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Chapter 1

Introduction

This thesis was developed within the financial and risk modeling group of
Scor - a reinsurance company with worldwide operations. Interest rates and
inflation are very important risk factors for the insurance industry due to
the fact that insurance is a long-term business where premiums are collected
today and claims are paid out in the future. High and unpredicted inflation
can seriously distort the ability of insurance company to cover the insured
losses of the counterparties. Interest rates influence the ability of the com-
pany to generate positive returns on the money invested. If inflation is
higher than interest rates than the insurance company instead of saving and
increasing money loses them. Wrong expectations about the risks associated
with inflation and interest rates can eventually lead to the insolvency of the
company.
The goal of this thesis is to check and if necessary to modify the key as-
sumptions of the original models developed in [Müller et al., 2010] for the
interest rates and inflation simulation. These models are used in the Eco-
nomic Scenario Generator (ESG) - a tool being developed within Scor for the
simulation of the risks associated with key macroeconomic factors. Inflation
and interest rates are assumed to be weak mean-reverting processes. The
interdependencies between interest rates and inflation are modeled via the
introduction of the real interest rates (interest rates adjusted for inflation)
which influence both of them.
The real interest rates behavior suggest that they are mean-reverting pro-
cesses which exhibit stronger mean-reversion than interest rates or inflation
alone. Thus, the interest rate process is governed by two mean-reverting
forces: the first comes from interest rates and the second one from real in-
terest rates. The inflation process is simulated in a similar way, i.e. as a
process driven by two mean-reversions: inflation mean-reversion and real
interest rate mean-reversion.
Preliminary analyses showed that inflation rises or falls occur slightly in ad-
vance compared to the interest rates rise or fall. It means that interest rate

1



can be partially predicted by inflation. This fact is reflected in the ESG
modeling.
We aim to check the assumption of strong mean-reversion of real interest
rate and calibrate the parameters of this mean-reversion. Another goal is
the estimation of the mean-reversion parameters of inflation and interest
rates and the analysis of the relevant lead-lag effects.
This report is organized in the following way. The first two chapters are
devoted to the description of the data and the data sources used for the
analysis. The third chapter briefly describes the ESG and the original mod-
els used for its simulations. We have to emphasize that aim of the third
chapter of this report is not to give a detailed description of the models
but rather to establish the direction of the research. The problem of sea-
sonality in inflation is addressed in the fourth chapter. While not being
one of the goals of this work seasonality is an inherent property of the in-
flation and its impact on the results of analysis should be minimized. The
lead-lag analyses are presented in the fifth chapter. Finally, we focus on the
mean-reversion analyses in the sixth chapter. The detailed description of the
Ornstein-Uhlenbeck model, its parameters, calibration technique as well as
the results of the tests on various time series are outlined in the six chapter.
As a main result of this work we are able to give some recommendations on
the parameter choice for the ESG. At the end, some concluding remarks are
made in the seventh chapter.



Chapter 2

Data and sources of data
used in the analysis of
inflation

In this chapter we discuss inflation and the Consumer Price Index (later
referred as CPI).
In the first paragraph the brief description of inflation rate and the Consumer
Price index is given together with the sources of data used in the analysis.
The second paragraph gives the formal definition of inflation rate. The Eu-
rozone CPI reconstruction technique originally implemented by Fabio Sigrist
for SCOR in 2008 (see [Sigrist, 2008]) and used in our analysis is presented
in the third paragraph.
The Consumer Price Index construction is outlined in the section A.1 of the
Appendix of this report.

2.1 Inflation and Consumer Price Index

2.1.1 General information

The inflation is defined as the rate at which the general level of prices for
goods and services rises and deflation , consequently, is the rate at which
the general level of prices for goods and services falls. In case of inflation
the unit of currency looses its purchasing power with the time while in case
of deflation the unit of currency gains the purchasing power.
One of the biggest questions is how to measure inflation. Usually,the Con-
sumer Price Index is used as the general proxy for inflation.The CPI is a
measure of average level of prices for goods and services consumed by the
average household in a given area. It measures changes in price level for
the same set of goods and services from one period to another.The CPI is
the relative rather than exact measure of price changes. It is not valued in
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currency units of the country. Usually, the price level of one of the years is
taken as the reference (for example 100 points for year 2005) and the rest is
measured with respect to this reference.
There are several major problems related to an adequate CPI evaluation. In
order to ensure the comparability of the CPI among the years it has to gauge
prices of the same items. However, the set of goods and services captured
by the CPI is not constant but slowly changing together with the changing
structure of consumption. People had different preferences and economy
produced different goods one hundred years ago. As a consequence, the CPI
is a slowly changing measure.
There are also several kinds of the CPI assessed for different consumption
baskets and different regions. For example, there is a CPI which measures
price level excluding food and oil which is called the core CPI . There are
also CPIs measured separately for urban and rural areas, etc. All of those
different CPIs could be regarded as different proxies for the price level and
raise an important question of choosing the one which serves the purpose
best.
CPIs of different countries are usually measured by the National Statistical
Bureaus and published every month. National Statistical Bureaus of differ-
ent countries have different statistical methods for calculating their CPIs.
These differences are caused by dissimilar consumption baskets of nations
as well as by the number of other reasons. The comparability of the CPIs
across the countries is an essential issue too.
We use the so-called general CPI for analysis. It usually contains costs
of food, beverages, clothing, fuel, transportation, medical care, education,
telecommunication, leisure goods and other services. Sometimes, it also in-
cludes rents for housing and owner-occupied housing costs.
Inflation is the change of CPI from one period to another and is usually
calculated as the return of CPI.

2.1.2 Why measuring inflation is important

High or unpredictable inflation can have a negative impact on the economy.
It distorts the firms’ long-term plans. The uncertainty about future real
value of money can significantly discourage investment decisions. Pension
funds, insurance companies and other financial service firms closely watch
inflation in order to ensure positive real return on investments.
Having clear expectation about inflation is important for the appropriate
allocation of the investment portfolio preventing it from loosing its real
value in case of returns being inferior to the inflation.



2.1.3 Data used

The analysis is performed with the historical CPI data of five countries:
the USA, the UK, the Eurozone, Japan and Switzerland, downloaded from
Bloomberg. Bloomberg takes data from Eurostat for the Eurozone and from
the OECD (Organization for Economic Cooperation and Development) for
the rest. The OECD, in turn, gets the data from the National Statistical
Bureaus of the corresponding countries. The more detailed description of
CPIs by country is given in A.1 paragraph of the appendix.
For the analysis of inflation we use the general CPI Index. The longest pe-
riod of time that is available in Bloomberg is almost 50 years: starting from
January 1960 till July 2009 for all the countries except the Eurozone.
The Eurozone CPI data exists only from January 1996 which is too short
for a reliable statistical analysis. For this reason, we build the synthetic Eu-
rozone CPI based on the German and French CPIs (see 2.3 for the details)
which allows us to overcome the problem of data scarcity. The reconstruction
goes back to January 1988 because of the minimum data length requirement
of 20 years for the ESG.
We searched for the alternative to Bloomberg sources of data to obtain the
longer history for the study of the mean-reversion of inflation rates. We
found the longer history for the USA CPI in [Shiller, 2000]. The series
downloaded from Shiller’s homepage spans the period of time of around 140
years starting on January 1871.
We decided to conduct our study on monthly rather than quarterly data to
get more statistically reliable results, despite the fact that only quarterly
data is employed for the ESG simulations at the moment.

2.2 Logarithmic inflation

Inflation in our analysis is defined as the logarithmic return of the CPI.
In fact, we use two different types of inflation, depending on the analysis
performed. The reason for this is data artifacts such as seasonality and
short-term mean-reverting noise, which are discussed later in this report.
Let It be the annualized monthly logarithmic inflation at time t ,this variable
is used in the analysis of seasonality and defined as follows:

It = ln

(
CPIt
CPIt−1

)
· 12, (2.1)

Annual logarithmic inflation Iyt is used in the mean-reversion analysis
and is calculated in the following way:

Iyt = ln

(
CPIt

CPIt−12

)
. (2.2)



X a b1 b2 R-squared

Annual 0.0042 0.7070 0.2872 0.9324

Monthly 0.0048 0.8360 0.0967 0.6491

Table 2.1: Results of linear regressions for monthly and annual inflation
series.

2.3 Eurozone CPI Reconstruction

The monthly CPI data for the Eurozone obtained from Bloomberg dates
back to January 1996. The ESG uses data from January 1988 for its runs,
this is why we had to reconstruct the Eurozone CPI.
The synthetic CPI is build to extend the history for another 8 years using
the data of German and French CPIs. The linear regression model is fit to
the yearly inflation (eq. 2.3) and monthly inflation data (eq. 2.4). Yearly
inflation model and monthly inflation model are defined as follows:

ln

(
Eurozone CPIt
Eurozone CPIt−12

)
= a+ b1 · ln

(
French CPIt
French CPIt−12

)
(2.3)

+ b2 · ln
(

German CPIt
German CPIt−12

)
+ εt,

ln

(
Eurozone CPIt
Eurozone CPIt−1

)
= a+ b1 · ln

(
French CPIt
French CPIt−1

)
(2.4)

+ b2 · ln
(

German CPIt
German CPIt−1

)
+ εt.

Goodness-of-fit statistics (R-squared) is examined in order to determine
the best model. The results of the analysis are shown in table 2.1. According
to the R-squared statistics, the model (2.3) is the one that better describes
the data, thus it becomes a natural choice for the CPI data reconstruction.



Chapter 3

Data and sources of data
used in the interest rate
analysis

In this chapter we discuss interest rates.
We use a variety of different interest rates and interest rates data sources
for the research. Different data sources are considered mainly for two rea-
sons: first, we are aiming to test our hypothesis 4.3 on data from different
countries and, second, one particular source does not always contain data of
required quality (i.e. there can be missing values, or the data series might
be too short).
In the first paragraph the detailed description of the interest rate data and
its origin is given. The formal mathematical definition of interest rate as it is
understood in the context of this report can be found in the second section.
Third paragraph is devoted to the description of interest rate data recon-
struction procedures used for the extension of some of our data series. The
Eurozone interest rate reconstruction technique follows the work of Fabio
Sigrist on the data reconstruction for the Economic Scenario Generator (see
[Sigrist, 2008]) while the U.S. 10 years interest rate interpolation is the one
used in [Shiller, 2000].

3.1 Interest rates. Data used

The government yields for the USA, the UK, Eurozone, Japan and Switzer-
land are used as proxies for the risk-free interest rates. We have chosen
three different maturities for the research: 3 months, 1 year and 10 years.
Our choice is based on the fact that 3 months interest rates are the ones
that are most influenced by the Central banks’ regulatory actions, while 10
years interest rates mostly reflect the expectations of the market and 1 year
interest rates are important benchmark rates for the economy and can be
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regarded as a sort of compromise between long-term and short-term rates.
Our analysis is conducted only with three maturities stated above.
We employed Bloomberg as a primary source of data. Data for the USA
and the UK interest rates exist from April 1991, Japanese interest rates time
series date back to September 1992, Swiss interest rates start in February
1994 and the Eurozone interest rate time series start on December 1998.
The longest data series have 18 years of data and the shortest ones only 10
years.
Mean-reversion analyses usually require sufficiently long series to catch pe-
riodic movements of the underlying process. We made a research on the al-
ternative data sources which could provide us with longer data series. When
they could not be found, we used a data reconstruction models described in
paragraph 3.3, taking Bloomberg data as a base for reconstruction. Recon-
structed series go back to January 1988.

The alternative sources of data used are described below:

The USA. USA interest rates are provided by the U.S. department of Trea-
sury. These rates are known as Constant Maturity Treasury(CMT)
rates. Yields are interpolated by the Treasury from the daily yield
curve which is based on the closing market bid yields on actively
traded Treasury securities in the OTC market. The Treasury Yield
Curve Methodology is published on the U.S. Treasury website 1. The
3 months interest rate dates back to January 1982, 1 year and 10 years
- to April 1953.
The International Monetary Fund (IMF) database also contains data
for 3-month Treasury bills, obtained from secondary market and cal-
culated on a discount basis. These data series start on January 1934.
[Shiller, 2000] uses the long-term interest rate dating back to January
1871. The series is interpolated from the annual data series which
starts on January 1871. For the details of interpolation refer to sec-
tion 3.3.2 of paragraph 3.3. Note, that we have got the U.S. CPI series
starting on January 1871 as well.

The UK. The UK nominal spot curves are estimated by the Monetary
Instruments and Markets Division of the Bank of England. The 1 year
and 10 years curves are provided by the Bank of England from January
1970. They are based on yields on UK government bonds (gilts). The
methodology used to construct yield curves is described in the Bank of
England Quarterly Bulletin article [Anderson and Sleath, 1999a], and
a detailed technical description can be found in the [?].
The 3 month interest rate data provided by Bank of England has a

1http://www.ustreas.gov/offices/domestic-finance/debt-management/

interest-rate/yieldmethod.html

http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yieldmethod.html
http://www.ustreas.gov/offices/domestic-finance/debt-management/interest-rate/yieldmethod.html


lot of missing values, for that reason we proceed with the 3 months
Bloomberg data and extend the history till January 1988.

The Eurozone. Any alternative source of the Eurozone interest rates would
provide us with the reconstructed data, so we made the reconstruc-
tion by ourselves. Eurozone interest rates are extended for more than
10 years to January 1988. For details refer to subsection 3.3.1 of the
paragraph 3.3.

Japan. We selected the Bank of Japan yield on 10 years TSE bonds as the
long-term interest rate. The series begins in 1986.
As the benchmark for 3 months and 1 year interest rates we chose
’Average Interest Rates on Certificates of Deposit/60 days - 89 days’
and ’Average Interest Rates on Certificates of Deposit/180 days - less
than 1 year’ respectively. They date from April 1985 and April 1986
respectively 2. Japanese Treasury Bills rate as well as Japan 10 years
government rates are provided by the International Monetary Fund
dating back to January 1957 and October 1966 respectively. These
series are used for our analysis too.

Switzerland. The Swiss National Bank presents information on yields on
Swiss Confederation bonds with maturities from 2 to 10 years, all the
series initiate on January 1988 3.

Swiss Franc 3 months and 12 months LIBOR rates serve as the bench-
marks for short term interest rates in our analysis. The publicly avail-
able series start on January 1989 and can be found on the Swiss Na-
tional Bank web page.
Swiss Treasury Bills rates as well as Swiss government rates can be
downloaded from the International Monetary Fund database. These
two series start on January 1980 and January 1964 respectively.

We use data from different sources and of different length for our analysis.
The table which summarizes the key information about interest rate time
series is shown in Table 3.1.

3.2 Logarithmic interest rate

Interest rate in our analysis is defined as the logarithmic interest rates

Rt = ln (1 + rt), (3.1)

2You can find these data series in the following address
http://www.stat-search.boj.or.jp/index_en.html)

3 For details on calculation refer to
http://www.banque-nationale.ch/en/mmr/reference/renditen_book/source

http://www.stat-search.boj.or.jp/index_en.html)
http://www.banque-nationale.ch/en/mmr/reference/renditen_book/source


Country Maturity Source Rate Start End Size

USA

3 months
IMF Treasury bill 01.1934 11.2009 911

U.S. Treasury CMT rate 01.1982 10.2009 334
1 year U.S. Treasury CMT rate 04.1953 10.2009 679

10 years
Shiller Treasury bonds Rec 01.1871 11.2009 1667

U.S. Treasury CMT rate 04.1953 10.2009 679

UK
3 months

Bloomberg Government bonds Rec 01.1988 07.2009 259
Bloomberg Government bonds 01.1991 07.2009 220

1 year Bank of England UK Nominal spot rate 01.1970 10.2009 478
10 years Bank of England UK Nominal spot rate 01.1970 10.2009 478

Eurozone

3 months
Bloomberg Government bonds Rec 01.1988 07.2009 259
Bloomberg Government bonds 01.1998 07.2009 128

1 year
Bloomberg Government bonds Rec 01.1988 07.2009 259
Bloomberg Government bonds 01.1998 07.2009 128

10 years
Bloomberg Government bonds Rec 01.1988 07.2009 259
Bloomberg Government bonds 01.1998 07.2009 128

Japan

3 months
IMF Treasury bills, bid 01.1957 12.2009 636

Bank of Japan Certificate of Deposit 04.1985 10.2009 295
1 year Bank of Japan Certificate of Deposit 04.1986 10.2009 283

10 years
IMF Gvt Benchmarks, bid 01.1966 12.2009 520

Bank od Japan Yields on TSE Bonds 01.1986 10.2009 286

Switzerland

3 months
IMF Treasury bills, bid 01.1980 12.2009 360

Swiss National Bank CHF LIBOR 01.1989 09.2009 249
1 year Swiss National Bank CHF LIBOR 01.1989 09.2009 249

10 years
IMF Gvt Benchmarks, bid 01.1964 12.2009 551

Swiss National Bank Spot rate, CH bonds 01.1988 09.2009 261

Table 3.1: Summary of interest rates time series used in the analysis.



where rt is the spot interest rate at time t.

3.3 Data reconstruction

3.3.1 Data reconstruction of interest rates for the Eurozone.

The Eurozone data reconstruction is described in this section, more details
can be found in ’Government Bond Yields’ subchapter of the ’EUR’ chapter
from [Sigrist, 2008].
The synthetic Eurozone end of month data reconstruction for the period
from 1988 to 2008 is based on the monthly average Eurozone data from the
ECB and the German end of month data from the Bundesbank. For all the
maturities for which the ECB provides data (> 2 years), we calculate the
factor

fm
t =

ȳmt−2 + ȳmt−1 + ȳmt + ȳmt+1 + ȳmt+2

zmt−3 + zmt−2 + zmt−1 + zt + zmt+1 + zmt+2

, (3.2)

where ȳm denotes the monthly average yields from the ECB of bonds
with maturity of m years and zm denotes the end of month yield of the
corresponding bond from the Bundesbank. We then estimate the Eurozone
end of month yield ym as

ymt = fm
t · zmt . (3.3)

For yields of bonds with maturities of three months, six months, and
one year, we do not have monthly average data from the ECB. Nonetheless,

we calculate synthetic Eurozone yield data y
1/4
t , y

1/2
t and y1t using the same

factor f2
t as for the yields of bonds with two years maturity:

ymt = f2
t · zmt , m = 1/4, 1/2 and 1 year. (3.4)

The next step is reconstruction of synthetic yield data from Bloomberg
data. In summary, to reconstruct the yield data from Bloomberg data we
use the following model.

bt = a+ b ∗ yt + εt, (3.5)

where bt is the Bloomberg yield data, and yt is the synthetic reconstructed
data.

The models are fitted by least squares with data from 1999 to 2008.
The constants in 3.5 for the different maturities are reported in Table 3.2,
however, for this work we are only interested in reconstruction of bonds with
maturities of 3 months .



Maturity a b

3 months 0.0009 0.9402

1 year 0.0006 0.9779

10 years 0.0021 0.9310

Table 3.2: Linear regression (eq. 3.5) parameters estimated by the OLS .

3.3.2 Interpolation of the U.S. long-term interest rate

[Shiller, 2000] performs the interpolation of the U.S. long-term interest rate.
The original data set contains monthly data starting from January 1953
and annual data from January 1871. In order to obtain monthly time series
from January 1871 till January 1953, the calculations described below are
performed.
Assume that yt, for t = 1, · · · , 83 is the annual interest rate time series
starting on January 1871 and finishing on January 1953. The 11 data points
between yt and yt+1 are computed as follows,

y1t = yt, t = 1, · · · , 83, (3.6)

yit =
12− (i− 1)

12
· y1t +

i− 1

12
· y1t+1, i = 2, · · · , 12, (3.7)

where yit is the observation of the ith month of year t. This means that

y2t =
11

12
· y1t +

1

12
· y1t+1, t = 1, · · · , 82, (3.8)

y3t =
10

12
· y1t +

2

12
· y1t+1, t = 1, · · · , 82, (3.9)

· · · · · · · · · (3.10)

y12t =
1

12
· y1t +

11

12
· y1t+1, t = 1, · · · , 82. (3.11)

Thus, the linear interpolation is performed in order to get interest rates
on monthly basis from yearly time series. Linear interpolation is enough for
our purposes cause we aim to study long-term interest rates behaviour and
short-term(less than 1 year) variation is not so important for us.



Chapter 4

Economic Scenario
Generator

Economic Scenario Generator (or the ESG) is the project developed at
SCOR. The purpose of the ESG is to provide SCOR with tools for modeling
key macroeconomic variables behaviors in the future. Economic variables in-
clude interest rates, inflation, GDP, foreign ecxhange rates, equity indices.
The modeling of the economic scenarios is based on bootstrapping. The
bootstrap observations are drawn randomly from the empirical distribution
of the simulated variables. Dependencies, random shocks and GARCH ef-
fects are introduced into simulations depending on the variable. For more
details on the particular model for each economic variable refer to the main
document [Müller et al., 2010]. The resulting simulations allow SCOR to
assess risks associated with the macroeconomic factors.
We focus on the interest rates and inflation modeling in this study. In order
to formulate the direction of research of the current thesis we briefly intor-
duce the assumptions and the models of interest rates and inflation used in
the ESG.

4.1 Assumptions of the inflation and interest rates
models

The general idea of bootstrapping is to randomly pick past time ti and
assume that the observation of variable xi at this time is used as its value
in the future time tj . The drawback of this method is that variable xi will
never reach any unobserved in its history value. To overcome this problem
the ESG for its simulations uses innovations (i.e. changes) of the variables
rather then variables themselves. Thus, instead of picking xi at random
time ti, the change of the variable ∆xi is chosen.
The change of the variable (innovation) is defined as its deviation from its
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conditional expectation, i.e.

∆xi = xi − Ei−1 [xi] . (4.1)

The motivation to define it in this way is to be able to model stochastic part
of the innovation, i.e. deviation from its expected value.

The forecasted value at future point of time tj is defined as

xj = Ej−1 [xj ] + ∆xi, (4.2)

where ∆xi is the historical innovation at random point of time ti in the past.
In order to be able to calculate the innovations of all the variables and the
forecasted values, the expectation of the variable at time ti conditional on
the information available at the time ti−1, i.e. Ei−1 [xi], should be defined.
Modeling of interest rates and inflation is based on several important em-
pirical observations.
First, neither inflation nor interest rates are drifting off some interval and,
whenever extreme values are achieved, they eventually come back to normal
levels. This is an evidence of the mean-reversion property of the underly-
ing processes. However, the mean-reversion is not so strong to give a clear
answer on how fast these variables revert to normal levels. Interest rates
and inflation are assumed to be the mean-reverting processes with very low
mean-reversion speed. The figures of interest rates and inflation are given
in the chapter 7 on the figures 7.4 and 7.3.
Second, inflation and interest rates do not develop independently of each
other. Graphs of the inflation and interest rate together can be found on
the figure 7.5 of chapter 7, from which it can be seen that they drift to-
gether and difference between them stays in some range. This fact led to
an assumption that real interest rate, defined as difference between interest
rate and inflation, is exposed to mean-reverting forces on its own and these
forces are stronger than in the case of interest rates and inflation alone.
Third, inflation is leading interest rates, i.e. the positive (negative) change
in inflation leads to positive (negative) change in interest rate with a time
delay of several months. This fact can also be observed on the figure 7.5 to
some extent.

One of the main tasks of this thesis is to check the hypothesis formulated
above and first presented in the [Müller et al., 2010] and calibrate some rel-
evant parameters. The hypothesis we are aiming to check are:

1) Interest rates and inflation are weak mean-reverting processes.

2) Real interest rate is mean-reverting process with higher speed of mean
reversion than in the case of inflation and interest rate alone.



3)Inflation leads interest rates.

4.2 Inflation and interest rates models

Let us denote the real interest as ρadji at time point ti and define it as1

ρadji (T ) = ρi(T )− I∗i , (4.3)

where ρi(T ) is the forward interest rate at time ti for time interval [T, T +∆T ],
where ∆T =3 months, and I∗i is the seasonally adjusted inflation.

Assume, that ρadj is the long-term target for ρadji , or in other words, that

the real interest rate process reverts to ρadj , which is constant over time.
After defining a long-term target for real interest rate, we can draw a con-
clusion about long-term targets of interest rate and inflation. The inflation
and interest rate targets should be defined in a way that their difference
is long-term real interest rate target. The long-term target for inflation is
defined as follows

I∗i = I∗i − µ · (ρadj − ρadji ), (4.4)

and the long-term target for interest rate is

ρi = ρi + (1− µ) · (ρadj − ρadji ). (4.5)

Note, that the difference between 4.5 and 4.4 is

ρi − I∗i = ρadj , for every i. (4.6)

The hypothesis that inflation is leading interest rates is modeled in the
ESG by choosing µ < 1− µ.

As indicated above, inflation is influenced by two mean-reverting forces:
inflation mean-reversion and real interest rate mean-reversion. Its condi-
tional expectation formula should link two mean-reverting processes: in-
flation weak mean-reversion and real interest rate stronger mean-reversion,
i.e.

Ei−1 [I
∗
i ] = I∗i−1 + ηI

(
mI − I∗i−1

)
+ ξ

(
I∗i−1 − I∗i−1

)
, (4.7)

where ηI is the speed of inflation weak mean-reversion,
mI is the long-term constant mean towards which inflation reverts driven

1Note, that real interest rate defined here is different from the real interest rate RReal
i

that is used in our analysis later in 7.5, because it is defined through forward interest rates
and not spot interest rate.



by weak mean-reverting forces.
ξ is the speed of real interest rate mean-reversion and
I∗i is the target determined by real interest rate mean-reverting forces.

Similarly, interest rate conditional expectation should take into account the
weak mean-reversion of interest rate itself and the real interest rate stronger
mean-reversion, i.e.2

Ei−1 [ρi] = ρi−1 + ηρ (mρ − ρi−1) + ξ (ρi−1 − ρi−1) , (4.8)

where ηρ is the speed of interest rate weak mean-reversion, mρ is the
long-term constant mean towards which interest rate reverts driven by weak
mean-reverting forces. ξ is the speed of real interest rate mean-reversion
and ρi is the target determined by real interest rate mean-reversion.

Note that

Ei−1 [ρi − I∗i ] ≈ ρi−1 − I∗i−1 + ξ
(
ρadj − ρadji−1

)
, (4.9)

4.3 Conclusion. Hypothesis to be checked

In conclusion, we would like to summarize the main three hypothesis to be
checked in this work.

1) Interest rates and inflation are weak mean-reverting processes.

2) Real interest rate is mean-reverting process and the speed of mean rever-
sion is higher than in the case of inflation and interest rate alone.

3)Inflation predicts interest rates.

We also aim to calibrate mean-reversion parameters and understand the
extent of lead-lag effects in inflation and interest rates.

2In fact, model for interest rates is different and a simplified version of it is presented
here. The original model is as follows, let zi(T ) = Z

[
ρi(T ), σ

2
z(T )

]
be non-linear trans-

formation of ρi, then

Ei−1 [zi] = zi−1 + ηz (mz − zi−1) + ξ
√

m∆T
T

(
Z
[
ρi−1, σ

2
z

]
− zi−1

)
, for details refer to

[Müller et al., 2010]



Chapter 5

Seasonality in inflation and
seasonal adjustment
techniques

This chapter is devoted to the seasonality of inflation time series.
The proofs of seasonality in inflation time series are presented in the first
paragraph. The second paragraph contains a brief overview of the seasonal
adjustment techniques to give the reader an introduction to the existing
methods. The method of seasonal adjustment used in the ESG together
with its strong and weak sides is discussed in the third paragraph. The
last paragraph of this chapter describes our improvement of the method via
more effective seasonal adjustment technique. The fifth paragraph provides
the reader with the definition of the moving average operator employed in
the improved method of deseasonalization . For more information on this
topic see [Dacorogna et al., 2001]. The X-12-ARIMA method of seasonal
adjustment developed by the U.S. Census Bureau and employed by several
National Statistical Bureaus for the seasonal adjustment is discussed in the
fourth paragraph of this chapter.

5.1 Seasonality

It is well recognized that inflation is subject to cyclical movements. It is
normally higher in winter and spring and lower in summer and autumn.
For example, more fresh vegetables and fruits are available in summer and
autumn lowering the prices of the food. On the other hand, heating season
in winter pushes the prices of fuel up. These cyclical effects lead to sea-
sonality. While being an important fact, seasonality can seriously distort
the analysis of the long-term inflation behavior. In order to catch important
dependencies and trends in the time series evolution the inflation time series
needs to be first seasonally adjusted, i.e. the seasonal components of the
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time series have to be eliminated. To observe that inflation is subject to
seasonal variations and to study its seasonal pattern we use autocorrelation
plot for the inflation of several data series. If there are significant periodic
autocorrelations this will tell us that data series exhibit seasonal variations.

Definition 5.1.1. The autocorrelation is defined as a correlation of the
time series with itself over successive time lags. Let xt be a time series, xt+τ

time series shifted by the time τ , and x̄ and σ be the time series mean and
standard deviation respectively. Then the autocorrelation with the leg τ is
defined as

Autocorr(τ) =
E(xt − x̄) · E(xt+τ − x̄)

σ2
(5.1)

Definition 5.1.1. The autocorrelation plot is the plot of the time series
autocorrelations over successive time lags.

The autocorrelation plots of the USA inflation, the UK inflation, the
Eurozone inflation, Japanese inflation and Swiss inflation are presented in
figure 5.1. The underlying CPI time series are from April 1991.

For every monthly time series we can observe significant autocorrelation
at the 12th lag. This indicates the existence of one year cycle. It means that
inflation tends to rise (or fall) in the same months of the year. There are
other specific effects which differ from the one time series to the other.
The USA inflation demonstrates significant autocorrelation at 1 and 11
months lag in addition to 12th. The British, Eurozone, Swiss inflation au-
tocorrelation plots exhibit significant half of the year autocorrelations. In
addition to this, Eurozone inflation shows negative 4 and 8 months autocor-
relations, while Swiss and British inflation demonstrates negative 3 and 9
months autocorrelations. Japanese inflation autocorrelogram has negative
values for the 2nd,3rd,9th and 10th lags.
We can see some common and uncommon cyclical behaviors amongst the
different countries which suggest that the seasonal adjustment techniques
chosen should be able to deal with the different cyclical patterns. The
difference in the seasonal patterns can be explained by different consumer
behaviors as well as by different methods of evaluation of the CPI used by
National Statistical Bureaus.
The findings described below will further prove the presence of seasonality in
inflation data. We conduct a statistical test to identify whether the samples
consisting of the observations from different quarters of the year have the
same distribution.

Definition 5.1.1. The two-sample Kolmogorov-Smirnov test is used to
compare the empirical distributions of two samples X1, X2 to test the fol-
lowing hypothesis:
H0: X1 and X2 are drawn from the same continuous distribution.
H1: X1 and X2 are drawn from different continuous distributions.
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Figure 5.1: Autocorrelation plots of inflation.



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.00 0.00 0.00 0.44 0.00 0.00
K.-S. statistic 0.41 0.40 0.74 0.16 0.41 0.4

UK

p-value 0.01 0.92 0.04 0.02 0.00 0.03
K.-S. statistic 0.31 0.10 0.26 0.28 0.42 0.27

Euro zone

p-value 0.29 0.00 0.00 0.07 0.02 0.70
K.-S. statistic 0.20 0.39 0.35 0.24 0.29 0.13

Japan

p-value 0.01 0.15 0.72 0.72 0.01 0.03
K.-S. statistic 0.29 0.21 0.13 0.13 0.31 0.27

Switzerland

p-value 0.60 0.15 0.01 0.04 0.00 0.43
K.-S. statistic 0.14 0.21 0.30 0.26 0.35 0.16

Table 5.1: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonal inflation.

We form 4 samples of inflation data for each country:

• the first sample comprises the observations coming from the first quar-
ter of the year,

• the second sample - from the second quarter,

• the third and the fourth samples contain the observations of inflation
from the third and fourth quarters of the year respectively.

We chose quarterly samples rather than monthly because of the quarterly
character of seasonality and the possibility to get more reliable statistical
results with bigger samples. The two-sample Kolmogorov-Smirnov test is
performed on these four data samples.

It is clear from the table 5.1 that at least three out of six tests reject the
null hypothesis at the 5% significance level for every country.
Significant repeating autocorrelations together with the results of the Kolmogorov-
Smirnov test prove the existence of seasonal pattern in inflation time series
and show the need for efficient seasonal adjustment technique.

5.2 Seasonal adjustment techniques overview

Seasonality is usually considered to be an undesired feature of the time series
which can seriously distort the analysis. Seasonal adjustment is the process



of identifying and removing seasonal components from the time series. Sev-
eral seasonal adjustment techniques have been developed until now. We are
going to discuss some of them.
The easiest way to perform seasonal adjustments of the series with serial de-
pendency in lag j is to build j subseriesXk+(i−1)∗j , k = 1, · · · , j, i = 1, 2, · · · ,
then subtract from the subseries their own mean and add back the mean of
the whole series, i.e.

XSA
k+(i−1)∗j = Xk+(i−1)∗j −Xk +X, (5.2)

where XSA is the seasonally adjusted series, Xk is the mean of the kth sub-
series and X is the mean of the whole series X.
If a subseries has higher (lower) mean than the rest of the series, this excess
(resp. lack) is removed from it, thus getting rid of seasonal raise (resp. fall).
This method does not perform so well if seasonal excess or lack changes
over time. It can be improved by allowing the mean of the subseries and
the series to vary with time, thus suggesting to substitute the arithmetic
averages by moving averages.
Another method of seasonal adjustment is based on the use of dummy vari-
ables. Dummy variable for the seasonal component can be used in case of
the latter being constant:

Yt = α+ βXt + γ1D
1
t + γ2D

2
t + · · · γj−1D

j−1
t , (5.3)

where Xt is the explanatory variable and Dk
t , k = 1, · · · , j − 1 is the sea-

sonal dummy variable which is 1 if t is multiple of k and 0 otherwise.

Another big class of seasonal-adjustment procedures is based on ARIMA
(Autoregressive Integrated Moving Average) models. The general form of
the ARIMA (p, d, q) (P,D,Q) model is given below:

ϕ (B)Φ (Bs)
(
1−Bd

) (
1−BD

)
xt = θ (B)Θ (Bs) at, (5.4)

where xt is the time series, B is the backshift operator, i.e. Bxt = xt−1, s
is the seasonal period, ϕ (B) = (1− ϕ1 − · · · − ϕpB

p) is the nonseasonal au-
toregressive operator, Φ (Bs) =

(
1− Φ1B

s − · · · − ΦPB
Ps

)
is the seasonal

autoregressive operator, θ (B) = (1− θ1B − · · · − θqB
q) is the nonseasonal

moving average operator, Θ (Bs) =
(
1−Θ1B

s − · · · −ΘQB
Qs

)
is the sea-

sonal moving average operator and at ∼ N
(
0, σ2

)
.

We will not provide more details for ARIMA based seasonal adjustment
techniques because they were not considered to be suitable for the ESG
model due to the complexity of their implementation.



5.3 Seasonal adjustment method used in the ESG

A simple seasonal adjustment of inflation is implemented in the ESG. The
whole sample of seasonal inflation Ioriginal is split into four quarterly samples
Ih, h = 1, 4 (the ESG uses quarterly inflation series), than the seasonal
adjustment is performed by deducting the mean of the quarter and adding
back the mean of the whole sample.
Since we use monthly rather than quarterly samples for our analysis, an
extension of the method described above is applied to our monthly inflation
series. The seasonally adjusted inflation I∗ is

I∗hk = Ioriginalh+12∗(k−1) − Ih + Ioriginal, (5.5)

h = 1, · · · , 12, k = 1, · · · , Nh,

where Ih is the mean of the Ih subsample, Ioriginal is the mean of the original
sample of inflation and Nh is the number of elements in the hth subsample.
This method, while being computationally efficient, does not solve the task
of the deseasonalization entirely. The autocorrelation graphs 5.2 of the sea-
sonally adjusted series together with the two-sample Kolmogorov-Smirnov
test of figure 5.2 prove the insufficiency of the applied technique. The anal-
ysis shows significant autocorrelations at the 12th lag in the U.K. inflation,
at the 6th and 12th lags in the Eurozone inflation and at the 3rd ,6th,9th

and 12th lags in the Swiss inflation. Some of the Kolmogorov-Smirnov tests
reject the null hypothesis at the 5% significance level (see Japanese and
American data). Not all the seasonal components were removed from the
data. It can be partially explained by the dynamic nature of the seasonal
component of the series.

We were seeking to improve the existing technique or to find an alterna-
tive one. The idea for an improvement was to use moving averages instead
of arithmetic averages in the eq. 5.5 for the purpose of taking into account
changing seasonal component.

5.4 X-12-ARIMA model

The X-12-ARIMA was used as alternative technique for seasonal adjustment
in order to benchmark the results and the efficiency of our deseasonalization
methods.
The X-12-ARIMA is the software developed by the U.S. Census Bureau. It
is used for all official seasonal adjustments produced by the Census Bureau.
The X-12-ARIMA software can be used for forecasting seasonal series as
well as for identifying seasonal, irregular and trend components of the data
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Figure 5.2: Autocorrelation plots of seasonally adjusted inflation. The ad-
justment was performed with the ESG seasonal adjustment technique.



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.82 0.36 0.00 0.16 0.00 0.01
K.-S. statistic 0.12 0.17 0.33 0.20 0.35 0.30

UK

p-value 0.76 0.76 0.88 0.80 0.31 0.81
K.-S. statistic 0.13 0.13 0.11 0.12 0.18 0.12

Eurozone

p-value 0.52 0.78 0.81 0.76 0.88 0.97
K.-S. statistic 0.17 0.14 0.14 0.14 0.13 0.11

Japan

p-value 0.00 0.14 0.04 0.66 0.31 0.17
K.-S. statistic 0.33 0.21 0.26 0.13 0.18 0.21

Switzerland

p-value 0.64 0.50 0.72 0.48 0.88 0.24
K.-S. statistic 0.14 0.15 0.13 0.16 0.11 0.19

Table 5.2: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted with the ESG method inflation.

series. The X-12-ARIMA model also performs all the necessary statistical
tests to control for the adequacy of the model fit. The Census Bureau uses
the ARIMA(p, d, q) (P,D,Q) (see eq. 5.4 for details) model as the basis for
their seasonal adjustment and forecasting software. For the details refer to
the X-12-ARIMA Reference Manual1.

We use the X-12-ARIMA software as a benchmark to assess the per-
formance of our seasonal adjustment techniques. We applied the X-12-
ARIMA to our five series of inflation. The autocorrelation graphs and the
Kolmogorov-Smirnov test results for the deseasonalized series are shown in
figure 5.3 and table 5.3 respectively.

We can see that the X-12-ARIMA model was able to remove the sig-
nificant positive 12th lag autocorrelation for all the 5 samples. The 1st lag
autocorrelation of the U.S. inflation still remains and we can also see the
overcorrection effect in the significant negative 13th and 14th lag autocorre-
lations which did not exist in the original sample. The significant 6th lag
autocorrelation of the British inflation was removed together with the neg-
ative 3rd and 9th lag autocorrelations. The Eurozone seasonal 4th, 6th and
8th lag autocorrelations were eliminated. At the same time the 1st lag auto-
correlation (around 0.2) was introduced into the British and the Eurozone
samples. The autocorrelation function graph of Japanese inflation shows
that the Japanese seasonal components were removed. The Swiss inflation

1http://www.census.gov/ts/x12a/final/temp/x12adocV03.pdf

http://www.census.gov/ts/x12a/final/temp/x12adocV03.pdf
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Figure 5.3: Autocorrelation plots of seasonally adjusted inflation. The ad-
justment was performed with the X-12-ARIMA software.



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.51 0.94 0.19 0.46 0.23 0.78
K.-S. statistic 0.15 0.10 0.20 0.16 0.19 0.12

UK

p-value 0.56 0.68 0.56 0.99 0.24 0.37
K.-S. statistic 0.15 0.13 0.15 0.08 0.19 0.17

Eurozone

p-value 0.33 0.33 1.00 0.73 0.47 0.67
K.-S. statistic 0.20 0.20 0.09 0.15 0.18 0.16

Japan

p-value 0.38 0.61 0.07 0.69 0.52 0.82
K.-S. statistic 0.17 0.14 0.24 0.13 0.15 0.12

Switzerland

p-value 0.34 0.37 0.41 0.50 0.29 0.70
K.-S. statistic 0.17 0.17 0.17 0.15 0.18 0.13

Table 5.3: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted with the X-12-ARIMA inflation.

still exhibits the significant 6th lag autocorrelation as the original data.

The two-sample Kolmogorov-Smirnov tests performed on the seasonally ad-
justed data showed that H0 was not rejected at the 5% significance level in
all the cases, which means that after X-12-ARIMA adjustment there is no
statistical evidence that quarterly samples come from different distributions.

In conclusion, we can say that the X-12-ARIMA model managed to remove
most of the seasonal components of the data.
However, X-12-ARIMA is the product of the U.S. Census Bureau and cannot
be used for the seasonal adjustment in the ESG because of several reasons.
First of all, there is very limited way to influence and control the process,
second, the ESG does not need such a universal tool for seasonal adjustment
and by implementing something simpler, a higher computational efficiency
could be achieved.
The X-12-ARIMA fit the following ARIMA(p, d, q)(P,D,Q) models (see eq.
5.4) to our data: ARIMA(0, 0, 1)(0, 1, 1) to the U.S. inflation, ARIMA(0, 0, 0) (0, 1, 1)
to the U.K.inflation, ARIMA(0, 0, 0)(0, 1, 1) to the Eurozone inflation, ARIMA(0, 0, 0)(0, 1, 1)
to the Japanese inflation, and ARIMA(0, 0, 3)(0, 1, 1)to the Swiss inflation.
We notice that there are no autoregressive terms in the models and, as a
result, we decide to employ Moving Average in order to perform seasonal ad-
justment. The definition of the chosen Moving Average operator and some
related theory is given below in paragraph 5.5.



5.5 Moving Average operator introduction

5.5.1 Some important facts about operators

2

Let us consider an operator Ω with kernel K(t), defined as

Ω [I] (t) =

∫ t

−∞
K (t− t∗) · I (t∗) dt∗ =

∫ ∞

0
K (t∗) · I (t− t∗) dt∗, (5.6)

where I (t) is a continuous function of time.
An average operator has a kernel which is nonnegative and normalized to
unity, i.e. ∫ ∞

0
K (t) dt = 1, K (t) > 0. (5.7)

The range of the operator is defined in the following way:

R [Ω] =

∫ ∞

0
K (t) t dt. (5.8)

The width of the operator is defined as

ω2 [Ω] =

∫ ∞

0
K (t) (t−R [Ω])2 dt. (5.9)

The Exponential Moving Average operators have an exponentially de-
caying kernel.
The evaluation of the operator at initial time T is subject to an initializa-
tion error. The build-up time interval is the time which passes before the
initialization error is less or equal to a given value ϵ.
Assume, the process I (t) is known since time −T and modeled before as a
random walk with no drift,

Ω [I] (t) =

∫ t

−T
K (t− t∗) · I (t∗) dt∗. (5.10)

The average build-up error ϵ at time t = 0 is given by

ϵ2 = E

[(∫ −T

−∞
K (−t∗) I (t∗) dt∗

)2
]
. (5.11)

For a given build-up error ϵ this is the implicit definition of the build-up
time T .

2The original source of the theory on Moving Average operator is
[Dacorogna et al., 2001].



Assuming that I has a constant volatility σ, after some transformations (re-
fer for details to [Dacorogna et al., 2001])we arrive to the following formula
for ϵ,

ϵ2 = 2σ ·
∫ ∞

T
K (t) dt

∫ t

T
K (t∗) I (t∗ − T ) dt∗. (5.12)

The build-up interval T should be inferred from this equation. In most
of the times, the analytical solution of the equation 5.12 does not exists.
However, there is a simple rule of thumb: the heavier the tail of the kernel
the longer the build-up time is.
As a measure of the tail we can take the aspect ratio

AR [Ω] =

(∫∞
0 K (t) · t2dt

)1/2∫∞
0 K (t) · t dt

. (5.13)

5.5.2 EMA, iterated EMA and MA operators

Assume that we have a time series Ik, k = 1, · · · , N of length N . The
basic Exponential Moving Average model (referred as EMA) is the averaging
operator with an exponentially decaying kernel:

KEMA (k;n) =
e−k/n

n
, k = 1, · · · , N, (5.14)

where n is the range of the operator.

The exponential form of the kernel leads to the efficient discrete evalua-
tion with the following simple iterative formula

EMA1 (k;n) = µ · EMA1 (k − 1;n) + (1− µ) · Ik, k = 2, · · · , N, (5.15)

where µ = e−1/n.

With the above formula, the convolution can be calculated in a com-
putationally efficient way. The simple EMA has to be initialized with the
initial value

EMA1 (1;n) = EMAINIT . (5.16)

The range and the aspect ratio of the simple EMA are

REMA = n, (5.17)

and
AREMA =

√
2. (5.18)
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Figure 5.4: Exponentially decaying kernels of EMA, Iterated EMA and MA
operators. The range is equal to 3 for EMA and all of the MA operators. For
iterated EMA the range is equal to 3, 6, 9, 12 for j=1, 2, 3, 4 respectively.



The build-up time of the simple EMA is

T

n
= − ln ϵ+

1

2
ln

(σ
2
· n

)
, (5.19)

where σ is the volatility of the process Ik.

The basic EMA operator is iterated to provide for a family of iterated
operators with kernel KEMAI and a shorter build-up time

EMAj (k;n) = µEMAj (k − 1;n) + (1− µ)EMAj−1 (k;n) , (5.20)

k = 2, · · · , N ; j = 1, 2, · · · . (5.21)

The kernel of the iterated EMA is

Kj
EMAI (k;n) =

1

(j − 1)!

(
k

n

)j−1 e−k/n

n
. (5.22)

The iterated EMA operator has the following characteristics:

Rj
EMAI = j · n, (5.23)

ωj
EMAI = j · n2, (5.24)

ARj
EMAI =

√
j + 1

j
. (5.25)

The iterated EMA with the range j · n has a shorter build-up time than
the simple EMA with the range n. It is proved by the aspect ratio, which
is close to 1 for the large enough j.
We need to construct the operator which has the shorter build-up time than
the simple EMA and at the same time shorter range than the iterated EMA
operator.

The Moving Average (MA) operator that is used for seasonal adjustment
has shorter build-up time than the simple EMA and the same range as the
simple EMA

MAm (k;n) =
1

m

m∑
j=1

EMAj (k;n
∗) , m ∈ Z, (5.26)

n∗ =
2n

m+ 1
, (5.27)

µ = e−1/n. (5.28)



The parameter n∗ is chosen so that the range of MAm is n independent
of m,

RMA = n. (5.29)

MA is a family of rectangular-shaped kernels with the relative weight of
the distant path controlled by m

KMAm (k;n) =
m+ 1

m
· e

−k/n∗

2n

m−1∑
j=0

1

j!

(
k

n∗

)j

, k = 1, · · · , N. (5.30)

The aspect ratio of the MA operator is

ARm
MA =

√
4(m+ 2)

3(m+ 1)
−→ 2√

3
. (5.31)

5.6 Improved method of seasonal adjustment

The Moving Average operator is used to deseasonalize the time series of
inflation. The method of deseasonalization is described below in detail.
Monthly observations of inflation start from 05.1991 until 07.2009 which
gives N = 219 observations of inflation Ioriginal in total. We split the sample
into 12 samples according to the month of the year in the following way:

Ihk = Ioriginalh+12∗(k−1), (5.32)

h = 1, · · · , 12, k = 1, · · · , Nh,

where Nh is the number of observations in hth subsample.
We have 12 samples of, in average, 18 observations and we estimate the
moving average MAm

h for each of the 12 samples. The initial value is set to
the mean over a number of years equal to a given range n, i.e.

EMAh
1 (1;n) =

1

n

n∑
j=1

Ihj . (5.33)

In order to obtain seasonally adjusted inflation I∗h we subtract the mov-
ing average of the monthly sample MAm

h with the range n from the original
inflation sample, thus making a seasonal adjustment, and add back the
moving average of the whole sample MAm with the range n · 12 to preserve
non-seasonal information. The ranges of MAm

h and MAm are chosen so that
two time intervals over which averaging is performed coincide. The ranges n
and n · 12 of MAm

h and MAm correspond to the same time interval length.
The adjusted inflation I∗h is calculated with the following formula:

I∗hk = Ihk −MAm
h (k;n) +MAm (k; 12 · n) , (5.34)



h = 1, · · · , 12, k = 1, · · · , Nh.

Finally, we build one sample of seasonally adjusted inflation I∗ from
twelve samples of seasonally adjusted inflation I∗h as follows:

I∗h+12(k−1) = I∗hk , (5.35)

h = 1, · · · , 12, k = 1, · · · , Nh.

The moving average operator has two parameters: m, determining flatness
of the kernel, and n,determining the range of the kernel. These parameters
have a big impact on the resulting series and their correct estimation is a
crucial task of the thesis. We chose the autocorrelation function(ACF) and
two-sample Kolmogorov-Smirnov test as criteria for the parameter evalua-
tion. We are aiming to pick one set of parameters for the model, such that
we could perform the deseasonalization for all the inflation series with the
same m and n. We would rather sacrifice very good performance of a set of
parameters for one particular series if we can choose another set which suits
on average better for all the series.
The outcomes of the tests are presented in figure 5.5 and table 5.4.
The performance of the method using Moving Averages with the parameters
m = 4, n = 3 is very similar to the performance of the X-12-ARIMAmethod.
The U.S. inflation ACF shows an overcorrection effect by introducing neg-
ative 12th and 13th lag autocorrelations. The significant autocorrelations
demonstrated by the seasonal British, Eurozone and Japanese inflation se-
ries ACF graphs are removed by the method. The 3rd and 6th lag significant
autocorrelations indicate the presence of residual seasonality in the Swiss in-
flation data. The same type of behavior was demonstrated by the same time
series deseasonalized with X-12-ARIMA model (the difference is that the 3rd

lag autocorrelation was not significant in the case of the X-12-ARIMA.) The
1st lag autocorrelation is introduced in the Eurozone inflation data, similar
to X-12-ARIMA deseasonalization.
The null hypothesis of the two-sample Kolmogorov-Smirnov test was re-
jected at 5% level only for the U.S. 2nd and 4th quarters samples.
The results of the Kolmogorov-Smirnov test and ACF led to the choice of
m = 4, n = 3. The results of the tests for m = 4, 8 and N = 2, 4 are
presented in the appendix A.2.
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Figure 5.5: Autocorrelation plots of seasonally adjusted inflation deseason-
alized with MA4 (·; 3), m=4, n=3.



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.50 0.32 0.07 0.34 0.02 0.60
K.S. statistic 0.15 0.18 0.24 0.17 0.28 0.14

UK

p-value 0.37 0.60 0.28 0.86 0.73 0.64
K.S. statistic 0.11 0.09 0.14 0.13 0.17 0.12

Eurozone

p-value 0.20 0.85 0.56 0.48 0.52 0.33
K.S. statistic 0.20 0.11 0.15 0.16 0.15 0.18

Japan

p-value 0.60 0.43 0.19 0.98 0.65 0.52
K.S. statistic 0.14 0.16 0.20 0.09 0.14 0.15

Switzerland

p-value 0.09 0.46 0.72 0.54 0.08 0.36
K.S. statistic 0.23 0.16 0.13 0.15 0.24 0.17

Table 5.4: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted inflation deseasonalized with
MA4 (·; 3),(m=4, n=3).



Chapter 6

Cross-correlation analysis of
interest rates and inflation

Cross-correlation 1. The cross-correlation is a lagged correlation of two
time series. Let xt and yt be time series, yt−τ time series shifted by the time
τ , than the cross-correlation is a function of the lag τ , defined as

CCorr(τ) = Corr(xt, yt−τ ), τ = 0,±1,±2, · · · ,±l. (6.1)

Cross-correlation is also called lead-lag correlation.

We study the cross-correlation function of interest rates and inflation in
order to determine whether there is a casual relation between them. Asym-
metry of the cross correlation function around the zero lag suggests that
one time series predicts or leads the other time series. If CCorr(τ) >
CCorr(−τ), than the first series (xt) leads the second series (yt), if CCorr(τ) <
CCorr(−τ) than the second series (yt) leads the first series (xt).
Inflation in our study is the annualized logarithmic seasonally adjusted in-
flation as defined in 2.1 and interest rate is the logarithmic interest rate 3.1.
The graphs of the cross-correlation function of the 3 months interest rates
and inflation are presented in figure 6.1. The interest rate data series being
analyzed are taken from Bloomberg (data also used in the ESG). The U.S.
and British data are from April 1991, Eurozone is from December 1998,
Japanese data is from September 1992 and Swiss data are from February
1994.

The asymmetry of the cross-correlation function1 provides evidence that
the British inflation leads British 3 month interest rates, the same applies to
the Eurozone interest rates and inflation. U.S., Swiss and Japanese inflation
and interest rates do not show any lead-lag effects.
We should underline that the asymmetry of the cross-correlation function

1Refer to [Dacorogna et al., 2001] for the details on interpreting lead-lag effects with
cross-correlation function.
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Figure 6.1: Cross-correlation of inflation and 3 months interest rates.



doesn’t hold for the period longer than 20 years. If we perform the same test
on the data series longer than described above the cross-correlation function
becomes nearly symmetrical. It means that that lead-lag effect doesn’t hold
for longer periods.
The causality between interest rates and inflation is still an open question in
economical science. There is a work [Fama, 1975] which shows that for 1953-
71 period of time the nominal interest rate summarize all the information
about future inflation rates which contradicts the result obtained here. We
should draw the attention of the reader that the causality between interest
rates and inflation is not stable. We also have to remember that CPI is not
a market proxy for inflation but a statistical measure which cannot provide
the consistency of results across all the periods of time.



Chapter 7

Mean-reversion model

In this chapter we study the mean-reverting property of interest rates, in-
flation and real interest rates. The mean-reverting property suggests the
presence of a long-term average towards which the process tends to revert
whenever it has significantly deviated from it.
A mean-reversion property of interest rates and inflation is suggested by eco-
nomic intuition. Inflation and interest rates take values in some predefined
range. Interest rate cannot reach either negative values or zero. Inflation
can be negative but normally it does not reach too big negative values (e.g.
-10%) and tends to stay at some positive level, i.e. 2%-10%. It means that
the underlying process does not develop independently of its previous state
and should have some kind of memory indicating the direction of the de-
velopment. Whenever the value of the process is too low it should tend to
increase and whenever it is too high it should tend to decrease. This type
of behavior can be reproduced by the mean-reversion models.
We will consider the Ornstein-Uhlenbeck model for our analysis. In the first
paragraph the description of this model is given. The switch from monthly
to annual inflation is explained in the second section. The results of the
Ornstein-Uhlenbeck model fit to interest rates, inflation and real interest
rates are discussed in the third, fourth and fifth paragraphs respectively.
Finally, the application of our analysis to the ESG is given in the last para-
graph of this chapter.

7.1 Ornstein-Uhlenbeck model

7.1.1 Description of the Ornstein-Uhlenbeck model

1 The Ornstein-Uhlenbeck model is a mean-reversion stochastic model, given
by

dx = η · (m− x) dt+ σdWt, (7.1)

1more information on this topic can be found in [Dixit and Pindyck, 1994]
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where m is the mean towards which the process xt reverts, η is the speed
of mean-reversion(the higher η the faster process comes back to its average
level), σ is the process volatility and Wt ∼ N(0, t).
The integral representation yields

x(T ) = x(0)e−ηT +m
(
1− e−ηT

)
+ σe−ηT

∫ T

0
eηtdWt. (7.2)

Taking the expectation of (7.2) we get the following result for the E [x(T )]

E [x(T )] = x(0)e−ηT +m
(
1− e−ηT

)
, (7.3)

and the long-term mean

lim
T→∞

E [x(T )] → m.

We obtain the following expression for variance by integrating the square of
the stochastic term in (7.2)

V ar [x(T )] =
(
1− e−2ηT

) σ2

2η
. (7.4)

The long-term variance limit of the distribution of xt is found by taking the
limit of (7.4)

lim
T→∞

V ar [x(T )] → σ2

2η
. (7.5)

The variance is bounded and xt has a stationary distribution, i.e. xt ∼
N

(
m, σ

2

2η

)
.

The area of our interest is the calibration of the model 7.1 to the time series of
interest rates and inflation. In order to estimate the parameters m, η and σ
we need to get the discrete-time representation of the (7.1) model.
If dt → 0 then (7.1) can be rewritten as

dx = m
(
1− e−ηdt

)
− x

(
1− e−ηdt

)
+ σdWt. (7.6)

The equation (7.6) is the continuous case of the AR(1) process

xt − xt−1 = m
(
1− e−η∆t

)
− xt−1

(
1− e−η∆t

)
+ ϵt, (7.7)

where ϵ ∼ N(0, σ2
ϵ )

The (7.7) is reduced to the following linear regression

xt − xt−1 = a+ bxt−1 + ϵt. (7.8)

The parameters m, η and σ of (7.1) can be obtained knowing a, b and σϵ
from equations (7.9), (7.10) and (7.11), i.e.

m = −a

b
, (7.9)



η = − ln (1 + b), (7.10)

σ = σϵ ·

√
2 ln (1 + b)

(1 + b)2 − 1
. (7.11)

7.1.2 Half-life of the Ornstein-Uhlenbeck process

The half-life of the process is defined as the average time until the expected
value of the process reaches the middle point between the current state x(0)
and the long-term mean m.
The other way to get the expected value of the Ornstein-Uhlenbeck process
is by integrating the deterministic part of equation (7.1).

dx

m− x
= ηdt. (7.12)

Integrating (7.12) from x(0) to x(T ) yields

ln (m− x) |x(T )
x(0) = −η T, (7.13)

ln

(
m− x(T )

m− x(0)

)
= −η T. (7.14)

For T = half-life, we have (m− x(T )) = 0.5(m− x(0)).
The half-life T is

T =
ln(2)

η
. (7.15)

7.2 Presence of short-term mean-reverting noise
in the monthly inflation time series

This section is devoted to the justification of the choice of annual inflation
and not annualized monthly inflation. Let us recall here the definition of
annualized monthly inflation It and annual inflation Iyt ,

It = ln

(
CPIt
CPIt−1

)
· 12, (7.16)

Iyt = ln

(
CPIt

CPIt−12

)
. (7.17)

The analysis on seasonality is performed on It while mean-reversion anal-
ysis is performed on Iyt .
The graphs of the annualized monthly inflation are shown in figure 7.1. Af-
ter examining them we can conclude that the annualized monthly inflation
experience spurious oscillation along its long-term trend.



Country Start Mean Volatility Skewness Kurtosis

USA 01.1961 4.05% 8.53% 1.2172 4.3555

UK 01.1961 5.53% 14.98% 1.4185 4.5146

Eurozone Rec 01.1989 2.35% 2.50% 0.0627 3.2966

Eurozone 01.1996 1.89% 2.11% 0.0381 4.3791

Japan 01.1961 3.48% 12.79% 1.5122 6.3650

Switzerland 01.1961 2.9% 6.76% 0.8160 3.4488

Table 7.1: Statistics for the seasonally adjusted annual inflation data series.

The mean-reversion analysis performed on these data shows that the half-
life of the inflation is between 0.5 and 1 months, which corresponds to the
short-term cyclical movements observed in figure 7.1. While being an essen-
tial characteristic of inflation data series this short-term noise can distort
the results of long-term inflation behavior analyses. The annual inflation
presented in figure 7.3 doesn’t have this distorting property and this is the
main reason why we have to switch to annual inflation. However, we need to
keep in mind that annual inflation spans overlapping intervals of time, thus
its elements are not independent. Moreover annual inflation incorporates
price trends with a delay compared to monthly inflation.
The simple statistics for the seasonally adjusted inflation series used in mean-
reversion analysis is given in table 7.1.

7.3 Inflation model calibration

The second inflation variable (annual logarithmic inflation) Iy is used in the
mean-reversion analysis because of the presence of the short-term mean-
reverting noise in the monthly logarithmic inflation I which distorts the
model calibration. The inflation is seasonally adjusted with the method de-
scribed in the section 5.6.
We applied the same method of a seasonal adjustment for the series with a
much longer history than the one used in analysis of the seasonality. The
analyses of seasonality were conducted for series which are used for the ESG
simulations. Unfortunately, such short series is not always enough to get
reliable statistical estimates in the mean-reversion analysis. However, the
changing with the time pattern of seasonality in inflation time series would
make it more difficult to find the appropriate deseasonalization technique
for time interval as long as 50 or even more (140 -USA CPI) years.

The calibration of the Ornstein-Uhlenbeck model involves fitting linear
regression 7.8 to the data and identifying the model mean, volatility and
mean-reversion speed with equations 7.9, 7.11 and 7.10 respectively. Af-
ter that the conclusion of the data distribution variance can also be made
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Figure 7.1: Short-term noise in monthly annualized inflation time series.



through the use of the result 7.5. The results are shown in table 7.2.
More than a half of results are statistically insignificant which can be ex-
plained by the insufficiency of data as well as by not appropriately chosen
data model. The Ornstein-Uhlenbeck model does not describe inflation be-
havior well. However, we obtained some significant results for the U.S.
inflation and we can state that the longer the U.S. inflation time series the
lower the half-life of the process. This can be explained by the fact that U.S.
inflation series behavior changed over time (see fig. 7.2). Between years 1872
and 1915 the inflation experienced noticeable oscillations around its mean
and later its behavior changed, which is reflected in the results obtained
with the series dating back to more recent periods of time. The shorter is
the U.S. inflation series the longer is the mean-reversion half-time (around 2
years for 140 years of data, around 4 years for 80 years of data and around 9
years for 50 years of data) and the less significant results are. The dynamic
mean-reversion behaviour of the inflation time series is demonstrated by the
U.S. inflation, which proves, that the Ornstein-Uhlenbeck model assump-
tions of constant speed of mean-reversion, constant mean and volatility are
not suitable for solving that type of problem.
The graphs of the inflation can be found on the figure 7.3.
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Figure 7.2: USA inflation time series from year 1872.

7.4 Interest rates model calibration

Interest rates in our analysis are defined as logarithmic interest rates

Rt = ln (1 + rt) (7.18)
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Figure 7.3: Annual logarithmic seasonally adjusted inflation.
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where rt is the spot interest rate at time t.
We calibrate the model 7.1 to the data series presented in the table 3.1. The
simple statistics for these data is summarized in the table 7.4.
We proceed in the same way as in the section 7.3. The results presented in
the table 7.4 show that Ornstein-Uhlenbeck model does not describe the time
series well. 80% of the coefficients estimated are not statistically significant
at 5% level, suggesting that some arbitrary trends in the data were caught
by the Optimal Least Squares estimation. Only the results for the 3 months
U.S. interest rates and 3 months Japanese interest rates are reliable from a
statistical point of view.
There could be several reasons why these results are obtained. First, the
mean-reversion of the logarithmic interest rates can be so slow that it is
impossible to estimate it with the time series of the length we have. Second,
the level of the mean-reversion, the speed of the mean reversion and the
volatility of the time series could be non-stationary which implies that a
different model should be used. We could propose to use so-called CIR-
CEV model as a direction of further research of interest rates and inflation
behaviour.
The graphs of the 10 years logarithmic interest rates are given in figure 7.4.
The graphs of the 3 months, 1 year logarithmic interest rates can be found
in the appendix of this report on figures A.6, A.7 respectively.

7.5 Real interest rates model calibration

Real interest rate 1. The real interest rate is the difference between nom-
inal interest rate and inflation.

In the context of this report, the real interest rate is the logarithmic real
risk-free interest rate. The inflation used in calculation of the real interest
rate is annual seasonally adjusted inflation.
The real interest rate is defined in the following way

Rreal
t = ln

(
1 + rrealt

)
, (7.19)

rrealt = rt − i∗yt , (7.20)

where rt is the nominal interest rate and i∗yt is the simple(non-logarithmic)
annual seasonally adjusted inflation.
The simple annual seasonally adjusted inflation was obtained in the following
way: first, the annualized logarithmic inflation It was seasonally adjusted
and the annualized logarithmic seasonally adjusted inflation I∗t was obtained,
then the annualized logarithmic inflation was transformed into the annual
logarithmic seasonally adjusted inflation using the well-known property of
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Figure 7.4: 10 years logarithmic interest rates.



Country Maturity Rate Start Mean Volatility Skewness Kurtosis

USA

3 months
Treasury bill 01.1934 3.73% 10.34% 0.8683 3.7384
CMT rate 01.1982 4.96% 8.97% 0.3013 3.1177

1 year CMT rate 04.1953 5.34% 9.78% 0.8800 4.0146

10 years
Treasury bonds Rec 01.1871 4.57% 7.43% 1.7663 6.3694

CMT rate 01.1953 6.14% 8.67% 0.9309 3.5167

UK
3 months

Government bonds Rec 03.1988 6.22% 10.21% 1.0064 3.5495
Government bonds 03.1991 5.25% 6.34% 0.469 4.9899

1 year UK Nominal spot rate 01.1970 7.58% 10.19% 0.0458 2.2241
10 years UK Nominal spot rate 01.1970 8.30% 10.15% 0.0295 1.8218

Eurozone

3 months
Government bonds Rec 01.1988 4.92% 9.61% 0.7462 2.3058
Government bonds 12.1998 2.94% 3.57% -0.2343 2.6247

1 year
Government bonds Rec 01.1988 5.07% 9.32% 0.6809 2.2239
Government bonds 12.1998 3.10% 3.50% -0.1499 2.304

10 years
Government bonds Rec 01.1988 5.99% 7.45% 0.4259 1.6549
Government bonds 12.1998 4.18% 2.04% 0.166 2.127

Japan
3 months

Treasury bills, bid 01.1957 5.00% 12.62% 0.1275 2.3631
Certificate of Deposit 04.1985 2.15% 8.63% 0.9063 2.4132

1 year Certificate of Deposit 04.1986 1.96% 8.00% 1.0486 2.8218

10 years
Gvt Benchmarks, bid 10.1966 4.90% 9.03% -0.1588 1.6092
Yields on TSE Bonds 01.1986 3.04% 6.34% 0.5868 1.9696

Switzerland
3 months

Treasury bills, bid 01.1980 3.46% 8.31% 0.6326 2.5194
CHF LIBOR 01.1989 3.13% 8.94% 0.977 2.7269

1 year CHF LIBOR 01.1989 3.26% 8.33% 0.9725 2.7621

10 years
Gvt Benchmarks, bid 01.1964 4.22% 4.14% 0.1389 2.5390
Spot rate, CH bonds 01.1988 3.82% 4.43% 0.5771 2.2919

Table 7.3: Statistics for the logarithmic interest rates data series.
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logarithm that ln (xt/xt−1) = ln(xt)− ln(xt−1)

I∗yt =
1

12

t∑
j=t−11

I∗j . (7.21)

Finally, the simple inflation was calculated as

i∗yt = exp
(
I∗yt

)
− 1. (7.22)

Real interest rate is the real return not affected by inflation that investors
get for their investments. It reflects the growth(or decline) of the purchas-
ing power of the capital unlike nominal interest rate. Real interest rate is
an important characteristic affecting investors decisions. Investors, in gen-
eral, aim to get positive return on their investments above the inflation level
rather than just some predefined level of return without inflation taken into
consideration. Real interest rates unlike nominal interest rates can fall be-
low zero.
Our mean-reversion analysis for nominal interest rates and inflation did not
lead to any significant results. The Ornstein-Uhlenbeck model is not a suit-
able model for interest rates and inflation on their own. However, there is
one interesting observation concerning the joint behavior of interest rates
and inflation. It can be seen in the picture 7.5 that interest rate and in-
flation tend to rise/fall together, so that the difference between them stays
in some interval. If it becomes too big/small than it decreases/increases
during the next period of time. The difference between interest rate and
inflation is exactly the real interest rate. We can conclude from the picture
7.5 that inflation and nominal interest rate are not independent: they move
together so that real interest rate values fluctuate in some range and when-
ever they are close to the bounds of this range they are forced to get back
to its middle. Indeed, it makes economical sense because investors should
closely watch returns over inflation level. Whenever inflation is high, they
ask for higher interest rates to compensate for it.

Our hypothesis is that real interest rates are subject to stronger mean-
reverting forces than nominal interest rates on their own. We proceed in
the same way as in the sections 7.4 and 7.3 in order to check the validity of
the hypothesis stated above. The simple statistics for the real interest rates
data series is given in the table 7.5. The results of the Ornstein-Uhlenbeck
model fit are shown in the table 7.6.
All the coefficients except few for UK and Eurozone real interest rates are
significant. The mean of the real interest rate depends on maturity: it
is lower for 3 months rates and higher for 10 years, which corresponds to
upward slopping yield curves. The mean of 3 months real interest rate is
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Figure 7.5: 10 years logarithmic interest rate and annual seasonally adjusted
logarithmic inflation.



Country Maturity Rate Start Mean Volatility Skewness Kurtosis

USA

3 months
Treasury bill 01.1934 0.09% 11.11% -2.1881 10.4714
CMT rate 01.1982 1.72% 6.44% -0.301 2.7824

1 year
CMT rate 04.1953 1.69% 6.35% -0.0885 3.6052
CMT rate 01.1961 1.80% 6.55% -0.1999 3.5592

10 years
Treasury bonds Rec 01.1872 2.35% 16.87% -0.4591 4.8319

CMT rate 01.1961 2.65% 6.58% -0.2283 4.0146

UK
3 months

Government bonds Rec 03.1988 3.44% 6.86% 0.1023 4.6637
Government bonds 03.1991 2.90% 5.13% -1.2687 6.9039

1 year UK Nominal spot rate 01.1970 1.59% 13.35% -1.6656 6.0471
10 years UK Nominal spot rate 01.1970 2.37% 10.53% -1.6656 6.0471

Eurozone

3 months
Government bonds Rec 01.1988 2.59% 8.30% 0.7825 2.3058
Government bonds 12.1998 0.97% 3.19% 0.1907 1.8640

1 year
Government bonds Rec 01.1988 2.72% 8.01% 0.7131 2.2405
Government bonds 12.1998 1.13% 3.29% 0.2650 1.8614

10 years
Government bonds Rec 01.1988 3.51% 5.97% 0.3138 1.9730
Government bonds 12.1998 2.23% 2.74% -0.0093 2.1968

Japan
3 months

Treasury bills, bid 01.1961 1.21% 9.07% -0.0819 6.9469
Certificate of Deposit 04.1985 1.41% 6.03% 0.5895 2.3382

1 year Certificate of Deposit 04.1986 1.29% 5.60% 0.6972 2.5839

10 years
Gvt Benchmarks, bid 10.1966 1.6% 9.15% -2.8836 14.3759
Yields on TSE Bonds 01.1986 2.36% 4.30% 0.1583 2.5732

Switzerland
3 months

Treasury bills, bid 01.1980 1.27% 4.95% 0.4718 2.8964
CHF LIBOR 01.1989 1.39% 5.23% 0.7492 2.7204

1 year CHF LIBOR 01.1989 1.53% 4.76% 0.6868 2.6783

10 years
Gvt Benchmarks, bid 01.1964 1.31% 4.68% -0.7969 3.5521
Spot rate, CH bonds 01.1988 2.06% 2.81% 0.1968 3.3499

Table 7.5: Statistics for the real interest rate data series.



around 1% on average for all the countries, the mean of 1 year real interest
rate is on average around 1.3% and the mean of 10 years real interest rate is
around 2.25%. Note that Japanese interest rates starting on April 1986 are
the certificates of deposit rates, so they still contain some risk premium and
risk-free rate should be lower in this case. The Eurozone results should be
taken with caution because they are obtained with the reconstructed data
and not the actual one.
The half-life of the real interest rate is on average 2 years, it means that
it takes on average 2 years for the real interest rate to reduce its deviation
from its mean by half. We also observe that half-life is on average lower for
Swiss real interest rates, which can be explained by the smaller volume of
the Swiss market compared to the others and its stronger regulation by the
Swiss National Bank.
The annual long-term volatility depends on the time series. In particular,
it varies a lot depending on the length of the time interval spanned by the
time series. As a result, we are unable to draw a uniform conclusion about
its value. It could mean that volatility changes over time rather than stays
constant as implied by the Ornstein-Uhlenbeck model.
The hypothesis of the stronger mean reversion of the real interest rate com-
pared to the nominal interest rate was proved by the results of the Ornstein-
Uhlenbeck model fit.

7.6 Results of the mean-reversion analysis used in
the ESG

The analysis of the mean-reversion of the real interest rate provide us with
results that can be used in the Economic Scenario Generator for the simu-
lations of interest rates and inflation. We choose the average half-life of the
real interest rate which is approximately 2 years and calculate the speed of
mean-reversion corresponding to the chosen half-life, i.e.

T = 2 years = 8 quarters =
ln(2)

η
, (7.23)

η =
ln(2)

8
= 0.0866. (7.24)
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Chapter 8

Conclusion

In this report we have revised and quantified the assumptions of the models
for interest rates and inflation developed in [Müller et al., 2010].

The first assumption is that interest rates and inflation are mean-reverting
processes with very low speed of mean-reversion.

The second assumption is that real interest rates are mean-reverting pro-
cesses and exhibit stronger mean-reversion than interest rates and inflation
alone. The third assumption is that inflation slightly leads interest rates.

The Ornstein-Uhlenbeck model was used for the mean-reversion analysis
of the interest rates, inflation and the real interest rates. The model was
calibrated to time series from five countries: USA, UK, Eurozone, Japan
and Switzerland. We have performed the analysis of time series of different
length: 20 years, 50 years and 140 years (only for the U.S.). The results
were consistent across different data samples.

Our analysis showed that the half-life of real interest rate is on average
2 years, its long-term mean is between 0.5% and 2% depending on the ma-
turity. The same parameters estimates for interest rate and inflation are
statistically insignificant suggesting that low mean-reversion speed does not
allow us to get statistically reliable estimates.

We have encountered the problem of seasonality in inflation which was
solved in a computationally efficient way with the moving average operator.
The efficiency of the model was tested against the X-12-ARIMA model 1

and it showed a similar performance with less computational effort.

In conclusion we can say that this thesis has successfully accomplished
the tasks assigned by the Financial and Risk Modelling team of SCOR,

1X-12-ARIMA is a software tool developed by the U.S. Bureau of Census for the time
series deseaonalization.
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within all the three main areas of investigation:

It has introduced and tested a new technique for seasonal adjustments.

It has confirmed with good statistical significance two of the main
assumptions of the inflation and interest rates models of the ESG.

Wherever possible, it has quantified the relevant mean reversion pa-
rameters.



Appendix A

Appendix

A.1 CPI collection and aggregation

We describe the details of the CPI collection and aggregation process for
every country under consideration.
There are several statistical issues which arise during the CPI measuring
process. Different goods can disappear because of natural and seasonal rea-
sons in the consumption of the households, for example fruits and vegetables
or some sport equipment. The prices of these products cannot be observed
during certain periods of time. Other products can just naturally become
obsolete due to, for example, outdated technology. Statisticians need to
find the replacement for an obsolete item which wouldn’t affect the statisti-
cal properties of CPI. There are several ways to deal with missing prices, i.e.
direct comparison, direct quality adjustment, imputation. If the new and
old items are essentially the same, the commodity analyst assumes no qual-
ity difference exists, and the price comparison between the items is used in
the index. The estimate of the quality difference is calculated in direct qual-
ity adjustment method. When statistician are unable to estimate the value
of the quality changes, imputation (special procedure for handling missing
information) is used.
Rents, mortgages and owner-occupied housing can be dealt in different ways,
depending on the structure of housing ownership of a country.
The way how elementary quotes are aggregated into an index is an important
characteristic of CPI. The aggregation process involves three major compo-
nents: elementary indexes, aggregation weights and a price index number
formula that uses the weights and elementary indexes to compile them into
a published index.
In this section we discuss the treatment of missing prices and of quality
changes, the treatment of seasonal items, the treatment of owner-occupied
housing and rentals for housing, aggregation process and a few other issues
concerning CPI measurement.
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The CPI data is provided by the OECD (Organization for Economic Coop-
eration and Development) and can be found on their web page, i.e.
http://www.oecd.org.
The details which were not summarized by the OECD were taken directly
from the official documents of the countries.

A.1.1 USA

Source. US Bureau of Labor Statistics 1.

Source Periodicity. Monthly.

Base period. The national base year is 1984 = 100.

Type of prices. Transaction prices.The prices include any applicable taxes,
discounts and rebate.

Data Characteristics. The data is collected on the following categories:
1) food at home-nonmeat staples, 2) food at home-meat, poultry, fish,
3) food at home-fruits and vegetables, 4) other food at home, plus
beverages (alcoholic and nonalcoholic), 5) food away from home, 6)
fuels and utilities, 7) household furnishings and operations, 8) apparel
and upkeep, 9) transportation excluding motor fuel, 10) motor fuel,
11) medical care, 12) education and communication, 13) recreation
and other commodities and services,

Sampling.

Sample size. Each month 78500 price quotations are obtained from
approximately 25500 outlets. About 48000 housing units are con-
tacted to collect data on rents.

Sampling method. Prices for the goods and services used to cal-
culate the CPI are collected in 87 urban areas throughout the
country and from about 23,000 retail and service establishments.
Data on rents are collected from about 50,000 landlords or ten-
ants.

Method of collection. Most pricing is conducted by personal interview;
some pricing takes place by telephone. Prices are usually collected
throughout the month. Food, rent, utilities, and some other items
are priced monthly in all urban areas. Most other items are priced
monthly in three large urban areas, and every second month in other
areas.

1http://www.bls.gov/cpi/cpiovrvw.htm

http://www.oecd.org
http://www.bls.gov/cpi/cpiovrvw.htm


Geographic coverage. All urban areas of 2500 or more population within
the 50 states; U.S. territories are not included. The current CPI geo-
graphic sample is based on the 1990 Census of Population.

Population coverage. Residents in urban areas who include about 87 per-
cent of the total civilian non institutional population, including wage
earners and clerical workers, professional, managerial, and technical
workers, short-term workers, the self-employed, the unemployed, re-
tirees, and others not in the labor force.

Item coverage. The Consumer Price Index is calculated on the basis of
a market basket of 305 entry level items representing all goods and
services purchased for everyday living by all residents in urban areas.

Aggregation and consolidation.

Elementary aggregates. For most item categories, representing ap-
proximately 61 percent of the total expenditure weight, basic in-
dexes are compiled using a geometric mean formula.

Index formula. The Laspeyres price index is used to aggregate ele-
mentary indexes into published CPI indexes.

Weights. The weights for the CPI are derived from the Consumer
Expenditure Surveys for 2003-04, and the average for those 2
years. Historically weights have been revised once every 10 years;
however, starting in 2002, weights have been revised every other
year.

Housing.

Owner-occupied housing. The rent and REQ indexes measure the
change in the cost of shelter for renters and owners, respectively.
Price change data for these two indexes come from the CPI Hous-
ing survey. Each month, BLS field representatives gather infor-
mation from renter units on the rent for the current and previous
months and on what services are provided.

Rentals for housing The rent estimates used in the CPI are ”con-
tract rents.” They are the payment for all services the landlord
provides in exchange for the rent. For example, if the landlord
provides electricity, it is part of the contract rent. The price is
adjusted for quality change as well as for aging.

Medical care. The CPI covers only that part of health care commodities,
services, and health insurance premiums that consumers pay for ”out
of pocket.”



Interest, credit charges and taxes. Government taxes, social security
payments are excluded from the CPI.

Missing prices and Quality changes. The commodity analyst chooses
one of the following three methods to handle the replacement:direct
comparison, direct quality adjustment,imputation.

Seasonal items. During the period when a seasonal item is unavailable,
its price is imputed following standard imputation procedures. When
an item returns at the beginning of its season several months later,
the price is directly compared with the item’s last price, as it has been
imputed forward. When an item becomes permanently unavailable,
the standard procedure is to substitute the most similar item sold in
the outlet.

A.1.2 UK

Source. Office for National Statistics, United Kingdom (ONS) 2.

Source Periodicity. Monthly.

Base period. National base year 2005=100.

Type of prices. Price used in the CPI calculation includes taxes such as
Value Added Tax (VAT) and insurance tax, as well as duties, including
air passenger duty.

Data Characteristics. The data is collected on the following categories:
1) food and non-alcoholic beverages, 2) alcohol and tobacco, 3) cloth-
ing and footwear, 4) housing,fuel, light and household services,(excluding
mortgage interest payments, depreciation,council tax, ground rent and
building insurance), 5) furniture and household equipment, 6) health,
personal goods and services (health-related items), 7) transport, mo-
toring expenditure, fares and other travel costs, 8) communication, 9)
recreation and culture, leisure goods, leisure services, 10) education
fees and subscriptions, 11) restaurants and hotels, 12) miscellaneous
goods and services, personal goods and services (non health-related
items).

Sampling

Sample Size. Sample size: About 120,000 prices are collected each
month from 20,000 outlets in around 150 randomly selected areas
throughout the United Kingdom.

2http://www.statistics.gov.uk/downloads/theme_economy/CPI_Technical_

Manual.pdf

http://www.statistics.gov.uk/downloads/theme_economy/CPI_Technical_Manual.pdf
http://www.statistics.gov.uk/downloads/theme_economy/CPI_Technical_Manual.pdf


Sample method. Prices are collected in around 150 locations across
the 12 government regions within the UK. Location selection
takes place separately within each region, with the probability
of a particular location being selected proportional to the num-
ber of employees in the retail sector in that location.

Until 1994, the sample of outlets chosen within a location was
purely judgmental. Since 1995 the different method has been
employed. Refer for details to

Method of collection. Local collection is used for most items; prices
are obtained from outlets in about 150 locations around the country.
Some 110,000 quotations are obtained by this method. Local collec-
tors should try to collect all prices every month, except for seasonal
items.

Geographic coverage. The whole of the UK i.e. England, Scotland, Wales
and Northern Ireland, is covered.

Population coverage. All private UK households, foreign visitors to the
UK and residents of institutional households.

Item coverage. All monetary expenditure on goods and services bought
within the domestic territory and covered by Household Final Con-
sumption Expenditure (HHFCE) as defined for the UK’s National Ac-
counts. The CPI includes more than 650 items.

Aggregation and consolidation.

Elementary aggregates. The CPI generally uses the geometric mean.

Index formula. Within each year the CPI is a Laspeyres-type index.

Weights The weights are updated annually. Given the focus on ’mon-
etary’ expenditures, imputed expenditures, such as imputed rents
and company cars in kind, are excluded. The data used to pro-
duce the weights comes from a variety of sources, the most im-
portant of which is the Expenditure and Food Survey (EFS).3

Housing.

Owner-Occupied Housing. The CPI excludes a measure of Owner-
Occupied Housing.

Rentals for housing. The CPI includes a measure of rented hous-
ing.

Medical Care. The CPI includes healthcare services.

3This is a survey of the expenditure patterns of private households based on a sample
of around 7,000 households; it is conducted continuously with reports issued annually.



Interest, credit charges and taxes. The CPI does not include council
tax, mortgage interest payments, house depreciation, buildings insur-
ance, ground rent,savings and direct taxes,national insurance contri-
butions, repayment of loans.

Missing prices and quality adjustments. If temporarily unavailable the
base price is temporarily removed from index calculation so that the
weight for that product is redistributed among other products in the
item index; if permanently unavailable then the replacement is se-
lected. Price collectors select products with significant market share
and, where possible, of the same quality.
Estimation of price change using price change for similar products is
used in most cases where an adjustment is required. Hedonic regres-
sion which relates the price of an item to its measurable characteristics
is used for personal computers, laptops, mobil phone handsets and dig-
ital cameras, with option costing used for the quality adjustments of
new cars.

Seasonal items. Seasonal clothing prices collected for pre-specified months
and last available price carried forward for months with no collection;
weights held constant throughout year. Similar applies to seasonal
fruit and vegetables, but item weights vary from month to month
within fixed class weights.

Quality comments. CPI data published before January 1998 are OECD
estimated.

A.1.3 Eurozone

Source. Eurostat 4 evaluates the CPI for the Eurozone.

Source Periodicity. Monthly

Base period Base period is 1996 = 100 .

Type of prices. The prices measured are those actually faced by con-
sumers, so for example they include sales taxes on products, such as
Value Added Tax, and they reflect end-of-season sales prices.

Data Characteristics. The CPIs calculated by Eurostat are harmonized
indeices of consumer prices(HICPs). The European Union’s Harmo-
nized Indices of Consumer Prices (HICPs) were developed as a re-
sponse to the need for comparable CPIs to measure the convergence

4Eurostat is the Statistical Office of the European Communities situated in
Luxembourg, http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-BE-04-001/

EN/KS-BE-04-001-EN.PDF

http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-BE-04-001/EN/KS-BE-04-001-EN.PDF
http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-BE-04-001/EN/KS-BE-04-001-EN.PDF


of inflation of EU Member States as a criterion for entry to the Mon-
etary Union. The HICPs are a new family of consumer price indices
calculated according to a harmonized approach and a regulated set
of definitions. The HICPs provide the best statistical basis for in-
ternational comparisons of consumer price inflation in the European
perspective, covering virtually all areas of household final monetary
consumption expenditure. The most prominent among HICPs is the
Monetary Union Index of Consumer Prices (MUICP = Eurozone).The
MUICP is calculated as a weighted average of the HICPs of the coun-
tries5 of the Eurozone. The MUICP is the key indicator of price sta-
bility for the European System of Central Banks (ESCB) and the
European Central Bank (ECB).
The HICPs aim to cover the full range of final consumption expen-
diture for all types of households. The data is collected on the fol-
lowing categories: 1)food, 2)alcohol and tobacco, 3)clothing, 4)hous-
ing, household equipment, 5)health, 6)transport, 7)communications,
8)recreation and culture, 9)education, 10)hotels and restaurants, 11)mis-
cellaneous .

Sampling

Sample Size. The sample is an aggregate of the samples of each
country in the Eurozone.

Sample method. The sample technique is specific for each country
in the Eurozone.

Method of collection. The price collection in the Member States is typi-
cally carried out by a combination of visits to local retailers and service
providers and central collection (via mail, telephone, email and the in-
ternet).

Geographic coverage. The HICPs cover all expenditures within the ter-
ritory, whether by residents or visitors.

Population coverage. The index covers all purchases by households within
the territory of a country, those by both resident and non-resident
households. All sections of the population are covered in principle,
including the extremes of the income distribution and including the
institutional population.

Item coverage. The coverage of the HICPs is defined in terms of ’house-
hold final monetary consumption expenditure’.

5the Eurozone countries covered by the MUICP include Austria, Belgium, Finland,
France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands, Portugal, Slovenia
and Spain.



Aggregation and consolidation.

Elementary aggregates. The HICPs use ratios of arithmetic mean
prices or of geometric means, forbidding the use of arithmetic
means of price relatives except where this can be shown not to
affect comparability.

Index formula. The HICPs are Laspeyres-type price indices.

Weights. There is no uniform basket applying to all countries. The
HICPs are based on the prices and expenditures which are repre-
sentative in each country and not on an average ’euro-basket’.The
weights should relate to a period of not more than seven years
before the index year. Checks should also be made each year to
see whether any important changes have taken place and selective
adjustments introduced when necessary.

Aggregation across countries. The aggregation across countries uses
country weights for ’household final monetary consumption ex-
penditure’. The MUICP is compiled as a weighted average of the
countries in the Eurozone. The country weights are derived from
national accounts data for ’household final monetary consump-
tion expenditure’.

Housing.

Owner-Occupied Housing. The imputed prices for the consump-
tion of the service provided by owner-occupied housing are cur-
rently excluded from the HICPs.

Rentals for housing. The rented housing is included in the HICP.

Medical care. The HICP includes the net price paid by consumers (after
reimbursements), while some national CPIs exclude these purchases
or record the gross price.

Interest, credit charges and taxes. The HICPs exclude interest and credit
charges, regarding them as financing costs rather than consumption
expenditure.

Missing prices and quality changes Carrying forward the most recent
observation for more than two months is not permitted. Currently,
there is no regulation for the member states about the replacement
mechanism, so this problem is left to local statistical bureaus.
For the HICPs there are minimum standards for quality adjustment
- explicit quality adjustments must be made whenever possible and
the whole of a price change should never be ascribed to quality differ-
ences without justification. In practice all of the Member States make
adjustments for the changing quality of goods and services in their
HICPs - using a range of direct and indirect methods.



Seasonal items. HICPs includes end-of-season sales prices.

A.1.4 Japan

Source. The series is directly provided by Statistics Bureau of Japan 6.

Source Periodicity. Monthly.

Data Characteristics. The data is collected on the following categories:
1)food, 2)housing, 3)furniture and household utilities, 4)clothes and
footwear, 5)medical care, 6)transportation and communication, 7)ed-
ucation, 8)reading and recreation, 9)miscellaneous.

Base period The national reference year is 2005 = 100.

Type of prices. Prices are transaction prices, excluding temporary reduc-
tions, special sales, etc.

Sampling.

Sample Size . Each month, 584 representative items are priced in
about 34000 goods and service outlets resulting in about 233000
monthly price quotations. Prices for fresh food items are collected
three times per month. Rents are surveyed monthly through a
sample covering both the public and private sectors.

Sample techniques. Municipalities and household selection: Ran-
dom multistage sampling. The first stage is the selection of
168 municipalities (120 cities and 48 towns and villages) from
the 3,230 municipalities that comprise Japan. The selection of
municipalities depends on a number of criteria, including that
each capital city of a prefecture be included. Selected cities are
then stratified into four groups according to size: 49 major cities
(cities with prefectural government or populations of 1 million
or more), 22 middle-sized cities (150,000 to 1 million), 28 small
cities A (50,000 to 150, 0000), and 21 small cities B (50,000 or
less). From each sampled municipality, survey areas are selected:
16 (or more) areas are selected from major cities, 6 areas from
middle-sized cities, 6 areas from small cities A, 4 areas from small
cities B, and 2 areas from towns and villages. The selection of ar-
eas is with probability proportionate to population size. Finally,
in each selected area, six two-or-more person households are se-
lected and surveyed for six months. The responding households
are rotated every six months. The sample allocation is revised
every five years.

6http://www.stat.go.jp/english/data/cpi/1586.htm

http://www.stat.go.jp/english/data/cpi/1586.htm


Method of collection. Approximately 750 price collectors visit 30,000 out-
lets to collect prices of reselected representative items. There are 509
items and 719 item specifications

Geographic coverage. The whole country which is divided into 167 strata,
one municipality is selected from each stratum by using probability
sampling method to represent the entire country.

Population coverage Households with two or more persons are included.
One-person households are not included.

Item coverage. Items are selected only from those accounting for more
than 1/10000 of household consumption expenditures. 585 items are
classified into 10 major groups.The items are selected from all goods
and services normally purchased for consumption. The shelter service
provided by owned houses is incorporated in the index through the
imputed rent approach.
The following items are not included: non-consumption expenditures
(such as income taxes and social security payments) or outgoings other
than expenditures (such as savings including deposits, security pur-
chases, and property purchases), remittances, money gifts, religious
contributions (donations and offerings to temples, churches, and of-
fertory) and obligation fees (fees paid to neighborhood association,
alumni and union due.

Aggregation and consolidation.

Elementary aggregates. The first stage of aggregation is performed
on nearly 100,000 quations (each of 585 items in 167 municipali-
ties). The price relative for an item in a municipality is its average
price in the current month divided by its average price in the base
year. The elementary aggregate index is therefore a ratio of aver-
ages or Dutot index 7. The ”elementary aggregate” price relatives
are averaged over municipalities using the number of multiperson
households in each municipality, as a ratio of the total number of
such households, as weights.

Index formula. A Laspeyres index using relative expenditure shares
as weights is used at the higher level of aggregation.

Weights. The weights are calculated on the basis of average house-
hold living expenditures by municipality, derived from the Fam-
ily Income and Expenditure Survey in the base year of the CPI.
Weights are revised every year.

7 Dutot index- price index defined as the ratio of the unweighted arithmetic average of
the prices in the current period to the unweighted arithmetic average of the prices in the
base period.



Housing.

Owner-Occupied Housing. Owner-occupied housing is incorporated
in the index through the imputed rent approach.

Rentals for housing. The index includes a measure of rented hous-
ing.

Medical care. Since high-cost medical care exceeding a certain amount is
refunded, prices considering the refund (not the amount paid at the
hospital, but the actual share of patients after the deduction of benefits
by the social security fund) are applied.

Interest, credit charges and taxes. Expenditures other than the living
expenditure (e.g., direct taxes, social insurance premiums, security
purchases, land and housing purchases) are not included in the scope
of the index.

Missing prices and quality changes For temporarily unavailable, sea-
sonal, perishable items, such as fresh fruit and fish, the overall weight
is held fixed at the annual level. There is an implied imputation for the
price change of the missing items based on the long-run price change
of existing items.
Explicit quality adjustments are made, when applicable. The option
cost method is applied to automobiles and hedonic indices are used
for digital cameras and personal computers.

Seasonal items. For fresh fish and shellfish, fresh vegetables and fresh
fruits the monthly variable weights are used for compiling the index.
For seasonal goods excluding fresh foods, the average prices of the
month when the survey is conducted are substituted for the prices of
the month when the survey is not conducted.

A.1.5 Switzerland

Source. Federal Statistical Office, Switzerland (OFS) 8.

Source Periodicity. Monthly.

Base period. The national base period is December 2005 = 100.

Type of prices. Prices are transaction prices, including indirect taxes(VAT)
and subsidies and excluding credit and interest payments. The re-
duction of prices such as promotions and sales is taken into account.
Only the prices for final consumption are registered. The national

8http://www.bfs.admin.ch/bfs/portal/fr/index/infothek/publ.html?

publicationID=2787

http://www.bfs.admin.ch/bfs/portal/fr/index/infothek/publ.html?publicationID=2787
http://www.bfs.admin.ch/bfs/portal/fr/index/infothek/publ.html?publicationID=2787


direct taxes, social security payments as well as investments are not
considered to be consumption expenses.

Data Characteristics. The data are grouped in the following main cate-
gories : 1)food and non-alcoholic beverages, 2)alcoholic beverages and
tobacco, 3)clothing and shoes, 4)housing and energy, 5)furniture and
maintenance of the house, 6)medical expenses, 7)transports, 8)com-
munications, 9)leisure and cultural visits, 10)education and training,
11)restaurants and hotels, 12)miscellaneous.

Sampling.

Sample Size. In total about 400000 prices are collected every year.

Sample method. The frequency of collecting prices for the products
which have regular short-term variations (perishable products) is
monthly. The prices of petroleum are registered two times per
months. The prices of other goods of the CPI basket are col-
lected every three or four months. The prices which are known in
advance, such as telecommunication and transport, are collected
non-periodically.

Method of collection. The price collection is done by visits to the outlets,
telephone interviews, internet price surveys. Data collection through
barcode scanning is a part of the data aggregation process too.

Geographic coverage. The regions were chosen according to the follow-
ing criteria: Switzerland is divided into 7 big regions, between one and
three smaller regions are chosen inside of these big regions and maxi-
mum one per canton. Only big urban areas are taken into account to
reflect the areas with the highest consumption.

Population coverage. The population under consideration includes pri-
vate households permanently residing in Switzerland. Tourists, foreign
students, temporary workers are excluded from the survey.

Item coverage. The basket of products is the representative basket of
goods and services consumed by the private households.

Aggregation and consolidation.

Elementary aggregates. Elementary aggregate (the same region and
the same channel of distribution) is constructed as the geometric
mean. The intermediate aggregation(aggregation of different re-
gions and distribution channels) is calculated via the arithmetic
average.

Index formula. The index is calculated using the chained-Laspeyres
formula.



Weights. Weights are mainly derived from Households Budget Sur-
vey 2006 The source of the weighting is the survey on the revenues
and consumption of citizens permanently residing in Switzerland.
It is annually conducted by the Federal Statistical Office. 12 sam-
ples are randomly drawn from the electronic telephone directory
from the 7 big regions in Switzerland. The household randomly
chosen are interviewed during one month about their periodic
and non-periodic expenses as well as their revenues. 11 regions
were chosen to reveal the prices from 2006 till 2010. The weights
are brought up to date every December.

Housing.

Owner-Occupied Housing. The rental equivalence method is used.
The weight for owners is included in rents. The mortgage interest
payments constitute about one third of the total housing weight
in the CPI.

Rentals for housing. About 5000 of rented housing throughout Switzer-
land are drawn randomly from the data base. The questionnaire
is completed by the landlords and the prices of the housing are
estimated on its base after adjusting for quality and age of the
housing.

Medical care. The CPI includes medical expenses, i.e treatment, medica-
ments, dental care, hospitalization.

Interest, credit charges and taxes. Income taxes and social security pay-
ments, pension fund payments, medical insurance payments are not
the part of the CPI.

Missing prices and quality adjustments. The last registered price of
missing good is reported until the new one appears. This technique
aims to reduce the volatility of the CPI.

There are four techniques for replacement of the articles which com-
pletely disappear form the consumption basket, 1) Direct compari-
son. 2) Chain method, it is mostly applied to the technological items.
Statisticians need to find the item which is close in functionality to the
one having disappeared. 3) Direct quality adjustment. This method
is applied to the vehicles and computers. 4) If none of three above
methods works the product is removed from the basket and the new
one is introduced.

Seasonal items. The last registered price of seasonal good is reported until
the new one appears.



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.70 0.32 0.07 0.34 0.02 0.48
K.S. statistic 0.13 0.18 0.24 0.17 0.28 0.16

UK

p-value 0.50 0.76 0.28 0.27 0.72 0.60
K.S. statistic 0.15 0.12 0.19 0.18 0.13 0.14

Eurozone

p-value 0.24 0.70 0.41 0.16 0.81 0.63
K.S. statistic 0.19 0.13 0.17 0.21 0.12 0.14

Japan

p-value 0.60 0.22 0.19 0.84 0.47 0.54
K.S. statistic 0.14 0.20 0.20 0.11 0.16 0.15

Switzerland

p-value 0.02 0.35 0.87 0.39 0.03 0.49
K.S. statistic 0.29 0.17 0.11 0.17 0.27 0.16

Table A.1: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted inflation deseasonalized with
MA8 (·; 4), (m=8, n=4).

Quality comments. The index covers all households fromMay 1993. Prior
to this date, urban households of wage and salary earners were covered.

A.2 Tests of the parameters of MA operator

A.2.1 m=8, n=4.

The model has a similar performance to the model with parameters m = 4,
n = 3 if only ACF A.1 is considered. the Kolmogorov-Smirnov test results
A.1 are slightly worse than for the model chosen for seasonal adjustment
and the computational complexity is higher.

A.2.2 m=8, n=3

This model is recognized to be inferior to the model with parameters m = 4,
n = 3 mainly due to the higher computational complexity of the model.
m = 8 implies more iterations for calculating the convolution. The ACF
graph and the Kolmogorov-Smirnov tests performance is very similar (see
figure A.2 and table A.2 for details).

A.2.3 m=8, n=2

There are some significant autocorrelations introduced by seasonal adjust-
ment (for example for Swiss inflation, see figure A.3). Introducing new
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Figure A.1: Autocorrelation plots of seasonally adjusted inflation deseason-
alized with MA8 (·; 4), (m=8,n=4).
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Figure A.2: Autocorrelation plots of seasonally adjusted inflation deseason-
alized with MA8 (·; 3) (m=8, n=3).



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.65 0.45 0.12 0.32 0.04 0.44
K.S. statistic 0.14 0.16 0.22 0.18 0.26 0.16

UK

p-value 0.50 0.60 0.28 0.99 0.90 0.59
K.S. statistic 0.15 0.14 0.19 0.08 0.11 0.14

Eurozone

p-value 0.42 0.67 0.41 0.24 0.39 0.63
K.S. statistic 0.16 0.13 0.17 0.19 0.17 0.14

Japan

p-value 0.60 0.33 0.41 0.96 0.65 0.52
K.S. statistic 0.14 0.18 0.17 0.09 0.14 0.15

Switzerland

p-value 0.09 0.63 0.87 0.70 0.09 0.50
K.S. statistic 0.23 0.14 0.11 0.13 0.23 0.15

Table A.2: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted inflation, deseasonalized with
MA8 (·; 3), (m=8, n=3).

features into the data series is undesirable and as for all the models with
m = 8, the computational complexity is higher compared to the ones with
m = 4.

A.2.4 m=4, n=4

There are some significant autocorrelations left after seasonal adjustment,
which are removed by the model with m = 4, n = 3 , see figure A.4.
They include the 12th lag autocorrelation of the British and Swiss inflation
and the 6th lag autocorrelation of the Eurozone inflation. In addition, the
value of ACF of the Swiss inflation is greater for the 3rd and the 6th lags
compared to the ones obtained after seasonal adjustment with the m = 4,
n = 3 model. The two-sample Kolmogorov-Smirnov test results show that
the null hypothesis was rejected at 5% significance level in two cases for the
U.S. and in two cases for Japanese inflation time series.

A.2.5 m=4, n=2

There are some significant autocorrelations introduced by the seasonal ad-
justment (for example for Swiss and Japanese inflation, see figure A.5),
which allows us to exclude this model from the list of models that could be
used for seasonal adjustment.



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.66 0.78 0.41 0.15 0.04 0.81
K.S. statistic 0.14 0.12 0.17 0.21 0.26 0.12

UK

p-value 0.38 0.52 0.56 0.93 0.64 0.31
K.S. statistic 0.17 0.15 0.15 0.10 0.14 0.18

Eurozone

p-value 0.19 0.65 0.28 0.49 0.51 0.80
K.S. statistic 0.20 0.14 0.19 0.15 0.15 0.12

Japan

p-value 0.41 0.58 0.28 0.50 0.48 0.84
K.S. statistic 0.17 0.14 0.19 0.15 0.16 0.12

Switzerland

p-value 0.17 0.46 0.56 0.70 0.44 0.92
K.S. statistic 0.21 0.16 0.15 0.13 0.16 0.10

Table A.3: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted inflation deseasonalized with
MA8 (·; 2), (m=8, n=2).

USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.52 0.15 0.01 0.32 0.02 0.44
K.S. statistic 0.15 0.21 0.30 0.18 0.28 0.16

UK

p-value 0.32 0.45 0.19 0.39 0.72 0.60
K.S. statistic 0.18 0.16 0.20 0.17 0.13 0.14

Eurozone

p-value 0.06 0.70 0.41 0.24 0.70 0.33
K.S. statistic 0.24 0.13 0.17 0.19 0.13 0.18

Japan

p-value 0.60 0.14 0.07 0.53 0.45 0.36
K.S. statistic 0.14 0.21 0.24 0.15 0.16 0.17

Switzerland

p-value 0.02 0.25 0.87 0.17 0.03 0.50
K.S. statistic 0.29 0.19 0.11 0.21 0.27 0.15

Table A.4: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted inflation, deseasonalized with
MA4 (·; 4), (m=4, n=4).
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Figure A.3: Autocorrelation plots of seasonally adjusted inflation deseason-
alized with MA8 (·; 2), (m=8, n=2).
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Figure A.4: Autocorrelation plots of seasonally adjusted inflation deseason-
alized with MA4 (·; 4), (m=4, n=4).
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Figure A.5: Autocorrelation plots of seasonally adjusted inflation deseason-
alized with MA4 (·; 2), (m=4, n=2).



USA q1,q2 q1,q3 q1,q4 q2,q3 q2,q4 q3,q4

p-value 0.65 0.77 0.19 0.15 0.02 0.82
K.-S. statistic 0.41 0.39 0.74 0.16 0.41 0.39

UK

p-value 0.38 0.62 0.41 0.99 0.91 0.60
K.-S. statistic 0.17 0.14 0.17 0.08 0.10 0.14

Euro zone

p-value 0.20 0.81 0.41 0.36 0.62 0.81
K.-S. statistic 0.20 0.12 0.17 0.17 0.14 0.12

Japan

p-value 0.68 0.43 0.41 1.00 0.24 0.68
K.-S. statistic 0.13 0.16 0.17 0.08 0.19 0.13

Switzerland

p-value 0.09 0.33 0.72 0.70 0.20 0.93
K.-S. statistic 0.23 0.18 0.13 0.13 0.20 0.10

Table A.5: Results of the two-sample Kolmogorov-Smirnov test performed
on quarterly samples of seasonally adjusted inflation deseasonalized with
MA4 (·; 2), (m=4, n=2).

A.3 Graphs of the inflation and interest rates time
series
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Figure A.6: 3 months logarithmic interest rates.
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Figure A.7: 1 year logarithmic interest rates.
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Olsen R. B., and Pictet O. V., 2001, An Introduction to High Fre-
quency Finance, Academic Press, San Diego,CA.

[Dixit and Pindyck, 1994] Dixit A. K. and Pindyck R. S., 1994, Invest-
ment under Uncertainty, Princeton University Press.

[Fama, 1975] Fama E., 1975, Short-term interest rates as predictors of
inflation.

[Müller et al., 2010] Müller U. A., Bürgi R., and Dacorogna M. M.,
2010, Bootstrapping the economy – a non-parametric method of gener-
ating consistent future scenarios, Presented at the 11th International
Conference “Forecasting Financial Markets”, Paris, 2-4 Jun 2004, to be
published, new version, 1–37.

[Shiller, 2000] Shiller R. J., 2000, Irrational Exuberance, Princeton Uni-
versity Press, Princeton.

[Sigrist, 2008] Sigrist F., 2008, Data reconstruction for the esg., not pre-
sented, 1–84.

81



List of Figures

5.1 Autocorrelation plots of inflation. . . . . . . . . . . . . . . . . 19
5.2 Autocorrelation plots of seasonally adjusted with the ESG

method inflation. . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Autocorrelation plots of seasonally adjusted with X-12-ARIMA

inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4 Exponentially decaying kernels of EMA, Iterated EMA and

MA operators. . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Autocorrelation plots of seasonally adjusted with MA4 (·; 3)

inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 Cross-correlation of inflation and 3 months interest rates. . . 36

7.1 Short-term noise in monthly annualized inflation time series. 42
7.2 USA inflation time series from year 1872. . . . . . . . . . . . 43
7.3 Annual logarithmic seasonally adjusted inflation. . . . . . . . 44
7.4 10 years logarithmic interest rates. . . . . . . . . . . . . . . . 47
7.5 10 years logarithmic interest rate and annual logarithmic in-

flation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 Autocorrelation plots of seasonally adjusted with MA8 (·; 4)
inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.2 Autocorrelation plots of seasonally adjusted with MA8 (·; 3)
inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.3 Autocorrelation plots of seasonally adjusted with MA8 (·; 2)
inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.4 Autocorrelation plots of seasonally adjusted with MA4 (·; 4)
inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.5 Autocorrelation plots of seasonally adjusted with MA4 (·; 2)
inflation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.6 3 months logarithmic interest rates. . . . . . . . . . . . . . . . 79
A.7 1 year logarithmic interest rates. . . . . . . . . . . . . . . . . 80

82



List of Tables

2.1 Results of linear regressions for monthly and annual inflation
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Summary of interest rates time series used in the analysis. . . 10
3.2 Linear regression (eq. 3.5) parameters estimated by the OLS . 12

5.1 Kolmogorov-Smirnov test on samples of seasonal inflation. . . 20
5.2 Kolmogorov-Smirnov test on samples of seasonally adjusted

inflation, ESG. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Kolmogorov-Smirnov test on samples of seasonally adjusted

inflation, X-12-ARIMA. . . . . . . . . . . . . . . . . . . . . . 26
5.4 Kolmogorov-Smirnov test on samples of seasonally adjusted

with MA4 (·; 3) . inflation. . . . . . . . . . . . . . . . . . . . . 34

7.1 Statistics for the seasonally adjusted annual inflation data
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Model parameter estimation for annual logarithmic seasonally
adjusted inflation. . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3 Statistics for the logarithmic interest rates data series. . . . . 48
7.4 Model parameter estimation for the logarithmic interest rates. 49
7.5 Statistics for the real interest rate data series. . . . . . . . . . 52
7.6 Model parameter estimation for logarithmic real interest rates. 54

A.1 Kolmogorov-Smirnov test on samples of seasonally adjusted
with MA8 (·; 4) inflation. . . . . . . . . . . . . . . . . . . . . . 70

A.2 Kolmogorov-Smirnov test on samples of seasonally adjusted
with MA8 (·; 3) inflation. . . . . . . . . . . . . . . . . . . . . . 73

A.3 Kolmogorov-Smirnov test on samples of seasonally adjusted
with MA8 (·; 2) inflation. . . . . . . . . . . . . . . . . . . . . . 74

A.4 Kolmogorov-Smirnov test on samples of seasonally adjusted
with MA4 (·; 4) inflation. . . . . . . . . . . . . . . . . . . . . . 74

A.5 Kolmogorov-Smirnov test on samples of seasonally adjusted
with MA4 (·; 2) inflation. . . . . . . . . . . . . . . . . . . . . . 78

83


	Introduction
	Data and sources of data used in the analysis of inflation
	Inflation and Consumer Price Index
	General information
	Why measuring inflation is important
	Data used

	Logarithmic inflation
	Eurozone CPI Reconstruction

	Data and sources of data used in the interest rate analysis
	Interest rates. Data used
	Logarithmic interest rate
	Data reconstruction
	Data reconstruction of interest rates for the Eurozone.
	Interpolation of the U.S. long-term interest rate


	Economic Scenario Generator
	Assumptions of the inflation and interest rates models
	Inflation and interest rates models
	Conclusion. Hypothesis to be checked

	Seasonality in inflation and seasonal adjustment techniques
	Seasonality
	Seasonal adjustment techniques overview
	Seasonal adjustment method used in the ESG
	X-12-ARIMA model
	Moving Average operator introduction
	Some important facts about operators
	EMA, iterated EMA and MA operators

	Improved method of seasonal adjustment

	Cross-correlation analysis of interest rates and inflation
	Mean-reversion model
	Ornstein-Uhlenbeck model
	Description of the Ornstein-Uhlenbeck model
	Half-life of the Ornstein-Uhlenbeck process

	Short-term mean-reverting noise in the inflation time series.
	Inflation model calibration
	Interest rates model calibration
	Real interest rates model calibration
	Results of the mean-reversion analysis used in the ESG

	Conclusion
	Appendix
	 CPI collection and aggregation
	USA
	UK
	Eurozone
	Japan
	Switzerland

	Tests of the parameters of MA operator
	m=8, n=4.
	m=8, n=3
	m=8, n=2
	m=4, n=4
	m=4, n=2

	Graphs of the inflation and interest rates time series


