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Abstract

The disasters of hurricane Andrew (1992) and the Northridge earthquake (1994) will
remain in the memories of many insurers or reinsurers. Owing to a total damage
worth 45 billion in 1997 US dollars [Office, 2002, Froot, 1997], hurricane Andrew
alone led to the bankruptcy of eleven insurance companies [Auffret, 2003], which all
were holding highly concentrated risk positions. For those companies that survived,
these tragedies made them reconsider their risk positions and raised their awareness
on the importance of reliable risk management processes.

Since then insurers and reinsurers have endeavored to provide more accurate loss
predictions of natural hazards for society, but also worked on a better diversification
of their risk portfolio. Despite numerous measures undertaken, catastrophic losses
have nevertheless been growing on a year-to-year basis, to the extent that it doubles
every fourteen years. Hurricane Katrina in 2005, for example, led to one of the
biggest natural catastrophes in the history of the USA. It caused a total economic
damage estimated at 150 billion US dollars [Grossi and Kunreuther, 2006], leaving
behind the destruction to approximately 80% of the industry infrastructure and pri-
vate property in New Orleans.

With the increasing occurence of extreme natural hazards and its exploding costs,
catastrophe risk has entered a new era. Risk management within a reinsurance com-
pany become increasingly a field of interdisciplinary work, requiring the expertise
of highly skilled professionals in many core competencies, such as natural science
in windstorms, probability mathematics, business management and the most up-
to-date international and Swiss solvency regulations. This interdisciplinary thesis,
following ETHZ MTEC department’s objective to "develop the holistic thinking in
order to plan and implement interdisciplinary projects with professional experts",
will use this aforementioned approach to bridge these traditional core competencies
into the analysis of the risk of a reinsurance portfolio, applying the most recent
research from the academic world to solve concrete problems in the business world.

In the framework of this thesis, the relevance of this study based on the needs
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of various stakeholders will be firstly analyzed, then the research moves to the gen-
eral foundations, by defining the concept of risk and coherent risk measures, upon
which the thesis is built. This being done, the data used for this thesis, originating
from catastrophe models are thoroughly illustrated and explained before heading to
the core part of assessing the dependencies within a portfolio or risks. In addition,
various tools to investigate their underlying dependencies are provided, then using
one key property of copulas, that they remain invariant under monotonous trans-
formations to model their dependence structure.

Among the different models simulated, it appears that a Gaussian copula using
the empirical distribution of the marginals provides the best goodness-to-fit to de-
scribe the underlying dependence structure of windstorm catastrophe losses in the
North-Atlantic region. Furthermore, only very little tail dependence has been ob-
served in this data. This result is quite surprising, as it was expected that extreme
catastrophic events impact in several regions at a time. A discussion and the rea-
soning why this may occur are addressed in the last chapter.

During the research, the ties within the dataset have caused quite some troubles.
For the reason that ties are the indication that the marginal distributions are non-
continuous; this leads to non-unique copulas (Sklar’s theorem). Furthermore most
theorems in the field of copulas assume the hypothesis of continuous marginals,
which then can not apply for the case of non-continuous marginals. To remedy this
situation, a solution to split the dataset in four regions on the copula unitary square
and its extension to a three-dimensional cube has been attempted. In the first case,
this proposed solution offers a good alternative to solve the problem with ties, but it
has been discovered that the solution is difficultly scalable beyond two dimensions.
Other solutions and further research paths have then been proposed.
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Chapter 1

Introduction: Managing the
Unpredictable

1.1 Natural catastrophe risk management

1.1.1 Relevance and motivation

On 24th August 2005, a hurricane of unprecedented strength hit the coast of the
Gulf of Mexico. From Florida to Texas, it led to one of the most devastating natural
catastrophes in the history of the United States of America. Winds of up to 240
km/h followed by heavy rainfall, left behind the destruction of approximately 80%
of the industry infrastructure and private property. This also came with severe
economic consequences for the population and society in New Orleans; the total
economic damage was estimated at 150 Billion USD for the whole region, with
cascading effects from homeowners to insurers and reinsurers.

Reinsurance companies (reinsurers) have played long since a decisive role in
coping financially with extraordinary large loss events. Reinsurance, by definition,
is a contract purchased by an insurance company (insurer), to transfer portions of
its risk portfolio 1 to a reinsurer. By doing so, insurers benefit from a reduction of its
risk exposures to extraordinary large events, which can in unfortunate cases result
in the payment of very large claims and the insolvency of the company in the worst
case. Furthermore this transfer of risk gives the additional advantage to insurers to
provide less volatile, therefore more predictable financial results, which is relevant
in the eyes of its shareholders.

From the reinsurers’ perspective, they are awarded with a premium for every risk
transferred to them. Hence for the success of the reinsurance business, being able
to anticipate the losses due to natural catastrophe, such as earthquakes, cyclones,

1The portfolio of risk is a grouping or aggregation of individual insurance policy contracts.
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CHAPTER 1. INTRODUCTION: MANAGING THE UNPREDICTABLE2

floodings combined with portfolio management of these aggregated low probability,
but large loss risks are central activities and a core part in its risk management
strategy.

The aggregation of this set of risks is not a simple operation, like summation
or addition, but depends very much on the dependence between the risks. For in-
stance, in the case of fire hazards, each event happening, which is independent of
one another, is localized. The risk of the aggregation of identically and indepen-
dently distributed risk is quantified by the product of their marginal distributions.

Pr

(
n⋂
i=1
Ai

)
=

n∏
i=1

Pr (Ai). This is a trivial example of risk aggregation, but not all

risks are independently distributed.
There are examples of hurricanes, in which each event may also have an impact

on landfalls, power failure or social disorder from housebreaking to public riots.
This may cast a larger footprint; hence, one has to take into consideration all of
these additional dependent parameters for computing the risk of the hazard. The
occurrence of such an event is likely to affect more substantially a higher number
of assets covered by a portfolio of risks. Thus, a key element in computing the
risk of this portfolio is the estimation of the dependencies of the risk, which plays
an essential role in determining the portfolio loss distribution and consequently the
estimation of capital needs to support this. Modeling this distribution through
describing the dependencies between the risks will be one of the central tasks in this
thesis.

1.1.2 Scope of this thesis

For any organization, the need for a robust and fully integrated risk management
system are fundamentals of a competitive and sustainable strategy of a company.
This lies in the framework of Enterprise Risk Management (ERM) techniques, de-
fined by the Casualty Actuarial Society “as the discipline by which an organization
in any industry assesses, controls, exploits, finances, and monitors risks from all
sources for the purpose of increasing the organization’s short- and long-term value
to its stakeholders”. In order to continuously deliver its promises, the top manage-
ment team needs to have a good understanding of not only the company’s total
risks, but also the interactions within its risk portfolio.

In the case of reinsurance companies, natural catastrophe models are used to
provide the technical inputs for a better support to risk management decisions.
Only then the quantification of the overall risk for all its treaties has been correctly
assessed and can begin a wider financial planning process, such as capital allocation
analysis or better return on capital strategies. Currently, insurers and reinsurers are
the stakeholders with the most widespread interest and integrated use of catastrophe
models for pricing insurance premiums and financial sustainability reasons. The
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capital markets also have an eager interest in catastrophe models in order to price
catastrophe bonds more accurately.

The scope of this thesis is mainly limited to the catastrophe modeling and the
capital allocation parts. The Figure 1.1 illustrates these major components.

Figure 1.1: Role of catastrophe modeling in an insurance company’s financial man-
agement.

Source: Grossi and Kunreuther, 2006 | Page 98.

1.1.3 Goal and thesis outline

The goal of this thesis is to assess, in the first step, the dependencies among elements
within a reinsurance risk portfolio. These are then compared with the dependencies
currently in use for simulating the aggregate risk in that region. In the second step,
a copula model is proposed to fit the empirical data. And finally from the copula
simulation and based on the European Solvency II and the Swiss Solvency Test
standards, the adequate amount of capital for allocation is determined.

The structure of this thesis is as follows: Chapter 1 provides the general frame-
work in which this thesis is built, its relevance and scope as well as the definitions
of risk. Chapter 2 presents the origins of the data and explains the mechanisms
of catastrophe risk models. We believe it is crucial to first have a good under-
standing how our data has been collected, before being able to construct a robust
and further analysis. In Chapter 3 and 4, a recapitulation of all the theoretical
foundations in dependence assessment and copula inference are illustrated with an
overview of the most up-to date research and its corresponding literature and with
the focus on the understanding of copulas, then complex mathematical details are
summarized, applications and self-explanatory illustrations are shown to explain the
theory. Therefore, this paper should be accessible to any user with general notions in
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probability theory. After this theoretical overview, Chapter 5 provides the results of
the implementation of the techniques covered. Then these results are discussed, al-
ternative techniques are proposed before the most optimal copula model are selected
to fit our dataset.

1.2 The virtues of diversification

Diversification in the context of this thesis refers to catastrophe risk diversification
or the spreading of a variety of (re-)insurance contracts over a risk portfolio. Diver-
sification is a vital tool for the sustainability of a reinsurance company, as it limits
the probability of highly correlated risks happening at the same time. It is like
when “putting all eggs in the same basket”. If eggs were risks and the basket, a risk
portfolio in case of an accident or a natural catastrophe, it would indeed be a risky
scenario for insurers, which may face considerable losses by holding the majority of
its signed contracts concentrating in a certain region. This can have very damaging
effects on insurer’s solvency, consequently it requires a higher amount of capital to
cover this risk.

Historical events have shown the linkages between concentration of risks and
default of insurers. Hurricane Andrew in 1992, for example, led to the insolvency
of eleven insurers who all had highly concentrated risk profiles, either geographi-
cally, or in terms of asset mix [Forum, 2005]. Given the potential dangers of risk
concentration, diversifying risk portfolios became a key element in the risk man-
agement of reinsurers. Intuitively, assuming X,Y two risk random variables and
using the variance (Var) as a measure of risk, where it is known that the risk of
the portfolio, Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ). From this, it can
be deduced that Var(X,Y ) is the smallest, when X and Y are independent giving
Var(X + Y ) = Var(X) + Var(Y ). This is also known as diversification benefit. The
higher the diversification, is the lower the capital protection is required against the
risks of insolvency.

In a nutshell, diversifying strategies aim to minimize the total risk by exposing
one’s portfolio to different areas that would react differently to the same event and
thereby mitigate the aggregate exposure from an individual source of risk. In this
way, it allows reinsurances to insure positions which are too risky for insurances.

1.3 Risk measures and the new regulatory framework

1.3.1 Definition of risk

The concept of risk is understood intuitively by society as the possibility of some
adverse consequences. It can appear to be easy to define and the Concise Oxford
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English Dictionary defines risk as “hazard, a chance of bad consequences, loss or
exposure to mischance”. This broad definition may be satisfactory for a conversa-
tional usage. And for long, not all stakeholders in the risk profession (ie. economists,
statisticians, insurance theorists etc.) have agreed on a common definition of risk,
as a definition that is suitable for economists or statisticians may be worthless as
an analytic tool for the insurance theorists [Vaughan and Vaughan, 1999]. A search
for the definition of risk in the financial and insurance literature yield to many def-
initions, varying in the situational contexts and the specific applications. These
definitions can sometimes be inconsistent, hence leading to an ambiguous usage of
the word [Hubbard, 2009], and the construction based on it. Hence, a more explicit
and precise definition is needed.

1.3.1.1 Risk, Uncertainty, Exposure, Peril, Hazard

There are several terminologies, which are often used in connection with the term
risk and their subtle differences might not be clear at the first sight for the reader.
As they are commonly used in the insurance vocabulary and later in this thesis, it
seems appropriate to briefly clarify the meaning of risk in each terminology

Uncertainty refers to as a notion of indeterminate outcome which is characterized
by doubt. In a case of uncertainty, there are always two possible outcomes and a
positive one is possible. As nicely said in Vaughan and Vaughan [1999], Kaplan and
Garrick [1981], the existence of risk - a condition or combination of circumstances
in which there is a possibility of loss - creates uncertainty on the part of individuals
when that risk is recognized. Some philosophers distinguish between “subjective”
and “objective” risk [Holton, 2004] and uncertainty is seen with subjective risk,
which is the person’s perception of risk.

Exposure is a measure of the sensitivity of the value of a financial item (asset,
liability or treaty) to changes in the relevant risk factor while risk is a measure of
variability of the value of the item attributable to the risk factor.

Risk is also distinguished from peril and hazards, and it is not uncommon to see
both words interchanged. Peril is a cause or source of a loss [Kaplan and Garrick,
1981], for example the peril of an earthquake, fire, is the loss accountable to the
hazard. Hazard, is a condition that may create or increase the chance of a loss arising
from a given peril. For example, natural hazards that increase the probability of
loss from the perils of fire are the type of construction, the location of the property
and the occupancy of the building.

For insurance risk, the subject of this thesis, it is defined conceptually as,

Risk is the likelihood of an event happening, and the severity of the neg-
ative consequences leading to an undesired outcome.
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It is noted that the definition is the combination of two parts, the possibility of a
loss and the undesired outcome of a happening event.

1.3.2 Coherent measures of risk

Due to the conflicting opinions in the attempt of defining the concept of risk, Artzner
et al. [1999] established instead a series of properties that a “good” definition of risk
should have, so that it can meet the needs of all stakeholders. It is presented below
in Definition 1.1 as “coherent measures of risk” and serves as a reference for how to
assess risks.

Definition 1.1. (Coherent risk measures). A risk measure ρ : M → R on a
convex coneM, is called coherent if it satisfies the following four axioms. ρ(L) can
be interpreted as the amount of capital that would be needed to add to a position
with a loss given by L.

Axiom 1.2. (Translation invariance). For all L ∈M and l ∈ R, then ρ(L+l) =

ρ(L) + l.

Axiom 1.2 states simply that by adding or subtracting a value l to a position
leading to the loss L, the capital requirements are altered exactly by that amount.

Axiom 1.3. (Subadditivity). For all L1, L2 ∈ M , then ρ (L1 + L2) ≤ ρ (L1) +

ρ (L2).

The axiom of subadditivity states that with diversification benefits, the amount
of capital needed to cover the accumulation of two risks is at the most the amount
of the sum of capital of each of these risks. This happens in the case when both risk
are fully dependent, in all other cases, the inequality holds.

Axiom 1.4. (Positive homogeneity). For all L ∈M and λ ∈ N∗, then ρ (λL) =

ρ (L+ . . .+ L) ≤ λρ (L).

This axiom follows the two previous axioms.

Axiom 1.5. (Monotonicity). For L1, L2 ∈ M such that L1 ≤ L2 almost surely
we have ρ (L1) ≤ ρ (L2).

This axiom is also obvious from an economic point of view.
Examples of applications using coherent measure of risk can be found in Malev-

ergne and Sornette [2005] on page 10.
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1.3.3 How to measure risk?

Just as the definition of risk is accepted, there should be also an agreement on the
way in which risk should be measured. Intuitively, Markowitz suggested in the 50s,
that “if the term yield were replaced by expected yield or expected return, and risk
by variance of return, little change of the apparent meaning would result.” This
suggested that the variance of return might be a proxy for risk, but at the same
time Markowitz distanced himself from this association. The reason is that despite
this quotation giving a good understanding for the concept of risk, the application
to a large extent limits to only normal distributed data.

In the following, this paper assesses the approaches which are the most com-
monly applied in practice, namely the notional-amount approach; factor sensitivity
measures, risk measures based on loss distribution, or scenario-based risk measures
and assesses them based on the definition of coherent measures of risk [Neslehova,
2009], before the best alternative is chosen for this thesis. The full text from these
measured are taken can be found in McNeil et al. [2005].

1. The first is the oldest approach and simplest to apply. In the notional-amount
approach, the risk of a portfolio is the sum of the values of the individual se-
curities, weighted by a factor representing the riskiness of each. Suppose there
is a portfolio consisting of d underlying risky positions with respective weights
w1, . . . , wd, the change in value of the portfolio over a given holding period

can be written as X =
d∑
i=1
wiXi, where Xi denotes the change in value of the

ith position. Measuring the risk of this portfolio essentially consists of deter-
mining its distribution function FX(x) = P (X ≤ x). Although this method
is still being used in the standardized approach of the Basel Committee, it
nevertheless presents many flaws, namely the fact that it does not allow the
illustration of diversification benefits. In a few steps, one can check that the
subadditivity axiom does not hold, hence it is not a coherent measure of risk!

2. Factor sensitivity measures provide the change in the portfolio value for a
given predetermined change in one of the underlying risk factors [McNeil et al.,
2005]. While this method provides useful information about the robustness of
the overall portfolio value, it can however not measure the riskiness of an
individual position. Moreover factor-sensitivity measures can create problems
in the aggregation of portfolios. For instance risk measures based on this
concept can not be aggregated across markets, to create a picture of the overall
riskiness of a financial institution.

3. As to scenario-based risk measures, they consider a number of possible future
risk-factor changes (scenarios) when evaluating the risk of a portfolio. The
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risk of the portfolio is then measured as the maximum loss of the portfolio
under all scenarios. In practice, it is used at the Chicago Mercantile Exchange
(CME) to compute the initial margin for a simple portfolio. However, if this
method is intended for a global application, the main problem is the difficulty
to determine an appropriate set of scenarios and weighting factors, as not all
type of scenarios can be anticipated.

4. Risk measures based on loss distributions derive from statistical quantities de-
scribing the loss distribution of the portfolio. It is the foundation of most
modern risk measures. Mathematically, the Russian mathematician A. N.
Kolmogorov (1933) presents in his work an axiomatic definition of random-
ness and probability as well as the lingua franca for discourses on risk and
uncertainty. In Kolmogorov’s language a probabilistic model is described by
a triplet (Ω, F, P ). An element ω of Ω represents a realization of an experi-
ment. P denotes the probability measure and A is an element of F , the set of
all events. The statement “the probability of a risk that an event A occurs”
is denoted as P (A). To model a situation where the insurance holds today
a risky position with an uncertain future value, a mathematician would now
define it as X being a random variable on the probability space (Ω, F, P );
most of the modeling of a risky position X concerns its distribution function
FX (x) = P (X ≤ x). Several risky positions would then be denoted by a ran-
dom vector (X1, . . . , Xd), also written in bold as X. The advantage of loss
distributions is that it provides an accurate picture of the risk in a portfolio
consisting of single instrument to the overall position of a financial institu-
tion. Furthermore, the loss distribution reflects diversification effects and can
be compared across portfolios. It is however not a perfect measure, mainly
due to crude statistical models for the loss distributions [McNeil et al., 2005].
These authors argue that this can not be an argument against using loss dis-
tributions, they would rather call for improvement in the way in which loss
distribution is estimated. Examples of risk measures based on loss distribu-
tions are such as the Value-at-Risk or the Expected Shortfall and are used
in this thesis as risk measures which are presented below.

Definition 1.6. (Value-at-Risk or VaR). Given some confidence level α ∈ (0, 1).
The VaR of the portfolio at confidence level α is given by the smallest number l so
that the probability that the loss L exceeds l is no larger than (1− α). Formally,

V aRα(L) = inf {l ∈ R : P (L > l) ≤ 1− α} = inf {l ∈ R : FL (l) ≥ α} (1.1)

In other words, VaR is thus simply the αth quantile of the loss distribution.
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This paper intends to draw the reader’s attention to the fact that Value-at-Risk is
not a coherent measure of risk, as it does not satisfy subadditivity axiom as stated
in Definition 1.1. In order to overcome this problem, another measure of risk, known
as expected shortfall, has been defined on the basis of this:

Definition 1.7. (Expected shortfall or ES). For a loss L with E(|L|) < ∞
and distribution function FL the expected shortfall at confidence level α ∈ (0, 1)

is defined as ESα(L) = 1
1-α

´ 1
0 qu (FL) du, where qu(FL) = F−1L (u) is the quantile

function of FL.

Per definition, the expected shortfall can also be written in a relationship with
the Value-at-Risk:

ESα(L) =
1

1−α

1ˆ

0

qu (FL) du =
1

1−α

1ˆ

0

V aRu (L) du = E [L | L ≥ V aRα(L)] (1.2)

and contrary to the VaR, the expected shortfall takes into account the shape of
the tail. Instead of fixing a particular confidence level α, for all quantile levels u > α,
the ES takes into consideration the average of the tail of the loss distribution and
thus “look further into the tail”. This expected shortfall is also known as expected
tail loss, XLoss, conditional VaR, TailVar or CVaR.

1.3.4 Solvency II and Swiss Solvency Test

Solvency II is a fundamental review of the capital adequacy regime for the European
insurance industry, scheduled to come into effect by late 2012. It aims at establishing
a revised set of EU-wide capital requirements and risk management standards to
replace and strengthen the current solvency requirements. In a nutshell, Solvency
II in analogy with the Basel II framework in the banking industry, also consists of
three pillars with the aim of an increasing protection of the policy holder. Without
going too much into the specifics of this resolution, the reader is referred to the
website of the European Commission for the Solvency II project for more information
[Commission, 2010]. The first pillar determines the minimal capital level calculated
with the old Solvency I rules. However, the target capital however will be estimated
using the expected shortfall, rather than Value-at Risk, using a level of 99.5% for
calculations. This takes into consideration the previous remarks about VaR and
ES as the distribution functions in the insurance industry are often skewed and
heavy-tailed.

The Swiss Solvency Test (SST) is mandatory for all insurance companies which
are domiciled in Switzerland together with their branches. Compatibility between
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both systems have been assured, so that Swiss companies will not be at a competitive
disadvantage to insurers which are domiciled in EU (and EEA) member countries.

In order to be consistent with the new regulations Solvency II, as well as the
Swiss Solvency Test, this thesis is based upon these two measures of risk and their
thresholds to assess the exposure risk.



Chapter 2

Catastrophe Risk Models

2.1 Relevance of natural catastrophe models

Climate change due to global warming, economic growth combined with an increas-
ing density of urban population are indisputable trends which the world is facing
today. In the outset of this new environment, natural hazards are not only be-
coming more frequent but also more damageable to the exposed population in the
catastrophic zones. The series of natural disasters of hurricane Andrew (1992) and
Northridge (1994) earthquake which led to unprecedented losses and the bankruptcy
of eleven insurers are good examples. Since then, concerns have grown in the insur-
ance industry to find additional financial resources to contain the exploding catas-
trophic losses and to forecast more accurately their catastrophe risk losses. More
recently and despite the measures undertaken, hurricane Katrina (2005) in the USA
or hurricane Lothar, closer to us have caused important damage to the infrastruc-
ture and severe losses to insurance companies. Considering the scope of its impacts,
Katrina was one of the most devastating natural disasters in United States history.
The devastating storm prompted its own endless flood of questions about how and
why such a disaster had occurred. Many wondered to what extent human activities
and global warming have to do with what seemed to be one more in a run of in-
creasingly powerful and destructive Atlantic hurricanes? Indeed, since 1995, tropical
storm and hurricane activity in the Atlantic has been well above normal. An average
of 7.7 hurricanes and 3.6 major hurricanes developed each year between 1992 and
2005, compared to an average of five hurricanes and 1.5 major hurricanes in each of
the previous 25 years National Hurricane Center [2009]. How can it be possible to
anticipate the intensity and damage caused by a hurricane, so the government and
population can be better prepared in the future? This issue is the main subject and
will be addressed in the following paragraph.

11
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In most fields of insurance, historical claims data is commonly used to forecast
and assess the risk of an insured object. However in the area of catastrophe risks,
only little historical or empirical data is available, as natural hazards occur only
once every 10, 100 or 1000 years. This is especially the case when considering the
additional geographical dimension of the windstorm tracks for example, when data
is collected and some regions may have a maximum of one data point. This is hence
largely insufficient to conduct statistical analysis making catastrophe losses difficult
to forecast. Due to the lack of data, many companies have turned to catastrophe risk
modeling, which remains as the only solution to assess the risk of natural catastrophe
risk portfolio.

This is also where the data used in this work takes its origin and this chapter
provides the fundamentals of the mechanisms of catastrophic risk models, which
also guide the reinsurers’ underwriting strategy to price the reinsurance treaties.
Thus, in this first paragraph, the relevance of catastrophic models as an imperative
tool for the industry has been explained. Then this paper illustrates its history, the
general framework from its origin to its recent developments and the fundamentals
in order to understand its present architecture and construction. By going through
the different elements of this “black box”, the inputs and outputs of these models
will then be described to enable the reader to understand the form of the data which
this thesis uses.

Figure 2.1: Tropical cyclones in the Atlantic

2.2 History and developments of catastrophe models

Natural catastrophe models have been developed through linking scientific studies in
measuring natural hazards with advances in information technology and geographic
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information systems (GIS). This combination of two separate field of studies - mea-
suring hazard and mapping risk (as shown in Figure 2.2) came together in the early
1990s to simulate the study of the impact of natural catastrophe on property and
industrial zones.

Figure 2.2: Developments of natural catastrophe modeling

1. Risk mapping combines information such as the current demography, state of
the building (age, type and usage), scientific and financial data to determine
the potential cost of catastrophes for a specified geographic area. In other
words, an inventory of all the data characterizing all insured items are collected
and stored. This is nothing new but lies in the earliest days of property
insurance coverage. In the 1800’s, residential insurers managed their risk by
mapping the structures that they covered, using tacks on a wall-hung map to
indicate their concentration of exposure. This rough technique was still in use
until the 1960s until the first computer-based geographic information systems
(GIS) software arrived. Since then, it became a better tool for conducting
easier and more cost-effective studies on hazard and loss.

2. On the other side, academic research of natural hazards was the work of physi-
cists at the very beginning. The first measurements of hurricane intensity and
earthquake magnitude started in the 1800s after the modernization of the
anemometer and the invention of the first modern seismograph. In the begin-
ning of the twentieth century, as the understanding of the impact of natural
hazards increased rapidly together with the improvements in scientific mea-
suring techniques, the first data compiling hazard and loss studies to estimate
the impact of natural disasters became available.

The combination of these two separate developments (as shown in Figure 2.2) lead
to the advent of catastrophe modeling softwares. There are mainly three types,
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proprietary models1, open source model developed with a combination of public and
private resources such as Hazus and the so-called in-house developed models, such as
CatFocus® in the case of PartnerRe. The combination between in-house together
with commercial models are used to provide a more independent and trustworthy
estimation of risk.

2.3 How do they work?

Whatever natural hazard or type of catastrophe model is treated, the general idea
behind remains the same. According to Grossi and Kunreuther [2006], there are
four basic components in a catastrophe model, which are explained individually.

Figure 2.3: Structure of catastrophe models
Source: Grossi and Kunreuther, 2006 | Page 26.

The hazard component of catastrophe models comprises the simplified presenta-
tion of the complex properties of a natural hazard. Based on meteorological, physical
and geophysical criteria, i.e. hazard source and attenuation models, it summarizes
physical laws as well as historic and scientific hazard information. Its role consists of
simulating these catastrophe events, statistically in coherence with the real events.
For the case of a tropical cyclone, the risk based on historical events is characterized
by its projected path and wind speed, along with other relevant parameters. The
hazard component specific to tropical cyclones are discussed in more detail in the
next section.

The inventory encompasses all the necessary information on the insured prop-
erty. Each element is assigned to its geographic coordinates such as its latitude
and longitude based on its street address, ZIP code, or another location descriptor.

1Today, the three main proprietary catastrophe modeling firms are: AIR Worldwide, Risk
Management Solutions (RMS) and EQECAT (also known as EQE). Insurers, re-insurers, rating
agencies, risk managers and major insurance brokers use licensed models from these firms.
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Other factors such as the building height, age and occupancy types are also consid-
ered. It is very important to take all these risk factors into consideration and not to
assume losses on average. As displayed in Figure 2.4, a large number of buildings
are completely affected by a severe storm, while some stay intact. Some crucial risk
factors, such as building maintenance and building structure can also make a big
difference.

Figure 2.4: Different levels of damage for similar risks contributed heterogeneity in
terms of losses.

Source: PartnerRe | Tropical windstorm publication

Putting the hazard and inventory modules together enable the calculation of the
vulnerability or susceptibility to damage of the structures at risk. In essence, this
step quantifies the physical impact of the natural hazard phenomenon on the prop-
erty at risk by computing the damage ratio. The vulnerability function calculates
the loss for all risks by using the parameters and events in the hazard module. In the
case of tropical cyclones, the losses for each simulated event, which are determined
by its projected paths and wind speeds are computed. To practitioners, this module
is also known as the engineering model, as it encompasses engineering techniques in
the decision making of the vulnerability function (or damage quantification). Many
studies on vulnerability have been undertaken, including a wide range of experi-
ments and post-catastrophe on-site observations. It however differs from model to
model, as the vulnerability function varies enormously between insurance lines (nat-
ural catastrophe, property, automobile etc.). This function can either be developed
internally or sold as licensed software. In the case of the catastrophe model RMS
for example, the justifications and statistical methods integrated in their models are
not disclosed to the public.

From this measure of vulnerability, the loss to the inventory is evaluated. The
loss module, also known as the actuarial module converts the calculated losses from
all events into a risk premium, reflecting all relevant insurance and reinsurance
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conditions, such as policy deductibles, by coverage (ie. site-specific or blanket de-
ductibles), coverage limits and sub-limits, loss triggers, attachment points and limits
for single or multiple location polices. The output is in all cases a loss file, containing
the calculated losses for a portfolio of risks.

2.4 Tropical cyclone models

2.4.1 Introduction

Tropical cyclones are the most destructive of all atmospheric perils faced by the
insurance industry. Of the ten costliest weather disasters in the history of the United
States, six were the result of hurricanes2. Insuring against such risks requires the
use of scientifically robust quantitative methods in order to assess these risks as the
most accurately as possible. In the following section, the example of CatFocus® is
used to illustrate the mechanisms of tropical cyclone models. CatFocus is the in-
house catastrophe model currently in use in PartnerRe to provide a more detailed
view on how this model functions by applying it to one specific natural hazard.
For more detailed information about their soon–to-be-published study concerning
tropical cyclones modeling, the reader is referred to the website of PartnerRe at
www.partnerre.com.

Figure 2.5: Tracks of Atlantic tropical cyclones (1851—2005)
Source: National Hurricane Center (US) | Hurricane History

The term tropical cyclone3 refers to a circulation of air that develops over the
warm waters of the tropical latitudes between 20°N and 20°S. Their effects include
powerful winds, heavy precipitation combined with huge waves and can be an im-
portant threat to coastal populations. Their strength progresses through regular

2Data from publications of US national climatic data center
3Cyclone is the generic name for any type of low pressure center that spins counterclockwise.

Hurricane and typhoon are two names for tropical cyclones with winds of 65 knots (75 m.p.h.) or
more.
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stages of development from disturbance to a mature hurricane and its lifetime varies
from two to five days per event, according to their intensity.

The origin of the cyclone can also be substantially influenced by its development.
Through statistical research, it has been shown that cyclones in the Atlantic can be
divided into three major tropical cyclone regions, based on its origin: Mid Atlantic
regions, North Atlantic regions and Gulf region regions.

• Mid Atlantic storms have generally sufficient time to develop before making
landfall, giving them the potential to gain considerable strength. They can
gain the highest intensities among all three storms and show greater consis-
tency in their movement over time.

• North Atlantic storms tend to move northwards, quickly reaching cooler waters
that reduce their potential intensity. At these higher latitudes, north Atlantic
storms enter the strong west wind drift where they rapidly degrade or undergo
extra-tropical transition, gaining more extra-tropical characteristics (they lose
their warm core and develop a cold core and frontal systems).

• In the Gulf region of the Atlantic Ocean, a large proportion of storm events
move in different directions due to the absence of strong steering winds. In this
region, more rapidly developing but short-lived storms are observed compared
to the Mid Atlantic or North Atlantic regions owing to high sea surface tem-
peratures. Gulf storms, despite tending to be of shorter duration, can reach
wind intensities that are as high as those observed in the Mid Atlantic region.

There exist a multitude of differing methodologies used to evaluate tropical cyclone
risk, all requiring a clear definition of the four previously defined components in
Section 2.3. With all four components previously explained, an accent will put on
the hazard component ie. on the generation of a statistically reliable set of tropical
cyclone events using historical data.

2.4.2 Hazard component in tropical cyclones models

One key element in modeling tropical cyclones is the quality of meteorological data
of past events. In order to simulate future events, several parameters are recorded by
meteorological agencies at a six-hourly intervals. These quantities are the position
of the latitude center of the cyclone eye, in order to model its path; the radius of
maximum wind (Rmax), which is located near the eye wall and the radius of gale
force (Rgale). Together they can give a good indication of the wind profile describing
its size, shape of full wind field. This last piece of information, the wind field, is
crucial for estimating the expected damage to each event passage on property. Using
this data and a simulated maximum sustained wind speed (Wmax) based on Rmax
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and Rgale, the wind field can be modeled using the Rankine vortex equation, which
describes the rate at which wind speed reduces as a function of radial distance from
the center of the cyclone, the effects of eye-wall cycles and how rotating winds are
modified by the forward translation speed of a cyclone. All these characteristics (ie.
Rgale, Rmax, Wmax) are to be taken into consideration within the simulation of
our stochastic hazard model.

Figure 2.6: Satellite images of (a) hurricane Frances on September 30, 2004, and (b)
hurricane Katrina August 28, 2005. An eye-wall replacement is underway at the time
of the image in (a); convection in the primary eye-wall (marked PE) is weakening
while convection in the secondary eye-wall (marked SE) strengthens. The warm
(blue) ring between the primary and secondary eye-walls identifies the moat, an
area associated with warm and dry, sinking air. In this event, the secondary eye-wall
continued to contract and ultimately replaced the primary eye-wall. For comparison,
hurricane Katrina in the image on the right (b) exhibits a single (primary) eye wall
at the time of the image.

Source: PartnerRe, Kossin and Sikowsky (2009)

2.4.3 Model output and description of the data

2.4.3.1 Output from the model

The output of the catastrophe models can either be illustrated by a GIS map of the
potential loss or an event loss table based on the information of the losses incurred
by each simulated catastrophe event, using the exceedance probability (EP) curve.
In contrast to a GIS map of loss, which presents loss in a spatial manner, an EP
curve portrays loss in a temporal manner.

1. GIS Map indicates the losses per region, due to a specific catastrophe. The
more important the loss is, the more intense the color is on the map.

2. An EP curve is particularly valuable for insurers and reinsurers to manage
the portfolio risks and optimize the insurance / reinsurance portfolio. For
a given portfolio of structures at risk, an EP curve is a density probability
distribution that a certain level of loss will be surpassed in a given time period.
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By random permutation of the geophysical parameters, the historic event sets
can be artificially enlarged, resulting in the so-called stochastic event sets.
By choosing the scenarios, which affect a certain insurance portfolio, many
hundred or thousand years of potential future losses can be simulated. In this
way, important information about the individual claims distribution and the
aggregate loss distribution for this portfolio can be obtained.

Figure 2.7: Example of GIS map
Source: Office [2002]

2.4.3.2 Description of the data

The focus of this thesis is on the South, South-East and North-East regions of the
United States of America. Due to the aforementioned problem of scarcity of histor-
ical data, the data used below originates from the catastrophe models simulated by
the Zurich modeling team of PartnerRe on the whole Business Unit Cat risk port-
folio using the catastrophe model AIR CatRader version 11.0.1. The data provided
by the catastrophe model is composed of the aggregated losses data of regions in
the USA. Additionally, the marginal losses of each region are also provided. The
dataset is composed of 8’005 data points.
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North-East South-East South

States

Connecticut, District of Columbia,
Delaware, Massachusetts, Maryland,

Maine, New Hampshire, New
Jersey, New York, Pennsylvania,
Rhode Island, Virginia, Vermont,

West, Virginia

Alabama,
Florida,

Georgia, North
Carolina,

South Carolina

Arkansas,
Kansas,

Louisiana,
Missis-

sippi,Oklahoma,
Texas

Table 2.1: States to region allocation

2.5 Discussion of catastrophe models

Historical data combined with stochastically simulated models are used in the pre-
diction process. Hence, this requires high quality and reliable meteorological data
on past events. However these data represent only up to maximum 150 years of
historical measurements and are used to simulate very low probabilities events such
as 1 in 250 or 1 in 500 years. Considering the intrinsic evolution of climate in the
past million years, combined with external factors such as global warming, it is a
pertinent question to ask whether these probabilities calculations are relevant for
these extreme catastrophes. Despite the fact that catastrophe models can provide
a good idea of the covered risk, the lack of data of extreme events outside of these
150 years of measurement, like hurricane Katrina or the changes of climate in recent
decades, due to global warming which leads to increasing El Nino phenomenon may
create a bias in the statistical inference and making less accurate predictions.



Chapter 3

Dependence Analysis

3.1 Introduction to copulas

In statistics, a copula (or dependence structure) describes the notion of dependence
between random variables. It proceeds by linking them together to form a multi-
variate distribution, which describes their joint behavior.

During the last ten years, copula modeling has kept the world of finance, insur-
ance and numerous researchers busy. Despite copula being the subject of theoretical
mathematical research already in the 1970s, it was only in the past decade that the
industry fully realized the potential of this tool. Since then research in this field and
applications to the finance industry has been subject of intense development. This
whole adventure initially started off with this one simple actuarial question that a
Swiss leading reinsurance company asked ETH Zurich mathematicians: “Given two
marginal distributionsX1, X2 with log-normal distribution functions F1 = LN(0, 1),
F2 = LN(0, 16), how can one simulate from such a model if X1 and X2 have lin-
ear correlation ρ = 0.5 say” [Embrechts, 2009]. In the past, it was unknown to
practitioners how to aggregate both risks. And at the same time, this question
is crucial for the firm’s overall risk assessment, as overestimating the dependence
of risk positions can lead to higher capital requirements, which may handicap the
competitiveness of the company due to the high capital costs. Or on the other side,
underestimating the risk can put the company in the danger of insolvability in case
of extraordinary catastrophe events, which be incur large losses for the reinsurance
company.

More concretely, copulas have the advantage to showcase a complete and unique
description of the dependence structure. In this sense, it provides a way of isolat-
ing the description of the dependence structure independently of the underly-
ing marginal distribution. For example, the joint distribution of a random vector of

21
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risk factors implicitly contains the information of both a description of the marginal
behavior of individual risk factors, but as well a description of their dependencies.
Imagine that the copula describing the underlying dependence of this random vector
can be modeled by a Gaussian copula, then this dependence structure will remain
the same whether the marginal distribution has a normal, student t or log-normal
distribution.

Mathematically, the whole construction of copulas is expressed by the famous
Sklar’s theorem (Theorem 3.4), which allows the mapping of the individual marginal
distribution functions F1, . . . , Fn to the joint distribution function F via the copula
C. In order to compare the random using the same scale, Sklar’s theorem describes
a copula based on a unitary scale of [0, 1], Proposition 3.3 provides the tool to
transform the marginal variable to an uniform distribution [0;1]. The copula can
then be expressed as a multivariate distribution on the obtained uniforms, which is
precisely a copula.

From a practical point of view, applications in copula inference have made a lot
of progress since its initiation. Empirical applications have been successfully imple-
mented in actuarial science, financial risk assessment or hydrology (See Malevergne
and Sornette, 2003, Genest and Favre, 2007, which are also the two essential papers
for reference in this thesis.). However it is in finance that it has been so extensively
applied that it becomes almost the “newest fashion”. With the growing popularity
of copula applications and error-prone usage of this tool, it is believed that the ap-
plication of the Gaussian copula to credit derivatives has been one of the reasons
behind the global financial crisis of 2008–2009 [Donnelly and Embrechts, 2010].

In the context of this thesis, copulas will be applied to reinsurance data. For
starters, the fundamental theory of dependence assessment and copulas used in this
thesis are reviewed. This section however provides only the necessary tools for
conducting copula inference but not the exhaustive theoretical background. For a
deeper discussion about copulas, the reader is kindly referred to the Chapter 3 of
Malevergne and Sornette [2005] or / and Chapter 5 of McNeil et al. [2005].

A basic definition of a copula is the following:

Definition 3.1. (Copula). A n-dimensional copula is a multivariate joint distribu-
tion function defined on the n-dimensional unit cube [0, 1]n with marginal uniform
distributions on the interval [0, 1].

Specifically, C : [0, 1]n → [0, 1], where C(u) = C (u1, . . . , un) is an n-dimensional
copula, if:

1. C (u1, . . . , un) is increasing in each of its component ui. This is due to the fact
that C is a multivariate distribution function.
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2. The standard marginal distributions are uniform, which is equivalent to say
that:

C (1, . . . , 1, ui, 1, . . . , 1) = ui ∀i ∈ {1, . . . , n} , ui ∈ [0, 1] . (3.1)

3. C satisfies the rectangle inequality: for all (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n

with ai ≤ bi we have

2∑
i1=1

. . .

2∑
in=1

(−1)i1+...+in C (u1i1 , . . . , unin) ≥ 0, (3.2)

where uj1 = aj and uj2 = bj ∀j ∈ {1, . . . , n}.

Proposition 3.2. These two transformations hold:

• Quantile transformation: Let U ∼ U (0, 1), F be a distribution function
with generalized inverse F−1. Then P

(
F−1(U) ≤ x

)
= F (x).

• Probability transformation: Let X be a random variable with continuous
distribution function F . Then F (X) ∼ U(0, 1).

Proof. The proof of this proposition can be found in page 186 of McNeil et al.
[2005].

Proposition 3.3. (Invariance under monotone transformations). Let X =

(X1, . . . , Xn)′ be a random vector with copula C and let T1, . . . , Tn be strictly in-
creasing functions. Then (T1 (X1) , . . . , Tn (Xn)) ´ also has copula C.

Proof. A proof of this proposition can be found in page 188 of McNeil et al. [2005].

Proposition 3.2 and 3.3 are fundamental properties of copula modeling. Because of
the invariance under strictly increasing transformations property, the copula remains
the same, regardless of the transformations. These properties are useful to transform
the data to an uniform distribution.

Theorem 3.4. (Sklar, 1959). Let F be a joint distribution function with margins
F1, ..., Fn. Then there exists a copula C : [0, 1] → [0, 1] such that, for all x1, ..., xn
in R ∈ [−∞,∞],

F (x1, ..., xn) = Cθ(F1(x1), ..., Fn(xn)). (3.3)

If the margins are continuous, then C is unique; otherwise C is uniquely deter-
mined on Ran (F1)× Ran (F2)× ...× Ran (Fn), where Ran (F1) denotes the range
of Fi.
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Conversely, if C is a copula and F1, . . . , Fn are uni-variate distribution func-
tions, then the function F defined above is a joint distribution function with margins
F1, . . . , Fn.

One can also evaluate Theorem 3.4 for xi = F−1i (ui) and obtain an explicit
expression for C:

Cθ (u1, . . . , un) = F
(
F−11 (u1) , . . . , F

−1
n (un)

)
. (3.4)

Proof. A proof of this theorem can be found in Schweizer and Sklar [1983].

For example, consider two random variables X and Y , with continuous cumula-
tive distribution functions FX and FY . The probability transform is applied sepa-
rately in order to obtain two uniform random variables U = FX(X) and V = FY (Y )

with the same dependence structure as X and Y . Based on these two uniform
marginal distributions, various copulas Cθ are constructed to fit the data. It will be
examined in the next chapter, how Cθ is chosen and fitted to model the dependence
structure of the data.

Theorem 3.5. (Fréchet-Hoeffding bounds). Let X be a random vector with
marginal distribution functions F1, . . . , Fd and joint distribution function F . Let
ui = Fi(xi), then, for every copula Cθ (u1, . . . , un), the bounds:

W = max

{
d∑
i=1

ui + 1−d, 0

}
≤ C(u) ≤ min (u1, . . . , ud) = M. (3.5)

The lower and upper bounds constitute the Fréchet-Hoedffding bounds and are
the strongest form of dependence that random variables can exhibit. The upper
bound is the so-called comonotonicity copula, representing the perfect positive de-
pendence of the joint distribution of the random vector (U, ..., U). The lower bound
is the countermonotonicity copula and represents perfect negative dependence. This
is however valid only in the two-dimensional case and is then the joint distribution
of (U, 1−U).

Proof. The proof of this theorem can be found in page 189 of McNeil et al. [2005].

3.2 Dependence assessment

3.2.1 Dependence measures

In mathematics, dependence refers to a statistical measure of the relationship be-
tween two data sets. Dependence measures indicate the strength and the direction
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of a relationship between two random variables and yield a scalar value between
[−1 : 1], namely the correlation coefficient. In this section, three kinds of depen-
dence measures are discussed: the Pearson linear correlation, rank correlations and
the coefficients of tail dependence.

3.2.1.1 Linear correlation

Dependence can be described by Pearson’s correlation coefficient. As it is easy to
implement, it is one of the most popular measure of dependence and is obtained by
dividing the covariance of two variables by the product of their standard deviations.
Formally it is defined as the following:

Definition 3.6. (Pearson’s linear correlation). The correlation coefficient ρX,Y
between two random variables X and Y is

ρX,Y = corr(X,Y ) =
cov(X,Y )

σXσY
=
E[(X − µX)(Y − µY )]

σXσY
, (3.6)

where σX and σY express their respective standard deviations and µX and µY the
expected values.

Pearson’s correlation expresses the extent to which random variables are linearly
“proportional” to each other. It assesses the dependence by looking at the percent
of variation of one variable, based on the unitary change of the second variable.

From a practical point of view, Pearson’s linear correlation is a widely used tool
to assess dependence. However, it should not be taken as a default measure of de-
pendence despite its popularity, as it leads to an improper estimation of dependence.
This is because Pearson’s correlation coefficient measures only the linear dependency
between two random variables and fails to capture other kinds of dependencies as
illustrated in Figure 3.1. For this reason, it is only suitable for normal or more gen-
erally elliptical distributions. In the following paragraph, some further shortcomings
that users may encounter when using the linear correlation are presented in a more
extensive manner [Embrechts et al., 2002]:

Fallacies surrounding the linear correlation:

1. If X and Y are independent, then the correlation is zero. But the converse
is false: if ρ = 0, the random variables are not obviously independent. For
example in the last row of Figure 3.1, the correlation is zero, but clearly they
are not independent.

2. The necessary invariance property under strictly increasing linear transforma-
tions of copula models, can not be applied to Pearson’s linear correlation. As
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Figure 3.1: Linear correlation examples
Source: Wikipedia; linear correlation

seen in the formula above, Pearson’s correlation coefficient depends on both
the marginal distribution and the dependence structure. In case of elliptical
distributions, the invariance property remains valid. But beyond this cate-
gory of distributions, two real-valued random variables, where T : R → R a
increasing transformation, then ρX,Y (T (X), T (Y )) 6= ρ(X,Y ).

3. Another pitfall of Pearson’s linear correlation is that according to the defini-
tion, the variances of X and Y have to be finite. This restriction to finite-
variance models is not ideal especially for estimating heavy tailed distribu-
tions. For example, actuaries who model losses in different business lines with
infinite-variance distributions may not describe the dependence of their risks
by using linear correlation.

3.2.1.2 Rank correlations

In order to overcome the aforementioned problems related to Pearson’s linear cor-
relation, rank correlations have been introduced to provide a better alternative for
measuring dependence in the case of non-elliptical distributions.

Rank correlations are also scalar measures of dependence, but they only depend
on the dependence structure (ie. copula) of a bivariate distribution and not on its
marginal distributions, unlike linear correlation, which depends on both [McNeil,
Frey, and Embrechts, 2005]. This is indeed the case, as by looking at the ranks
alone, the dependence does not vary under strictly increasing transformation, hence
the copula remains the same.

Practically, rank correlations use non-parametric measures such as Spearman’s
ρ and Kendall’s τ , by looking at the probability of concordance and discordance of
ranks of the data. The specifics are explained in the next section.

Definition 3.7. (Ranks). Given a sample (X1, Y1), . . . , (Xn, Yn) from a pair of
continuous random variables (X,Y ) with a bi-variate distribution H(x, y) which
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characterizes their joint behavior. The rank of each observation Ri and Si are
defined as

Ri =
n∑
k=1

1 {Xk ≤ Xi} and Si =
n∑
k=1

1 {Yk ≤ Yi} . (3.7)

Under the assumption that X and Y are continuous random variables, the prob-
ability of ties is zero and the ranks defined explicitly.

• Kendall’s Tau (τ) [Kendall, 1938]

Definition 3.8. (Kendall’s tau). Let X1 , X̃1 be iid random variables with
continuous marginal distribution F1 and X2 , X̃2 be iid random variables with
continuous marginal distribution F2. Then the Kendall’s tau is defined by:

ρτ (X1, X2) =
(
P ((X1 − X̃1)(X2 − X̃2) > 0

)
−
(
P ((X1 − X̃1)(X2 − X̃2) < 0

)
(3.8)

= E(sign((X1 − X̃1)(X2 − X̃2))). (3.9)

Given two points in R2, denoted by (x1, x2) and (x̃1, x̃2), are stated to be
concordant if (x1−x̃1)(x2−x̃2) > 0 and to be discordant if (x1−x̃1)(x2−x̃2) <

0. Kendall’s tau represents the measure of probability of concordance between
(X1, X2) and (X̃1, X̃2) minus the probability of discordance. For example, if
X2 tends to increase with X1, then the probability of concordance is expected
to be high in comparison with the probability of disconcordance [Malevergne
and Sornette, 2005].

Definition 3.9. The empirical estimator of Kendall’s tau is defined as :

τn =
Pn −Qn(

n
2

) =
4

n(n− 1)
Pn − 1, (3.10)

where Pn and Qn are the number of concordant and discordant pars in the
sample, and τn an asymptotically unbiased estimator of ρτ [Genest and Favre,
2007].

Beyond two dimensions, the Kendall’s tau can be represented by a matrix of a
random vector ρτ (X) = cov(sign((X− X̃)), where X̃ is an independent copy
of X. For practical reasons in copula modeling (as seen in Step 3 of Algorithm
4.3.1), the matrix of Kendall’s tau needs to be semi-definite positive. Since the
last expression can be illustrated as a covariance matrix, ρτ (X) is obviously
positive semi-definite [McNeil et al., 2005].
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• Spearman’s rho (ρ) [Scarsini, 1984]

Definition 3.10. (Spearman’s rho). Let X1 and X2 be two random vari-
ables with continuous marginal distribution functions F1 and F2. Then Spear-
man’s rho is given by:

ρs(X1, X2) = corr (F1(X1), F2(X2)) . (3.11)

In other words, Spearman’s ρs is simply the linear correlation of the probability
transformed random variables, which for continuous random variables is the
linear correlation of their unique copula.

The empirical estimator of ρs is ρn, which is the correlation between the pairs
of the ranks (Ri , Si) and is given by:

ρn =

n∑
i=1

(
Ri − R̄

) (
Si − S̄

)
n∑
i=1

(
Ri − R̄

)
2
n∑
i=1

(
Si − S̄

)
2

∈ [−1, 1] (3.12)

where

R̄ =
1

n

n∑
i=1

Ri =
n+ 1

2
=

1

n

n∑
i=1

Si = S̄. (3.13)

The Spearman’s ρs matrix for the general multivariate random vector X is
given by ρ(X) = corr (F (X1), F (X2), . . . , F (Xd)) and must be again be posi-
tive semi-definite [Joe, 1997].

3.2.2 Tail dependencies

Due to the losses in relationship with the likelihood of extreme weather events occur-
ring in more than one region, tail dependency provides a measure to estimate pair
wise extremal dependence. In other words it measures the strengths of dependencies
in the tails of a bi-variate distribution. This piece of information that the tails of
data sets are asymptotically dependent or independent is especially important when
fitting copulas to empirical data, as some models (eg. Gaussian copula) are asymp-
totically independent in the tail, while others have tail dependence. Such knowledge
can influence significantly the estimation of the necessary capital for the firm.

Definition 3.11. (Asymptotic dependence measure λ). Let X and Y be
random variables with continuous distribution functions FX and FY . The coefficient
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of upper tail dependence of X and Y are defined as:

λu(X,Y ) = lim
u→1−

P
[
X > F−1X (u) | Y > F−1Y (u)

]
(3.14)

= lim
u→1−

P
[
X > F−1X (u) ∩ Y > F−1Y (u)

]
P
[
Y > F−1Y (u)

] . (3.15)

For example, if X and Y represent the losses of two peril zones of probability
u, their coefficient of tail dependence λu looks at the probability that X exceeds its
q-quantile, given that Y exceeds its q-quantile, and then consider the limit as q goes
to 1. The roles of X and Y are interchangeable.

The upper tail dependence looks at the limit of the probability that Y is greater
than its q-quantile, given that X exceeds its q-quantile. If λu > 0, then X and Y
present tail dependence and large events tend to occur simultaneously with proba-
bility λu. If λu = 0, they show signs of asymptotically independence in the upper
tail.

Definition 3.12. Analogously, the coefficient of lower tail dependence is given by:

λl(X,Y ) = lim
u→0+

P
[
X ≤ F−1X (u) | Y ≤ F−1Y (u)

]
(3.16)

= lim
u→0+

P
[
X ≤ F−1X (u) ∩ Y ≤ F−1Y (u)

]
P
[
Y ≤ F−1Y (u)

] (3.17)

provided a limit λu and λl ∈ [0, 1] exists. If λl > 0, then X and Y are stated to
have lower tail dependence.

One can also interpret the last expression in terms of a Value-at-Risk. In fact,
the quantiles F−1

X (u) and F−1
Y (u) are nothing but the Values-at-Risk of X and Y at

the confidence level u. Thus, the coefficient λu simply provides the probability that
X exceeds the VaR at level u, assuming that Y has exceeded the VaR at the same
probability level u, when this level goes to one [Malevergne and Sornette, 2005].

Tail dependence can also be written by using copulas:

Theorem 3.13. (Copula representation of the asymptotic dependence λ).
Taking the case of upper tail dependence λu and let C be the copula of the variables
X and Y, then

λu(X,Y ) = lim
u→1−

1− 2u− C (F (X), G(Y ))

1− u
. (3.18)

Proof. A proof of this theorem can be found in McNeil et al. [2005].
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This thesis draws the readers’ attention to the fact that λu = 0 alone is not
a sufficient condition to assert the asymptotic independence of the copula and a
complementary tail dependence measure λ̄ was developed by Coles et al. [1999] to
confirm the H0 hypothesis of tail independence:

Definition 3.14. (Asymptotic dependence measure λ̄). Let X and Y be ran-
dom variables with continuous distribution functions FX and FY . The asymptotic
dependence measure λ̄ of upper tail dependence of X and Y is defined as:

λ̄u = lim
u→1

2 log
(
Pr
(
X > F−1

X (u)
))

log
(
Pr
(
X > F−1

X (u), Y > F−1
Y (u)

)) − 1, (3.19)

where −1 ≤ λ̄u ≤ 1.

λ̄ represents the rate at which P
[
X ≤ F−1X (u) | Y ≤ F−1Y (u)

]
approaches zero.

When λ̄u = 1, the variables are asymptotically dependent and if −1 ≤ λ̄u < 1,
the variables are asymptotically independent. Hence, the pair

(
λ, λ̄

)
together can

provide information about the extremal dependence at the tails. To sum up, if
0 < λu ≤ 1 and λ̄u = 1, it is a sufficient to ascertain the tail dependence between
two random variables. Alternatively in order to ascertain tail independence the
condition λu = 0 must be fulfilled, but this also requires as a necessary condition
that −1 ≤ λ̄u < 1.

3.2.3 Graphical tools for dependence assessment

Graphical tools [Genest and Favre, 2007] are used to visualize the underlying depen-
dence in our data set. Alternatively, they can also be used to check the adequacy of
the fitted copula model by comparing it against the empirical copula. The graph-
ical tools for dependence assessment are mainly all rank based, so that only the
information of the dependence structure between random variables is illustrated.
Other tools plotting the complete multivariate distribution, such as scatter plots for
example are not ideal for this reason as it also illustrates the marginal behavior of
X and Y. Three rank based plots have been implemented in the framework of this
thesis and are explained in the following.

3.2.3.1 Rank plot

Rank plots aim to visualize the copula by plotting the respective ranks of two random
variables (X,Y ) onto their respective (empirical) marginal distributions (F,G). In
other words, for each observation (Xi, Yi), a graph (Fi(X), Gi(Y )) is plotted for all
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observations i = 1, . . . , n.

Ui = Fn(Xi) =
1

n

n∑
k=1

1 {Xk ≤ Xi} =
Ri
n

(3.20)

Vi = Gn(Yi) =
1

n

n∑
k=1

1 {Yk ≤ Yi} =
Si
n
. (3.21)

3.2.3.2 Chi plot

Chi plots are intended to reveal more detailed and explicit information regarding
the nature of association of two random variables (X,Y ). The elements of the Chi
plot illustrate the pair (λi, χi), for λi, χi ∈ [0, 1], are formally defined as:

λi = 4sign
(
F̃i, G̃i

)
max

(
F̃i

2
, G̃i

2
)

∀i ∈ (1, . . . , n) (3.22)

χi =
Hi − FiGi√

Fi(1− Fi)Gi(1−Gi)
(3.23)

where
Hi =

1

n− 1
# {j 6= i : Xj ≤ Xi, Yj ≤ Yi} (3.24)

Fi =
1

n− 1
# {j 6= i : Xj ≤ Xi} , Gi =

1

n− 1
# {j 6= i : Yj ≤ Yi}

F̃i = Fi −
1

2
, G̃i = Gi −

1

2
.

Graphically, this method is designed so that the plot (λi, χi) is approximately hor-
izontal under the null hypothesis of independence, H0 : C = uv, one would expect
Hi ≈ Fi ×Gi for all i. Under other forms of association, it produces characteristic
patterns as illustrated in Figure 3.2. Intuitively χi indicates the departure from
the independence condition of two marginal distributions (X,Y ) and measures the
failure of the bi-variate distribution function to factorize into a product of marginal
distribution functions. λ measures the distance from (Xi, Yi) to the bivariate me-
dian. For a full description of how to construct a chi plot and the theory behind it,
the reader is referred to Fisher and Switzer [1985, 2001].

3.2.3.3 Kendall’s plot

Kendall’s plot (or K-plots) are initially inspired from the QQ-plot which looks at
the order statistics of the quantiles of marginal distributions. This procedure retains
the Chi plot’s property of invariance to monotone transformations of the marginal
distribution and combines it with the advantage of being easier to interpret as the
curvature of the graph displays in a definite way the copula. It has furthermore
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Figure 3.2: Scatter plot and Chi-plot examples with normal distribution samples
Source: Canestaro [2010]

the benefit of being readily extensible in a multivariate context [Genest and Boies,
2003].

The empirical joint distribution, H (as defined in Equation 3.24) is shown on
the x-axis and it is compared to the independence condition of the ith statistics of
the same copula on the y-axis. If the independence hypothesis holds, the points of
the K-plot will lie along the main diagonal y = x, as shown in the first graph of
Figure 3.3. A deviation from the main diagonal indicates dependence in the data.
The pair (Wi:n, H(i)) is plotted for i ∈ (1, . . . , n) ,where H(1) < H(2) < . . . < H(n)

are the order statistics related to the quantities H1, H2, . . . ,Hn. Wi:n is defined as
the expected value of the ith order statistic from a random sample of size n from
the random variable W = C(U, V ) = H(X,Y ). When H0 : H(X,Y ) = F (X)G(Y ),
Wi:n is given by:

Wi:n = n

(
n− 1

i− 1

) ˆ 1

0
ωk0 (ω) {K0 (ω)}i−1 {1−K0 (ω)}n−1 dω (3.25)

where K0 (ω) is the distribution function under H0 and is defined as

K0 (ω) = ω − ω log (ω) . (3.26)

For more details of this method, the reader is recommended to have a deeper look
at Genest and Boies [2003] on page 3-4.
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Figure 3.3: Kendall’s plot examples with normal distribution samples

3.2.4 Tests of independence

Testing for independence between two continuous random variables X and Y is an
important problem that has been the object of much attention in the past century.
Despite a great amount of literature available on the subject, classical tests of inde-
pendence between two continuous random variables based on Pearson’s correlation,
such as Student’s test and Fisher’s Z-transform continue to be the most commonly
used in practice. These tests only measure the degree of linear association for the
normal paradigm and beyond as stated in limitations of the linear correlation co-
efficient in Section 3.2.1.1, their effectiveness is questionable. Therefore the test
of independence should be based on invariant statistics, such as the copula based
quantities like Spearman’s ρ or Kendall’s τ , which are not affected by the shape of
the margins.

3.2.4.1 Procedure for testing independence

As described in Genest and Favre [2007], a test of independence based on Spearman’s
ρ and Kendall’s τ is performed.

For Spearman’s ρ Under the null hypothesis of the independence between X and
Y , H0 : C = Π, the distribution ρn defined as the asymptotically unbiased estimator
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of ρs is close to normal with zero mean and variance 1
n−1 . Where n is the sample

size. So for an approximate level of α = 0.05, one may reject H0 if

√
n− 1 ∗ |ρS | > zα/2 = 1.96. (3.27)

For Kendall’s τ An alternative test of independence can be based on τn since
under H0, this statistics is close to normal with zero mean, variance equal to 2(2n+5)

9n(n−1)

and n is the sample size. H0 is rejected at 5% level if√
9n(n−1)

2(2n+ 5)
∗ |ρτ | > zα/2 = 1.96. (3.28)



Chapter 4

Dependence Modeling and
Copulas

4.1 Introduction to copula models

A joint distribution function of a random vector of risk factors contains implicitly
the information of both a description of the marginal behavior of individual risk
factors and their dependence. The copula approach provides a way of isolating
the description of their dependence structure and helps in a better understanding
of dependence relationship between random variables. Just as there are unlimited
types of dependencies, there exist also as many copulas models which all differ in
the types of dependence they represent. A family of copulas describes a range of
dependence structures, which have several parameters, all relate to the strength and
form of the dependence. As to the marginal behavior, a copula model possesses the
flexibility to combine a variety of possible marginal distributions. This is in fact one
important advantage of copula models, as they don’t make any assumptions on the
marginal distributions. Then how to model the data dependence structure in the
form of a copula? This is one of the most commonly asked question for practitioners,
which will be answered in this thesis.

In the present chapter, some of the most important copula families, subdivided
into the following three categories are presented. Fundamental copulas encompass
the most elementary dependence structures such as full dependence and indepen-
dence; implicit copulas are extracted from well-known multivariate distributions
such as Gaussian or Student-t and do not have any closed form expression; explicit
copulas are represented through a close form expression. When conducting copula
inference for a multidimensional dataset, the usage of one single parameter θ leaves

35
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limited flexibility to model the multidimensional character of the dependence struc-
ture Nelson [2005]. For this purpose multi-parameter Archimedean copulas, such
as nested copulas as described in the book of Joe [1997] (pp. 150-153) has been
developed, but they are complex to implement in practice.

After presenting the aforementioned copulas families, methodologies on how to
fit them to the data are explained. There is unfortunately no hat trick or a universal
rule to choose one copula and each fitting is different for each individual case. It
would also be much easier if our marginals are normally distributed. However is
not the case with frequently heavy tails present in the used catastrophe data. Then
after, this is to be followed by algorithms to simulate copulas and finally the some
goodness-to-fit testing will be discussed.

4.1.1 Fundamental copulas

The family of fundamental copulas represents the most elementary copulas at the
lower or higher boundaries for all copula families.

The independence copula exhibits the case, where all the components of the
marginal random variables are perfectly independent from each other. By the law
of probability, the joint distribution of independent random variables can be decom-
posed into the product of the marginal probabilities and therefore given by:

Cindependent (u1, . . . , ud) =
∏

(u1, . . . , ud) =

d∏
i=1

ui. (4.1)

The comonotonicity copula is the Fréchet upper bound copula (M) from Theorem
3.5 and is given by:

Ccomonotonic (u1, . . . , ud) = min {u1, . . . , ud} . (4.2)

It relates to perfectly dependent continuous margins, in the sense that they are
almost surely strictly increasing or decreasing transformations of each other, so that
ui = Ti(u1). It represents the distribution function of the vector U = U (U, . . . , U).

Finally the countermonotonicity copula is the two-dimensional Fréchet lower
bound (W) copula from Theorem 3.5 binding continuous marginals who are perfectly
negatively dependent. It is given by:

Ccountermonotonic (u1, u2) = max {u1 + u2 − 1, 0} . (4.3)

This means that if u1, u2 ∼ U (0, 1) , the copula corresponds exactly to a bivariate
distribution functions of random vectors that are either U or 1−U . It is not possible
to extend the concept of countermonotonicity to more than two dimensions.
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Figure 4.1: Contour plots of the three fundamental copulas. From left to right:
countermonotonicity, independence and comonotonicity copulas.

Source: Alexander McNeil et al. | Quantitative Risk Management | Page 190.

4.1.2 Implicit copulas

4.1.2.1 The Gaussian copula

The Gaussian copula is constructed according to Sklar’s theorem by using the mul-
tivariate normal distribution as the name suggests. It is defined formally as:

CGaP (u) = Φd
P (Φ−1(u1), ...,Φ

−1(ud)), (4.4)

where Φd
P denotes the joint d-variate standard normal distribution function with the

correlation matrix parameter P , which is estimated using the dependence measures
cited in Section 3.2.1. Φ−1 denotes the inverse of the distribution function of uni-
variate standard normal distributions.

There are two interesting cases for P . One is when P = Id, where Id is the
identity matrix of d dimensions, then the independence copula is obtained. And if
P = Jd, a d × d matrix consisting entirely of ones, the comonotonicity copula or a
perfectly positively dependent copula is obtained.

Comments about this copula: In practice, the Gaussian copula has the advan-
tage of being easy to construct and to simulate, but it limits the application only to
tail independent data sets. When one looks at the tail of the distribution, the coef-
ficients of upper and lower tail dependence for the Gaussian copula are constantly
zero, regardless how highly the underlying dependence of the data is in reality (a
proof can be found in McNeil et al. [2005] on page 211.). In the framework of this
thesis and in presence of sufficient amount of data, the marginal distributions have
been modeled by using their empirical distributions. For this specific case, the latter
will be named hereafter as the “Meta-Gaussian copula”.
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4.1.2.2 The Student t copula

A famous copula model is the Student t copula. Let a d-dimension vector X have
the following stochastic representation:

X = µ+

√
ν√
S
Z

where µ ∈ Rd, S ≡ χ2
ν and Z ≡ Nd(0,Σ) are independent. Then X has a d-

dimensional tν distribution with mean µ and covariance matrix ν
ν−2Σ. The copula

of X is defined as:

Ct
ν,P (u) = tν,P (t−1ν (u1), ..., t

−1
ν (un)),

where P is a correlation matrix and ν the number of degrees of freedom. tν is the
distribution function of a standard uni-variate t distribution.

Comments about this copula: As in the case of the Gaussian copula, the
comonotic copula is obtained with P = Jd, a d × d matrix consisting entirely of
ones. However if P is diagonal or is the identity matrix Id, this does not mean that
the components are independent, but are just uncorrelated (see Section 3.2.1.1 for
fallacies of the linear correlation). Student-t copulas have however the advantages
of capturing tail dependencies, as illustrated in Figure 4.2c.

4.1.3 Explicit copulas

The concept of Archimedean copulas has been approached for the first time in the
paper of Schweizer and Sklar [1983], but the term of “Archimedean copulas” appeared
only after the two papers of Genest and Mackay [2003] were published. Since then,
Archimedean copulas have became a widely used class of copulas as they allow for
a greater variety of dependence structures, which cannot be modeled with implicit
copulas. This is particularly interesting for asymmetric dependence structures, for
example in the stock market where the dependence for big losses is much greater
than for big gains. However as this paper analyses a catastrophe risk portfolio, where
the data represents the losses due to natural hazards, the interest is mainly in the
upper tail of large losses. The lower tail representing smaller losses are less relevant
for capital allocations in the reinsurance industry. For this reason, modeling two
tails are not be covered within the framework of this study.

Definition 4.1. (Archimedean copula). Let φ : [0, 1]→ [0,∞] be a continuous,
strictly decreasing and convex function so that φ (1) = 0 and φ (0) = ∞. Let
φ−1 : [0,∞]→ [0, 1] be the inverse of φ, then the function C : [0, 1]d → [0, 1] defined
by
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C (u1, . . . , ud) = φ−1 (φ (u1) + . . .+ φ (ud)) (4.5)

is called the Archimedean copulas if and only if φ−1 is completely monotonic on
[0,∞) ie.

(−1)d
∂k

∂uk
φ−1 (u) ≥ 0 ∀k ≥ 1 (4.6)

The function φ is called the generator of the copula. φ (0) =∞ then the generator
is stated to be strict.

4.1.3.1 Archimedean copulas

In order to model the dependence of the data, the most commonly used copulas have
been examined in further detail. For a more extended study in this field, a collection
of twenty-two one-parameter families of Archimedean copulas can be found in Table
4.1 of Nelson [2006].

The Gumbel copula, with the generating function

φ (u) = (− log (u))θ , θ ≥ 1 (4.7)

interpolates between independence and perfect dependence by having θ to represent
the strength of the dependence. In particular, if θ = 1, the independence copula is
obtained, while the limit as θ →∞ is the comonotonicity copula.

The Clayton copula, with the generating function

φ (u) =
u−θ − 1

θ
, θ > 0 (4.8)

is an asymmetric copula allowing a heavy tail dependence. Furthermore, the Clayton
copulas is known as a comprehensive copula as it can articulate all three fundamental
copulas, specifically:

• If θ → 0, CClθ approaches the independence copulas, Π.

• If θ →∞, CClθ approaches the comonotonicity copula, M .

• If θ → 1, CClθ approaches the countermonotonic copulas, W .

The Frank copula, with the generating function

φ (u) = − log

(
exp (−θu)− 1

exp (−θ)− 1

)
, θ 6= 0 (4.9)
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Copula
family Copula Cθ Parameter CU CI CL

Normal Φn
θ (Φ−1(u1), ...,Φ

−1(un)), −1 ≤ θ ≤ 1 θ = 1 θ = 0 θ = −1
t-copula tν,θ(t

−1
ν (u1), ..., t

−1
ν (un)) −1 ≤ θ ≤ 1 θ = 1 NA NA

Clayton max
[(
u−θ + v − θ − 1, 0

)] 1
θ −1 ≤ θ ≤ ∞ θ →∞ θ → 0 θ → −1

Frank 1
θ ∗ ln

[
1 + eθu−1

eθv−1e−1 − 1
] −∞ ≤ θ ≤

∞ θ →∞ θ → 0 θ → −∞

Gumbel exp

[
−
(

(− lnu)θ + (− ln v)θ
) 1
θ

]
1 ≤ θ ≤ ∞ θ →∞ θ → 1 NA

Table 4.1: Definition of 5 copula families with their form, parameter spaces and
respective comonotonicity copula CU , independence copula CI and countermono-
tonicity copula CL.

(a) Clayton copula (b) Gumbel copula (c) Student t copula with
ν = 1

(d) Gaussian copula

Figure 4.2: Scatter plots of the simulation of selected copula models with ρτ = 0.5

4.2 Methodology for fitting copula to data

There are mainly three methodologies, when estimating the parameters (ρ, θ) of a
copula family {Cρ1,...,ρn,θ,} to model the dependence between two random variables
X and Y : firstly by using fully parametric method, known also as the “inference
functions for margins” (IFM). The second is the semi-parametric and the third the
moments estimators method. These methods are explained respectively in Shih and
Louis [1995], Genest et al. [1995] and Genest and Favre [2007], and it is also reviewed
from a practical point of view in the following section.

4.2.1 Parametric approach

The inference function for margins (IFM) method approach consists of estimat-
ing uni-variate parameters from separately maximizing uni-variate likelihoods, and
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then estimating dependence parameters from separate bi-variate likelihoods or from
a multivariate likelihood. Given F,G two marginal distributions with their respec-
tive densities f, g, parametrized with α1, α2 and copula Cθ, the bi-variate density
function is given by hα1,α2,θ = fα1 (x) gα2 (y) cθ (Fα1 (x) , Gα2 (y)). From the sample
(X1, Y1) , . . . , (Xn, Yn), the likelihood to be maximised is:

L (α1, α2, θ) =
n∑
i=1

log {hα1,α2,θ (X1, Y1)}

=

n∑
i=1

log {fα1(Xi)}+

n∑
i=1

log {gα2(Xi)}+

n∑
i=1

log {cθ (Fα1 (Xi) , Gα2 (Yi))} . (4.10)

Once the parameters of α̂1, α̂2 are calculated through the maximisation of
n∑
i=1

log {fα1(Xi)}

and
n∑
i=1

log {gα2(Xi)}, then θ̂ can be obtained by maximising the rest of the Equation

4.11.
One major advantage of the IFM method is that it makes inference for many

multivariate models computably feasible as long as the margins are chosen correctly.
Otherwise, this presents some important disadvantages which may cause the esti-
mate θ̂ to be biased and a wrong estimation of the dependence parameter.

4.2.2 Semi-parametric approach

Similar to the method presented above, this approach overcomes the problem in the
estimation of the marginals, but uses the empirical distribution function instead.
Hence, this method maximises the rank based log-likelihood:

lθ =
n∑
i=1

log {cθ (Fα1 (Xi) , Gα2 (Yi))} (4.11)

is also called the pseudo-maximum likelihood by Genest and Rivest (1993). It can
be shown in Genest et al. [1995] that θ̂ is a consistent estimator of θ, as n→∞ and
asymptotically normal distributed with mean θ and variance σ2

n :

θn ≈ N
(
θ,
σ2

n

)
(4.12)

where σ2 depends entirely on the true underlying copula Cθ (Proposition 2.1 of
Genest et al., 1995). Due to its advantages of being margin free and thus invariant
with respect to increasing transformations, this approach is adopted for the work.
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4.2.3 Method-of-Moments approach

Due to the limitations of computer simulation in its early days, statistical meth-
ods based on rank correlations are been developed in Iman and Conover (1983) to
estimate the copula parameter θ. This technique is particularly useful when the
multivariate data is limited and formal estimation of a full multivariate model is
unrealistic. This general method explores a theoretical relationship between one
of the rank correlations and the parameters of the copula and substitute empirical
values of the rank correlation into this relationship to get estimates of some or all
of the copula parameters [McNeil et al., 2005].

Copula ρτ = ρS =

Gaussian 2
π arcsin(ρ) 6

π arcsin(ρ2) ≈ ρ
Student t 2

π arcsin(ρ) -
Gumbel 1− 1

θ -
Clayton θ

θ+2 -
Frank 1− 4θ−1 (1−D1 (θ)) 1− 12

θ (D1 (θ)−D2 (θ))

Note: Dk (x) = k
xk

´ x
0

tk
et−1dt namely the “Debye” function

Table 4.2: Calibration using rank correlations for 5 families of copulas, where ρs and
ρτ are the rank correlations determined respectively through Spearman’s rho and
Kendall’s tau, ρ and θ the copula parameters.

4.3 Simulating copulas

Monte-Carlo simulations are used to build pseudo observations and different copula
models are applied to calculate the capital needed for this portfolio. The following
steps illustrate how to proceed:

4.3.1 Algorithm for simulating implicit copulas

1. Calculate the Spearman’s Rho and Kendall’s Tau rank correlations.

2. For the Student t copula, use the maximum likelihood test to determine the
degrees of freedom

3. Find the upper triangular matrix (A) of the correlation matrix (P) by using
the Cholesky decomposition.

4. Generate n independent random variates u1, . . . , un from U(0, 1).

5. Set x = Au.

6. Calculate F̂−1(ui), for i = 1, . . . , n, where F̂ is the estimated marginal distri-
bution function.
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• F̂ is Φ in the standard normal distribution for the Gaussian copula. tν
for the student t distribution with ν degrees of freedom for the t copula.

• If a sufficiently large database is available, the empirical distribution func-
tion may be taken.

7. Sum up the potential losses over the different risk types.

8. Compute the empirical distribution function and implement the goodness-to-
fit.

9. Calculate the E(S) and VaR.

4.3.2 Algorithm for simulating Archimedean copulas

1. Perform the Spearman’s Rho and Kendall’s Tau rank correlations.

2. Simulate two independent U (0,1) random variates s and t.

3. Set ω = K−1 (t), where K is the distribution function C (u,v) and defined as
K (t) = t− φ(t)

φ′(t+)
.

4. Set ω = φ[−1] (sφ (ω)) and v = φ[−1] ((1− s)φ (ω)).

5. Continue starting from step 6 of the previous algorithm.

4.4 Goodness-to-fit assessment

In order to find the copula, which fits the data the best, various goodness-to-fit tests
[Genest and Favre, 2007], either graphical tools or formal tests have been developed.
However, in the framework of this thesis, the fitted copula models is simply compared
with the empirical data models as the empirical distributions are available.

4.4.1 Graphical tools

This is a simple application of the methods described in Section 3.2.3. In order to
choose the most adequate model between several different copulas, it can examine,
by plotting on the same graph, the simulated data set using the methodology in 4.3.

A second option, which is related to the K-plots, consists of comparing the
empirical distribution Kn of the variables W1, . . . ,Wn with the estimated Kθn . And
it can be illustrated how well they fit.
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4.4.2 Formal blanket tests of goodness-to-fit

Formal tests methodologies for testing goodness-to-fit of copula models are just at its
beginnings. In Genest and Favre [2007], a critical review of six rank-based blanket
procedures for goodness-of-t testing for any class of copulas are proposed. Two of
the tests discussed in this paper are based on the empirical copula, two are based on
Kendall’s transform and two are based on Rosenblatt’s transform. To compare the
relative power of these procedures, a Monte Carlo study involving a large number
of copula alternatives and dependence structures have been carried out. The results
showed that there was unfortunately no single test which is preferable to all the
others, but the one based on the empirical copula and one of the procedures based
on Rosenblatt’s transform yield the best goodness-of-fit tests for copula models.
However, the disadvantage with the latter is that it relies on a non-unique (and
hence somewhat arbitrary) Rosenblatt’s transform.

4.4.3 Test based on the empirical copula

The empirical goodness-to-fit tests compare the distance between the empirical cop-
ula Cn and the copula model Cθn given by ‖Cn − Cθn‖ over the whole data set:

S = n

ˆ
[0,1]d

{Cθn(u)− Cn(u)}2 dCθn(u) =
n∑
i=1

{Cθn(Ui)− Cn(Ui)}2 . (4.13)

Large values of S lead to the rejection of the copula model.
There are mainly three main tests for goodness-to-fit tests. In Malevergne and

Sornette [2003], the authors propose two additional measures more suitable for cop-
ula models. Instead of looking at the maximum distance between both models, they
prefer to take the average distance on the whole distribution.

1. The Kolmogorov distance is the maximum local distance along the quantile
which most often occurs in the bulk of the distribution. The average distance
examines the distance for the whole distribution.

2. Anderson-Darling distance puts the emphasis on the tails of the two distribu-
tions. The average Anderson-Darling distance also looks at the distance for
the whole distribution.

3. Cramer-von-mises criterion is an alternative to the average Kolmogorov test.

The reader is referred to the paper of Malevergne and Sornette [2003] for more
details about the test procedures or the test methodologies.



Chapter 5

Application to Windstorm Losses

5.1 Introduction

The theory studied in the two previous chapters is applied to the complete risk
portfolio of PartnerRe’s natural catastrophe business unit in the North America
region. The data originates from simulated windstorm losses by using AIR CatRader
version 11.0.1 on the complete PartnerRe’s risk portfolio in coastal regions in the
US. This data is hereafter denoted as “event loss data”.

In this following section, a summary of the data is firstly provided, then followed
by a rigorous assessment of dependence of the data by using independence testing,
graphic visualizations of the dependence of the data, including the rank plot, Chi
plot, Kendall’s plot and tail dependence plot are all computed. In a further step, all
three dependence measures are computed. These first results are compared with the
portfolio model of PartnerRe. Using the same copula than PartnerRe to simulate
the dependence structure of its risk portefolio, differences between both models
have been discovered. These differences are discussed, alternative methodologies
are proposed, goodness-to-fit tested, before concluding on some recommendation for
PartnerRe’s future risk management operations.

5.2 Summary of the data

As described in Section 2.4.3.2, the dataset is composed of 8’005 data points, each
representing a simulated North-Atlantic windstorm occuring in one of the three re-
gion. A sample of the dataset is illustrated in Table 5.1. The columns 4-6 represents
the losses, the windstorm caused in that respective region, and a 0 means simply
that there were no losses.

45
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Event
# Event ID Frequency

Event Loss
occured in
NE region

Event Loss
occured in
SE region

Event Loss
occured in
S region

1 02agulf_1019 0.000288095 44’782 0 845’382
2 02agulf_1033 0.000288095 31’378’898 0 0
3 02agulf_1870 0.000288095 735’660 48’672 27
...

...
...

...
...

...
8’005 gulf1931 0.000288095 3’136 776 2’970’128

Table 5.1: Sample of the dataset

From the summary of the data given in Table 5.2, one can notice the skewed
and heavy tailed data, with mostly zero loss from the first quantile up to median
and important losses starting from the third quantile. Looking at the mean and
maximum losses, the South-East region appears to be the most exposed to hurricane
losses, whereas the South region presents the most skewed distribution, which shows
more damaging losses.

North-East South-East South Total
Min 0 0 0 0

1st Quantile 0 0 0 0
Median 0 0 0 8
Mean 333 476 187 997

3rd Quantile 0 3 3 236
Max 33’064 25’831 23’995 33’064

Standard Deviation 2’193 2’111 1’112 3’235
Skewness (in unitary scale) 9.35 6.57 11.6 5.01

Unit: In millions of USD

Table 5.2: Summary of the event loss data of PartnerRe’s risk portfolio in coastal
regions in the USA.

5.3 Preliminary dependence analysis

5.3.1 Test of independence

Using the methodology described in Section 3.2.4 and the rank correlations presented
in Section 5.4 to perform the test of independence two-by-two for the data set
composed of 8’005 events, it is found that all the computed values are superior to
zα/2 = 1.96. Therefore one can confirm the rejection of H0 hypothesis and prove
that there exists a dependence relationship between the variables.
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5.3.2 Graphical tools

The rank plot, Chi plot and Kendall’s plot have been implemented in order to
compare the dependence of the coastal regions two-by-two. However, only the rank
plots and Chi plots are displayed below as it is not possible to compute the Kendall’s
plot properly owing to the enormous size of the dataset. As described in Section
3.2.3.3, the Kendall’s plot computes the pair (Wi, Hi), where the equation Wi is
defined by: Wi:n = n

(
n−1
i−1

) ´ 1
0 ωk0 (ω) {K0 (ω)}i−1 {1−K0 (ω)}n−1 dω. Due to the

exponential effect of i or n and as n > 1050, the function gets so small that the
computation leads to an output of NaN in the software R. The reason behind,
as explained in the lecture notes in statistical computing with R by Robert Gray
@ Harvard is, as soon as the amount below 2^(-1022) is computed, the computer
considers it as zero because numbers smaller than this have larger relative errors than
machine precision. For future implementations of the Kendall’s plot, the reader is
advised to have a data set below 1’000 items.

For this reason, only the rank plots and Chi plots are displayed and discussed in
the six graphs in Figure 5.1.
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(a) South-East (Ui) and North-East (Vi) regions

(b) South-East (Ui) and South (Vi) regions

(c) South (Ui) and North-East (Vi) regions

Figure 5.1: Rank plot and Chi plot of event loss data

Discussion of the results

As a preliminary comment, one can observe a rather uncommon form of the rank plot
which is only defined in a limited part of the space [0, 1]2, furthermore the presence of
two perpendicular lines on the axises may also draw the readers’ attention. Despite
the fact that the rank plot is defined on the whole space [0, 1]2, the result illustrated
above is due to the large number of zeros within the data. All the random variables
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which both have zero losses are all assigned the same rank. If there are n ties, then
the rank of all these elements will be n, and the number following n with be given
the rank n+ 1. In the case of catastrophe model simulated data, there can be many
observed ties with the value zero. The two perpendicular lines seen on the axises
or the rank plot are a good example, they illustrate a loss for one of the random
variables and zero for the other.

Analysis of graph 5.1a: South-East vs. North-East regions: The rank plot
shows that there are three groups of data, which presents a higher data concentra-
tion. Two among which are near the axises x and y, which illustrate the hurricanes
contributing to larger losses for one region will create smaller damage for the other.
The third group can be found in the middle of the graph with similar scale of losses
in both regions. This latter result suggest a good positive dependence between the
two random variables. These first observations are confirmed by the Chi plot, which
illustrates the positive dependence with the majority of the points falling above and
outside of the confidence bands. One can however notice a tendency for the data
to lean closer to the x axis as λ → 1. This indicates a decrease in the dependence
for very large losses and shows that the extreme events for one region tend not to
incur catastrophic losses in both regions. This is rather unexpected, as such stronger
hurricanes as Katrina tend to lead to more important damage in both regions. This
remark will be developed in the course of the next chapters and discussed in the
conclusion. The application of tail dependence to the data set is presented in depth
in the Section 5.3.

Analysis of graph 5.1b: South-East vs. South regions: The similar three
groups are also observed in the rank plot for this pair of data. Two groups among
three are situated near the horizontal axis, which indicates that more damages in
one region is occurring than in the other. In the third group, a concentration of
data in the upper right corner can be observed. This illustrates significant amount
of events causing important damages to both regions and shows the first signs of
tail dependence. This will be discussed in further detail the next section. The Chi
plot illustrates positive dependence compensated with a small portion of the data
negatively correlated. But in overall, the random variables should show positive
dependence in the losses.

Analysis of graph 5.1c: South vs. North-East regions: The rank plot
shows two groups of data on the upper and lower parts of the graph, which originates
from large losses in one region and very small losses in the other. Geographically,
these are two very far apart regions, where the windstorms tend not to strike simul-
taneously unless for extreme events. From the Chi plot, it appears that these two
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regions are negatively dependent. Finally, again, there doesn’t seem to be signs of
tail dependence for these two regions.

5.3.3 Tail Dependencies

In the previous paragraph, the dependencies of the whole distribution are plotted.
This however can not be generalized to the behavior in the tail. Based on empirical
assumptions of natural catastrophes, tail dependencies tend to increase the more
destructive catastrophic events become and it has so far not been observed.

Ghoudi, Khoudraji and Rivest [Ghorbal et al., 2009] proposed a test for mea-
suring the dependence at the tails, which determines if it can be characterized by
an extreme-value copula. This latter can be considered to provide models for the
dependence structure between rare events. Extreme-value copulas not only arise
naturally in the domain of extreme-value theory, they can also be a convenient
choice to model general positive dependence structures. For further details about
this methodology or extreme-value copulas, the reader is referred to Gudendorf and
Segers [2009]. The null hypothesis being tested is the dependence structure fitting
an extreme value copula against the alternative that it is not. However after going
through the paper, one can realize that this test can only be applied to distributions
with continuous margins, which is unfortunately not the case in the present situa-
tion owing to the high amount of zeros within the data. Instead an empirical plot
is constructed to visualize the dependencies in the tails.

5.3.3.1 λu Tail dependence coefficient

One can recall the definition of upper tail dependency:

λu(X,Y ) = lim
u→1−

P
[
X > F−1X (u) | Y > F−1Y (u)

]
= lim

u→1−

P
[
X > F−1X (u) ∩ Y > F−1Y (u)

]
P
[
Y > F−1Y (u)

] .

Given X and Y , two random variables with distribution FX and FY . Using the
second part of the equation, one plot for each quantile α, the empirical number of
realizations of X which is greater than FX(α) given that the corresponding values
of Y are greater than FY (α), with a convergence towards the tail dependence when
α→ 1.

In the framework of this thesis, only the upper tail for tail dependency is anal-
ysed, as the lower tail, which represents the smallest losses is less relevant for capital
allocation decisions.
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The graphics displayed in Figure 5.2 represent the tail dependencies for quantile
α > 0.5 of the dataset. One can notice that the dependency coefficient λu decreases
significantly, as α → 1. This indicates the absence of tail dependence and that an
important catastrophe in one region will not create losses of the similar scale in
another region.

(a) λu Tail dependence coefficient

(b) λ̄u Tail dependence coefficient

Figure 5.2: Tail dependencies of event loss data

5.3.3.2 λ̄u Tail dependence coefficient

In order to confirm the absence of tail dependence assessed previously, the λ̄u de-
pendence coefficient is computed and with λ̄u < 1, the hypothesis of an absence of
dependence in the tails of the marginal distributions in these regions is confirmed.

5.4 Dependence measurement

In this section, the dependency measurements such as the linear correlation, then
rank correlations between the random variables have to be computed. Both de-
pendence measurements, as illustrated in Table 5.4 will be used later on to fit the
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adequate copula to the data. Using the methods of moments approach as described
in Section 4.2.3, one can fit the dependencies measured for different copula families.

ρ

S-E N-E S

South-East (S-E) 1 -0.01 0.038

North-East (N-E) -0.01 1 -0.026

South (S) 0.038 -0.026 1

(a) Linear correlation

ρs ρτ

S-E N-E S S-E N-E S

South-East (S-E) 1 0.27 0.08 1 0.23 0.07

North-East (N-E) 0.27 1 -0.19 0.23 1 -0.17

South (S) 0.08 -0.19 1 0.07 -0.17 1

(b) Spearman’s rho (ρs) and Kendall’s tau (ρτ )

Table 5.3: Dependencies measured for the event loss data

As an example, using the dependence measured from Pearson’s correlation co-
efficient and the rank correlations to form a Gaussian copula fitting the event loss
data, it can be observed that despite different correlation matrices, both models fit
the data rather well as shown in Figure 5.3. Despite this good result, one should
be careful when using the Pearson’s linear correlation as it can lead to a wrong
estimation of the dependence for non-normal distributed data, as mentioned in the
flaws regarding linear correlation (Section 3.2.1.1).
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(a) For the whole distribution

(b) Starting from the 0.9th quantile

Figure 5.3: Fit for a Meta-Gaussian copula using linear correlation and rank corre-
lations compared to the simulated aggregated sum across regions of the event loss
data
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5.5 Comparison with PartnerRe’s internal portfolio model

PartnerRe’s portfolio model assesses the company’s overall natural catastrophe risk
exposure based on a Meta-Gaussian copula with a correlation matrix as shown in
Table 5.4. Before performing any copula inference, a comparison has been performed
to compare the simulated Meta-Gaussian copula using PartnerRe’s portfolio model
with a Meta-Gaussian copula using the underlying dependencies calculated previ-
ously for the event loss data. It is expected to find similar distributions. Let X be
the aggregated sum of event loss of the South-East, North-East and South regions,
the Value-at-Risk and Expected Shortfall are computed by using the European sol-
vency standards at 99.5% to compare the thresholds of each model. As it can be
seen in Table 5.5, the disparities start to become rather consequent above the 90%
quantile. For ES99.5(X), an overestimation of the capital allocation of 9.6 billion
USD can be observed. Due to the disparity with the portfolio model, the research
begins by trying to explain these differences.

ρ

S-E N-E S

South-East (S-E) 1 0.36 0.15

North-East (N-E) 0.36 1 0.02

South (S) 0.15 0.02 1

Table 5.4: Dependencies of PartnerRe’s portfolio model using a Meta-Gaussian cop-
ula

5.5.1 Discussion

Ties in the data

One initial interrogation has been raised about the impact of the high amount of
zeros within the data and the way to treat them. One can recall that copulas do
not make any assumptions about the form of marginal distributions, but about the
form of the relationships between marginals. This relationship is calculated by using
the dependence measures discussed in Section 3.2.1 using Sklar’s theorem (Theorem
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Empirical
aggregation of three

zones

Simulation using
PartnerRe’s correlation

matrix.
Difference

E(X) 984 1’007 -23
V aR90%(X) 2’285 2’176 109
V aR95%(X) 6’000 5’819 181
V aR99%(X) 18’713 19’445 -732
V aR99.5%(X) 22’240 23’495 -1’255
V aR99.9%(X) 27’792 33’062 -5’270
ES99.5(X) 25’913 29’731 -3’818
ES99.9(X) 30’274 39’872 -9’598
Skewness 5.02 5.73

Unit: In millions of USD

Table 5.5: Comparison between the sum across regions of the event loss data and
the sum across regions of a simulated Meta-Gaussian copula using the dependencies
from PartnerRe’s portfolio model.

3.4), F (x1, ..., xd) = Cθ(F1(x1), ..., Fd(xd)), which links the marginal distributions
to the multivariate distribution. However, this link or copula is unique only if the
marginals are continuous random variables. In the situation of a continuous random
variable, the probability of each point is zero and having ties in the sample would
mean that the distribution is not monotone, hence not continuous. Without this
assumption, it seems that the copula is unique, which seems to be the case with the
data used in this thesis. Hence the rank correlation computed does not represent
the unique underlying dependence of the data.

Attempts to overcome the problem

This problem of ties in computing rank correlations is the object of some recent pa-
pers Denuit and Lambert [2005], Neslehova [2007] and a tour in the most advanced
research in the field of non continuous rank correlations provided only a limited
solution to this problem. Denuit and Lambert [2005], Neslehova [2007] proposed
generalizations to compute Spearman’s rho and Kendall’s tau for arbitrary non-
continuous random variables. Their solution presents the following two difficulties,
on one hand, these newly created measures do not reach the bounds ±1 for counter-
monotonic and comonotonic copulas. The second difficulty lies in the convergence
of their method to the real rank correlation. Back testing shows that even with a
large n, the convergence is slow, sometimes not constant and limited to the body of
the data. In fact, this method is applicable for the tails of the distributions as the
quantile q → 1 or q → 0, the measure ρτ → 0.

Without a generalised solution possible, there have been various attempts, spe-
cific to the present data set, to overcome the problem related to ties within the
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data. The first idea consisted simply of deleting them, as suggested in many liter-
ature articles. If the ties appear in a small amount in proportion with the rest of
the data, this would indeed have a negligible effect on the dependence structure.
However in the case here, almost half of the database consists of zeros either for one
region or for both regions and deleting them would lead to a biased estimation of
the dependence structure. For the data with zero losses in both regions, one can
argue their relevance in assessing dependence and only “dilute the data”. But as the
three analyzed regions only represent partly of the event data set and as a simulation
could have produced a non-zero damage in other regions considered by the model.
Thus, throwing away these events would also induce a further bias in the inference
results.

After quite some time spent in cogitating and discussing with colleague re-
searchers, no solution seemed to appear until one discussion with a PhD student
working on a similar set of data. His solution is based on a two-dimensional space
and is presented in the next paragraph. For the ones interested in the original work,
it can be found at Canestaro [2010].

Solution proposition for the problem

To overcome this difficulty with the following ties (0, 0), (0, y), (x, 0), the complete
data set is split in four parts, as illustrated below in Figure 5.4. Using the trans-
formation of their marginal distributions (Proposition 3.3), the data is transformed
onto the square unit; Part A is be the set of data with no damages (0, 0) simulated
for both regions. Part B and C are the marginal data of losses in only one region
and no damage in the other. And finally part D collects the data with losses in both
regions. For the simulation of part A, B, C, it can be easily computed by using their
marginal empirical distributions. As no ties remain in the remaining part D data,
dependency modeling through copula theory can be applied.

For the simulation of the complete data set, using conditional probability, the
probability of occurrence of each part are taken into account the probability of
having a Part A, B, C or D data. As the simulation of part A, B and C are trivial,
only the results of copula inference in part D data is illustrated in depth in the
following.



CHAPTER 5. APPLICATION TO WINDSTORM LOSSES 57

Figure 5.4: The data set split into 4 parts

5.6 Applying new methodology

Taking for starters the previously presented methodology applied to a bi-variate
example of the North-East and South-East regions, the data is first split into these
four categories. In the first case, the part of data containing (0,0) is simulated in
proportion with the original data. For the two other categories (x,0) and (0,y), their
empirical marginal distribution is then used to simulate the data from an uniform
distributed random variable. For the case of (x,y), as no ties still remain - it is now
a continuously distributed data, hence satisfying the conditions of Sklar’s theorem.
This allows to use the tools available in copula inference in order to fit the data to
the most appropriate copula.

All data Part A:
Data of the
form (0,0)

Part B:
Data of the
form (x,0)

Part C:
Data of the
form (0,y)

Part D:
Data of the
form (x,y)

Size 8’005 5’103 1’888 783 1’018

Table 5.6: Amount of data for each part

5.6.1 Rank correlation for part D data

Considering now the part D of the data exclusively, the absence of ties within this
part of the data set guarantees finding an unique copula describing the dependence
structure of the data. Then by computing the pair wise rank correlations, the
Spearman’s Rho (ρs) and Kendall’s Tau (ρτ ) are computed between the South-
East vs. North-East regions. Tables 5.6 illustrates these findings and shows a
negative dependence between these two peril zones. The paper draws the readers’
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attention that this does not mean that the catastrophe events happening in these
two regions are negatively correlated. But instead it is the modeled losses on the
whole PartnerRe’s risk portfolio, based on a set of catastrophe events for treaties in
this region, which are negatively dependent. This is rather a good sign of portfolio
optimization, as uncorrelated risks are taken in the portfolio.

ρs ρτ

S-E N-E S-E N-E

South-East (S-E) 1 -0.34 1 -0.23

North-East (N-E) -0.34 1 -0.23 1

Table 5.7: Rank Correlation applied to for part D of event loss data for the South-
East and North-East regions

5.6.2 Fitting copula to part D data

Using one million simulation points and the algorithm presented in the previous
chapter, various copulas models are fit to the empirical data. It appears that the
Meta-Gaussian copula fits the data the best both in the body and in the tail of the
distribution. From the theory, the Meta-Gaussian copula is well known to be tail
independent, which confirms once more our assumptions about the tail independence
of data. This also explains why the tail dependent copulas such as the Student-t,
Clayton and Gumbel copulas are not suitable for modeling our dependence structure
as they largely overestimate for the tail region. Table 5.7 presents the simulated
copula summed across regions and compared with the original data set or “event
loss data”.
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5.6.3 Goodness-to-fit test for part D data

Using the Cramer-von Mises two-sample criterion, the goodness to fit test looks at
the differences between the aggregated sum across regions of simulated loss data
and the fitted copula models. As shown in Table 5.8, the Meta-Gaussian appears to
be the copula with the best fit to the data. The Student-t copula model is ranked
second in the goodness-to-fit test. Recall that for the Student-t copula, the higher
the degree of freedom, the more independent the tails are. Using the maximum
likelihood function, the best fitting parameter ν for the Student-t copula is 264,
whose behavior approaches the Meta-Gaussian copula.

Gaussian
Copula
with

Gaussian
Marginals

Meta-
Gaus-
sian

Student-t
(ν = 264)

Clayton
(θ = −0.3)

Frank
(θ = −2.17)

Gumbel
(θ = 1)

Cramer-
von Mises
criterion

231 0.356 0.36 0.918 0.708 11.273

Table 5.9: Cramer-von Mises criterion for goodness-to fit of various copula models

In order to illustrate the goodness-to-fit, the graph illustrated in Figure 5.5 shows
the cumulative distribution function of the aggregated losses of the South-East and
North-East regions of the US, simulated through various copula models compared
with the empirical aggregated losses (or raw data) from the catastrophe models.
It is plotted from the 0.9th quantile and it can be observed per quantile that the
Meta-Gaussian has the best goodness-to-fit compared to the empirical aggregated
losses. The Student-t copula comes second. But with such a high degree of freedom
(ν = 264), one can argue that its behavior tend to resemble the Meta-Gaussian
copula. All other simulated copula models show less successful results, especially
the Gaussian copula with standard normal marginal distribution. From this example
it can be seen the importance of modelling the marginal distribution correctly.
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(a) From 0.9th quantile and onwards

(b) From the 0.98th quantile and onwards

Figure 5.5: Comparison between the fit of copula models on the aggregated empirical
windstorm losses in the USA at the tails
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5.6.4 Simulation of all data parts A, B, C, D

After the statistical inference conducted for part D data, the data of part A, B,
and C have also been simulated according to their probability in the whole data
set. Table 5.10 provides the summary of the simulated losses across regions and all
parts versus the aggregated across regions of the event loss data. As observed, the
overall fit from the body to the tail of both distributions are very good. Using the
European Solvency II standard, the expected shortfall at 99.5% gives only an error
of 0.05% in comparison with the empirical data.

Aggregated sum
across regions of
the simulation of

all parts

Aggregated sum
across regions of
event loss data

Difference

Min 0 0 0
1st Quantile 0 0 0

Median 0 0 0
E(X) 796 780 16

3rd Quantile 41 40 1
V aR90%(X) 1’483 1’478 5
V aR95%(X) 5’011 4’993 18
V aR99%(X) 17’434 17’808 -374
V aR99.5%(X) 21’463 21’367 96
V aR99.9%(X) 27’494 27’664 -170
ES99.5(X) 25’543 25’558 -15
ES99.9(X) 30’604 30’274 330

Unit: In millions of USD

Table 5.10: Comparison between aggregated sum of event loss data and the simu-
lated data for all parts A, B, C, D

5.7 From two dimensions to three dimensions

Previously, an example applied to a two-dimensional data set is illustrated. In a next
step, this methodology will be extended to the complete portfolio of all three regions.
In a similar way, the three dimensional data set will be split in eight different parts,
namely (0,0,0), (x,0,0), (0,y,0), (0,0,z), (x,y,0), (x,0,z), (0,y,z), (x,y,z):

All
data

Form
(0,0,0)

Form
(x,0,0)

Form
(0,y,0)

Form
(0,0,z)

Form
(x,y,0)

Form
(x,0,z)

Form
(0,y,z)

Form
(x,y,z)

Size 8’005 3’544 1’058 783 1’559 815 830 0 216
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• For the first fours parts containing maximum one univariate distribution (
(0,0,0), (x,0,0), (0,y,0), (0,0,z) ) these parts can be simulated by using their em-
pirical distribution in proportion with their contribution to the whole dataset.

• For the bi-variate distributions ( (x,y,0), (x,0,z), (0,y,z) ), these three parts
are simulated by using the aforementioned methodology described using the
example between North-East and South-East regions, in Section 5.6. A bi-
dimensional copula inference has been conducted together with the goodness-
to-fit test.

• For the form (x,y,z), the search for the best copula model leads to the result
of a Meta-Gaussian copula once again.

5.7.1 Results and discussion

After fitting and simulating for each part, it is found that the Meta-Gaussian copula
provides the best goodness-to-fit to the empirical data. Aggregating all data parts
together, Table 5.11 illustrates the aggregated sum of the event loss data compared
with the aggregated sun for the event loss data. Significant and inconstant disap-
pearances can be observed in the result of the simulation, which raises interrogations
about the scalability of this methodology.

On one hand, the whole data set is split into many smaller parts, which can
lead to less precise copula and statistical inference, on the other hand, the multiple
copula estimations, which approximates each time the empirical data by using copula
models, summed together may lead to the observed differences in Table 5.11.
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Risk based
capital
measure

Aggregated sum
across regions of the
simulation of all parts

Aggregated sum
across regions of event

loss data
Difference

Min 0 0 0
1st Quantile 0 0 0

Median 0 7 -7
E(X) 710 984 -274

3rd Quantile 10 223 -213
V aR90%(X) 1’043 2’286 -1243
V aR95%(X) 4’444 6’001 -1557
V aR99%(X) 16’409 18’713 -2304
V aR99.5%(X) 21’382 22’241 -859
V aR99.9%(X) 27’730 27’792 -62
ES99.5(X) 25’774 25’914 -140
ES99.9(X) 33’365 30’274 3091

Unit: In millions of USD

Table 5.11: Comparison between the simulation and the empirical data for a tri-
dimensional data set
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Conclusion

Within the framework of this thesis, the whole methodology on how to manage
catastrophe risks within a reinsurance company is illustrated. A key element of this
is the dependence analysis between different regions, which allow the reinsurance
to better mitigate risk through optimizing their risk portfolio diversification. By
conducting statistical inference to model the portfolio dependence structure, the
data originating from catastrophe models is used instead of the one from historical
events. The reason is mainly due to the lack of data of the latter, which makes any
statistical work very difficult.

From the data of catastrophe models, it is observed that the Gaussian copula
using the empirical marginal distributions presents the best fit for the data used.
This confirms the initial concerns in observing no tail dependence among the random
variables, putting this in context of the current climate situation showing extreme
weather in many parts of the world. Extreme events appear to be happening much
more often and more consistently than ever before. This summer, the heat waves
baked the eastern part of the United States, parts of Africa and eastern Asia, above
all Russia, which lost millions of acres of wheat and thousands of lives in a drought
worse than any other in the historical record. Yet the current statistical and math-
ematical tools for modeling extreme events might not be the most adequate to deal
with such extreme events, as these outliers are very difficult to predict based on the
data of the past two hundred years only. Hence there is thus an urgent need to
improve current models for statistical extremes, and to develop new methodology,
in order to better understand, predict and manage these risks. Currently extremal
modeling for single stationary time series is now well-established, but methods for
multiple time series and spatial data are less well-developed, and a major effort is
needed to develop approaches for dealing with realistic problems, in applications
where spatial-temporal variation and non-stationarity are key elements [Davison,
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2009].
Another recommendation for catastrophe modelers is about their internal con-

struction. Most of the geophysical models only use linear correlation [Dong, 2001]
to describe dependencies. This might explain the results why the Gaussian copula
fits the data the best. However as mentioned in Section 3.2.1.1, linear correlation
presents many flaws in assessing dependence and proves to be inappropriate in many
cases. For a better estimation of dependence, rank correlations are more suitable
for measuring non-linear dependence.

Thirdly comparing the simulated results by using the correlation matrix from
PartnerRe’s portfolio model and the data originating from AIR CatRader, a similar
behavior in the body can be noticed. But significant disappearances can be found
especially in the tail of the distribution, as illustrated in Table 5.5. The portfolio
model presents heavy tail behavior, which may reflect the experience of portfolio
managers when modeling catastrophe loss data. In the framework of this thesis,
using our computed rank correlations, significant differences have been found with
the one from the portfolio model (Table 5.3). However, its validity can not be
guaranteed due to the ties within the data. In any case, it is important to note that
these dependencies vary in time according to the new treaties signed in the region as
well regional and climate variations. Hence a regular adaptation of these parameters
is necessary.

Finally the methodology proposed to simulate catastrophe risk data is applicable
for a two-dimensional data set. However it seems to be difficultly scalable beyond,
which unfortunately limits its implementation in practice for multi-dimensional data
sets.

Proposals for future research

One of the biggest difficulties in this research is to find the appropriate way to treat
the ties at zero. As currently there is not an available tool for non-continuous copula
inference or semi-continuous copula inference, a suggestion would be to first esti-
mate how much continuous data and semi-continuous data may differ having the
same dependence structure. This can give us a good estimate of our relative error in
using traditional methods such as Kendall’s Tau and Spearman’s Rho and signal the
necessity to conduct alternative inference methodologies. The methodology applied
within the framework of this thesis has been applied to a two and three dimension
data set. The multi-dimensional criteria are crucial, considering that tropical cy-
clones can impact many countries at the same time. However this procedure may
be limited to lower dimensions in case of not sufficient amount of data.
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A separate direction to take is working on the generalization of a Kendall’s Tau
or Spearman’s Rho for semi-continuous data only. Looking at the difficulties for
finding a solution for non-continuous data in general Neslehova [2007], it would be
an interesting approach to constrain the research to semi-continuous data with ties
only at the data point 0. This would however provide a very limited solution but
nevertheless very useful for the reinsurance industry.
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