = �� for the three corner cases (std. normal, one-wild and
slash distributions). �e estimators are de�ned in sections �.�.� to
�.�.�. (Results obtained from [��], table �.�)

��������� ������ ���-���� ����� �������������
sX 100.0 11.4 7.5 7.5
GX 98.0 26.7 11.4 11.4

IQRX 39.4 42.4 84.0 39.4
MADX 37.8 40.5 87.3 37.8
Sn,X 54.7 55.9 95.8 54.7

sX , X(95) 80.9 88.1 42.1 42.1
sX , X(90) 65.0 70.8 76.1 65.0

and the best trie�cient estimator will have themaximum trie�ciency. We
would expect the trie�ciency of this estimator to be less than ���� since
no single estimator will be optimal at all three corners.
�e e�ciencies for the sample standard deviation sX (�.�), Gini’s mean
di�erence GX (�.�), sample interquartile range IQRX (�.�), median abso-
lute deviation MADX (�.�), Sn,X (�.�), and the sample standard deviation
of a ��� and ��� trimmed sample (X(��), X(��)) are presented in table
�.�. We notice that both the sample standard deviation and Gini’s mean
di�erence have a very poor performance for the one-wild and slash dis-
tributed data, while Gini’smean di�erence performs slightly better in both
cases. However, both estimators are highly e�cient for normal data. As
expected, the robust estimators ���, ��� and Rousseeuw and Croux’s es-
timator Sn,X , which depend primarily on order statistics, perform in the
opposite way: their e�ciency for normal distributed data is the worst and
for slash distributed data the best. Under the criterion of trie�ciency, the
��� is more robust than the ���, i.e. the ��� is generally more suitable.
However, the ��� performs better for slash distributed data, while it per-
forms only slightly worse than the ��� for one-wild data. �e Sn,X estima-
tor out-performs the ��� and ��� in all three cases and has the second
best trie�ciency of all studied estimators. Only the sample standard devi-
ation from a ��� trimmed sample has a better trie�ciency, but still lower
e�ciencies for the one-wild and slash data than the robust estimators. Fi-
nally, for the sample standard deviation from a ��� trimmed sample the
e�ciency is very high for the one-wild, but very low for the slash.
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Since the estimators are assessed only over Tukey’s three corner cases
and the distributions of drawdowns are somewhere in between of these
corners, the estimators’ performances shown in table �.� should not be
taken as a determinant of which estimator to choose. �erefore, to clarify
the e�ect of these estimators on the distribution of drawdowns, we will
present an example with real �nancial data at the end of this chapter.

�.� �������� ����������
Volatility estimates for real data are di�cult to appraise since the true
volatility is unobservable. A popular non-parametric, model-free estima-
tor of time-varying volatility that provides a useful framework for this
problem is the “realised” or “historical” volatility estimator. �e realised
volatility is basically the sample standard deviation of returns over a rolling
time window of a given size. �is measure gives us a powerful ex post
estimate of the volatility. Since we are interested in capturing the actual
market dynamics and not the market participants’ assessment of future
volatility, it gives us insight into what actually took place in the market. It
has been prominent in empirical studies of stock returns [��] and plays an
important role used to estimate “historical” volatility as a basis for evalua-
tion of volatility forecasting techniques [��].
We de�ne the realised daily volatility σt,T at time t over the timewindow

of size T for the time series of n daily returns r = (r�, ..., rn) (�.�) as
σt,T = sr(t,T) (�.�)

where sr(t,T) denotes the standard deviation (�.�) of the sample of returns
falling into the time window r(t, T) = (rt−T , ..., rt−�). Note that in our
de�nition we are not taking into account the return at time t.�
Using daily data in our case, a time series of model-free volatility esti-

mates can be constructed by taking returns spanning over any number of
days T into account. However, when choosing the number of past obser-
vations, an important tradeo� has to bemade. If the volatility is calculated
over a long time framewith a large number of observations, e.g. taking the
daily returns over the past year, many local properties of volatility, such as
volatility clustering and leverage e�ect, tend to disappear. On the other

� In this paper, “volatility” refers to the volatility σt ,T at daily time scale in percentage units.
Hence, the annualised volatility corresponds to σt ,T ,ann = σt ,T ⋅ √���, assuming ���
trading days per year.
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hand, by choosing a small number of observations, the measures are sub-
ject to great statistical error. Hence, the span T of the moving window
should be ideally chosen such that the volatility within the local time win-
dow be approximately constant, but the number of observations be su�-
ciently large to avoid statistical errors.
An important assumption underlying this estimator is that the sample

standard deviation sr(t,T) is a reasonable estimator of scale for the variabil-
ity of returns. However, as we have seen in section �.�, the sample stan-
dard deviation may be very ine�cient for non-Gaussian data. As a con-
sequence, it will provide poor estimates of volatility. �erefore, we seek
to address this problem by replacing the sample standard deviation sr(t,T)
with other robust estimators ŝr(t,T) introduced in section �.�. In addition,
in the following section �.�.� we will introduce a more advanced de�ni-
tion of the sample standard deviation for amoving timewindow than (�.�).
�is de�nition will allow us to give exponentially decaying weights to the
returns r(t, T). It will not change the standard deviation to become a ro-
bust estimator of scale, but it tries to enhance its performance and follows
approaches used in practice.

�.�.� Exponentially weighted standard deviation

Since the aim is to de�ne a volatility that re�ects the market dynamics at a
certain time t without taking into account exceptional events, such as big
rallies and slumps that happened in the close or distant past from t, we re-
�ne our de�nition of volatility with equal weights over the previous period
T with exponentially decaying weights over that period. �is approach is
similar to the approach introduced by JPMorgan’s RiskMetrics so�ware
[��], where the variance at time t is a weighted average of all past squared
returns, with the weights decaying exponentially back through time with
the recursion

σ �
t = ωσ�

t−� + (� − ω)r�t (�.�)

Our de�nitionwill help us to improve the characterisation of themarket at
every time step, giving more importance to the market events in the very
close past than to the events that happened in the far past. Hence, we will
extend the common de�nition (�.�) of the sample standard deviation in
order to be able to assign di�erent weights to each of the returns ri falling
into the time window of size T , such that ri = t − i with i = �, ..., T . We
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de�ne the weighted sample standard deviation sr(t,T),w with weights wi of
the sample of returns falling into the time window r(t, T) as

sr(t,T),w =
���� �

� −W�

T�
i=�

wi (ri − r̄w)� (�.��)

with the weighted mean

r̄w = T�
i=�

wiri (�.��)

and the sum of the squared weights

W� = T�
i=�

w�
i (�.��)

such that ��T ≤ W� ≤ �. Note that we are using normalised weights wi
such that∑T

i=�wi = �. For the special case with equal weightswi = ��T , the
weighted standard deviation (�.��) equals the common standard deviation
(�.�) with the common mean (�.�).

Exponentially decaying weights

Let us now de�ne the exponentially decaying unnormalised weights with
damping constant ω asw′i = ωi−�. A usual choice for the damping constant
is ω = �.�� (e.g. in RiskMetrics) or

ω = � − �
T + � (�.��)

�e sum of the unnormalised weights is

T�
i=�

w′i = T�
i=�

ωi−� = � − ωT

� − ω (�.��)

By dividing the unnormalised weights w′i by that sum, we get the the ex-
ponentially decaying normalised weights wi for the time window T with
damping constant ω:

wi = � − ω
� − ωT ω

i−� (�.��)
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�.� ���������� �������

As we will discuss in depth later in chapter �, our aim is to (a) adjust,
i.e. divide, drawdowns by the volatility at their time, and (b) to segregate
drawdowns that occur at di�erent volatility regimes. �e purpose of this
concept is, that we will be able to assign to every drawdown a certain
volatility regime. In other words, we will be able to group drawdowns that
happened during similar market or risk conditions together, and separate
drawdowns that happened during di�erent conditions.
To clarify the point, let us reconsider our example from chapter �: Con-

sider two events, �rst, a drawdown of ��� when the volatility is ���, and
second, a drawdown of ��when the volatility is �.��. �e �rst drawdown
is � times larger than the volatility, the second is �� times larger. Did these
two drawdowns happen during similar market conditions? Probably not,
since the second event happened at a timewith a volatility, i.e. with a “risk”,
��� times smaller. �erefore, we propose to analyse the nature of these
drawdowns separately, as they seem to belong to di�erent market and risk
conditions. Note, that we are only interested in the relative magnitude of
the volatilities at di�erent times, the absolute values of volatility are not per-
tinent (the volatility in the second event would be still ��� times smaller
than in the �rst).� Wewill now present an approach to determine di�erent
volatility regimes.

In this context, a volatility regime is de�ned as a set of volatility obser-
vations with the same level. If we have k volatility regimes Vi with k cor-
responding volatility levels Li (i = �, ..., k) in a time series of n volatility
observations σt (t = �, ..., n), we de�ne

Vi = {σt � σt ∈ Li} (�.��)

as the ith volatility regime. A time series of n volatility observations could
have theoretically n di�erent values of volatility. �erefore, and to allow
for a certain degree of granularity, we de�ne a volatility level L as an inter-
val Li = [li , ui) and Lk = [lk , uk]with a certain lower bound (li) and upper
bound (ui) of volatility, similar to a binning of volatility observations with

� �e exact values of the scaling factors k for the di�erent estimators of scale to obtain a
consistent estimator ŝX for the standard deviation are therefore of little importance for
our study, too.



20 ����������

granularity k to reduce the e�ects of observation errors. We will set the
lower and upper bounds for every volatility regime such that

li =min
t

σt + (i − �)h (�.��)

ui =min
t

σt + ih (�.��)

with the interval width h = (maxt σt−mint σt)�k for t = �, ..., n.�e centre
value for each regime is then

ci = li + h
�

(�.��)

For the sake of clarity when dealing with di�erent granularities k, we will
denote the volatility regime Vi (i = �, ..., k) as Vi�k.

�.� ���������� �� ���� ��������� ����
In this chapter we have presented three robust estimators of scale, namely
the sample interquartile range (�.�), the median absolute deviation (�.�),
and Rousseeuw and Croux’s estimator Sn,X (�.�). We have also presented
two well known non-robust estimators, the sample standard deviation
(�.�) and Gini’s mean di�erence (�.�), with the possible addition of trim-
ming the sample on both tails (section �.�.�). In section �.�.� we have dis-
cussed the e�ciency of these estimators with respect to Tukey’s three cor-
ner cases. We then have introduced a popular method to construct a time
series of time-varying volatility, the realised volatility (�.�), with the pos-
sible addition of assigning exponentially decaying weights to the returns
whenusing the standard deviation (�.��), andhave�nally de�ned the term
“volatility regime” in section �.�.

As mentioned earlier, an important assumption underlying the realised
volatility estimator is that the sample standard deviation sr(t,T) is a reason-
able estimator of scale for the variability of returns. However, the sam-
ple standard deviation will provide poor estimates of volatility for non-
Gaussian data. Since the distribution of returns is fat-tailed, this will most
certainly be the case, even more around points in the time series of re-
turns with exceptional outlier returns. �erefore, we are going to address
this problem by replacing the sample standard deviation sr(t,T) with other
estimators ŝr(t,T) and with the standard deviation sr(t,T),w with exponen-
tially decaying weighted returns. We will qualitatively compare the e�ects
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of these three robust and three non-robust estimators (additionally with
trimmed samples) on the time series of the realised volatility around the
Black Monday crash (October ����), in addition to the quantitative com-
parison testing Tukey’s trie�ciency we have done in section �.�.�.
Figure �.� shows the volatilities using the di�erent non-robust estima-

tors of scale (Gini’s mean di�erence and exponentially weighted standard
deviation) for the S&P ��� index from ���� to ���� in panel (a) and for a
detail around the October ���� crash frommid-���� to mid-���� in panel
(b). Figure �.� shows the volatilities using the same estimators of scale as
in �gure �.� but using ��� trimmed samples of returns. Figure �.� shows
the volatilities using the di�erent robust estimators of scale (���,��� and
Sn,X). In all cases the sample standard deviation (�.�) is shown as a refer-
ence (black line) and the rolling time window is set to a size of T = ���
trading days (roughly half a year).
Let us start with the estimators in �gure �.�. Since the standard devi-

ation is statistically not a robust estimator of scale, it can be heavily in-
�uenced by extreme values. We can see this undesirable e�ect on the esti-
mated volatility in�gures �.� to �.� (b) (black lines), showing the computed
volatility using the sample standard deviation before and a�er the crash in
October ����. Due to a single extreme value in the sample of returnswithin
the moving time window at Black Monday the estimated volatility jumps
up to a level almost three times higher than just before the crash and re-
mains at this elevated level for the span of the time window. �is kind of
pattern is also clearly visible at the end of ����. One could tentatively con-
clude that this volatility behaviour does not truly re�ect the risk percep-
tion during the time of these “artefacts”. �e exponentially weighted stan-
dard deviation (�gure �.�, blue line) exhibits a noisier behaviour by over-
and undershooting with respect to the equally weighted standard devia-
tion. Especially at the time of extreme values it strongly overreacts, since
the large returns at the very edge of the time window are much stronger
weighted than the past (smaller) returns. However, as intended, the volatil-
ity decays faster from its elevated level. Gini’s mean di�erence (�gure �.�,
red line) has a behaviour like the standard deviation, exhibiting a similar
e�ect of artefacts. However, these elevated volatility levels are not as high
as for the standard deviation, but still clearly visible due to a lack of fast
decay.
�e volatilities computed using the same estimators as just discussed,

but with ��� trimmed samples of returns (i.e. with samples of size �.�T =
���), are almost identical to each other (�gure �.�). �is is especially true
for the standard deviation (green line) and Gini’s mean di�erence (red
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line) with trimmed samples. As expected, the overall volatility levels for
the trimmed samples are lower than for the standard cases, since the devi-
ations about the mean are smaller and the trimmed estimators are not cor-
rected with a scaling factor k like the robust estimators. However, apart
from that, the instantaneous jumps followed by constant elevated levels
have disappeared, as clearly visible for the artefact at the crash of ����, such
that the three volatility times series appear to be smoother. �e volatility
estimations with the standard deviation and Gini’s mean di�erence from
trimmed samples are almost identical with the estimation using the expo-
nentially weighted standard deviation from trimmed samples (blue line),
such that the previously identi�ed artefact- and overshooting-behaviour
have disappeared, respectively. �us, one can deduce, that these estimates
re�ect more accurately the risk perception than the non-trimmed esti-
mates.
Let us turn now to the volatility estimates using the robust estimators of

scale (�gure �.�). Like the non-robust estimators with trimmed samples,
the volatility estimates using the sample interquartile range (blue line), the
median absolute deviation (red line), and Rousseeuw and Croux’s estima-
tor Sn,X are very similar. However, there are still particular features visible
for each estimator.�e volatilities using the IQR andMADaremore noisy
than Sn,X and exhibit very small, but visible peaks.
In general, at�rst glance, the volatility distributions of the robust estima-

tors seem to follow very closely the distributions using the non-robust esti-
mators from trimmed samples. Coming back toTukey’s trie�ciency, let us
remember (table �.�), that the exponentially weighted standard deviation
with ��� trimmed samples (sX , X(��)) and Rousseeuw and Croux’s esti-
mator Sn,X have the two highest trie�ciencies (��.� and ��.�, respectively),
and, as noted before, more accurate for the distribution of returns, the ef-
�ciency for the slash distributed data is the overall highest for Sn,X (��.�)
and the highest for sX , X(��) among the non-robust estimators (��.�).
Figure �.� (a) directly compares the volatilities using the two estimators

sX , X(��) (blue line) and Sn,X (red line). For this case, we have scaled both
distributions to �t the interval [�, �] to compare the distributions indepen-
dently from their overall levels. As we can see, the volatility distributions
of the two estimators have indeed a remarkable similarity.� In panel (b)
we have plotted the corresponding volatility regimes. For this purpose,
we have set k = ��, i.e. we show the distribution of �� volatility regimes

� Appendix A: See �gure A.� for the same plot as in �gure �.� (a), but with time windows
T = �� (one month) and T = ��� (one year). Here, the volatility distributions for the two
estimators are very similar, too (low absolute deviations).
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V�, ...,V�� for the two estimators of scale. Again, apart from a few dates,
almost all dates fall into the same volatility regime for both estimators.
�is corroborates our quantitative and qualitative assessment of both

estimators as suitable estimators of scale for the distributions of �nancial
returns, and thus as appropriate estimators for realised volatility. As we
will discuss in chapter �, we will be able to use both estimators to adjust
drawdowns by the volatility at their time, and to segregate drawdowns
that occur during di�erent volatility regimes. �erefore, and due to the
similarity of the volatilities with both estimators, we will tentatively pick
Sn,X as our scale estimator of choice.
�e choice of the size of the time window T is a bit more subtle. As

we can see by comparing �gures �.� (a), A.� (a) and A.� (b), the volatil-
ities with a very small time window T = �� are very noisy with strong
peaks. Figure �.� shows the corresponding volatility regimes for T = ��
and T = ��� (Sn,X). We see that for the small time window T = ��, most of
the events fall into the �rst two volatility regimes, quickly alternating be-
tween the two, without showing a moving tendency as for the bigger time
window T = ���. Another important issue to keep in mind when choos-
ing the size of the time window is the concept of drawdowns we are going
to work with (see chapter �). During a small time window T = �� (approx-
imately one month) only around � to �� drawdowns, i.e. essential market
events, occur (assuming a typical drawdown length of around � to � days).
�is small number of essential market events seems to be too small to rep-
resent and generate the general market dynamics. On the other hand, a
long time window T = ��� has the potential to wash out short-term mar-
ket dynamics, being in�uenced by market events at the far edge of the
window.

Hence, we conclude that realised volatility time series constructed with
very small time windows T do not re�ect general the market dynamics
and tendencies we are looking for in the distribution of the volatility. A
robust and adequate compromise in terms of accuracy of short-term mar-
ket dynamics and long-term tendencies is a time window of around half a
year.�

� Appendix A: Figure A.� shows the relative deviations of the volatilities with T = �� and
T = ��� from our reference with T = ���, representing the errors we are accepting by
choosing T = ���.
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(a)

(b)
Figure 2.1: S&P ��� index (grey). Realised volatilities using di�erent estimators

of scale (time window T = ���): Sample standard deviation (black),
exponentially weighted standard deviation with ω (�.��) (blue), and
Gini’s mean di�erence (red).
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(a)

(b)
Figure 2.2: S&P ��� index (grey). Realised volatilities using di�erent estima-

tors of scale (time window T = ���) with ��� trimmed samples
of returns: Sample standard deviation (non-trimmed, black), expo-
nentially weighted standard deviation (blue), Gini’s mean di�erence
(red), and sample standard deviation (green).
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(a)

(b)
Figure 2.3: S&P ��� index (grey). Realised volatilities using di�erent estimators

of scale (time window T = ���): Sample standard deviation (black),
IQR (blue), MAD (red), and Sn,X (green).
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Figure 2.4: S&P ��� index (grey). Volatility regimes (k = ��) using the Sn,X
estimator of scale: Time window T = �� (blue), and T = ��� (red).
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(a)

(b)
Figure 2.5: S&P ��� index (grey). (a) Realised volatilities using two estimators

of scale (time window T = ���): Exponentially weighted standard
deviation with ��� trimmed samples (sX , X(��), blue), and Sn,X
(red), as well as the absolute deviations between the two (black).�e
y-axis is scaled to [�, �]. (b) Corresponding volatility regimes with
k = ��.



3 D R A W D O W N S

A drawdown on a daily time scale is de�ned as a continuous decrease in
the price over consecutive days.� In other words, a drawdown is the cumu-
lative loss from the last (local) maximum of the price to the next (local)
minimumof the price. Since drawdowns are composed of returnswith the
same sign, they embody transient dependencies of successive returns and
capture the e�ect successive losses have on each other. �e distribution
of drawdowns constructed in this way is therefore a persistent process of
losses. Notice that following this de�nition all drawdowns are followed by
drawups, which in turn are followed by drawdowns.�is property of strict
alternation illustrates the alternating �ow of losses and gains investors are
faced with on an elastic time scale.
By de�nition, the distribution of returns in a Bachelier-Samuelson [�]

world does not capture this persistence, as it measures only the returns’
frequency neglecting the relative positions of returns as they reveal them-
selves over time. �e two-point correlation function has the same lack of
information, as it measures an average linear dependence over the whole
time series, while transient bursts of dependence may only appear at cer-
tain times, e.g. at very large runs. Hence, that feature will be washed out
by the global averaging procedure (see [��, ��, ��] for an in-depth study).
In early studies [��, ��], drawdownswere simply de�ned as a continuous

decrease of the price at each successive trading day (daily close), terminat-
ing a drawdown by any increase of the price. However, drawdowns con-
structed following this de�nition (pure drawdowns) are sensitive to noise,
i.e. random uncorrelated and correlated �uctuations of the price. Simu-
lations adding noise to the time series that were analysed, indicate that
the distributions of drawdowns are robust to i.d.d. noise of “reasonable”
magnitude [��].
A recent study [��] investigated distributions of drawdowns at smaller

than daily timescales, i.e. constructing drawdowns from high-frequency �,

� �e explicit reference to drawups will be neglected in this chapter and throughout this
study, since they are only di�erent in their sign and constructed in an analogous way to
drawdowns. A drawup is thus a drawdown for a market agent with a short position on
that market.

29
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�� and ��minutes data. However, it was found that distributions of draw-
downs at daily timescale exhibit more valuable information about bursts
of dependence than drawdowns fromhigh-frequency data, as no evidence
of a change of regime was found for high-frequency data. �e results sug-
gest that the positive feedback mechanisms that allegedly lie at the origin
of the largest drawdowns require a certain time to build up and their re-
sults cannot be observed at high levels of granularity. Hence, in this study,
our investigations will continue to focus on daily timescales.
In this chapter we formally de�ne pure drawdowns (section �.�) and

present the concept of coarse-grained drawdowns to take noise into ac-
count (section �.�). In section �.�, we introduce a theoretical approach
to the expected distribution of drawdowns that motivates our study of
Dragon Kings in chapter �.

�.� ���� ���������
We de�ne the return at time t in this context as

rt = ln(pt+�) − ln(pt) (�.�)

with the price pt at time t in the time series. A pure drawdown (“p-draw-
down”) Dt,l starting at time t with length l (number of days) is thus a sum
of negative returns (r−) in absolute terms:

Dt,l = − l−��
i=�

r−t+i (�.�)

�us, at day t + l we reach a local price minimum, which is the starting
date of a new drawup.

�.� ������-������� ���������
�ere are two straightforward ways to de�ne coarse-grained drawdowns,
price coarse-grained and temporally coarse-grained drawdowns; previous
research by Sornette and co-workers focused onprice coarse-grained draw-
downs. Here, we will brie�y introduce the concept of temporally coarse-
grained drawdowns, but will continue to focus on price coarse-grained
drawdowns, with the introduction of a modi�cation to the “traditional”
approach.
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�.�.� Temporally coarse-grained drawdowns

In temporally coarse-grained drawdowns (“τ-drawdowns”) price increas-
es of any size within a certain time horizon τ may be ignored, i.e. draw-
downs are only terminated a�er more than τ consecutive price increases
regardless of magnitude. Consequently, for τ = � we obtain pure draw-
downs. Since the sensitivity to noise can be adjusted only in terms of the
number of days, i.e. in integers, time horizons τ greater than one or two
days with increases of any size may seem unreasonable to justify depen-
dencies of successive returns. Due to this lack of a �ner sensitivity to noise,
this method will not be further discussed in this paper.

�.�.� Price coarse-grained drawdowns

In price coarse-grained drawdowns (“є-drawdowns”) relative increases of
the price below a certain threshold є may be ignored, i.e. drawdowns are
only terminated at positive price �uctuations above the threshold. In such
a sequence of negative returns and conditional positive returns the local
minimum will be selected to mark the ending of a drawdown, in order to
maintain a dependency of successive negative returns. Consequently, for
є = �we obtain pure drawdowns. An є-drawdown Dt,l ,є is thus de�ned as

Dt,l ,є = −�r−t + l−��
i=�

r±�єt+i + r−t+l−�� (�.�)

with strictly negative (r−) starting and ending returns, and negative or
conditional positive (r±�є) returns inside the sequence of returns.
Fixed є-threshold

�e magnitude of the threshold є lends room to various de�nitions. Pre-
vious research �xed the threshold throughout the time series and de�ned
it in units of the global volatility:

є f = є� ⋅ σglob (�.�)

�e threshold is thus proportional to the volatility calculated for the en-
tire series of returns, σglob (in previous research always using the standard
deviation sX). �e coe�cient є� is chosen from the observation of data,
but should be kept smaller than �, since large �uctuations contribute to
the global volatility. Hence, є should be smaller than σglob to avoid breaks
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of transient bursts of dependence we are looking for. It was shown in past
studies [��] that the choice of setting є� between � (pure) and �.� give rea-
sonable and robust results that improve upon pure drawdowns.

Variable є-threshold

If we accept the assumption of time-varying volatility, there is one major
drawbackwhenusing coarse-grained drawdownswith a�xed threshold є f
that is proportional to the global volatility calculated for the entire series of
returns, σglob. Absolute returns in timeswith a realised volatility σt,T below
σglob are expected to be smaller than in times with a volatility above σglob.
�erefore, while constructing drawdowns, the threshold will be exceeded
less o�en in times where σt,T < σglob than in times where σt,T > σglob.
Hence, we expect drawdowns constructed in times where σt,T < σglob to
be longer than in times where σt,T > σglob. In �gure �.� (a) we see that
this is actually the case. Drawdowns at times with volatility below the
global volatility (black line) are much longer than drawdowns at times
with volatility above the global one.

To cope with that problem, we introduce here a variable threshold in
terms of the realised volatility at the time of a drawdown starting at time
t, to adapt the threshold more accurately to the time-varying volatility:

єv(t) = є� ⋅ σt,T (�.�)

�e variable threshold we de�ne is thus proportional to the transient vola-
tility σt,T at time t as de�ned by (�.�), which indicates themagnitude of the
volatility just before the start of a drawdown. Hence, the threshold єv will
be �xed for the returns inside a drawdown, since these returns are depen-
dent and should therefore correspond to the same volatility regime. �e
coe�cient є� will be chosen in an analogous way as for the �xed thresh-
old.�
In �gure �.� (b) we see that the lengths of the drawdowns and drawups

are distributed more evenly than using the �xed threshold є f . �e єv-
drawdowns at times where σt,T > σglob are now longer than є f -drawdowns,
and shorter at times where σt,T < σglob. Hence, we can conclude that us-
ing the variable threshold єv to construct price coarse-grained drawdowns
is an improvement upon the �xed threshold є f and coherent with the as-
sumption of time-varying volatility.

� We will denote the value of є� in the index of є f and єv , e.g. єv�.� is a variable threshold єv
with є� = �.�.
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(a)

(b)
Figure 3.1: Lengths of �xed and variable threshold coarse-grained drawdowns

and drawups at times with di�erent realised volatility (S&P ��� in-
dex). (a) With �xed threshold є f�.�. (b) With variable threshold єv�.�.
In both cases volatility σt,T calculated with Sn,X (T = ���).�e black
line marks the global volatility σglob (calculated with sX).
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�.� ������������ �� ���������
As discussed in this chapter, the concept of price drawdowns is salient for
a direct measurement of the cumulative loss an investment decision can
incur and to quantify the worst-case scenario of an investor going long
at the local high (beginning of a drawdown) and going short at the next
minimum (end of the drawdown). �erefore, it is important to know if
there is any structure in the distribution of drawdowns. It is important to
keep inmind, that, in contrast to returns, drawdowns are not de�ned over
a �xed time scale, since they embody dependencies through the same sign
variations. Drawdowns may last for only one day or for longer periods,
such as a week. �eir distribution measures how successive drops can
in�uence each other and construct a persistent process.
It can be shown [��] that the distribution of drawdowns for indepen-

dent returns is asymptotically exponential when the distribution of the
independent returns does not decay more slowly than an exponential, i.e.
belong to the class of exponential or super-exponential distributions. In
contrast, for sub-exponentials (such as stable Lévy laws, power laws and
stretched exponentials) the tail of the distribution of drawdowns is asymp-
totically the same as the distribution of the individual returns.
In several studies [�, ��, ��, ��, ��] stretched exponentials have been

found to o�er an accurate quanti�cation of returns to capture a possible
sub-exponential behaviour. Since stretched exponentials contain the ex-
ponential law as a special case (exponent z = � in (�.�), chapter �) and by
the fact that it has been successfully used as a model for the distribution
of drawdowns, we shall take the stretched exponential law as our prelim-
inary candidate distribution for drawdowns, with the the power law and
lognormal distributions as possible alternative models [��]. In chapter �
we will discuss the di�erent models in more depth.



4 D R A G O N K I N G S

Dragon Kings in �nancial markets are extreme events in the distribution
of drawdowns and drawups. As elaborated in chapters � and �, drawdowns
(and their counterpart drawups) are better adapted to capture the risk
perception of market participants, and therefore they better re�ect the re-
alised market risks.
As analysed in [��–��], it can be demonstrated that the distributions of

drawdowns e�ciently diagnose �nancial crashes, i.e. special events asso-
ciated with speci�c bubble regimes that precede them, which are seen as
Dragon Kings.� About ��� of drawdowns can be represented nicely by a
common distribution with a tail slightly fatter than an exponential distri-
bution, whereas the remaining events have been found to be statistically
di�erent, i.e. the hypothesis that they belong to the same distribution as
the ��� bulk of the population of the drawdowns is rejected at the ��.��
con�dence level [��, ��]. It has been found that two-thirds of theseDragon
Kings identi�ed are stock market crashes, which were preceded by large
bubbles.
It is important to stress that there is no uniquemethodology to diagnose

Dragon Kings in general. �ey can be observed directly in the form of ob-
vious breaks or bumps in the tail of size distributions, as in the example of
the distribution of city sizes or material failure and rupture processes, or
the distributions have to be compared at di�erent resolution scales, as in
the example of the distribution of turbulent velocity �uctuations. Another
mechanism is found in the strong coupling regime of coupled heteroge-
neous oscillators of relaxation, where the statistics of epileptic seizures in
human subjects and in animal models closely resemble that observed for
earthquakes, i.e. Dragon Kings correspond here to so-called “characteris-
tic earthquakes”. One more way is the construction of new observables
that capture more appropriately the dynamics of the system, as — in the
case of our study — in the distribution of price drawdowns.

� �e evidence of Dragon Kings encompasses exchange markets, the major world stock
markets, commodity markets and government bond markets. �e results have been
found robust with respect to various measures of pure and coarse-grained drawdowns.

35
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�e goal of our study is to corroborate the evidence of the existence of
DragonKings in�nancialmarkets by taking into account the time-varying
volatility. However, testing for Dragon Kings, or more generally for a
change of regime in the population of drawdowns, is a subtle new prob-
lem that requires new techniques. In section �.� we present our approach
to that problemwith a set of tools to test for outliers or a change of regime.
In section �.�we �nally present the innovative approach onDragon Kings
in �nancial markets by taking the time-varying volatility into account.
Speci�cally we will present two di�erent approaches, �rst, a straightfor-
ward adjustment, and second, an approach by segregating and diagnosing
Dragon Kings that occur at di�erent volatility regimes.

�.� ����� �� ���� ��� ������ �����
In this section we present a set of tools to test generally for a change of
regime in the population of drawdowns to provide evidence for the exis-
tence of Dragon Kings. Most of these tools have already been successfully
used in approaching this problem [��–��, ��, ��].
In section �.�.�we provide a starting point by looking at the complemen-

tary cumulative distribution function of drawdowns. In section �.�.� we
present a parametric statistical test to discriminate between the null hy-
potheses stretched exponential or power law and modi�cations of these
models that describe deviations in the tail. In section �.�.� we apply the
uniformly most powerful unbiased test between the lognormal and the
power law, which has been successfully applied in the debate about the
distribution of city sizes [��] and present Hill’s inverse tail index estimate.

�.�.� Complementary cumulative distribution function

A starting point in the analysis of the distribution of drawdowns to diag-
nose Dragon Kings is to check for underlying models that describe the
form of the distribution as closely as possible. Obvious breaks or bumps
in the tail of the distributions may then be detected directly in the form of
deviations and statistical outliers.
In our case, we will study the complementary cumulative distribution

function (����) of (the absolute size of) drawdowns. Speci�cally, this dis-
tribution function expresses how o�en the randomvariable of drawdowns
is above a particular level, or — in terms of “survival function” — it cap-
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tures the probability that the emergence of bursts of dependence that lead
to the creation of drawdowns will survive beyond a speci�c size. �e com-
plementary cumulative distribution function is de�ned as

Fc(x) = P(X > x) = � − F(x) (�.�)

where F(x) is the cumulative distribution function of drawdowns. �is
function is monotonically decreasing and Fc(�) = P(X > �) = �.
In particular, the analysis of the complementary cumulative distribu-

tion function of drawdowns can be split into two steps, �rst, the classi-
�cation of unknown distributions, and second, the detection of obvious
deviations and outliers.

Classification of unknown distributions

�e semi-logarithmic and logarithmic representations of Fc(x) can be a
very powerful �rst tool to classify the unknown distributions in order to
assign appropriate underlying models. As discussed in chapter �, possible
candidate models are particularly the power law and the stretched expo-
nential model, as well as conceivably the lognormal model.
A distribution of drawdowns following a power law model would ap-

pear as a straight line in the log-log representation and as convex curve in
the log-linear representation. On the other hand, a distribution following
an exponential model would appear as a straight line in the log-linear rep-
resentation, while the stretched exponential with an exponent < � would
appear as a convex curve.

Detection of obvious deviations and outliers

�e complementary cumulative distribution function is the simplest tool
to discriminate “by eye” di�erent regimes in the population of drawdowns.
�ese changes of regime can be suspicious breaks and bumps that qualify
as obvious outliers and Dragon Kings. Furthermore, a change of regime
could be indicated by a deviation from the bulk of the population in the
distribution, suggesting that Dragon Kings obey a di�erent distribution
than the bulk. A�er classifying the distribution for some possible underly-
ing model, more sophisticated and adequate (parametric) statistical tests
can be applied to discriminate di�erent regimes.
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�.�.� Likelihood-ratio test for nested hypotheses

Here, we formulate a test in the spirit of [��, ��]. �is test is aimed at
the question of whether there is a threshold rank of drawdowns below
or above which the null stretched exponential model or power law model
can be rejected. In other words, in order to qualify the existence of outliers
in the distribution of drawdowns, we perform this test tailored to estimate
the signi�cance of the curvature seen in the distributions (in the log-linear
or log-log representation respectively).
Let us formally introduce the general framework of hypothesis testing

within a parametric formulation.
�e sample X�, ..., Xn has a probability density distribution (���) p(x�θ),

where θ is a vector corresponding to the set of free parameters in the ���.
In general, we consider two hypotheses corresponding to two sets of pa-
rameters θ = (θ�, ..., θk):
H�: �e parameters θ�, ..., θk belong to some k-dimensional parameter

space Θ�: θ ∈ Θ�

H�: One of the parameters θ�, ..., θk is equal to zero, whereas the other
parameters can vary in the same (k− �)-dimensional space as inH�.
We denote this subset in parameter space as Θ�: θ ∈ Θ�. Evidently,
Θ� contains Θ�.

Let us denote the maximum likelihood under Hi as Li (i = �, �):
Li =max

θ∈Θ i
[p(X��θ)...p(Xn�θ)] (�.�)

where the maximum is taken over θ in the parametric space Θi .
By construction L� ≤ L� since adding one or several parameters cannot

decrease the quality of the �t to the data. A theorem by Wilks [��] states
that the test statistic T

T = −� lnΛ (�.�)

with the maximum likelihood ratio Λ = L��L�, which is asymptotically
distributed as χ� with one degree of freedom as n tends to in�nity. Using
the log-likelihood ln L� and ln L� we can formulate (�.�) as

T = −�(ln L� − ln L�) (�.�)

�us, the test is based on this test statistic T by comparingH� andH�. If T
is large, L� is signi�cantly larger than L� whichmeans that adding a param-
eter signi�cantly improves the quality of the �t. On the other hand, if T is
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small, L� is not much larger than L� which means that the additional pa-
rameter does not much improve the �t. �e corresponding p-value gives
the probability of exceeding T by chance.
Let us now introduce the speci�c tests for our stretched exponential and

power law models.

Stretched exponential model

�e stretched exponential for the sample of drawdowns X�, ..., Xn (rank �
biggest drawdown, rank n smallest drawdown) corresponds to a straight
line in the log-linear representation of lnP versus xz with the cumulative
distribution

P(x�θ) = P(x = �) exp �−Bxz + Cx�z� (�.�)

where θ = (B, z,C). Accordingly, the “pure” stretched exponential distri-
bution (��) corresponds to the case where C = �.
�e choice of the parametrisation (�.�) with a correction Cx�z where

the exponent is twice that of the �rst term in the exponential is taken to
avoid introducing two additional parameters and as the natural measure
of a curvature in the log-linear plot of lnP versus xz that would qualify
the simple stretched exponential as a straight line. We will refer to that
general case where C ≠ � as modi�ed stretched exponential (���). We
thus have our hypotheses

H�: C = � (��)
H�: C ≠ � (���)

and we de�ne

PSE(x) = ASE(t) exp (−Bxz) (�.�)
PMSE(x) = AMSE(t) exp �−Bxz + Cx�z� (�.�)

as two complementary cumulative distribution functions of drawdowns
de�ned for the drawdowns at rank t (here, lower threshold rank) up to the
maximum rank n. �is corresponds to the interval [�, Xt] of drawdowns.
Hence, the corresponding density distribution functions are pSE(x) =−dPSE(x)�dx and pMSE(x) = −dPMSE(x)�dx. �e normalising factors

ASE(t) and AMSE(t) are di�erent and functions of the lower cut-o� rank
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t since pSE(x) and pMSE(x)must be normalised to � in the interval [�, Xt].
�is normalisation condition gives

ASE(t) = �
� − exp (−BXz

t ) (�.�)

AMSE(t) = �
� − exp (−BXz

t + CX�z
t ) (�.�)

�e maximum likelihood estimation of the best parameters for the candi-
date stretched exponential model (�.�) is done as a minimisation of

− ln L� = − n�
i=t

ln pSE(Xi)
= − n�

i=t
�lnASE(t) + ln �BzXz−�

i � − BXz
i �

(�.��)

with respect to B and z. Similarly, the estimation for the candidate modi-
�ed stretched exponential model (�.�) is done as a minimisation of

− ln L� = − n�
i=t
�lnAMSE(t) + ln �BzXz−�

i − �CzX�z−�
i � − BXz

i + CX�z
i �

(�.��)

with respect to B, z and C. Finally, the maximised log-likelihood ln L�
and ln L� will be used in (�.�) to determine the test statistic T and the
corresponding p-value.
Technically, the minimisation is done with the downhill simplex min-

imisation algorithm. In order to secure that the maximum likelihood es-
timation does indeed retain the parameter values of the global maximum,
the downhill simplex minimisation algorithm will be applied with a wide
range of start values in the search.�

Power law model

In the spirit of the stretched exponential model, we now introduce a simi-
lar test based on the power law model, where a power law in the tail corre-
sponds to a straight line in the log-log representation of lnP versus ln x.
For convenience we will introduce a di�erent notation. We take the

logarithm of the drawdowns Di , such that X′i = lnDi . Note, that for this
model we are going to use an upper threshold rank t, compared to the

� We use a total of ���� combinations of start values for B, z and C.
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lower threshold for the stretched exponential model, as we are going to
look only at the drawdowns in the far tail. Hence, we are going to shi� the
truncated sample of t log-drawdowns X′� , ..., X′t to Xi = X′i − X′t , such that
Xt = �. Our sample of log-drawdowns is thus X�, ..., Xt with the cumula-
tive distribution

P(x�θ) = P(x = �) exp �−Bx + Cx�� (�.��)

where θ = (B,C). Accordingly, the “pure” power law distribution (��)
corresponds to the case where C = �.
�e choice of the parametrisation (�.��) with a correction Cx� is analo-

gous to the one for the stretched exponential model. We will refer to the
general case where C ≠ � as modi�ed power law (���). We thus have the
hypotheses H�: C = � (��) and H�: C ≠ � (���). We de�ne

PPL(x) = APL exp (−Bx) (�.��)
PMPL(x) = AMPL exp �−Bx + Cx�� (�.��)

as two complementary cumulative distribution functions de�ned for the
log-drawdowns at rank � up to the cut-o� rank t. �is corresponds to the
interval [Xt = �, X�] of log-drawdowns with the normalising factors

APL = �
� − exp (−BX�) (�.��)

AMPL = �
� − exp (−BX� + CX�

� ) (�.��)

�us, the maximum likelihood estimation of the best parameters of the
candidate models (�.��) and (�.��) is done as a minimisation of

− ln L� = − t�
i=�
(lnAPL + lnB − BXi) (�.��)

− ln L� = − n�
i=�
�lnAMPL + ln (B − �CXi) − BXi + CX�

i � (�.��)

with respect to B, and B, C, respectively.
�e minimisation will be done with the same minimisation algorithm

as for the stretched exponential model. Likewise, the test statistic T and
the corresponding p-value will be determined with (�.�) using the max-
imised log-likelihood ln L� and ln L�.
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�.�.� Power law versus lognormal distribution

�e power law and the lognormal distribution are o�en di�cult to dis-
tinguish. Although both distributions exhibit a distinct behaviour in the
tails, the lognormal can easily be mistaken for a power law over a range
which can cover several decades [��]. Both distributions may be gener-
ated by Gibrat’s law of proportional growth, which can be generalised by
a general class of self-similar fragmentation processes [��], yet with some
additional apparently innocuous but actually profound intricacy for the
power law. Power law distributions are regularly varying, whereas the
limit behaviour of lognormal distributions characterises a rapidly decreas-
ing function at in�nity. �erefore, both distributions exhibit qualitatively
di�erent behaviours in their upper tails. �e lognormal density in the up-
per tail goes to zero faster than any power law density. However, writing
the lognormal density as

f (x) = �
xσ
√
�π

e− (ln x−µ)�
�σ� = �

σ
√
�π

e− µ�

�σ� ⋅ x−�+ µ
σ�
− ln x

�σ� (�.��)

we observe that the lognormal distribution is super�cially like a power law
with a slowly increasing e�ective exponent

α(x) = �
�σ � ln� x

e�µ
� (�.��)

�is shows us that the lognormal distribution decays at in�nity faster than
any power law, since the apparent exponent α(x) diverges with x. Hence,
with σ� large enough, α(x) varies so slowly as to give the impression of
constancy over several decades in x.
Since we are interested in extreme drawdowns, i.e. in the behaviour of

the tail of the distributions, we present in this section Hill’s inverse tail in-
dex estimate α̂−� and a uniformly most powerful unbiased test in the spirit
of [��] aimed to discriminate between the power law and the lognormal
distribution at a certain threshold. A tail in the distribution of drawdowns
following a power law suggests that the tail is fatter than in the case of a log-
normal distribution and that particularly large drawdowns occur farmore
o�en than a lognormal distribution would suggest. In this case, Dragon
Kings would follow a power law, whereas the bulk of drawdowns would
follow a lognormal distribution.
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Hill’s inverse tail index estimate

Hill’s inverse tail index estimate α̂−� for power law distributions is the best
unbiased estimator for the inverse of the tail index [��].� It is de�ned as

α̂−� = �
t

t�
i=�

lnDi − lnDt+� (�.��)

with the upper threshold drawdown rank t.
Plotting Hill’s estimate as a function of the threshold rank t will help us

to discriminate between the power law and the lognormal distribution in
the tail up to the threshold. An approximately constant estimate α̂−�, i.e. a
plateau in the plot, will then reinforce the validity of a power law. On the
other hand, a decaying estimate will reinforce a deviation from the power
law in the tail or in the higher ranks.

Uniformly most powerful unbiased test

�e test that addresses the question, whether the power law or lognormal
model holds in the tail, considers the null hypothesis that, beyond some
threshold t, the upper tail of the distribution is power law (��) distributed,
against the alternative that it is (truncated) lognormal (��) distributed:

H�: f�(x) = fPL(x; α)
H�: f�(x) = fLN(x; α, β)

with

fPL(x; α) = α tα
xα+� (�.��)

for x ≥ t with α > �, and
fLN(x; α, β) = �

�
π
β
e

α�
�β �� −Φ� α�

�β
���−� ⋅ �

x
e−α ln x

t −β(ln x
t )� (�.��)

for x ≥ t with α ∈ R, β > �, where Φ(⋅) denotes the cumulative distribu-
tion function of the normal distribution.
Note, that this is equivalent to testing the null hypothesis that the upper

tail of the distribution of the logarithm of the drawdowns Di is exponen-
tial against the alternative that it is a (truncated) normal. For this prob-
lem the clipped sample coe�cient of variation ĉ = min(�, c) provides the

� It is not possible to get an unbiased estimate for α.
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uniformly most powerful unbiased (����) test [��] (for a detailed deriva-
tion of this test, please refer to [�, ��]). �e sample coe�cient of variation
c = sX�x̄ is the ratio of the sample standard deviation to the sample mean,
with the sample of log-drawdowns Xi = lnDi .

�e critical point of the test can be derived with very high accuracy by
a saddle point approximation. �e likelihood equations can be reduced to

c� = −γh(γ) + γ� + �.�(h(γ) − γ)� − � (�.��)

with γ = α� ���β� and
h(x) = exp(−x�)

�
√
π �� −Φ �√�x�� (�.��)

�e le� part of (�.��), c�, is the empirical squared coe�cient of variation,
whereas the right part is themodel squared coe�cient of variationC�.�e
solution of (�.��) is γ̂ = γ̂(c). �e test statisticW∗ can then be derived as

W∗ =W(γ̂) + �L(γ̂) + L(γ̂)�
W(γ̂) (�.��)

with

W(γ̂) = n �� ln (�h(γ̂) (h(γ̂) − γ̂)) + �γ̂� − �γ̂h(γ̂) + �� (�.��)

for c < �,W(γ̂) = � for c > �, and
L(γ̂) = �

�
ln
������
γ̂h(γ̂)��γ̂� − �γ̂h(γ̂) + �h(γ̂)� + �� − �h(γ̂) + �

�
n�h(γ̂) − γ̂��W(γ̂)

������ (�.��)

It can be established that the asymptotic distribution ofW∗ is a ��:��mix-
ture of the constant � and χ� distribution with one degree of freedom.

�.� ������ ����� ��� ����������
In this section we systematically extend the methodology presented to di-
agnose Dragon Kings to empirically answer the question whether the ef-
fect of time-varying volatility on drawdowns and Dragon Kings has the
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potential to enhance the previous methodology or is in line with previous
results. As mentioned in section �.�, the methodology and tools we pre-
sented can be performed independently from our innovative approaches
of taking time-varying volatility into account or following the “traditional”
approach. �ey can be generally applied to any kind of distributions of
drawdowns. �erefore, we will apply these tools to two approaches. First,
in section �.�.�we introduce a straightforward approach by adjusting draw-
downs, second, in section �.�.�we introduce the concept of grouping draw-
downs that happened during the same volatility regimes together.

�.�.� Distributions of adjusted drawdowns

�e most straightforward approach, and similar to Le Bris’ idea we have
shown in chapter �, is to construct distributions of volatility-adjusted draw-
downs. For this case, we de�ne adjusted drawdowns D∗t as

D∗t = Dt

σt,T
(�.��)

with the unadjusted drawdownDt starting at time t and the realised volatil-
ity σt,T at that time over the time window T as de�ned in (�.�). Since we
de�ned the realised volatility at time t over a time window T without tak-
ing the return at time t into account, the drawdown Dt will be adjusted
by the volatility just before the starting return at time t. �us, the volatil-
ity used to adjust a drawdown will not be “contaminated” by the proper
drawdown.� �e idea of this adjustment is very simple: A drawdown at a
time of high volatility will be smaller a�er adjustment than a comparable
drawdown at a time of low volatility, since a high level of volatility indi-
cates a generally higher level of risk, and thus, an acclimatised perception
of smaller loss. �e aim of this is to detect Dragon Kings we could not
detect without adjustment, i.e. drawdowns of absolute smaller size with
low volatility that disappeared in the bulk of the distribution. A�er adjust-
ment, these drawdowns would appear to be outliers of bigger event size
(lower ranks), and thus, qualify for Dragon Kings. We see this e�ect of
the adjustment for drawdownswith di�erent volatilities in�gure �.�. Panel
(a) shows the drawdowns per volatility before adjustment, and panel (b)
shows the same drawdowns a�er adjustment, which can be regarded as a
division by the abscissa.

� �e subtraction of the average return µr (in Le Bris’ normalisation, chapter �) from Dt
can be safely ignored here, since it is close to zero and only a very small fraction of a
drawdown composed of several returns.
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Hence, constructing distributions of adjusted drawdowns D∗t and analys-
ing themwith the tools from section �.�, will enable us to directly compare
our results, wherewe take the volatility in formof adjustment into account,
with the previous results.

�.�.� Drawdowns during different volatility regimes

A di�erent approach, but with the same aim, is to look separately at draw-
downs during di�erent volatility regimes. Here, we do not just adjust the
size and rank ordering of all drawdowns to better re�ect their di�erent
levels of volatility, but we completely segregate them according to their
volatility. What we called before the population of drawdowns, will be
subdivided into smaller populations composed of drawdowns with the
same level of volatility, i.e. occurring during the same volatility regimes.
In these sub-populations then, we will perform our Dragon King detec-
tion methodology to �nd changes of (population) regimes per volatility
regime. In other words, we ask if each population of drawdowns occur-
ring during the same volatility regime (our sub-population) is composed
of a bulk and a Dragon King population. On the other hand, this would
show us that the Dragon King regimes we �nd in the entire population
of drawdowns are just composed of a few extreme cases —mostly during
high volatility regimes where extreme cases have to be relatively bigger in
size. As a result, these few extreme cases just happen to appear as a di�er-
ent regime that is not composed of all extreme cases, including relatively
“smaller” extreme cases during low volatility regimes.

Formally we will assign to every drawdown Dt a volatility regime Vi , as
de�ned in (�.��), such that the volatility σt at the time of the beginning of
the drawdown belongs to Vi (i = �, ..., k). We will then construct k distri-
butions of drawdowns that have the same volatility regime Vi assigned.
If the simple adjustment is not powerful enough to make the relatively

smaller cases more pronounced as outliers, and the distribution of draw-
downs just gets washed out or �attened, we hope that the separation of
drawdowns by volatility regime will be able to provide support for the
concept of Dragon Kings in �nancial markets, by clearly showing us that
certain events of absolute smaller size are in fact extreme events, too. How-
ever, a major drawback of this approach is that the distributions will be
composed of fewer drawdowns, and as a consequence, theDragonKing re-
gimes would be composed of a much smaller number of drawdowns than
in the case where we take the entire population. Our parametric tools (sec-
tions �.�.� and �.�.�), where we check for a particular underlying model in
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Table 4.1: Quantities (�) and ratios (�) of drawdowns in each volatility regime
Vi (k = �, �, ��) with centre volatility value ci (S&P ��� index). In all
cases єv�.� and volatility calculated with Sn,X (T = ���).

���������� ������� ���������
Vi ci # %

1 0.52 1126 66.7
2 0.99 494 29.3
3 1.46 68 4.0

1 0.42 591 35.0
2 0.70 687 40.7
3 0.99 302 17.9
4 1.27 83 4.9
5 1.55 25 1.5

1 0.35 135 8.0
2 0.49 456 27.0
3 0.63 394 23.3
4 0.77 293 17.4
5 0.92 195 11.6
6 1.06 107 6.3
7 1.20 51 3.0
8 1.34 32 1.9
9 1.48 14 0.8
10 1.62 11 0.7

the upper tail beyond a certain threshold, could simply fail because of too
small samples. Hence, we expect to obtain suitable results only through
the visual inspection of the complementary cumulative distribution func-
tion (section �.�.�).
In this procedure, the number k of volatility regimes has to be freely

chosen. �e number should be as big as necessary to have enough dif-
ferent levels that appropriately re�ect the variability of the volatility, but
as small as possible to have enough drawdowns in each volatility regime.
We will tentatively choose k = �, ��. As a possible extension to this ap-
proach, and to overcome the aforementioned major drawback, we could
chose a very small number of volatility regimes, e.g. k = �, to avoid very
small numbers of drawdowns in the volatility regimes, and then adjust the
drawdowns within each volatility regime.�is would in fact be a combina-
tion of our two approaches, by �rst coarsely separating all drawdowns into
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“low”, “middle” and “high” volatility regimes (k = �), and then adjusting
them on an individual basis by their proper volatility.
Table �.� lists the quantities and ratios of drawdowns in each volatility

regime, for the three cases k = �, �, �� (S&P ��� index from ���� to ����,
sample size of ����� returns, with a total of ���� drawdowns, compare also
with �gure �.�). As we can see, already for k = � the high volatility re-
gime (V�) consists only of a very small number of drawdowns (��, �.��),
but two-thirds (����, ��.��) of all drawdowns belong to the low volatil-
ity regime (V�). Here, an adjustment within the three regimes could be
appropriate to further pronounce outliers within a big sub-population of
���� drawdowns. For k = �� the upper four regimes consist of less than
��� drawdowns. �e choice k = � seems to be the best compromise of
quantities per volatility regime and distribution of di�erent volatility lev-
els, where a maximum of ��.�� belong to one regime (V�). Hence, we
conclude that the choice of k gives room for adjustment to speci�c time
series, taking k = � as a starting point. With small numbers of volatility re-
gimes, i.e. large quantities of drawdowns within one volatility regime, an
adjustment within the regimes could be appropriate.
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(a)

(b)
Figure 4.1: Non-adjusted and adjusted drawdowns at times with di�erent re-

alised volatility (S&P ��� index). (a) Before adjustment. (b) A�er
adjustment by the volatility. In both cases єv�.� and volatility σt,T cal-
culated with Sn,X (T = ���).





5 DATA A N A LY S I S

A�er having introduced the theoretical frameworks for volatility (chapter
�), drawdowns (chapter �) and Dragon Kings (chapter �), we will apply
them on real �nancial data.
�e focus of the data analysis will be to investigate the e�ect of taking

time-varying volatility into account on the detection of DragonKings. We
will compare these results with results obtained without taking volatility
into account by comparing the quantities and the actual Dragon Kings di-
agnosed. An important question we will try to answer is how pronounced
these outliers appear in the distributions of drawdowns, i.e. how distinc-
tive the changes of regimemanifest themselves in the populations of draw-
downs, since themore prominent the outliers are, or themore pronounced
the deviations appear in the tails of the distributions, the more it will help
us to develop a better perception for extreme �nancial risks. Before dis-
cussing the results of the analysis in section �.�, we will describe the time
series data we will analyse in section �.�, and de�ne the combinations of
parameters and tools we use for the analyses in section �.�.

�.� ����
In our study to diagnose Dragon Kings taking time-varying volatility into
account, we will use a selection of eight daily time series, covering a large
part of the �nancial markets, i.e. major stock market indices, foreign ex-
change, government bonds and commodities. Below, we will brie�y de-
scribe the time series we consider for this study. In table �.� the time series
are listed with starting and ending dates, as well as the sample sizes (num-
ber of price observations).

Stock market indices

We will study three major stock market indices (daily close) from around
theworld, namely the S&P ��� (U.S. ), FTSE ��� (U.K.) and theHang Seng
Index (Hong Kong). Out of these indices, the HSI is the most volatile
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index, while the S&P ��� appears to be the most stable index with the
lowest average volatility. �e HSI’s average volatility is around ��� and
��� higher than the S&P ��� and FTSE ���, respectively.� It is worthwhile
to note, that the HSI is composed of only �� companies, compared to the
other two indices with ��� and ��� constituent companies.

Foreign exchange

�e foreign exchange market is by far the largest market in terms of vol-
ume. Of all possible pairs of currencies we will study the Japanese Yen
(JPY) in currency units per U.S. dollar (USD), acknowledging the leading
role of the U.S. dollar. Under the Bretton Woods system established a�er
WorldWar II, only theU.S. dollar had a direct gold parity, whereas the gold
content of the other currencies was established only indirectly, by means
of a �xed parity with the dollar. Fluctuations were to be con�ned to a nar-
row �� band. Due to international pressure in the early ����s, the dollar
was devaluedwith respect to gold, and then by ���� the BrettonWoods sys-
tem collapsed completely [��]. Hence, the time series we use start in the
late ����s to ignore the turmoils before the collapse of the BrettonWoods
system.�

Government bonds

We will study the prices of two government bonds, a U.S. Treasury se-
curity (T-Note, �� years maturity), which has become the security most
frequently quoted when discussing the performance of the U.S. govern-
ment bondmarket and is used to convey the market’s take on longer-term
macroeconomic expectations, and a German government bond (Bundes-
anleihe, �� years maturity).

Commodities

Commodity markets have seen an upturn in the volume of trading in re-
cent years. Global physical and derivative trading of commodities on ex-
changes increased more than a third in ���� to reach ���� million con-
tracts. Agricultural contracts trading grew by ��� in ����, while precious

� Average volatilities σ̄ ≈ �.�� (HSI), �.�� (S&P ���), �.�� (FTSE ���), robust for di�erent
scale estimators and time windows.

� �e exchange rates are noon buying rates in New York for cable transfers (U.S. Federal
Reserve).
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Table 5.1: Time series data for this study, indicating the starting dates, as well
as the sample size. All series end on ����-��-��.

���� ������ ����� ���� ����
����� ������ �������
S&P 500 1950-01-03 15286
Hang Seng Index (HSI) 1969-11-24 10660
FTSE 100 1984-04-02 6696

������� ��������
JPY/USD 1978-01-03 8232

���������� �����
U.S. T-Note 1967-01-03 11414
German gov. bond (GER Bund) 1986-06-20 6336

�����������
Gold 1976-08-02 8915
Wheat 1985-06-03 6610

metals trading grew by �� [��]. Especially through the use of futures con-
tracts and derivatives, commodities are popular as an investment and sub-
ject to speculation. Here, we will study the price time series of gold and
wheat to have representatives of the precious metal and agricultural com-
modities. Gold is the most popular of all precious metals as an investment
and is very important throughout the world as a vehicle for monetary ex-
change.� Among the grains soy, corn, oats etc., wheat is one of the grains
with the highest trading volume.�

�.� ����������
We discussed so far the concepts of volatility, drawdowns and Dragon
King detection. Each of these concepts is bound to some kind of parame-
ter, i.e. the realised volatility depends on the choice of the scale estimator
and of the size of the time window, drawdowns depend on the method

� Gold prices from the London bullion market, a wholesale over-the-counter market for
gold and silver.

� Wheat prices from the Kansas City Board of Trade (spot values of the ���� bushels Hard
Red Winter Wheat No. � contract).
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and degree of coarse-graining, and Dragon King detection on the tools
we presented.

For the realised volatility we will use the Sn,X estimator of scale (�.�)
as consistent estimator ŝX for the standard deviation with the time win-
dows T = ��, ���, ���. For each of the three volatility estimates we con-
struct pure drawdowns and єv�.�-drawdowns. We both use non-adjusted
(“traditional”) drawdowns and volatility-adjusted drawdowns as de�ned
by (�.��). However, in order to be able to better compare these draw-
downs, we scale the non-adjusted drawdowns by the average volatility σ̄ ,
i.e. we simply divide each non-adjusted drawdown by the same number,
without changing the distributions. For each of these four distributions
of drawdowns (per volatility estimate) we apply our Dragon King detec-
tion tools: First, the complementary cumulative distribution functions
(����) in logarithmic and semi-logarithmic representation; second, the
likelihood-ratio (Wilks) test for nested hypotheses (stretched exponential
and power lawmodels); third, the uni�edmost powerful unbiased (����)
test to discriminate between the power law and lognormal model; and
fourth, Hill’s inverse tail index estimate to further check the validity of
the power law model. We further apply for each of the three volatility
estimates our approach of taking distributions of drawdowns during k dif-
ferent volatility regimes, as introduced at the end of chapter � (section
�.�.�). For this purpose we de�ne three di�erent levels of granularity for
the volatility regimes, namely k = �, �, ��. Again, for each of the volatility
regimes Vi�k we separate the non-adjusted� and volatility-adjusted p and
єv�.�-drawdowns. For each of these four distributions of drawdowns per
volatility regime Vi�k (i.e. �k = �� distributions of drawdowns per volatil-
ity estimate) we �nally generate the ����s.
To provide an overview, in table �.�we summarise in a hierarchical way

the tools we apply to the distributions of drawdowns with the di�erent
combinations of parameters. For the sake of completeness, all the result-
ing �gures and tables for the di�erent parameters and tools for each time
series can be found in appendices B to F.�

� In this case, we scale non-adjusted drawdowns by the centre volatility value ci�k , in-
stead of the average volatility σ̄ , to better compare non-adjusted and adjusted drawdowns
within the volatility regimes Vi�k .

� To keep the number of �gures and tables as small as possible, but without sacri�cing the
clarity of the information, we combine in almost all cases non-adjusted and volatility-
adjusted drawdowns, keeping p- and є-drawdowns separate, and in some cases, all four
kinds of drawdowns, into one single �gure and table.
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Table 5.2: Parameters and tools for the data analysis. Parameters: Volatil-
ity (���) with the estimator of scale ŝX and time window T ; p/є-
drawdowns (��), non-adjusted/adjusted (n/a); and volatility re-
gimes (��), whole population (–) orVi�k . Tools, applied/non-applied
(●/–): ����, logarithmic (��) and semi-logarithmic (��); ���� test
power law versus lognormal (��-��); Hill’s estimate ˆα−�; and Wilks
test, stretched exponential (��) and power law model (��).

��������� �����
��� �� �� ���� ���� ���� �����

ŝX T p/є n/a Vi�k �� �� ��-�� ˆα−1 �� ��
Sn,X 20 p n – ● ● ● ● ● ●

V1...3�3 ● ● – – – –
V1...5�5 ● ● – – – –
V1...10�10 ● ● – – – –

a – ● ● ● ● ● ●
V1...3�3 ● ● – – – –
V1...5�5 ● ● – – – –
V1...10�10 ● ● – – – –

єv0.5 n – ● ● ● ● ● ●
V1...3�3 ● ● – – – –
V1...5�5 ● ● – – – –
V1...10�10 ● ● – – – –

a – ● ● ● ● ● ●
V1...3�3 ● ● – – – –
V1...5�5 ● ● – – – –
V1...10�10 ● ● – – – –

125 . . . . . .
. . . . . .

250 . . . . . .
. . . . . .
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�.� �������
In this section we will present the most important features of the results
from our analyses. We will start with a thorough presentation of the re-
sults of the S&P ��� index in section �.�.� and then brie�y present the
main results of the remaining stock market indices (section �.�.�), foreign
exchange (section �.�.�), government bonds (section �.�.�) and commodi-
ties (section �.�.�).

�.�.� S&P 500

Please refer to appendix B for the complete set of �gures and tables of the
S&P ��� index.

���������� �e volatilities for the three time window sizes are shown
in �gure B.�, with average volatilities around �.�� for all T . �e non-ad-
justed and adjusted p- and є-drawdowns with their volatilities are shown
in �gures B.�, B.� and B.� (T = ��, ���, ���, respectively). We see that
for T = ��most of the drawdowns fall into the volatility range of around
�.��–�.�, while the upper bound of this range decreases with increasing T ,
compressing the distribution of drawdowns closer to the average volatil-
ity. �is e�ect arises from the fact of large peaks in the distribution of
realised volatility for small T . For a larger T , the bulk of the drawdowns
is more symmetrically distributed around the average volatility, reducing
the skewness of the distribution of volatility. �is can also be seen in ta-
bles B.�, B.�� and B.��, showing the distribution of drawdowns within
di�erent volatility regimes (k = �, �, ��). �e larger the time window size,
the more drawdowns fall into the volatility regimes with volatility levels
around the mean volatility.

���� In �gures B.�, B.� and B.� the complementary cumulative distri-
bution functions (����) in log-log (a) and log-linear representations (b)
are shown. As expected, the distributions of non-adjusted p-drawdowns
are identical for the three time window sizes, since they are constructed
and distributed independently of the volatility. At �rst glance, the distri-
bution follows a slightly concave curve in the logarithmic representation
giving �rst evidence of a stretched exponential behaviour where we could
identify two obvious outliers in the tail. By comparing p-drawdowns with
є-drawdowns, we observe that for T = �� and ��� the distributions fol-



�.� ������� 57

low a straight line in the logarithmic representation with a rather smooth
convex behaviour in the semi-logarithmic representation. For T = ���,
the distribution resembles more closely the distribution of non-adjusted
p-drawdowns. �is behaviour is expected, since, with increasing T , the
volatility time series becomes asymptotically �at, i.e. at the extreme T = n,
with n being the sample size of returns, the volatility would be at a con-
stant level. �e di�erence of the distributions of volatility-adjusted and
non-adjusted drawdowns is rather subtle. However, we observe that the
adjustment has a “smoothing” e�ect, eliminating bumps and deviations.
E.g. if we take the distribution of non-adjusted p-drawdowns around the
drawdown size of ���, we see a very obvious break, which does not ap-
pear in the adjusted distribution. In the adjusted distribution this break
does not appear. �e bump between ��� and ��� in the distribution of
non-adjusted є-drawdowns with T = ��� disappears a�er adjustment, too.
Hence, in this case of the S&P ���, the adjustment seems to produce qual-
itatively more immaculate distributions, suggesting to be a better founda-
tion for parametric tests.

������� ��������� Tables B.�, B.� and B.� list the largest draw-
downs up to rank ��. Taking non-adjusted p-drawdowns as reference, ��,
�� and �� (T = ��, ���, ���, respectively) out of the top �� non-adjusted
є-drawdowns are the same events.� �e picture looks very di�erent for
the adjusted drawdowns, where only �, � and � (p-drawdowns) and �, �
and � (є-drawdowns) out of the top �� are the same as for non-adjusted p-
drawdowns. However, ��, � and � out of the top �� adjusted є-drawdowns
are the same as for the adjusted p-drawdowns. We see that the largest
drawdown events seem to be robust when comparing non-adjusted p- and
non-adjusted є-drawdowns, as well as comparing adjusted p- and adjusted
є-drawdowns. Cross-comparing non-adjusted and adjusted drawdown
events reveals larger discrepancies. However, this result is expected, since
all but �–� events (T = ��: ����-��-��, T = ���, ���: ����-��-��, ����-
��-��, ����-��-��) out of the top �� non-adjusted drawdowns happened at
times with above-average volatility. Hence, the volatility-adjustment de-
creases the magnitude (increases the rank) of these drawdowns in a much
stronger way, such that they disappear from the top �� ranking. We see this
in �gure �.� (a), showing the probability density functions (���) of the

� We regard two drawdowns as the same event, if they start on the same date, or if they
overlap, e.g. the drawdown starting on ����-��-�� with � days length (non-adjusted є-
drawdown rank �, T = ��) is the same event as the drawdown starting on ����-��-��
with � days length (non-adjusted p-drawdown rank ��, T = ��).
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volatilities of the top �� non-adjusted and adjusted є-drawdowns. Com-
paring the four kinds of drawdowns with di�erent T , taking T = ��� as
reference, we see that for T = ��, ��, ��, � and � (non-adj. p-, non-adj. є-,
adj. p- and adj. є-drawdowns, respectively), and for T = ���, ��, ��, �� and
�� drawdowns are the same events as in the equivalent top �� drawdowns
with T = ���. �is tells us that, �rst, the distributions of non-adjusted
p-drawdowns are — as mentioned earlier — identical for all T , second,
non-adjusted є-drawdowns are rather robust for all T , third, adjusted є-
drawdowns are also quite robust for all T , butmore robust with increasing
T .�e last point is in line with our previous observation, that with increas-
ing T the volatility time series becomes asymptotically �at, decreasing the
di�erences between the distributions of adjusted and non-adjusted draw-
downs.

���� ’� ��������� As mentioned earlier, we have identi�ed by eye a
stretched exponential and power law behaviour in the tails. Figures B.�,
B.� and B.�� show Hill’s inverse tail index estimates. In all cases, they �uc-
tuate in the range of ranks �� up to ��� around �.�, suggesting a power
law behaviour in the tail with a tail index around �. �is is in line with
the literature [�, ��, ��, ��, ��] for the distributions of returns, rather than
drawdowns. However, if we assume the returns to be independent with a
power law tail with exponent α = �, then we can predict that the distribu-
tion of drawdowns is also a power law with the same exponent. More in-
terestingly, for the �rst few ranks, up to around rank ��, the inverse tail in-
dex estimates exhibit a strong instability, especially for the p-drawdowns,
whereas the є-drawdowns seem to be more stable in the lower ranks.

���� ���� Figures B.��, B.�� and B.�� show the results of the ����
test to discriminate between the power law and the lognormal distribu-
tion. In all cases, the test selects the power law up to the �rst ��� ranks.
However, for the �rst few ranks, the p-value seems to be unstable, espe-
cially for adjusted p- and є-drawdowns. Hence, both Hill’s estimator and
the ���� test show instability for the �rst few ranks. �is can be an indi-
cator for some change of regime or just due to the inability of the tests to
work with small samples in the far tail. In the latter case, the ���� test
would prefer the power law in the tail, and this will occur even more if
there is a Dragon King regime, since then the power law is closer to a fat-
ter tail than the lognormal. Hence, we could imagine the drawdowns to be
distributed lognormal-like in the bulk, power law-like in an intermediate
tail and a Dragon King regime for the few extreme drawdowns, and the
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���� test would just con�rm that the ��� smaller ranks follow a power
law instead of lognormal distribution.

����������-����� ���� Figures B.��, B.�� and B.�� show the results
of the likelihood-ratio test for nested hypotheses (stretched exponential
model). �e test con�rms the existence of two populations, one that de-
scribes the distribution of the smallest drawdowns (around rank ���� up-
wards) better as stretched exponential (C = �), and one that describes
the larger drawdowns (around rank ���� downwards) better as modi�ed
stretched exponential (C ≠ �). �e test results for the power law model
are shown in �gures B.��, B.�� and B.��. In all cases, the p-value never
decays beyond �–��� to be able to reject the null (C = �), suggesting a
“pure” power law behaviour. However, the p-value sharply decays down to
around ��� a�er the �rst � to � ranks. For the volatility-adjusted cases, the
declines are generally stronger than for the non-adjusted cases, with the
sharpest drop in the case of adjusted p-drawdowns with T = ���, where
the p-value reaches its lowest point at just above ���. A�er the p-values de-
cay, the p-values rise again at around rank �� and remain at levels close to
����. We can see in the logarithmic representations of the ���� that the
increases of the p-values happen to be at a point of in�ection, where the
logarithmic ����s turns convex. Hence, although we formally cannot re-
ject the null in order to describe the distributions as modi�ed power laws
(C ≠ �), we clearly see a change of regime a�er the �rst few drawdowns
in form of a declining p-value. �is can be seen as a strong indicator for a
Dragon King regime for the �rst few ranks.

���������� ������� Until now, we have seen the results for the dis-
tributions of the whole population of non-adjusted and volatility-adjusted
drawdowns. Let us now turn to the distributions of drawdowns during dif-
ferent volatility regimes. Figures B.��–B.�� (T = ��), B.��–B.�� (T = ���)
and B.��–B.�� (T = ���) show the ����s for the volatility regimes with
k = �, tables B.�–B.�, B.��–B.�� and B.��–B.�� list the corresponding top
�� ranked drawdowns.� �e �gures starting at B.��, B.�� and B.�� show
the ����s for the volatility regimes with k = � (tables starting at B.��, B.��
and B.��), and the �gures starting at B.��, B.�� and B.�� show the ����s
for the volatility regimes with k = �� (tables starting at B.��, B.�� and
B.��). Let us start with the small k = �. We see in the ����s of almost
all volatility regimes Vi�� for all T strong indicators for outliers or changes

� Only �gures and tables for Vi�k are shown if they consist of more than �� drawdowns
(see tables B.�, B.�� and B.�� for the quantities of drawdowns within volatility regimes).
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of regime. �is is especially true for our combined approach of adjust-
ing drawdowns within volatility regimes, since the e�ect of adjustment
is rather strong for a small k with broad ranges of volatility levels. For
the �rst volatility regime V���, we see in tables B.�, B.�� and B.�� that the
top ranks coincide with the ranks of the corresponding drawdowns in the
whole population (see column ��). For the adjusted p- and є-drawdowns,
virtually all ranks coincide very well. However, for non-adjusted p- and
є-drawdowns with T = ��� the discrepancies are quite large. �is e�ect
arises from the fact that the volatility levels get narrower with increasing
T , e.g. the upper bounds of the volatility levels of V��� decrease from �.��
over �.�� to �.�� (T = ��, ���, ���, respectively). Since we identi�ed ear-
lier in the ranking of the whole population (tables B.�, B.� and B.�) that
most of the largest drawdowns happen at times with volatilities above �.��,
and since the volatility-adjustment generally emphasises drawdowns with
small volatility, the absence of these drawdowns in V��� with T = ��� can
be explained. In other words, with increasing T , the drawdowns get more
evenly and �ner distributed over the k volatility regimes. We see this by
taking k slices from �gures B.�, B.� and B.�, as shown in �gure �.�, where
we have taken the extreme cases T = �� and T = ��� (є-drawdowns) and
have drawn the slices for k = � and k = �� to illustrate our point. For the
volatility regimes V���, as well as V���, we see in tables B.�, B.�� and B.��,
as well as B.�, B.�� and B.��, that there are large discrepancies in the top
ranks with the ranks of the corresponding drawdowns in the whole pop-
ulation. However, the events are robust throughout the di�erent kinds of
drawdowns and time window sizes.
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(a)

(b)
Figure 5.1: S&P ��� index. є-Drawdowns at times with di�erent realised volatil-

ity. (a) T = ��; (b) T = ���. Volatility-adjusted (red) and non-
adjusted (blue), indicating k = � (bottom grey) and k = �� (top
grey) volatility regimes.
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������� ��������� (���������� �������) As mentioned ear-
lier, we see in all cases strong indicators for outliers and changes of regime.
Let us take from each of the four kinds of drawdowns the top ni�� ranked
drawdowns from each volatility regime Vi�� and combine them into an
overall ranking.� Tables B.�, B.�� and B.�� list these �� largest drawdowns
combined into a single ranking. We see that in most cases the �rst �–��
ranks coincide with the ranks from the whole population. �ese results
are consistent four all four kinds of drawdowns and robust for all T . How-
ever, with increasing T , the ranks coincide evenmore with the ranks from
the whole population, telling us that the very largest drawdowns in each
volatility regime with T = ��� can be found within the very largest draw-
downs of the whole population. We see that most of the drawdowns at
ranks ��–�� are high-volatile events from ���� and early ����, which can
be found only at higher ranks within the whole population. Figure �.�
shows the S&P ��� index for the time around ����–����, indicating the
bubble bursting in ����. Hence, the events at ranks ��–�� are huge losses
that occurred a�er — but not immediately a�er — the burst of the bubble.
For the volatility regimes with k = �, ��, the results are in line with the re-
sults obtained for k = �. However, the e�ect of adjustment is much weaker
with increasing k, since the volatility levels are much narrower. �e distri-
butions of non-adjusted and adjusted drawdowns are thus almost identi-
cal. In general, in almost all volatility regimes we see again strong indica-
tors for outliers and changes of regime. Tables B.�, B.�� and B.�� (k = �)
and B.��, B.�� and B.�� (k = ��) list the �� largest drawdowns combined
into a single ranking, where, like for k = �, the �rst �–�� ranks coincide
with the ranks of the whole population. �e higher ranks are events from
around ���� and ����, however, not as exclusively as for k = �, i.e. events
from the ����s and ����s are also present. Aswe can see in �gure �.� (b), in
the combined rankings drawdowns with low and high volatility are more
evenly spread than in the whole population. To summarise the �ndings
from the analysis of volatility regimes for the S&P ���, we con�rm that
the largest drawdowns combined from each volatility regime (especially
for larger k) are — as expected — from a broader range of dates, since
more dates with low and high volatility are taken into account. Again, it
is important to stress, that the distributions of drawdowns during di�er-

� �e choice of ni�k should coincide with the actual number of Dragon Kings detected
in each volatility regime Vi�k . However, since we detect obvious outliers by eye, and to
obtain a combined ranking of exactly �� drawdowns, we generally choose ni�� = {�, �, �},
ni�� = {�, �, �, �, �} and ni��� = {�, �, �, �, �, �, �, �, �, �}, with ni�k = � if there are less than
�� drawdowns in Vi�k .
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ent volatility regimes appear to exhibit a power law-like behaviour with
strong indicators for outliers, deviations and changes of regime in the tails.
In other words, it appears that there are more outliers than the �–�� out-
liers we identify in the ����s of the whole population of drawdowns (�g-
ures B.�, B.� and B.�). Furthermore, the results appear to be robust for
p- and є-drawdowns (generally a minimum of ��� of the combined top
�� drawdowns are the same events for p- and є-drawdowns). �ere are
discrepancies in the distributions of drawdowns for speci�c volatility re-
gimes with di�erent T . However, the aggregate (combined) results appear
to be robust for di�erent T , with more robust results for larger T .��

Figure 5.2: S&P ��� index from ���� to ���� (logarithmic price scale).

�� To avoid too much clutter in the results, we will focus the study of volatility regimes for
the remaining time series on the two extreme cases T = �� and T = ���, since the results
appear to be rather robust for di�erent time window sizes.
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(a)

(b)
Figure 5.3: S&P ��� index (T = ��). Probability density functions (���) of

the volatilities for the non-adjusted (blue) and adjusted (red) є-
drawdowns from (a) the top �� ranks of the whole population, (b)
the combined top �� ranks of the volatility regimes with k = �, �, ��.
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�.�.� Stock market indices

Please refer to appendix C for the �gures and tables of the stock market
indices (Hang Seng Index and FTSE ���).

���������� As mentioned earlier, the Hang Seng Index is with a mean
volatility of �.�� the most volatile stock market index in our study. Espe-
cially in the ����s and in the recent years, the volatility has been very high,
with levels ranging from �–�. For both the Hang Seng Index and the FTSE
���, the distributions of drawdowns across the di�erent volatilities show
the same patterns we already encountered, where — with increasing T —
the distributions of drawdowns get compressed closer to the mean volatil-
ity.�is behaviour con�rms that for larger T the distribution of the volatil-
ity becomes less fat tail and less skewed.

����� ���������� In the logarithmic representations of the ���� of
the Hang Seng Index we identify a very straight line for all T , suggesting
a power law behaviour in the tail. �e adjustment seems to have a similar
smoothing e�ect as for the S&P ���, while the shape of the distribution
appears to be the same for all T (�gure C.�). For the FTSE ���, the distri-
butions aremore distinct for di�erent T , where larger deviations appear al-
ready at higher ranks (arounddrawdown sizes of ��). However, the adjust-
ment seems to have a smoothing e�ect on these deviations (�gure C.��).
�e largest drawdowns are robust for di�erent measures of noise, i.e. gen-
erally at least �� out of the top �� ranked drawdowns are the same events
for non-adjusted p- and є-drawdowns. Adjusted p- and є-drawdowns are
evenmore robust among themselves, and comparing drawdowns with the
equivalent drawdowns with other T shows very high robustness, too. In
general, for larger T the di�erent kinds of drawdowns become more and
more similar. �is con�rms the pattern we identi�ed for the S&P ���.
�e inverse tail index estimates con�rm in all cases a power law-like be-
haviour for the �rst ��� ranks, with tail indices around �.�–�.�. However,
the adjusted cases exhibit a very unstable behaviour for the �rst �� ranks,
where the inverse tail index reaches �.�–�.�, indicating a fatter tail for the
�rst few ranks (�gure C.�). �e ���� test results are in line with Hill’s
estimates, choosing the power law for the �rst ��� ranks. However, for
the FTSE ��� we notice a behaviour that we �nd across all non-adjusted
drawdowns for all T , where around drawdown sizes �–�� the p-value de-
cays below �–��� and increases again around drawdown sizes at �–��,
indicating some kind of deviation in the tail, which is not present for ad-
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justed drawdowns (�gure C.��). Indeed, this coincides with the deviation
and smoothing we identi�ed earlier in the ����. �e likelihood-ratio test
results for the stretched exponential model are pretty straightforward, se-
lecting the modi�ed model (C ≠ �) for drawdowns larger than around ��.
�is suggests the existence of a pure stretched exponential model (C = �)
for the smaller and a fatter than stretched exponential behaviour for the
larger drawdowns. However, it appears that the p-values are more unsta-
ble for p-drawdowns, suggesting less disruptive deviations in the distribu-
tions around smaller drawdown sizes, or, in other words, smoother devia-
tions for є-drawdowns (�gure C.��). �e results for the power law model
show again signi�cant declines of the p-value a�er the �rst few ranks, and
signi�cant increases at ranks around ���, suggesting a wilder than power
law-like behaviour for the very largest drawdowns (�gure C.��).

���������� ������� �e study of the volatility regimes reveals simi-
lar results as for the S&P ���. We see for almost all volatility regimes and
time window sizes power law-like distributions with strong indicators for
outliers and deviations, e.g. for V���� (HSI, T = ���, �gure C.��) we see a
very straight line in the logarithmic representation of the ���� with sig-
ni�cant outliers in the tail, and V���� (HSI, T = ���, �gure C.��) seems to
be a volatility regime without any signi�cant outliers. �e combined top
�� ranked drawdowns from all volatility regimes are very consistent with
the rankings of the whole population, with a very robust behaviour for
non-adjusted p- and є-drawdowns, as well as the inclusion of drawdown
events from a broader range of volatilities. Comparing the rankings be-
tween non-adjusted and adjusted drawdowns reveals a robust behaviour,
too, e.g. �� out of �� є-drawdowns are the same in the non-adjusted and
adjusted cases for the combined ranking of V�..��� (FTSE ���, T = ��, ta-
ble C.��). With increasing T , we �nd again that the combined rankings
become even more consistent with the rankings of the whole population
for all kinds of drawdowns. For V�..��� (FTSE ���), but with T = ��� (table
C.��), we �nd �� out ��matching non-adjusted and adjusted є-drawdown
events. �is con�rms that the analysis of distributions of drawdowns dur-
ing di�erent volatility regimes is much more robust with larger T .

�.�.� Foreign exchange

Please refer to appendix D for the �gures and tables of the foreign ex-
change (JPY/USD).
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���������� �e exchange rate of the Japanese Yen against the U.S. dol-
lar is low-volatile, with an average volatility at around �.�� for all T , while
the bulk of the drawdowns lies in the range of around �.�–�.� (�gure D.�).

����� ���������� �e ����s appear to follow a power law, with
straight lines in the logarithmic representations and constant inverse tail
index estimates around �.� for the lower ranks and for all T . Contrary to
the time series already discussed, the adjustment appears to emphasise the
tails of the distribution, especially for smaller T (�gure D.�). �e results
of the ���� test con�rm a power law behaviour for the �rst ��� ranks,
and the test appears to be sensitive to deviations in the far tail around
rank ��, e.g. in �gure D.��we see a strong indicator for a change of regime
around that rank. �e likelihood-ratio test results for both the stretched
exponential model and the power law model are in line with the results
for the time series we have discussed so far. A fatter than pure stretched
exponential behaviour is selected for drawdowns larger than around ��,
and a signi�cant decline of the p-value for the power law model in the
�rst few ranks suggests a wilder than power law-like behaviour of the very
largest drawdowns. However, there are no signi�cant di�erent behaviours
of the tests for non-adjusted and adjusted drawdowns.

���������� ������� We �nd the same patterns as for the other time
series we discussed. In almost all volatility regimes the ����s exhibit a
power law-like behaviour with strong indicators for outliers and devia-
tions, suggesting the existence of changes of regimewithin di�erent volatil-
ity regimes, e.g. for V��� (T = ���, �gure D.��). �e patterns for the rank-
ings of the combined top �� drawdowns from each volatility regime are
also in line with our previous observations, showing a robust behaviour
for the equivalent rankings of the whole population. Comparing the com-
bined rankings of p- and є-drawdowns with each other reveals larger dis-
crepancies, e.g. in the case of k = � with T = ���, only � drawdowns are
the same for the �� largest combined p- and є-drawdowns (table D.��). A
possible reason could be the fact that there are very long є-drawdowns
in this time series, e.g. the non-adjusted є-drawdown at combined rank
�, staring at ����-��-��, lasts over �� trading days. Hence, the choice of
є� = �.� could be too large for this time series. However, comparing the
combined ranks of non-adjusted and adjusted є-drawdowns reveals again
a robust behaviour, sharing �� out of �� drawdown events.
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�.�.� Government bonds

Please refer to appendix E for the �gures and tables of the government
bonds (U.S. T-Note and German government bond).

���������� �e average volatility of the U.S. T-Note is around �.�� for
all T , with a volatility constantly growing over the period of the time series,
starting in the ����s at a low level at around �.� and recently reaching its
highest levels in the range of �.�–�.�. �e bulk of the drawdowns lies in the
range of around �.�–�. �e German government bond is by far the lowest-
volatile time series in our study, with an average volatility around �.��, be-
ing rather stable over the recent years. �e bulk of the drawdowns lies
in the range of around �–�.�, i.e. a much smaller range than for the other
time series. For T = ���, we see a rather harsh lower bound at around �.��,
caused by the very constant low volatility spanning over several months
around ���� and ����–���� (compare �gures E.�� and E.��).

����� ���������� For the German government bond we see in the
����s a very strong e�ect of the volatility-adjustment, emphasising a very
distinctive outlier regime, especially for T = �� (�gure E.��). However,
across all T , the smoothing e�ect of the adjustment we identi�ed for other
time series is not as salient (�gures E.�� and E.��). �e rankings of the
�� largest drawdowns reveal our usual patterns: non-adjusted p- and є-
drawdowns, as well as adjusted p- and є-drawdowns are rather robust,
non-adjusted є-drawdowns are very robust across all T , and generally, con-
sistencies increase with increasing T . �e inverse tail index estimates of
the U.S. T-Note are again constantly �uctuating around �.�, with slightly
higher values for the non-adjusted drawdowns, i.e. the tail indices of the
non-adjusted drawdown distributions are slightly lower than the indices
of the adjusted ones. Hill’s estimates of the German government bond un-
derline the particular shape of the distribution for this time series. We
observe mainly two behaviours that are new in our study, �rst, the esti-
mates do not �uctuate at such a constant level as in the other time series,
i.e. a plateau validating a power law is not as apparent, second, the esti-
mates for the adjusted drawdowns are with values over �.� much higher
than for the non-adjusted drawdowns, where the values are in the range of
�.�–�.�. �is large discrepancy arises from the strong e�ect of adjustment
we identi�ed before. Hence, strong changes of regime can be seen in the
adjusted cases (�gures E.��, E.��, E.��).
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���������� ������� �e distributions of drawdowns during di�er-
ent volatility regimes show in almost all cases strong indicators for outliers
and deviations, and the rankings con�rm the patterns of consistency we
already identi�ed for other time series. However, for the very low-volatile
German government bond, we see the e�ect of choice of the time window
size on segregating drawdowns into di�erent volatility regimes, since for
T = �� the largest drawdowns are distributed across all volatility levels
(�gure E.��), but for T = ���most of them are at the harsh lower bound
(�gure E.��). Hence, the combined rankings across di�erent T are not as
robust as for the other time series, e.g. for k = �, only � out of �� draw-
down events are the same in the combined rankings for T = �� and ���.
�e reason for this could arise from the fact that the volatility range for
the German government bond is very narrow, obviating the claimed need
of segregating drawdowns into di�erent volatility regimes. Hence, for this
time series, the results by adjusting the whole population by the volatility
could be more appropriate.

�.�.� Commodities

Please refer to appendix F for the �gures and tables of the commodities
(gold and wheat).

���������� �e volatility of the gold price was very high in the early
����s and was rising again over the recent years. �e average volatility for
the whole time series is around �.��, with the bulk of the drawdowns lying
in the range of �.�–�. �e average volatility for the wheat price is with �.��
quite high and was rising over the recent years, while the bulk of the draw-
downs lies in the range of �.�–�. However, here we see a weakness of the
estimator of scale, where some clustering appears around speci�c times,
e.g. the artefact in the volatility time series around ���� produces the clus-
ters at the lower volatility bound in �gure F.��. For the adjustment, this
may produce distorted results, but for the study of the volatility regimes,
this e�ect can be safely ignored.

����� ���������� Sincemost of the largest drawdowns for gold are
at high-volatile times (�gure F.�), the adjustment decreases the size of the
largest drawdowns, making the tails of the ����s less pronounced for all
T , i.e. the adjustment appears to produce smoother distributions with less
obvious outliers (�gure F.�). Because of this, the events in the rankings
of the �� largest adjusted drawdowns are very distinct to the non-adjusted
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cases, e.g. for T = ���, only one drawdown event from the �� largest ad-
justed drawdowns is also present within the �� largest non-adjusted p-
drawdowns. For the other time series discussed, we already found this pat-
tern, however, not as strong as here. For wheat, the volatility-adjustment
appears to have the smoothing e�ect we already encountered, probably
because of the largest drawdowns for wheat are distributed more evenly
across middle and high volatility levels (�gure F.��). Hill’s inverse tail
index estimates for gold and wheat are again very particular compared
to all time series in our study, since the estimates for the non-adjusted
drawdowns do not �uctuate around a plateau in the lowest ranks and ap-
pear to decay towards �. However, for the adjusted cases for gold, the
estimates �uctuate around a constant level in the range of �.�–�.� in the
lowest ranks. Figures F.� (gold) and F.�� (wheat) are two remarkable ex-
amples. �e ���� test con�rms this non-power law behaviour in some
cases, where the null (power law) is rejected a�er a few ranks. However,
in these cases, the p-value �uctuates, without clearly selecting the power
law or lognormal distribution (�gures F.�� and F.��). On the other hand,
the likelihood-ratio test results for both commodities are in line with the
results of the time series we already discussed. Although the p-value for
the power law model does not decay as much as for the other time series,
a change of regime a�er the �rst few ranks is clearly visible (�gures F.��
and F.��).

���������� ������� �e study of the volatility regimes for gold un-
derlines the main idea of the concept. Since we observed that most of the
largest drawdowns for gold are at high-volatile times, we still �nd outliers
at the low volatility regimes. Even for the small k = �, the distributions in
V��� indicate the existence of outliers (�gures F.�� and F.��). For larger k the
lower volatility regimes indicate even stronger outliers (�gure F.��). Con-
sequently, the combined rankings of the volatility regimes are less robust
with respect to the rankings of the whole population, since the combined
rankings includemany low-volatile drawdowns, which are not included in
the rankings of the whole population, due to their absolutely smaller size,
e.g. ranks ��–�� in table F.�� are low-volatile drawdowns (non-adjusted є-
drawdowns). �e results for wheat are in line with the main observations
we have made so far, especially revealing some possible low-volatile out-
liers.



6 C O N C L U S I O N S

We started our study with the aim of answering the question of whether
DragonKings in distributions of drawdowns taking a time-varying volatil-
ity into account give an even better insight into the nature of returns, draw-
downs, Dragon Kings and extreme risks.
Our approach to answering that question consisted in �rst de�ning the

term “volatility” to construct robust and sound time series of volatility
varying over time. We then applied our concept of volatility to coarse-
grained drawdowns sensitive to noise and to a set of tools to detect Dragon
Kings. Our tools were mainly designed to con�rm particular distribu-
tional behaviours of the bulk of the drawdowns and to �nd indicators for
changes of regimes for the extreme drawdowns in the tail of the distribu-
tions. To test the e�ect of time-varying volatility we introduced two ap-
proaches. First, by “adjusting” or “normalising” drawdowns by the volatil-
ity at their time, and second, by “segregating” drawdowns into di�erent
“volatility regimes” — populations, which are characterised by the same
level of volatility, or in other terms, by “conditioning” drawdowns by the
volatility. Both approaches are not mutually exclusive, such that we also
followed a combined approach of segregation and adjustment.
Our empirical analysis comprised eight time series, i.e. three stock mar-

ket indices (S&P ���, HSI, FTSE ���), one currency (Japanese Yen), two
government bonds (U.S. and Germany) and two commodities (gold and
wheat). We de�ned a set of combinations of parameters, to test the in�u-
ence these parameters have on the results obtained. To characterise the
volatility, we have chosen the robust estimator of scale Sn,X and time win-
dow sizes of T = �� (one month), ��� (half year) and ��� (one year). We
worked with two levels of noise for coarse-grained drawdowns, namely
pure-drawdowns (nonoise) andour newly de�ned variable єv-drawdowns
with є� = �.�. We set the granularity of volatility regimes to k = �, � and
��, and generally worked with non-adjusted and adjusted drawdowns.
Our parametric tests con�rmed the results of previous studies that dis-

tributions of drawdowns can be described very well by stretched exponen-
tials and power laws in the tails, usually up to around rank ��� and with
tail indices around �, matching the power law behaviour of returns.
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Checking the robustness of the di�erent parameters, we found that the
choice of T is the most crucial factor in the whole study, because it af-
fects not only the adjustment and the volatility regimes, but also the єv-
drawdowns. However, we found that p- and єv-drawdowns are in the
same way very robust, as p- and є f -drawdowns turned out to be very ro-
bust in previous studies. Hence, we believe that due to the theoretical ad-
vantages, єv-drawdowns are a straightforward extension to coarse-grained
drawdowns. �e results of studying volatility regimes turned out to be
more robust with both increasing k and T , with the disadvantage of de-
creasing sample sizes with larger k.
�e e�ect of adjustment is manifold and non-conclusive: we found for

most time series that the adjustment appears to smooth the distributions
of drawdowns. Only for the Japanese Yen and for theGerman government
bond we did �nd that the adjustment actually emphasised the tails, mak-
ing outliers more obvious and pronounced. Interestingly, both of these
times series are very low-volatile, but at this point, we are not able to con-
�rm any connection between these characteristics.
�e results of studying drawdowns separately during di�erent volatility

regimes are more promising: We �nd power law-like distributions with
strong indicators for outliers and changes of regime for almost all volatil-
ity regimes, independent of the granularity k and time window size T . De-
pending on the time series studied, we �nd two remarkable features. �e
�rst feature follows from the high consistency we found when comparing
the rankings of the whole population of drawdowns and the combined
rankings of the largest drawdowns from each volatility regime, i.e. we
found that especially for larger T most of the events of the �� largest draw-
downs from each rankingmatch with each other.�is tells us that Dragon
Kings we already identi�ed in the whole population of drawdowns are not
only con�rmed by looking at combined rankings of the largest drawdowns
from each volatility regime, but also more pronounced than in the whole
population. In other words, the distributions of drawdowns during di�er-
ent volatility regimes exhibit in most cases more obvious deviations and
outliers. �e second remarkable feature we found follows from the few
largest drawdowns in the combined rankings that are not present in the
overall rankings. Here, we possibly found newDragonKings at times with
low volatility, i.e. Dragon Kings of absolutely smaller size, but of extreme
relative size in their context.
�e synthesis of both features tells us that studying distributions of draw-

downs separately during di�erent volatility regimes reinforces the idea of
the existence of drawdowns that appear to belong to a di�erent popula-
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tion than the bulk, with the extension that Dragon Kings do not need to
be necessarily absolute extreme drawdowns, since we con�rmed known
“absolute” Dragon Kings and possibly found new “relative” Dragon Kings.

�is conclusion gives rise to questions that remain unanswered. Here
we propose several lines of work to continue this study:

● �e adjustment appears to have some smoothing e�ect on the dis-
tributions of drawdowns such that parametric tests could bene�t
from these more immaculate distributions. Future research could
investigate if there are indeed mechanisms and processes yielding
smoother distributions.

● We identi�ed that the volatility, especially through the choice of
the time window size and scale estimator, is the most crucial fac-
tor when following the approach of volatility regimes. Hence, we
propose to further investigate the concept of volatility withmore so-
phisticatedmethods. Since literature in this area is very rare, we pro-
pose to consider Randal’s [��] “iterated t-volatility estimator”, which
chooses the t-distribution with �ve degrees of freedom as a candi-
date for the data generation process for returns. His results appear
to be promising, even if the underlying distribution of returns is not
the t�-distribution. Another approach is to use the robust scale es-
timators in conjunction with an adaptive time window size T , such
that the volatility within the local time window be approximately
constant.

● We introduced a methodology to check for Dragon Kings across
di�erent volatility regimes through the concept of combined rank-
ings, taking a �xed number ni�k of the largest drawdowns within
each volatility regime Vi�k and combining them into one ranking.
As we already mentioned, the actual Dragon Kings detected in each
volatility regime should be combined.�is is just a shortcutmethod,
since we do not have good tests for outliers or changes of regimes
for small samples in the tails. Hence, research should focus on new
methods and tools to detect Dragon Kings even for small samples;
we saw that the likelihood-ratio test for the power law model failed,
probably because of samples in the tail being too small.

● Another focus should be to streamline the methodology to check
for Dragon Kings across di�erent volatility regimes. Here, the e�ect
of the granularity k could be further investigated, e.g. by testing for
Dragon Kings across di�erent “resolution scales” k.
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�e results of our study can be regarded as a success, since we simply con-
�rm the existence of Dragon Kings. However, we encourage a more opti-
mistic take on the results, since we found evidence for possibly new, un-
knownDragon Kings. �erefore, an important next step should be to link
our concept of volatility regimes and Dragon Kings to the theory of ex-
ogenous and endogenous crashes, i.e. ����-bubbles [��], and fearful and
fearless bubbles [�].



A V O L AT I L I T Y PA R A M E T E R S

�e �gures in this appendix complement the analysis and �gures in chap-
ter � dealing with the parameters for the realised volatility.

Figure A.1: S&P ��� index (grey). Relative volatility deviations of volatilities
with time windows T = �� (blue) and T = ��� (red) from the refer-
ence with time window T = ��� (Sn,X , scaled to [�, �]), showing the
negative and positive ��� (black −−).
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(a)

(b)
Figure A.2: S&P ��� index (grey). Realised volatilities using two estimators

of scale: Exponentially weighted standard deviation with ���
trimmed samples (sX , X(��), blue), and Sn,X (red), as well as the
absolute deviations between the two (black). �e y-axis is scaled to[�, �]. (a) Time window T = ��; (b) T = ���.
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