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Chapter 1

Introduction

Recently, the analysis of bubbles and crashes in financial markets is attracting
much attention as they have appeared in almost every market, and sometimes
their impact on the society might be compared with that of natural disasters.

Following Case and Shiller [6], the term ”bubble” refers to a situation
in which excessive public expectations of future price increases cause prices
to be temporarily elevated. In other words, bubble is defined as a deviation
of the stock price from its fundamental value [5], though such definition
lacks practical use. As mentioned by the former Federal Reserve Chairman
A.Greenspan - “despite our suspicions, it was very difficult to definitively
identify a bubble until after the fact–that is, when its bursting confirmed its
existence” [9].

Watanabe et al. [19], [20] introduced the following mathematical defini-
tion of a financial bubble:

Xt −Xt−1 = (ω1(t;T )− 1)(Xt−1 −X0(t;T )) +Wt, (1.1)

where Xt is a price at time t, Wt is the residual noise term, parameters
ω1(t;T ) and X0(t;T ) are uniquely determined from the past T data points
minimizing the root-mean-square of Wt. This formula describes three differ-
ent kinds of behavior:

1. if ω1(t;T ) > 1, the price is either exponentially increasing or decreasing
and X0(t;T ) gives the base line of the exponential divergence. Such
behavior is defined as a bubble,

2. if ω1(t;T ) = 1, the price follows a random walk,

3. if ω1(t;T ) < 1, the price is convergent to X0(t;T ).
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CHAPTER 1. INTRODUCTION 4

In this definition the price motion obeys the exponential form for a given
time scale from t-T to t:

Xt = (Xt−T −X0(t;T ))e
T lnω1(t;T ) +X0(t;T )) +

T−1∑
i=0

ω1(t;T )
iWt−i (1.2)

The equation 1.2 characterizes the exponential growth, when the expo-
nential function is regarded as a constant; the double exponential growth and
power law growth with a critical time, when the exponent changes exponen-
tially with time. These characterizations are known from the literature to be
good approximations of the price increases related to financial bubbles. For
example, Watanabe et al. [19], [21] considered exponential fitting for stock
market data with regard to bubbles, Sornette et al. [15], [16], [17] showed
that hyperinflations and crashes behaviors can be characterized by a power
low singularity culminating at a critical time.
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Figure 1.1: Trajectory of the Hang Seng index from 1970 to 2000. Log-prices
are plotted against the time, black line corresponds to exponential growth
with a constant growth rate. The red arrows point to the crashes - decline
in the price of more than 15% in less than three weeks.

The definition 1.2 was shown to be powerful for the detection of bubbles
and for the identification of the start of a bubble even before the burst,
but not for the prediction of the end of a bubble. Sornette et al. [15]-[17]
provided a mathematical description of the end of the bubbles as a faster-
than-exponential growth singularity at a critical time tc. An example of this
definition is on the Figure 1.1, where the logarithm price of the Hang Seng



CHAPTER 1. INTRODUCTION 5

index from 1970 to 2000 is plotted. As it is seen, the price is not growing
exponentially with a constant growth rate, but exhibits periods of faster-
than-exponential growth with critical times (red arrows on the graph). This
example suggests that faster-than-exponential price growth is followed by a
crash.

Further, Ramirez et al. [1] showed that the peso depreciation growth dur-
ing the Mexican financial crises of 1990s was greater than an exponential and
those growth rates were compatible with a spontaneous singularity occurred
at a critical time.

The Financial Instability Hypothesis provides an economic rational for
periodically occurring instabilities caused by a feedback due to which the
system’s reactions to a movement of the economy amplify the movement
[13]. The so called positive price-to-price feedback (i.e. conditioned on the
observation that the market has recently moved up (down), this makes it
more probable to keep it moving up (down), so that a large cumulative move
ensues [18]) leads to faster-than-exponential growth regimes in the prices, i.e.
periods of instabilities. Among the mechanisms that may lead to positive
feedbacks on prices are:

1. hedging derivatives,

2. insurance portfolios,

3. ”herd” behavior and ”crowd” effect.

In the present work we will try to identify the periods of faster-than-
exponential growth from empirical data. The analyzed methods are based
on the assumption that the price follows the CEV process. The model is de-
scribed in Chapter 2, Chapter 3 provides detailed description of the methods,
as well as the suggestion of the model modification and model diagnostics.
In Chapter 4 and 5 the proposed methods are tested on the stochastic bench-
marks and on the NASDAQ daily prices, respectively.



Chapter 2

The Model

The current study is based on the assumption that the price follows constant
elasticity of variance model

dXt = µXtdt+ σXm
t dWt (2.1)

where Wt is a Brownian motion.

This is the so called ”risk-driven” model, where the traders may increase
the instability of the market at certain times by changing their opinions
suddenly on a large scale.

The model 2.1 was proposed by Cox and Ross [8] as an alternative to the
Black-Scholes model. Under this model the instantaneous volatility of the
percentage price change is equal to σXm−1

t . Traditional log-normal Black-
Scholes model corresponds to the limiting case m = 1, when the volatility is
not a function of the stock price itself.

The model with m > 1 admits positive feedback since in this case the
stochastic growth rate of the process increases with Xt and this case is partic-
ularly interesting for us to detect periods of faster-than-exponential growth.
While m < 1 causes the inverse relationship between the price level and the
volatility. The model describing such relation might look inappropriate in
the real world, nonetheless, the studies suggest that stock return volatility
is asymmetric. For example [2], an increase in the stock return volatility is
lower when the stock price increases following “good news” announcement
than when the stock price declines corresponding to ”bad news” announce.
One of the possible explanation of this asymmetry in stock return volatility is
the “leverage effect”. Decline in the company’s stock price causes more rapid
fall of the market value of its equity than the market value of its debt. This
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CHAPTER 2. THE MODEL 7

results in the increase of company’s financial leverage, hence an increase in
the volatility of equity [11],[7]. This similar effect could be observed even in
the absence of debt. As every company faces some fixed cost which have to
be met irrespective of the income, a decline in the income decreases the value
of the company and increases its riskiness. These arguments of operating and
financial leverage represent grounded explanation for the inverse relationship
between the variance and stock price level to model heteroscedasticity in
stocks returns.

Among the other evidences for the model 2.1, the results of Macbeth and
Merville [12]. They tested the Cox call option valuation model for constant
elasticity of variance diffusion processes against the Black-Scholes call op-
tion valuation model. The outcome was that stock prices appeared to be
generated by constant elasticity of variance diffusion processes and the Cox
valuation model fit market prices of call options significantly better than
the Black-Scholes model. Thus, the model has an important implications in
finance.



Chapter 3

Estimation methods

3.1 Macbeth-Merville method

From the constant elasticity of variance diffusion process equation

dXt = µXtdt+ σXm
t dWt (3.1)

it follows that

(dXt − µXtdt)
2

σ2X2m
t dt

≡ ut ∼ χ2(1) (3.2)

Applying natural logarithm to both sides of 3.2 gives a linear regression
equation to obtain consistent estimates of parameter m:

ln[(dXt − µXtdt)
2] = ln[σ2] + ln[X2m

t ] + ln[dt] + ln[ut] (3.3)

ln[(dXt − µXtdt)
2]− ln[dt] = 2 ln[σ] + 2m ln[Xt] + ln[ut] (3.4)

In other words, we have a linear model of the form:

yt = α+ βxt + ϵt, (3.5)

where

yt = ln[(dXt − µXtdt)
2]− ln[dt], (3.6)

xt = ln[Xt], (3.7)

ϵt = ln[ut]− E[ln[ut]] (3.8)

E[α̂] = 2 ln[σ] + E[ln[ut]], (3.9)

E[β̂] = 2m (3.10)

8



CHAPTER 3. ESTIMATION METHODS 9

3.2 Entropy method

In information theory, entropy is a measure of the uncertainty associated
with a random variable.

Definition 1. The Shannon entropy H of a discrete random variable X taking
possible values {x1,..., xn} with a probability mass function p is defined as

H(X) = −
n∑

i=1

p(xi) log p (xi) (3.11)

The concept was introduced by C. E. Shannon in his paper ”A Mathe-
matical Theory of Communication”, 1948. The Shannon entropy is restricted
to random variables taking discrete values. The extension of the Shannon
entropy to the domain of real numbers is usually referred to as the continuous
entropy, or differential entropy.

Definition 2. The continuous entropy h of a continuous random variable X
with a probability density function f whose support is a set R is definied as

h(X) = −
∫
R

f(x) log(f(x))dx. (3.12)

Since probability density functions can take values greater than 1, con-
tinuous entropy h might take negative values as opposed to the Shannon
entropy H.

The Renyi entropy, a generalisation of the Shannon entropy, is one of a
family of functionals for quantifying the diversity, uncertainty or randomness
of a system. The concept was introduced by A. Renyi.

Definition 3. The Renyi entropy of order q, where q ≥ 0, of a discrete
random variable X taking possible values {x1,..., xn} with a probability mass
function p is defined as

Hq(X) =
1

1− q
log(

n∑
i=1

pq(xi)) (3.13)

The trivial case q = 1 gives the Shannon entropy.
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From the constant elastisity of variance model, the disribution of log-
returns conditioned on the price is

f(r|x) = βϕ(β(r − (µ− 1

2β2
))), (3.14)

where β = 1
σxm−1 (see Appendix A.1 for the derivation).

Applying the Renyi entropy of the log-returns variables conditioned on
the prices (r|x) [14], we have

Hq(r|x) =
1

1− q
log

∫
f q(r|x)dr = − ln β +Hq(ϕ) (3.15)

Taking the difference of the Renyi entropies for any two different price
levels brings the following equation which allows estimation of parameter m
from the real data:

Hq(r|x)−Hq(r|x′) = (mq(x, x
′)− 1)(lnx− ln x′) (3.16)

The estimation procedure from the above equation is the following:

1. start with the time series of prices (Xt) and the corresponding time
series of log-returns (Rt),

2. the interval [min(Rt),max(Rt)] is divided into M equal bins,

3. for every time series of prices Xk corresponding to window Tk, build
an equidistant N -points grid of the interval [min(Xk),max(Xk)] of the
form min(Xk) = x1

k, ..., x
n
k , ..., x

N
k = max(Xk),

4. this grid is used to construct the data to estimate m for the linear
regression model 3.16, i.e. N(N−1)/2 unique pairs of the form (xm

k , x
n
k),

where m < n,

5. for the simplicity the Shannon entropy, a trivial case of the Renyi en-
tropy, is used in the linear regression equation 3.16.

The left-hand side of 3.16 requires the knowledge of density of log-returns
distribution conditioned on the price level f(r|x). One possibility to approx-
imate this density is to use the empirical distribution. In this case f(ri|x) is
the empirical probability of the returns in the i − th bin for the given price
level x and the Shannon entropy is calculated according to the formula:

H(r|x) = −
M∑
i=1

f(ri|x) log f(ri|x)) (3.17)
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.
Another possibility to estimate the conditional return distribution is using

the formula 3.14 derived from the CEV model. Though the distribution in
this case has a closed form, it is a function of parameter m which is unknown
upfront. Therefore, in this case only the assumption about the functional
form (i.e. normal distribution) of the log-returns distribution is made. Under
this assumption the differential entropy has the following form (see Appendix
A.2 for the derivation):

H(r|x) = ln(
√
2πeσ), (3.18)

depending only on the standard deviation, which can be estimated empiri-
cally.

3.3 ”Best fit” method

This method represents a search for the value of m that would yield a sample
of

dWt =
dXt − µXtdt

σXm
t

(3.19)

values which fits the normal distribution best.

The Pearson’s chi-square test for normality (see Appendix A.4.5 for the
description of the test) is used and m is selected on an interval in a such way,
that p-value of the test is ≥ 0.05 and is the highest among others.

3.4 Modified model

Instead of initial model 2.1, we can consider a modified model, where drift
is not constant but is a function of time:

dXt = µ(t)Xtdt+ σXm
t dWt (3.20)

where Wt is a Brownian motion.

So, instead of using constant return for the whole time window

µ = ln(XT \X0), (3.21)

the log-price process is described by power law function of time, i.e.
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lnXt = atα + b, (3.22)

where unknown parameters are ordinary least squares estimates.

An example of such approximation of log-price process is shown on the
Figure 3.1. And in this case the drift is defined by

µ(t) = ln(Xt \Xt−1) = a(tα − (t− 1)α). (3.23)
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Figure 3.1: Approximation of log-price process by power-law function.

3.5 Model validity

After the parameter m is estimated the correctness of CEV model 2.1 should
be checked. For this reason for the estimated m, the distribution of variables
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dWt =
dXt − µXtdt

σXm
t

(3.24)

should be checked for normality.

The following test are used in the current study (see Appendix A.3 for
the detailed description of these tests):

1. Anderson-Darling test,

2. Jarque-Bera test,

3. Shapiro-Wilk test,

4. Cramer von Mises test,

5. Pearson’s chi-square test.

Both methods for estimation parameter m use linear regression model.
The estimation from the linear regression model depends on several assump-
tions which need to be checked using regression diagnostics. Diagnostic tech-
niques can be numerical, which are narrower in scope, but require no intu-
ition, or graphical, which are more flexible but harder to interpret. In the
present work numerical techniques are used.

The following residual assumptions need to be checked (see Appendix A.4
for the detailed description):

1. Constant variance,

2. Normality,

3. Serial correlation.

Another possibility is to use BDS test, first devised by W.A. Brock, W.
Dechert and J. Scheinkman in 1987. BDS test is a powerful tool for detecting
serial dependence in time series.

The test is defined as (see Appendix A.5 for the description):

H0:
{
Xi, i = 1, n

}
are i.i.d.,

Ha:
{
Xi, i = 1, n

}
are not i.i.d..

and can be applied to:
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1. dWt, if the assumption of normality is changed for i.i.d.,

2. the residuals in the linear regression models 3.5, 3.16.

In particular, when applied to the residuals from a fitted linear time
series model, the BDS test can be used to detect remaining dependence and
the presence of omitted nonlinear structure. If the null hypothesis cannot
be rejected, then the original linear model cannot be rejected; if the null
hypothesis is rejected, the fitted linear model is mis-specified, and in this
sense, it can also be treated as a test for nonlinearity.



Chapter 4

Accuracy of the estimation
methods

The described algorithms for estimation parameter m are tested against
stochastic benchmarks, when the parameter m is given by construction:

1. Construction of new price trail using reshuffled log-returns,

2. Simulation from the CEV model.

4.1 Construction of new price trail using

reshuffled log-returns

An artificial price trail can be constructed using random reshuffling of the
real log-returns. The main characteristic of the new trail - it is purely random
as by construction any trend in the prices is destroyed. Therefore, in general,
we expect the new price trail follows the standard log-normal Black-Scholes
diffusion process (CEV, m = 1) with the relaxed assumption on dWt, which
are not normally distributed.

To construct the new price trail using reshuffled log-returns the following
procedure is implemented:

1. Given the existing price trail (Xt)t∈T and the corresponding trail of
log-returns is (Rt)t∈T , where Rt = ln( Xt

Xt−1
),

15
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2. the trail of log-returns (Rt)t∈T is then randomly permuted to obtain a

new trail (R̃t)t∈T , which is used to build a new price process according
to the rule:

X̃t = eR̃tX̃t−1, (4.1)

where X̃0 = X0.

The methods provide the following results:

Macbeth-Merville method
min 25% q. 50% q. 75% q. max mean sd BDS
0.95 0.99 1.00 1.01 1.05 1.00 0.02 95%

Macbeth-Merville method, modified model
0.93 0.98 0.99 1.01 1.05 0.99 0.02 96%

”Best fit” method
0.85 0.95 1.05 1.05 1.15 1.02 0.07

”Best fit” method, modified model
0.85 0.95 1.05 1.05 1.15 1.02 0.07

Entropy method, M=20, N=20
0.81 1.10 1.21 1.33 1.57 1.21 0.17 0%

M=20, N=20, semi-empirical distr.
0.46 0.95 1.09 1.23 1.64 1.09 0.22 2%

M=20, N=50
0.74 0.98 1.09 1.16 1.42 1.08 0.14 0%

M=20, N=50, semi-empirical distr.
0.70 0.97 1.07 1.17 1.31 1.06 0.15 0%

M=20, N=100
0.67 0.94 1.04 1.12 1.43 1.03 0.14 0%

M=20, N=100, semi-empirical distr.
0.77 0.96 1.03 1.09 1.27 1.03 0.10 0%

M=40, N=50
0.71 0.96 1.12 1.28 1.54 1.12 0.20 0%

M=40, N=50, semi-empirical distr.
0.73 0.95 1.05 1.13 1.37 1.05 0.13 0%

Table 4.1: Reshuffled returns, NASDAQ daily series for the period 1980-2010,
number of simulations 1000.
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Figure 4.1: Macbeth-Merville and ”Best fit” methods, reshuffled returns,
box-plots of results. First and second box-plots from the left are for Macbeth-
Merville method applied to initial and modified models, respectively. Third
and fourth box-plots from the left are for ”Best fit” method applied to initial
and modified models, respectively. Reshuffling is done for NASDAQ daily
series for the period 1980-2010, number of simulations 1000.

Macbeth-Merville method, applied to both the initial and modified mod-
els, as it is seen from the Table 4.1, provides better estimations than both
”Best fit” and Entropy methods, though ”Best fit” provides better estimates
than Entropy method. It should be noted that the 50% and 75% quantiles
for the ”Best fit” model coincide. This is due to the fact that m is cho-
sen with accuracy up to 0.05. The linear model 3.5 in Macbeth-Merville
method is rejected only in 4-5% cases according to BDS test, while for En-
tropy method there is a non-linear relation in the model 3.16. Analyzing
Entropy method itself, based on these estimation results, it is difficult to
conclude if the model with empirical or with semi-empirical distribution of
log-returns provides better results. Nonetheless, as it is seen, estimation us-
ing semi-empirical distribution with the values of M = 20, N = 100 provides
more accurate results. For the convenience, these results are presented in the
form of box-plots on the Figures 4.1 and 4.2.
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Figure 4.2: Upper figure, first and second box-plots from the left are for the
values M = 20, N = 20 using empirical and semi-empirical distribution of
log-returns, respectively. Upper figure, third and fourth box-plots from the
left are for the values M = 20, N = 100 using empirical and semi-empirical
distribution of log-returns, respectively. Lower figure, first and second box-
plots from the left are for the values M = 20, N = 50 using empirical and
semi-empirical distribution of log-returns, respectively. Lower figure, third
and fourth box-plots from the left are for the values M = 40, N = 50
using empirical and semi-empirical distribution of log-returns, respectively.
Reshuffling is done for NASDAQ daily series for the period 1980-2010, num-
ber of simulations 1000.
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4.2 Simulation from the CEV model

Another benchmark for testing the proposed algorithms is the CEV model
2.1 itself. Selected simulated paths for different values of m, are shown on
the Figure 4.3. The paths simulated from the model with m > 1 exhibit
periods of faster-than-exponential growth with singularities.
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Figure 4.3: Simulation results from the CEV model, for values of m=-1.5,
0.5, 1.5, 3. On the figures a) and b) volatilities are shown with pink, so that
the negative relation between the price and the volatility is seen.
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Macbeth-Merville method applied to the initial model 2.1 provides the
following results:

Macbeth-Merville method
window size true m min 25% q. 50% q. 75% q. max mean sd BDS

200 0.5 -1.15 0.25 0.49 0.84 2.07 0.49 0.53 93.6%
250 0.5 -1.18 0.25 0.46 0.70 1.98 0.46 0.41 91.4%
300 0.5 -1.49 0.31 0.49 0.67 1.80 0.47 0.35 92.6%
350 0.5 -0.72 0.32 0.50 0.66 1.65 0.48 0.30 93.8%
400 0.5 -0.72 0.34 0.51 0.63 1.88 0.48 0.28 93%
200 0.7 -0.31 0.52 0.70 0.85 1.58 0.68 0.31 93.6%
250 0.7 -0.31 0.55 0.68 0.80 1.61 0.67 0.23 91.8%
300 0.7 -0.52 0.59 0.69 0.79 1.44 0.68 0.20 93.2%
350 0.7 -0.08 0.61 0.70 0.78 1.30 0.69 0.17 93.6%
400 0.7 0.02 0.61 0.70 0.77 1.44 0.69 0.16 93.4%
200 1 0.52 0.91 0.98 1.05 1.39 0.98 0.13 94.4%
250 1 0.58 0.93 0.99 1.05 1.31 0.99 0.10 91%
300 1 0.66 0.95 0.99 1.04 1.29 0.99 0.08 92.4%
350 1 0.71 0.96 1.00 1.03 1.30 0.99 0.07 92.8%
400 1 0.78 0.96 1.00 1.02 1.20 0.99 0.06 92.6%
200 1.3 0.95 1.24 1.29 1.33 2.23 1.29 0.1 56.2%
250 1.3 1.04 1.24 1.30 1.33 2.23 1.29 0.1 57.8%
300 1.3 1.07 1.25 1.29 1.33 2.23 1.30 0.09 57.8%
350 1.3 1.12 1.25 1.29 1.32 2.23 1.30 0.08 59.4%
400 1.3 1.13 1.26 1.29 1.32 2.23 1.30 0.08 59.8%
200 1.5 0.91 1.40 1.48 1.57 2.01 1.48 0.14 90.6%
250 1.5 0.94 1.40 1.49 1.57 1.98 1.49 0.13 92.6%
300 1.5 1.13 1.43 1.49 1.55 1.93 1.49 0.10 93.6%
350 1.5 1.20 1.43 1.50 1.54 1.82 1.49 0.09 93.6%
400 1.5 1.23 1.44 1.50 1.54 1.87 1.49 0.08 94.8%
200 1.7 1.14 1.58 1.67 1.77 2.90 1.68 0.17 89%
250 1.7 0.84 1.58 1.68 1.77 2.90 1.68 0.15 90.2%
300 1.7 0.84 1.61 1.69 1.75 2.90 1.68 0.14 91.6%
350 1.7 0.84 1.62 1.69 1.75 2.90 1.69 0.12 93%
400 1.7 0.84 1.63 1.69 1.75 2.90 1.69 0.12 93%

Table 4.2: Macbeth-Merville method, initial model, distributions of estima-
tions as a result of simulations from the CEV model for different m and
window size Tk, number of simulations 1000.

As it is seen from the tables 4.2, 4.3 and 4.4, the estimations are less
volatile the longer the time window. Comparing Macbeth-Merville method
applied to different models, the distribution of the estimations for the modi-
fied model is less volatile than of the initial model with better results for the
means and medians. ”Best fit” method provides more volatile results with
underestimated means and medians.
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Macbeth-Merville method applied to the modified model 3.20 provides
the following results:

Macbeth-Merville method, modified model
window size true m min 25% q. 50% q. 75% q. max mean sd BDS

200 0.5 -0.13 0.40 0.50 0.58 1.10 0.49 0.16 92.6%
250 0.5 -0.06 0.42 0.50 0.57 0.91 0.49 0.14 91.6%
300 0.5 0.03 0.43 0.50 0.57 0.91 0.49 0.12 91%
350 0.5 0.12 0.44 0.50 0.57 0.91 0.50 0.11 91%
400 0.5 0.13 0.44 0.50 0.57 0.91 0.50 0.10 91.6%
200 0.7 0.14 0.62 0.69 0.76 1.11 0.68 0.14 91.8%
250 0.7 0.21 0.64 0.70 0.76 1.10 0.69 0.11 90.8%
300 0.7 0.35 0.65 0.70 0.75 0.98 0.70 0.09 92.4%
350 0.7 0.32 0.66 0.70 0.74 1.02 0.70 0.08 93%
400 0.7 0.41 0.66 0.70 0.74 0.95 0.70 0.07 93.4%
200 1 0.38 0.92 0.99 1.05 1.34 0.98 0.13 90.4%
250 1 0.61 0.94 1.00 1.05 1.31 1.00 0.10 90.8%
300 1 0.71 0.95 1.00 1.04 1.29 1.00 0.08 91.2%
350 1 0.77 0.97 1.00 1.03 1.31 1.00 0.07 93.2%
400 1 0.79 0.97 1.00 1.03 1.21 1.00 0.06 94.6%
200 1.3 0.89 1.20 1.29 1.37 1.68 1.29 0.13 90.6%
250 1.3 1.00 1.23 1.29 1.37 1.61 1.30 0.11 91.4%
300 1.3 1.02 1.24 1.30 1.35 1.76 1.30 0.09 91.8%
350 1.3 1.03 1.25 1.30 1.34 1.64 1.30 0.08 93.4%
400 1.3 1.08 1.25 1.30 1.34 1.56 1.30 0.07 93.4%
200 1.5 1.04 1.40 1.49 1.59 1.92 1.49 0.14 90.8%
250 1.5 1.11 1.42 1.50 1.57 1.86 1.50 0.12 90.8%
300 1.5 1.19 1.43 1.50 1.56 2.01 1.50 0.11 90.6%
350 1.5 1.22 1.45 1.50 1.55 1.85 1.50 0.09 92.8%
400 1.5 1.26 1.45 1.50 1.55 1.84 1.50 0.08 92.2%
200 1.7 1.22 1.59 1.69 1.78 2.55 1.69 0.15 90%
250 1.7 1.30 1.61 1.70 1.78 2.56 1.70 0.14 90.8%
300 1.7 1.34 1.63 1.70 1.77 2.56 1.70 0.13 90%
350 1.7 1.39 1.63 1.70 1.76 2.56 1.70 0.11 92.2%
400 1.7 1.41 1.64 1.70 1.76 2.56 1.70 0.11 91.8%

Table 4.3: Macbeth-Merville method, modified model, distributions of esti-
mations as a result of simulations from the CEV model for different m and
window size Tk, number of simulations 1000.
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”Best fit” method applied to the initial model 2.1 provides the following
results:

”Best fit” method
window size true m min 25% q. 50% q. 75% q. max mean sd

200 0.5 -0.95 0.2 0.55 0.81 1.45 0.47 0.49
250 0.5 -0.60 0.25 0.45 0.70 1.65 0.43 0.45
300 0.5 -0.95 0.10 0.40 0.66 1.10 0.35 0.46
350 0.5 -0.75 0.15 0.40 0.70 1.15 0.39 0.39
400 0.5 -0.65 0.19 0.45 0.70 1.10 0.39 0.37
200 0.7 -0.85 0.40 0.60 0.80 1.85 0.62 0.39
250 0.7 -0.40 0.34 0.65 0.85 1.45 0.59 0.35
300 0.7 -0.65 0.35 0.65 0.80 1.35 0.58 0.33
350 0.7 -0.05 0.50 0.60 0.71 1.25 0.58 0.25
400 0.7 -0.25 0.55 0.70 0.81 1.10 0.68 0.21
200 1 -0.50 0.64 0.85 1.11 1.95 0.86 0.40
250 1 -0.30 0.74 0.85 1.00 1.70 0.85 0.32
300 1 0.20 0.75 0.85 1.00 1.45 0.86 0.24
350 1 0.25 0.75 0.90 1.05 1.35 0.89 0.22
400 1 0.25 0.85 0.95 1.05 1.40 0.93 0.20
200 1.3 0.55 0.85 1.05 1.41 2.45 1.14 0.38
250 1.3 0.45 0.90 1.10 1.35 2.30 1.12 0.33
300 1.3 0.50 0.95 1.10 1.30 1.90 1.12 0.26
350 1.3 0.55 1.04 1.15 1.40 1.90 1.20 0.25
400 1.3 0.45 1.05 1.20 1.36 1.80 1.20 0.24
200 1.5 0.45 1.04 1.30 1.70 2.50 1.37 0.41
250 1.5 0.55 1.05 1.30 1.55 2.30 1.31 0.35
300 1.5 0.50 1.10 1.30 1.46 2.10 1.30 0.30
350 1.5 0.70 1.20 1.35 1.55 2.15 1.35 0.27
400 1.5 0.60 1.30 1.45 1.65 2.10 1.43 0.28
200 1.7 0.30 1.24 1.50 1.90 2.65 1.57 0.49
250 1.7 0.50 1.20 1.50 1.75 3.30 1.50 0.41
300 1.7 0.65 1.25 1.48 1.75 2.40 1.51 0.33
350 1.7 0.80 1.35 1.50 1.70 2.50 1.52 0.30
400 1.7 0.70 1.45 1.65 1.81 2.45 1.63 0.33

Table 4.4: ”Best fit” method, distributions of estimations as a result of sim-
ulations from the CEV model for different m and window size Tk, number
of simulations 1000. The value of m is selected from the interval [-4,4] with
accuracy up to 0.05.
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Entropy method using empirical distribution for log-returns provides the
following results:

Entropy method
window size true m min 25% q. 50% q. 75% q. max mean sd

200 0.5 -1.43 0.44 1.15 1.95 5.34 1.25 1.28
250 0.5 -1.53 0.61 1.21 1.88 5.68 1.33 1.21
300 0.5 -2.75 0.63 1.22 1.70 4.34 1.23 1.03
350 0.5 -2.09 1.63 1.15 1.55 4.66 1.15 1.01
400 0.5 -0.44 0.53 1.02 1.71 2.88 1.14 0.82
200 0.7 -0.41 0.66 1.14 1.54 2.91 1.11 0.70
250 0.7 -0.24 0.79 1.17 1.58 2.88 1.19 0.63
300 0.7 -0.28 0.70 1.09 1.70 2.71 1.19 0.76
350 0.7 -0.31 0.71 1.21 1.66 2.11 1.14 0.65
400 0.7 0.31 0.83 1.09 1.73 2.13 1.24 0.61
200 1 0.01 0.65 0.96 1.27 2.44 0.98 0.42
250 1 0.10 0.75 1.06 1.26 2.10 1.01 0.35
300 1 0.10 0.86 1.07 1.25 1.82 1.04 0.34
350 1 0.20 0.86 1.08 1.23 1.56 1.03 0.29
400 1 0.49 0.94 1.08 1.25 1.65 1.07 0.24
200 1.3 0.12 0.49 0.83 0.91 1.03 0.69 0.35
250 1.3 -0.19 0.64 0.96 1.20 1.92 0.91 0.40
300 1.3 -0.24 0.87 1.26 1.65 3.39 1.28 0.59
350 1.3 -0.36 0.67 1.07 1.22 1.88 0.95 0.40
400 1.3 0.19 0.78 1.03 1.22 1.73 0.99 0.31
200 1.5 -0.33 0.53 0.92 1.21 2.34 0.88 0.53
250 1.5 -0.69 0.95 1.36 1.88 4.27 1.48 0.88
300 1.5 -0.25 0.97 1.34 1.80 5.17 1.43 0.81
350 1.5 -0.40 1.06 1.45 1.77 4.88 1.47 0.71
400 1.5 0.33 1.11 1.49 1.71 3.28 1.45 0.51
200 1.7 -1.65 0.86 1.38 2.17 5.87 1.63 1.31
250 1.7 -0.68 1.01 1.43 2.21 5.84 1.63 1.11
300 1.7 -0.56 1.04 1.49 2.01 5.80 1.59 1.00
350 1.7 -0.78 1.10 1.57 1.92 5.14 1.64 0.95
400 1.7 0.32 1.27 1.62 1.87 4.72 1.60 0.62

Table 4.5: Entropy method, empirical log-returns distribution, distributions
of estimations as a result of simulations from CEV model for different m,
M = 20, N = 100.

Estimations with Entropy method using empirical distribution of log-
returns provide highly volatile results as it is seen in the Table 4.5. Using
semi-empirical distribution instead, provides comparably better results 4.6,
but they are still more volatile then those achieved with other methods.
Using BDS test the linearity in the model 3.16 is rejected for the simulation
results.
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Entropy method using semi-empirical distribution for log-returns provides
the following results:

Entropy method, semi-empirical distribution
window size true m min 25% q. 50% q. 75% q. max mean sd

200 0.5 -0.74 0.26 0.49 0.75 1.54 0.51 0.42
250 0.5 -0.80 0.31 0.47 0.71 1.41 0.47 0.35
300 0.5 -0.49 0.30 0.48 0.63 1.50 0.47 0.32
350 0.5 -0.62 0.34 0.50 0.62 1.46 0.47 0.30
400 0.5 -0.06 0.36 0.48 0.74 1.15 0.53 0.27
200 0.7 -0.05 0.58 0.71 0.89 1.44 0.72 0.24
250 0.7 -0.06 0.60 0.70 0.82 1.10 0.70 0.20
300 0.7 0.43 0.57 0.74 0.79 1.20 0.71 0.19
350 0.7 0.43 0.58 0.74 0.81 0.99 0.72 0.16
400 0.7 0.54 0.61 0.67 0.86 1.00 0.73 0.16
200 1 0.73 0.95 1.02 1.10 1.32 1.03 0.12
250 1 0.77 0.96 1.02 1.07 1.32 1.02 0.11
300 1 0.76 0.97 1.01 1.07 1.32 1.02 0.09
350 1 0.78 0.96 1.01 1.07 1.39 1.02 0.08
400 1 0.87 0.97 1.01 1.06 1.24 1.02 0.07
200 1.3 1.25 1.28 1.33 1.55 1.62 1.40 0.17
250 1.3 1.04 1.25 1.33 1.40 1.82 1.33 0.13
300 1.3 1.10 1.25 1.31 1.39 1.83 1.32 0.11
350 1.3 1.05 1.25 1.31 1.39 1.83 1.32 0.11
400 1.3 1.14 1.25 1.33 1.39 1.74 1.32 0.10
200 1.5 0.05 1.39 1.51 1.60 1.99 1.50 0.31
250 1.5 0.32 1.34 1.48 1.60 2.46 1.48 0.29
300 1.5 0.98 1.41 1.49 1.62 2.27 1.52 0.27
350 1.5 1.01 1.40 1.50 1.63 2.08 1.52 0.18
400 1.5 1.16 1.42 1.52 1.61 2.21 1.53 0.16
200 1.7 0.26 1.53 1.67 1.81 3.34 1.70 0.38
250 1.7 0.77 1.53 1.69 1.84 2.67 1.69 0.30
300 1.7 0.87 1.61 1.69 1.82 2.36 1.72 0.23
350 1.7 1.21 1.61 1.70 1.81 2.23 1.72 0.17
400 1.7 1.33 1.63 1.71 1.82 2.50 1.73 0.17

Table 4.6: Entropy method, semi-empirical log-returns distribution, distribu-
tions of estimations as a result of simulations from CEV model for different
m, M = 20, N = 100.



Chapter 5

Results

5.1 Macbeth-Merville method

In the present work NASDAQ index daily prices for the period 1980-2010
are analyzed. Based on the results of the previous section, Macbeth-Merville
method is applied to the modified model with the length of moving time
window Tk = 400 days and 20 days shift.

On the first graph of the Figure 5.1 the estimated values of m are pre-
sented, while on the second graph of the same figure there are the correspond-
ing volatilities of log-returns. It is seen, that the periods where estimated
m < 1 are those where there is an inverse relationship between the price and
the volatility. For example, a decline of the price in October 1987 increased
the volatility of log-returns and the consequent price growth decreased it.
Another example, in the period 2005-2007 the estimated m < 1: while the
price is growing the volatility is declining. Figure 5.2 provides zoom for the
period 1987-1993, and it is seen that estimated m shows a change of regime.

Regression diagnostics for Macbeth-Merville method shows that the equa-
tion 3.5 can be used as a linear regression equation. And though the expected
value of the term ln[χ2(1)] is not equal to zero, it sums to the estimator of an
intercept coefficient, as shown in the equation 3.9. Residuals are shown to
be uncorrelated and homoscedastic, but not normally distributed. With the
latter, least squares estimates are still the best linear unbiased estimates.

As with the artificial time series in the previous section, it is interesting
to analyze the sensitivity of the estimation to the amount of data available.
For this purpose the estimation is done for different sizes of time windows
Tk. As it is seen from the Table 5.1, the values of m, estimated for the time

25
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Figure 5.1: Macbeth-Merville method, estimated m for the NASDAQ time
series, for the period 1980-2010, Tk = 400. Marked by red are ”crash points”,
followed by a decline in price of more than 15% in less than three weeks. On
the second graph volatilities of log-returns in the moving windows are shown.
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Figure 5.2: Macbeth-Merville method, estimated m for the NASDAQ time
series, for the period 1987-1993, Tk = 400, shift is 5 days. The volatility is
re-scaled to fit the m axes. The red points are so called ”crash points”, which
are followed by a decline in price of more than 15% in less than three weeks.

windows of similar lengths are highly correlated. Also from the Figure 5.7,
the less the length of the time window the fatter the tails of the distribution
of m. This happens because in the regression model the less data there is, the
more influence the extreme points have, therefore, they pull the repression
line, increasing the slope in the absolute value.

Tk=200 Tk=250 Tk=300 Tk=350 Tk=400 Tk=800 sd
Tk=200 1 0.77 0.64 0.47 0.4 0.28 2.22
Tk=250 0.77 1 0.85 0.69 0.56 0.4 1.76
Tk=300 0.64 0.85 1 0.88 0.74 0.46 1.58
Tk=350 0.47 0.69 0.88 1 0.9 0.54 1.4
Tk=400 0.4 0.56 0.74 0.9 1 0.59 1.28
Tk=800 0.28 0.4 0.46 0.54 0.59 1 1.3

Table 5.1: Macbeth-Merville method, correlation coefficients and standard
deviations of m series estimated for Tk=200, 250, 300, 350, 400, 800.

Based on the results from the Figures 5.3, 5.4, 5.5 and 5.6, the regions
where the initial model 2.1 is shown to be correct coincide, but they are
getting narrower for the longer time window Tk. So, for time windows of
the shorter length the CEV model is a good descriptor of the price process.
The same figures also present the power α from the equation 3.22 which
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Figure 5.3: Macbeth-Merville method, estimated m for the NASDAQ time
series, for the period 1980-2010, Tk=200. The colored markers are the regions
where for the estimated m the null hypothesis about the normality of dWt is
not rejected. The estimated m marked with light green are those for which
at least three normality tests agree. The right graph shows estimated power
α for the modified model.
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Figure 5.4: Macbeth-Merville method, estimated m for the NASDAQ time
series, for the period 1980-2010, Tk=300. The colored markers are the regions
where for the estimated m the null hypothesis about the normality of dWt is
not rejected. The estimated m marked with light green are those for which
at least three normality tests agree. The right graph shows estimated power
α for the modified model.
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Figure 5.5: Macbeth-Merville method, estimated m for the NASDAQ time
series, for the period 1980-2010, Tk=400. The colored markers are the regions
where for the estimated m the null hypothesis about the normality of dWt is
not rejected. The estimated m marked with light green are those for which
at least three normality tests agree. The right graph shows estimated power
α for the modified model.



CHAPTER 5. RESULTS 31

456789

1/2/1980

1/2/1982

1/2/1984

1/2/1986

1/2/1988

1/2/1990

1/2/1992

1/2/1994

1/2/1996

1/2/1998

1/2/2000

1/2/2002

1/2/2004

1/2/2006

1/2/2008

ti
m

e

log-price

-4-3-2-101234

N
A

S
D

A
Q

J
a

r
q

u
e

-B
e

r
a

A
n

d
e

r
s

o
n

-D
a

r
li

n
g

C
r
a

m
e
r
 v

o
n

 M
is

e
s

P
e

a
r
s

o
n

 c
h

i-
s
q

u
a

r
e
d

S
h

a
p

ir
o

-W
il

k

456789

1/2/1980

1/2/1982

1/2/1984

1/2/1986

1/2/1988

1/2/1990

1/2/1992

1/2/1994

1/2/1996

1/2/1998

1/2/2000

1/2/2002

1/2/2004

1/2/2006

1/2/2008

ti
m

e

log-price

-0
.0

5

-0
.0

2
5

00
.0

2
5

0
.0

5

N
A

S
D

A
Q

a
lp

h
a

Figure 5.6: Macbeth-Merville method and ”Best fit” methods, estimated m
for the NASDAQ time series, for the period 1980-2010, Tk=800. The colored
markers are the regions where for the estimated m the null hypothesis about
the normality of dWt is not rejected. The estimated m marked with light
green are those for which at least three normality tests agree. The right
graph shows estimated power α for the modified model.
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has an important implication in relation to the finite-time singularity in the
log-price process. As it is seen from the Figure 5.8, the longer the time
window Tk the more negatively skewed the distribution of α.
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Densities of m estimated with different time windows

T_k=800
T_k=400
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T_k=200

Figure 5.7: Macbeth-Merville method, distributions of m for different sizes
of time window.

Applying BDS test to dWt widens those regions where at least three
normality tests agree. The results of BDS test, applied to the residuals
from a fitted linear model, show that, in general, for different sizes of time
window Tk, the linear model is not rejected. That means that for NASDAQ
daily time series the linear model 3.5 in Macbeth-Merville method for the
estimation of m is reasonable. These results are compared to those obtained
under assumption that the price follows Black-Scholes model (Table 5.2).

On the Figure 5.9 the scatter plots for Macbeth-Merville method where
estimated m is plotted against the volatility of log-returns in the following 20
days, are shown. Also linear regression lines are added - the trend suggests
that for the higher m the volatility of log-returns in the following 20 days is
expected to increase.
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Tk initial model modified model B-S B-S, modified
1 200 86.70% 89% 84.80% 87.50%
2 250 87.30% 88.50% 85.10% 87%
3 300 86.93% 88.86% 85.97% 87.90%
4 350 87.81% 89.20% 86.84% 87.12%
5 400 87.59% 87.58% 85.91% 86.33%
6 800 83.90% 78.58% 80.95% 76.96%

Table 5.2: Comparison of non-linearity diagnostic in 3.5 for Macbeth-Merville
method for initial and modified models and Black-Scholes standard model
with constant and non-constant drifts for different sizes of time window Tk.
Table represents the percent of windows in the whole time series where the
linear model 3.5 is not rejected by BDS test.
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Distribution of alphas in the modified model

Figure 5.8: Distribution of α in the modified model for different sizes of time
window Tk=200, 300, 400, 800 from the left to the right, respectively.
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Figure 5.9: Macbeth-Merville method, scatter plots m vs volatility over the
next 20 days for different sizes of time window Tk=200, 300, 400, 800.
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5.2 Entropy method

The estimation of the parameter m using Entropy method depends on the
values of the parameters N and M . Parameter N is responsible for the
construction of the grid on the interval [min(Xk),max(Xk)] and it influences
how many data points there will be for the linear regression estimation 3.16.
Therefore, it should be chosen in a such way that, from one side, there is
enough data for the estimation from the regression model and the information
is not lost, i.e. the log-returns between two consequent price levels. And,
from the other side, the data is not redundant and we do not loose calculation
capacity, i.e. if the grid is too dense, the entropies for the consequent price
levels will coincide. Parameter M is dividing the interval [min(Rt),max(Rt)]
into bins to approximate the distribution of log-returns and also involves a
trade-off between smaller and higher values.

On the Figure 5.10, the estimated m series for the different values of N
are shown, the time window Tk = 400. As it is seen, the m series follow the
same trend, though for the smaller values of N estimated m is higher. The
same result is shown in the previous section on the Figure 4.2 and Table
4.1. Based on the results of the previous section the following values of the
parameters are chosen for the further analysis M = 20, N = 100.

Tk=200 Tk=250 Tk=300 Tk=350 Tk=400 Tk=800 sd
Tk=200 1 0.51 0.33 0.31 0.31 0.15 2.41
Tk=250 0.51 1 0.58 0.39 0.38 0.1 1.88
Tk=300 0.33 0.58 1 0.61 0.48 0.1 1.57
Tk=350 0.31 0.39 0.61 1 0.68 0.16 1.4
Tk=400 0.31 0.38 0.48 0.9 1 0.14 1.33
Tk=800 0.15 0.01 0.1 0.54 0.14 1 1.06

Table 5.3: Entropy method, semi-empirical log-returns distribution, correla-
tion coefficients of m series estimated for Tk=200, 250, 300, 350, 400, 800,
M = 20, N = 100.

Regression diagnostics for the Entropy method shows that the residuals
are correlated and not normally distributed. Also, repeating the results of
the previous section, BDS test rejects the linear model 3.16.

Figures 5.12 and 5.13 allow to compare the estimation results for
Macbeth-Merville method applied to the modified model and Entropy method
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Figure 5.10: Entropy method, estimated m for the NASDAQ time series, for
the period 1980-2010, Tk=400, N = 20, 50, 100, 150.

using both semi-empirical and empirical log-returns distributions. For exam-
ple, CEV model is again shown to be a good descriptor of the price process
for the time windows of shorter length. Also, it is seen that estimation using
Entropy method with the semi-empirical log-returns distribution provides
results closer to those obtained by Macbeth-Merville method, than with the
empirical distribution. This fact is well observed on the Figure 5.13, where
the length of the time window is Tk = 800.

In comparison to Macbeth-Merville method, as it is seen from the Table
5.3, m series estimated by Entropy method with semi-empirical distribution
for log-returns for the windows of different lengths are much less correlated.

On the Figure 5.14 the scatter plots for Entropy method where estimated
m is plotted against the volatility of log-returns in the following 20 days, are
shown. Also linear regression lines are added - the trend suggests that for
the higher m the volatility of log-returns in the following 20 days is expected
to increase.



CHAPTER 5. RESULTS 37

−10 −5 0 5

0.
0

0.
2

0.
4

0.
6

Densities of m estimated with different time windows

T_k=800
T_k=400
T_k=350
T_k=300
T_k=250
T_k=200

Figure 5.11: Entropy method, distributions of m for different sizes of time
window.

5.3 ”Best fit” method

Using this method the search of m is done on the interval [−4, 4] with ac-
curacy up to 0.05. We search for m which will produce the highest p-value
for the Pearson’s chi-square normality test applied to the dWt variables.
The corresponding m is accepted only if the corresponding p-value is higher
than 0.05. Therefore, this method is unable to find m for some of the time
windows. An example of this estimation is shown on the Figure 5.15 in
comparison to Macbeth-Merville method. It seems that the algorithm pro-
vides estimations for m only in those time windows where the model with
estimations by Macbeth-Merville method passes Pearson’s chi-square test for
normality. Though two time series for m seem to follow the same trend in
those regions, they don’t completely coincide.

On the Figure 5.17 the scatter plots for ’Best fit’ method where estimated
m is plotted against the volatility of log-returns in the following 20 days, are
shown, linear regression lines are also added. These scatter plots cannot be
used to make enough reasonable conclusions about the dependence between
an estimated m and volatility in the following period. The reason for this
- the series of estimations consist only of those m for which Pearson’s chi-
square test did not reject normality for dWt, i.e. the series are not complete
and are based on the strong normality assumption.
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(a) Semi-empirical log-returns distribution
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(b) Empirical log-returns distribution

Figure 5.12: Comparison of results for Macbeth-Merville and Entropy meth-
ods, Tk=400, M = 20, N = 100. Left and right graphs show the estima-
tion results using the semi-empirical and empirical log-returns distributions,
respectively. The results are compared with those obtained by Macbeth-
Merville method applied to the modified model with the same length of time
window Tk.
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(a) Semi-empirical log-returns distribution
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(b) Empirical log-returns distribution

Figure 5.13: Comparison of results for Macbeth-Merville and Entropy meth-
ods, Tk=800, M = 20, N = 100. Left and right graphs show the estima-
tion results using the semi-empirical and empirical log-returns distributions,
respectively. The results are compared with those obtained by Macbeth-
Merville method applied to the modified model with the same length of time
window Tk.
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(b) Tk=300
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(c) Tk=400
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(d) Tk=800

Figure 5.14: Entropy method, scatter plots m vs volatility over the next 20
days for different sizes of time window Tk=200, 300, 400, 800.
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Figure 5.15: Comparison of results for ”Best fit” and Macbeth-Merville meth-
ods, Tk=400, 800. Macbeth-Merville and ’Best fit’ estimates are marked with
yellow and green, respectively. WIth lilac those windows where Macbeth-
Merville estimates pass Pearson’s chi-suqare normality test are marked.
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Figure 5.16: ”Best fit”, distributions of m for different sizes of time window.
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(b) Tk=300
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Figure 5.17: ”Best fit” method, scatter plots m vs volatility over the next 20
days for different sizes of time window Tk=200, 300, 400, 800.



Chapter 6

Conclusions

In the current research we were trying to detect the periods in prices where
the growth is faster-than-exponential. These periods according to studies,
correspond to bubble periods. Using the hypothesis that bubble periods are
those where positive feedback in prices exist, we analyzed different methods
for estimation the co-operativity parameter, based on the assumption that
price process follows the CEV model.

As it is shown, Macbeth-Merville method provides quite accurate results
and linear model in the main equation is indicated be statistically proba-
ble. While Entropy method provides volatile results and the linear model
in the main equation of the method is doubtful and might need further in-
vestigation. And the last, ’Best fit’ method provides comparatively accurate
results, though it is fully based on the assumption of normality which is a
very strong one. All three methods are shown to perform better when more
data is available.

The topic of the present research has an important implication for the
investment industry professionals as detecting bubbles may prevent asset
managers from investments in late bubble cycles. But though in the current
study the mathematical detection of bubble periods shows some indications,
the results are not clear, and, hence, needs to be further investigated.
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Appendix A

A.1 Log-returns distribution

dXt = µXtdt+ σXm
t dWt (A.1)

To find the distribution of log-returns, we apply Ito’s lemma to the func-
tion f = lnX:

df =
∂f

∂t
dt+

∂f

∂Xt

dXt +
1

2

∂2f

∂X2
(dWt)

2 (A.2)

∂f

∂X
=

1

X
,
∂2f

∂X2
= − 1

X2
,
∂f

∂t
= 0, (A.3)

df = 0dt+
1

Xt

dXt +
1

2
(− 1

X2
t

)σ2X2m
t dt

=
1

Xt

(µXtdt+ σXm
t dWt)−

1

2X2
t

σ2X2m
t dt

= (µ− 1

2
σ2X

2(m−1)
t )dt+ σXm−1

t dWt, (A.4)

therefore,

ln
Xt

X0

∼ ϕ

[
(µ− 1

2
σ2X

2(m−1)
t )t, σXm−1

t

√
t

]
whereXt denotes the stock price at time t, X0 denotes the price at time 0, and
ϕ(µ, σ) denotes a normal distribution with mean µ and standard deviation
σ.

Applying ”standardizing” transformation, we have:

f(r|x) = 1

σxm−1
ϕ(

r − (µ− 1
2
σ2x2(m−1))

σxm−1
)

45



APPENDIX A. 46

A.2 Entropy for Normal distribution

Let X be a random variable with a probability density function f whose
support is a set X. The differential entropy H(X) or H(f) is defined as

H(X) = −
∫
X

f(x) ln(f(x))dx

Differential form of the entropy for the normal distribution have the fol-
lowing closed form:

H(ϕ(x)) = −
∫ ∞

−∞
ϕ(x) ln(ϕ(x))dx

= −
∫ ∞

−∞
ϕ(x)(ln(

1√
2πσ

)− (x− µ)2

2σ2
)dx

= ln(
√
2πσ) +

σ

2

∫ ∞

−∞

(
x− µ

σ

)2
1√
2πσ

exp(−1

2

(
x− µ

σ

)2

)d

(
x− µ

σ

)
= ln(

√
2πσ) +

1

2
= ln(

√
2πeσ) (A.5)

A.3 Linear Regression Diagnostics

a Constant variance

In this case we need to check whether the variance in the residuals is
related to the fitted values [10]. Constant variance assumption holds if on
the plot of residuals against fitted values residuals are symmetric vertically
around zero. Numerically, this can be checked applying linear regression
model to residuals against the fitted values and to absolute values of residuals
against the fitted values: The estimated model we are expecting to see is

residuals = a1 + b1 ∗ fitted values, (A.6)

|residuals| = a2 + b2 ∗ fitted values, (A.7)

where b1 and b2 are not significantly different from zero.
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b Normality

Graphically the residuals can be assessed for normality using a Q-Q-plot,
which compares the residuals to normal observations. In the present work
Pearson’s phi-squared test is used as a test for normality (see Appendix
A.2.5):

H0: residuals are normally distributed,

Ha: residuals are not normally distributed.

For p-values of the test smaller than 0.05 the null hypothesis is rejected.
When the errors are not normal, least squares estimates may not be optimal.
They will still be best linear unbiased estimates, but other robust estimators
may be more effective.

c Serial correlation

Another assumption of linear model is that the errors are uncorrelated.
Graphically this can be checked plotting the residuals against the time. To
check this assumption numerically we use Durbin-Watson test with the fol-
lowing statistic:

DW =
n∑

i=2

(ϵ̂i − ϵ̂i−1)
2/(

n∑
i=1

ϵ̂2i ) (A.8)

The Durbin-Watson statistic has a range from 0 to 4 with a midpoint of
2 and has the following interpretation:

1. if DW < 1, the errors are positively correlated: an increase in one
period follows an increase in the previous period,

2. if DW = 2, there is no autocorrelation in the errors,

3. if DW > 3, the errors are negatively correlated: an increase in one
period follows an decrease in the previous period.

Therefore, we are interested in the values of DW on the interval [1,3].
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A.4 Normality tests

Normality tests are used to determine how likely an underlying random vari-
ables are to be normally distributed.

The tests are defined as
H0:

{
Xi, i = 1, n

}
follow a normal distribution

Ha:
{
Xi, i = 1, n

}
do not follow the normal distribution.

A.4.1 Anderson-Darling test for normality

It is a modification of Kolmogorov-Smirnov test, which gives more weight to
the tails than does the latter test. Makes use of the specific distribution (in
our case normal distribution) in calculating critical values.

The testing procedure is the following:

1. the tested data
{
Xi, i = 1, n

}
is sorted in increasing order,

2. the sample mean and standard deviation are calculated

X =
1

n

n∑
i=1

Xi, s =
1

n− 1

n∑
i=1

(Xi −X)2, (A.9)

3. the values Xi are standardized to create new values

Yi =
Xi −X

s
, i = 1, n, (A.10)

4. the test statistic is calculated as

A2 = −n− 1

n

n∑
i=1

(2i− 1)(ln(Φ(Yi)) + ln(1− Φ(Yn+1−i))), (A.11)

where Φ is the cumulative normal distribution function.

This test is a one-sided and the hypothesis that the distribution is of a
specific form is rejected if the test statistic, A, is greater than the critical
value.
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A.4.2 Jarque-Bera test for normality

This test for normality is based on the sample kurtosis and skewness coeffi-
cients. The Jarque-Bera test statistic is defined as

JB =
n

6
(S2 +

1

4
K2), (A.12)

where n is the number of observations and S is the sample skewness, and K
is the sample kurtosis:

S =
1
n

∑n
i=1(Xi −X)3

( 1
n

∑n
i=1(Xi −X)2)3/2

(A.13)

K =
1
n

∑n
i=1(Xi −X)4

( 1
n

∑n
i=1(Xi −X)2)2

− 3 (A.14)

For large sample sizes the Jarque-Beta statistic has an asymptotic chi-
square distribution with two degrees of freedom. The null hypothesis is a
joint hypothesis of the skewness being zero and the excess kurtosis being
zero, since samples from a normal distribution have an expected skewness
zero and an expected excess kurtosis zero (which is the same as a kurtosis of
3).

A.4.3 Shapiro-Wilk test for normality

The testing procedure is the following:

1. the tested data
{
Xi, i = 1, n

}
is sorted in increasing order,

2. the sample mean is calculated

X =
1

n

n∑
i=1

Xi, (A.15)

3. The test statistic is calculated as

W =

(
n∑

i=1

aiXi

)2

n∑
i=1

(Xi −X)2
(A.16)
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where ai are constants generated from the means, variances and co-
variances of the order statistics of a sample of size n from a normal
distribution

(a1, ..., an) =
mTV −1

(mTV −1V −1m)1/2
, m = (m1,...,mn)

T

are the expected values of the order statistics of independent and
identically-distributed random variables sampled from the standard
normal distribution, and V is the covariance matrix of those order
statistics.

Shapiro-Wilk test is closely tied to the normal probability plot, since it
is based on the correlation between the normal quantiles and the sample
quantiles. The correlation measures how close the normal plot is to being a
straight line.

A.4.4 Cramer von Mises test for normality

In statistics the Cramer-von-Mises criterion is a form of minimum distance
estimation used for judging the goodness of fit of a probability distribution
F∗ (in our case Φ) compared to a given empirical distribution function Fn.
It is defined as

w2 =

∫ ∞

−∞
[Fn(x)− Φ(x)]2 dΦ(x) (A.17)

The testing procedure is the following:

1. the tested data
{
Xi, i = 1, n

}
is sorted in increasing order,

2. the test statistic is calculated as

T = nw2 =
1

12n
+

n∑
i=1

[
2i− 1

2n
− Φ(Xi)

]2
(A.18)

If this value is larger than the critical value we can reject the null hypoth-
esis.
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A.4.5 Pearson’s chi-square test for normality

The Pearson’s chi-square goodness-of-fit test is applied to binned data (i.e.,
data put into classes). This is not a restriction since for non-binned data it is
possible to calculate a histogram or frequency table before generating the chi-
square test. However, the value of the chi-square test statistic is dependent
on how the data is binned. Another disadvantage of the chi-square test is that
it requires a sufficient sample size in order for the chi-square approximation
to be valid.

The testing procedure is the following:

1. the data is divided into k bins,

2. the test statistic is defined as

χ2 =
k∑

i=1

(Oi − Ei)
2/Ei, (A.19)

where Oi is the observed frequency for the bin i, and Ei is the expected
frequency for bin i. The expected frequency is calculated by

Ei = n(Φ(Yu)− Φ(Yl)), (A.20)

where Yu is the upper limit for class i, Yl is the lower limit for class i,
and n is the sample size.

The chi-square statistic can then be used to calculate a p-value by comparing
the value of the statistic to a chi-square distribution.

A.5 BDS test

The computation of BDS test follows the below procedure:

1. given is an N observations time series, which are the first difference of
the natural logarithms of raw data:

{xi} = [x1,x2, ..., xN ]
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2. select value of m (embedding dimension), embed the time series into
m-dimensional vectors, by taking eachm successive points in the series.
This way we convert the series of scalars into a series of vectors with
overlapping entries:

xm
1 = (x1,x2, ..., xm),

xm
2 = (x2,x3, ..., xm+1),

...

xm
N−m = (xN−m,xN−m+1, ..., xN),

3. compute the correlation integral, which is a measure of the frequency
with which temporal patterns are repeated in the data. This is done
by adding the number of pairs of points (i, j), where 1 ≤ i ≤ N and
1 ≤ j ≤ N , in the m-dimensional space which are “close” in the sense
that the points are within a radius or tolerance ϵ of each other:

Cϵ,m =
1

Nm(Nm − 1)

∑
i ̸=j

Ii,j;ϵ, (A.21)

where Ii,j;ϵ = 1, if ||xm
i − xm

j || ≤ ϵ and 0, otherwise,

4. Brock, Dechert and Scheinkman [3] showed that if the time series is
i.i.d.

Cϵ,m ≈ [Cϵ,1]
m (A.22)

the quantity Cϵ,m− [Cϵ,1]
m has an asymptotic normal distribution with

zero mean and a variance Vϵ,m defined by:

Vϵ,m = 4[Km + 2
m−1∑
j=1

Km−jC2j
ϵ + (m− 1)2C2m

ϵ −m2KC2m−2
ϵ ], (A.23)

where K = 6
Nm(Nm−1)(Nm−2)

∑
i<j<N(

Ii,j;ϵIj,N ;ϵ+Ii,N ;ϵIN,j;ϵ+Ii,j;ϵIi,N ;ϵ

3
)

5. The BDS test statistic is calculated as:

BDSϵ,m =

√
N [Cϵ,m − [Cϵ,1]

m]√
Vϵ,m

, (A.24)
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BDS test is a two-tailed test, the null hypothesis is rejected if the test
statistic is greater than or less than the critical values (e.g. if α = 0.05, the
critical value = ±1.96).
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