
Singularities and Resonances in

Complex Adaptive Systems

Diploma Thesis in Physics

John-Oliver Engler

1st Referee: PD Dr. R. Haussmann, Fachbereich Physik, Universität Konstanz

2nd Referee: Prof. Dr. G. Burkard, Fachbereich Physik, Universität Konstanz

Supervisors: Dr. S. Reimann, Prof. Dr. D. Sornette

Department of Management, Technology and Economics, ETH Zürich

March 27, 2010





Contents

I. Singularities, Inertia and White Noise in A Nonlinear Twodimen-

sional Model for Financial Markets 1

1. A Brief Introduction To Complex System Theory 2

2. The Ide-Sornette Model for Financial Markets 5

2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Investigation of the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. Case γ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2. Case α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3. Case α 6= 0, γ 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Mathematical Treatment of Random Fluctuations 19

3.1. Fundamentals of Stochasticity and Stochastic Calculus . . . . . . . . . . . . . 19

3.2. Ornstein-Uhlenbeck process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3. Stationary Solution of the FPE . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4. Additive and Multiplicative Noise . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. The Stochastic Ide-Sornette Model 30

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2. Simulation of SDEs: Facts, Problems and Possibilities . . . . . . . . . . . . . . 31

4.3. A Brief Introduction to Survival Analysis . . . . . . . . . . . . . . . . . . . . . 37

4.3.1. Kernel Density Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.2. Functions Derived From p(t) . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3. Typical Distributions of Survival Analysis . . . . . . . . . . . . . . . . 40

4.3.3.1. Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . 40

iii



Contents Contents

4.3.3.2. Γ Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.3.3. Erlang Distribution . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4. Investigation of the Stochastic Ide-Sornette Model . . . . . . . . . . . . . . . . 43

4.4.1. α = ε1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4.1.1. Case n = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1.2. Case n > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1.2.1. Numerical Investigations . . . . . . . . . . . . . . . . 48

4.4.1.2.1.1. Survival Analysis . . . . . . . . . . . . . . . . 48

4.4.1.2.1.2. Dependence of Ensemble Critical Times on n . 50

4.4.1.2.1.3. Dependence of the Entropy on n . . . . . . . . 51

4.4.1.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2. γ = ε2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2.1. Survival Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.2.2. Dependence of Ensemble Critical Times on m and ε . . . . . 55

4.4.2.3. Dependence of the Entropy on m and ε . . . . . . . . . . . . 57

4.4.2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.3. ε1 6= 0, ε2 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.3.1. m > 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.3.1.1. Survival Analysis . . . . . . . . . . . . . . . . . . . . 59

4.4.3.1.2. Dependence of Critical Times on n . . . . . . . . . . 60

4.4.3.2. m < 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.3.2.1. Survival Analysis . . . . . . . . . . . . . . . . . . . . 62

4.4.3.2.2. Dependence of Entropy on n . . . . . . . . . . . . . . 63

4.4.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5. Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

II. Singularities All Around? 68

5. Modelling the Short-Term Riskless Interest Rate 69

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2. The CIR-CEV Class of Models . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1. Outline of Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2. Construction of the Probablility Density by Simulation of the SDE . . 71

5.2.3. Direct Simulation of the Probability Density via the Corresponding FPE 73

5.2.4. Schrödinger's Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.5. Exact Solution of the SDEs . . . . . . . . . . . . . . . . . . . . . . . . 76

iv



Contents Contents

5.3. Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A. Scaling Analysis 80

B. The DDIRDI2 Integration Scheme 82

C. The Python Source Code 84

C.1. SDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C.2. FPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

D. Empirical Findings in Financial Markets: Stylized Facts 94

D.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

D.2. Known Issues About Asset Return Time Series . . . . . . . . . . . . . . . . . . 100

D.2.1. Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D.2.2. Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

D.2.3. Reliability of Autocorrelation Functions . . . . . . . . . . . . . . . . . 101

Bibliography 102

v



List of Abbreviations

CIR-CEV Cox-Ingersoll-Ross - constant elasticity of variance
CIR-VR Cox-Ingersoll-Ross with variable rate
CPF cumulative probability function
FPE Fokker-Planck equation
FTS �nite-time singularity
ODE ordinary di�erential equation
OU Ornstein-Uhlenbeck
PDF probability density function
SDE stochastic di�erential equation

vi



11:15, restate my assumptions:

1. Mathematics is the language of

nature. 2. Everything around us can

be represented and understood

through numbers. 3. If you graph

these numbers, patterns emerge.

Therefore: There are patterns

everywhere in nature.

Darren Arronofsky, π
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Deutsche Zusammenfassung

Die vorliegende Arbeit dokumentiert die Bemühungen und Resultate meines einjährigen

Forschungsprojekts am Lehrstuhl für Unternehmensrisiken der Eidgenössischen Technischen

Hochschule (ETH) Zürich. Es wurde versucht, ein möglichst eigenständiges und klares Doku-

ment zu schreiben, dass ohne Zuhilfenahme von Sekundärliteratur verstanden werden kann.

Andererseits hat eine wissenschaftliche Arbeit (in der Regel) kein vorab klares Resultat (wenn

dem so wäre, warum sollte man sie dann tun?). Deshalb habe ich diese Arbeit in zwei Haupt-

teile unterteilt, die die beiden Hauptprojekte wiederspiegeln, mit denen ich während meines

einjährigen Aufenthalts befasst war: Der erste Teil bietet eine allgemeine Einführung in das

Forschungsfeld der Theorie komplexer Systeme und eine vollständige Darstellung des Ide-

Sornette Modells für Finanzmärkte, sowie neue Erkenntnisse. Das Modell beschreibt einen

Markt mit nur zwei Typen von Händlern: 'Mitläufer' (trend followers) und 'Fundamental-

wertinvestoren' (fundamental value investors). Trotz dieser restriktiven und eher einfachen

Annahmen zeigt das Modell singuläres Verhalten in endlicher Zeit. Das Hauptziel des er-

sten Teils der Arbeit ist die Erweiterung des Modells auf parametrisches (d.h. multiplika-

tives) Weiÿes Rauschen sowie die Detektion und Quanti�zierung von Ähnlichkeiten und Un-

terschieden zur deterministischen Version des Modells. Die meisten heutigen Finanzmarkt-

modelle sind von erster Ordnung in der Zeit sowie linear oder - zum Zwecke der numerisch-

analytischen Untersuchung - linearisiert. Das Ide-Sornette-Modell hingegen vereint in sich

zwei Merkmale, die es zu einem besonders interessanten Forschungsobjekt im Kontext der

mathematischen Finanzwissenschaften machen: (1) Die Gegenwart von Trägheit (d.h. einer

zweiten Zeitableitung) im Markt, was von der Mehrheit der Ökonomen abgelehnt wird und

(2) es ist nichtlinear.

Der zweite Teil stellt die Frage nach der Möglichkeit des Auftretens einer Singularität in

endlicher Zeit in einer bekannten und etablierten Modellklasse zur Beschreibung von Fi-

nanzmärkten und Zinsraten, der CIR-CEV1-Klasse von Modellen. Das Auftreten solcher

1Cox-Ingersoll-Ross - constant elasticity of variance
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Singularitäten wäre zum Beispiel relevant für bestimmte ökonometrische Tests, die eine un-

endliche Lebenszeit des Prozesses voraussetzen.

Diese zwei Teile sind wie folgt organisiert: In Kapitel 1 wird versucht, eine kurze allgemeine

Einführung in das relativ neue Forschungsfeld der Theorie komplexer Systeme zu geben. Das

Kapitel gibt keine erschöpfende De�nition des Feldes (was auch nicht notwendigerweise möglich

ist), sondern ist gemeint als Klärung und Trennung der beiden Begri�e komplex und kom-

pliziert. Im zweiten Kapitel wird das Ide-Sornette-Modell motiviert und eingeführt und sein

dynamisches Gesamtverhalten sowie dessen Komponenten werden analysiert. Die Originalar-

beit von Ide und Sornette [6] wird dabei als Leitfaden verwendet, wobei wir auch einige Details

liefern werden, denen vorher so noch nicht auf den Grund gegangen worden war. Kapitel 3

stellt den benötigten theoretischen Hintegrund für die analytische Behandlung von Zufall-

sprozessen sowie die für den Rest der Arbeit notwendigen Werkzeuge und De�nitionen bereit.

Kapitel 4 dokumentiert die Hauptergebnisse der Erweiterung des Ide-Sornette-Modells um

Weiÿes Rauschen und stellt die für die Arbeit relevanten numerischen Aspekte zusammen. Die

Ergebnisse werden zusammengefasst und ein Ausblick auf mögliche zukünftige Forschungsfra-

gen wird auch gegeben.

Das fünfte Kapitel bildet den zweiten Teil der Arbeit in einer jedoch nicht völlig unabhängi-

gen Form, da viele Aspekte des ersten Teils relevant bleiben. Nach einer Einführung in die

CIR-CEV-Modellklasse wird von vier verschiedenen Blickwinkeln die Frage beleuchtet, ob es in

diesem Modell in endlicher Zeit eine Singularität geben kann. Diese vier Blickwinkel umfassen:

Stochastische Di�erentialgleichung, Fokker-Planck-Gleichung, Schrödinger-Formalismus und

exakte Lösung der Gleichungen. Eine kompakte Zusammenfassung sowie ein kurzer Ausblick

beschlieÿen diesen Teil.

Zusätzlich �ndet der geneigte Leser einige theoretische Ausführungen in Anhang A, die detail-

lierte numerischen Konzepte und Programmiercodes in den Anhängen B und C, sowie einige

Zusatzinformationen im Hinblick auf zukünftige Forschungsfragen das Ide-Sornette-Modell

betre�end in Anhang D.

xii



The Structure of This Thesis

The present work documents the e�orts and results of my one-year long research project at

the Chair of Entrepreneurial Risks at the Swiss Federal Institute of Technology (ETH) Zurich.

It has been attempted to write this thesis as self-contained and clear as possible so that it can

be understood without having to consult secondary literature. On the other hand, scienti�c

work has (mostly) no pre-de�ned outcome (if it did, then why would one want to do it?). This

is why I chose to split the thesis into two main parts that re�ect the two main projects that I

have been working on during this one-year project:

The �rst part provides a general introduction into the �eld of complex system theory and an

exhaustive description of the Ide-Sornette model for �nancial markets as well as some new

�ndings. This model describes a market with only two types of traders: Trend followers and

fundamental value investors. In spite of these restrictive and rather simple assumptions, it

features a singularity in �nite time. The general objective of this thesis' �rst part is to extend

the model towards parametric (i.e. multiplicative) white noise and to detect and quantify

similarities and di�erences to the deterministic version of the model. To date, most of the

models for �nancial markets are of �rst order in time and linear - or linearized - for a more

convenient numerical and analytical investigation. The Ide-Sornette model however unites

two rare features which make it a particularly interesting object of study in the context of

mathematical �nance: (1) the presence of an inertia (i.e. the presence of a second derivative

with respect to time) in the market which is rejected by the majority of economists and (2) it

features nonlinearity.

The second part probes the question of the possibility of occurrence of a �nite-time singularity

in a well-known and established model for �nancial markets and return rates, the CIR-CEV2

class of models. The occurrence of a �nite-time singularity in this class of models would

be relevant for example in certain econometric tests that rely on an in�nite lifetime of the

process.

2Cox-Ingersoll-Ross - constant elasticity of velocity
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These two parts are organized into �ve chapters as follows: In Chapter 1, we attempt to provide

a brief general introduction to the relatively recent �eld of science called complex system theory

or complexity theory. While the intention of this chapter is not to provide an exhaustive

de�nition of the �eld (which is not necessarily possible), it is meant as a clari�cation of the

two wordings complex and complicated. In Chapter 2, the Ide-Sornette model is introduced

and motivated and its components as well as its overall dynamical behavior is analyzed. The

original work by Ide and Sornette [6] is taken as a guideline while we also provide some

details that have not been penetrated before. Chapter 3 compiles the required theoretical

background for the analytical discussion of random processes as well as all necessary tools

and de�nitions needed in the rest of this thesis. Chapter 4 documents the main results

concerning the extension of the Ide-Sornette model towards multiplicative Gaussian white

noise and a compilation about the numerical aspects that are relevant for this work. Findings

are summarized and an outlook on possible future research questions concerning the model

is also given. Chapter 5 constitutes Part II of this thesis in a non-self-contained manner as

many of the aspects from the �rst part remain relevant. After introducing the CIR-CEV

class of models, it sheds light on the question of the possibility of a singularity occurring in

�nite time in these models from four di�erent perspectives: Stochastic di�erential equation,

Fokker-Planck equation, Schrödinger formalism and closed-form solution of the processes. A

compact summary and a brief outlook concludes this part. In addition, the interested reader

can �nd some theoretical explanations in Appendix A, the detailed numerical concepts and

codes in Appendixes B and C as well as some additional information related to future research

questions related to the Ide-Sornette model in Appendix D.
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Part I.

Singularities, Inertia and White Noise

in A Nonlinear Twodimensional Model

for Financial Markets

1



1. A Brief Introduction To Complex

System Theory

And so from that, I've always been

fascinated with the idea that

complexity can come out of such

simplicity.

Will Wright

This work will be concerned with a sub�eld of complex system theory, in particular two models

for �nancial markets. In this �rst chapter, we will elaborate on the meaning of the wording

complex system and relate it to the word complicated which is also frequently used when

dealing with multilayer situations or systems in order to prevent complex system theory from

being thought of as chameleon expression.

In everyday life, the wording complex might seem as just another hip substitute for anything

that we really �nd complicated. Is complex system theory thus in the end just the gateway

to the legendary 'theory for everything' that everyone has been looking for as long as science

exists? Of course, the answer is 'No!'. In fact, as it turns out, there is no slip-proof de�nition

of complex system theory. Richter and Rost [2] have pointed out that a complicated system is

'hard to overview but possible to break-down into sub-units' that can be analyzed separately

without loosing information about the behavior of the whole system. In their view, a complex

system cannot be analyzed in this fashion at all or it may be broken-down into sub-parts

which however does not yield any further insight because it misses what quali�es the system

as complex : emergencent behavior, i.e. the interplay and connection of individual parts of

the system that lead to new features and characteristics. Examples for complex systems in

this sense include swarms of birds and �sh, sandpiles (the dunes of Barhan, Marocco) and

avalanches, earthquakes, phase transitions (water ↔ ice, ferro- ↔ paramagnetism), societies

(social unrest and civil wars) and the stock market (herding). On the other hand, an example

2



1. A Brief Introduction To Complex System Theory

given by [2] for a system that is 'only' complicated would be the streets and alleyways in

any Southern European historic city center. Another example would be the architectural

sophistication of certain airports: It takes some time to get used to the arrangement of one-

way streets or hallways and gates but once penetrated, orientation is no longer a problem. If we

however implement some feedback mechanism, the system will be no longer just complicated,

it will turn into a complex system. In the above two examples, such a feedback mechanism

would be to couple the assignment of one-way streets or hallways and gates to the behavior

of cars, pedestriants and passengers themselves so that analyzing parts of the system is still

possible but does not lead to new insights. Complex system theory is thus about any system

that consists of mutually interacting parts (often referred to as 'agents') that constitute the

system and - at the same time - react to it. The following table lists a few agents and their

corresponding sciences. The wording complex adaptive system (CAS) has been introduced by

Agent Science

society sociology

individual psychology

organ physiology

cell cytology

biomolecule biochemistry

atom atomic physics

elementary particle elementary particle physics

Table 1.1.: Agents and corresponding sciences according to [2]. Note the hierarchical structure
of the scheme.

two scientists of the Santa Fe Institute (New Mexico, USA), namely John H. Holland1 and

Murray Gell-Mann2. There are several de�nitions of what a complex adaptive system actually

is (there is again no textbook de�nition) and sometimes, CAS is simply used as a synonym

for the science of complexity. According to [1], John H. Holland has coined the following

de�nition:

A Complex Adaptive System (CAS) is a dynamic network of many agents (which

may represent cells, species, individuals, �rms, nations) acting in parallel, con-

1John H. Holland, born 1929, American computer scientist most renowned for his work on genetic algorithms
2Murray Gell-Mann, born 1929, American physicist, Nobel prize in physics 1969

3



1. A Brief Introduction To Complex System Theory

stantly acting and reacting to what the other agents are doing. The control of a

CAS tends to be highly dispersed and decentralized. If there is to be any coherent

behavior in the system, it has to arise from competition and cooperation among

the agents themselves. The overall behavior of the system is the result of a huge

number of decisions made every moment by many individual agents.

We conclude this short introduction by naming a few examples that are often referred to as

CAS: the cell, the developing embryo, political parties, ant colonies and the stock market. A

model of the latter will be subject of the �rst part of this thesis.

4



2. The Ide-Sornette Model for

Financial Markets

All models are wrong, but some are

useful.

George Box

In this chapter, the nonstochastic Ide-Sornette model for �nancial markets is introduced and

its features are developed and explained. The usual notation in �nance, x(t) = ln p(t)
pf
, will

be used throughout the thesis, i.e. that prices are treated as logarithms to some fundamental

price pf . In what follows, the original publication by Ide and Sornette [6] serves as a guideline

while we focus on understanding the dynamical properties of the model that are relevant for

this work as the main results of [6] are reproduced and explained.

2.1. Motivation

In this section, the Ide-Sornette model for �nancial markets is derived and our motivation to

study this particular model in the present work is pointed out.

As Lux and Marchesi [3] as well as Farmer [4] have shown, the presence of two classes of

investors is essential for the generation of stock market price dynamics: technical analysts

which are also often referred to as 'trend followers' and fundamental value investors often

nicknamed 'fundamentalists' for the sake of simplicity. Farmer [4] also introduced the idea

that the market return, i.e. the logarithm of the price relative ln p(t+1)
p(t)

, is a function of order

size Ω(t):

r(t) =
Ω(t)

L
(2.1)

5



2. The Ide-Sornette Model for Financial Markets

with L being the market's liquidity which is usually de�ned by

dx

dt
=
D(x)− S(x)

L

where D and S are the demand and supply functions of buyers and sellers at a certain price

level, respectively. The order size is thought to consist of two components, the mean reverting

component

Ωf (t) = −c · x(t) · |x(t)|n−1 , n > 0 (2.2)

and the trend following component

Ωt(t) = a1r(t) + a2 · r(t) · |r(t)|m−1

= a1 ln
p(t)

p(t− 1)
+ a2 ln

p(t)

p(t− 1)
·
∣∣∣∣ln p(t)

p(t− 1)

∣∣∣∣m−1

m > 1 (2.3)

so that the choice a1, a2 > 0 re�ects the increase of the price if the preceding move was up.

According to Ide and Sornette [6], �nancial models to date are mostly restricted to the case

a2 = 0, a fact that points out that these models tend to dismiss the most prominent features

of trend following strategies in general, namely underreaction for small price movements and

overreaction for large ones. Note also that, altogether, Ω(t) = Ωf (t) + Ωt(t). The exponents

n and m are important measures for the nonlinearity of the mean reversal and the eagerness

of traders to follow the trend, respectively. If we rewrite eqs. (2.1), (2.2) and (2.3) using

the log-price notation and the time scale δt (instead of putting δt = 1) corresponding to one

arbitrarily small time step, we may write

x(t+ δt)− x(t) =
1

L
(a1[x(t)− x(t− δt)] + a2[x(t)− x(t− δt)]

· |x(t)− x(t− δt)|m−1 − cx(t) |x(t)|n−1) (2.4)

Since one will want to consider small time steps δt rather than large ones, it is sensible to

expand eq. (2.4) as Taylor series in powers of δt [6]:

(δt)2 d2t

dt2
= −

(
1− a1

L

)
δt

dx

dt
+

(δt)ma2

L

dx

dt

∣∣∣∣dxdt
∣∣∣∣m−1

− c

L
x(t) · |x(t)|n−1 +O[(δt)3] (2.5)

As argued in [6], choosing a1 = L simpli�es the situation without destroying signi�cant features

of the model. For m > 1, the e�ects of this damping term are dominated by the second term

6



2. The Ide-Sornette Model for Financial Markets

on the right-hand side. Thus, introducing the shortcuts

α = a2(δt)
m−2/L (2.6)

γ = c/L(δt)2 (2.7)

yields
d2x

dt2
= α

∣∣∣∣dx(t)dt

∣∣∣∣m − γ |x(t)|n , n,m > 1. (2.8)

which is known throughout the literature as Ide-Sornette model. It is worth noting that this

model features two properties entirely new to the models of quantitative �nance that have

been introduced so far: First and foremost, it is nonlinear. Nonlinearity however can capture

quite well the behaviour of the price movements of stocks or whole markets in that it accounts

for the salient overreaction of traders to price changes that are signi�cantly larger than average

or the relative nonchalance to small price movements on the other hand [6]. When wanting

to investigate the formation and dynamics of extreme events such as stock market crashes in

complex systems, it is therefore desirable to have nonlinearity inherent in the model. Other

models are to the author's knowledge not all a priori nonlinear but they are linearized for

more convenient treatment. The second speciality of this model is the appearance of a second

derivative with respect to t. Physically speaking, this is an inertia (of the unit mass M).

This is noteworthy because the presence of inertia in a market has been either rejected or

ignored among economists which is surprising since trend following strategies are based on the

assumption of an inertia in price trajectories (`the price variation from present to tomorrow

is based on analysis of price change between yesterday and present' [6]). There is thus no a

priori reason to reject models with inertia. We will recapitulate the most important dynamical

properties of the Ide-Sornette model in the rest of this chapter.

2.2. Investigation of the Model

In the following paragraph, an extensive review of the properties of the model (2.8) will

be given. This includes investigation of the cases γ = 0, α = 0 (nonlinear oscillator) and

α 6= 0, γ 6= 0 (Ide-Sornette model).

7



2. The Ide-Sornette Model for Financial Markets

2.2.1. Case γ = 0

Working with B = dx
dt
and adding stochasticity to the model, this case is known as the Sornette-

Andersen model for �nancial bubbles and has been introduced by Sornette and Andersen in

2002 [5]. While the exact scienti�c textbook de�nition of what a 'bubble' exactly is, is still

subject to a lively and changeful debate and thus is still absent, this model was shown to

capture the price dynamics of two recent crashes: the crash of Nasdaq in April 2000 and (one

of) the Hongkong market crash(es) in 1994. In [13], the model was enhanced by the possibility

to qualify time series - commonly accepted as bubbles - as 'fearful' or 'fearless' depending on

the behaviour of the volatility prior to the crash with the characteristic 'super-exponential'

price growth occuring in any case and thus being the hallmark of any bubble. By 'super-

exponential', it is meant that the growth rate is growing itself with time, a fact which is

explained below (see eq. (2.9) and explanations thereafter). It is worth noting that crashes

and therefore bubbles that have been investigated with this rather simple approach include

the Dow Jones Industrial Average (DJIA) from 1927 to 1929, the Nasdaq Future 100 Index

from June 1999 to March 2000, the S&P500 from mid-1985 to mid-1987, the aforementioned

Hang Seng Index for the same period and for 1995 till 1997 but also currency crashes like

the USD/CHF crash of 1985. One of the most important results of these investigations is

that markets do not always anticipate crashes or severe corrections in that the volatility level

remains comparably low prior to the crash. As long as 'worry' or 'fear' is measured by the

volatility, these 'fearless' �nancial bubbles are not at all in agreement with the theory of

rational expectations from macroeconomics which states that "the agents' expectations are

correct on average" [14]. After these introductory remarks, let us now turn to the model:

Putting r(t) = ẋ(t), one obtains

dr(t)

dt
= αr(t)m, m > 1 (2.9)

Equations of this type are the simplest type of equations that exhibit so-called �nite time

singularities. By this term, it is meant that a critical time tC exists where r(t) grows over

all boundaries. This can be understood by just looking at the plain equation (2.9): Since the

growth rate ṙ(t) grows with rm, the time needed to double r decreases so fast that it converges

to zero su�ciently fast to give rise to a singularity in �nite time. Hence,

lim
t→tC

r(t) −→∞

Eq. (2.9) can be solved easily by separation of variables by demanding without loss of gener-

8



2. The Ide-Sornette Model for Financial Markets

ality that r(t) ≥ 0 ∀t ∈ R+. Integration then yields

r(t) = r0

[
α(1−m)(t− t0)

r1−m
0

+ 1

] 1
1−m

= r0

[
α(m− 1)t0

r1−m
0

− α(m− 1)t

r1−m
0

+ 1

] 1
1−m

=
r0

t
1

1−m

C

(t0 − t+ tC)
1

1−m

= (α(m− 1)(t0 − t+ tC))
1

1−m (2.10)

where we introduced the critical time tC by putting

tC =
r1−m
0

α(m− 1)
(2.11)

and where we can always set t0 = 0 since eq. (2.9) is an autonomous ordinary di�erential

equation. This means that the critical time depends on the initial growth rate r0 = r(t = 0)

and on the strength of the positive feedback measured by the parameter m. In a stock market

model, m can be interpreted as cooperation parameter since a stronger cooperation means a

stronger tendency to follow the trend collectively, i.e. imitation e�ects play a stronger role.

In a more physical language, the greater m, the greater also the correlation length of traders

participating in the market.

Notice also that

r(t) ∝ (tC − t)1/(1−m)

which diverges at the approach of tC since m > 1 just as we expected.

The logarithmic price x(t) can be derived equivalently by remembering the original ansatz

ẋ(t) = r(t):

x− x0 = r0

∫ t

t0

(
tC − t′

tC

)− 1
m−1

dt′

= −r0tC

[
m− 1

m− 2

(
tC − t′

tC

)m−2
m−1

]t′=t

t′=t0

=
r2−m
0

α(2−m)
·
(

(1− t

tC
)

m−2
m−1 − (1− t0

tC
)

m−2
m−1

)
·

t0=0
=

r2−m
0

α(2−m)

[
(1− t

tC
)

m−2
m−1 − 1

]
; m 6= 2 (2.12)

From eq. (2.12), we see that the �nite-time singularity at tC where the growth rate r explodes

9



2. The Ide-Sornette Model for Financial Markets

beyond every limit has in fact a �nite price x(tC):

x(t) = x0 + C

(
(1− t

tC
)

m−2
m−1 − 1

)
(2.13)

where we have de�ned

C =
r2−m
0

α(2−m)

Thus, we can write

lim
t→tC

x(t) = x0 − C (2.14)

and assert that, for r0 > 0, it holds that C < 0 for m > 2 and C > 0 for 1 < m < 2. Figure

2.1 illustrates the behaviour exemplarily for the case m = 2.1, r0 = 0.6 > 0 and x0 = 0.

This result can be generalized by also accounting for the casem = 2 which can be accomplished

using l'Hôpital's rule, i.e.

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(x)

g′(x)
.

Thus, substituting m = 2 + ε, we can write

x(t)− x0 =
1

α
lim
ε→0

{
(1 + ε)

ε
1+ε · 1

ε

[
(tC − t)

ε
1+ε − (tC − t0)

ε
1+ε

]}
=

1

α
(ln(tC − t)− ln(tC − t0)); m = 2 (2.15)

in agreement with [6]. Choosing again t0 = 0 and taking the limit t → tC , one obtains that

x(t→ tC) → −∞ which means for the price that p(t→ tC) → 0.

2.2.2. Case α = 0

This case is known as nonlinear oscillator which has been extensively studied because of the

general relevance of oscillatory processes in physics and science (see [7], [6], [9], [10], [11]

and references therein). The special feature of nonlinear oscillations is that they exhibit a

frequency-amplitude relationship in contrast to the linear case where the period T of oscilla-

tions is independent of the amplitude A. The study of approximatory methods to �nd the

frequency-amplitude relationship of nonlinear oscillators is a very rich and challenging subject

of applied mathematics which easily covers several hundred pages. For an extensive review

of these methods, the reader is referred to the book of Nayfeh and Mook [7]. For our pur-

poses however, we will in the following outline the very simple but e�ective way of tackling
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x

m=2.1 , x0 =0.0, r0 =0.6

x(t)

r(t)

Figure 2.1.: Behaviour of log-return r and log-price x as function of time t: From eq. (2.11),
we obtain tC ≈ 1.594. It is clearly visible that the price remains �nite but > x0, as expected
for m > 2, while r →∞

this problem introduced by Mohazzabi [12] which makes use of the energy function of the

oscillator: The equation of interest reads

d2x

dt2
= −γx(t)n, n > 1, x(t) > 0. (2.16)

where the mass M has been chosen to be equal to one to keep the notation as simple as

possible. The corresponding total energy function of this oscillator can be written as

ẋ2

2
+ V (x) = E (2.17)

where the identity E = V (A) = γ
n+1

An+1 with A being the amplitude holds. Eq. (2.17) can

be rewritten as

dt = ±
(

1

2E

)1/2
dx√

1− V (x)
E

(2.18)

so that the period of oscillations can be found by integration

T

4
=

(
1

2E

)1/2 ∫ A

0

dx√
1− V (x)

E

(2.19)
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2. The Ide-Sornette Model for Financial Markets

In our case, V (x) = γ
n+1

xn+1, so that we are looking for a solution of the equation

T

4
=

(
1

2E

)1/2 ∫ A

0

dx√
1− γxn+1

(n+1)E

(2.20)

which we do by considering the substitution

x =

(
E(n+ 1)

γ

) 1
n+1

· (sin(Θ))
2

n+1 (2.21)

⇒ dx

dΘ
=

(
E(n+ 1)

γ

) 1
n+1 2

n+ 1
cos(Θ)(sin(Θ))

2
n+1

−1 (2.22)

This can be simpli�ed1 to �nally obtain2

ω =

√
γπ

2(n+ 1)
·
Γ( n+3

2(n+1)
)

Γ(n+2
n+1

)
A

1
2
(n−1) (2.23)

Note that the identity zΓ(z) = Γ(z+1) has been utilized in the last step. Figure 2.2 illustrates

the dynamic behavior of this nonlinear frictionless oscillator.

There is a very nice oscillator picture that comes to mind related to the current �nancial

crisis: Let us imagine a rod that is mounted on a slide that can move along a rail. The task

is now to stabilize the system in the labile rest position which is a very prominent task in

graduate engineering courses known as the inverse pendulum. Of course, the most e�cient

way to keep the pendulum in the desired position is to make only very little but frequent

'white noise'-like moves as too large movements will ultimately perturbate the pendulum from

remaining at the labile rest position very much like a wire dancer trying to prevent himself

from falling down. What has happened in the �rst few months following the outbreak of the

�nancial crisis however is exactly the opposite: Almost any central reserve bank in the world

has lowered the prime rate to a de facto 0% level and huge �nancial support packages and

cash injections have been adopted by the major goverments in the world with the intention to

provide extra liquidity in an otherwise sold out market with no market participator willing to

lend money anymore to anybody. Although these steps are understandable and logic on �rst

sight and have been 'hoorayed' by the overwhelming majority of economists, the analogy to

the inverse pendulum should teach us some awareness for the possible dangers of such huge

external stimuli since too large movements might as well destabilize the system as a whole3.

1using
∫ π/2

0
(sin(Θ)

2
n+1−1) =

√
π

Γ( 1
n+1 )

2Γ( n+3
2(n+1) )

2since T = 2π/ω
3let alone that the monetary policy of almost every national bank in the western world and also the abolish-
ment of the gold standard (Bretton Woods System) in 1973 have led to a more than remarkable increase
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In blatantly simple words, the problem that the system itself is de�cient will not be cured by

interventions from the outside and moreover severe corrections and system inherent crashes

will only be postponed.

0 2 4 6 8 10
t

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x
n=4.0, x0 =1.0, r0 =0.7

x(t)

r(t)

Figure 2.2.: Behaviour of log-price x(t) and log-return r(t) in the case α = 0.

2.2.3. Case α 6= 0, γ 6= 0

This case introduced in 2002 by Ide and Sornette [6] now unites the features we have unrav-

eled so far which means that one will observe an interplay between singular and oscillatory

behaviour. Moreover, it is clear that the oscillations will have their frequency increased with

time since the amplitude, i.e. the price increases with time. In the following, we will outline

the general features of the model in dependence of the cooperation parameter m and the co-

e�cient α of the 'bubble term'.

For a general hint about how this model will behave as tC is approached, we modify Mohazz-

abi's exact solution (2.23) for the frequency amplitude relation of the nonlinear oscillator by

substituting A = x(t) to obtain (with x(t) taken from eq. (2.13))

ω(t) =

√
γπ

2(n+ 1)
·
Γ( n+3

2(n+1)
)

Γ(n+2
n+1

)
·
[
x0 + C

(
(1− t

tC
)

m−2
m−1 − 1

)]n−1
2

(2.24)

One thus �nds two di�erent behaviors of the frequency as the critical time tC is approached:

of the amount of money in circulation and thus a looming in�ation making the value of the money we own
and spend a rather fragile quantity [15]
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• 1 < m < 2: ω →∞

• m > 2: ω → 0

1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0

50

100

150

200

ω

num.estimated ω(t)

predicted ω(t)

Figure 2.3.: Comparison of theoretical prediction according to eq. (2.24) (solid red line) and a
comparably rough numerical estimate of the local frequency ω(t) (yellow crosses). Estimation
of ω(t) is done by considering the di�erence of two consecutive zeros (zi+1, zi) of the log-price
trajectory x(t). The resulting time interval is then regarded as an estimated value of T/2 at
t = zi+1−zi

2
, so that ω = 2π

T
can be calculated as an approximation for ω(t).

1 < m < 2, α > 0: Looking back at eqs. (2.10) and (2.12), it is clear that both expressions

diverge if t→ tC since r(t) diverges for anym > 1 and for 1 < m < 2, x(t) ∝ (tC−t)−z, z > 0.

As one can see in �gure (2.4), the log-price remains relatively stable around its initial value

for a comparatively long time, before the oscillations become more and more frequent as t

progresses, as expected because of eq. (2.23). Also, the expected power law behaviour of the

envelop of x(t) can be observed. However, one has to keep in mind that the actual values of

z and tC might have been altered in comparison to section 2.2.1 since we are not neglecting

the oscillatory component anymore. In [6], it is reported that the inclusion of the oscillatory

term is correcting z downwards, namely the expected value of (m − 2)/(m − 1) ≈ −2.33 for

the choice m = 1.3 is countered by a numerically estimated exponent of −1.5.

1 < m < 2, α < 0: When looking at the equation of the Sornette-Andersen model, it is clear

that (the sign of) α models the nature of the feedback of the log-return on itself. If α > 0,

then there is a self-reinforcement meaning that higher returns in the past automatically lead

to a higher growth rate of the return and thus to higher prices in the futute. From that, it is

obvious that exactly the converse holds if α < 0. The e�ect is illustrated in �gure (2.5).
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Figure 2.4.: Numerical solution of eq. (2.8) for the indicated parameters with tC ≈ 2.8, α = 1,
γ = 10. Note that ω →∞ as tC is approached in agreement with equation (2.24).
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Figure 2.5.: The Ide-Sornette model for negative α: The feedback is now negative and thus
self-downsizing. Note also that γ = 1000 in this picture while in �g. 2.4 γ = 10.

m > 2, α > 0: Since we are interested in stock market crashes and bubbles, we will in this

work not focus on the decaying regime (α < 0) introduced in the preceding paragraph for

this regime corresponds to anti-bubbles, a term coined in various di�erent articles ([17], [16]).

What can be learnt from numerical simulations of the case m > 2, α > 0 is that the system

qualitatively exhibits the same features as the Sornette-Andersen model (γ = 0) which is quite

clear since the singular term dominates the oscillatory term at least in the vicinity of tC . That
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means that we expect the log-price x(t) to remain �nite while the growth rate of x, i.e. the

return r explodes over all limits, so that we expect

x(t) ∝ xC − A(tC − t)
m−2
m−1

with A being a constant factor. Also a striking feature of the system is the in�uence of γ: The

larger its absolute value is, the more oscillations can be observed prior to tC and the closer

r0 = r(t = 0) to the unstable �xed point (0,0) of the dynamical sytem

ẋ = r

ṙ = αr|r|m−1 − γx|x|n−1 (2.25)

the more oscillations occur before the system is �nally driven to the critical point [6]. This is

illustrated by the following �gures:

Figure 2.6.: The Ide-Sornette model for two mutually di�erent values of γ and equal choice
of r0 = 0.2, as indicated in the graph (α = 1, tC ≈ 12.7). It is also noteworthy that the
oscillation simply stops as tC is reached re�ecting our prediction that ω → 0 since m > 2.

2.3. Summary

To conclude this chapter, a short recapitulation of the most important features of the Ide-

Sornette model shall be given.
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Figure 2.7.: The e�ect of a choice of r0 = 0.4 which is farther away from (0,0): As expected,
we observe less oscillations before reaching tC ≈ 4.4.

• The Ide-Sornette model was introduced in 2002 as a model exhibiting prominent features

of empirical time series such as the formation of bubbles, crashes and the leverage e�ect

although only assuming the existence of two classes of investors: 'trend followers' and

'fundamental value investors'.

• The model is an autonomous di�erential equation of second order in time which reads ẍ =

α |ẋ|m − γ |x(t)|n where x = ln p. The four parameters α, γ, n and m are real numbers,

two of which are inversely proportional to the market liquidity L. n measures the degree

of nonlinearity of the oscillatory part of the equation, m quanti�es the willingness of the

market participants to cooperate.

• The fundamental new feature of this equation besides its nonlinearity is the presence

of a second derivative of the log-price with respect to time, i.e. the presence of inertia

which ultimately generates oscillations.

• The key to the understanding of the in�uence of the oscillatory part of the equation to

the overall dynamics is the frequency-amplitude relation of nonlinear oscillators which

is known to behave according to ω ∝ A
1
2
(n−1). This is the case if α = 0.

• The case γ = 0 (with B = dx
dt

and stochasticity, see Chapter 3) is known as Sornette-

Andersen model of �nancial bubbles, an example of a very simple equation that can

feature a �nite-time singularity.
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• The parameter m determines the nature of the price dynamics as the critical time tC
is approached where two di�erent regimes exist: For 1 < m < 2, the frequency of

oscillations grows to in�nity as t→ tC whereas for m > 2, ω tends to zero.

• The origin of the phase space acts as unstable �xed point and the initial position of the

system in the phase space considerably in�uences the dynamics: The closer the system

initially is to (0,0), the more oscillations can be observed prior to crash.

• The sign of α determines the general regime, i.e. bubble or anti-bubble, the absolute

value of γ in�uences the number of oscillations before crash, the greater γ the more

oscillations occur.

 
 

 

Figure 2.8.: Schematic illustration of the Ide-Sornette model and its dynamic components
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3. Mathematical Treatment of

Random Fluctuations

So much of life, it seems to me, is

determined by pure randomness.

Sydney Poitier

In this chapter, we will introduce the necessary basics of stochastic calculus that are required

for this work. The most important stochastic processes, Brownian motion (the Wiener pro-

cess) and the Brownian motion with mean-reversion (Ornstein-Uhlenbeck process) will be

introduced and we will discuss the di�erence between additive and multiplicative noise which

is fundamental for later research questions concerning the stochastic Ide-Sornette model. The

important Lamperti transform, which will be used in the second part of this thesis, is intro-

duced along the way as a consequence of the lemma of Itô. The discussion in this chapter

mainly follows the presenations by Horsthemke and Lefever [20] and van Kampen [21].

3.1. Fundamentals of Stochasticity and Stochastic

Calculus

Stochastic calculus has evolved from man's desire to describe nature, i.e. from physics. The

most prominent example for a natural phenomenon giving rise to a stochastic di�erential

equation (SDE) is the thermal motion of a particle (Brownian1 motion). The theoretical

description followed by Einstein, Smoluchovski and Langevin (see [19] and references therein)

in early 20th century. Langevin considered an equation of motion for the position x(t) of the

1after Scottish botanist Robert Brown's (1773 - 1858) discovery in 1827
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Brownian particle while Smoluchovski and Einstein investigated

m
dv

dt
= γv + ξ(t) (3.1)

with a systematic viscous friction force −γv and a randomly �uctuating force ξ(t). Nonethe-

less, eq. (3.1) is referred to as 'Langevin equation' in standard literature. Looking at this

equation, one can note several things: Firstly, the randomly �uctuating ξ(t) which is called

'noise' to appreciate its randomness is added on the right-hand side of eq. (3.1) and thus, we

call it additive noise. As we will point out later in this chapter, this has important conse-

quences for the whole system. Secondly, it is not yet clear what noise exactly is supposed to

mean. We will consequently de�ne some fundamental variables to describe and characterize

noise in the following while, for our purposes, it always holds that 〈ξ(t)〉 = 0: Let us de�ne

the correlator as

〈ξ(t)ξ(t′)〉 = f(t′ − t) (3.2)

To characterize noise, one typically uses the two integrals of (3.2):

D =
1

2

∫ ∞

0

〈ξ(t)ξ(t+ z)〉 dz, (3.3)

and

τ =
1

D

∫ ∞

0

z 〈ξ(t)ξ(t+ z)〉 dz (3.4)

with D being called the 'noise strength' and τ named 'correlation time'. For computer-based

simulations in complex system theory, �nance and economics, white noise is usually employed

(for reasons of computability) for which the correlator reads

〈ξ(t)ξ(t′)〉 = 2Dδ(t′ − t) (3.5)

so that, no matter how close t and t′ may be, they are always statistically independent. Any

other type of noise is called coloured noise which shall not be further investigated in this thesis.

In quantitative �nance, the white noise assumption for market �uctuations can be justi�ed

from both, the theoretical and the empirical point of view: Any market consists of mutually

independent traders and investors that follow their own strategies (however, mostly driven by

greed and fear which makes great sense from an evolutionary point of view: Greed boosting

motivation and fear providing the sensitivity for potentially dangerous situations). That means

that, in a normal regime, the superposition of the trading decisions of the market participants

forms some background noise that ornaments the overall market behavior. Looking at the

price data of a stock of one's choice of any trading day, one will �nd that the white noise
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assumption is in very good agreement with the actual behavior of prices and indexes (as

weighted averages of prices) since thousands or millions of independent trading orders - which

can be placed within seconds due to computer trading - make the price �uctuate su�ciently

fast. An important feature of SDEs such as equation (3.1) is that sample solutions are shaped
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t

3

2

1

0

1

2

3

W
i(
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W2(t)
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Figure 3.1.: Four sample Wiener paths

by the realization of the white noise ξ(t). This implies that, unlike the in the ODE2 case, one

has to look at ensembles of solution paths rather than single sample paths. This is a crucial

di�erence compared to the deterministic case since, after all, knowing the solution of an ODE

tells you all about the system's behavior if the initial conditions are speci�ed. Moreover,

it turns out that solving SDEs requires a concept of integration of stochastic processes just

like solving ordinary di�erential equations requires a concept of 'normal integration'. That

is, one needs some standard about integrating processes that are nowhere di�erentiable but

continuous everywhere. Hence, let us consider the equation

dXt = f(t,Xt)dt+ g(t,Xt)dWt (3.6)

in which f(t,Xt) is called drift term while g(t,Xt) is called di�usion term. Equivalently, we

can write (3.6) as

Xt = X0 +

∫ t

0

f(s,Xs)ds+

∫ t

0

g(s,Xs)dWs. (3.7)

Wt denotes a standard Wiener process which is characterized by 〈dWt〉 = 0 and dWt =

ξ(t)dt with ξ(t) being delta-correlated Gaussian white noise. Note that eq. (3.7) requires two

2ordinary di�erential equation
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3. Mathematical Treatment of Random Fluctuations

mutually di�erent integrations: The �rst integral on the right-hand side involves a standard

Lebesgue integration (which is a generalization of the Riemann integral) whereas the second

one apparently calls for a de�nition of stochastic integration which we will promptly deliver in

the graphic spirit of [19]: The white noise ξ(t) causes the process Xt to jump. It is therefore

debatable at which point of this jump process g(t,Xt) has to be evaluated. If g(t,Xt) is

evaluated at the beginning of the jump, then the second integral in eq. (3.7) is called Itô

integration and the process Xt, t ≥ 0 is consequently called Itô3 process, if g(t,Xt) is evaluated

in the middle of the jump, the above integral is called Stratonovich integral4 thus giving rise

to the corresponding Stratonovich process. As a natural consequence, the integrations yield

di�erent results according to the choice one has taken and, to use the words of van Kampen,

eqs. (3.6) and (3.7) are only 'pre-equations' [21] since their full message is only delivered once

we have speci�ed which type of integration to use. It should also be kept in mind that, once

speci�ed whether Itô or Stratonovich interpretation applies to the SDE, two mutually di�erent

Fokker5-Planck6 equations7 (FPEs) arise that can be transformed into one another and thus,

the same conclusions about the whole stochastic system Xt can be drawn [21]! Hence, we give,

for the sake of completeness, the FPE corresponding to (3.6) in the Itô sense of stochastic

integration and will stick to Itô's de�nition of stochastic integration from this point on to

avoid any possible confusion:

∂

∂t
p(x,t) = − ∂

∂x
(f(x,t) · p(x,t)) +

1

2

∂2

∂x2
(g(x,t) · p(x,t)) (3.8)

where x denotes the actual value of the random process Xt. The SDE of a process describes

single paths of this process (which may be undestood as paths of single particles) whereas

the corresponding FPE describes the behavior of an ensemble of particles that undergo the

stochastic process (3.6). One is therefore free to analyze either SDE or FPE (or both). In the

second part of this work, we will demonstrate this equivalence for an example from �nance.

Note that the FPE as it stands is a deterministic equation that does not contain any random

expressions. The impact of the stochasticity is fully re�ected by the purely probabilistic

statement of the solution of the FPE since p(x,t) is a probability density, a concept familiar

to physicists from quantum mechanics (|ψ|2). Also worth noting is the fact that the FPE

(3.8) turns into the familiar heat equation for a vanishing drift term, hence its alias 'di�usion

equation':

∂tu(x,t) = a∂xxu(x,t) (3.9)

3Kyoshi Itô, Japanese mathematician, 1915-2008
4after Ruslan Leont'evich Stratonovich (1930-1997), Russian physicist and engineer
5Adriaan Daniel Fokker (1887-1972), Dutch physicist and musician
6Max Karl Ernst Ludwig Planck (1858-1947), German physicist, Nobel price 1918
7mathematicians rather prefer the term Kolmogorov equation
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3. Mathematical Treatment of Random Fluctuations

The real constant a is the heat conductivity. The solution of eq. (3.9) is also referred to as

heat kernel. For the sake of completeness, we give the transformation formula from Itô to

Stratonovich for the di�usion process (3.6) understood as Itô SDE [20]:

dXt =

[
f(t,Xt)−

σ2

2
g′(Xt)g(Xt))

]
dt+ g(t,Xt)dWt (3.10)

Note that the drift term changes while the di�usion term is una�ected and that both inter-

pretations coincide if we deal with additive noise. As we have seen so far, stochastic calculus

has some peculiarities. The lemma of Itô is one of the most prominent results of research

conducted in this �eld. It is often referred to as stochastic chain rule and consequently, it

answers the question of what happens when wanting to change variables in a SDE.

Lemma 1. Be Yt = h(t,Xt) some relation to change variables in the Itô process (3.6). Then,

dYt =

(
∂h(t,Xt)

∂X
f(t,Xt) +

∂h(t,Xt)

∂t
+

1

2

∂2h(t,Xt)

∂X2
g2(t,Xt)

)
dt+

∂h(t,Xt)

∂X
g(t,Xt)dWt (3.11)

is also an Itô process given that h(t,Xt) exists and is twice continuously di�erentiable.

A very important example of application is the Lamperti transform which transforms mul-

tiplicative noise into additive noise. If the di�usion coe�cient, i.e. the prefactor g(t,Xt) in

the process (3.6) is of the general form σXβ
t where β > 1, then the corresponding Lamperti

transformation reads

Yt =
1

σ(1− β)
X1−β

t (3.12)

Transforming multiplicative noise into additive noise can be advantageous for numerical sim-

ulations as well as for the analytics as it may be possible to �nd an explicit analytical solution

of the SDE for Yt which then provides the solution in terms of Xt.

3.2. Ornstein-Uhlenbeck process

Besides the standardWiener process introduced in the previous section, the Ornstein-Uhlenbeck

process is one of the most important processes in mathematical �nance. It is often referred

to as OU process or mean-reverting Brownian motion. This process will be used in Part II of

this thesis where it will be part of the analytical solution of a special SDE. The OU process is
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de�ned over the stochastic initial value problem

dXt = Θ(µ−Xt)dt+ σdWt, X(0) = a. (3.13)

The real parameters µ, Θ and σ have the following meaning [35]:

• µ is the mean-reversion level. Thus, if Xt > µ, the drift term of the OU process is

negative (given Θ > 0) which will draw the process down (towards µ) and vice versa.

• Θ is the mean-reversion rate which a�ects the level of 'gravity' of the mean value µ. If

Θ is large, then the process will �uctuate in only a very tight corridor around µ.

• The parameter σ a�ects the level of in�uence of the random Brownian increment dWt

There is also an explicit solution of the process (3.13) which reads

Xt = ae−Θt + µ(1− e−Θt) +

∫ t

0

σeΘ(s−t)dWs. (3.14)

We will need this process in the second part of this thesis to prove the explicit closed form

solution of the CIR-CEV model. An illustration of the process is provided in �gure 3.2.
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Ornstein−Uhlenbeck process, µ=0, σ=1.0

Θ =1.0

Θ =0.2

Θ =2.0

Figure 3.2.: Three OU processes with di�erent mean-reversion rates (to µ = 0) each
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3.3. Stationary Solution of the FPE

In this paragraph, the reader is given an overview on how a stationary solution of a FPE

can be derived and how it is de�ned. This concept will be needed to point out the di�erence

between additive and multiplicative noise.

Remembering quantum mechanics, one could ask the question whether the solution of the

FPE of a system described by

dXt = f(Xt)dt+ σg(Xt)dWt (3.15)

that means its probability density p(x,t), can be stationary, i.e. invariant under elapsing time

(∂tp(x,t) = 0). As is shown in great detail in [20], this question can be adressed by writing

the FPE as continuity equation, so that

∂tp(x,t|x0,0) + ∂xJ(x,t|x0,0) = 0 (3.16)

where we have de�ned the probability current density

J(x,t|x0,0) = f(x)p(x,t|x0,0)− σ2

2
∂xg

2(x)p(x,t|x0,0) (3.17)

p(x,t|x0,0) denotes the probability density at position x at time t given the initial conditions

x0 and t0 = 0. The condition for p(x,t) to be stationary, that is, explicitly time-independent,

reads ∂tp(x,t) = 0 and thus, ∂xJ(x,t) = 0. The stationary probability density ps(x) is then

given by (refer to [20] for a detailed calculation)

ps(x) = Ng−2(x) · exp

(
2

σ2

∫
f(x)

g2(x)

)
dx (3.18)

N is a normalization factor since
∫
ps(x)dx

!
= 1. Furthermore, employing statistical physics,

we have the following theorem: Be g(x) > 0 for any x arbitrarily drawn from the state space

Ω. Then, a solution p(x,t) of the FPE with arbitrary initial condition p0(x0, 0) converges to

ps(x) for t→∞ [20] and thus,

ps(x) = lim
t→∞

p(x,t). (3.19)
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3.4. Additive and Multiplicative Noise

In this section, the di�erence between additive and multiplicative noise to the behavior of a

system will be explained. The explanation follows again [20] in that we look at a system that

is described in the 'non-noisy' case by the deterministic di�erential equation of the form

ẋ = h(x) + λg(x) (3.20)

λ is a dimensionless system parameter coupled to the system. For a better illustration, one

may think of a biochemical reaction far from equilibrium between two substances, X and Y

with the aid of two catalysts, A and B. Obviously, the total number N = X + Y of particles

in the system is conserved (the system is closed). The behavior of the fraction X = X/N can

be described by eq. (3.20) and furthermore, λ can be expressed as a function of A and B so

that it basically re�ects a weighted ratio of the catalysts. The stable states of the system are

thus the zeros of the right-hand side of (3.20) or, equivalently, one may write

ẋ = −∂xV (x), V (x) = −
∫

(h(x) + λg(x))dx. (3.21)

The maxima (minima) of V (x) are the unstable (stable) steady states of the system. What

can be said about ps(x) in the presence of additive noise? It can be stated that the stationary

probability density will consist of sharp delta peaks located at the positions of the minima

of the potential well V (x). The presence of additive white noise can then be translated in a

graphic picture according to [20] as follows: Consider a ball in the potential V (x) subjected to

additive noise. The ball will jiggle around its likeliest position, i.e. the minimum of V (x). As a

consequence, the sharp peaks of ps(x) will widen re�ecting the less certain whereabouts of the

ball. The resulting probablility density is thus a consequence of the interplay of the organizing

in�uence of V (x) and the disorganizing in�uence of the noise ξ(t). Thus, considering the case

V (x) = c, c ∈ R, the ball would simply undergo a Brownian motion.

Indeed, it is possible to show for additive noise that the highest maximum of ps(x) coincides

with the deepest potential well for all σ2 by the following considerations [20]: De�ning the

auxiliary function

U(x) =

∫
f(x′)

g2(x′)
dx′

to rewrite the stationary probability density as

ps(x) = N exp

(
2

σ2
U(xm)

)
exp

[
2

σ2

(
U(x)− U(xm)− σ2 ln g(x)

)]
(3.22)
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where xm is the location of the highest maximum of U(x), it then follows for that

U(x) = −V (x)

c2
. (3.23)

The assumption of small white noise, σ2 � 1, has been used to neglect the last term in the

second exp function in eq. (3.22).

If however the in�uence of the external noise depends on the system itself, that is, if we

deal with multiplicative noise, the deterministic state that gives rise to a maximum in ps(x)

is not necessarily the one with the deepest potential well in the deterministic framework,

i.e. multiplicative noise can change the most likely (most stable) con�gurations of the system

while additive noise cannot. Keeping our vivid picture of the ball moving around in a potential

landscape, these considerations can be summarized as follows:

Additive noise is shaking the ball around while multiplicative noise makes the landscape change

randomly in that it makes the ground move up and down randomly in addition to the shaking

of the ball. Hence, the most interesting type of noise clearly is multiplicative noise since it is

able to qualitatively change the shape and therefore the steady states of a system. In [20],

it is proposed that the best indicator for this qualitative change of behaviour is indeed ps(x).

We remember equation (3.18) and write g−2(x) = exp(−2 ln g(x)) to obtain

ps(x) = N exp

[
2

σ2

(∫ x f(u)

g2(u)
du− σ2 ln g(x)

)]
(3.24)

and de�ne the stochastic potential as

V(x) =

∫ x f(u)

g2(u)
du− σ2 ln g(x) (3.25)

since the extrema of ps(x) are the extrema of V because of the strict monotony of the exp

function. It follows then that the extrema of ps(x) are given by the equation

f(x)− σ2g′(x)g(x)
!
= 0 (3.26)

so that we obtain for our example from the beginning (3.20):

h(x) + λg(x)− σ2g(x)g′(x) = 0 (3.27)

From this equation, it is clear that the change of location of the deterministic steady states can

be neglected for σ2 � 1, i.e. for 'small' white noise which in fact means a small variance. Thus
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'valleys stay valleys and mountain tops stay mountain tops' [20]. On the other hand, it can

be seen that a qualitative change will occur if the second term in (3.27) cannot be neglected

that is, if σ2 is su�ciently large and g(x) is suitably nonlinear. The following example should

clarify the matter.

Example: Occurence of a Noise-Induced Critical Point

The aim of this section is to apply the results of the previous sections to a model and to

verify that multiplicative noise can indeed change the behaviour of a system drastically. The

most instructive example to demonstrate noise-induced transitions is of course the occurence

of such a transition in a system that deterministically is incapable of featuring any transition.

We will thus stick to the model [22]

ẋ = α− x+ λx(1− x), x ∈ [0,1], α ∈ R (3.28)

that has some relevance in theoretical biology and chemistry which we will for our purposes

not care about. λ is a parameter that is coupled to the state of the environment of the system.

In the following, we will investigate the consequences of a rapidly �uctuating value of λ, that

is, we will set λt = λ + σξ(t) in the deterministic equation (3.28). The Stratonovich SDE

corresponding to eq. (3.28) can be transformed into an identical SDE in the Itô sense (see eq.

(3.10)) to �nally obtain

dXt =

[
α−Xt + λXt(1−Xt) +

σ2

2
Xt(1−Xt)(1− 2Xt)

]
dt+ σXt(1−Xt)dWt (3.29)

which, because of relation (3.27), yields an expression for the extrema of ps(x) which reads

α− x+ λx(1− x)− σ2

2
x(1− x)(1− 2x) = 0 (3.30)

Without loss of generality, one can consider the deterministic case λ = 0, σ = 0 and α = 1
2

where the solution x = 1
2
follows quickly as the only extremum. Introducing delta-correlated

Gaussian white noise so that σ 6= 0, one obtains three extrema, namely

x1 =
1

2
, x2,3 =

1

2
(1±

√
1− 4

σ2
) (3.31)

as the solutions of the corresponding cubic equation. We can thus constate that, if σ2 < 4, x1

will be the only real - and therefore physically relevant - extremum. If however σ2 > 4, one

will observe three extrema with the former maximum x1 being the minimum and x2 and x3

as two maxima symmetric to x1. This noise-induced transition is illustrated qualitatively in

�g. (3.3). It is remarked that most qualitative changes in a system's behavior occur upon a
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Figure 3.3.: The stationary probability density of (3.29), non-normalized. Note the qualitative
change as σ2 is increased.

change of a control parameter rather than a change of the noise amplitude. In spite of that, the

general di�erence between additive and multiplicative noise is well-illustrated by this textbook

example. To conclude, we shall name a few practical applications of this phenomenon that

was introduced from a so far rather theoretical viewpoint. Kabashima and Kawagubo have

extensively studied the occurence of noise-induced transitions in electrical circuits [24] while

transitions of the kind introduced in this chapter have also been reported and studied in open

chemical systems [25]. Very interesting from a physics perspective is the phenomenon of optical

bistability reported by Graham and Haken [26] where laser light transmitted through a Fabry-

Perot cavity �lled with sodium vapour was investigated and shown to exhibit a hysteresis cycle

when plotted versus the incident light [20]. And, last but not least, noise-induced transitions

have been found to play an important role in theoretical biology and medicine, i.e. in predator-

prey models of ecosystems and in models for the growth of tumors ([20] and references therein)

to name only two.
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4. The Stochastic Ide-Sornette Model

With many calculations, one can win;

with few one cannot.

Sun Tzu,

The Art of War

In this chapter, the Ide-Sornette model for �nancial markets will be extended towards multi-

plicative white noise. We will investigate the e�ects of this noise to the model and its compo-

nents. This requires some technical preliminaries about numerics and stability in general and

an introduction in the numerical simulation of nonlinear stochastic di�erential equations with

a strong focus on the present problem will also be given along the way.

4.1. Introduction

Turning back to our model, we want to add a stochastic component in order to make it more

realistic. Remembering that the model coe�cients α and γ ∝ L−1, it is clear that they should

�uctuate randomly depicting the behavior of the liquidity being transferred into or withdrawn

from the market as investors decide whether they should enter or leave the market. It is

therefore sensible to make the variables α and γ randomly �uctuating so that we can rewrite

them as αt = α + ε1ξ1(t) and γt = γ + ε2ξ2(t) where ξi(t) is Gaussian delta-correlated white

noise as de�ned in the previous chapter and εi are real numbers. We thus want to investigate

a modi�ed form of the Ide-Sornette model which reads

d2x

dt2
= αt

∣∣∣∣dx(t)dt

∣∣∣∣m − γt |x(t)|n , n,m > 1 (4.1)
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where it is stressed again that we refer to equation (4.1) and all its siblings considered in

this thesis as SDE in the Itô sense. It is mathematical conventionalism1 to rewrite such a

stochastic equation in the form

d ~X(t) = a(t, ~Xt)dt+ b(t, ~Xt)d ~W (4.2)

where a ∈ Rd and b ∈ Rd×m with d being the space dimension and m being the dimension of

the driving Wiener process. In our case d = m = 2 but this is not generally true since one can

always think of any m dimensional Wiener process that acts on the equation of interest, no

matter what dimension ~X lives in. For a very good illustration of such processes, the reader

is requested to refer to [29]. Some rather easy calculation leads to

d

(
x(t)

r(t)

)
=

(
r(t)

α |r(t)|m − γ |x(t)|n

)
dt+

(
0 0

ε1 |r(t)|m −ε2 |x(t)|n

)
d ~W (t) (4.3)

where d ~W (t) = (dW1(t), dW2(t)). Unfortunately, there is no transform such that the di�usion

matrix b(t,Xt) has only constant entries, i.e. the Lamperti transform in several dimensions

does not work.

4.2. Simulation of SDEs: Facts, Problems and

Possibilities

The simulation of SDEs, both linear and nonlinear is a very active research area ([29], [32],

[37], [36]) and a lot of work is still left to be done [31], especially in the nonlinear case and

there particularly in cases of nonlinear di�usion coe�cients that are irreducible to constants

- as in the present model. To illustrate the issues when dealing with such simulations, we ex-

plicitly quote Gardiner [35]: 'Uninformed intuition can lead to completely meaningless results,

excessive waste of time and even complete failure to solve the problem in question.' Obvi-

ously, 'uninformed intuition' refers to the misbelief that numerical schemes that are known

to work well in a deterministic setting like the Runge-Kutta scheme, to name only one, are

transferred to the stochastic setting without thorough reconsideration of the mathematical

justi�cation in terms of stochastic convergence and numerical stability. Note that all of what

1since the notation with di�erentials is the only one mathematically justi�ed. Notations like the one given in
eq. (4.1) can be found throughout the literature belonging to the intuitive but sloppy physicist's notation:
Strictly speaking, the stochastic process Xt is nowhere di�erentiable and thus, notations like (4.1) are
formally incorrect.
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Figure 4.1.: Index of �nancial market liquidity as calculated by the Bank of England [49]. This
index shows the number of standard deviations from the mean and is a simple unweighted
average of nine liquidity measures (normalised on the period 19992004) [50]. Note the sharp
nose-dive starting in mid-2007 indicating the severe upcoming crisis.

is said in this thesis refers to methods of time discrete approximation which means that the

stochastic process X(t) is evaluated only at discrete points of the time domain such that the

time discretization (t)δ of the time interval [0,T ] reads

0 = τ0 < τ1 < · · · < τN = T

so that in the simplest possible case, we have

δ =
T

N

and moreover

τn+1 − τn = δ.

To clarify these points, we have to de�ne in a �rst step what stochastic convergence means:

De�nition 1. A numerical scheme is said to have strong order of convergence equal to β if

there exists a constant C ∈ R such that

E(|XT −X(τ)|) ≤ Cδβ (4.4)
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where E denotes the expectation value.

In other words, the expectation value of the di�erence of the true value of the stochastic

process XT and its approximated value for any �xed τ can be characterized by the number β.

Thus, the higher the strong order of convergence, the better our numerical result given a �xed

discretization time stepsize δ. It should also be clear that the smaller δ is chosen, the better

the numerical approximation, albeit at the cost of computing time. On the other hand, we

have

De�nition 2. The notion weak order of convergence of order β means that there exists a

constant C ∈ R for some class of functions f such that

E(f(XT ))− E(f(X(τ))) ≤ Cδβ (4.5)

at any �xed τ = kδ ∈ [0,T ] and δ su�ciently small.

In a nutshell, if one is looking for a good pathwise approximation of a given process, one needs

a good strong order of convergence, whereas a good simulation of the statistical properties of

a process requires a good weak order of convergence. This is clear if we remember that the

most important quantities characterizing a distribution are its moments which are nothing

di�erent than special functions of the value of the random variable XT . For example, the rth

moment of a distribution (in a time discrete setting) is de�ned as

Mr =
1

N

N∑
j=1

(xj − x)r.

We see that the �rst moment amounts to the average value of the variable. Similarly, we

obtain the variance (r = 2), the skewness (r = 3) and the kurtosis (r = 4) of the distribution.

Coming back to simulational issues, in [39] it is shown that the confusion among the scienti�c

community concerning appropriate approaches to simulate SDEs is still prevailing, eventually

leading to the publication of articles ([44], [45]) in renowned journals such as Physical Review

Letters that feature numerical schemes that cannot be justi�ed from a numerical point of

view. Known issues when heuristically converting deterministic schemes to stochastic ones

include:

• The solution is converging to the Stratonovich solution where it is supposed to converge

to the Itô solution. This naturally gives rise to consistency problems.
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• These heuristic adaptions can be shown to have a very low order of convergence regardless

of the order of convergence of the underlying deterministic scheme [33]. The explanation

for this behavior is that the only information about the driving white noise process

is contained in the Brownian increment ∆W = Wτi+1
− Wτi

which is insu�cient for

any higher order convergence. On the other hand, a slow order of convergence, be it

convergence in the strong or weak sense, can only be countered by choosing a very small

discretization step size δ which leads to considerably higher computation times.

Thus, to adequately simulate any SDE, special numerical schemes have to be employed, often

customized for the equation in question [30]. The most widely used scheme is the Euler2-

Maruyama3 scheme which is a simple generalization of the Euler discretization scheme known

for ordinary di�erential equations. The standard Euler-Maruyama (EM) scheme reads

Xi+1 = Xi + f(Xi)∆t+ g(Xi)∆W (4.6)

work in numerous cases. The �rst two terms on the right-hand-side exactly correspond to

the the Euler scheme, the third expression is termed Maruyama term to honour the idea of

Japanese mathematician Gisiro Maruyama who introduced it in the 1950s. The EM scheme

is very widely used in �nance because of its ease of use and implementation. However, many

�nancial models exhibit rather 'tame' coe�cients f and g and - as mentioned earlier - to the

authors knowledge at the time of writing, virtually any model in �nance is a SDE of �rst

order in time. In case of the stochastic Ide-Sornette model for �nancial markets, f and g are

neither 'tame' nor do they live in only one dimension. Numerical tests in the deterministic

setting showed that the EM scheme was too inaccurate at reasonable discretization time steps

(δ = 10−4) as compared to the Runge-Kutta implementation we had used for the deterministic

Ide-Sornette model. In e�ect, it was unavoidable to look for an appropriate replacement. The

easiest higher order algorithm is the Milstein scheme

Xi+1 = Xi + f(Xi)∆t+ g(Xi)∆W +
1

2
g(Xi)g

′(Xi)
(
(∆W )2 −∆t

)
(4.7)

which in this case does not lead to any improvement since this scheme requires the drift and

di�usions coe�cients of the equation in question to be twice continuously di�erentiable, an

assumption that is obviously not valid in the present case4. Higher order Milstein schemes

exist but require the implementation of multiple stochastic integrals which is not easy to

accomplish, prone to errors and currently constituting a separate �eld of research [31, 43].

2Leonard Euler (1707-1783), Swiss mathematician
3Gisiro Maruyama (1916-1986), Japanese mathematician
4consider for example the case |r|3/2

at r = 0
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Milstein and Tretyakov [32] have suggested a method for nonlinear SDEs with nonglobal

Lipschitz coe�cients that has been proved to work under certain assumptions for additive

noise in a sense that 'bad trajectories' can be disregarded. However, the authors do not

investigate the case of multiplicative noise which is of interest in the present case and the

Lamperti transform does not work in this particular case. A thorough literature search and

consultation of several renowned experts in the �eld brought to our attention that our equation

might be sti�.

De�nition 3. A d dimensional SDE is said to be sti� if it holds that

λd � λ1

where

λ = lim
t→∞

sup
1

t
log |Zt|

are the d Lyapunov exponents and Zt is the linearized version of the original process Xt.

The problem thus reduces to determining the Lyapunov5 exponents of the problem which is

in most cases not explicitly possible [58, 31]. Concretely, sti�ness of an SDE means that there

are at least two vastly di�ering time scales that operate in the system6. When dealing with

sti� equations, one can however resort to implicit numerical schemes which are known to work

well even for comparably large step sizes. An implicit numerical scheme is any scheme of the

form

Xi+1 = h(Xi, Xi+1) (4.8)

where h is any real-valued function. Consequently, implicit schemes are computationally much

more expensive since in every time step (usually far more than 1000), equation (4.8) has to be

solved which is numerically done with the Newton7-Raphson8 iteration. Higham and coworkers

[41] have remarked that the stochastic Θ method is the best possible implicit scheme known in

both the strong and weak sense of convergence without using multiple stochastic integrals. For

this reason, the class of stochastic diagonally drift-implicit Runge-Kutta (DDISRK) schemes

due to Röÿler and Debrabant [29] was selected for implementation which contains the stochas-

tic Θ method as a special case. A brief introduction to this class of methods can be found in

Appendix B. In our case, the scheme reads

Xi+1 = Xi +
δ

2
(a(Xi + a(Xi+1))) + I(1),ib

1(Xi) + I(2),ib
2(Xi) (4.9)

5Alexander Michailowitsch Ljapunow (1857-1918), Russian mathematician and physicist
6a situation usually often found in equations describing noisy chemical reactions
7Sir Isaac Newton (1643-1727), British mathematician and physicist
8Joseph Raphson (1648-1715), British mathematician
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with I(j),i being a Gaussian distributed random number and using the notations from eqn.

(4.2) where bk denotes the kth column of the di�usion matrix b. This translates as

xi+1 = xi +
δ

2
(ri + ri+1) (4.10)

ri+1 = ri +
δ

2
(α |ri|m − γ |xi|n + α |ri+1|m − γ |xi+1|n) (4.11)

For the sake of completeness, it should be noted that the �eld of researching and developing

high-order integration schemes for SDE is widely still considered in its 'infancy' [31], especially

in the case of high-order strong integration schemes for SDEs with nonlinear coe�cients [40,

41, 31]. This section is concluded with a graphical illustration of our �ndings which may serve

as a guide for the perplexed modeler.
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Figure 4.2.: A guide for modelling SDEs (compilation of the author). The red boxes indicate
whether the Lamperti (Doss-Suessmann) transform has been successful or not.

4.3. A Brief Introduction to Survival Analysis

In this section which follows the compendium by Rinne [68], we will give a short introduction to

the �eld of survival analysis which is sometimes also referred to as reliability analysis. Survival

analysis has applications in many di�erent �elds such as biostatistics, medicine, mechanical

engineering and social sciences and is used whenever some object of interest has a �nite lifespan

so that one is typically interested in prediction and measurement of failure probability and

quanti�cation of optimization potentials. Such objects of interest may involve
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4. The Stochastic Ide-Sornette Model

• Electrical parts such as transistors, capacitors and modules comprised of them

• Objects of daily use such as bicycles, cars or televisors

• Objects that are relevant for general security such as nuclear power plants, airplanes and

satellites

• In empirical social sciences, social states such as being married or (un-)employed

In the present work, we deal with singularities (i.e. a mortality) deterministically occurring

at �xed time instants tC,i depending of the parameter choices in the Ide-Sornette model.

Extending this model towards Gaussian white noise, it is expected that the times at which

the singularities occur will turn into a random variable with a certain distribution. In the

following, we will thus quickly introduce the most important measures to characterize such

distributions of critical times.

4.3.1. Kernel Density Estimation

All relevant functions and measures in survival analysis basically derive from the probability

density function (PDF) p(t) of the critical times. It is therefore important to have a good

estimate of p(t) based on a given array of critical times. The kernel density estimation9 does

just that, i.e. it gives an estimate of the underlying PDF based on a given sample time series or

array of values. In other words, the kernel density estimator returns the PDF from which the

given sample is most probably10 drawn. Although most computer languages have pre-de�ned

routines for kernel density estimation, we quickly give its de�nition: Be x1, . . . ,xn ∈ R a

sample and k a kernel, then the corresponding kernel density estimator is de�ned as mapping

f̃n : R → R+ : f̃n(t) =
1

nh

n∑
j=1

k

(
t− xj

h

)
(4.12)

where h is the so-called bandwidth on which the quality of approximation heavily depends11.

The theorem of Nadaraja which we will - for the sake of brevity - not give here ensures that

the sequence f̃n converges to the true PDF with probability one. When lacking information

9also termed kernel density regression
10A statement like 'this distribution is obviously a power law distribution' is never a priori justi�ed. Telling

what kind of distribution one sees in any given data sample is actually a science of its own and a sub�eld
of statistics: Test and estimation theory

11Again, in most programming languages, the best possible choice of the bandwidth h is automatically chosen
by default
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about the PDF of some process, the kernel k is usually set equal to the Epanechnikov12 kernel

which is de�ned by [52]

kE(t) =
3

4α
(1− (

t

α
)2) for |t| < α and kE = 0 else. (4.13)

The Epanechnikov kernel is the 'best choice' for k in a sense that it minimizes the mean

squared deviation of the corresponding kernel density estimator under all possible kernels [67].

However, it should always be made sure that the kernel density regression maps the raw data
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p(
x
)
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Figure 4.3.: Kernel density estimation using an Epanechnikov kernel (red diamonds) versus
raw data from which the PDF is estimated (blue histogram) and analytical Gaussian PDF
(yellow).

correctly.

4.3.2. Functions Derived From p(t)

Several important functions for the survival analysis can be derived directly from p(t):

1. Distribution function:

The distribution function F (t) = P (tC ≤ t), t > 0 at time t is de�ned as the mono-

tonically increasing function

F (t) =

∫ t

0

p(t′)dt′ (4.14)

12V. A. Epanechnikov, Russian statistician
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and is consequently also referred to as cumulative probability function (CPF). It quan-

ti�es the probability for the object of interest to die until time t where it holds that

0 ≤ F (t) ≤ 1, F (0) = 0 and F (∞) = 1.

2. Survival function:

Closely related is the survival function S(t) = P (tC ≥ t) = 1−F (t) which measures the

probability for some object of interest to survive until time t. It is thus monotonically

decreasing with boundary values S(0) = 1 and S(∞) = 0 where S(t) ∈ [0,1]∀t ≥ 0.

4.3.3. Typical Distributions of Survival Analysis

As we have mentioned above, testing whether a distribution is of kind X rather than Y is

a challenging task in statistics. Nonetheless, the most common distributions that occur in

survival analysis are brie�y introduced to help the reader digest later results.

4.3.3.1. Weibull Distribution

Originally published in the context of material sciences, the Weibull13 distribution Wei(a,b) is

the most important distribution in survival analysis, together with the exponential distribu-

tion. Its PDF reads

f(x) = abxb−1e−axb

(4.15)

and is displayed in the following graph. This distribution is most commonly used in mechanical

engineering and related �elds but was also found to describe the yearly distribution of wind

speeds.

4.3.3.2. Γ Distribution

For x ≥ 0, the Γ distribution has the PDF

f(x) =
bp

Γ(p)
xp−1e−bx (4.16)

The distribution is most prominently used in queueing theory and in insurance mathematics

for modelling small and intermediate damages.

13Ernst Hjalmar Waloddi Weibull (1887-1979), Swedish engineer and mathematician
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Figure 4.4.: The Weibull distribution.
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Figure 4.5.: The Γ distribution.

4.3.3.3. Erlang Distribution

The Erlang14 distribution was originally developed to statistically model interval lengths be-

tween phone calls and thus also belongs to the �eld of queueing theory. Its PDF is given

14Agner Krarup Erlang (1878-1929), Danish mathematician and engineer, one of the founders of tra�c engi-
neering and queueing theory. The Erlang formulas remain highly relevant for the e�cient design of phone
networks to this date.
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by

f(x) =
(λx)n−1

(n− 1)!
λe−λx; x > 0. (4.17)
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Figure 4.6.: Erlang distribution for λ = 1 and various values of n.
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4.4. Investigation of the Stochastic Ide-Sornette Model

As we have gathered all necessary ingredients now, we will look for both, qualitative and

quantitative changes in the system's behavior. This means that we will remember the analysis

scheme of the deterministic Ide-Sornette model from chapter 2 and look at the noisy model

components and, in a last step, assemble the results to obtain a bigger picture.

4.4.1. α = ε1 = 0

As was demonstrated in Chapter 2, the assumption that a market consists only of fundamental

value investors who assess their investment decisions solely on the behavior of the price of an

asset relative to its fundamental price leads to a second order nonlinear oscillatory ODE

ẍ+ γ |x(t)|n = 0, n > 1. (4.18)

where γ is inversely proportional to the market liquidity L. Letting the parameter γ �uctuate

randomly over time, i.e we pose γt = γ + εξ(t) we obtain a stochastic dynamical system15

d ~Xt =

(
r

−xn

)
dt+

(
0 0

0 εxn

)
d ~Wt (4.19)

where dWt is a twodimensional Brownian increment. As we have pointed out in chapter 3, we

a priori understand this equation in the Itô sense of stochastic integration. In this particular

case however, we stress that both interpretations coincide. To see this, we use the Itô -

Stratonovich drift conversion theorem in multiple dimensions:

Theorem 1. The Stratonovich SDE

dZi
t = ai(Zt,t) +

M∑
j=1

bij(Zt,t) ◦ dWt (4.20)

for i = 1, ..., N ; j = 1, ...,M with the same solutions as the N-dimensional Itô SDE with an

M-dimensional Wiener process

dZi
t = ai(Zt,t) +

M∑
j=1

bij(Zt,t)dWt (4.21)

15for ease of reading, we skip the indices '2' in the following

43



4. The Stochastic Ide-Sornette Model

has a drift coe�cient that is de�ned given a component-wise by

ai(Zt,t) = ai(Zt,t)−
1

2

N∑
k=1

M∑
j=1

bkj(Zt,t)
∂bij(Zt,t)

∂zk
(4.22)

The di�usion coe�cients are the same in both the I�to and Stratonovich SDEs.

It follows from the shape of the di�usion matrix b that the only possible contribution to the

drift correction amounts to i = j = k = 2. However, the second component (z2) of the

stochastic process (4.19) is r and b22 = εxn. Hence, we obtain

∂

∂r
εxn = 0

and therefore, this correction also vanishes and we have ~a = ~a, i.e. Itô and Stratonovich

coincide. It is thus possible to use Stratonovich calculus16 to analyze the behavior of the

system although we are not initially dealing with the Stratonovich interpretation of equation

(4.19) since we have shown that both interpretations lead to the same FPE and consequently

to the same PDF, i.e. time evolution.

4.4.1.1. Case n = 1

As reported by Mallick and Marcq [74], the ensemble mean energy 〈E〉 for the linear case

n = 1 is found to obey

〈E〉 =
1

2

〈
r2
〉

+
γ

2

〈
x2
〉
∝ eµt (4.23)

where the growth rate µ is the positive real root of the equation

µ3 + 4γµ = 2ε. (4.24)

These results are obtained by considering the equivalent FPE and a scaling analysis. In our

market model picture, this is already surprising: According to equation (4.23), in spite of the

presence of only fundamentalists, this predicts large ranges for the price and return time series

to act in rather than small �uctuations around some fundamental value.

16this means that the rules from deterministic calculus apply
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Figure 4.7.: Sample path of the linear noisy oscillator without friction (upper panel) along
with the corresponding phase portrait.

4.4.1.2. Case n > 1

In this section, we use the aforementioned idea of Mallick and Marcq [74] for our case to learn

about the behavior of our fundamentalist market for n > 1, i.e. a greater mean-reversion

parameter. Considering the equation ẍ + γtx
n = εξ(t)xn (in Stratonovich interpretation), we

�nd that the energy is de�ned as

E =
ẋ2

2
+ γ

xn+1

n+ 1
(4.25)

from which it follows that
dE

dt
= ẋ (ẍ+ γxn) = ẋεξ(t)xn (4.26)

As was shown in [74], one can either do an exact calculation via energy-angle variables, hy-

perelliptic integrals and the corresponding Fokker-Planck equation to yield exact relations

with all prefactors (see Appendix A) or do a scaling analysis which gives the same qualitative

insights for such oscillatory systems, but with minimal e�orts. We will stick to the scaling

analysis here and refer the reader to Appendix A to get an overall idea of the course of these

calculations or the original publication [74] for a far more detailed and complete overview.

From eq. (4.25), we know that

E ∼ ẋ2 ∧ E ∼ x2r ⇔ x ∼ E
1
2r ∧ ẋ ∼ E

1
2 (4.27)
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This means that
dE

dt
= ẋεξ(t)xn ∼ εξ(t)E

3n+1
2(n+1) (4.28)

which leads to an energy growth rate growing itself with time and thus a �nite-time singularity

(see Chapter 2) if and only if
3n+ 1

2(n+ 1)
> 1 (4.29)

which is easily shown to be true for any n > 1. Given this result, we conclude that our

nonlinear oscillator market model will blow-up in �nite time if ε 6= 0 since n > 1 by de�nition.

A direct integration of eq. (4.28) again similar to the one performed in Chapter 2 then yields

E(t) =

[
1

D − ε(ζ − 1)W (t)

] 1
ζ−1

(4.30)

where we have abbreviated ζ = 3n+1
2(n+1)

and where D is an integration constant determined by

the initial energy E0. The occurrence of the �nite-time singularity (at the critical time tC) thus

reduces to the problem of �rst passage of the random walkW (t) at some point D. The critical

time is thus turned into a random variable and depends on the particular realization of the

Brownian motion W (t). Transferring the idea of Mallick and Marcq, we have provided strong

evidence that the noisy nonlinear oscillator of degree n without friction (and therefore our

market model only consisting of fundamental value investors) is separated into two mutually

di�erent dynamical regimes at nC = 1. The regime n > nC , which corresponds exactly to the

domain of de�nition of our market model, will be characterized in the following paragraph

while we show two sample realizations in the following �gures.
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Figure 4.8.: Sample path of the nonlinear oscillator before occurrence of a FTS. Note the
increase in the energy re�ected by increasing amplitudes of r and x
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Figure 4.9.: Sample path of the nonlinear oscillator with n > nC exhibiting singular behavior
in r(t) at tC ≈ 23.03
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4.4.1.2.1. Numerical Investigations After the theoretical �nding that for n > 1 any tra-

jectory will exhibit a �nite-time blow-up, we investigate and characterize this behavior nu-

merically. We remark that, in order to be relevant for �nance, it has to be made sure that

γt > 0 ∀t since there is no such thing as a negative market liquidity. However, from the

nonlinear oscillator perspective, it is a priori clear that such a constraint will have no impact

on the results. Indeed, simulations with this constraint implemented only needed more time

to run as many paths were killed before the FTS occurred with the same outcome (in terms

of distributions of critical times) as without the constraint. It was thus skipped for computa-

tional e�ciency. All simulations were carried out using the same set of initial conditions and

parameters: γ = ε = X0 = R0 = 1.0, the discretization step width was �xed at δ = 10−2

and a relatively large number of integration steps was chosen, N = 50000, to cover an as big

as possible time domain. The prediction of nC = 1 as bifurcation value was also tested as

simulation trials for n = 0.8, 0.9, 0.99, 1.0 were also run. Concerning these values, not a single

FTS was detected in spite of using N = 105 which is in perfect agreement with the behavior

expected from our scaling analysis. We chose ε = 1.0 to keep the computing time as short

as possible although for n → 1, a simulation runtime > 3 hours per trial of M = 1000 paths

was observed. However, we did do some control samples for ε = 0.5 and various n > 1 which

consistently gave the expected zero survival rate.

4.4.1.2.1.1. Survival Analysis The analysis is performed in several steps: First, we simulate

M = 1000 paths for di�erent values of n in the neighborhood of the critical value nC = 1.

From this, the histogram of critical times at which the FTS occurs is constructed together

with the corresponding PDF using a kernel density regression algorithm where it is checked

for every n that the regression gives an estimation of the PDF that is consistent with the raw

data (see also [78]). In a second step, we construct the CPF and the survival function from

the PDF. The results can be seen in �gs. 4.10-4.12.
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Figure 4.10.: Estimated probability densities for various values of n near the critical value
nC = 1. Note the smearing out of the PDF as n → 1. The exponent n plays the role
of an 'inverse time' compared to the smearing out of Gaussian wave packets as solutions of
the Schrödinger equation in quantum mechanics as the PDFs become more de�nite as n is
increased (compared to Gaussian wave packets that become more inde�nite as t grows). Notice
also the formal resemblance of the curves to the ones typically found in survival analysis as
introduced in the previous section.

0 50 100 150 200
t

0.0

0.2

0.4

0.6

0.8

1.0

p(
t C
<
t)

Cumulative pdfs

n=1.1

n=1.2

n=1.3

n=1.4

n=1.5

n=1.7

n=2.0

Figure 4.11.: Cumulative probability density as constructed from �gure 4.10. For every time
instant t, the value of the CPF gives the probability for an ensemble path to have died until t.
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Figure 4.12.: Survival functions corresponding to �gure 4.11. For every t, S(t) quanti�es the
probability for an ensemble path to survive until t.

4.4.1.2.1.2. Dependence of Ensemble Critical Times on n In a next step, we present

the behavior of the median17 of the critical times, t̃C , as a function of n for the same data sets

as above. A Levenberg-Marquard �t of these data points to the function

t̃C(n) = C(n− 1)a (4.31)

shows a very accurate match (see �gure (4.13)).

17the median is less impacted by outliers and insofar better when dealing with skew or heavy-tailed distribu-
tions
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Figure 4.13.: The behavior of t̃C(n): Fitting parameters were C = 7.79 and a = −1.10 while
R2 = 0.998.

4.4.1.2.1.3. Dependence of the Entropy on n To quantify the smearing out of the PDFs,

we also constructed Shannon's entropy from our data. Shannon's entropy is de�ned as

S = −
∑

tC∈{tC}

ptC log2 ptC (4.32)

and is thus a measure for the de�niteness of the corresponding PDF as a higher value of S(n)

re�ects a wider PDF. To account for the in�uence of binning, we looked at three di�erent

choices for the number of bins at a pre-de�ned interval on the time axis I = [0,200] in order

to make our results comparable. The so obtained entropy was found to obey a stretched

exponential function of the form

S(n) = A exp(−αnβ) (4.33)
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Figure 4.14.: Entropy over nonlinearity n for three di�erent numbers of bins. The �tting
parameters were found to be A = 9.19, α = 0.523 and β = 0.74 (green curve, R2 = 0.999),
A = 8.78, α = 0.68 and β = 0.70 (red curve, R2 = 0.999) and A = 6.41, α = 2.04 and β = 0.58
(yellow curve, R2 = 0.985).

4.4.1.3. Discussion

Stochastic oscillatory equations have been omnipresent in the physics literature ever since

stochastic calculus was invented [74, 75, 76] as the (non-) linear oscillator is somewhat the

workhorse of physicists. However, in this section, we have investigated an oscillatory equa-

tion that has not been analyzed previously: The frictionless nonlinear oscillator coupled to

multiplicative noise which is contained as the special case α = ε1 = 0 in the Ide-Sornette

model for �nancial markets. It was demonstrated theoretically as well as numerically that the

energy of this nonlinear stochastic oscillator exhibits a singularity in �nite time if the degree

of nonlinearity exceeds a critical boundary, i.e. if n > nC where it was found that nC = 1.

In the context of the Ide-Sornette model, this is particularly surprising since the equation

in question can be derived in an economical framework under the assumption that no trend

following investors at all are present in the market, as seen in Chapter 2. This means that,

by construction, the occurrence of a �nite-time blow-up of the 'energy' (the sum of squared

prices and returns) is highly unintuitive and unexpected since, in essence, this means that -

given a �uctuating liquidity, i.e. cash is randomly injected in or withdrawn from the market

- not even a 'fundamentalists only' market keeps prices and returns at an accurate level that

re�ects the true value of the asset being traded. Moreover, the FTS will occur no matter

how small the noise amplitude ε is chosen since a smaller ε will - on average - only postpone
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the occurrence of it. In the end, judgement day turns out to be literally unavoidable. These

�ndings therefore perfectly fortify our reasonings from Chapter 3 where the impact of additive

and multiplicative noise on the behavior of a system was explained at length.

4.4.2. γ = ε2 = 0

In this section, we look at the second component of the Ide-Sornette model and investigate

the in�uence of multiplicative noise on the distribution of critical times. This means that we

investigate the SDE given by

d

(
x(t)

r(t)

)
=

(
r(t)

α |r(t)|m

)
dt+

(
0 0

ε |r(t)|m 0

)
d ~W (t) (4.34)

where we have again skipped the index of the noise amplitude ε for ease of reading. As we

have seen in Chapter 2, the deterministic critical times are given by

tC =
r1−m
0

α(m− 1)
(4.35)

This means that we can compare the observed critical times at which the FTS occurs in the

noisy case with the expected critical times based on this analytical expression.

At this point, it is noteworthy that this case is di�erent from the Sornette-Andersen model

introduced in [5]. This is due to the fact that in their aformentioned paper, the authors

introduce their model

dBt = aBm
t + bBm

t dW (4.36)

in the Stratonovich framework while we understand (4.34) as Itô SDE from the start. Conse-

quently, what is known in the literature as Sornette-Andersen model is the equation

dBt =

(
aBm

t +
am2

2
B2m−1

t

)
+ bBm

t dW (4.37)

Furthermore, we work with a second order SDE here while Sornette and Andersen use the one

dimensional case.
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4.4.2.1. Survival Analysis

At �rst, we look at a �xed but small noise amplitude (ε1 = 0.1) for di�erent values of m. The

procedure is almost exactly the same as in the preceding section on the stochastic nonlinear

oscillator: For every value of m, we simulate M = 1000 paths, letting α = 1, x0 = r0 = 5 (to

make sure that tC,th remains relatively close to t = 0 which minimizes the simulation runtimes),

detect the singularity as given in Appendix C and store the so-obtained critical times in an

array from which we can construct the histogram and perform a kernel density estimation. As

in the preceding numerical investigation of the stochastic nonlinear oscillator, it has again been

checked whether an additional constraint that the liquidity be strictly positive for all times,

i.e. αt > 0 ∀t had an impact on our results. Again, we did not �nd any e�ect except that

the necessary simulation runtime was longer (as paths were possibly also terminated due to

the positivity constraint imposed on αt rather than reaching the FTS). The following pictures

display our results.
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Figure 4.15.: PDFs estimated from our data: The peaks of the distributions are roughly where
we would expect them from the deterministic setting (thin vertical lines) each and move from
right to the left as the cooperation parameter m is increased.
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Figure 4.16.: Survival functions and cumulative PDFs as obtained from �gure 4.15. The
behavior remains qualitatively the same for larger noise amplitudes but the PDFs are found
to move to the right, i.e. stronger noise extends the expected lifetimes of paths. Furthermore,
higher noise amplitudes are found to broaden the PDF re�ecting that it is less clear when to
expect the FTS to occur. This is illustrated by the entropy graphs in Section 4.4.2.3.

4.4.2.2. Dependence of Ensemble Critical Times on m and ε

In the following graph, �gure 4.17, we compare the numerically determined values of t̃C(m)

to the deterministically expected values, as given by equation (4.35). It can be observed that

the overall behavior remains the same while the small noise produces an o�set to slightly

higher values of t̃C(m). For stronger amplitudes of noise, we observe that the shape of the

1.2 1.4 1.6 1.8 2.0 2.2
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

t̃ C

ε=0

ε=0.1

Figure 4.17.: The median of the critical times is slightly moved upwards for very weak noise
(ε = 0.1) as compared to the deterministic case, but has the same overall shape.
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t̃C(m) curve cannot be explained by a power law similar to equation (4.35) as measured by

the goodness of �t value R2. To test this, we considered a modi�ed version of equation (4.35)

where we let m′ = m + κ with �tting parameter κ where the underlying assumption is that

noise alters the 'true' value of m while the remaining parameters r0 and α are treated as given

and remain una�ected. A good �t however was only accomplished for the case ε = 0.1 where

we found κ = −0.007 while R2 = 0.999. In the other cases using the same setting, we obtained

R2 = 0.838 for ε = 0.5 and R2 = 0.802 for ε = 1.0 Instead, it is again found that the observed

median critical time values can be described much better by a stretched exponential function

that accounts for the smoother change of slope in the data (see �gure 4.18) that we obtained

as compared to the modi�ed power law similar to (4.35).
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Figure 4.18.: Least square �ts of stretched exponential functions (4.33) to the medians of
critical times t̃C(m). The following �tting parameters were obtained: A = 0.077, α = −5.304
and β = −2.909 (blue curve, R2 = 0.893), A = 1.92, α = −1.39 and β = −1.59 (yellow curve,
R2 = 0.999) and A = 4.7 · 10−4, α = −10.08 and β = −0.134 (green curve, R2 = 0.999).
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4.4.2.3. Dependence of the Entropy on m and ε

The entropy was calculated as in Section 4.4.1.2.1.3 with one important di�erence: In this

case, we also accounted for three di�erent noise amplitudes (ε ∈ {0.1, 0.5, 1.0}). For all three
curves, the same interval of critical times I = [0,500] and number of bins (500) was used so

that the curves can also be compared absolutely to each other. Having said this, the message

of the graph is two-fold: Firstly, one can see that the greater the noise amplitude, the greater

the absolute value of the entropy. This means that a higher noise level leads to a less de�nite

and broader PDF and vice versa. Secondly, the S(m) curves were again found to decay like

stretched exponential functions (see equation (4.33)) as in the case of the nonlinear stochastic

oscillator.
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Figure 4.19.: Entropy over nonlinearity m for three di�erent noise amplitudes (ε ∈
{0.1, 0.5, 1.0}). The �tting parameters were found to be A = 4.7 · 10−4, α = −10.08 and
β = −0.134 (yellow curve, R2 = 0.999), A = 1.92, α = −1.39 and β = −1.59 (red curve,
R2 = 0.999) and A = 0.077, α = −5.304 and β = −2.909 (yellow curve, R2 = 0.893.
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4.4.2.4. Discussion

In this section, we have investigated the impact of di�erent levels of parametric noise on the

behavior of the PDF, the median of critical times t̃C(m) and the Shannon entropy S(m) as a

measure for the de�niteness of the tC distribution in the Ide-Sornette model with γ = ε2 = 0.

We have seen that there is a positive correlation between noise amplitude and entropy re�ecting

the fact that the tC distribution broadens and exhibits less sharp peaks as the noise amplitude

is augmented. Moreover, the medians of critical times t̃C (as well as its ensemble averages

〈tC〉) for a given value of m are consistently larger than its deterministic counterpart as given

by the analytical expression (4.35). In the framework of the �nancial market interpretation

of our model, this means that the cooperation of the trend followers amomgst each other

is perturbed by a randomly varying market liquidity leading to longer average and median

waiting times for the �nite-time singularity to occur. This resembles the noisy buzz of activity

on the trading �oor which is practically observed rather than a silent entourage of traders

that watch their computer screens. On the other hand, based on our analysis, there is no

evidence for a qualitative change in the behavior of the system as in the case of the stochastic

nonlinear oscillator: Singularities remain singularities, albeit not with a well-de�ned critical

time instant as in the deterministic case. The behavior observed here is thus somewhat more

in line with intuitive expectations than the ones reported for the nonlinear oscillator.

4.4.3. ε1 6= 0, ε2 6= 0

In a �nal step, we demonstrate the e�ect of noise on the full Ide-Sornette model with multi-

plicative white noise which we have found to read

d

(
x(t)

r(t)

)
=

(
r(t)

α |r(t)|m − γ |x(t)|n

)
dt+

(
0 0

ε1 |r(t)|m −ε2 |x(t)|n

)
d ~W (t) (4.38)

In what follows, we will restrict ourselves to the scenario most relevant for practical applica-

tions to �nance. This implies that we think of the liquidity as a variable varying slowly over

time, i.e. we let ε1 = ε2 = 0.1 since both parameters α, γ ∼ 1
L
by de�nition (see Chapter 2,

eqs. (2.6)). Based on our �ndings in Chapter 2, we will look at the two regimes that we have

found in the deterministic case, m > 2 and m < 2 for some �xed value of m each, and check

for qualitative similarities and di�erences compared to the deterministic case as n is varied

according to n < m, n > m and n = m in each regime. The survival analysis will be displayed

for each case separately while the analysis of the critical times and entropy will be plotted in
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the same graph, respectively, to allow for a convenient comparison of both cases.

4.4.3.1. m > 2

In the following paragraphs, we investigate the Ide-Sornette model for the supposed regime

m > 2.

4.4.3.1.1. Survival Analysis The procedure we employ basically remains the one explained

in Section 4.4.1.2.1, the only di�erence being that we obviously have both parameters αt and

γt in the game.
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Figure 4.20.: Estimated PDFs for di�erent values of n and �xed m = 2.2 > 2. Interestingly, a
greater exponent n which corresponds to a stronger mean- reversion for large prices x(t) does
not only not help to postpone the FTS but leads to its earlier occurrence instead. Note also
that the PDFs show a substantial overlap as the median critical times lie very close to each
other.
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Figure 4.21.: The CPFs intercept close to p(tC < t) = 1 re�ecting that the hazard rate for
long lasting sample paths to die is not the same for every n investigated. In fact, especially
the value n = 1.8 seems to have a particularly good chance for a comparably long life, see also
�gure 4.22.
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Figure 4.22.: The survival functions for m = 2.2 and several values of n

4.4.3.1.2. Dependence of Critical Times on n As in the corresponding preceding chap-

ters, we plot the behavior of t̃C(n) for �xed m > 2 and compare this to the deterministic

�ndings which are obtained by two mutually di�erent implementations of the Ide-Sornette
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model: The DDIRDI2 scheme (see Chapter 3 and Appendix B) which serves again as our

main program for the stochastic case and a classical four-stage Runge-Kutta scheme which we

employ to test the results obtained from DDIRDI2 which is in the case ε1 = ε2 = 0 nothing

di�erent than an alternative implementation of the deterministic model. The deterministic

critical times as well as the medians of the stochastic ensemble critical times are found to

follow a power law function

tm(n) = Bnν (4.39)

The calculation and discussion of Shannon's entropy will follow in the upcoming section of

n

t

Critical Times

tC,det(n)

t̃C

Figure 4.23.: Deterministic critical times and ensemble median critical times as a function of
n. The double-logarithmic plot suggests a power law decay which is found to be in excellent
agreement with the data: For the blue curve, we obtained B = 2.216 and ν = −0.292 while
for the red curve, B = 2.24 and ν = −0.279. In both cases, R2 = 0.999.

the analysis, for the sake of a better direct comparison.
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4.4.3.2. m < 2

In the following paragraphs, we investigate the Ide-Sornette model for the supposed regime

m < 2.

4.4.3.2.1. Survival Analysis In this regime, we chose m = 1.4 and varied n in the range

from 1.1 to 1.75. The results can be seen in the following graphs. We stress again that it

has been checked for every simulation run if the kernel density regression does give a good

estimate for the 'true' PDF by comparing the regression to the raw data (histogram).
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Figure 4.24.: Estimated PDFs for various values of n in the range from 1.3 to 1.75. For the
sake of lucidity, the PDFs for n = 1.2 and n = 1.1 are omitted as they have an unimodal
appearance and would clearly disturb the message of the graph: As n approaches m, the PDF
starts to switch from an unimodal to a bimodal appearance indicating that there are two time
domains in which the hazard rate for a sample path is signi�cantly higher than normal.
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Figure 4.25.: Survival functions for m = 1.4 and various values of n.

4.4.3.2.2. Dependence of Entropy on n As remarked earlier on, we calculate Shannon's

entropy for both, m > 2 and m < 2 in this last paragraph of the analysis. Figure 4.26

illustrates our �ndings where the blue curve is a �t of our data to the curve

Sm(n) =
a

1 + b exp(−cn)
+ d (4.40)

which is a logistic function with o�set d to the n axis.

4.4.3.3. Discussion

The impact of small multiplicative white noise (ε1 = ε2 = 0) on the full Ide-Sornette model

was investigated in this section for a limited set of parameter combinations. For the cases

investigated, we �nd that the PDF of critical times is unimodal and quasi-constant in its

width as measured by the Shannon entropy for m = 2.2 (supposed regime m > 2) while

for m = 1.4 (supposed regime m < 2), the PDF of critical times is bimodal for n ≥ 1.3 and

unimodal for n ≤ 1.2. Moreover, the critical times are found to follow a power law behavior for

m = 2.2 similar to the situation found in the stochastic nonlinear frictionless oscillator while

for the small noise amplitude that has been considered, we �nd that the median ensemble

critical times are larger than the deterministic ones, as estimated from numerical simulations.

Interestingly, the stretched exponential decay of the entropy S that we have have found in
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Figure 4.26.: The Shannon entropy Sm(n) for both regimes considered, m > 2 and m < 2.
For m = 2.2, S2.2(n) is found to be scattered around a constant value of S2.2(n) = 2.58
(R2 = 0.999) whereas we �nd a good agreement of our numerical data to a modi�ed sigmoidal
curve. For the parameters of (4.40), we obtain a = 2.80, b = 4.757 ·109, c = 16.50 and d = 3.07
while we again recover R2 = 0.999.

the components comprising the model, is not recovered in the full model. Instead, we �nd a

logistic growth behavior of Sm(n) for m = 2.2, i.e. the entropy grows with n as opposed to

the stochastic oscillator case where ∂nS(n) < 0.
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4.5. Summary and Outlook

This �rst part of the thesis was concerned with the impact of multiplicative (i.e. parametric)

white noise on the Ide-Sornette model for �nancial markets. Apart from the software devel-

opmental implications, the main goal was to study the noisy version of the model, to compare

its behavior to the deterministic case and to �nd di�erences if there are any.

We have documented the necessary theoretical background and our results in the following

way: In Chapter 1, we have given a short introduction to the relatively new �eld of science

called complex system theory and we have explained how the wording 'complex adaptive sys-

tems' is to be understood. In Chapter 2, we introduced the main ideas and assumptions that

led to the deterministic Ide-Sornette model and provided a detailed analysis of the model in

the spirit of the original work [6]. We have moreover expanded the analysis from the original

paper by also providing an analytical closed-form solution of the frequency-amplitude relation

of the nonlinear frictionless oscillator exploiting the work of Mohazzabi [12]. In Chapter 3,

we have introduced the basics of stochastic calculus, stochastic di�erential equations and the

most important stochastic processes, namely the Wiener process and the Ornstein-Uhlenbeck

process (mean-reverting random walk) which we will need in the second part of this work. In

addition, the important di�erence between additive and multiplicative noise to the behavior of

the system was explained and demonstrated using a textbook example from [20]. In Chapter

4, we have tackled the challenge to extend the Ide-Sornette model towards parametric white

noise in order to bring the model closer to the reality observed in �nancial markets. The rather

technical but nonetheless necessary background concering the numerical aspects of this work

have also been laid out in this chapter followed by a short introduction to survival analysis.

Analyzing the subparts of the model, we �nd several e�ects of noise: Firstly, looking at the

median of critical times, we �nd that the occurrence of FTS is, on average, postponed as

compared to the deterministic version in case of the Sornette-Andersen model while the noisy

nonlinear oscillator is driven to a FTS, an entirely unexpected noise-induced phenomenon

which we have successfully supported by a scaling argument that was previously used in the

literature [74]. As to the interpretation of these e�ects, we have argued that both types of

traders, fundamentalists and trend-followers, are somewhat perturbed in following their strate-

gies in the presence of noise, even leading to a FTS in the case of only fundamentalists in the

market.

Having said that, the conclusion concerning the full version of the model is split: Indeed, we

recovered two mutually di�erent regimes as in the deterministic case, however in a di�erent

sense: Deterministically, we referred to the behaviour of the frequency at the approach of

tC while in the stochastic case, we referred to the distribution of the critical times and the
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behavior of the Shannon entropy which was derived from this distribution.

In the present work, we have restricted ourselves to only a very limited fraction of the parame-

ter space and remark that the best possible certainty about the general behavior of the system

would require a search of the whole parameter space along with an automatized data handling

and analysis. However, the foundation is now laid and ready for further investigations. These

might include:

• What features of real �nancial market time series does the model show? These features

are usually referred to as 'stylized facts' and the interested reader can �nd a brief in-

troduction to the �eld in Appendix D. For example, it is supposed that the PDF of the

return time series will be at least bimodal (but in general multimodal) resulting from

the oscillatory component. At the time of writing, this is only a conjecture. However, it

seems to be supported by a few tests using 'bare eyes' that the author has conducted.

A more quantitative and systematic approach would require the implementation of a

robust statistical test for multimodality as the one proposed recently by Henderson [79].

Due to the sixdimensionality of the parameter space (α, γ, n,m, ε1, ε2), the minimum

required number of price and return time series per parameter combination (at least

1000, but the more, the better...) and the possible extra-e�orts of statistical tests such

as bootstrapping one data sample 5000 times (as in [79])), answering the stylized facts

question will require a very e�cient and stable code for data analysis. The basis for

obtaining such data has been created in this work.

• Calibration of the model: If it re�ects the behavior of any real price or return time series,

at which time scale does it do so ((milli-)seconds, hours, days, weeks, years)?

• Given that we have answered the preceding questions, can we estimate the parameters

n and m from �nancial market data to draw conclusions about levels of trend-following

and mean-reversion in the market? Can such an estimate give evidence of the idea of an

inertia being present in the market?

• What are the pros and cons of this model compared to other �nancial market models

that exhibit (or fail to exhibit) stylized facts? Can these models somehow be merged for

the better good?
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Part II.

Singularities All Around?
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5. Modelling the Short-Term Riskless

Interest Rate

Often you have to rely on intuition

Bill Gates

In this chapter, we will investigate the possibility of a singularity in �nite time in a widely-

used class of models in mathematical �nance. The occurrence of a FTS in these models would

be relevant for example in certain econometric tests that rely on an in�nite lifetime of the

process.

5.1. Introduction

For many applications in �nance, economics and business administration, it is important to

model the short-term riskless interest rate. For example, two Nobel prize winning models that

use the short-term riskless rate r as one of their key parameters are the Capital Asset Pricing

Model (CAPM) by Markowitz1 which provides the basis for modern portfolio theory and the

Black2-Scholes3 formula for option pricing4. In a general framework, all of the known models

to describe the behavior of r (and in some cases also of the price) are a subclass of the SDE

of �rst order in time

dZt = (α+ µZt)dt+ σZm
t dW (5.1)

1Harry Markowitz, born 1927, American economist, Nobel price for Economics 1990
2Fisher She�ey Black, 1938-1995, American economist
3Myron Scholes, born 1941, American economist
4American economist Robert C. Merton, born 1944, was the �rst to publish a model concerned with option
pricing that coined the term 'Black-Scholes model' in 1973. Merton was awarded the Nobel price for
economics together with Scholes in 1997 with Black being mentioned by the Swedish Academy as 'an
important contributor' (being ineligible for the Nobel price having died in 1995).
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with nonnegative constants α, µ, σ and m. Understanding the di�erent models that arise from

this class of processes is thus the key to �nding optimal investment strategies for di�erent types

of investors (risk-averse or willing to take risks). As it was shown in the literature [63, 64],

models with m ≥ 1 perform better in terms of goodness of �t to empirical �nancial market

data than models which require the parameter m to be smaller than one. In this part of the

thesis, we demonstrate a few new �ndings about models which require m ≥ 1, namely we

will be looking at the CIR-VR (Cox5-Ingersoll6-Ross7 with variable rate, 1980) and the CEV

(constant elasticity of variance, Cox, 1975) and provide a closed form analytical solution of

the corresponding model class CIR-CEV.

5.2. The CIR-CEV Class of Models

The CIR-CEV class of models arises from equation (5.1) and reads

CIR− VR : dZt = σZ
3
2 dWt (5.2a)

CEV : dZt = µZtdt+ σZm
t dWt (5.2b)

Equation (5.2a) has been put forward in the context of variable rate loan contracts [71] which

uses m = 3
2
while most other models have been introduced and analyzed predominantly for

0 < m ≤ 1 which is surprising in a sense that there is no reasonable economic a priori reason

for this restriction [65]. Actually, for m > 1, eqs. (5.2) exhibit a positive feedback mechanism,

i.e. the stochastic growth rate Zt feeds back upon itself. We will therefore investigate the long-

term behavior and the possibility of FTS in this model class for m > 1 in the following.

5.2.1. Outline of Investigations

To study the CIR-CEV model class, we will let us guide by the following scheme and look at

the problem from four di�erent angles:

• Simulation of the SDE

• Simulation of the corresponding FPE

5John Carrington Cox, born 1943, American economist
6Jonathan Edwards Ingersoll, born 1949, American economist
7Steven Allen Ross, born 1943, American economist
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• Theoretical analysis using Schrödinger's potential formalism

• Derivation of an analytically exact solution of the process class given by eqs. (5.2)

5.2.2. Construction of the Probablility Density by Simulation of the

SDE

For computational ease, we investigate the Lamperti transformed version of the original process

(5.2) via

Yt =
1

σ(1−m)
Z1−m

t , Zt > 0 (5.3)

to obtain the equivalent substitute process Yt using Itô's formula

dYt =

(
µ(1−m)Yt −

m

2(1−m)

1

Yt

)
+ dWt. (5.4)

Looking at equation (5.4), we thus want to investigate whether or not p(y → 0, t) = 0. A

non-vanishing PDF at the origin would then correspond to a blow-up in �nite time. This

problem is non-trivial since, intuitively we would expect a FTS from eqs. 5.2 while we would

not from equation (5.4). The dynamic properties therefore remain an interesting question.

The probability density function (PDF) p(x,t) can be numerically constructed from the SDE

in the following way: At �rst, the parameter µ and Y0 of the model has to be chosen where we

consider - without loss of generality - the case µ = 1 and Y0 = −7. In a second step, one has

to de�ne the numerical parameters such as step width and number of steps from which the

instant T follows at which the PDF is to be constructed. Then, the process described by the

SDE has to be simulated M ≥ 1000 times in order to obtain a meaningful result (of course,

the greater M , the better - but at the cost of additional computation time). In this case,

M = 5000 which took about 80 minutes on a conventional laptop PC8 to run. For every M ,

the last value of the process at instant T , i.e. Z(T ) is saved in an array. The histogram of this

array is subsequently constructed which is, for large M , a good approximation of the actual

PDF at instant T . The following �gures illustrate our results while it is worth noting that the

number of bins is a�ecting the shape of the approximated PDF, a fact already encountered

when dealing with the Shannon entropy in the �rst part of this work.

8Pentium IV, 1.67 GHz, 1 GB RAM
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Figure 5.1.: Histogram (100 bins) of the endpoints of 5000 sample paths of the original CIR-
VR process (m = 1.5) at instant T = 4 (∆t = 0.002, N = 2000). The median of the end
points was found to be ≈ −2.03.
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Figure 5.2.: Approximate PDFs (histograms with 100 bins, as above) constructed as explained
above for greater values of m: In the left picture, m = 2.0 while in the right �gure, m = 2.5.
The medians (as a measure for the maximum of the PDF) move towards y = 0 without
reaching it, giving −1.09 (left panel) and −0.82, respectively.
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5.2.3. Direct Simulation of the Probability Density via the

Corresponding FPE

In this section, we quickly give the results of the simulation of the FPE corresponding to the

process (5.4) for various values of m. The equation under study reads

∂

∂t
p(y,t) = − ∂

∂y

(
µ(m− 1)y +

m

2(m− 1)y

)
· p(y,t) +

1

2

∂2

∂y2
· p(y,t)) (5.5)

The results are found to be in very good agreement to the previous section. The following

pictures illustrate these results where it is remarked that the simulation computed the values

of the PDF at t = 6 where the time domain was discretized in steps of 10−2 and the solution

domain was treated as a onedimensional grid G = [−5,0] with a step width of ∆x = 10−2. For

further numerical details, the interested reader is referred to Appendix C.
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3.5
FPE of CIR-VR (Lamperti)

p(y), m=1.5

Figure 5.3.: PDF for m = 1.5 as obtained from a Finite-Elements simulation of the corre-
sponding FPE.
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Figure 5.4.: Same graph as �gure 5.3 for m = 2.
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Figure 5.5.: PDF for m = 2.5

5.2.4. Schrödinger's Formalism

In this section, we will employ a method from the book by Risken [46] introduced as as

'Schrödinger9's formalism' due to its formal similarity to quantum mechanics. For the ease of

9Erwin Schrödinger (1887-1961), Austrian physicist, Nobel price for physics in 1933
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the reader, we start from equation (3.6) which reads

dXt = f(t,Xt)dt+ g(t,Xt)dWt

We remember the de�nition of the FPE

∂

∂t
p(x,t) = − ∂

∂x
(f(x,t) · p(x,t)) +

1

2

∂2

∂x2
(g(x,t) · p(x,t))

and realize that the case g(x,t) = const amounts to solving a Schrödinger-like equation

∂tψ(y,t) =
[
D∂2

y − V (y)
]
ψ(y,t) (5.6)

with some potential V (y) appropriate to the problem. We thus employ the Lamperti transform

on our original SDE to obtain an equation of the form

dYt = f̃(t, Yt)dt+ dWt (5.7)

with the equivalent FPE

∂tp(y,t) =

[
1

2
∂2

y − ∂yf̃(y,t)

]
p(y,t) (5.8)

In the aformentioned book, Risken introduces Schrödinger's potential VS corresponding to the

problem as

VS =
1

4D
(f̃(y))2 − 1

2
∂yf̃(y) (5.9)

and study the behavior of this potential as an equivalent analysis. In our case, this calculational

scheme for equation (5.4) yields

VS(y) =
1

2

[
µ(m− 1)y +

m

2(m− 1)y

]2

+
1

2
µ(m− 1) +

m

4(m− 1)

1

y2
(5.10)

where we have again used equation (5.4). The shape of this potential for di�erent values of m

is illustrated in �gure 5.6 and is in excellent agreement with our previous �ndings.
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Figure 5.6.: VS for three di�erent values of the parameter m. The potential's minimum moves
exactly as expected and is in excellent agreement with our �ndings so far.

5.2.5. Exact Solution of the SDEs

The analytical solution of stochastic di�erential equations is often very hard (and more often

impossible) as there is no such thing as a solution theory for SDEs. There is not even a

standard procedure as in the case of certain ODEs. However, during our computational

analysis, it came to our attention that equation (5.4) together with the choice µ = 0 is also

known as Bessel10 process which is de�ned by the SDE

dRt =
d− 1

2Rt

dt+ dWt (5.11)

which is, as we have just shown, obviously nothing di�erent than the Lamperti transformed

version of the CIR-VR process. The Bessel process however (5.11) is known to have the

analytical solution

Rt =

(
d∑

i=1

W 2
i (t)

) 1
2

=
√
W 2

1 (t) + · · ·+W 2
d (t) (5.12)

where the parameter d corresponds to the dimension of the underlying random walk. To see

that the process (5.12) indeed solves the SDE (5.11), we start from the de�nition of Rt as

Rt =
∥∥∥ ~W (t)

∥∥∥
L2

such that R2
t =

∑
iW

2
i (t) where ~W (t) = (W1, . . . ,Wd)

T . Then, we compute

10Friedrich Wilhelm Bessel, 1784-1846, German astronomer and mathematician

76



5. Modelling the Short-Term Riskless Interest Rate

the stochastic di�erential exploiting Itô's formula again

df( ~W (t)) =
d∑

i=1

∂f

∂Wi

dWi +
1

2

d∑
i=1

∂2f

∂W 2
i

dt (5.13)

Applying this to our analytical expression (5.12) yields

dRt =
d∑

i=1

Wi

Rt

dWi +
1

2

d∑
i=1

(
1

Rt

− W 2
i

R3
t

)
dt

=
1

Rt

d∑
i=1

[
WidWi +

1

2

(
1− W 2

i

R2
t

)
dt

]
(5.14)

Now, the �rst factor on the right-hand side of the last expression, 1
Rt

∑d
i=1WidWi, is a real-

valued Brownian motion since E
[

1
Rt

∑d
i=1WidWi

]
= 0 and E

[(
1

Rt

∑d
i=1WidWi

)2
]

= dt so

that

dRt = dW +
d∑

i=1

1

2Rt

(
1− W 2

i

R2
t

)
dt (5.15)

Furthermore, it holds that
d∑

i=1

(
1− W 2

i

R2
t

)
= d− 1

so that SDE (5.11) follows right away. We have thus found the analytical solution of the CEV

process with µ = 0 as the back transform of eq. (5.3) in cases where d is integer:

Z(t) = (σ(1−m)R(t))
1

1−m

= (σ(1−m))
1

1−m
[
W 2

1 (t) + · · ·+W 2
d (t)

] 1
2−2m (5.16)

Furthermore, the parameter m is related to the dimension of the Brownian motion via

d− 1 =
m

m− 1
⇔ dm =

2m− 1

m− 1
(5.17)

from which it follows that limm→∞ δm =↘ 2 which means that for any economically reasonable

m, δm > 2. For example, the standard CIR-VR process with m = 3
2
yields d = 4 so that the

process Z(t) is shaped by a fourdimensional standard Wiener process (Brownian motion).

Because of the general form of the solution (5.16), it is clear that the process R(t) will never

reach the value zero and in consequence, Z(t) remains �nite for any t. Our conjecture about

the occurrence of FTS in the CIR-VR process is moreover no longer justi�ed. However, it

is known that in a space-time-continuous setting, there is always a non-zero probability for
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a d-dimensional random walk to visit in �nite time some small area of radius ε around the

origin before escaping to in�nity [66] so that it can be concluded that there will be large

excursions of the process Z(t) before it eventually settles down to zero. Figure (5.7) provides

some illustration.
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CIR−VR process

Figure 5.7.: Sample realization of Z(t) obtained by simulation of the corresponding SDE,
Z0 = 5.

The remaining question is if we can specify an analytical solution in the case µ > 0. To test

this, we test the process Yt =
(∑d

i=1M
2
i

) 1
2
where the Mi are d independent mean-reverting

random walks, i.e. Ornstein-Uhlebeck processes where

dMi = −βMidt+ σdWi. (5.18)

In complete analogy to the proof of the case µ = 0, we obtain

dYt =
1

Yt

d∑
i=1

(
MidMi +

1

2

(
1− M2

i

Y 2
t

))

=
1

Yt

d∑
i=1

[
Mi(−βMidt+ σdWi) +

d− 1

2
dt

]

=

[
d− 1

2Yt

− 1

Yt

d∑
i=1

βM2
i

]
dt+ σdW

=

[
−βYt +

1

2

m

m− 1

1

Yt

]
dt+ σdW (5.19)
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These results were obtained in collaboration with Stefan Reimann and Didier Sornette [65].

One can thus identify β = µ(m − 1) with a mean-reversion level µ′ = 0 in the standard OU

process. µ(m − 1) is thus the mean-reversion rate. Yt is thus bounded by de�nition (as it

is mean-reverting) which means that Zt will not go to zero at long times but will remain

stationary while also exhibiting very large excursions as Yt visits neighbourhoods of zero.

5.3. Summary and Outlook

In summary, we have again seen how hard it is to draw conclusions about the behavior of a

stochastic process by pure intuition, i.e. by looking at the equations using 'common sense'. The

undisputed advantage of this venture is that we have demonstrated that there are analytical

closed-form solutions for Zt, namely

Zt =

σ(1−m)

(
d∑

i=1

W 2
i

) 1
2


1

1−m

; µ = 0 (5.20)

Zt =

σ(1−m)

(
d∑

i=1

M2
i

) 1
2


1

1−m

; µ > 0 (5.21)

which tells us that there are no true FTS in neither of the processes but on the other hand,

there will be large excursions that may resemble singular behavior. It can also be remarked

that the results of this analysis o�er a new perspective on the well-known phenomenon of

herding in �nancial markets: If we think of the process (5.2a) as a general model for �nancial

markets with variable m > 1, then, according to our reasoning concerning eqs. (5.17), herding

reduces the dimension of the underlying d dimensional Wiener process ~W (t) as herding would

correspond to greater values of m implying smaller values of dm. This is like new light through

old windows since this compactly grasps the actual nature of herding. A possible future

application resulting from this is the estimation of the parameter m from real �nancial market

price or return trajectories exploiting the fact that a dm dimensional radial Ornstein-Uhlenbeck

process produces random variables that are χ2 distributed [65].
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In this appendix, the power of the very simple scaling analysis due to Mallick and Marcq [74]

is demonstrated. For this, the exact derivation is outlined in a non-exhaustive way to provide

the reader with the involved technicalities and to motivate our decision to stick to the scaling

analysis in the main text of this work along with numerical evidence. The aformentioned exact

calculation considers the system without noise �rst (ẍ + γx2r−1 = 0) whose energy is known

to be

E =
ẋ2

2
+ γ

x2r

2r
(A.1)

The exact solution of this mechanical system is also known (see also calculations in Chapter

2, Section 2.2.2):

x = E
1
2rSr

[
(2rE)

r−1
2r t
]

(A.2)

ẋ = (2n)
r−1
2r S ′r

[
(2rE)

r−1
2r t
]

(A.3)

where Sr is the inverse function of an hyperelliptic integral of the form
∫

duq
1−u2r

2r

. The main

idea is that one can switch to energy-angle variables, i.e. (E, φ) coordinates, using these

notations. The noise is introduced as in the main text of this thesis, i.e. Ė = σxẋξ(t), so

that

Ė = σ(2r)
r−1
2r E

r+n
2r S ′r(φ)Sn

r (φ)ξ(t) (A.4)

Using eqs. (A.4) and (A.3) and introducing the shortcut Ω = (2r)
r+1
2r E

r−1
2r , one �nally arrives

at the system

Ω̇ = (r − 1)Sr(φ)S ′r(φ)ξ(t) (A.5)

φ̇ =
Ω

(2r)
1
r

− S2
r (φ)

Ω
ξ(t) (A.6)

which fully describes the evolution of the noisy frictionless oscillator (4.18) without any

approximation. Considering the FPE associated with this system and a few averaging manip-
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ulations, the phase-averaged FPE is obtained which reads

∂tp =
σMr

2

(
∂2

Ωp−
2

r − 1
∂Ω

p

Ω

)
(A.7)

where Mr is a prefactor depending on r. This FPE is known to be exactly solvable and its

solution p(Ω, t) can be used to calculate the ensemble mean energy. Assembling the �ndings

gives

〈E〉 =
1

(2r)
r+1
r−1

·
Γ(3r+1

2r−2
)

Γ( r+1
2r−2

)
(2σMrt)

r
r−1 (A.8)

where the factor Mn is de�ned over

Mr =
(r − 1)2

r + 1
(2r)

2
r ·

Γ( 3
2r

)Γ(3r+1
2r

)

Γ( 1
2r

)Γ(3r+3
2r

)
(A.9)

In the original article, this calculation takes several pages and is, at �rst sight, rather techni-

cally involved. A much easier and faster way is the scaling analysis, which would start from

equation (A.1) and the noisy equation ẍ+ γx2r−1 = σξ(t)x to obtain

Ė = E
r+1
2r ξ(t)

Approximating Ė ∼ E
t
and remembering ξ(t) ∼ t−

1
2 , one obtains

E ∼ t
1
2
· 2r
r−1 = t

r
r−1

which is, in essence, the same result as (A.8).
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This numerical integration scheme belongs to the class of derivative free stochastic Runge-

Kutta methods due to Röÿler which have been introduced only very recently (2006-now). The

notation is as easy as possible and follows the standard literature. We start from equation

(4.2)

d ~X(t) = a(t, ~Xt)dt+ b(t, ~Xt)d ~W, Xt0 = x0 (B.1)

with drift term a(t, ~Xt) ∈ Rd and di�usion matrix b(t, ~Xt) ∈ Rd×m. In general, m denotes the

dimension of the driving Wiener process and d the dimension of the stochastic process. In

our case, m = d. The jth column of the di�usion matrix will in the following be denoted

by bj and time discrete approximations are considered, Yh = (Yt)t∈(0,TN ) The d-dimensional

approximation process Y h with Yn = Ytn is given by the following SRK method of s stages

with Y0 = x0 and

Yn+1 = Yn +
s∑

i=1

αia(tn + c
(0)
i hn, H

0
i )hn

+
s∑

i=1

m∑
k=1

(
β

(1)
i I(k),n + β

(2)
i

I(k,k),n√
hn

)
bk(tn + c

(1)
i hn, H

(k)
i )

+
s∑

i=1

m∑
k=1

(
β

(3)
i I(k),n + β

(4)
i

√
hn

)
bk(tn + c

(2)
i hn, Ĥ

(k)
i ) (B.2)

for n = 0,1, . . . , N − 1 with stage values

H
(0)
i = Yn +

s∑
j=1

A
(0)
ij a(tn + c

(0)
j hn, H

(0)
j )hn +

s∑
j=1

m∑
l=1

B
(0)
ij b

l(tn + c
(1)
j hn, H

(l)
j )Î(l),n

H
(k)
i = Yn +

s∑
j=1

A
(1)
ij a(tn + c

(0)
j hn, H

(0)
j )hn +

s∑
j=1

B
(1)
ij b

k(tn + c
(1)
j hn, H

(k)
j )
√
hn

Ĥ
(k)
i = Yn +

s∑
j=1

A
(0)
ij a(tn + c

(0)
j hn, H

(0)
j )hn +

s∑
j=1

m∑
l=1
l 6=k

B
(2)
ij b

l(tn + c
(1)
j hn, H

(l)
j )

Î(k,l),n√
hn

(B.3)
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The random variables of the method are de�ned by

Î(k,l),n =


1
2
(Î(k),n −

√
hnĨ(k),n) if k < l

1
2
(Î(k),n +

√
hnĨ(l),n) if l < k

1
2
(Î2

(k),n − hn if k = l

(B.4)

for 1 ≤ k,l ≤ m with independent random variables Î(k),n for 1 ≤ k ≤ m and Ĩ(k),n for

1 ≤ k ≤ m − 1 and 0 ≤ n < N . In e�ect, only m − 1 independent random variables have to

be generated in each step. The coe�cient family of the SRK method (B.2) can be displayed

in an extended Butcher1 array. 
c(0) |A(0) |B(0)

c(1) |A(1) |B(1)

c(2) |A(2) |B(2)

|αT |β(1)T |β(2)T

| |β(3)T |β(4)T

 (B.5)

where α = (αi) and β(k) = β
(k)
i for 1 ≤ k ≤ 4 are the vectors of weights and A(k) = (Ak

ij) and

B(k) = (Bk
ij) for k = 0,1,2 the corresponding coe�cient matrices. The class of weak order one

diagonally drift implicit stochastic Runge-Kutta (DDISRK) methods is then given by

c(0) =

(
c1

c2 + c3

)
, A(0) =

(
c1 0

c2 c3

)
, B(0) =

(
0 0

c4 0

)
αT = (1− c5 c5), β(1)T

= (1 0)

where every other coe�cent is zero. The general DDIRDI2 scheme follows by putting c1 = 0,

c2 = 1 − Θ, c3 = Θ, c4 = 1 and c5 = Θ and some Θ ∈ [0,1]. In this work, we have chosen

Θ = 1
2
due to the the kind suggestion of Andreas Röÿler [58].

1John C. Butcher, born 1933, New Zealand mathematician. Any numerical scheme can be described conve-
niently using a Butcher array, hence its widespread use in numerical mathematics
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In line with this thesis, all required programs were written in the Python programming lan-

guage, versions 2.5 and 2.6. This appendix contains the main program where the stochastic

version of the Ide-Sornette model is implemented along with some analysis procedures which

were developed for investigation of the time series created by the main loop. All routines were

written from scratch by the author.

C.1. SDE

The implementation of the second order SDE that has been subject of the better part of this

work was far more challenging to achieve than expected. Beside the usual period of vocational

adjustment concering the programming itself, a great deal of time had to be spent in order

to search for appropriate literature and code resources. Because of the very special form of

the Ide-Sornette SDE, it was necessary to review the most recent developments in stochastic

numerics. Surprisingly, the issue of sti�ness of a SDE turned out to be so special that only

one of the leading experts in the �eld I have contacted during my work (D. Higham (U. of

Strathclyde, Scotland), P. Kloeden (U. of Frankfurt, Germany) and others) came up with the

idea that sti�ness might me the key to the solution of the serious numerical stability problems

I encountered.

"""

Simulation of the Stochastic Ide-Sornette model using Roessler's DDIRDI 2

method

-- Version 2 --

Oliver Engler

Date of last modification: February 3, 2010.

Mod log: Estimation for t_C in the main loop (10-15-09)

Implementation of t_C estimation by break condition (10-23-09)
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Tried out very small alpha and gamma (11-16-09)

Implementation of leverage, vclustering according to Cont (11-17-09)

Implementation of ensemble average of NLO energies according to Mallick

(01-27/28-10)

If-statement to kill trajectories that are uneconomic in a sense that

g - W < 0 (02-03-10)

a = 0: Nonlinear Oscillator of Degree n

g = 0: Sornette-Andersen model

else: Ide-Sornette

If s1, s2 neq 0: Noisy models

"""

from scipy.optimize import fsolve

from pylab import *

import matplotlib

from numpy import *

from mpmath import gamma

import random

import statistics

#import psyco

#psyco.full()

""" The main set of parameters """

#random.seed(8)

dt = 0.01 # Time increments used

n = 2.5 # The exponent n in the oscillatory deq

m = 1.4

X = [ 5.0] # Setting up arrays for x and v providing initial conditions

R = [ 0.05]

t = [ 0.0] # Creating a time array

N = 60000 # No. of evaluation points

dWx = [0]

dWy = [0]

Wx = []

Wy = []

a = 0.0 #alpha

g = 50.0 #gamma

s1 = 0.0 #epsilon1 (alpha)

s2 = 1.0 #epsilon2 (gamma)

Z = [0]

W = [0]

Wt= [0]

dR= [0] #R increments (volatility)

A = []

tC = []

M = 50
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Rs= []

Rmax= []

""" Theoretical prediction for t_C in case gamma = 0 (Sornette-Andersen) """

def critical(r_0, M, alpha):

return ((r_0)**(1.0-M))/(alpha*(m-1.0))

""" Theoretical prediction for w(n,A) according to Mohazzabi """

##def omega(A,n):

## return (sqrt(pi*g/(2.0*(n+1))))*(A**(0.5*(n-1.0))) \

## *(gamma((n+3)/(2*(n+1)))/(gamma((n+2)/(n+1))))

""" Our theoretical prediction for w(t) """

##def omega(g,n,m,x_0,r_0,alpha,T,t_C):

## return (((r_0)**(2-m))/alpha*(2-m))*sqrt((g*pi)/(2*(n+1)))* \

## gamma((n+3)/(2*(n+1)))/gamma((n+2)/(n+1))*(x_0 + \

## (1-T/t_C)**((m-2)/(m-1))-1.0)**(0.5*(n-1))

""" Stylized Facts """

""" Defining the autocorrelation function of the time series x """

def autocorr(x):

result = correlate(x, x, mode='full')

return result[result.size/2:]/max(result)

def leverage(x):

l = correlate(x, (abs(x))**2, mode = 'full')

return l[l.size/2:]/max(l)

def vclustering(x):

k = correlate((abs(x))**0.5, (abs(x))**0.5, mode = 'full')

return k[k.size/2:]/max(k)

""" Defining F(x) """

def func(x, xold, rold, wx, wy):

lhs = [x[0] - xold - (dt/2.0)*(rold + x[1]), x[1] - rold -

(dt/2.0)*(a*rold*(abs(rold))**(m-1)

- g*xold*(abs(xold))**(n-1) + a*x[1]*(abs(x[1]))**(m-1)

- g*x[0]*(abs(x[0]))**(n-1)) - s1*wx*(abs(rold))**m +

s2*wy*(abs(xold))**n]

return lhs

""" The main loop """

for k in xrange(0,M):

print k

for i in xrange(0,N):

dWx.append((sqrt(dt))*(random.gauss(0,1.0))) # creating random numbers
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dWy.append((sqrt(dt))*(random.gauss(0,1.0)))

#Wx = cumsum(dWx)

## Wy = cumsum(dWy)

## if g - Wy[i] < 0:

## print 'Process killed'

## break

"""

In every call, take the last values of x and v as initial guess for

fsolve and treat args as given parameters

"""

result = fsolve(func, [X[i], R[i]], args = (X[i], R[i], dWx[i], dWy[i]))

X.append(result[0])

R.append(result[1])

Rs.append(R[i]*R[i])

t.append(t[i] + dt)

## if X[i]*X[i+1]<=0:

## Z.append((t[i] + t[i+1])/2.0) #store zeros in t

## Rmax.append((R[i]+R[i+1])/2.0)

## Rs.append(Rmax[len(Rmax)-1]*Rmax[len(Rmax)-1])

##W.append(pi/(Z[len(Z)-1] - Z[len(Z)-2]))

## Wt.append(omega(g,n,m,X[0],R[0],a,t[i],4.2))

if R[i+1] - R[i] == 0:

tC.append((i+1)*dt)

print 'Critical time:'

print (i+1)*dt

print '--------------'

break

#### print 'Theoretical prediction (Sornette-Andersen):'

## print critical(R[0], m, a)

del dWx[1:len(dWx)]

del dWy[1:len(dWy)]

del X[1:len(X)]

del R[1:len(R)]

del t[1:len(t)]

##print 'median:'

##print '------------'

##print statistics.median(R)

print statistics.median(tC)

print statistics.mean(tC)

print len(tC)

""" Distribution of Critical Times """

subplot(211)

hist(tC, 50, normed = True, label = '$\mathrm{pdf}$')

legend(loc=0)

subplot(212)

y,x = statistics.pdf(tC)
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plot(x,y, label = '$\mathrm{KDE}(p)$')

legend(loc=0)

""" Calculating energy ensemble average """

##energy = []

##summe = []

##c = arange(M)

##

##for j in xrange(0,N):

## for k in c:

## summe.append(sum(Rs[j+c[k]*N])) # len(Z) ~ N

## energy.append(statistics.mean(summe[j]))

##

""" Theoretical prediction according to Mallick """

def f(x):

return x**3 + 4*x - 2.0

""" Curve fitting procedures """

##from scipy.optimize import leastsq

##

##def residuals(p, rs, h):

## err = rs - peval(h, p)

## return err

##

##def peval(x,p):

## return s2**(p[0])*h**(p[1]*((n+1)/(n-1)))

##

#h = linspace(0,N*dt,N)

##p0 = 0.0

##p1 = 1.0

##p = array([p0, p1])

##plsq = leastsq(residuals, p, args = (h, Rs))

##print plsq

##

""" Plotting the stuff """

#mu = fsolve(f, 0)

##plot(h, energy, label = '$<E(t)>$')

##plot(h, h**((n+1)/(n-1)))

###plot(h, exp(0.1*mu*h), label = '$e^{\mu t}$')

###plot(h, exp(0.0473466*h))

###plot(h,peval(h, plsq[0]), label = 'fit')

##xscale('log')

###xlim(1,N*dt)

##yscale('log')

##xlabel('$t$')

##ylabel('$<E(t)>$')

###legend(loc=0)

##show()
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##""" Calculating trading days """

#t2 = array(t)

#t3 = t2/0.003

""" Calculate autocorrelation of absolute returns """

##R2=array(R)

##D = autocorr(abs(R2))

""" Calculate autocorrelation of returns """

#E = autocorr(R2)

#print R[len(R)-1]

#print(omega(X[0], n))

""" Plotting """

""" Trajectories """

##subplot(211)

##plot(t,X, '-g', label='$x(t)$')

##plot(t,R, '-r', label='$r(t)$')

##legend(loc=0)

##title('$n=%.1f$, $\gamma=%.1f$, $\sigma=%.1f$' %(n,g,s2))#$m=%.1f$, $a=%.3f$, $\epsilon_1=%.1f$

##xlabel('$t$')

##ylabel('$x$, $r$')

##xlim(2.5,)

""" Autocorrelation """

##subplot(311)

###plot(t,D, 'y-', label = 'autocorr($|r|$)')

##plot(E, label = 'autocorr ($r$)')

##xlabel('$\mathrm{time}$ $\mathrm{lag}$')

##ylabel('$C_{1}$')

###xlim(0,200)

###xscale('log')

###yscale('log')

##legend(loc=0)

""" Kernel Density Estimation """

##subplot(212)

##y,x = statistics.pdf(R)

###b,a = statistics.pdf(A, kernel = 'Gaussian')

##plot(x,y, 'y-', label='$\mathrm{KDE}$')

##hist(R, 50, normed = True, label = '$\mathrm{hist}$')

###plot(a,b, 'b-', label = '$\mathrm{Gauss}$')

##xlabel('$r$')

##ylabel('$p(r)$')

###xlim(-100,100)

###xscale('log')
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###yscale('log')

##legend(loc=0)

""" Histogram of returns """

##subplot(312)

##hist(R, 200, normed = True, label = 'PDF')

###xlim(-100,100)

##legend(loc = 0)

""" ACF of absolute returns """

##plot(t, D, label = 'autocorr($|r|$)')

##legend(loc = 0)

##subplot(312)

###plot(t, cumsum(R), label='cumsum($r(t)$)')

##plot(t,X, label='$x(t)$')

###plot(t, X)

##legend(loc=0)

""" Numerical Test for w(t) """

##plot(Z[2:len(Z)-1],W[2:len(W)-1], 'y+', label='$\mathrm{num. estimated}$ $\omega (t)$')

##plot(Z[2:len(Z)-1],Wt[2:len(Wt)-1], 'r-', label='$\mathrm{predicted}$ $\omega (t)$')

#yscale('log')

#xlim(2.5, 4.0)

#ylim(4,8)

##plot(X, R, '-y')

##xlabel('$x$')

##ylabel('$r$')

#legend(loc = 0)

""" Plotting the volatility (std(returns)) """

##subplot(212)

##plot(t, dR, label='$\sigma (r)$')

##ylabel('$\mathrm{volatility}$')

###xlim(1.6,2.0)

###ylim(-3,3)

##legend(loc=0)

""" volatility clustering """

##subplot(312)

##vc = vclustering(R2)

##plot(vc, label = '$C_{1}(t)$')

##t1 = array(t)

##plot(t1**(-0.5))

###xscale('log')

###yscale('log')

###title('V-clustering and Leverage Effect')

##legend(loc=0)
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""" Leverage Effect """

##subplot(313)

##l = leverage(R2)

##plot( l, label = '$L(t)$')

##xlabel('time lag')

##ylabel('$L$')

##legend(loc=0)

""" Plotting a sample Brownian Path """

##subplot(313)

###plot(t, Wx, 'b-', label='$W_x$')

##plot(t, dWy, 'y-', label='$W_y$')

###ylabel('$W(t)$')

##legend(loc=0)

""" Phase portrait """

##subplot(212)

##plot(X,R)

##xlabel('$x$')

##ylabel('$v$')

#savefig('Freq_Comparison', dpi=600)

show()

C.2. FPE

For simulation of the corresponding Fokker-Planck-Equations, the FiPy package [77] was em-

ployed which uses an object-oriented implementation of the class of Finite-Volume methods

to discretize any given partial di�erential equation of the form

∂t(ρφ)− [∇ · (Γi∇)]n φ−∇(uφ)− Sφ = 0 (C.1)

"""

This script simulates the Fokker-Planck equation of the Lamperti transformed

CIR-VR process

d_t p(y,t) = -d_y[-m/(2*(1-m))*y^(-1)]p(y,t) + 0.5*d^2_y p(y,t)

These terms are named transient, convection and diffusion term,

respectively.
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Author: Oliver Engler

December 9, 2009

"""

""" Initializations """

from fipy import *

from numpy import *

from pylab import *

""" Building a 1d linear grid with nx evaluation points that are equally spaced

with interval dx """

nx = 900

dx = -0.01

mesh = Grid1D(nx=nx, dx=dx)

"""

Suggested by D. Wheeler, seems not to work however. Intention was to

build a solution domain (grid like (-5,...,0,...,1.0))

"""

##x0 = -5.0

##xn = 1.0

##nx = 100

##mesh = Grid1D(nx=nx, dx=(xn - x0) / nx) + ((x0,)))

m = 1.5

D = 0.5

y = mesh.getFaceCenters()

""" Initial Conditions """

p = CellVariable(name = '$p(y),$ $m=1.5$', mesh = mesh, value = 1.0, hasOld=False)

""" Boundary Conditions """

bc=(FixedValue(faces=mesh.getFacesRight(), value=0.0))

""" Defining the integration time """

timeStepDuration = 0.01

steps = 50

t = timeStepDuration*steps

""" The main loop """

eq1 = TransientTerm() == -ExponentialConvectionTerm(coeff = \
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m/(2*(y)*(m-1.))) + ImplicitDiffusionTerm(coeff=D)

eq2 = TransientTerm() == -ExponentialConvectionTerm(coeff = \

m/(2*(y)*(m-1.))) + ExplicitDiffusionTerm(coeff=D)

eqCN= eq1 + eq2

#eq1.solve(var=p, boundaryConditions=bc)

for step in range(steps):

eqCN.solve(var = p, dt = timeStepDuration)

if __name__ == '__main__':

viewer=Viewer(title='PDF of Lamperti transformed CIR-VR (FPE)',

vars=(p))

viewer.plot() # save image requires filename = 'xy.pdf' in brackets
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D. Empirical Findings in Financial

Markets: Stylized Facts

D.1. Overview

In this section, we give a short overview of the empirical facts that are known about markets

and asset returns in general. Our guideline for this is the review article by Rama Cont

published in 2001 [28]. The wording 'stylized facts' can be dated back to 1961 when economist

Nicholas Kaldor1 �rst used it in a debate about the expansion of a model he had introduced

four years earlier [59, 60]. In [61], a stylized fact is de�ned as 'a simpli�ed presentation

of an empirical �nding' in the social sciences and particularly economics. Although there

may be inaccuracies in detail due to the broad and generalized character of summarizing

statistical computations into short stylized facts, they are essentially true statements about the

considered systems. For example, 'Education signi�cantly raises lifetime income.' is a stylized

fact about the labour market although holding a PhD - the highest possible educational degree

- may actually lower lifetime income since many PhD holders stay in the academics rather

than entering much better paid �elds and most PhD candidates do not get wages that re�ect

their actual market value [62]. These stylized facts are known to be found in any market

which might be surprising: After all, it is unclear why properties of various assets such as

commodity futures, blue chip stocks or the Euro/Dollar exchange rate should be similar. And,

as �nancial market history has shown, not only similar but essentially equal. It is therefore a

very important feature of any economic model to re�ect at least some of these stylized facts.

Thus, a thorough examination if a model, i.e. a stochastic model process, exhibits certain

stylized facts and if so, which ones, is of great interest since 'most currently existing models

fail to reproduce all of these statistical features at once' [28]. The most important stylized

facts for which we will investigate our model in the following are:

1British economist, 1908 - 1986, most renowned for his contributions to welfare economics and economic
growth theory.
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1. Short-range correlation of returns

The linear autocorrelation of asset returns

C(τ) = corr(r(t), r(t+ τ)) (D.1)

in liquid markets decays to zero very fast re�ecting no signi�cant serial dependence in the

data, very much like a white noise process (see D.1). This absence of autocorrelation [69,

70] has been put forward as empirical evidence of the 'e�cient market hypothesis' and is

comparably easy to understand in that it excludes the possibility of statistical arbitrage

which is a trading strategy with positive expected earnings based on the correlation of

returns. Therefore, statistical arbitrage 'tends to whiten the spectrum of price changes'

[28] and time series analysis methods cannot distinguish between price changes and a

white noise process. It should be noted that autocorrelation has been found no longer

absent when the time scale of the underlying data is increased [28]. In consequence,

monthly returns often do show signi�cant autocorrelation.
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Figure D.1.: Autocorrelation (ACF) as a function of time lag τ of a standard Wiener process.
The 95% con�dence interval indicates that only values out of it are signi�cantly di�ering from
zero.

2. Long-range correlation of volatility

The phenomenon of signi�cant serial dependence in �nancial data is also referred to as

volatility clustering and re�ects the experience of probably anyone who has ever tried to

invest in the stock market: 'High volatility events tend to cluster in time'. A 'normal'

volatility time series thus features sudden bursts of volatility where returns exhibit a
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high degree of variability (see �gure D.3). A measure commonly used to quantify this

stylized fact is

Cα(τ) = corr(|r(t+ τ)|α , |r(t)|α) (D.2)

where the usual choice is α = 2.2 Several studies that have used this measure remark

that this ACF is in general positive and remains positive decaying slowly to zero [72, 28].

The VDAX of the Deutsche Boerse AG maps the behavior of the volatility of the German

DAX over time and is often referred to as a measure for fear in the market. Figure D.2

shows the VDAX for the time period from 01/2000 through 11/2009.

Figure D.2.: The VDAX as a measure of volatility in the market [51]. One can see that times
of a low level are intermittently interrupted by times of comparably high levels that can last
up to several months especially after external shocks such as 9/11, the beginning of the US
invasion of Iraq (February 2003) or the full impact of the bursting of the US real estate bubble
on Europe's economy (end of 2008).

3. Leverage e�ect

As has been pointed out by Black [53] and Bouchaud [47], �nancial markets exhibit a

negative correlation between past returns and future volatility, a fact sometimes also

termed 'volatility asymmetry' This means that the higher an assets' past returns have

been the smaller its future volatility will be and vice versa. While indenti�ed as a stylized

fact and thus more or less present in any �nancial market, economic interpretation and

even the causality of the e�ect ('volatility increase induced by price drop or do prices

simply drop after a volatility increase?' [28]) are subject to a lively scienti�c debate.

The psycological fact this seems to mirror is that investors tend to be more nervous if

preceding price moves have been downwards whereas they rather tend to believe that the

2contrary to the �nding that absolute values of returns (α = 1) seem to be 'more predictable' [28] in that the
correlation is highest in that case - in the majority of publications, this constitutes another stylized fact
on its own and hence its state in this work.
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Figure D.3.: Daily returns of BMW shares from 1992-98, taken from [28]

'boom will last forever' if preceding moves were up, a conjecture that might be closely

related to the formation of �nancial bubbles. In the literature [28, 47], the leverage is

de�ned as

L(τ) = corr(|r(t+ τ)|2 , r(t)) (D.3)

and has been reported to 'start from a negative value' and to 'decay to zero' [28]. The

leverage e�ect is commonly interpreted as an evidence of the conjecture that volatilities

are correlated while returns are not.

4. Bubbles and crashes

Bubbles and the following crashes have been documented ever since markets in our

modern sense of the word exist. The following table D.1 lists a few very prominent

speculative excesses.
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t Name Time Period A�ected Countries Object of speculation

Tulip Mania 1636-37 Netherlands tulip bulbs,

stocks (Dutch East India Company)

South Sea Bubble 1720 GB stocks (British South Sea Company)

Railway Bubble 1847-57, 1873 GB, Europe, USA stocks (railway companies),

real estate, wheat

Noble Metal Mania 1893 USA, Australia silver, gold,

gold mines and land

Great Crash and Depression 1929-38 USA, world credit backed stock investments,

investment trusts

Black Monday 1987 USA, world stocks, Dollar,

luxury real estate

Japan Inc. 1990-? Japan stocks (NIKKEI), real estate

Asian Crisis 1997 Hongkong, real estate, bank credits,

Singapore, local currencies and stocks

Korea . . .

Dotcom Bubble 1996-2001 USA, world stocks ('New Market')

Real Estate Bubble 2002-2007 USA, world real estate investments,

mortgage backed securities

Table D.1.: A few of the most prominent bubbles of economic history, after [15, 16]

5. Heavy tails

Return distributions usually exhibit power law tails which re�ects the �nding that com-

parably large gains and losses or too frequent to be explained by an underlying Gaussian

normal distribution. More concretely, the distribution of a random variable X is said to

be heavy-tailed if

P(X > x)
x→∞∝ x−α, α > 0. (D.4)

where P(X > x) denotes the probability for the stochastic process X to take a value

greater than x. Empirically, one has found that for the tail index α of �nancial market

return distribution data, it holds that 2 < α < 5 [28]. Precise tail index estimation is

not always easy and it has been subject to discussion whether a simple log-log regression
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is always appropriate [55, 56].

Figure D.4.: A 'fat tailed' distribution in comparison to the Gaussian normal distribution,
picture taken from web site [54].

6. Slow decay of autocorrelation in absolute returns

It has been found that, unlike the autocorrelation of returns, the autocorrelation of

absolute returns decays very slowly (as a function of time lag) and roughly as power law

with an exponent β within [0.2, 0.4], i.e.

Cα ∝
A

τβ
(D.5)

Other points often closely related to these stylized facts include the observed gain/loss asym-

metry in return time series which alludes to the observation that large drawdowns are over-

represented compared to upward movements of similar amplitude. However, this is not true

for currency exchange rates where a higher symmetry has been documented. Moreover, Cont

[28] lists intermittency as a stylized fact for return time series emphasizing that 'a high degree

of variability' should be present 'at any time scale' and the volume/volatility correlation which

means that the 'trading volume is correlated with all measures of volatility'. However, the

author considers these as rather obvious facts about such time series and concludes with the

example of the Volkswagen stock which skyrocketed from a 200 EUR level to over 1000 EUR

within only two days in October 2008! When looking at the actual number of transactions

involving the VW stock compared to the respective transaction volumes, this can be seen as

a good example for the volume/volatility correlation.
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Figure D.5.: October 2008 - Volkswagen skyrockets to over 1000 EUR after Porsche announced
to take over 75 % of the VW company, picture taken from [57].

D.2. Known Issues About Asset Return Time Series

Allthough this work is not focussing on empirical analysis of asset returns or prices, it is still

worth mentioning a few issues about statistical methods and estimations which we will do

very brie�y in the following paragraph.

D.2.1. Stationarity

It is a common misbelief among investors - and at this point, we are coming back to the as-

sumptions of the Ide-Sornette model from the very beginning - that past returns can be simply

extrapolated to the future. Such an attitude might be characteristic for the trend followers

in the present model since they will enter the market if the preceding moves were up and

vice versa. Obviously, such an investment behavior is enforced and promoted by investment

consultants who often begin to massively advertise their products with their respective past

performances suggesting the trend would go on forever. However, it is not clear whether return

time series verify this property, i. e. that for any set of time instants and any arbitrary time

lag τ , the joint distribution of the returns r(t1), . . . , r(tk) is the same as the joint distribution

of returns r(t1 + τ), . . . , r(tk + τ).
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D.2.2. Ergodicity

Ergodicity in a system implies that 'time average equals ensemble average'. As an example,

consider rolling one dice a thousand times and taking the average of pips which should give a

value of 3.5 as expected value for the number of pips (otherwise the dice we used would not be

fair). The ergodic theorem now tells us that, instead of rolling one dice a thousand times, we

might as well throw one thousand dices at once without a�ecting the result of our experiment.

In a more physical language: consider the hypersurface H(~q, ~p) = E associated with some

process. Ergodicity of the system hence implies that the neighbourhood of any point x ∈ H

is actually visited by the system in�nitely often3.

Despite the undisputed power of the ergodic theorem which is the basic axiom of statistical

physics as we know it today, it is worth noting that the theorem breaks down in case of

spontaneous symmetry breaking, especially in case of phase transitions. Note also that the

ergodic theorem is still not rigorously proven [27]. Moreover, Bouchaud [48] has pointed out

that ergodicity can fail if a physical system exhibits long-range dependencies.

D.2.3. Reliability of Autocorrelation Functions

We have seen that the empirical stylized facts for �nancial markets are mostly de�ned over

ACFs of the returns or some functions of them. However, it can be problematic to interpret

these ACFs if the features of the underlying model or process are either not known at all or not

the ones that ACFs were originally developed for. According to Cont [28] ACFs were developed

to analyze dependence in linear and Gaussian time series data whereas Mikosch and Davis [73]

have demonstrated that the presence of heavy-tailed distributions can give rise to non-standard

statistical properties of the ACF and even invalidate some econometric testing procedures. In

particular, the sample ACF remains a reliable estimator for the theoretical ACF but with

a much slower rate of convergence ultimately widening the con�dence bands for the sample

ACFs. Another problem is that some sample ACFs use squares of returns such as introduced

in the measures for volatility clustering and the leverage e�ect which causes 'a great deal of

variability in sample autocorrelations of returns' [28]. It is therefore not always meaningful to

draw quantitative conclusions from sample ACFs of heavy-tailed nonlinear return time series,

especially where functions of returns or their absolute values are used. To conclude, it remains

to be said that estimation of the con�dence bands for nonlinear and non-Gaussian time series

is a science of its own.

3this is sometimes also referred to as 'molecular chaos' meaning that any point on the hypersurface is equally
probable
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