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Abstract

In this master we show how to obtain a semi-analytical solution to the
generalized delay logistic equation dx/dt = x(1 − x/(a + bx(t − τ)) via a
method of steps. The results are supported by numerical computations.
In addition, the semi-analytical solution is used as a basis to a new regime
classification for the case a = 0. We complement the set of regimes
described in [9] with diagrams using the generalized carrying capacity
as the resource limit. Since we develop new approaches to the study of
the generalized logistic equation, we hope that they might be a source of
inspiration for economical, population categorization or fitting problems.
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1
Introduction

The delay equation studied in this master was firstly introduced in [9].
The solution of the delay equation allows to describe punctuated
evolution of complex systems in a variety of applications among which
the variation of demand and supply in the economy [2], development of
human societies and the growth of firms. These systems are characterized
by periods of stagnation followed by period of radical changes [1, 5, 4].

The emphasis of this work was originally to obtain an example that
could support our new model, however in the course of the master a
new graphical representation as well as a new analytical solution were
found shifting our original intention.

The master is organized as follows. Chapter 2 introduces the standard
logistic equation as well as the generalized delay logistic equation
(GDLE). The introduction consists in the definition of the logistic
equations and a geometrical guide to construct the standard logistic
equation sharpening our intuition regarding our model. Since the
non-linear delay equations are complex in their behaviour, Chapter 3
develops a graphical construction of the solution of the GDLE. The
construction consist in a multi-step approach suggested by the nature of
our model. The multi-step approach leads to the novel semi-analytical
solution supporting the stability analysis advanced by Yukalov, Yukalova
and Sornette [9]. Finally Chapter 4 reviews the scheme of stability
analysis and complements it by a topological view.

The results in this study are supported by numerical integration of the
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GDLE. The integration of the GDLE was done via an iterative procedure
ensuring that the successive approximations of the GDLE solution yielded
to a satisfactory local error estimate, see Appendix B. We implemented the
solver based on the software R [7]. For future work on fitting problems
of the GDLE an algorithm was also written based on the Levenberg-
Marquardt method. The method finds candidate solutions to a nonlinear
least squares algorithm. The aim is to find an optimal (ideally the optimal)
solution from on a multi-dimensional parameter space. Fitting results
on synthetic data are found in Appendix B. In addition to our solvers,
the semi-analytical solution allowed us to do numerical experiments
changing the set of parameters of our model dynamically. The dynamic
experiments were performed with the software Mathematica [8], see
Appendix A.



2
Logistic Equations

In order to have a flavor of the behavior of the generalized delay logistic
equation (GDLE) the well known logistic equation will be introduced.
Then, a generalized form of the logistic equation with a time-delay in
the carrying capacity is presented based on the general model advanced
by Yukalov, Yukalova and Sornette [9]. Since the non-linear delayed
equations are difficult to study, we develop an intuitive graphical
construction of the solution of the GDLE. The construction with a step
approach will be presented in the next chapter.

2.1. Standard logistic equation
The logistic function also frequently called S-shape is the solution of the
following autonomous first order non-linear differential equation.

dN(t)
dt

= rN(t)
(
1 −

N(t)
K

)
, t ≥ 0 (2.1)

where N(t) is characterizing the physical system while the coefficient r
and K could be interpreted as the parameters controlling the growth rate
and the carrying capacity of the environment, respectively. Throughout
our study t is the time, and therefore it is always positive. Setting the
initial condition N(0) := N0 ≥ 0 the solution of the system is

N(t) =
KN0ert

K + N0(ert − 1)
(2.2)
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To develop some intuition of the dynamics of Eq. (2.1) a direction field
is presented in Fig. 1 for a particular parameterization.
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Fig. 1.: Direction field of the Verhulst equation (2.1) and integral curves for different
initial conditions. In this figure the carrying capacity is K = 4 and the initial
conditions are from the bottom to the top N0 = {0, 0.5, 1, . . . , 5}.

The rate of change is constituted by the sum of a linear and a quadratic
term, the linear term is greater than the quadratic term when N(t) < K,
the opposite holds true.

rN(t) −
rN2(t)

K
> 0 ⇒ N(t) < K (2.3)

For N(t) << K, the logistic curve growths exponentially, since the linear
term in 2.2 dominates. The limiting case is the simplest population growth
model described by the equation

dN
dt

= rN(t) (2.4)

For N(t) close to K the term (1 − N(t)/K) → 0 and the rate of change
tends to zero. This situation is visualized by the plateau approaching K
in Fig 1. Finally for N(t) >> K the quadratic term dominates and the
limiting case is

dN
dt

= −
rN2(t)

K
(2.5)

The logistic curve behaves as K/rt for t close to zero.
Formally, the separation (if any) between regimes of growth and the

decay or equivalently convexity and concavity is found via the inflection
points of Equation 2.1. Let t∗ be the time at which the logistic equation
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has an inflection point. The time t∗ satisfies N′′(t∗) = 0 and in the epsilon
neighborhood of t∗, N′′(t∗ + ε) and N′′(t∗ − ε) has opposite signs. N′′(t) is
given by

N′′(t) :=
d2N(t)

dt2 = r2N(t)
(
1 −

N(t)
K

) (
1 −

2N(t)
K

)
, t ≥ 0 (2.6)

A study of signs reveals that the point N(t) = K/2 is the inflection point,
therefore t∗ satisfies N(t∗) = K/2, leading to

t∗ = −
1
r

ln
( N0

K −N0

)
, t∗ ≥ 0 (2.7)

To satisfy t∗ ≥ 0 the logarithm term should satisfy 0 ≤
(

N0
K−N0

)
≤ 1 leading

to a new condition N0 < K/2. In summary, the separation of regimes in
(2.1) exists only for the intial conditions N0 < K/2. Note that in Fig. 1
for N0 < K/2 = 2 the inflection point separating two regimes can be
visualized. Furthermore, the time t∗ for N0 = 2, r = 1, K = 4 is t∗ ' 1.1.

2.1.1. Geometrical construction
Before introducing the generalized delay logistic equation and its
construction steps, the construction of the logistic equation advanced
by Verhulst (2.1) is presented. Recall that the evolution of the logistic
equation (2.1) is fully characterized by the initial condition N0 and its two
parameters r and K. The solution for the physical system for N0 < K/2
can be constructed as follows (see Fig. 2)

1. Draw the constant carrying capacity K

2. Draw the limiting case N(t) = N0ert obtained from (2.4)

3. Draw the limiting case N(t) = K−e−rt(K/N0−1). The case is obtained
from (2.4) and noting that the logistic equation is symmetric under
rotation around the inflection point. More precisely, applying to
(2.4) the following transformation t → 2t∗ − t and N → 2N(t∗) − t,
where t∗ is the inflection point.

For small t start at N0 and follow the first limiting case corresponding
to the exponential growth up to the inflection point. At the inflection
point and for higher t follow the second limiting case corresponding to
the negative exponential decay. In the case of K/2 < N0 < K follow the
negative exponential decay (see Fig. 3).
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Fig. 2.: Construction of the logistic equation, case N0 < K/2, in dotted line the carrying
capacity. The first graph shows the limiting cases and the inflection point. The
parameters of (2.1) are K = 10, r = 1 and N0 = 0.001.
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Fig. 3.: The logistic equation advanced by Verhulst, case K/2 < N0 < K, in dotted line
the constant carrying capacity
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2.2. Generalized delay logistic equation (GDLE)
In this section a generalized form of the logistic equation with a time-
delay in the carrying capacity is presented based on the general model
advanced by Yukalov, Yukalova and Sornette [9]. The general model is

N′(t) :=
dN(t)

dt
= γN(t) −

CN(t)2

K(t)
, t > 0 (2.8)

with initial function
N(t) = f (t), t < 0 (2.9)

and initial value
N(0) = N0, t = 0 (2.10)

where K(t) := A + BN(t − τ) is the generalized carrying capacity. K(t)
is a linear function of the physical system, the two contributions are
A, interpreted as the original carrying capacity and B, interpreted as
the factor that controls the current carrying capacity as a proportion of
the historical development. The term γ can be interpreted as the net
birth rate with respect to the death or equivalently the net gain rate
versus the loss. The term C represents the net competition versus the
cooperation. The two terms regulate the two causes of development,
γ controls the individual composing the system while C controls the
interactions or the feedback to the system. We restrict our study to the
following parameterization,

−∞ < B < ∞, A ≥ 0, C > 0, γ > 0, and τ > 0

The general model in (2.8) is simplified by dimensionless transforma-
tions and parameter reduction techniques [9]. In short, we define a new
variable x(t) that is the normalized development N(t) by an effective rate
in order to obtain a relative development x(t) := N(t)/Ne f f . Additionally
the two terms γ and C are absorbed with the constants A and B. This
transformation redefines new constants a and b, respectively, furthermore
a new time scale s is chosen, below the transformations

dx(t)
dt

1
γ

= x(t) −
x2(t)
γ

CNe f f
K(t)

= x(t) −
x2(t)

γ
CNe f f

A +
γ
CBx(t − τ)

, t > 0 (2.11)

with the new time scale s = tγ and defining

a := γ
CNe f f

A
b := γ

CB
k(s) := a + bx(s − τ)

(2.12)
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the equation reduces to

dx(s)
ds

= x(s) −
x2(s)

a + bx(s − τ)
= x(s) −

x2(s)
k(s)

, s > 0 (2.13)

with initial function
x(s) = f (s), s < 0 (2.14)

and initial value
x(0) = f (0) = x0, s = 0 (2.15)

The general model is obtained from Eq. (2.8) with a time dependent
carrying capacity, however we can focus our study on Eq. (2.13) without
loss of generality. In the following sections the new time scale s will be
replaced with t.



3
Step-wise construction

In this section a guide to ’construct’ the solution of Eq. (2.13) will be
provided. The construction will follow a method of steps. The steps will
be of length τ, we will stop at the second step since the other steps can
easily be inferred by recursion. The method of steps is motivated by the
semi-analytical solution within each step and the graphical interpretation
of the dynamics versus its carrying capacity. In the first section of this
chapter details on the on the analytical motivation are provided, then
the system is resolved semi-analytically and finally new insights on the
regime classification are shown for a specific parameterization (a = 0).

3.0.1. Analytical motivation
The analytical rationale for using the method of steps is that for any
t ∈ [nτ, (n + 1)τ], for all positive integers n, the term x(t − τ) is known.
Therefore Eq. (2.13) within each interval reduces to a logistic equation
with a time varying carrying capacity k(t). For example in Eq. (2.13)
within the interval [0, τ] the term x(t−τ) is known and corresponds to the
initial function f (t).

More precisely, the function f (t) defined on [−τ, 0] allows to define the
evolution of the delayed system in (2.13) on the new interval [0, τ] as the
solution of the following first order non-linear differential equation

dx1(t)
dt

= x1(t) −
x2

1(t)
a + b f (t)

, t ∈ [0, τ] (3.1)

with initial value x1(0) = x(0) = f (0). The following step consists in
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constructing the solution in the interval [τ, 2τ] by using the solution of x1

defined in [0, τ]. The solution is given by

dx2(t)
dt

= x2(t) −
x2

2(t)
a + bx1(t − τ)

, t ∈ [τ, 2τ] (3.2)

with initial value x2(τ) = x(τ) = x1(τ). The remaining steps can be
performed by recursion.

dxn(t)/dt = xn(t) − x2
n(t)/(a + bxn−1(t − τ)), t ∈ [(n − 1)τ,nτ] (3.3)

Finally, the solution of the delayed system (2.13) at a given time t is the
collection of n trajectories, where n satisfies (n− 1)τ ≤ t ≤ nτ. We are now
capable to solve our system by successive integration as it will be seen
below.

3.0.2. Semi-analytical solution
In this section it will be shown that the method of steps allows to find
the solution of (2.13) in a semi-analytical form. We first start solving the
model advanced by Yukalov, Yukalova and Sornette [9] (GDLE) for the
regime "gain and competition" where the initial function is constant over
the initial interval, namely

f (t) = x0 = constant, t ∈ [−τ, 0] (3.4)

Then, another initial function that simplifies the semi-analytical form
is proposed

f (t) = (et
− a)/b, t ∈ [−τ, 0] (3.5)

In the constant initial function case (GDLE) it will be demonstrated
that the semi-analytical form for the two first steps can be simplified in a
closed form expression.

To find the closed form solution of (2.13) in the first step it is sufficient
to recall that at the initial stage for t ∈ [−τ, 0] the solution of the system is
the constant x0. Therefore (3.1) reduces to the standard logistic equation
below,

x1(t) =
x0k1et

k1 + x0(et − 1)
, t ∈ [0, τ] (3.6)

where k1 = a + bx(t − τ) = a + bx0, as defined in (2.12).
For the following steps where t > τ the carrying capacity kn(t) is not
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Fig. 4.: Construction of the first step of the generalized delay logistic equation. (left)
Carrying capacity in dotted line k1 = a + b ∗ x0 ' 10 for t ∈ [0, τ]. (right) The
logistic equation in solid line.

constant anymore but it is a linear transformation of xn−1(t), namely

kn(t) = a + bxn−1(t − τ), t ∈ [(n − 1)τ,nτ]

The solution of the delayed system (2.13) of the n-th trajectory reduces
to the following autonomous first-order non-linear differential equation{

dxn/dt = xn(t) − x2
n(t)/(kn(t)), t ∈ [(n − 1)τ,nτ]

xn(t) = xn(τ) = xn−1(τ), t = τ
(3.7)

The n-th differential equation can be solved for t ∈ [(n − 1)τ,nτ] by
dividing both sides of (3.7) by x2

n(t), leading to

dxn(t)
dt

1
x2

n
=

1
xn
−

1
kn(t)

by direct substitution of v = 1/xn and noting that dv
dt = − 1

x2
n

dxn
dt , we obtain

v′ + v =
1

kn(t)

we choose the integrating factor et to finally obtain

xn(t) =
et∫ t

(n−1)τ
es

kn(s) ds + Cn

, with Cn =
e(n−1)τ

xn−1((n − 1)τ)
, t ∈ [(n − 1)τ,nτ]

(3.8)
where Cn is the constant of integration determined with the continuity

condition xn((n − 1)τ) = xn−1((n − 1)τ). Note that (3.8) holds for arbitrary
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initial functions.
Equipped with the new semi-analytical solution (3.8) for arbitrary

initial functions, the second interval of the generalized delay logistic
equation (GDLE) becomes analytically solvable. In the first interval
[0, τ] the integration constant is C1 = 1/x0 and the solution is given in
(3.6), see Fig. 4. In the second interval [τ, 2τ] the integration constant is
C2 = eτ/x1(τ), leading to the solution below, see Fig. 5

x2(t) =
x1(τ)K2e(t−τ)

K2 + x1(τ)
(
e(t−τ) − 1 + b k1(k1−x0)

x0K2
ln(A(t))

) , t ∈ [τ, 2τ] (3.9)

with

A(t) :=
e(t−τ)x0K2 + a(k1 − x0)

k2
1

and K2 := a+b(a+bx0) = lim
t→∞

x2(t) (, k2(t))
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Fig. 5.: Construction of the second step of the generalized delay logistic equation. (left)
Carrying capacity in dotted line k1 = a + b ∗ x0 ' 10 for t ∈ [0, τ] and k2(t) =

a + b ∗ x1(t− τ) for t ∈ [τ, 2τ]. (right) The solution of the generalized delay logistic
equation in solid line.

Note the similarity with (3.6), the only extra term is the factor
containing the logarithm b k1(k1−x0)

x0K2
ln(A(t)). The extra term is zero when

K2 , 0 and either b = 0, k1 = a + bx0 = 0, k1 = x0 or A(t) = 1. The first
case b = 0 the delay is removed and we return to the standard logistic
equation, the second case k1 = 0 and third case correspond to the two
trivial solutions x2(t) = x1(t) = x(t) = 0 and x2(t) = x1(t) = x(t) = x0,
respectively. Finally, the fourth case A(t) is always equals to one for
t = τ, therefore in the second interval for t ≈ τ the solution behaves
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like a logistic equation with a new carrying capacity K2. However, as t
becomes closer to 2τ, A(t) might move far from one, therefore breaking
the structural similarity with the logistic equation.

More generally, instead of choosing a constant initial function f (t) = x0

one could have chosen an arbitrary initial function. The natural candidate
is the exponential function that would simplify the integrand in (3.10).
Let us chose f (t) = (et

− a)/b or equivalently k1 = et, the evolution of the
system is exponential at its origins for t ≤ τ. Recall that the first step is

x1(t) =
et∫ t

0
es

k1
ds + C1

, with C1 =
1

f (0)
, (3.10)

the solution in the interval defined in [0, τ] is given by

x1(t) =
et

t + (1 − a)/b
(3.11)

Note that the solution in the first interval is not a logistic equation as
in the case where k1 = a + bx0.

The former results might suggest that we could study the different
regimes by focusing on the semi-analytical solution 3.8, below a functional
approach.

Functional approach and insights from the semi-analytical solution

In order to study the system (3.8) from a functional viewpoint one could
transform it into a simpler equivalent expression. In order to simplify the
notation from (3.8) and without loss of generality the index n is removed
and the coefficient Cn is replaced by 1 = f (0), leading to the following
equation,

x(t) =
et∫ t

0
es

k(s)ds + 1
(3.12)

Let us define X(t) := et

x(t) and Y(t) := et

k(t) for x(t) and k(t) non zeros.
Solving equation (3.12) is equivalent to solve

dX/dt = Y(t), where Y(t) =
et

k(t)
=

et

a + b et−τ

X(t−τ)

(3.13)

For the particular case a = 0 or t→∞, the equation reduces to
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dX
dt

=
X(t − τ)

be−τ
,

which has a solution in terms of the Lambert functions Wk. The
characteristic equation is

r =
1

be−τ
e−rτ, with solutions rk =

1
τ

Wk(
τ

be−τ
), (3.14)

The solution to the system (3.13) is given by (refer to [3])

X(t) = C0e−t/τ+C1er0t +C2er1t +C3ert +

∞∑
k=1

epkt[C1kcos(qkt)+C2ksin(qkt)] (3.15)

where rk = pk ± iqk are complex solutions of (3.14) and Cik , i = 1, 2 are
arbitrary constants while C j, j = 0, 1, 2, 3 depend on eτ/b and τ as follows,

The first case is for eτ/b < −1/(τe) ⇐⇒ −τeτ+1 < b < 0

X(t) =

∞∑
k=1

epkt[C1kcos(qkt) + C2ksin(qkt)]

The second case for −1/(τe) < eτ/b < 0 ⇐⇒ b < −τeτ+1

X(t) = C1er0t + C2er1t +

∞∑
k=1

epkt[C1kcos(qkt) + C2ksin(qkt)]

where C1,C2 are arbitrary and r0, r1 are real roots.

The last case is for eτ/b > 0 ⇐⇒ b > 0

X(t) = C3ert +

∞∑
k=1

epkt[C1kcos(qkt) + C2ksin(qkt)]

where C3 is arbitrary and r are the real root. Finally, the solution of
(3.12) is given by

x(t) =
et

X(t)

In summary, we can characterize the system, in the particular case a = 0,
with the trivial exponential functions. The first and the third case are the
only relevant to us since the second case is unrealistic; b << −1 would
lead to a rapid destruction of the resources (recall τ > 0).



4
Regime classification

For a particular set of parameters, we have seen how to construct the two
first steps of the generalized delay logistic equation in Fig. 4 and Fig. 5,
the constructions of the solutions in each step was guided by the carrying
capacity. In other words at the n-th step xn(t) was constructed considering
the carrying capacity kn(t). We concluded that the construction of the
generalized delay logistic equation is not as simple as in 2.1.1 because
the carrying capacity is a function of time and the evolution of the
system. However, to grasp the similarities with the standard logistic all
the qualitatively classified regimes in Yukalov, Yukalova and Sornette [9]
will be presented and complemented by a topological study. This
new perspective will open the door of a new qualitative classification
appropriate for population development.

The general analysis of the generalized delay logistic equation when
gain prevails over loss and competition prevails over cooperation leads
to different qualitative solutions depending on the system of parameters.
Below we follow the same classification and nomenclature as in Yukalov,
Yukalova and Sornette [9]. The general logistic equation is given by

dx(t)
dt

= x(t) −
x2(t)

a + bx(t − τ)
, t > 0 (4.1)

with initial function
x(t) = x0, t < 0 (4.2)

and initial value
x(0) = f (0) = x0, t = 0 (4.3)
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The system has two stationary solutions x∗s1 = 0 and x∗s2 = a
1−b , the

first solution is unstable for a > 0, τ > 0 and any b, however the second
solution is stable in the following parameter regions [9]:

a ≥ 0, 0 < b < 1, τ ≥ 0, or
a > x0|b|, −1 < b < 0, τ ≥ 0, or

a > 0, b < −1, t < τ0,
(4.4)

where τ0 = 1
√

b2−1
arccos(1/b). In addition, the point x∗s2 = a

1−b becomes a
stable center for

a > 0, b < −1, τ = τ0 (4.5)

In the following section an exhaustive classification is presented
complemented by system-carrying capacity diagrams. The trajectories
represented in the diagrams are always x1(t) and x2(t) constituting the
collection of the two first trajectories of x(t) in the two first intervals (refer
to Chapter 3).

Punctuated unlimited growth

The regime classification punctuated unlimited growth corresponds to
the parameterization

a ≥ 0, b ≥ 1, τ ≥ 0

the carrying capacity driven by the parameter b is non-decreasing, the
parameters imply k1 = a + bx0 > x0, in other words the system starts
below its initial carrying capacity. x(t) grows towards infinity by steps of
duration τ.

non-stationary, Ha=1, b=2, x0=0.01, tau=6L
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non-stationary, Ha=1, b=2, x0=0.01, tau=12L
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Punctuated unlimited growth

Fig. 6.: In solid line the trajectory of the system for t ∈ [0, 2τ]. In thick dotted line the
carrying capacity k1 ' 1 and k2(t) = a + b ∗ x1(t − τ). The horizontal dotted line
corresponds to x(t) = K2 and the vertical segment is t = τ. (left) strictly increasing
growth, (right) non-decreasing growth.
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Two sub-regime appear in Fig. 6, on the left regime the system
approaches the carrying capacity without stabilizing while in the right
regime a plateau is clearly visible interrupting the growth. The thin
dashed line is x(t) = K2 defined in (3.9) and is analogous to the standard
carrying capacity but for the second interval.

If the system is used to model population growth, then the population
in this regime would follow a sigmoid approaching the growing carrying
capacity inherited from the past generations. The factor b controlling the
carrying capacity production leads to the scenario of unlimited population
growth.

Punctuated growth to a stationary level

Punctuated growth to a stationary level is characterized by the following
parameterization

a > (1 − b)x0, 0 ≤ b < 1, τ ≥ 0

the carrying capacity is again non-decreasing, the parameters imply
that the system starts below its initial carrying capacity and its stationary
point, x0 < k1 < x∗s2 = a/(1− b). x(t) grows towards the stationary solution
x(t) = x∗s2.

stationary a�H1-bL -> 5., Ha=1, b=0.8, x0=0.01, tau=6L
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Punctuated growth to a stationary level

stationary a�H1-bL -> 5., Ha=1, b=0.8, x0=0.01, tau=20L
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Fig. 7.: In solid line the trajectory of the the regime punctuated growth to a stationary
level for t ∈ [0, 2τ]. In dotted line the carrying capacity.

In the population growth model the population in this regime would
follow a sigmoid approaching a long term equilibrium x∗s2 = a/(1−b) being
the long term carrying capacity. The carrying capacity is reduced at each
step due to the factor b < 1 controlling the carrying capacity production.

Punctuated decay to a stationary level

The regime punctuated decay to a stationary level corresponds to the
parameterization
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0 ≤ a ≤ (1 − b)x0, 0 ≤ b < 1, τ ≥ 0

the carrying capacity driven by the parameter b is non-increasing, the
parameters imply that the system starts above the stationary level and its
initial carrying capacity, 0 < k1 = a + bx0 < x∗s2 < x0. x(t) decays towards
a stationary solution x(t) = x∗s2 = a/(1 − b). Fig. 16 shows the behavior of
the trajectories x1(t) and x2(t).

stationary a�H1-bL -> 0, Ha=0, b=0.7, x0=3, tau=2L
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Punctuated decay to a stationary level

stationary a�H1-bL -> 0.833333, Ha=0.25, b=0.7, x0=3, tau=20L
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Fig. 8.: In solid line the trajectory of the the regime punctuated decay to a stationary
level for t ∈ [0, 2τ]. In dotted line the carrying capacity.

In the population growth model the population in this regime would be
permanently over-shooting its resources leading to a decay in population
size approaching a long term equilibrium x∗s2 = a/(1 − b). The carrying
capacity in this model is destroyed with time b < 1.

Punctuated alternation to a stationary level

The regime classification punctuated alternation to a stationary level
corresponds to following the parameterization

a > |b|x0, −1 ≤ b < 0, τ ≥ 0

the carrying capacity oscillates and two sub-cases arise depending on
the initial behavior of the system either grow or decay. When x0 < x∗s2 < k1

then x(t) grows initially, see top of Fig. 9. On the other hand when
x0 > x∗s2 > k1 > 0 then x(t) decays initially, see bottom of Fig. 9. x(t) tends
in both cases towards the stationary solution x(t) = x∗s2 = a/(1−b) through
a sequence of alternations.

The population in these cases oscillates around the limit and by time
to time overshoots its carrying capacity in a reversible way. The carrying
capacity in this model is destroyed throughout the time −1 ≤ b < 0.
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stationary a�H1-bL -> 0.555556, Ha=1, b=-0.8, x0=0.01, tau=6L
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Punctuated alternation to a stationary level

stationary a�H1-bL -> 0.555556, Ha=1, b=-0.8, x0=0.01, tau=20L
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Punctuated alternation to a stationary level

stationary a�H1-bL -> 1.70588, Ha=2.9, b=-0.7, x0=3, tau=2L
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Punctuated alternation to a stationary level

stationary a�H1-bL -> 1.70588, Ha=2.9, b=-0.7, x0=3, tau=20L
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Punctuated alternation to a stationary level

Fig. 9.: In solid line the trajectory of the the regime punctuated alternation to a stationary
level for t ∈ [0, 2τ]. In dotted line the carrying capacity. (top) Initial growth,
(bottom) initial decay.

Punctuated alternation to a finite time death

The regime punctuated alternation to a finite time death corresponds to
the parameterization

a > |b|x0, b < −1, τ > τ0

when x0 < k1 then x(t) grows initially, see Fig. 10. On the other hand
when x0 > k1 > 0 then x(t) decays initially. x(t) in both cases alternates
until x(t) becomes zero.

In the population model this regime corresponds to a population
extinction. The carrying capacity in this model is destroyed throughout
the time b < −1.

Everlasting non-decaying oscillations

The regime punctuated alternation to a finite time death corresponds to
the parameterization

a > |b|x0, b < −1, τ = τ0

x(t) oscillates without attenuation around xs2∗,
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non-stationary, Ha=1, b=-2, x0=0.01, tau=7.2552> tau0L
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non-stationary, Ha=1, b=-2, x0=0.01, tau=20> tau0L
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Fig. 10.: In solid line the trajectory of the the regime punctuated alternation to a finite
time death for t ∈ [0, 2τ]. In dotted line the carrying capacity.

stationary a�H1-bL ®0.952381, Ha=2, b=-1.1, x0=1, tau=5.91784= tau0L

2 4 6 8 10 12
t

0.90

0.95

1.00

1.05

xHtL
Everlasting nondecaying oscillations

Fig. 11.: In solid line the trajectory of the the regime everlasting non-decaying oscillations
for t ∈ [0, 2τ]. In dotted line the carrying capacity.
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For the population model, the delay τ0 cuts the growth or the decline
of the population before the destructive factor b < −1 is influencial.

Oscillatory approach to a stationary level

The regime oscillatory approach to a stationary level corresponds to the
parameterization

a > |b|x0, b < −1, τ < τ0

when x0 < k1 then x(t) grows initially, see Fig. 12. On the other hand
when x0 > k1 > 0 then x(t) decays initially. x(t) in both cases tends
towards the stationary solution x(t) = x∗s2 = a/(1 − b) through a sequence
of alternations.

non-stationary, Ha=1, b=-1.1, x0=0.01, tau=5.32605< tau0L
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non-stationary, Ha=0.9, b=-1.1, x0=0.4, tau=5.32605< tau0L
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Fig. 12.: In solid line the trajectory of the the regime oscillatory approach to a stationary
level for t ∈ [0, 2τ]. In dotted line the carrying capacity.

This classification corresponds to a population overshoot followed by
oscillations.

Growth to a fixed finite-time singularity

This regime is one out of three regimes where the initial carrying capacity
k1 is negative. Only the growth to a fixed finite-time singularity is exposed
for illustrative purposes. However, the three cases are not relevant when
studied in parallel to their carrying capacities. Indeed, the three cases
share an initial negative carrying capacity (k1 < 0), leading to the following
system

dx1(t)
dt

= x1(t) +
x2

1(t)
|k1|

, t ∈ [0, τ]

the system is not assimilable to a logistic equation anymore, therefore
the term carrying capacity is not applicable and the diagrams system-
carrying capacity are of no use.
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The regime growth to a fixed finite-time singularity corresponds to the
parameterization

a < |b|x0, b < 0, τ > tc

where tc is a finite time singularity obtained from the first step (3.6). Let
tc be the time at which x1(tc)→ ±∞, then tc satisfies

tc = {t > 0 : k1 + x0(et
− 1) = 0} ⇐⇒ tc = ln(1 −

k1

x0
)

With a sufficiently large time-lag τ but not necessarily smaller than tc,
the system diverges at the singularity tc.

4.0.3. Qualitative classification
The system-carrying capacity diagrams suggest that a new classification
can be inferred from the different approaches of the system to their
carrying capacity. This qualitative classification seems natural from
a population dynamics viewpoint. Indeed, it is natural to view the
population growth as a physical system limited by a physical capacity.

In order to classify the different regimes we will restrain to the first
interval t ∈ [0, τ] using the factor R defined as the proportion of the
carrying capacity with respect to the population at the end of the cycle.
From (3.6) we define

R :=
k1

x1(τ)
= e−τ(

k1

x0
− 1) + 1, (τ > 0, x0 > 0) (4.6)

Having R as a measure of population reserves, five classification arise

R > 1: "satiety"

The population grows approaching the carrying capacity from below
without consuming all the physical resources and with some resources
margin. The condition R > 1 is satisfied for

x0 < k1, τ > 0, x0 > 0

The initial value x0 is therefore below the carrying capacity k1, as
illustrated in Fig. 13.

The reserves at the end of the cycle are not completely consumed
by the population before the next resource regeneration cycle. The
population grows with almost no stagnation, figuratively, we call this
regime "satiety".
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non-stationary, Ha=1, b=2, x0=0.01, tau=6L
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Fig. 13.: Population approaching the carrying capacity from below. Population not
consuming all the physical resources

R = 1: "gluttony"

The population approaches the carrying capacity during a growth or
decline phase. In the neighborhood of τ the physical resources equal the
carrying capacity. The condition R = 1 is satisfied for

τ→ +∞ or x0 = k1, τ > 0, x0 > 0

these conditions suggest the population never consumes entirely its
resources within the first interval, since x0 = k1 leads to the trivial solution
x(t) = x0 = k1 and τ → +∞ is excluded. However, for τ >> 1 we can
appreciate the creation of a population saturation (plateau) very close to
its carrying capacity as illustrated in Fig. 14 and Fig. 15.

non-stationary, Ha=1, b=2, x0=0.01, tau=12L
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Fig. 14.: R ≈ 1 with e−τ ≈ 0, the population approaches the carrying capacity from below
consuming almost all the physical resources until the next cycle of resources
regeneration.

If the reserves at the end of the cycle are entirely consumed the
population becomes constant and no regeneration of the resources
follows. This is classified as "gluttony"
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stationary a�H1-bL -> 0.833333, Ha=0.25, b=0.7, x0=3, tau=20L
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Fig. 15.: R ≈ 1 with e−τ ≈ 0, the population decline approaching the carrying capacity
from above.

0 < R < 1: "starvation"

The population declines approaching the carrying capacity from above.
The condition 0 < R < 1 is satisfied for

0 < k1 < x0, τ > 0, x0 > 0

stationary a�H1-bL -> 0, Ha=0, b=0.7, x0=3, tau=2L
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Fig. 16.: In solid line the trajectory of the the regime punctuated decay to a stationary
level for t ∈ [0, 2τ]. In dotted line the carrying capacity.

No reserves are available and this regime can be interpreted as a
population extinction. The regime is labelled "starvation".

R = 0, trivial solution x(t) = 0

The condition R = 0 is satisfied for

k1 = 0 x0 = k1, τ > 0, x0 > 0

leading to the trivial solution x(t) = k1 = 0.
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R < 0, not applicable

The condition R < 0 is satisfied for

x0 <
k1

1 − eτ
, τ > 0, x0 > 0

As a consequence of the conditions above the carrying capacity must
be negative (k1 < 0), therefore as mentioned earlier the parallel study
population versus carrying-capacity is not applicable.





5
Discussion

In this master we showed how to obtain a semi-analytical solution to the
GDLE via a method of steps. The results were supported by numerical
computations either via numerical integration or analytical solutions
in the two first intervals. In addition, the semi-analytical solution
was used as a basis to a new regime classification for the special case
a = 0. Then, we complemented the set of regimes described in [9] with
diagrams using the generalized carrying capacity as the resource limit.
The diagrams suggested a new view on the classification regimes that
was topological. A first topological classification attempt was done via a
newly defined resource factor R. However, the classification with R was
not fully satisfactory due to the narrow view on solely the first interval.
Indeed, the R factor did not take into consideration the full dynamics
of the system. Even if R allowed to know the population approach to
the carrying capacity at the specific point τ it did not allow to know
the behavior of the population beyond τ. For instance, for R > 1 it
was not possible to distinguish the three different regimes "Punctuated
growth to a stationary level", "Oscillatory approach to a stationary level"
or "Punctuated alternation to a finite time death". For future work
and to tackle the limitations of R, one could explore another measure
complementing R by assessing the trend of the reserves beyond τ. The
trend could be captured by another ratio G representing the ratio of the
reserves in the two first intervals, G could be defined as the following
ratio

G :=
K2/x2(2τ)
k1/x1(τ)

, (τ > 0, x0 > 0) (5.1)
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where x2(t), K2 are defined in (3.9) and x1(t), k1 are given in (3.6). After
some simplifications noting that x1(τ) = x2(τ), we obtain the simplified
expression

G = e−τ
[
K2

k1
+ x1(τ)

[
eτ − 1

k1
+ b

[
1
x0

k1

K2
−

1
K2

]
ln[A(2τ)]

]]
(5.2)

where
A(2τ) =

x0

k1

K2

k1
eτ +

a
k1

(
1 −

x0

k1

)
Similarly to R, the ratio G is measuring the trend of the reserves over the

two time intervals, when G is greater than one it is indicating a sustained
increase or decrease in reserves for R > 0 or R < 0, respectively. While
when G is negative it indicates an increasing or decreasing oscillation in
the reserves for G < −1 or G > −1, respectively.

Future work would involve studying the ratio above as well as finding
analytically the points at which the carrying capacity and the system
crosses in order to classify the regimes with respect to their intersections.
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A
Numerical sim. with Mathematica

Dynamic parameterization (2 steps)
1 (*** Integrating from scratch (slower) ***)
2 C1 := 1/y0;
3 f1[t_, a_, b_, y0_] = (* For t in [0,Tau] *)
4 Exp[t]*(Integrate[Exp[t]/(a + b*y0) , {t, 0, t},
5 Assumptions -> t >= 0] + C1)^-1 (* Use InputForm / TeXForm *)
6
7 C1 := 1/y0;
8 C2 := Exp[tau]/f1[tau, a, b, y0]
9 f2[t_, a_, b_, y0_, tau_] = (* For t in [Tau,2Tau] *)

10 Exp[t]/(Integrate[Exp[t]/(a + b*f1[t - tau, a, b, y0]), {t, tau, t},
11 Assumptions -> tau > 0 && t >= 0] + C2)
12
13 (*** Already integrated (faster) ***)
14 f1[t_, a_, b_, y0_] := E^t/(y0^(-1) + (-1 + E^t)/(a + b*y0)) (* For t in [0,Tau] *)
15 f2[t_, a_, b_, y0_, tau_] := (* For t in [Tau,2Tau] *)
16 E^t/(y0^(-1) + (-1 + E^tau)/(a +
17 b*y0) + ((E^t - E^tau)*y0*(a + a*b + b^2*y0) -
18 b*E^tau*(a^2 + a*(-1 + 2*b)*y0 + (-1 + b)*b*y0^2)*
19 Log[E^tau*(a + b*y0)^2] +
20 b*E^tau*(a^2 + a*(-1 + 2*b)*y0 + (-1 + b)*b*y0^2)*
21 Log[a^2*E^tau + a*((1 + b)*E^t + (-1 + b)*E^tau)*y0 +
22 b^2*E^t*y0^2])/(y0*(a + a*b + b^2*y0)^2))
23
24 k1[a_, b_, y0_] := a + b*y0;
25 K2[a_, b_, y0_] := a + b*(a + b*y0);
26 args[a_, b_, x0_, tau_] = "(a=" <> ToString[a] <> ", b=" <> ToString[b] <> ",
27 x0=" <> ToString[y0] <> ", tau=" <> ToString[tau] <> ")";
28
29 Manipulate[Show[
30 Plot[{f1[t, a, b, y0], k1[a, b, y0]}, {t, 0, tau},
31 PlotStyle -> {Directive[Thick], Directive[Thick, Dashed, Red]},
32 PlotRange -> Full, AxesLabel -> {t, y[t]},
33 PlotLabel -> Style[args[a, b, y0, tau], 10]],
34 Plot[{K2[a, b, y0]}, {t, 0, 2*tau},
35 PlotStyle -> {Directive[Dashed, Green]}, PlotRange -> Full],
36 Plot[{f2[t, a, b, y0, tau], a + b*f1[t - tau, a, b, y0]}, {t, tau, 2*tau},
37 PlotStyle -> {Directive[Thick],
38 Directive[Thick, Dashed, Red]}, PlotRange -> Full],
39 PlotRange -> All], {{tau, 10, "Tau"}, 1, 100, 1}, {{a, 0, "a"}, 0,
40 20}, {{b, 2, "b"}, -5, 5}, {{y0, .1, "y0"}, 0, 20},
41 SaveDefinitions -> True, FrameLabel -> "Logistic DDE"]





B
Numerical simulations with R

Numerical solution of GDLE for a general
parameterization set

1 N = 10^3
2 T = seq(from=0, to=12, length.out=N)
3 M = 9 # number of parameters
4 A = seq(2, 0, length.out = M)
5 B = seq(-1.5, 1.5, length.out = M)
6 Sigma = expand.grid(c(1,-1),c(1,-1))
7 Sigma.lab = c("gain / competition", "loss / competition", "gain / cooperation", "loss / cooperation")
8 tau = 6
9 tau.idx = which(min(abs(T - tau)) == abs(T - tau))

10
11 for(sig in 1:nrow(Sigma))
12 {
13 png(filename = paste("plots/Rplot", "sig_", sig, ".png", sep = ""), width = 4800, height = 3600)
14 layout(matrix(c(rep(1, M), rep(2:(M*M+1))), nr = M + 1, byrow = TRUE), heights = c(0.3, rep(1, M-1)))
15 plot(1, axes = F, frame.plot = F, ylab = "", xlab = "")
16 text(x=1,y=1,Sigma.lab[sig], cex = 5)
17
18 print(Sigma.lab[sig])
19
20 for(a in A) for(b in B)
21 {
22 par(mar = c(5,4,6.5,4)+0.1)
23
24 # initial conditions
25 x0 = .5
26 y0 = a + b*x0
27
28 if((a < x0*abs(b)) & (b<0))
29 {
30 plot(0, 0, type = "n", main = "", xlab = "", ylab = "", cex.axis = 1.5, axes = F)
31 next
32 }
33
34 X = K = R = rep(NA, N) # node is a/(1-b) = 1.807229
35
36 # s < tau
37 X[1:(tau.idx+1)] = x0*y0*exp(T[1:(tau.idx+1)]) / (y0 + x0*(exp(T[1:(tau.idx+1)])-1))
38 R[1:(tau.idx)] = diff(X[1:(tau.idx+1)]) / ( diff(T[1:(tau.idx+1)]) * X[1:(tau.idx)] *Sigma[sig,1])
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39 K[1:(tau.idx)] = a + b*x0
40
41 # s > tau
42 for(s in (tau.idx+1):(N-1))
43 {
44 stau = s - tau.idx
45 K[s] = (a + b*X[stau])
46 R[s] = (1 - Sigma[sig,2]/Sigma[sig,1]*X[s]/K[s]) # effective reproduction rate
47 X[s+1] = X[s] + diff(T)[s]*X[s]*Sigma[sig,1]*R[s]
48 }
49 X[N] = X[N-1]; R[N] = R[N-1]; K[N] = K[N-1]
50 out = rep(FALSE, N)
51 if(any(K <= 0) | any(X <= 0) )
52 out[round(min(which(K < 0.1)[1], which(X < 0.1)[1], na.rm = TRUE)*.999):N] = T
53 idx = is.na(X) | abs(X) == Inf | is.na(K) | abs(K) == Inf | out
54
55 lab = paste(paste("a=", round(a, digits = 2), ", b=", round(b, digits = 2),
56 ", k_1=", round(a+b*x0, digits = 2), ", tau=", tau))
57
58 if(length(X[!idx])>0)
59 {
60 ylim = c(.9*min(X[!idx], K[!idx]), 1.1*max(X[!idx], K[!idx]))
61 if(.9*min(X[!idx], K[!idx]) < 0) ylim = range(0, ylim[-1])
62 plot(T[!idx], X[!idx], type = "l", main = lab, cex.main = 3.5, lwd = 3.5,
63 xlab = "T / Carring cap.", ylab = "X", cex.axis = 2,
64 xlim = range(0,T[!idx]), ylim = ylim)
65 abline(v = T[tau.idx], lty = 2, lwd = 1.5)
66 grid(col = "grey", lwd = 2)
67
68 par(new = TRUE, mar = c(5,4,6.5,4)+0.1)
69 plot(T[!idx], K[!idx], col = 2, type = "l", xaxt="n", yaxt="n",
70 ylab = "", xlab = "", lwd = 2.5, xlim = range(0,T[!idx]), ylim = ylim)
71 points(T[!idx][1], K[!idx][1], col = 2, pch = "X")
72 axis(side = 4, col.axis = 2, cex.axis = 2)
73 } else plot(0, 0, type = "n", main = "", xlab = "", ylab = "", cex.axis = 1.5, axes = F)
74
75 }
76 dev.off()

The code above produces the graphs below. The graphs represent the
variety of different solutions excluding the solutions where a < |b|x0, due
to the negative carrying capacity. In this study we restrict to the case
’gain and competition’, however the code can be used for all the cases
advanced in Sornette [9].
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Functions used for the graphs generation in this
master

1 # utility functions
2 normalize <- function(x) (x-min(x))/(max(x) - min(x))
3 directionField<-function(
4 dydx,xlim=c(-1,1),ylim=c(-1,1),nxarrows=20,nyarrows=20,arrowHead=NA,
5 title=paste("Direction Field, dy/dx =", dydx),scale=1)
6 {
7 xinc = diff(xlim)/(nxarrows*2)
8 yinc = diff(ylim)/(nyarrows*2)
9 if(is.na(arrowHead)) arrowHead = par("pin")[1]/100

10 plot(0,xlim=xlim,ylim=ylim,type="n",xlab="x",ylab="y",main=title)
11 for(x in seq(xlim[1]+xinc, xlim[2]-xinc, length = nxarrows))
12 {
13 for(y in seq(ylim[1]+yinc, ylim[2]-yinc, length = nyarrows))
14 {
15 stan = atan(eval(parse(text=dydx)))
16 arrows(x-xinc*cos(stan)*scale, y-yinc*sin(stan)*scale,
17 x+xinc*cos(stan)*scale, y+yinc*sin(stan)*scale, length = arrowHead)
18 abline(h = 0, lty = 2, lwd = 0.1); abline(v = 0, lty = 2, lwd = 0.1)
19 }
20 }
21 }
22 simulateLogistic <- function(a, b, x0, r=1, tau, T, sig = 1, showAll = F)
23 {
24 if(tau >= max(T)) stop("tau too big")
25
26 Sigma = expand.grid(c(1,-1),c(1,-1))
27 Sigma.lab = c("gain / competition", "loss / competition",
28 "gain / cooperation", "loss / cooperation")
29
30
31 N = length(T)
32 tau.idx = which(min(abs(T - tau)) == abs(T - tau))[1]
33
34 # initial conditions
35 y0 = a + b*x0
36 X = K = R = rep(NA, N) # node is a/(1-b) = 1.807229
37
38 # s < tau
39 X[1:(tau.idx+1)] = (x0*y0*exp(r*T[1:(tau.idx+1)]) / (y0 + x0*(exp(r*T[1:(tau.idx+1)])-1)))
40 R[1:(tau.idx)] = diff(X[1:(tau.idx+1)]) / ( diff(T[1:(tau.idx+1)]) * X[1:(tau.idx)] *Sigma[sig,1])
41 K[1:(tau.idx)] = a + b*x0
42
43 # s > tau
44 for(s in (tau.idx+1):(N-1))
45 {
46 stau = s - tau.idx
47 K[s] = (a + b*X[stau])
48 R[s] = r*(1 - Sigma[sig,2]/Sigma[sig,1]*X[s]/K[s]) # effective reproduction rate
49 X[s+1] = X[s] + diff(T)[s]*X[s]*Sigma[sig,1]*R[s]
50 }
51
52 X[N] = X[N-1]; R[N] = R[N-1]; K[N] = K[N-1]
53 idx.x = is.na(X) | abs(X) == Inf
54
55 if(!showAll) return(X)
56 else return(list(X = X, K = K))
57 }
58 plotLogisticDelay <- function(par, t, N = 10^3, log = F)
59 {
60 logY = ifelse(log, "y", "")
61
62 T = seq(min(t), max(t), length.out = N)
63 tau.idx = which(min(abs(T - par$tau)) == (T - par$tau))
64
65 out = simulateLogistic(a = par$a, b = par$b, x0 = par$x0, r = par$r,
66 tau = par$tau, T, sig = 1, showAll = TRUE)
67 X = out$X; K = out$K
68 idx.x = is.na(X) | abs(X) == Inf
69 idx.k = is.na(K) | abs(K) == Inf
70
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71 if(length(X[!idx.x])>0 & length(K[!idx.k])>0)
72 {
73 ylim = range(X[!idx.x], K[!idx.k])
74 plot(T[!idx.x], X[!idx.x], type = "l", main = "", cex.main = 3, lwd = 2,
75 xlab = "t / Carrying cap.", ylab = "X", cex.axis = 1.2, log = logY, ylim = ylim)
76 par(new = TRUE)
77 plot(T[!idx.k], K[!idx.k], col = 2, lty = 2, type = "l", xaxt="n", yaxt="n", log = logY,
78 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
79 points(T[1], K[1], col = 2, pch = "X")
80 grid(col = "grey")
81 abline(v = T[tau.idx], lty = 3, lwd = 1)
82 axis(side = 4, col.axis = 2, cex.axis = 1)
83 axis(side = 3, col.axis = 2, cex.axis = 1)
84 print("xlim, ylim")
85 print(range(T[!idx.x]))
86 print(ylim)
87 }
88 print("Summary X / K")
89 print(summary(X))
90 print(summary(K))
91 }
92 plotLogisticDelaySteps <- function(par, t, N = 10^3, log = F, show = "all")
93 {
94 logY = ifelse(log, "y", "")
95
96 T = seq(min(t), max(t), length.out = N)
97 tau.idx = which(min(abs(T - par$tau)) == (T - par$tau))
98
99 out = simulateLogistic(a = par$a, b = par$b, x0 = par$x0, r = par$r, tau = par$tau,

100 T, sig = 1, showAll = TRUE)
101 X = out$X; K = out$K
102 idx.x = is.na(X) | abs(X) == Inf
103 idx.k = is.na(K) | abs(K) == Inf
104
105 if(length(X[!idx.x])>0 & length(K[!idx.k])>0)
106 {
107 ylim = range(X[!idx.x], K[!idx.k])
108 if(show == "all")
109 {
110 plot(T[!idx.x], X[!idx.x], type = "l", main = "", cex.main = 3, lwd = 2,
111 xlab = "t / Carrying cap.", ylab = "X", cex.axis = 1.2, log = logY, ylim = ylim)
112 par(new = TRUE)
113 plot(T[!idx.k], K[!idx.k], col = 2, lty = 2, type = "l", xaxt="n", yaxt="n", log = logY,
114 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
115 points(T[1], K[1], col = 2, pch = "X")
116 } else if(show == "X") {
117 plot(T[!idx.x], X[!idx.x], type = "l", main = "", cex.main = 3, lwd = 2,
118 xlab = "t / Carrying cap.", ylab = "X", cex.axis = 1.5, log = logY, ylim = ylim)
119 } else if(show == "K") {
120 plot(T[!idx.k], K[!idx.k], col = 2, lty = 2, type = "l", xaxt="n", yaxt="n", log = logY,
121 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
122 points(T[1], K[1], col = 2, pch = "X")
123 }
124 grid(col = "grey")
125 abline(v = T[tau.idx], lty = 3, lwd = 1)
126 axis(side = 4, col.axis = 2, cex.axis = 1)
127 axis(side = 3, col.axis = 2, cex.axis = 1)
128 print("xlim, ylim")
129 print(range(T[!idx.x]))
130 print(ylim)
131
132 }
133 print("Summary X / K")
134 print(summary(X))
135 print(summary(K))
136 }
137 plotExp2 <- function(par, t, Np, ylim)
138 {
139 T = seq(min(t), max(t), length.out = Np)
140 N = par$N0 * exp(par$r*T)
141 N2 = par$K - (par$K - par$N0)^2/par$N0 * exp(-par$r*T)
142 K = rep(par$K, length(N))
143 plot(T, N2, type = "l", main = "", cex.main = 3, lwd = 3, lty = 3,
144 xlab = "t / Carrying cap.", ylab = "N", cex.axis = 1.2, ylim = ylim)
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145 par(new = TRUE)
146 plot(T, K, col = 2, lty = 2, type = "l", xaxt="n", yaxt="n",
147 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
148 }
149 plotExp <- function(par, t, Np, ylim)
150 {
151 T = seq(min(t), max(t), length.out = Np)
152 N = par$N0 * exp(par$r*T)
153 N2 = par$K - (par$K - par$N0)^2/par$N0 * exp(-par$r*T)
154 K = rep(par$K, length(N))
155 plot(T, N, type = "l", main = "", cex.main = 3, lwd = 3, lty = 3,
156 xlab = "t / Carrying cap.", ylab = "N", cex.axis = 1.2, ylim = ylim)
157 lines(T, N2, lwd = 3, lty = 3)
158 par(new = TRUE)
159 plot(T, K, col = 2, lty = 2, type = "l", xaxt="n", yaxt="n",
160 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
161 }
162 plotVerhulst <- function(par, t, Np = 10^3, show = "all")
163 {
164
165 T = seq(min(t), max(t), length.out = Np)
166
167 getLogistic <- function(par, t)
168 {
169 N0 = par$N0; K = par$K; r = par$r
170 K * N0 * exp(r*t) / ( K + N0*( exp(r*t) - 1) ) # model logistic function
171 }
172
173 N = getLogistic(par, T); K = rep(par$K, length(N))
174
175 ylim = range(N, K)
176 if(show == "all") {
177 plot(T, N, type = "l", main = "", cex.main = 3, lwd = 2,
178 xlab = "t / Carrying cap.", ylab = "N", cex.axis = 1.2, ylim = ylim)
179 par(new = TRUE)
180 plot(T, K, col = 2, lty = 2, type = "l", xaxt="n", yaxt="n",
181 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
182 points(T[1], K[1], col = 2, pch = "X")
183 } else if(show == "inflection") {
184 plot(T, N, type = "l", main = "", cex.main = 3, lwd = 2,
185 xlab = "t / Carrying cap.", ylab = "N", cex.axis = 1.2, ylim = ylim)
186 par(new = TRUE)
187 plot(T, K, col = 2, lty = 2, type = "l", xaxt="n", yaxt="n",
188 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
189 points(T[1], K[1], col = 2, pch = "X")
190 ti = -1/par$r*log(par$N0/(par$K-par$N0))
191 points(ti, par$K/2, col = 1, pch = "X")
192 } else if(show == "N") {
193 plot(T, N, type = "l", main = "", cex.main = 3, lwd = 2,
194 xlab = "t / Carrying cap.", ylab = "N", cex.axis = 1.5, log = logY, ylim = ylim)
195 } else if(show == "K") {
196 plot(T, K, col = 2, lty = 2, type = "l", xaxt="n", yaxt="n", log = logY,
197 ylab = "", xlab = "", lwd = 1.5, ylim = ylim)
198 points(T[1], K[1], col = 2, pch = "X")
199 }
200 grid(col = "grey")
201 axis(side = 4, col.axis = 2, cex.axis = 1)
202 axis(side = 3, col.axis = 2, cex.axis = 1)
203 print("xlim, ylim")
204 }
205 getLogisticDelay <- function(par, t)
206 {
207 N = 5*10^2
208 T = seq(min(t), max(t), length.out = N)
209 tau = par$tauFact * (max(t) - min(t)) + min(t)
210 x = simulateLogistic(a = par$a, b = par$b, x0 = par$x0, r = par$r, tau = tau, T, sig = 1)
211 idx = unlist(lapply(t, function(x,T) which(min(abs(T - x)) == abs(T - x))[1], T = T)) # T[idx]
212 x[idx]
213 }
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Optimization algorithm for fitting data to GDLE
The algorithm below is based on a modification of the Levenberg-
Marquardt algorithm that minimize the sum of squares between the
data and the model [6, 7]. We use heuristic initial conditions randomly
generated to find an (local) optimal parameterization.

1 myOptim <- function(x,t,par,nseeds,fun,nprint=1,sdScale=10,maxiter=10^2,parCoverage=T)
2 {
3 # Antoine Beuchat
4 # Optimization based on nls.lm and random seeds
5 # IN: x: dependent variable, t: indep. variable,
6 # IN: par: list of parameters to pass to the function ’fun’, nseeds: number of initial conditions guesses,
7 # IN: fun: model to fit function, nprint: 0 no print, 1 printing steps, sdScale: scale parameter
8 # tuning the uncertainty of the seeds
9 # OUT: optimization result from nls.lm, plot with the fit

10
11 library(minpack.lm)
12
13 residFun <- function(p, t, observed, fun) observed - fun(p,t) # residual function
14
15 # starting values for parameters
16 res = list()
17 parAll = as.data.frame(matrix(0, nrow = nseeds, ncol = length(par),
18 dimnames = list(1:nseeds, names(par))), stringsAsFactors = F)
19
20 for(i in 1:nseeds)
21 {
22 parStart.red <- lapply(par, function(x,sdScale) x+rnorm(1,sd=sdScale*abs(x)), sdScale = sdScale)
23 if(!is.null(parStart.red$tauFact)) parStart.red$tauFact = par$tauFact # do not change it
24 parAll[i, ] = unlist(parStart.red)
25
26 # perform fit nls
27 res[[i]] <- nls.lm(par=parStart.red, fn = residFun, t = t, observed = x, fun = fun,
28 control = nls.lm.control(nprint = nprint, maxiter = maxiter)) # summary(res[[1]])
29
30 }
31
32 idx.exitOk = rep(T,nseeds) # unlist(lapply(res, function(x) x["info"] == 1 | x["info"] == 2 | x["info"] == 9))
33
34 if(any(idx.exitOk))
35 {
36 resOk = res[idx.exitOk]
37 idx.min = unlist(lapply(resOk, function(x) x["deviance"]))
38 if(nprint != 0) print(paste("deviance:", idx.min))
39
40 idx.min = idx.min[!is.na(idx.min)]
41 if(length(idx.min) < 1) stop("Only NAs deviations!")
42
43 # if the optim. does not exit properly summary(res) wil lead to an error
44 resOpt = resOk[[which(idx.min == min(idx.min))[1]]] # summary(res)
45
46 # plot model evaluated at final parameter estimates
47 x.sim = fun(as.list(coef(resOpt)), t)
48 if(any(!is.finite(x.sim))) ylim = NULL
49 else ylim = range(x.sim,x)
50 plot(t, x.sim, type = "l", col=2, lwd=2, ylim = ylim)
51 points(t, x, pch = "+", cex = 0.5)
52 grid()
53
54 if(parCoverage)
55 {
56 dev.new()
57 stripchart(parAll, vertical = T)
58 }
59
60 return(resOpt)
61
62 } else {
63 print("ERROR")
64 }
65 }
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To clarify the usage of the optimization code above, we fit our GDLE
model to a simulated GDLE with additive and multiplicative noise,
respectively. The results are stable and promising for future works
involving fitting problems. Even by adding a white noise with standard
deviation of 10% of the system, the fit performs well with an RSS = 1.25.
The fit for the multiplicative noise performs well but with a higher
RSS = 3.53. The multiplicative noise consists in multiplying a white
noise with mean 1 and standard deviation of 10% of the system standard
deviation.

Synthetic GDLE with additive noise
1 # performance with simulated example
2 # trial how to recover the parameters x0, r, K when the t scale changes
3 par = list(a=1,b=1,x0=.01,r=1,tauFact=0.3)
4 N = 10^2
5 t = seq(0, 100, length.out = N)
6 tau = par$tauFact * (max(t) - min(t)) + min(t)
7 x = simulateLogistic(a = par$a, b = par$b, x0 = par$x0, r = par$r, tau = tau, t, sig = 1) # plot(t, x)
8 set.seed(1)
9 x.noisy = x + rnorm(length(x), sd = sd(x)*.1) # plot(x.noisy)

10 nseeds = 3
11 coef(myOptim(x.noisy,t,par,nseeds,fun=getLogisticDelay,sdScale=2))
12 title("Optim. fit to simulated GDLE with add. noise (0.1*sigma)")
13 mtext("(a = 1, b = 1, x0 = 0.01, tau = 30), RSS: 1.26", 3, cex = 0.9)}

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

t

x.
si
m

+
+
+

+
+

+

+

+++

+
+
+

+

+

++
+++++

+

+

+
++

+
+
+
+

+
++
+

+

+

+

+

+++
++

++
++
+
+
+
+
+

+

+
+

+
+

+
+

+

+
+
+
+

+

+

+
+

+
+
+

+

++

+
+
++
++
+

+

+

++
+

+
++
+

++
+
+
+

+
++
+

Optim. fit to simulated GDLE with add. noise (0.1*sigma)
(a = 1, b = 1, x0 = 0.01, tau = 30), RSS: 1.26



43

Synthetic GDLE with multiplicative noise
1
2 if(F) # performance with simulated example
3 {
4 # trial how to recover the parameters x0, r, K when the t scale changes
5 par = list(a=1,b=1,x0=.01,r=1,tauFact=0.3)
6 N = 10^2
7 t = seq(0, 100, length.out = N)
8 tau = par$tauFact * (max(t) - min(t)) + min(t)
9 x = simulateLogistic(a = par$a, b = par$b, x0 = par$x0, r = par$r, tau = tau, t, sig = 1) # plot(t, x)

10 set.seed(1)
11 x.noisy = x*rnorm(length(x), sd = sd(x)*.1, mean = 1) # plot(x.noisy)
12 nseeds = 3
13 coef(myOptim(x.noisy,t,par,nseeds,fun=getLogisticDelay,sdScale=2))
14 title("Optim. fit to simulated GDLE with mult. noise (0.1*sigma)")
15 mtext("(a = 1, b = 1, x0 = 0.01, tau = 30), RSS: 3.53", 3, cex = 0.9)
16 }
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