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Abstract

This thesis demonstrates that the Self-Excited Multifractal process in its original form does not realistically
describe financial data and proposes a modification that incorporates a dependency on past absolute returns.
The Self-Excited Multifractal (SEMF) process is a multifractal process with an endogenous drive to capture
all known stylized facts of financial time series. It is therefore considered a promising candidate for modeling
financial data. I propose a method for volatility estimation and model calibration. The method is efficient
in a broad range of synthetic SEMF processes (R2 > 0.8). Application of this method to several types of
real financial data (currency exchange returns, stock and index returns, on scales of days and 30 minute
intervals) has unfeasible results: estimated parameters describe unrealistic SEMF processes and the estimated
error terms (innovations) display a significant correlation in their second moment. Dependencies within the
estimation imply that financial time series more explicitly depend on past absolute returns than the model.
The generalized SEMF process that incorporates this dependency on past absolute returns is introduced. This
process also displayed multifractal properties.
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Explanation of symbols

ϑ the kernel parameter set used for the generation of time series

ϑ′ the kernel parameter set used to calculate the cost function l(ϑ) or %

ϑest the kernel parameter set estimated with CML or MIC

g corrected scale according to equation 3.18

ω term in the exponent that expresses the volatility, see equation 2.27 for a SEMF process

h0 parameter of the SEMF process that is a measure of non-stationary and kurtosis of the process.
See equation 2.28

ϕ parameter of the SEMF process that is a measure of the memory strength of the process. See
equation 2.28

σ parameter of the SEMF process that is an indication for time scale. See equation 2.27

σi,est estimated volatility according to equation 3.4

σi,real volatility computed using Monte Carlo simulations according to equation 3.1

dn returns, either computed using Monte Carlo simulations according to equation 3.1 or returns as
registered for real financial time series

hn memory kernel at point n, either exponential or power law. See equation 2.28

ξi innovations of the SEMF process

nsp starting point of the estimation of the volatility and innovations according to equation 3.4

nstart starting point of the conditional likelihood computation according to equation 3.13

l(ϑ) conditional likelihood of a set of innovations estimated using parameter set ϑ according to equation
3.13

%(d, ϑ, l) clustering according to equation 3.22

R2 measure of quality of the estimation of the volatility, see equation 3.7

PR2≥0.8 percentage of the estimations of the volatility of the simulated time series that had a quality of
R2 = 0.8 or higher

TR2 total time needed to obtain estimations with quality R2, equal to TR2 = LR2 + nR2 where LR2 is
the time used for the computation of R2 and nR2 are all the data points taken into account before
the computation of R2 to estimate the volatility
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fθ fraction that indicates the deviation of the parameter used for estimation with respect to the
parameter used for simulation

αθ indication of the accuracy required in parameter θ to obtain estimations of the volatility with
accuracy R2 = 0.8, see equation 3.10

CML Conditional Maximum Likelihood

MIC Minimum Innovation Volatility Clustering

kabs parameter in the generalized SEMF process that regulates the dependence of ω with past absolute
returns
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Chapter 1

Introduction

Financial markets have the responsibility to distribute resources in the most efficient way. Therefore they play
an important role in modern society. However in the last decades we have seen many crises in these financial
markets. Such crises severely limit the efficiency of market operation and impose costs to our society. Therefore
there is constant research to improve our understanding of the dynamics of financial markets. Specifically,
models for financial returns can be used for risk management, derivative pricing and forecasting.

The modeling of financial asset prices started with Bachelier in 1900 who proposed the random walk process
as a model for asset returns. Since the random walk is frequently used by physicists to model other natural
phenomena, the link between physics and finance is as old as the research field itself.

Empirical research however points out that this model does not realistically describe financial time series.
Stylized facts [1, 2]were found in all financial time series and many are not accounted for by the random walk
process: long range dependence, heavy tails in the probability distribution function of the returns, multifractal
properties and time reversal asymmetry.

Classical exogenous models, that are driven by external influences, were not effective in explaining these
stylized facts. A new attempt was made by a class of the so called endogenous models, which are driven by the
process itself. The self organizing mechanisms from these models are also found in other natural systems, such
as turbulence, seismicity and neuron firing. It is largely believed that feedback mechanisms play an important
role in financial time series [3, 4, 5, 6, 7, 8].

A prominent example of this approach is the GARCH process, introduced by Bollerslev in 1986 [9]. This
process is defined by a historical term that only influences the magnitude (volatility) of the process increments
and a stochastic error term (innovation), which represents the random part of the process. The GARCH
process incorporates a great deal of stylized facts, such as absence of auto-correlations and a degree of auto-
correlation in the absolute returns. However it fails to incorporate all stylized facts. It shows reasonable
performance in forecasting absolute and squared future returns.

Several modifications of the GARCH process have been introduced to incorporate the remaining styl-
ized facts, but non of the modifications incorporates all. For example the well-known exponential GARCH
(EGARCH) process introduced by Nelson in 1991 [10] displays the leverage effect, but no exact long-range
dependence.

In the last decade so called ‘Econophysicists’ have proposed to make a new attempt using Multifractal
processes. The notion of multifractality, based on self similarity and the notion of fractals, introduced by
Mandelbrot [11], describes processes which have a non-trivial scaling in contrast to the simple scaling properties
of fractal processes like fractional Brownian motion. Since multifractal properties describe how the dynamics
of processes are related to dynamics at larger scales, they capture the dynamics that impact the process the
most. Since financial time series have multifractal properties, any model that does not take these properties
into account is limited in its validity and performance. The notion of multifractality is also frequently used
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in other fields of physics where apparent random movements account for much of the dynamics. Examples
include fields as turbulence, seismicity and heartbeat dynamics.

The Markov Switching Multifractal process, introduced by Calvet and Fisher in 2001 [12], represents the
most prominent Multifractal approach to date. It showed strong performance in forecasting squared and
absolute returns. However, the process does not incorporate several stylized facts such as time asymmetry and
gain/loss asymmetry, nor does it have an endogenous drive and full long range dependence.

The Multifractal Random Walk (MRW) [13], introduced by Muzy and Bacry in 2002, demonstrated how
to create a process with exact Multifractal properties by constructing exponentials of stochastic long memory
processes with power law memory. Saichev, Sornette and Filimonov [15, 14] demonstrated that effective or
quasi Multifractal properties of this process are robust under small changes of the memory kernel. Furthermore
they demonstrated that this would solve the problem of infinite variance the MRW displayed in the continuous
time limit.

Recently Sornette and Filimonov extended framework of the MRW and Quasi multifractality by introducing
the Self Excited Multifractal (SEMF) process [16]. They replace the stochastic process with long memory in
the previous models with a process that has long memory of past returns, effectively creating an endogenous
process. In the SEMF process there is again a distinction between the volatility and the stochastic innovations.
They demonstrate that this process has effective Multifractal properties, which are robust to changes in the
memory structure of the process. Furthermore they demonstrate that the process incorporates all stylized
facts of financial time series. Because it is the only known endogenous Multifractal process, it possibly also
has applications to areas such as seismicity and biology (human heart beat rhythm).

Showing all known stylized facts and having an endogenous structure, the SEMF process is a promising
candidate for modeling financial time series. However it has not yet been verified to realistically describe real
financial time series. Such verification would consist of calibration of the model on real financial time series.

1.1 Contribution and structure of this research
In this research, I perform such calibration and demonstrate that the SEMF process needs to be modified to
realistically describe real financial time series. Because of an observede relation between the volatility process
and the absolute estimated innovations, an additional dependency on past absolute returns is implied. A
generalization of the SEMF model that includes this additional dependency is proposed, and it is demonstrated
that this model also includes all the stylized facts.

In chapter 3, a two calibration methods are proposed. The Conditional Maximum Likelihood (CML)
method is proposed and is effective in estimating the parameters of the model in synthetic time series with a
broad parameter range. The parameter estimates can be used to estimate the volatility with a high accuracy.
Furthermore I introduce a new method for parameter estimation that Minimizes the Clustering (the auto-
correlation of the second moment) of the estimated Innovations (MIC) and demonstrate its effectiveness.
Finally, the chapter presents several scaling relations that describe the relation of the SEMF process at different
scales.

In chapter 4, the estimation procedure is applied to a broad range of financial data (stock returns, stock
index returns, currency exchange returns) on multiple scales (daily returns and returns on 30 minute intervals).
Using both parameter estimation methods parameters are estimated that do not correspond to realistic SEMF
processes. For stock and index returns (on both scales), a reasonable memory decay parameter is found but
the non-stationary parameter is extremely high. It is demonstrated that, in contrast to the model where the
innovations are independent and obey a Gaussian distribution, the model estimates of the innovations show
strong clustering and are heavy tailed. Therefore I conclude that the SEMF model in its current form does
not realistically describe this financial data. Finally, it is found that the absolute estimated innovations have
a strong relation with the magnitude of the process that determines the volatility (ω). This implies that the
model should have a dependency on past absolute returns to realistically describe financial time series.
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In chapter 5, I introduce the generalization of the SEMF process where the volatility has an additional
dependency on past absolute returns. It is demonstrated that this process also displays heavy tails and
multifractality. Finally, the similarity of the generalized SEMF process to the EGARCH(1,1) process is shown,
which suggests that the EGARCH(1,1) process possibly also has multifractal properties.
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Chapter 2

Theoretical Background

For the efficiency of the (international) capital markets many financial instruments such as bonds, common
stocks and foreign currencies are publicly traded. Therefore effective trading prices of each of these instruments
are of great interest.

As stocks give right to future dividends, it is possible to express the absolute price of a stock by calculating
the expectation value of its future cash flows:

P ′t =

∞∑
i=t+1

E[Di] (2.1)

Because we can also buy a bond for this price Pt which would give right to an interest rate k, we have to
discount these future dividends in order to determine the price of the stock relative to the bond:

Pt =

∞∑
i=t+1

E[Di]

1 + k
(2.2)

It is difficult to estimate the price this way, because future dividends Di depend on many unknown factors and
which are difficult to predict. To facilitate the pricing process, the Gordon growth model [17] was introduced

P0 =

∞∑
i=1

D0(1 + g)

(1 + k)
(2.3)

where D0 represents the last dividend payout and it is assumed that the dividend grows infinitely with rate g.
Due to the limited accuracy of this assumption the model can only provide a limited accuracy in asset price
estimation.

Because of the current inability to accurately estimate these fundamental prices, investors acting in financial
markets are faced with huge complexity and market prices of financial assets change extremely frequently.

These price changes are denoted by returns dn, where dn is calculated using

dn = ln(Pn/Pn−1) (2.4)

The high variability of the asset prices makes capital markets less attractive for investors, which has a cost to
society.
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2.1 Stylized facts
The first attempt to model these frequent price changes was presented by Bachelier in 1900, who proposed the
famous random walk as a model for asset returns. However, this process does not capture all the stylized facts
of financial time series that have since been identified: absence of auto-correlation in the returns, clustering
of squared returns and long range dependence, heavy tails in the probability distribution of the returns,
multifractality, time reversal asymmetry of the process, gain/loss asymmetry in the distribution of the returns
and the presence of critical points. They can be seen as an imprint of a complex system, as laws that the asset
pricing process obeys, being the result of the interaction of a large number of market participants [2, 1, 18].
They serve as guidelines for formulating models that aim to describe the pricing process ever since Bachelier’s
null hypothesis. Below these stylized facts will be presented in more detail.

Absence of auto-correlations
Auto-correlations of asset returns are insignificant above a certain time scale, typically around 20 minutes.
Therefore the asset prices at these scales are martingale processes, a property which can be formulated as
E[Pn+1 |In|] = Pn where In represents the available information set at time t. This means that the best
estimate of the future price of an asset is its current price. This is also known as the Efficient Market
hypothesis.

Intermittency, Volatility clustering and long range dependence
Financial time series display a high variability in the returns, where periods of high variability are preceded
or followed by periods of lower variability in the returns.. This is called intermittency, and can be quantified
by calculating the volatility clustering %V C , which is the auto-correlation of the absolute returns or squared
returns, of the time series:

%V C = corr(|dt| , |dt+T |), T > 0 (2.5)

This quantity results in a positive value in the case of financial time series. This volatility clustering decays
over time as a power law with an exponent β between 0.2 < β < 0.4. There is also an auto-correlation of
absolute returns at orders higher than one:

%λ = corr(|dt|λ , |dt+T |λ), T > 0 (2.6)

where λ indicates the order. This phenomenon is called long range dependence.

Heavy tails in the probability distribution of the returns
The probability distribution function (pdf) of the returns in the random walk is Gaussian. However, empirically
it was found that the tails of the pdf of the returns decay as a power law with an exponent γ around 2 < γ < 4,
and are therefore called ’heavy tails’. This means that the probability of extreme returns is higher in reality
than in the random walk process. An example of this can be seen in Fig. 2.1. The heavy tails are also
sometimes referred to as ’excess kurtosis’.
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Figure 2.1: The tails of the pdf of stock returns are heavier than Gaussian tails. a). Comparison of the
frequency of stock returns of the FTSE index with a process that follows a normal distribution. b) The tails
of the empirically obtained pdf of the returns of several stock indices roughly follow a power law distribution.
Adapted from [1]

Multifractality
The properties above (heavy tails, long range dependence) are the result of the multifractal properties of the
process. A multifractal is the generalization of a mono-fractal, which is an object that has identical properties
at different time scales. An example of a mono-fractal and a mono-fractal process can be seen in Figure 2.2.
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Figure 2.2: Example of a mono-fractal process. A mono-fractal process (Right) is constructed by integrating
weights created by using a constant division law (Left)

The properties of a multifractal are related at different time scales, but they do not have to be identical.
There are many examples of multifractals in nature such as the texture of leaves, clouds and shorelines. The
notion of multifractality was largely developed by Benoît Mandelbrot , and he was also one of the first to apply
it to financial time series [22]. A multifractal is defined as the object that is described with nonlinear measure
spectrum on the fractal set.

A mono-fractal process is a process X(t) that has trivial scaling properties with regards to its statistical
moments Mq(l) . These moments are defined as

Mq(l) = E(|δlX(t)|q) = 〈|X(t+ l)−X(t)|q〉 (2.7)

and can be scaled as

Mq(l) = Kql
ςq(l) (2.8)

where Kq is a constant. In the case of mono-fractals, the exponents ςq(l) are independent of l and can be
represented as ςq = qH. Since H is a constant, it has a linear scaling spectrum. This proportionality parameter
H is denoted as the Hurst exponent, and it is equal to 1/2 in the case of the earlier mentioned random walk.

If the (generalized) Hurst exponent H(q) is not constant for different orders of the moment q, it describes
a non-trivial (non-linear) scaling spectrum:

ςq = qH(q) (2.9)

This is called a multifractal singularity spectrum.
Multifractal properties can arise due to power law distributions and long range dependence, which are both

present in financial time series. Note that the presented formalism can only be used to detect multifractality
in processes X(t) with stationary increments δlX(t).

Time reversal asymmetry
The statistical properties of the process are not identical upon time reversal of the time series. The strongest
manifestation of this property is the leverage effect, which can be quantified as
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L(l) =
E[dtd

2
t+l]

(E[d2
t ])

3/2
(2.10)

It describes the negative correlation between past returns and future squared returns that is observed in
financial time series. The asset pricing process obtains more stability if positive returns occur and becomes
more unstable with negative returns. This correlations decays to zero over time l, where t represents the
current time

Gain/loss asymmetry and the presence of critical points
In the stock market, strong price drops or ’crashes’ can be observed, but prices tend to rise more gradually.
Therefore an asymmetry between positive and negative returns in the pdf is observed. The frequent occurrence
of crashes over time (over a hundred year) also implies that these crashes are indeed a part of the dynamics of
the process, and not outliers. Because the statistical properties of crashes do not coincide with the statistical
properties of the rest of the financial time series, they are sometimes referred to as critical points [19].

2.2 Volatility, Innovations and Self - organization
We have seen that that the returns (with sign) of the financial return process are not auto-correlated. However,
the absolute or squared returns do display correlation, even at multiple orders (Long range dependence).
Therefore the pricing process is frequently modeled as consisting of a part controlling mainly sign and a part
controlling mainly magnitude:

dn = ξnσn (2.11)

where ξn represents the innovation of the price (controlling sign and partly magnitude of the price return) at
time n and σn represents the volatility (partly controlling magnitude of the price return) at that time. This
separation originates in the random walk process.

In the context of financial time series, the innovations ξn are often interpreted as the market innovations.
They represent exogenous news that has impact on the expected future dividends of the asset and and therefore
on its price (see equation 2.2). Typically a Gaussian distribution is used to model the distribution of the
innovations. The use of the Gaussian distribution can be supported by the assuming that the news is a result of
many independent events, of which the sum according to the Central Limit theorem would lead to a Gaussian
distribution. However in many social-economic environments power law distributions are observed, which
implies interacting mechanisms between events (e.g., preferential attachment). In recent popular literature the
impact of the news on asset prices is also suggested to have power law properties [20]. Therefore the possibility
of different probability distribution functions for the innovations should be kept in mind.

Volatility is a measure of risk at a certain time. It can be measured in historical financial time series ex
post (when subsequent returns are known) using the expression for realized volatility:

σ2
rel(n,L) =

1

n− 1

n+L∑
i=n

(
di − d

)2
(2.12)

where

d̄ =
1

Lrel

n+L∑
i=n

di (2.13)

It is more difficult to determine volatility ex ante (when subsequent returns are unknown). However accurate
estimates of this quantity could be used to estimate market risk and also price financial assets more accurately
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(e.g., options), making the financial market more efficient. For these purposes many so called volatility models
have been formulated.

Two classes of models with regards to financial time series have been introduced: a class that that treats
volatility as being stochastic or exogenous, and a class of models that treats volatility as non-stochastic and
therefore as an endogenous property.

It is largely conceived that financial time series indeed have strong endogenous properties [4, 6, 7, 8, 3].
A major contribution to this field was made by Shiller [5] in 1981. Shiller used equation 2.2 to calculate the
’fundamental’ price of assets in historical time series based the knowledge of future returns multiple years later.
He concluded that the high variability in the price could not be justified by changes in the future dividends
alone. Therefore this endogenous property can be seen as a criterion on the validity of financial models.

Below a few of the most prominent volatility models and processes are discussed, both endogenous and
exogenous.

2.3 GARCH processes
In 1986 Bollerslev introduced the Generalized Auto-regressive Conditional Heteroskedasticity (GARCH) pro-
cess [9], that treats volatility as an endogenous property. It is one of the most prominent volatility models in
this class, it captures several stylized facts and can be applied to financial time series. In the GARCH(p,q)
process the current volatility is determined by q terms of past squared returns and p terms of past volatility:

σ2
n = α0 +

q∑
i=1

αid
2
n−1 +

p∑
i=1

βiσ
2
n−i (2.14)

In this equation the coefficient αi determines the strength of the memory of past squared returns i time steps
ago. Coefficient βi determines the strength of the memory of past volatility terms. The returns are related to
the volatility through equation 2.11, and therefore the process has no auto-correlations of signed asset returns.
Furthermore, the GARCH process displays heavy tails and the dependence of current volatility on past squared
returns and volatility terms leads to a degree of volatility clustering.

The process has rich applications to financial time series and its relative success in forecasting absolute or
squared future returns is well established. The model is often used as a benchmark for other models. The
parameters of the process αi and βi can be estimated using the conditional maximum likelihood method.

However, the process does not display several stylized facts. Multifractal properties have not been found
for this process and it does not incorporate the leverage effect. Furthermore, because of the finite number
of past terms in the model, the memory of the process decays exponentially and does not fully capture long
range dependence (which requires power law decay).

Because of the relative success of this model but its failure to incorporate several stylized facts, modifications
of the GARCH process have been proposed that capture additional stylized facts. The fractionally integrated
extension of the GARCH model (FIGARCH) does a better job at capturing long range dependence, as it
introduces an infinite number of past lags with hyperbolically decaying coefficients [28, 29]. Several other
modifications of the GARCH process such as the Threshold GARCH (TGARCH), the nonlinear GARCH
(NGARCH) and the exponential GARCH (EGARCH) incorporate the leverage effect. Because of its relevant
structure the EGARCH process will be presented in more detail below.

2.3.1 Exponential GARCH (EGARCH)
In 1991 Nelson introduced the EGARCH model [10]. The main advantage of this process is that it takes
into account the leverage effect, as positive returns reduce the amplitude of the returns while negative returns
increase it. A major difference with the GARCH process is that the EGARCH process only depends on past
innovations where the GARCH process depends on past returns. An EGARCH(p,q) process is given by
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logσ2
t = ω +

q∑
k=1

βkg(ξt−k) +

p∑
k=1

αklogσ
2
t−k (2.15)

where ω is a measure of time and βk and αk again indicate memory. In the equation g(ξt) is defined as

g(ξt) = θξt + λ(|ξt| − E(|ξt|)) (2.16)

The parameter θ controls the effect of the absolute returns. The parameter λ controls the effect of the returns
with sign, and is primarily related to controlling the strength of the leverage effect in the process. The
parameters of the process can be estimated using conditional maximum likelihood estimation. The estimated
parameters can also take on negative values, which is not possible in the GARCH process. The success of
the EGARCH process in forecasting absolute or squared future returns has been well established since its
introduction. However, none of the proposed GARCH modifications captures all stylized facts.

2.4 Multifractal models
Multifractal properties have not been found for the GARCH processes, while possible multifractal properties of
the EGARCH(1,1) process have not been studied. The multifractal structure of the asset pricing process most
likely accounts for a large part of the dynamics of the process, and any model without a multifractal structure
is inherently limited in its validity and performance. Therefore there has been great interest in understanding
how multifractal processes can be created, which has resulted in the introduction of a new class of volatility
models: Multifractal models.

Below I present the formulation of the Multifractal Random Walk (MRW). The MRW presents a structure
which can lead to exact multifractal properties. This structure was used by the Quasi Multifractal model, which
showed that effective multifractal properties could still hold for small modifications of the derived structure. In
both processes the volatility is an exogenous property. These results were used to formulate the Self-Excited
Multifractal process, which describes the volatility as an endogenous process that also incorporates the leverage
effect. It therefore incorporates all stylized facts and is a promising process for modeling financial time series.
The three models will be discussed in more detail below.

The Markov Switching Multifractal model [12] is a process that has multifractal properties and also displays
several of the other stylized facts such as long-range dependence, heavy tails and absence of auto-correlations.
It has been successfully applied to financial time series and it embodies of the potential of using multifractal
processes for modeling financial time series. Drawbacks of the process are its exogenous volatility, time
symmetry and an absence of the leverage effect. Because its formulation has no relation to this research, it is
not presented here.

2.4.1 Multifractal random walk
In section 2.1 we have seen that a stationary process displays multifractality if for its moments

Mq(l) = E(|δlX(t)|q) = Kql
ζq (2.17)

and ζq has a nonlinear dependency on q: ζq = qH(q) with H(q) the generalized Hurst exponent. This scaling
property can also be expressed as

δλlX ∼ λHδlX(t) (2.18)

where ∼ indicates that the probability distribution functions on either side are similar. This representation
was used to derive a cascading rule, that a multifractal process should obey:
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δλlX ∼WλδlX(t) (2.19)

where Wλ is a log-normal random variable that depends only on λ. This cascading rule should be valid when
going from coarse to fine scales λ < 1.

This result was used by Bacry, Delour and Muzy who introduced the Multifractal Random Walk [13]. The
log-normal random variable Wλ is written as eω∆t[k] and the process in continuous time is given by

X(t) = lim
∆t→0

t/∆t∑
k=1

ξ∆t[k]eω∆t[k] (2.20)

ξ∆t[k] represents the innovation of the process at time step k, and is a white noise process with variance σ2∆t.
The variables ω∆t[k] are random parameters with a Gaussian distribution and a correlation function:

cov(ω∆t(k1), ω∆t(k2)) = λ2 ln ρ∆t [|k1 − k2|] , ρ∆t [|k|] =
{

1
(|k|+1)∆t

for |n|≤L/∆t−1

1 otherwise
(2.21)

We can derive that such a process displays a multifractal singularity spectrum in the continuous time limit.
This scaling spectrum is expressed as

ςq =
[
q − q(q − 2)λ2

]
/2 (2.22)

and is valid up to the larges scale L. Therefore Bacry, Delour and Muzy demonstrated how to construct a
process with exact multifractal properties in the continuous time limit. However, the process has a significant
drawback, as the variance goes to infinity for ∆t→ 0.

2.4.2 Quasi Multifractal model
The Quasi Multifractal process, introduced by Saichev and Sornette [15, 14] in 2006, generalized the Multi-
fractal Random Walk and showed that effective multifractal properties were robust under this generalization.

In the continuous time limit, the autocorrelation property of the ω∆t[k] process can also be expressed as

ω(t) =

ˆ t

−∞
dW (t′)h(t− t′) (2.23)

where W (t) denotes a Wiener process and h(t) is defined as

h(t) =
h0

(1 + t/∆t)
1/2

(2.24)

Saichev and Sornette showed that for an intermediate scale τ � t� L, the multifractality property also holds
if the exponent of memory decay is slightly increased (with ϕ > 0):

h(t) =
h0

(1 + t/τ)ϕ+1/2
(2.25)

The property of having multifractal properties in this intermediate scale τ � t� L was denoted by effective
multifractality or quasi-multifractality. Another advantage of the generalized process is that for ϕ > 0 there is
no infinite variance as ∆t→ 0. Therefore Saichev and Sornette demonstrated how to construct a process with
robust effective multifractal properties. However, the volatility in the process only has exogenous components,
and it does not incorporate the leverage effect.
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2.5 Self Excited Multifractal process
The Self Excited Multifractal process introduced by Filimonov and Sornette in 2010 [16] was the first endoge-
nous process with multifractal properties. In the SEMF model the ω(n) are dependent on past returns dn
rather than on an exogenous process W (t), such as in the QMF model The SEMF process can therefore be
seen as the simplest multifractal generalization of the GARCH process. In discrete time the process is defined
by:

ω(n) =

n−1∑
i=0

dihn−i−1 (2.26)

where ω(n) is related to the volatility σn and the returns dn by

dn = σnξn, σn = σ exp

{
−ω(n)

σ

}
(2.27)

Here hn represents the memory kernel that allows for multifractal scaling. Three memory kernels are proposed:
the power law kernel, exponential kernel and the constant kernel respectively:

hn = h0n
−ϕ−1/2, hn = h0 exp(−ϕn), hn = h0 (2.28)

where σ, ϕ and h0 are the parameters that specify the process for a given kernel type. The process is more
robust than the previously proposed multifractal processes (MRW and QMF) in the sense that it exists for a
larger domain of kernel types. In Fig. 2.3 we see a sample realization of a SEMF process.

Figure 2.3: Left : Time-series of log price increments dn (gray) and log price Xn = Pn =
∑n
i=1 di (black) of

the discrete SEMF process defined by equation 2.27, for σ = 0.01 and with the power-law kernel, specified in
equation 2.28, with ϕ = 0.01 and h0 = 0.05. Right : Example of an extreme event in a simulated time series
where a high return (caused by a burst in volatility) caused subsequent returns to have a very low amplitude.
Figures adopted from [16].

It was found that the signed increments of the process are generally not stationary, because ’extreme
events’ such as illustrated in Fig. 2.3 (Right) can dominate the dynamics of the process for large intervals
due to the strong memory of the process. These events may be regarded as tipping points indicating change
of regime after which the model does not describe reality. The kernel parameter h0 can be seen as a measure
of non-stationary of the process, and it amplifies intermittency in σn. ϕ can be interpreted as the parameter
indicating memory strength of the process while σ is a measure of time scale.
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Figure 2.4: Left : Multifractal scaling exponents (q) of the process dn for σ = 1 and (i) power-law kernel
(2) with ϕ = 0.01 and h0 = (0.01; 0.06; 0.08; 0.10; 0.12; 0.14; 0.16) (solid lines top to bottom), (ii) exponential
kernel (3) with ϕ = 0.01 and h0 = (0.06; 0.08; 0.10; 0.12) (dotted lines top to bottom), (iii) constant kernel h
h0 = (0.02; 0.04; 0.06; 0.08) (dashed lines top to bottom). Right: Probability density function of the absolute
values of the increments dn for σ = 1: (a) power-law kernel (2) with ϕ = 0.1, h0 = 0.1, (b) constant kernel
hn = h0 = 0.02 and (c) exponential kernel (3) with ϕ = 0.01, h0 = 0.1.Figures adopted from [16].

Filimonov and Sornette demonstrate that the process displays effective multifractality (see Fig. 2.4 (Left)).
In the plot the values on the y-axis τ(q) are related to the generalized Hurst exponent of equation 2.9 by
τ(q) = qh(q)−1. They also demonstrate that incorporates all other stylized facts: absence of auto-correlations,
Long range dependence, Heavy tails (see Fig. 2.4 (Right)), time reversal asymmetry (including the Leverage
effect), gain/loss asymmetry and the presence of critical points. These properties are robust to small changes
of the process parameters σ, ϕ and h0 for the different kernel types. The properties were demonstrated for
parameters in the range:

ϕexp ∼ 0.01, ϕpow ∼ 0.1− 0.01 (2.29)

h0,exp = 0.05− 0.10, h0,pow = 0.10− 0.25 (2.30)

Furthermore the process is driven endogenously. The process is therefore a promising candidate for volatility
forecasting and demonstrating the endogenous drive of financial markets.

17



Chapter 3

Determination of the volatility and the
model parameters in synthetic time series

In this chapter, I propose a procedure to estimate the volatility within a SEMF process and to calibrate the
SEMF model. It is demonstrated that the method is effective in a broad parameter range of synthetic SEMF
processes.

Section 3.1 demonstrates that we can estimate the volatility and innovations with a high quality (R2 = 0.8)
in synthetic time series if the process parameters are known. We see that this is valid for a broad range of
parameters for both exponential and power law kernel types. The method used ignores past history and as a
result the accuracy increases as a function of time.

Section 3.2 shows that this high estimation quality remains if there is a small uncertainty in the process
parameters. This is again valid for a broad parameter range. An equation is presented that approximates how
the uncertainty in the individual parameters jointly influence the quality of the estimation (R2). We see that
estimations with the incorrect kernel type do not result in high quality estimations.

Section 3.3 presents two effective parameter estimation methods. The Conditional Maximum Likelihood
(CML) method is successful in determining the memory kernel type of a synthetic time series (close to 100%
of the time). The parameter estimates of this method are sufficiently accurate to obtain volatility estimations
with high quality in synthetic SEMF processes with a broad range of parameters. The volatility can not
be obtained with high accuracy using the parameter estimates in synthetic time series with an exponential
kernel with a low memory decay and a high non-stationary. For power law kernels, the accuracy in parameter
estimation is sufficiently high only for processes with a sufficiently strong memory decay. Furthermore I find
scaling relations using this method that relates the process parameters of SEMF time series on different time
scales.

Furthermore, I introduce the Minimum Innovation Clustering (MIC) method that estimates the process
parameter by minimizing auto-correlations in the second moment of the innovations. It is demonstrated that
this method has reasonable accuracy in determining memory kernel type and process parameters. However
the method’s accuracy is lower than the accuracy of the CML method. Since this method optimizes the
independence of the innovations and the CML method optimizes the likelihood, it can serve as a second option
in parameter estimation in SEMF processes.
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3.1 Diagnostic of the volatility and the innovations
This section proposes an method for estimating the volatility and innovations if the process parameters are
known and demonstrate that it results in high quality estimations in a broad parameter range.

We see in section 3.1.2 that the estimations of both quantities converge to their real values over time
if we ignore the non-realistic volatility bursts. In section 3.1.3 it is found that both estimations are much
more accurate for an exponential kernel than for a power law kernel while increasing h0 (non-stationary)
and decreasing ϕ (memory strength) have a negative influence on the quality of the estimation. Volatility
estimations in time series with a power law memory kernel are of high accuracy (R2 = 0.8) for low non-
stationary (low h0) and limited memory strength (high ϕ). Finally, in sections 3.1.4 and 3.1.5, we see a positive
bias for the volatility estimation in the case of power law memory kernels and see that the initial condition
of the synthetic time series (ω 6= 0, σnSP

6= 1) has a strong influence on the accuracy of the estimation for a
given parameter set.

The influence of uncertainty on the estimation accuracy and the possibility of parameter estimation will
be discussed in further sections of this chapter.

3.1.1 Algorithms for volatility estimation in synthetic time series
I investigate the estimation of volatility in synthetic time series. The synthetic time series dn were created using
Monte Carlo simulation. The synthetic innovations ξn,real (where real stands for synthetic) were simulated
i.i.d. using a Gaussian distribution with µ = 0 and σ = 1. As an initial condition, I take σ1,real = 1 in each
estimation.

For specified values for the input variables (σ, ϕ, h0), the returns dn and subsequent volatility σn,real using
equation 2.27 that defines the SEMF process:

dn = σn,realξn,real, σn,real = σ exp

{
−
∑n−1
i=0 dihn−i−1

σ

}
(3.1)

where hn−i−1 refers to one of the memory kernels specified in equation 2.28. I only consider the exponential
and power law kernel since a process with a constant kernel is not a realistic model for financial time series.
Because of the normalization of the returns dn by σ in the expression for ω (see equation 2.27), σ is only a
measure of scale and has no impact on the dynamics of the process. One can demonstrate this property with
the following example:

d1
n : (σ, h0), d2

n : (ασ, αh0) (3.2)

d2
n = αd1

n (3.3)

Therefore I only consider different cases of h0 and ϕ and σ = 1 for all simulations. Because of the infinite
memory of the process the computation time increased non-linearly with the length of the time series. I took
an optimal range of 104 data points for each time series.

In the synthetic time series, the volatility σn,est is estimated using

σn,est = σest exp

{
−
∑n−1
i=nsp

dihn−i−1

σest

}
(3.4)

I assumed for the initial condition that σnp,est = 1. In real financial time series it is possible that the initial
condition does not have this value. Therefore I took nsp � 1, and σnsp,real can take on any value. This way
a large part of the history of the synthetic time series was ignored. The volatility was then estimated for the
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interval nsp < n ≤ nend where nend is the last data point of the simulated time series. For now I assume that
the kernel parameters σest, h0,est, ϕest and kernel type are known. The innovations can then be estimated by

ξn,est = dn/σn,est (3.5)

An example of a synthetic time series where the volatility was estimated can be seen in Fig. 3.1.
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Figure 3.1: Example of volatility estimation in a synthetic time series with nsp = 25

3.1.2 Convergence and non-convergence for the estimation of ξi
As a first step it is of interest whether the estimation converges over time. I investigate the convergence
of the estimated innovations ξi,est to the real value in the synthetic time series ξi,real over time. Since the
innovations and volatility are proportional, convergence of the estimation of the innovations would also be valid
for the volatility. I simulated a large number of time series using equation 3.1 and estimated the volatility and
innovations using equations 3.4 and 3.5. I calculated the squared error of the estimation as a function of time
i:

SE(i) = {ξi,est − ξi,real}2 (3.6)

Simulations were done for the exponential and power law kernel for parameter ranges where the process
displayed the stylized facts (see equations 2.29 and 2.30).

Examples of time dependence of squared errors SE(i) is presented in Fig. 3.2. This Figure illustrates four
different behaviors:

1. The squared error decays over time (when a power law kernel was used)

2. The squared error decays exponentially (when an exponential kernel kernel was used)

3. The squared error decays over time, rises suddenly and then remains constant over time (occurred for
both kernel types)
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4. The size of the squared errors is constant over time (occurred for both kernel types)

For case 1 and 2, we can conclude that the estimation ξi,est convergences to ξi,real over time. Simulations
corresponding to case 3 and 4 are non-convergent.
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Figure 3.2: Overview of the four different observed behaviors of the squared errors when estimating ξi,real.
nsp = 2001 in case 1 (power law kernel), nsp = 7001 in the other cases (exponential kernels).

Case 1 and 2: Convergence

When the estimated innovations converges to their real value, the behavior is different for the two kernel
types. In the case of an exponential kernel the results show that the squared errors decays more strongly with
increasing ϕ while h0 has no influence on the decay. The squared errors can be fitted with an exponential
decay exp(-2ϕ) quite accurately. We can conclude that a higher ϕ led to a higher accuracy in the estimations
ξi,est.

The returns in the time series before nsp introduce an error in the estimation of the volatility at any point
in time afterward because of the infinite memory. Because a higher ϕ leads to a faster decay of the ’memory’
of the volatility, a higher ϕ reduces the impact of these returns more quickly. This decreases the remaining
error in a higher pace, which explains the observed behavior.

For the power law kernel, a log-log plot (see Fig. 3.2) reveals a steady decay of the squared errors and
convergence of ξi,est to its real value ξi,real . The plot is too noisy too verify a possible power law like decay.
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The qualitative influence of h0 and ϕ is similar to the case of a power law kernel, but no exact relations have
been found.

Case 3 and 4: Exclusion

It was found that the behavior corresponding to case 3 and 4 is caused by bursts in the volatility (see Fig. 2.3)
of the simulated time series. As the volatility increases due to a series of negative ξi,real and corresponding
dn, a subsequent positive dn is likely to have an ’extreme’ amplitude. This is followed by a very low volatility
σi,real and because of the small amplitude of the subsequent returns dn the time series takes a long time
to recover to its ’normal’ dynamics. This behavior was also observed by Sornette and Filimonov [16]. In a
numerical environment, this behavior results in returns dn, volatility σi,real and estimated volatility σi,est that
are too small to compute. This either occurs before nsp (case 4) or after (case 3).

Because bursts of this magnitude are not observed in real financial time series, simulations with these
bursts were excluded from the results. Therefore one can conclude that the estimation of ξi,est converges to
it’s real value ξi,real since all non-convergent cases are excluded. Because of the relation between ξi and σ, the
estimation of the volatility also converges over time.

3.1.3 Obtaining high quality estimations
In the previous section it was demonstrated that the estimation σn,est converges to its real value σn,real
over time. Therefore one can conclude that the accuracy of the estimation is an increasing function of time.
Commonly R2 = 0.8 indicates that an estimation in a stochastic process is of a high quality. As a next step it
is investigated how many data points (or the total interval length required TR2) are needed to obtain estimates
with this high accuracy for an exponential kernel and a power law kernel.

I use R2 to quantify the accuracy of the estimation of σest over an interval nR2 ≤ n < nR2 + LR2. Here
nR2 is the moment in time after nsp where the computation of R2 starts and LR2 is the interval length over
which R2 is calculated (see the example in Fig. 3.3).

Figure 3.3: Example of a the computation of R2 (in the black square) in a synthetic time series. In this case
nsp = 25, nR2 = 75 and L = 100

Because the quality of the estimation increases over time, I calculate R2 over the last data points of the
interval. I found that the computation of R2 gives stable values if I calculate it 100 data points. Therefore I
used LR2 = 100. R2 is expressed as
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R2(nR2, LR2) = 1−
∑nsp+nR2+LR2

i=nsp+nR2
(σi,real − σi,est)2∑nsp+nR2+LR2

i=nsp+nR2
(σi,real − σreal)2

(3.7)

where

σreal =
1

n

nsp+nR2+LR2∑
i=nsp+nR2

σi,real (3.8)

By defining TR2 = LR2 +nR2, one can interpret TR2 as the total time needed to obtain a series of volatility
estimations with length n = 100 with corresponding accuracy R2. An example of a synthetic time series where
R2 is computed for the indicated interval can be seen in Fig. ?? (in comparison with other quality indicators).

I simulated 103 time series for different sets of ϕ and h0 for both kernel types. Because the process
increments have heavy tails, is highly intermittent and is non-stationary, the high number of experiments is
needed to ensure the representativeness of the results. In the remainder of this research 103 time series are
simulated for each time series (unless indicated otherwise).

I estimate the volatility with nsp = 2001 and calculate R2 for the indicated interval length at multiple
moments in time TR2. After applying equation 3.4 and estimating σest, R2 was calculated for the indicated
interval length at multiple moments in time TR2. The percentage of simulations that have reached the threshold
R2 ≥ 0.8, denoted by PR2≥0.8(TR2), was evaluated over time TR2. Also look at the influence of ϕ and h0 on
PR2≥0.8(TR2) is investigated for both kernel types.

Exponential kernel

Figure 3.4 shows PR2≥0.8(TR2 = 200) as a function of ϕ for various h0 for an exponential kernel. The plot
demonstrates that, for exponential kernels, the volatility estimation is of lower quality for simulations with
strong non-stationary (high h0) and strong memory (low ϕ). It shows that PR2≥0.8 increases with ϕ, indicating
a higher quality of estimation, while a higher h0 leads to a lower PR2≥0.8.

The influence of ϕ corresponds to observations in section 3.1.2. The increased PR2≥0.8 for higher ϕ can be
explained by the faster decay of memory at higher ϕ. This decreases the time needed to ’forget’ the returns
dn before the starting point of the estimation nsp that causes the error in estimation.

A higher h0 leads to an increased non-stationary and kurtosis of the returns dn, including the returns dn
before nsp. Therefore the expectation value of the deviation from the unit initial condition (E[|σnsp,real − 1|])
increases as a function of h0. Since I assume a unit initial condition for each estimation, this introduces a
persistent error in the volatility estimation at subsequent moments in time (n > nsp). For a given value of ϕ,
estimations in time series with high h0 take a longer time to ’forget’ their corresponding large errors than in
time series with low h0, leading to a lower PR2≥0.8(TR2) at any TR2.
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Figure 3.4: Dependence of PR2≥0.8 on ϕ for various h0 with TR2 = 200 for an exponential kernel

At TR2 = 1500, 100% of the simulations with an exponential kernel reaches R2=0.8, even though the exact
TR2 varies with ϕ and h0 (TR2 corresponding to 100% is high for low ϕ and high h0). Therefore one can
conclude that the volatility estimator proposed in equation 3.4 can estimate volatility with high accuracy for
exponential kernels for the indicated parameter ranges.
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Figure 3.5: Dependence of PR2≥0.8 on ϕ for various h0 with TR2 = 8000 for a power law kernel

Power law kernel

Fig. 3.5 shows that PR2≥0.8 is significantly lower for a power law kernel than for an exponential kernel, even
if TR2 is much higher. An exponential decays much more rapidly over larger time spans than a power law.
Therefore an estimation in a time series with a power law memory kernel needs a much longer TR2 to ’forget’
the returns dn before nsp.

Secondly Fig. 3.5 shows that also for a power law PR2≥0.8 increases with ϕ and decreases with h0. As for
an exponential kernel, ϕ represents the decay of ’memory’ in a power law kernel. Therefore the qualitative
influence of ϕ is the same, namely ’forgetting’ the returns dn before nsp at a faster rate. The role of h0 is the
same in a power law kernel as an exponential kernel, being a measure for non-stationary and the kurtosis of
the time series. In both kernel types larger h0 lead to higher variability in the returns dn before nsp, therefore
increasing the error at nsp, leading to lower PR2≥0.8 at given ϕ.

To illustrate the big difference in the quality of the volatility estimation for different parameters with a
power law kernel, I calculate the average R2 at TR2 = 8000 and present the landscape as a function of ϕ and
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h0 in Fig. 3.6. This allows us to more accurately determine for which parameters sets the volatility estimation
is accurate. We see that the R2 decays rapidly if roughly ϕ/h0 exceeds a certain value.
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Figure 3.6: The R2 landscape of a power law kernel as a function of h0 and ϕ for TR2 = 8000.

The quantiles of the estimated volatility relative to the real process volatility σest/σ with a 95% confidence
level were also calculated. Specifically, of a set of 103 simulated time series, I excluded the results with the
2.5% lowest and highest σest/σ. Figure 3.7 shows the maximum and minimum values for different parameters
of the resulting collection of results. We see that indeed for high h0 and low ϕ the estimation of the volatility
is very inaccurate, since the volatility can be estimated four times too high.
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Figure 3.7: Upper and lower quantiles as a function of ϕ (Left plot) and h0 (Right plot) for TR2 = 8000. Each
point is based on 4000 simulations.

3.1.4 Influence of the initial volatility
We have seen that for both kernel types, increasing h0 had a negative influence on the quality of volatility
estimation R2. Since a higher h0 results in a higher variability in σnsp,real, I proposed an explanation that
σnsp,real had a strong influence on the quality of the estimation of the volatility (R2). In this section it
is demonstrated that σnsp,real indeed has a strong influence on the estimation quality R2, supporting the
hypothesis.

In order to find the influence of σnsp,real on R2 at different time steps, I simulated 103 time series, recorded
σnsp,real, estimated the volatility and computed R2 at different TR2. Also the probability distribution of the
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volatility σreal was computed. This was done by simulating 104 time series and producing a histogram of
σn,real with n = 5500 (halfway between nsp and end of time series) for different kernel types and parameter.

The influence of σnsp,real on R2 at different time steps is displayed in Fig. 3.8 (Left). The Figure shows
that large errors (low R2) occurred if σnsp,real deviated strongly from 1. We can explain this effect because
a unit initial condition is assumed in each estimation (σnsp,est = 1). Specifically, Fig. 3.8 (Left) shows that
for large |log(σnsp,real)| = |ω(nsp)|, large intervals TR2 were needed to reach the R2 = 0.8 threshold and for
some very big |log(σnsp,real)| this threshold was never reached. Fortunately, we also see that the majority of
the |log(σnsp,real)| are small.

Figure 3.8 (Right) shows the probability distribution function (pdf) of the volatility in synthetic time
series σn,real. The pdf indicates the peak around 1 and the relatively fact decay of the tails. Therefore the pdf
confirms that the majority of the |log(σnsp,real)| are small, because the plot has a peak around 1. The same
properties are observed for all investigated parameter sets.

Therefore, we can conclude that the volatility at the starting point of the estimation has a strong influence
on the quality of the estimation.
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Figure 3.8: Left: Dependence of R2 on |log(σnsp,real)| at different TR2, specifically TR2 = 3000 (Brown
asterisk), TR2 = 1000 (Yellow triangles), TR2 = 300 (Light blue squares), TR2 = 100 (Dark blue rounds).
The dotted line represents the threshold R2 = 0.8. Exponential kernel with h0=0.06 and ϕ=0.01. Right:
Probability distribution of σn,real with n = 5500. Exponential kernel with h0=0.04 and ϕ=0.01. The median
of σn,real = 0.95 and average σn,real = 1.04 .

3.1.5 Bias in the estimation of the volatility for a power law kernel
This subsection demonstrates that the estimation of the volatility is positively biased (σn,est > σn,real). I
define the bias as σn,est/σn,real. It was found that this bias is much stronger and persistent for a power
law kernel than for an exponential kernel. The bias was investigated and quantified for a power law and an
exponential kernel.

Power law kernel

I have simulated 103 time series and estimated the volatility σn,est for several power law kernel parameters.
Then, σn,est/σn,real was determined at different moments in time. The biases σn,est/σn,real corresponding to
individual estimations are displayed in Fig. 3.9 (Left) as blue lines, while the fat red line indicates the average
of all biases. It shows that the estimation is positively biased as 98% of the volatility estimations were too
high (σn,est/σn,real > 1).
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Figure 3.9: Left: Bias σn,est/σn,real of individual estimations (blue lines) as a function of time. The fat red
line represents the average of all the observed biases. Power law kernel with h0=0.2 and ϕ=0.01. Right:
Dependence of the bias size σn,est/σn,real on h0, also at different n (indicated in by T).

Similar behavior was observed for the other power law kernel parameter sets. Fig. 3.9 (Right) shows the
bias size at different n as a function of h0. It can be seen that the average bias increased with h0.

Using equations 3.1 and 3.4 I derived an expression for the bias, which is presented in equation 3.9. We
see that this expression supports the observed qualitative behavior of increased bias size as a function of h0.
In the interpretation of equation 3.9 it should be kept in mind that h0 and ϕ also influence the statistics of
the returns dn.

σest
σreal

=

[
exp

{
−
nsp∑
i=1

di(n− i− 1)−ϕ−1/2

}]h0

(3.9)

The occurrence of a positive bias indicates that on average
∑nsp

i=1 di was positive (see equation 3.9). An
explanation for this has not been found.

Exponential kernel

Fig. 3.10 shows the bias of individual estimations for an exponential kernel. It demonstrates that the bias of
the exponential kernel was very small and decayed very fast. This result was representative for other kernel
parameters. Therefore we can conclude that the bias for an exponential kernel was insignificant.
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Figure 3.10: Bias σn,est/σn,real of estimations based on single time series (blue lines) as a function of time.
is observed when estimating σest. The red line represents the average of all the observed biases. Exponential
kernel with h0=0.06 and ϕ=0.01.

3.1.6 Conclusion
I have proposed a method for estimating volatility and innovations in pure SEMF processes that assumes a
unit value for the initial condition. We have seen that this method is effective in estimation the volatility with
a high quality for a broad range of parameters. For a power-law kernel with a high non-stationary (high h0)
and low memory decay (low ϕ) the method is not effective.

We have seen that the estimation converges over time if volatility bursts, that are also observed in [16], are
excluded. Furthermore, increasing h0 has a negative effect on the quality of the estimation (R2). A higher h0

increases the variability of the returns at the start of the estimation (σnsp,real), and therefore the error made
by assuming neutral history (σnsp,est = 1 ) at this point. Increasing ϕ has a positive effect on the estimation
quality (R2), because it increases the decay over time of memory of past events that are not taken into account.

Furthermore it was determined that σnsp,real has a large influence on the quality of the estimation (R2).
Moreover, a positive bias in the estimation procedure is observed for a power law kernel. I found that the size
of the bias is largely a function of h0 and time.

In the appendix B I propose different estimators to improve the volatility estimation quality in the problem-
atic parameter ranges for a power-law kernel. They are based upon the large influence of the initial condition
and the observed bias. However I find that the improvements in quality made by these changes is very small.
Therefore I do not use them and choose not present them here in detail.

3.2 Influence of uncertainty in the kernel type and parameters on
the estimation quality

We have seen that the volatility of a pure SEMF process can be estimated in most parameter ranges with a high
quality if the process parameters are known. In non-synthetic time series however the process parameters are
not known and have to be estimated. Most likely estimated process parameters have a degree of uncertainty.
Therefore it is of interest to known whether the high estimation quality holds if there is uncertainty in the
parameters used for estimation.

This section demonstrates that the volatility and therefore also the corresponding innovations of a pure
SEMF process can still be estimated with high quality if there is a small uncertainty in the process parameter
used for estimation.
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First we see that if the different kernel type is used for estimation, the estimation does not converge to the
real value and no high quality of estimation can be achieved. Second we see that if there is a small deviation
in the parameter used for estimation, the estimation quality R2 decreases.

Furthermore we see that a joint uncertainty in the three parameters σest, ϕest and h0,est has a combined
influence on the quality of estimation R2. This joint influence can be approximated by addition of the squared
uncertainties in the individual parameters, normalized by the sensitivity of the estimation quality to each
individual parameter. I also quantify this sensitivity of the quality to the individual parameters with an
approximation for different kernel types and parameters. It is found that particularly σ requires a high
accuracy (around 5%). Finally, we see that the estimation quality becomes more sensitive to uncertainty for
higher h0 and lower ϕ.

Knowing that we can estimate the volatility and innovations with accuracy even if there is uncertainty in
the kernel parameters, we look at methods for parameter estimation in the next section.

3.2.1 Uncertainty in kernel type
It is not known which of the proposed kernel makes the optimal approximation of real financial data. Therefore
we first investigate the consequences of fitting time series, which were generated using one of the two proposed
kernels, with the wrong kernel type. The resulting squared errors of the estimated innovations were computed
as a function of time. Examples of the evolution of the squared error as a function of time for both cases can
be seen in Fig. 3.11.
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Figure 3.11: Influence of fitting a time series generates by one kernel type with the other kernel type on the
squared errors as a function of time. Left: Time series with an exponential kernel fitted with a power law
kernel. Right: Time series with a power law kernel fitted with an exponential kernel

It can be seen that the squared error does not continuously decrease as a function of time and therefore
that ξn,est does not converge to ξn,real over time. This results in negative values for R2. These results were
representative for broad ranges of process parameters.

Therefore we can conclude that accurate estimations ξn,est require a significant resemblance between the
kernel used for the estimation and the kernel that ’generated’ the time series. The resemblance between the
exponential kernel and power law kernel is too small for accurate ξn,est.

3.2.2 Qualitative influence of uncertainty in kernel parameters
As a next step e the qualitative influence of uncertainty in kernel parameters is investigated. I generate time
series with certain kernel parameters and then estimate the volatility with a small deviation in one of the
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kernel parameters and evaluate R2 (again LR2 = 100) as a function of time TR2. A representative example of
the results is displayed in Fig. 3.12.

Figure 3.12: Influence of fitting with a different h0 on the evolution of R2 over time. Exponential kernel with
h0 = 0.06 and ϕ = 0.01

We see that the estimation quality R2 decreases as a function of h0,est/h0. Similar results were observed
for different parameter ranges and it was found that the effect was symmetric (the effect of |h0,est/h0 − 1| on
R2 is the same for h0,est/h0 < 1 as for h0,est/h0 > 1). The effect on the estimation quality was observed to
increase in strength for kernels with slower memory decay (smaller ϕ).

3.2.3 Uncertainty in all parameters
The influence of uncertainty in multiple parameters on the quality of the volatility estimation R2 is investigated.
I simulated time series with both kernel types with given parameters h0, ϕ and σ. The σn,est and ξn,est were
estimated with parameters h′0, ϕ′, σ′ where h′0 = fh0

h0, ϕ′ = fϕϕ and σ′ = fσσ. fh0
, fϕ and fσ indicate

the relative parameters used for the fit. Then, for several sets of (fh0
, fϕ, fσ) the estimation quality R2 (for

TR2 = 8000 and LR2 = 100) was calculated for the corresponding estimated volatility σn,est. Examples of the
three cross sections (fσ = 1, fϕ = 1 and fh0 = 1) of the resulting 3D landscape of R2 are displayed in Fig.
3.13. These cross sections are also representative for cross sections where there was uncertainty in all three
parameters (e.g., fσ = 1.1 for the cross-section of fϕ and fh0

).
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Figure 3.13: Examples of landscapes of R2 as a function of fh0 , fϕ and fσ for both an exponential kernel
(ϕexp = 0.01, h0,exp = 0.04) and a power law kernel (ϕpow = 0.1, h0,pow = 0.15) .

It can be seen that the isoplots of R2 form asymmetric ellipses for the representative kernel ranges. Although
the qualitative influence of deviations of the parameters on R2 is quite similar, it can be seen that that the
quantitative influence differs significantly (e.g., the influence of deviations in σ on R2 is stronger than the
influence of deviations in ϕ). Despite the asymmetry, the joint influence on R2 can be approximated by an
ellipse:

IR2(R2) = α2
h0
|fh0 − 1|2 + α2

ϕ |fϕ − 1|2 + α2
σ |fσ − 1|2 (3.10)

where a fixed IR2(R2) forms an isoplot for a certain R2. The coefficients are determined by αh0
=

|(|fh0+ − 1|+ |fh0− − 1|)/2|−1 where fh0+ is the higher value of fh0
when fϕ, fσ = 1 and R2 is still on
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IR2(R2).
In the representative example of the exponential kernel, for IR2(R2 = 0.8), α−1

h0
= 0.2, α−1

ϕ = 0.2, and
α−1
σ = 0.05. Within this approximation, this means that for this kernel specification h0, ϕ and σ require an

accuracy lower than 20%, 20% and 5% respectively in order to have estimations with at least R2 = 0.8.
I repeat the procedure for broader parameter ranges (ϕexp = 0.005 − 0.02, h0,exp = 0.04 − 0.10) for both

kernel types (ϕpow = 0.01 − 0.4, h0,pow = 0.10 − 0.20). It is found that approximately α−1
h0

= 0.20 − 0.40,
α−1
ϕ = 0.15 − 0.35, and α−1

σ = 0.05 − 0.10 for IR2(R2 = 0.8) for both kernel types. For the power law kernel
α−1
h0

tends to be slightly lower (the required accuracy in h0 tends to be slightly higher).
It was found that, for both kernel types, uncertainty in h0 or ϕ has a larger decreasing effect on R2 if h0

is high and ϕ is low. We have seen in section 3.1.3 that low ϕ (corresponding to a strong memory) and high
h0 (corresponding to strong non-stationary) leads to lower R2 if the parameters are known. Therefore the
uncertainty in both parameters at these ranges aggravate the already existing high inaccuracies, explaining
the stronger decrease in R2.

Uncertainty in σ tends to have a larger effect for higher h0 and ϕ for an exponential kernel but the effect
is unclear for a power law kernel. An explanation for this has not been found.

Summarizing, uncertainty in the three parameters have a joint negative influence on the quality of the
volatility estimation. The joint influence can be approximated by a sphere. Particularly σ requires high
accuracy and also a higher accuracy is required for higher h0 and lower ϕ.

3.3 Estimation of the kernel type and parameters
This section presents two methods that can be used to estimate the parameters in a pure SEMF process: the
Conditional Maximum Likelihood (CML) method and the Minimum Innovation Volatility Clustering (MIC)
method.

Both methods rely optimize different properties. The CML method optimizes the likelihood of the inno-
vations according to a Gaussian distribution to estimate the process parameters. The MIC method aims to
optimize the independent, identically distributed (i.i.d.) property of the innovations. Therefore it minimizes
the volatility clustering in the innovations, to estimate the process parameters.

Section 3.3.1 demonstrates that the conditional likelihood landscape has a unique global maximum when
the correct kernel type is used. We see that the method is successful in determining the correct kernel type (the
method estimates the correct kernel type in close to 100% synthetic time series) . I compute the accuracy of
the method for different kernel types and parameters, and determine that the method is sufficiently accurate to
obtain volatility estimations with high quality. Furthermore, using the CML method, I present several scaling
relations that describe how the parameters of a process at different scales are related.

Section 3.3.2 introduces the Minimum Innovation Clustering (MIC) method and demonstrates that this
MIC method can also be used for SEMF process parameter estimation. It is found that the accuracy of the
CML method is higher. However, the method is still of interest as it optimizes a different property than the
CML method and can provide a ’second opinion’ in the case of real financial time series.

Because the process parameters influence the distribution of the process returns, it is also investigated
whether the distribution of the returns could be used for parameter estimation. However this was not successful.
An overview of this method can be found in the appendix section C.1. It was also found that minimizing the
Kendall-tau coefficient, which is the correlation between ranks of the innovations and the returns and therefore
a measure of endogeneity of the process, can not be used for parameter estimation (see appendix section C.2).

Below the details of the two (relatively) successful methods are discussed.
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3.3.1 Conditional Maximum Likelihood (CML)
Methods that optimize the likelihood of the innovations or a different input variable (Maximum Likelihood) are
frequently used for GARCH and MSM processes. Parameter of the process are swiped until the input values
have the highest joint probability. When past returns are taken into account when optimizing the likelihood,
the method is called Conditional Maximum Likelihood (CML).

The likelihood of a process depends on the distribution by which the process is generated. However,
maximizing the Gaussian likelihood for distributions with heavy tails but a finite fourth moment [21] is still
effective for parameter estimation. The method is therefore sometimes denoted as Quasi-Maximum Likelihood,
as it is not the ’real’ likelihood that is maximized. Therefore the method should also be applicable to processes
with a non-Gaussian distribution for the innovations (see section 2.2).

It is investigated whether we can estimate the memory kernel type and parameters using the Conditional
Maximum Likelihood (CML) method. In the proposed model, the innovations ξi follow a Gaussian distribution
with zero mean µ = 0 and unit standard deviation σ = 1. A Gaussian distribution is defined by

f(x) =
1

(2πσ2)1/2
exp(− (x− µ)2

2σ2
) (3.11)

One can estimate the innovations ξi,est(θ′) with a certain parameter set θ′ = (σ′, h′0, ϕ
′) and calculate how

likely the innovations are according to this distribution. The innovations ξi,est(θ′) can be estimated with
parameter set θ′ = (σ′, h′0, ϕ

′) using ξi,est(θ′) = dn/σn,est(θ
′), where σn,est(θ′) is given by

σn,est(σ
′, h′0, ϕ

′) = σ′ exp

{
−
∑n−1
i=nsp

dih
′
n−i−1)

σ′

}
(3.12)

where h′n−i−1 = h0(n − i − 1)−ϕ−1/2 for a power law kernel and h′n−i−1 = h0exp(−ϕn) for an exponential
kernel.

Using the relation ξi,est = di/σi,est, the likelihood of the estimated innovations conditional of the parameters
−ln(θ) or the cost function ln(θ) can be expressed as:

ln(ϑ) =
1

n

n∑
i=nstart

li(ϑ) where li(ϑ) =
d2
i

σ2
i,est

+ log(σ2
i,est) (3.13)

where nstart = nsp = 2001 for Monte Carlo simulations and nstart = 1 for real financial time series. The
optimal parameter set is defined as:

ϑ̂n = arg min
ϑ

ln(ϑ) (3.14)

where ϑ̂n are the parameter estimates. This parameter estimation process is identical in the case of GARCH
processes [1]. The minimization is done using a standard sweeping algorithm (Matlab: fminsearch, which uses
the simplex search method [30]).

Since the procedure is tested on Monte Carlo simulated time series with known parameters, the cost
function is calculated relative to the cost function of the real time series lreln (ϑ)

lreln (ϑ) =
1

n

n∑
i=1

d2
i

σ2
i,est

+ log(σ2
i,est)−

1

n

n∑
i=1

d2
i

σ2
i,real

+ log(σ2
i,real) (3.15)

in the case of likelihood landscapes.
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3.3.1.1 Synthetic conditional likelihood landscapes

It is important to determine whether the proposed maximum likelihood method can distinguish time series
generated with different kernel types and whether the resulting estimated parameters are robust for a single
time series. For these purposes I investigate the likelihood landscape of time series fitted by both kernel types
and also investigate in which cases there is a local minimum.

I simulate time series with an exponential and power law kernel and calculate the relative cost function
(see equation. 3.15) for different parameters θ′ = (σ′, h′0, ϕ

′) on a large scale. For each time series this was
done for both kernel types.

Examples of how the relative cost function ln(θ′) of the innovations depends on h′0 and ϕ′ when σ′ = σ in
synthetic time series can be seen in Fig. 3.14 for different combinations of kernel types. The correct kernel
type indicates that the memory kernel used for simulation was also used for estimation of the innovations.
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Figure 3.14: Relative negative likelihood (cost function) −ln(θ) as a function of log h′0 and ϕ′ for both kernel
types. The blue star indicates the parameter set (h0, ϕ) that was used to simulated the time series (for the
same kernel type) and σ = σ′ = 1. Minimum cost function from top left to bottom right respectively: 0.0170;
0.0775; 0.0367; 0.0132

It can be seen that for both kernel types there is a local minimum if the kernel type is correct. We then also
see a global minimum near to the parameter set that was used for simulation. When a different kernel is used
for estimation, the minimum is not as clearly defined as it is on the boundary of the used scale (even though
the scale is representative of the parameter range in which the process displays multifractality). Furthermore
for these particular experiments the estimation using the correct kernel type also has a higher likelihood.

The landscape does not change qualitatively if also a different σ′ was used for the fit. The landscape was
also computed and investigated as a function of (σ′, h′0 ) and (σ′, ϕ′). It was found that the likelihood has
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a strong minimum around σ′ regardless the kernel type used. This implies that an accurate estimation of σ
is also possible if a different memory kernel type is used for the fit. Figure 3.15 shows an example of this
property for a time series generated with an exponential kernel.
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Figure 3.15: Relative negative likelihood (cost function) −ln(θ) as a function of logh′0 and logϕ′for an expo-
nential kernel fitted by both kernel types. For the generation of the time series I used σ = 1, h0 = 0.05 and
ϕ = ϕ′ = 0.01.

The computation of likelihood landscapes on larger scales supported all these findings.
Summarizing, we have seen that the likelihood landscape of an estimation made with the correct memory

kernel has a unique minimum. Furthermore, there is a strong minimum around σ′ even if a different kernel
type is used for estimation than for generation of the time series.

3.3.1.2 Synthetic results of conditional max likelihood

As a next step, it is investigated the accuracy of the proposed method in parameter estimation. I simulated
100 time series for four kernel parameter sets for both kernel types (ϕexp = 0.005, 0.02, h0,exp = 0.04 − 0.10)
and (ϕpow = (0.01, 0.4), h0,pow = 0.10, 0.20). The conditional likelihood landscape was swiped using the
correct kernel type to obtain the parameter set (ϕest, h0.est

, σest). Figure 3.16 (time series with an exponential
memory kernel) and Figure 3.17 (power law memory kernel) show the resulting parameters (ϕest, h0.est

, σest)
for the four different parameter sets used for generation of time series (ϕ, h0 , σ). The landscape was also
swiped using the different kernel type and the corresponding highest likelihood was compared with the highest
likelihood of the correct kernel type.
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Figure 3.16: Results of fitting the parameters using conditional maximum likelihood of 100 Monte Carlo
simulations with an exponential kernel. The red symbols indicate the parameters that were used to simulate
the time series. σreal = 1 for all simulations. Left : ϕest and h0.est

. Right : ϕest and σest.

I found that 99-100% of the experiments has the lowest conditional likelihood for the correct kernel type.
The CML method is therefore effective in distinguishing kernel type for time series simulated using an expo-
nential memory kernel.

Figure 3.16 demonstrates that for an exponential kernel the CML method is effective in distinguishing the
four parameters sets. The uncertainty in the three parameters ϕest, h0est and σest is different for each of the
four parameter set used for generation of the time series. The accuracy in ϕest when ϕ is high increases with
h0. This is possibly because a higher non-stationary (higher h0) leads to a stronger variability in the returns.
The memory (ϕ) the time series has of these past returns is then probably easier to calibrate (high accuracy
in ϕest).

The accuracy in σ increases with ϕ. This can be explained by the fact that a lower ϕ corresponds to a
slower decay of memory. This increases the length of the intervals with lower or higher volatility that result
from the non-stationary of the system. For higher ϕ these intervals tend to be shorter. This increases the
accuracy in σest.
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Figure 3.17: Results of fitting the parameter using conditional maximum likelihood of 100 Monte Carlo
simulations with a power law kernel. Left: ϕest and h

0.est
where four extreme values with high h0 are not

displayed in the plot. Right: ϕest and σest where five extreme values with h0 are not displayed in the plot.
σreal = 1 for all simulations.
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Figure 3.17 shows the results for a power law kernel. Overall, the uncertainty in the parameters estimated
with this method is bigger for time series with a power law memory kernel than for an exponential memory
kernel. Particularly the estimation of h0 and σ seems less accurate. This is because a system with a power
law memory kernel is more non-stationary than one with an exponential memory. Also, estimations of systems
with a power law kernel with low ϕ (ϕ = 0.01) sometimes result in negative ϕ.

As for the exponential kernel, the accuracy in ϕ increases with h0 (when ϕ is high) and the accuracy in σ
increases with ϕ. This is probably due to the same mechanisms mentioned for exponential kernels.

The non-stationary parameter h0,est seems positively biased for large h0 and low ϕ while σ seems negatively
biased for low ϕ and high h0. This is probably related to the positive bias observed earlier (see 3.1.5), which
was particularly strong in this parameter range. Also, the accuracy in h0,est increases with ϕ if h0 is high.
This corresponds to our understanding of the system, as a stronger decaying memory (higher ϕ) is supposed
to lead to a better calibration of the influence of (known) short term events (h0).

As a next step, the relative quantiles for each parameter set with a 95% confidence level were determined.
As the quality of the estimation R2 is more sensitive to some parameters than others, I used the method
introduced in 3.2.3 to estimate α−1

h0
, α−1

ϕ , and α−1
σ for IR2(R2 = 0.8) for each parameter set. For each parameter

estimation, IR2(R2) was calculated and the 5 (5% of 100 experiments) with the highest values (corresponding
to the lowest R2) were excluded. From the remaining collection the lowest and highest relative (e.g., σest/σreal)
parameter estimation were taken. These values correspond to the quantiles with 95% confidence level. The
results are displayed in Fig. 3.18 for both kernel types.
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Figure 3.18: Quantiles with 95% confidence in terms of the relative estimated parameters for the conditional
maximum likelihood methodology. Left: Quantiles for exponential kernels. Right: Quantiles for power law
kernels with an enlargement below.

We compare the results with the accuracy required for high quality estimation of the innovations (R2 = 0.8)
in section 3.2.3. For an exponential kernel, the maximum uncertainty is higher than the values of these quantiles
for almost all parameter sets (except for high h0 and low ϕ). Therefore at least 95% of the CML parameter
estimations result in volatility estimations with an accuracy of R2 = 0.8 in a pure SEMF process. However
for low ϕ and high h0 this requirement is not met as the uncertainty in σ is too big.

For power law kernels, we see that the uncertainty in ϕ is very high, especially if the memory decay
ϕ is low. Therefore for this parameter range the tested methodology is not accurate enough to allow for
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accurate volatility estimations. For higher ϕ, there is still a high uncertainty in this parameter but most of
the estimations result in high quality innovations.

It was found that there was no correlation between the resulting conditional likelihood and the accuracy
of the parameters.

Exclusion of early likelihoods

In section 3.1.2 we saw that the accuracy of the estimated innovations increases over time. This implies that
the conditional likelihood of the estimated innovations right after nsp are the least accurate. Therefore it is
investigated whether ignoring these ’early’ likelihoods improves the accuracy of the estimated parameters. I
substitute nstart = nsp in equation 3.13 by nstart = nsp + nexcl to create a new estimator:

ln(ϑ) =
1

n

n∑
i=nsp+nexcl

li(ϑ) where li(ϑ) =
d2
i

σ2
i,est

+ log(σ2
i,est) (3.16)

The estimation of σi,est still starts at nsp. I simulated 100 time series for different parameter sets and estimated
the parameters in three ways:

1. with the ’normal’ conditional maximum likelihood of equation 3.13

2. using equation 3.16, with nexcl = 1000

3. using equation 3.16 with nexcl = 200

The total length of the used time series remained 104 data points. It was found that nexcl = 200 provides
the most accurate results for the estimation of h0,est and σest. Furthermore it was established that the nexcl
optimal for parameter estimation varied for different kernel types and parameters h0 and ϕ. This implies that
an optimal parameter estimation procedure requires an iteration: The parameters are estimated with some
general nexcl, and then the procedure is repeated with an nexcl optimal for the parameter range found in the
first estimation.

Since the conditional maximum likelihood method was already quite accurate and the improvements are
relatively small, I decided to ignore the iteration step and fix nexcl = 200 for all of the estimations.

3.3.1.3 Influence of scale on fitted parameters

It has been demonstrated that the SEMF process exhibits multifractal properties [9]. However, it is not known
if and how the process parameters h0, ϕ, σ are related at different time scales. This knowledge is needed to
interpret the fitted process parameters of real financial time series. Therefore I apply the CML method at
different time scales of a synthetic SEMF process in an attempt to find these relations.

I simulated 100 time series of length 2 ∗ 104 and calculate the log price p(n) (which is the sum of all
previous returns). These time series are generated for both kernel types with parameter sets optimal for CML
(ϕexp = 0.02, h0,exp = 0.10 and ϕpow = 0.4, h0,pow = 0.20). Then 3 additional returns time series for each
kernel on different grid scales g = 2, 3, 4 are computed :

dg(n) = p(ng)− p((n− 1)g) (3.17)

where n = 1, 2, 3, .., (2 ∗ 104)/g .The resulting dg(n) have different lengths (104, 0.67 ∗ 104 and 0.5 ∗ 104

respectively). As a next step, the CML method is used to estimate the parameters at every grid scale. The
average relative fitted parameter (e.g., ϕg,exp/ϕexp) is then computed as a function of grid scale g. The results
are displayed in Fig. 3.19.
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Figure 3.19: The average relative estimated (with CML) parameter at different time scales with attempted
fits (dotted blue lines). The 80% confidence level quantiles are indicated by the error bars as a measure of
uncertainty. Left: Exponential kernel. Right: Power law kernel

We see that for the exponential kernel the parameters are scaled in an orderly fashion. Accurate scaling
relations are found:

σg,exp = σ1,exp
√
g (3.18)

ϕg,exp = gϕ1,exp (3.19)

h0,g,exp = h0,1,exp (3.20)

where ϑg,exp indicates the parameter value for an exponential kernel at scale g . As σ is a measure of
variability at a certain time scales, it is not surprising to see that it scales the same way as standard deviation
is added: σ2

total = σ2
1 + σ2

2 .
Computing ω on a rougher scale g roughly consists of ignoring a set g of intermediate time multiplications

with exp(−ϕ), so that exp(−ϕ)g. Therefore ϕ is scaled linearly with g, which explains the scaling relation for
ϕ.

The intermittency parameter h0 does not change as a function of scale. This makes sense because the
scaling relations for σ andϕ already adjust the parameters of the process to account for all changes. Therefore
for an exponential kernel the intermittency and non-stationary parameter h0 is equal at different time scales.

For a power law kernel the same scaling relation for σ is valid:

σg,pow = σ1,pow
√
g (3.21)

The non-stationary parameter h0 is found to roughly scale by h0,g = g−0.7h0,1. For ϕ we can at most con-
clude that the relation is convex. The absence of a smooth scaling relation (that was found for an exponential
kernel) for a power law kernel can be explained by the non-linear influence of a power law memory kernel over
time (in contrast to the exponential kernel).

It was found that the scaling relation for h0 does not realistically describe the system dynamics. The
scaling relation implies that for small σ (very small g) the h0 corresponding to the same level of non-stationary
is much bigger. However, when I compute a time series with smaller σ and corresponding higher h0, I find
that such a time series has much higher degree of non-stationary. Therefore the empirically observed scaling
relation for h0 for a power law kernel is not valid. Therefore it is assumed that equation 3.20 is also valid for
a power law kernel.
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3.3.1.4 Summary

The parameters of a pure SEMF process can be estimated with a high accuracy in a broad parameter range
using Conditional Maximum Likelihood. The CML method can distinguish the two kernel types with a very
high accuracy (around 99-100%).

For an exponential kernel the parameters can be estimated with sufficient accuracy to obtain volatility
estimations with a high quality (R2 = 0.8). This high quality can be obtained for all tested parameters except
for systems with a high non-stationary (h0 = 0.10) and weak memory decay (ϕ = 0.005). For a power law
kernel the method was able to distinguish between parameter sets. The method is accurate enough to obtain
high quality volatility estimations (R2 = 0.8), unless if the memory decay was very weak (ϕ = 0.01).

I demonstrated that the process parameters have smooth scaling relations for an exponential kernel. For a
power law kernel we only saw a smooth scaling relation for σ.

3.3.2 Estimating the parameters by Minimizing Innovation Clustering
The possibility of estimating the kernel type, h0,est and ϕest by minimizing volatility clustering %(d, θ, l) in
the estimated innovations is investigated. I determine the accuracy of the naive method with one delay for
different kernel types and parameters. The method is then optimized with regards to the number of delays nl
and the values of the delays l used for the computation of the volatility clustering.

3.3.2.1 Minimum Innovation Clustering (MIC)

I propose to estimate the process parameters based on the supposed independence of innovations ξi. Therefore
the clustering of the estimated innovations is minimized, which is expressed as:

%(d, θ′, l) =

N∑
n=1

corr(ξ2
n+l,est, ξ

2
n,est) (3.22)

where d is a times series of log returns, θ′ the proposed parameter set and l the delay. The correlation function
is defined as

corr(x, y) =
E [(y − µy)(x− µx)]

σxσy
(3.23)

where µx is the average value of the process x and σx is the standard deviation of the process. The ξ2
n,est

depend on the estimation parameters θ′ and the input time series dn according to the equations ?? and 3.12
described before in section 3.3.1.

The the optimal parameter set is defined as

ϑ̂n = arg min
ϑ
%(d, θ, l) (3.24)

for a given delay l and time series of log returns d. The minimization is again done using the standard
sweeping algorithm. The time scale σ can not be estimated using this method because the covariance is
normalized in equation 3.22. Without this normalization the function %(d, θ, l) would have ever decreasing
values for increasing σest. Therefore, I fixed this parameter to either unit value (σ′ = 1) for theoretical
estimations or to a value obtained by conditional maximum likelihood (σ′ = σest) for applications on real
financial time series.

It is also possible to calculate the value for multiple delays l:

%(d, θ, l1, l2, l3, ..) = %(d, θ, l1) + %(d, θ, l2) + %(d, θ, l3) + .. (3.25)
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We will optimize the number of delays nl and their values (l1, l2, .., lnl
) in order to get the highest accuracy

of estimation.

3.3.2.2 Results on kernel type and parameters estimation

To investigate the accuracy of the proposed method, I simulated 100 time series with different kernel parameters
and types (ϕexp = 0.01, 0.05, h0,exp = 0.04− 0.10) and (ϕpow = (0.01, 0.4), h0,pow = 0.10, 0.20). The volatility
clustering %(d, θ, l) was minimized using both kernel types for each time series. Table 3.1 shows the percentage
of time series for which %(d, θ, l) was lower for the kernel type with which the time series was generated.
%(d, θ, l) was computed for nl = 1 and l = 1 in this case.

Exponential kernel h0 = 0.04 h0 = 0.10

ϕ = 0.01 82% 100%
ϕ = 0.05 67% 97%

Power law kernel h0 = 0.10 h0 = 0.20

ϕ = 0.01 85% 78%
ϕ = 0.4 92% 100%

Table 3.1: The percentage simulations for which the correct kernel type was determined. This was done by
comparing the minimum %(d, θ, l) for both kernel types. The correct kernel type was the kernel type used for
Monte Carlo simulation of the time series.

We see that the method is reasonably effective in determining the kernel type. For lower h0 ranges, the
method loses accuracy.

The conditional maximum likelihood procedure is more effective in determining kernel type (see section
3.3.1.1, the success rate was around 99%).

For the same time series, Fig. 3.20 displays the optimal parameters for which %(d, θ, l) with l = 1 in the
case the right kernel type was determined for an exponential kernel and a power law kernel.
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Figure 3.20: Results of estimating the parameters h0,est and ϕest by minimizing the volatility clustering of the
innovations of 100 Monte Carlo simulations for both kernel types kernel. Left: The results for an exponential
kernel Right: The results for a power law kernel

For both kernel types we see that the estimation of ϕest is very inaccurate if h0 is low, particularly if ϕ is
high. This parameter range corresponds to low non-stationary and strong decay of memory. Strong memory
decay (high ϕ) results in a relatively low degree of volatility clustering in the returns. Therefore minimizing
the volatility clustering in the innovations corresponds to calibrating ϕ′ to remove a relatively small effect,
resulting in a larger uncertainty in ϕ.
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For the CML method we have also seen that a lower h0 could have a negative effect on the estimation
accuracy of ϕest. The explanation for this negative effect is the same for the MIC. Because of the low variability
in the returns because of the low h0, the estimation procedure does not have enough ’calibration points’.

For an exponential kernel, we can observe that for high h0 the estimated ϕest is positively biased, while for
a power law kernel ϕest is negatively biased. An explanation for this has not been found.

3.3.2.3 Optimal number of delays

Here it is demonstrated that the accuracy of the method can not be significantly improved using nl greater
than one, and that l = 1 produces the most accurate results.

I simulated 10 time series and minimized the volatility clustering %(d, θ′, l) as a function of θ′ for nl =
1, 10, 100. The delays l were chosen in a way such that (l1, .., lnl

) = (1, ..., nl). It was found that the accuracy
does not significantly increase as a function of nl. This is because minimizing %(d, θ′, l) as a function of θ′ for
small l yields very similar results as for large l. We see an example of this similarity in Fig. 3.21, where the
parameters resulting from the methodology for l = 1 and l = 50 are displayed (nl = 1). We see that the values
and structure of the results are very similar. There is only a small difference observed for high h0 and high ϕ.
Therefore using nl > 1, which means taking the average result of minimizing several %(d, θ, l) with different l,
does not significantly improve the accuracy of the MIC methodology.
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Figure 3.21: The results of minimizing volatility clustering of the innovations%(d, θ, l) with different delays l.
Because the results are very similar, the accuracy of the method is not increased significantly by averaging
over multiple delays (nl > 1).

Therefore Fig. 3.20 present the most accurate results that are obtained using this method. The results
are not more accurate than those obtained by the CML method, and therefore no parameter quantiles are
determined. However, because the method relies on a different principle for estimation, it can provide a second
opinion in the case of parameter estimation for real financial time series.

3.3.3 Conclusion parameter estimation
We have seen two methods that can estimate the parameters of a pure SEMF process: the Conditional
Maximum Likelihood (CML) method and the Minimum Innovation Volatility Clustering (MIC) method.

It was demonstrated that, using CML, the process parameters and memory kernel can be estimated with
sufficient accuracy to obtain volatility estimations with high quality (R2 = 0.8). The parameter estimation is
more accurate for time series with an exponential memory kernel than for a power law memory kernel. We
have seen that the CML method was less accurate for combinations of low h0 and high ϕ and vice versa (high
h0 and low ϕ).
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Furthermore I demonstrated that the parameters of a pure SEMF process can also be estimated by minimiz-
ing the clustering of the estimated innovations (MIC). The method proved less accurate than the CML method
but is of interest to this research because it uses a different principle for parameter estimation. Therefore it
can provide a second in parameter estimation in real financial time series.

Finally, using the CML method, I have also presented scaling relations for the process parameters in the
case of an exponential memory kernel. For power law memory kernels, a scaling relation was only found for σ.

3.4 Conclusion
I have proposed a procedure for estimating the volatility and the innovations in SEMF processes. Furthermore
the effectiveness of this procedure has been demonstrated in a broad range of process parameters for both
kernel types.

If the parameters are known, the volatility and innovations can be estimated by assuming a neutral history
at a certain point and computing the volatility using the SEMF process definition at subsequent points. We
have seen that this estimation is more accurate for SEMF processes with an exponential memory kernel than for
processes with a power law memory kernel. The estimation quality of the volatility (in terms of R2) decreases
with increasing h0 and decreasing ϕ. For most parameter ranges a high estimation quality (R2 = 0.8) can be
obtained. This method remains successful (high R2) if there is a limited degree of uncertainty in the parameters
used for volatility estimation. Using Conditional Maximum Likelihood, it is shown that it is possible to obtain
the parameters of a pure SEMF process with in this limited degree of uncertainty. I also demonstrate that
the process parameters at different scales are related. Finally I present the Minimum Innovation Clustering
method that can serve as a second opinion for parameter estimation in real financial time series.
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Chapter 4

Application of the process to real
financial time series

We have seen that in synthetic SEMF processes (within a broad range of parameters) we can estimate the
volatility and parameters with a high accuracy. In this chapter, the volatility and parameter estimation
procedure from chapter 3 is applied to real financial data. I find parameters that describe unrealistic processes
and innovations that are very similar to the returns. Since the estimation procedure is successful for synthetic
SEMF processes, it is concluded that the SEMF model in its current form does not realistically describe real
financial time series. We find indications that in real financial time series the volatility process (ω) also depends
on past absolute returns.

Section 4.1 presents estimates of the process parameters using CML and MIC in real financial time series.
The financial time series include daily returns of stocks and indices, and returns on 30 minute intervals from
stocks and currency exchanges. Stable, non-negative parameters are obtained for most of the tested financial
time series. However all but one of the estimated parameters describe SEMF processes with no physical
meaning as they are dominated by volatility bursts. We see a big sloppiness of the cost function used for CML
parameter estimation as a function of different parameters. Therefore the parameter estimates are inaccurate.

In section 4.2 the volatility and innovations are estimated using these parameter estimates. We see that for
all time series, including the time series with realistic parameters, the dynamics of the innovations is similar
to the returns. There is significant clustering in the innovations. The probability distribution function of the
innovation has heavy tails. We also see that the structure of the innovations is very similar to the returns.

Section 4.3 explores the possibility of forecasting but conclude that high performance in forecasting of the
dynamics is most unlikely.

Section 4.4 more deeply investigates the estimations and find a positive relation between the absolute
innovations and the absolute value of the process that determines the volatility (ω). This relation implies that
in real financial time series this process (ω) has also a relation with past absolute returns.

4.1 Parameter estimation
We have seen in section 3.3 that two methods, CML and MIC, are effective in estimating the parameters
in synthetic SEMF processes. Even though the CML method is more accurate, both methods are useful for
parameter estimation in real financial time series because they rely on different properties of the innovations.
Therefore I apply both methods to real financial time series in this chapter.
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4.1.1 Description of data
The procedure is applied to a representative set of financial data on different time scales: returns on days and
on intraday intervals of 30 minutes.

First, the procedure is applied to the daily returns of common stocks and stock indices over intervals of
several decades. These large intervals are chosen because the quality of the volatility estimation increases with
the number of data points used (see section 3.1.3).

The data is obtained from two different sources (online stock database [24] and Bloomberg [25]) to ensure
the quality of the results (errors or anomalies in data from either source can be detected). The original data
from [24] incorporates dividends (adjusted close), but I manually compensate for stock dilutions, which have
occurred at well recorded dates. It is found that time series of the Dow Jones daily returns from two different
sources are identical. Because of the possible change in dynamics over time, I do not use data that covers time
spans larger than 60 years. Therefore the Dow Jones index returns is only used from 1950 onwards.

However, time series that cover several decades may include different regimes of the process (e.g., bubbles).
The different regimes could disturb the estimation procedure. Furthermore, the dynamics of the process may
have changed over time, which would also disturb the estimation. Therefore, I also apply the procedure to
returns on intervals of 30 minutes over a period of several months. I also use currency exchange data on the
same time scale, as it represents a different form of financial data than stock and index returns.

The full specification of the used data can be found in Table 4.1.

Asset name Source Start (dd-mm-yyyy) Finish (dd-mm-yyyy) Time Scale
IBM [A] [24] 02-01-1962 20-05-2011 Daily
IBM [B] [25] 06-02-2002 13-06-2011 Daily
Shell [25] 15-07-2005 10-06-2011 Daily

General Electric [24] 02-01-1962 20-05-2011 Daily
Coca-cola [24] 02-01-1962 23-05-2011 Daily

Dow Jones [A] [24] 01-10-1928 13-06-2011 Daily
Dow Jones [B] [25] 01-10-1928 13-06-2011 Daily

S&P 500 [24] 03-01-1950 23-05-2011 Daily
IBM [25] 18-01-2011 02-08-2011 30 min
GE [25] 18-01-2011 02-08-2011 30 min

Dow Jones [25] 18-01-2011 02-08-2011 30 min
USD/EUR [25] 18-01-2011 02-08-2011 30 min
Yen/USD [25] 18-01-2011 02-08-2011 30 min
CHF/EUR [25] 18-01-2011 02-08-2011 30 min

Table 4.1: Specification of the used data sets that were used for the application of the SEMF process. USD
stands for US dollar, and CHF denotes the Swiss franc.

4.1.2 Parameter estimates using CML
Recall that the CML method estimates the parameters by minimizing the cost function ln(ϑ′) (i.e. maximizing
the likelihood)

θn,est = arg min
ϑ′

ln(ϑ′) (4.1)

where the cost function ln(ϑ′) is determined using the Gaussian distribution of the innovations. The accent ’
indicates that θ′ is the input parameter for the cost function. It is defined as
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ln(ϑ′) =
1

n

n∑
i=nsp+nexcl

li(ϑ
′) where li(ϑ′) =

d2
i

σ2
i,est

+ log(σ2
i,est) (4.2)

I used nexl = 250 and nsp = 1. The volatility is estimated using parameter set ϑ′ ignoring the returns before
nsp:

σn,est(σ
′, h′0, ϕ

′) = σ′ exp

{
−
∑n−1
i=nsp

dih
′
n−i−1)

σ′

}
(4.3)

where h′n−i−1 = h0(n − i − 1)−ϕ−1/2 for a power law kernel and h′n−i−1 = h0exp(−ϕn) for an exponential
kernel.

4.1.2.1 Application to daily returns

The CML method is applied to the time series of daily stock returns. The estimated parameters for both
kernel types are presented in Table 4.2.

Asset name Exp - ϕest Exp - h0,est Exp - σest Pow - ϕest Pow - h0,est Pow - σest Optimal kernel
IBM [A] 0.031 1.93 0.016 0.29 3.49 0.016 Exponential
IBM [B] 0.008 2.73 0.015 -0.10 5.71 0.015 Exponential
Shell -0.003 0.17 0.025 -0.15 5.68 0.023 Power law
GE 0.012 1.78 0.016 0.18 4.72 0.017 Exponential

Coca-cola 0.021 1.83 0.016 0.21 4.09 0.016 Exponential
Dow Jones [A] 0.029 4.74 0.009 0.25 10.70 0.010 Exponential
Dow Jones [B] 0.028 4.72 0.009 0.24 10.70 0.010 Exponential

S&P 500 0.023 4.45 0.009 0.23 11.14 0.010 Exponential

Table 4.2: Resulting parameters of the application of the conditional maximum likelihood methodology for
both kernel types on daily returns of stocks and stock indices. I present the parameter estimates with an
exponential kernel (columns with Exp) and a power-law kernel (columns with Pow). The optimal kernel is the
kernel with the highest likelihood.

For three time series (GE, IBM [B] and Shell) the estimates are invalid. For the GE and IBM [B] daily stock
returns, the parameter estimation is unstable because starting the procedure with different initial conditions
results in a different parameter estimation. The Shell parameter estimate with a power-law kernel for ϕest
is negative. In a SEMF process with negative ϕ the memory of a past event increases over time. This is an
unrealistic condition for financial time series. Therefore results with negative ϕest are not usable.

We see that for all other time series the exponential kernel has the highest likelihood. The range of
estimated ϕest corresponds to a realistic memory decay. However, for each of these time series the resulting
non-stationary parameter h0 takes on an extremely high value (h0 > 1). A process defined by such a h0

is completely dominated by volatility bursts. A process with these volatility bursts does not describe real
financial time series and has is no physical meaning. The parameter estimations with a power law memory
kernel also result in extremely high values for h0.

We can conclude that the estimated parameter sets do not correspond to a realistic pure SEMF process
with either one of the proposed memory kernels. To get more insight into the accuracy of these estimates, the
likelihood landscape of the time series is investigated. We will see that the likelihood landscapes are very flat
and therefore that the parameter estimates are most likely inaccurate.
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Conditional likelihood landscape of daily financial returns

I computed the conditional likelihood landscape for as a function of the parameters ϕ′, σ′ and h′0 for both
kernel types. The landscape is expressed in terms of the cost function ln(ϑ). Cross-sections of the landscapes
for the IBM [A] daily stock returns set can be seen in Fig. 4.1. These landscapes are representative for the
tested data sets (apart from the invalid results for IBM [B], Shell and GE).
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Figure 4.1: Conditional likelihood landscape (expressed by the cost function ln(ϑ)) for the IBM [A] sample for
both kernel types. Left: The cost function for different h′0 and ϕ′ while σest takes on the maximum likelihood
value from Table 4.2. Right: The cost function for different h′0 and σ′ while ϕ; takes on the maximum
likelihood value from Table 4.2.

We see that the cost function as a function of ϕ′ is very flat for both kernel types. The cost function
as a function of log[h′0] has a sharp decay above a certain threshold for both kernel types (h′0 ≈ 10 for an
exponential kernel and h′0 ≈ 1− 10 for a power law kernel). However for decreasing log[h′0] the cost function is
also very flat. Since a flat landscape corresponds to an inaccurate estimate of the parameter, we can conclude
that the estimates of these two parameters are not accurate. Since the landscape is flat as a function of h0 on
a log scale, we see that also the order of size of the h0 can be inaccurate. The landscape as a function of σ has
a strong minimum around a certain value in each of the plots. Therefore the estimate of σest is most likely
accurate.

The exact uncertainty in the parameter estimation is unknown. However most likely a joint uncertainty in
the parameters of this magnitude does not result in accurate estimations of the volatility (see section 3.2.3).

In the plots we see that the likelihood landscape is very different from the likelihood landscapes of synthetic
time series (see section 3.3.1.1). Therefore we can conclude that the financial time series behaves differently
than the pure SEMF process with either one of these two kernels (exponential and power law).
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4.1.2.2 Application to returns of 30 minute intervals with CML

I also estimate the parameters in time series of returns on 30 minute intervals. The results of the parameter
estimations can be seen in Table 4.3.

Asset name Exp - ϕest Exp - h0,est Exp - σest Pow - ϕest Pow - h0,est Pow - σest Optimal kernel
IBM 0.0073 8.11 0.0030 -0.22 11.20 0.0034 Exponential
GE 0.014 6.41 0.0041 -0.068 9.31 0.0042 Exponential

Dow Jones 0.012 16.72 0.0021 0.10 0.17 0.0021 Exponential
USD/EUR 0.011 0.084 0.0010 0.11 0.21 0.0010 Exponential
Yen/USD 0.014 0.068 0.0010 -0.21 32.43 0.0009 Power Law
CHF/EUR 0.013 0.071 0.0011 0.14 0.17 0.0011 None

Table 4.3: Resulting parameters of the application of the conditional maximum likelihood methodology for
both kernel types for time series of returns of 30 minute intervals. The preferred kernel is the kernel with the
highest likelihood.

We see one result that is clearly invalid. The CML estimation in the Yen/USD time series results in a
power law kernel with a negative ϕest. Results with a negative ϕest do not describe realistic processes. In the
other time series the exponential kernel type is estimated, except for the CHF/EUR which does not estimate
any kernel type.

For the stock returns, again extremely high values for h0,est are estimated. I was not able to simulate a
process with such parameters without the dominating presence of volatility bursts. For the currencies, lower
values of h0 are estimated that describe SEMF processes with a physical meaning. For all results, ϕest and σest
are around 0.01 and 0.001 respectively. These values are close to the initial parameters used in the optimization
algorithm.

The parameter estimates of the stock returns on the 30 minute scale (IBM and Dow Jones) are compared
with the estimates on the daily scale (IBM [A] and Dow Jones [A]). We have seen scaling relations using
CML parameter estimation in section 3.3.1.3. These scaling relations describe how the parameters of a SEMF
process with an exponential kernel are related on different time scales g. Here I investigate whether these
scaling relations are valid for these parameter estimates.

Because a trading day consists of 8 hours, the scale difference g (see equation 3.18) in this case is equal to
16. We see that σest is about a factor 4-5 higher in the daily returns than in the returns in 30 minute intervals.
Since σg,exp = σ1,exp

√
g, this factor corresponds to a scale g around 16. The accuracy of this scaling relation

supports the hypothesis that the estimation of σ is accurate. However for ϕest the scaling relation does not
hold. We see that the values for ϕest differ about a factor 2-4, which according to ϕg,exp = gϕ1,exp corresponds
to a g=2-4. This is incorrect, because we known that g should be 16. This supports the notion that, based on
the likelihood landscapes, the estimation of ϕest is inaccurate (at least in one of the two time scales).

For the power law kernel estimates (excluding the results with negative ϕ), we see comparable values for
ϕest and σest. The estimated value of h0 is within the multifractality range (see equation 2.30) where processes
without volatility bursts can be obtained.

We have seen that, in contrast to the parameter estimates of daily returns, some of the estimated values
of h0 are not extremely high. Therefore the likelihood landscapes of these time series are investigated. We see
that also these estimates have a high uncertainty.

Conditional likelihood landscape of financial returns on 30 minutes

Figure shows likelihood landscapes for the Yen/USD returns on intervals of 30 minutes. These landscapes are
representative for the landscapes of other time series for which the estimated value of h0,est is not extremely
high (also for power law memory kernels).
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Figure 4.2: likelihood landscape USD/EUR 30 min scale by CML meaning of star

We see that the landscape as a function of log h′0 and log ϕ′ again is very flat. Since the isoplots do
not circle with decreasing values around the parameter found with CML (blue star), it is not sure whether
the estimated parameters correspond to a local or global maximum likelihood. However the landscape as a
function of σ′ has a strong minimum cost function around the estimated value. Therefore σest is most likely
relatively accurate.

There is an absence of a broad likelihood maximum around the estimated parameters and also the likelihood
landscape as a function of ϕ and h0 is very flat. We can conclude that when the estimated h0,est was not
extremely high the estimation was also inaccurate.

The likelihood landscapes of the stock returns on 30 minute intervals (with high h0,est) were similarly flat
to the landscapes of daily returns (see Fig. 4.1).

4.1.2.3 Conclusion

We have seen that, using the CML method, we can estimate stable, non-negative parameters in daily stock
and index returns (IBM [A], Coca Cola, Dow Jones [A,B] and S&P500) and for returns on 30 minute intervals
(IBM, GE and the Dow Jones). The exponential memory kernel has the highest likelihood in these time series.
However, the method estimates an extremely high h0 for which a pure SEMF process (where the innovations
are uncorrelated) is not realistic (because it is dominated by volatility bursts).

Likelihood landscapes as a function of h′0 and ϕ′ are very flat. This flatness indicates that the parameter
estimations are not very accurate. The likelihood landscape as a function of σ′ has a deep minimum around
the estimated value. Furthermore the estimated values σest on different time scales obey scaling relations (see
section 3.3.1.3). Therefore the estimation of σest is most likely accurate. The method does not estimate a
power law kernel with usable parameters for any of the financial time series.

The CML method estimates parameters are in the multifractality range (low h0,est) for the USD/EUR
currency exchange. However, the flat likelihood landscape as a function of the parameters h0’ and ϕ′ indicates
that these estimates are also inaccurate. Furthermore, the likelihood landscape shows that the estimated
parameter (with low h0,est) set is only a local (due to the noise in the cost function) and not a global minimum
(which would correspond to the conditional maximum likelihood estimate of all possible parameters).

We have seen that the likelihood landscape is significantly different for the financial time series than for
a pure SEMF processes. I conclude that financial time series behave significantly different from pure SEMF
processes. The results show that the CML method is ineffective, because of the large uncertainty in the
parameters. As a next step I also estimate the parameters using MIC and investigate whether these parameter
estimates are more realistic and accurate.
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4.1.3 MIC parameter estimation
For comparison the parameters in the financial time series are also estimated using the MIC method. The
method is fully described in section 3.3.2, but the algorithm is repeated briefly below.

The Minimum Innovation Clustering method minimizes the correlation between subsequent squares of
innovations:

%(d, θ′, 1) =

N∑
n=1

corr(ξ2
n+1,est, ξ

2
n,est) =

N∑
n=1

E
[
(ξ2
n+1,est − µξ2)(ξ2

n,est − µξ2)
]

σ2
ξ2

(4.4)

Here d is a times series of log returns, θ′ the proposed parameter set and l the delay. µξ2 is the average value of
the process ξ2

n,est and σξ2 is the standard deviation of this process. The ξ2
n,est depend on the used estimation

parameters θ′ and the input time series dn (see equations 3.4 and 3.12).
The the optimal parameter set is defined as

ϑ̂n = arg min
ϑ
%(d, θ, l) (4.5)

Effectively this method optimizes the independence of the estimated innovations.
We can only estimate kernel type, ϕest and h0,est using this method, and not σest. I take σest = σ′ where

σest is the value estimated with CML, for all MIC estimations. However this is should not affect the estimations
of ϕest and h0,est because the function for the volatility clustering 4.4 is normalized for the standard deviation.

4.1.3.1 Daily stock returns

The MIC method is applied to the real financial time series. Figure 4.4 presents the results of the estimation.

Last experiment-Asset name Exp - ϕest Exp - h0,est Pow - ϕest Pow - h0,est Optimal kernel
IBM [A] 0.0152 1.74 0.428 5.09 Exponential
IBM [B] -0.001 3.20 -0.117 5.35 Exponential
Shell 0.396 3.63 0.086 4.15 Power law
GE -0.004 8.00 0.201 4.97 Exponential

Coca-cola 0.086 3.59 0.357 5.57 Exponential
Dow Jones [A] -0.005 7.53 0.458 3.54 Exponential
Dow Jones [B] -0.046 2900 0.367 12.31 Exponential

S&P 500 -0.012 14.61 0.310 11.01 Exponential

Table 4.4: Resulting parameters of the application of the MIC methodology for both kernel types. The
preferred kernel is the kernel with the lowest value for %(d, ϑ, l). daily returns

We see that in seven out of eight time series the exponential kernel is estimated. However, five out of seven
of these results estimate negative values for ϕest, which does not correspond to a process with multifractal
properties or even a realistic process at all (e.g., h0 = 2900) Therefore those results are invalid and not
discussed further.

For the other two time series (IBM [A] and Coca Cola), the estimated values of h0,est are also extremely
high. The estimated values of h0,est are even higher than the values estimated using CML. The estimated
values of ϕest indicates a relatively strong degree of memory decay, and these estimates are lower for the CML
method. The CML method also estimated the exponential memory kernel in these time series.

The MIC method estimates the power-law kernel in the Shell daily returns. This was also the case for
CML. However, in contrast to the CML estimate, here ϕest has a non-negative value. Again, h0,est has an
extremely high value.
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4.1.3.2 Returns on intervals of 30 minutes

The MIC method is also applied to the returns on intervals of 30 minutes. The estimated parameters are
presented in Table 4.5.

Asset name Exp - ϕest Exp - h0,est Pow - ϕest Pow - h0,est Optimal kernel
IBM 0.0213 8.71 45.37 -16.36 Power Law
GE 0.0085 10.85 -0.0080 29.09 Exponential

Dow Jones 0.0098 17.45 0.74 -27.65 Exponential
USD/EUR 30.09 60.5774 122.31 60.58 None
Yen/USD -0.0063 0.0014 -2.90 553990 Power Law
CHF/EUR 0.0001 7.73 -0.44 10.37 Exponential

Table 4.5: Resulting parameters of the application of the MIC methodology on time series with a 30 minute
time scale for both kernel types. The preferred kernel is the kernel with the lowest value for %(d, ϑ, 1) (see
equation 4.4)

We see that none of the estimations for power law kernels have realistic values. Therefore the power law
results are ignored.

For the estimations with an exponential memory kernel, we see that the Yen/USD time series has a
negative estimate for ϕest. Furthermore the USD/EUR time series has ϕest = 30.1, which corresponds to
process without a memory. Therefore these results are invalid.

For the remaining four parameter estimations with an exponential kernel, the ϕest is realistic but the
estimated h0,est is again extremely high. The estimated h0,est are even higher than the CML estimates.

Because of the overall unrealistic results, I conclude that the MIC estimation in these time series failed and
that these results are not reliable.

Summary

For IBM [A] and Coca Cola daily returns we have seen stable and non-negative parameter estimates using the
MIC method. Like the CML method, the MIC estimates and exponential kernel with an extremely high h0,est.
However there is a large difference between the estimated parameters. For the Shell daily stock returns, the
method estimates a power law kernel with stable and non-negative parameters. The parameter estimations on
shorter time scales (returns on 30 minute intervals) are inaccurate.

4.1.4 Summary
Table 4.6 provides the selection of parameter estimates that are the most relevant. All parameter estimates
with negative parameters and extremely fast memory decay (ϕ > 1) have been disregarded. I also disregard
results where no kernel type is estimated.

Based on estimation in synthetic time series, the CML method has a higher accuracy in parameter esti-
mation. The CML estimations are also more frequently positive than the MIC, which supports the notion
of superior accuracy using the CML method. Therefore I choose to ignore the MIC parameter estimates if
the estimated parameters were similar. (e.g., Dow Jones). However the estimates by MIC also indicated an
extremely high h0,est.
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Name Time scale Method Estimated
kernel type

ϕest h0,est σest

IBM [A] Daily CML Exponential 0.031 1.93 0.016
IBM [A] Daily MIC Exponential 0.049 3.26 0.016*
Shell Daily MIC Power law 0.086 4.15 0.023*

Coca Cola Daily CML Exponential 0.021 1.83 0.016
DJ Daily CML Exponential 0.029 4.74 0.009

S&P500 Daily CML Exponential 0.023 4.45 0.009
IBM 30 minutes CML Exponential 0.0073 8.11 0.0030
GE 30 minutes CML Exponential 0.014 6.41 0.0041

Dow Jones 30 minutes CML Exponential 0.012 16.72 0.0021
US/EUR 30 minutes CML Exponential 0.011 0.084 0.0010

Table 4.6: Selection of the best parameter estimates using both methods. * The MIC method can not be used
to estimated σ, therefore I take σ from the CML method (which has high accuracy)

Both methods indicate a preference for the exponential kernel. Only the stock return time series of Shell is
optimally fitted by a power law kernel for both methods. However, the length of this time series was relatively
short (2500 data points) and in the case of CML the resulting ϕest was negative. Therefore the accuracy of
this estimation is controversial.

Furthermore both methods indicate that an optimal fit is made with an extreme value of h0. Since
this parameter does not describe realistic SEMF processes, we can conclude that the SEMF model does not
accurately describe the data. However, the estimated parameters do most likely correspond to the most
accurate volatility estimations that can be made with this model. Therefore I take deeper look at the resulting
innovations and volatility estimations using the estimated parameter.

4.2 Estimated volatility and innovations
The feasibility of the SEMF model is investigated. The stylized facts of the returns should be accounted for
by the volatility, since in the model the innovations are a Gaussian white noise. Therefore one can test this
feasibility by determining the presence of stylized facts of the returns in the estimated innovations.

4.2.1 Clustering in the innovations
I investigate the degree of clustering in the innovations. The degree of clustering in the innovations can be
computed using

%(x, 1) =

N∑
n=1

corr(x2
n+1,est, x

2
n,est) (4.6)

where the x = ξ in this case. I computed this value for all of the selected results and present the results in
Table 4.6. For comparison, the clustering of the returns (x = d in equation 4.6) was also calculated.

In the SEMF process, a white noise process following a normal N(0,1) distribution is used to model the
innovations. This random process can also display a degree of clustering. I simulated 1000 time series dn and
estimated the innovations using equations 3.4 and 3.5. Then the clustering was determined. It was found that
95% of the time series have a clustering of less than % = 0.0167.
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Name Time scale Method Estimated kernel type % returns % innovations
IBM [A] Daily CML Exponential 0.1509 0.1110
IBM [A] Daily MIC Exponential 0.1509 0.0985
Shell Daily MIC Power law 0.2995 0.2680

Coca Cola Daily CML Exponential 0.1509 0.1100
Dow Jones Daily CML Exponential 0.2044 0.1084
S&P500 Daily CML Exponential 0.1418 0.0985
IBM 30 minutes CML Exponential 0.0428 0.0421
GE 30 minutes CML Exponential 0.0200 0.0073

Dow Jones 30 minutes CML Exponential 0.0113 0.0003
US/EUR 30 minutes CML Exponential 0.0963 0.0963

Table 4.7: (Volatility) clustering in the returns and the estimated innovations for a selection of time series.

We see that all but one (the returns on 30 minute intervals for the Dow Jones index) of the time series
have estimated innovations with a significant clustering (more than the ’random’ clustering % = 0.0167).

However, in each of the time series there is a significantly lower % in the innovations than in the returns.
There is a particularly strong reduction of clustering in the Dow Jones index, IBM (both MIC and CML) and
S&P500 daily returns.

We can conclude that there is a strong degree of clustering of the estimated innovations. The clustering
was significantly lower than the volatility clustering in the returns.

4.2.2 Examples of estimations in financial time series
The returns, estimated volatility and innovations of a representative set of time series is investigated. I present
the estimation using CML in the daily returns of the Dow Jones (Fig. 4.3), because of its representative
parameter set and strongly reduced clustering. Furthermore, I present the estimation for IBM [A] (Fig.
4.4) using both parameter estimation methods (CML and MIC) for comparison. Since the MIC parameter
estimation of the Shell daily returns is the only estimation of a power law memory kernel with non-negative
parameters, the estimation in this time series is also presented (Fig. 4.5).

Furthermore I present the returns on 30 minute intervals of the Dow Jones index using CML (Fig. 4.6)
because it is representative for stock returns on this time scale. The CML estimation in US/EUR currency
returns (Fig. 4.7) is also presented since it has an estimated h0,est that is not extremely high.

The volatility is normalized by σest to allow for comparison of exp
{
−ω(n)
σest

}
between data sets.

Daily returns - CML estimation in the Dow Jones index

Figure 4.3 presents the results for the Dow Jones [A] time series. We see that the structure of the innovations is
very similar to the structure of the returns. We also see that the strongly negative return around the data point
1.5 ∗ 104 (which represents the crash of 1987) corresponds to a strongly negative innovation. Because positive
returns lead to a reduced volatility in the SEMF model, it does not anticipate crashes related to bubbles.
Therefore the model does not anticipate such events (possibly they are associated to a different regime).

We can see a degree of reduction of clustering and the leverage effect in the innovations, particularly in the
beginning and end of the sample. This corresponds to the previous calculations of the clustering (see Table
4.7).

However, there is still a strong structure observed in the innovations. This structure is also observed in
other time series of daily returns with similarly high h0,est (Coca Cola, S&P 500 and IBM [A]). Furthermore
we see a strong presence of outliers in the innovations, indicating persistence of the heavy tails.

With respect to the other estimations, the peaks of the normalized volatility of this data set are quite high.
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Dow Jones parameter estimation by CML
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Figure 4.3: Estimation of the innovations and volatility for the Dow Jones [A] index price using the parameters
estimated by CML: Exponential kernel with ϕest = 0.029, σest = 0.009 and h0,est = 4.74

Daily returns - CML and MIC estimation for IBM

Figure 4.4 shows the results for parameter estimation by both CML and MIC. For both estimations the
innovations have a strong structure that is very similar to the structure of the returns. The innovations also
have frequent outliers. The biggest difference between the time series of the returns and the innovations is the
reduction in amplitude of the extreme movements.
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IBM parameter estimation by MIVC
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Figure 4.4: Estimation of the innovations and volatility for IBM stock returns using the parameters estimated
by CML (Above) and MIC (Below). CML: Exponential kernel with ϕest = 0.031, σest = 0.016 and h0,est =
1.93. MIC: Exponential kernel with ϕest = 0.049, σest = 0.016 and h0,est = 3.2655



Daily returns - MIC estimation for Shell (Power law)

The results for Shell can be seen in Fig. 4.5. Again we see that the time series of the returns is very similar to
that of the innovations; a strong structure in the innovations, similar to the structure of the returns, is again
observed.

The similarity between the time series of the returns and innovations is stronger for this time series than
for the other, longer, time series. This could be explained by the much shorter length of the time series, which
can make the volatility and parameter estimation more inaccurate. However a smaller time series length could
also provide more freedom for the fit to minimize clustering.
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Figure 4.5: Estimation of the innovations and volatility for the Dow Jones index price using the parameters
estimated by MIC: Power law kernel with ϕest = 0.086, σest = 0.023 and h0,est = 4.15

Returns on 30 minutes - CML estimation in the Dow Jones index

In Fig. 4.6 we see the results for the Dow Jones index returns on a time scale of 30 minutes. We see a strong
resemblance between the structure of the two time series and on first glance not much has changed. The
innovations also have frequent outliers, indicating heavy tails.
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Figure 4.6: CML fit of 30 min scale DJ

Returns on 30 minutes - CML estimation in the USD/EUR currency exchange

The parameter estimates in the USD/EUR currency exchange are the only estimates within the multifractal
range (see equations 2.29 and 2.30). The innovations estimated with these parameters are presented in Fig.
4.7.

We see that the estimated volatility is approximately one for all data points and that the innovations only
differ from the returns by a factor of scale. We can therefore conclude that the SEMF model with these
parameter estimates does not realistically describe this financial time series.
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Figure 4.7: CML fit of 30 min scale USD/EUR

4.2.3 Distribution of the innovations
In the SEMF process the innovations are normally (Gaussian) distributed. However we have seen frequent
outliers in the estimated innovations of the time series. This indicates heavy tails in the probability distribution
function of the innovations.

I compute the histograms of the returns and the innovations, and compare them with a Gaussian distri-
bution. The Gaussian is created using the mean and standard deviations from the returns and the estimated
innovations. The results for the Dow Jones index daily returns can be seen in Fig. 4.8. This plot is represen-
tative for all other observations.

We see heavy tails for both the returns and the innovations. The weight of the tails of the innovations is
not significantly smaller this weight of the case of returns. It is difficult to accurately quantify these tails, but
a comparison of kurtosis supports these observations.

This indicates that the application of the SEMF process to these financial time series is not successful in
reducing the uncertainty of the dynamics of the stock returns.
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Figure 4.8: The probability distribution function of the innovations and the returns for the Dow Jones.
The estimations are fitted for the parameters obtained with CML: Exponential kernel with ϕest = 0.029,
σest = 0.009 and h0,est = 4.74

4.2.4 Conclusion
We have seen a strong similarity of the structure between the innovations and the returns (persistence of clus-
tering) and the presence of frequent outliers in the innovations (heavy tails). These observations demonstrate
that either the estimation procedure is not effective or that the current structure of the process is insufficiently
accurate. Because both (CML and MIC) estimation procedures are effective in synthetic SEMF time series,
we conclude that in its current form the SEMF model can not be applied to these data sets.

4.3 Forecasting
I explore the possibility of forecasting the dynamics of the process and find that when using the estimates in
these time series high performance in forecasting is unlikely.

Forecasting future dynamics of the process can consist of giving expectation values of future absolute or
squared returns. It can also consist of computing the probability that the sum of the returns, positive or
negative, exceeds a certain value in a certain number of time steps. This can be done using Monte Carlo
simulation.

For these estimates in the SEMF process, Monte Carlo simulations are not possible. SEMF processes with
these high values for h0 are dominated by volatility bursts and have no physical meaning.

Therefore, forecasting with the current estimates is limited to determining probabilities or expectation
values in only one time step. We can calculate these expressions using the estimated volatility and the
empirical probability distribution function found for the innovations.

The volatility estimated in these time series are most likely inaccurate. We have seen in section 3.1.3
that increasing h0 has a decreasing effect on the quality (R2) of the estimated volatility. Because Monte
Carlo simulations are not possible for this parameter range, it is not possible to compute this quality exactly.
However I expect that, given the dominating presence of volatility bursts, the quality (R2) will be very low
and the volatility estimation can be off by large factors.

Because the estimated innovations have a heavy tailed distribution, I assume that out of sample innovations
follow the same distribution. However this distribution is similar to the distribution of the returns. Therefore
the uncertainty of the process is not significantly reduced.

It is therefore unlikely that the current estimations will have a high performance in forecasting and the
possibility of forecasting is not explored further.
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4.4 Empirical analysis of the model structure
In this section I try to understand why the current form of the SEMF model is not successful in its application
to financial time series. A relation between |ωn,est| and the absolute estimated innovations |ξn,est| in real
financial time series is found. This relation implies that in the SEMF model ω should also depend on past
absolute returns.

4.4.1 The relation between the volatility and the innovations in empirical esti-
mates

We recall that in the SEMFmodel ωest(n) =
∑n−1
i=0 dihn−i−1 is related to the estimated volatility by σest exp

{
−ωest(n)

σest

}
.

In the proposed structure of the SEMF process, the innovations ξi are independent on the process ωi that
determines the volatility. It is of interest whether this property holds in the estimations in financial time series.
I therefore compute the average absolute estimated innovations |ξi,est| conditional on ωest(i)〈

|ξi,est|

∣∣∣∣∣ωest(i)
〉

(4.7)

Effectively, these averages are obtained for short intervals of ωest by averaging the corresponding |ξi,est|. This
expression is plotted as a function of ωest(i).

In the SEMF process there is no relation between these two expressions. To demonstrate this independence,
a synthetic time series is created and the parameters and volatility are estimated. Figure 4.9 shows the plot
for this synthetic time series.

We see a straight line in this plot, which also holds in the magnification around |ωest| = 0. This straight
line implies that there is no relation between the two quantities, as the expectation value of |ξi,est| is not a
function of ωest(i). There is a high degree of uncertainty in the plot for larger values of |ωest|. Because the
large deviations from ωest = 0 are not common, there are less data points for averaging the |ξi,est| for larger
values of |ωest|; this introduces uncertainty in the average.
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Figure 4.9: The average |ξi,est| as a function of ωest(i) for a synthetic time series with an exponential memory
kernel with h0 = 0.06, ϕ = 0.01, and σ = 1. The right plot shows a magnification of the left plot in the area
around ωest(n) = 0. The volatility is estimated using CML estimates for the process parameters.

I also computed these plots for the financial time series and find that in these estimates there is a relation
between the absolute innovations |ξi,est| and ωest(i) . Figure 4.10 shows the plots for the Dow Jones [A] and
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the S&P500 sample using the parameter estimates from table 4.6 (CML, exponential kernel). These plots are
representative for all the selected estimates.
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Figure 4.10: The average |ξi,est| as a function of ωest(i) for the Dow Jones [A] (above) and the S&P500 (below).
The right plot shows a magnification of the left plot in the area around ωest(n) = 0. The estimations are fitted
for the parameters obtained with CML: Exponential kernels with ϕest = 0.029, σest = 0.009 and h0,est = 4.74
for the Dow Jones sample and ϕest = 0.023, σest = 0.009 and h0,est = 4.45 for the S&P500.

In both plots we see that |ξi,est| increases for higher ωest(i). This is particularly clear in the magnifications.
The increased average |ξi,est| for higher ωest(i) implies that the volatility is estimated too small for higher
ωest(i). A series of positive returns results in a higher ωest(i). The decreasing effect of positive returns on
volatility is therefore stronger in the SEMF process than in real financial time series.

We see that |ξi,est| also increases for lower ωest(i), which corresponds to a series of negative returns. In the
SEMF process the positive effect of negative returns on volatility is therefore also not strong enough.

Because of the clear relation between |ξi,est| and ωest(i), we can conclude that the structure of ω in the
SEMF process is not correct. Specifically, the volatility estimate should be higher for larger |ωest(i)|. Because
|ωest(n)| =

∣∣∣∑n−1
i=0 dihn−i−1

∣∣∣, we see that |ωest(n)| is large if∣∣∣∣∣∣
n−1∑

i=0,dn>0

dihn−i−1 −
n−1∑

i=0,dn<0

dihn−i−1

∣∣∣∣∣∣ (4.8)

is large. Because the returns dn are not auto-correlated, it is likely that in that case the amplitudes of the
returns |dn| are also large. It is therefore likely that in real time series, ω has a dependency on absolute returns
|dn|.
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Conclusion

We have seen that the absolute innovations |ξi,est| have a U-shaped relation with ωest(i). Therefore the
estimated volatility in these time series is too low for higher |ωest(i)|. We can possibly estimate the volatility
higher for higher |ωest(i)| if ω has a dependence on absolute returns |dn|.

4.5 Conclusion
I have applied the volatility and parameter estimation procedure of chapter 3 to a representative set of real
financial data. We have seen that the estimated parameters correspond to unrealistic SEMF processes and
that the estimated innovations are very similar to the returns. We can therefore conclude that the SEMF
model does not realistically describe financial data.

The CML parameter estimates of daily returns of stocks and indices are either negative or correspond to
unrealistically high non-stationary (extremely high h0). The CML parameter estimates on stock and currency
exchange returns on 30 minute intervals are also unrealistic. For one time series however (EUR/CHF currency
exchange), the parameters are in the multifractal range (h0 0.10). The cost function landscape of the CML
method as a function of the parameters was very flat for all time series. Therefore all parameter estimations
are likely to be inaccurate.

The MIC parameter estimates are less reliable (due to a higher fraction of negative parameters) but were
similar to the unrealistic parameters obtained by CML.

We have also seen that the estimated innovations (using the parameter estimates using the CML and MIC
methods) are not Gaussian distributed white noise, but in fact behave similar to the returns. We saw a high
degree of volatility clustering in the innovations, a structure of the innovations that was very similar to the
returns and a probability distribution function of the innovations that had heavy tails. Specifically, for the
time series with parameter estimates within the multifractal range, the returns and innovations differed only
by a scale σ.

It was concluded that the model does not accurately describe the data and also high performance in
forecasting was ruled out. Finally, we have seen a strong relation between absolute innovations and absolute
ω. This implies that in real financial time series ω also has a strong dependency on past absolute returns.
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Chapter 5

Introduction of the generalized SEMF
process

In previous chapters we have seen that though SEMF processes incorporate all known stylized facts of financial
time series, it could not be used for applications in its present form. Section 4.4 suggests that the volatility
estimation could be improved if the process that determines the volatility (ω) depends on past absolute returns.
In this chapter I introduce the generalized SEMF process where the process that determines the volatility (ω)
has a dependency on past returns. It is shown that this process also has multifractal properties for both kernel
types. It is also shown that the structure of this process is similar to the EGARCH(1,1) process.

Section 5.1 presents the formulation of the new process. Furthermore, the section presents a derivation that
demonstrates the similarity of the generalized SEMF process with an exponential kernel and the EGARCH(1,1)
process.

Section 5.2 demonstrates that the process also has multifractal properties if there is an additional depen-
dency of ω on the past absolute returns. Furthermore it demonstrates that the new process also has heavy
tails in the probability distribution function of the returns.

Section 5.3 investigates whether the estimation procedure presented in chapter 3 is also effective for the
new process. We see that the process parameters and the volatility can be estimated with high accuracy for
an exponential kernel. For a power-law kernel, both the parameter estimation accuracy as the quality of the
volatility estimation are problematic.

5.1 Formulation of the generalized SEMF process
I propose a process where ω depends on past absolute returns. As a null hypothesis, it is proposed that ω
depends on the past absolute returns with the same memory kernel as the past returns (with sign):

ω =

n−1∑
i=0

[di − kabs |di|]hn−i−1 (5.1)

where kabs is the parameter that regulates the strength of the influence of absolute past returns on ω. For too
high values of kabs such a process diverges to zero or infinity. Therefore, as a null hypothesis, it is assumed that
kabs has a small value (|kabs| < 1). We have seen that in real financial time series,|ξi,est| has a positive relation
with |ωest(i)|. The latter implies that |ω(t)| should have a positive relation with dt−i, and that kabs > 0.

If a process has the exact form as described above (equation 5.1), then the expectation value of ω is
a function of time. For a process with no previous returns, ω1 = 0. Then, ω2 = [di − kabs |di|]h0 and
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ω3 =
∑2
i=1 [di − kabs |di|]h3−i−1. Because E[|di|] 6= 0, the expectation values of ωt are also a function of time:

E[ω1] = 0, E[ω2] = −kabsh0E[|di|] and E[ω3] =
∑2
i=1 kabsE[|di|]h3−i−1. This is not a property that has been

observed in financial time series and is therefore undesired.
Therefore the expectation value of the returns E[|d|] is subtracted to remove this artificial evolution of the

volatility as a function of time at the beginning of a new time series. I define the generalized SEMF process as

ω =

n−1∑
i=0

[di − kabs(|di| − E[|d|])]hn−i−1 (5.2)

Now we compute E[|d|], which in such a process is equal to E[σ |ξ| exp(−ω)]. Because E[d] = 0 and therefore
E[ω] = 0, we see that E[|d|] = E[σ |ξ|]. The innovations ξ follow an i.i.d. N(0, 1) distribution. When we recall
the Gaussian probability distribution function (see equation 3.11), we can compute the expectation value of
the innovations E[|ξ|]:

E[|ξ|] =

ˆ ∞
−∞
|ξ| f(ξ)dξ = 2

ˆ ∞
0

ξ
1√
2π
exp[−ξ

2

2
]dξ =

√
2

π
(5.3)

Therefore E(|Zt|) = σ
√

2/π and the generalized SEMF process reads

ω =
n−1∑
i=0

[
di − kabs(|di| − σ

√
2/π)

]
hn−i−1 (5.4)

Monte Carlo simulations are possible for this process (with both memory kernels) for values of kabs 0.1,
since otherwise the process becomes highly non-stationary or divergent. In Fig. 5.1 we can see a sample
realization of a generalized SEMF process with power law memory kernel.
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Figure 5.1: Time-series of log price increments dn (gray) and log price Xn = Pn =
∑n
i=1 di (black) of the

generalized SEMF process defined by equation 5.4, for σ = 1 and with the power-law kernel, specified in
equation 2.28, with ϕ = 0.01, h0 = 0.10 and kabs = 0.1.

5.1.1 Relation with EGARCH(1,1):
The definition of this generalized SEMF process with an exponential kernel is similar to the definition of
an EGARCH(1,1) process, where the only difference is that the EGARCH(1,1) has a dependency on past
innovations where the generalized SEMF process depends on past returns. We demonstrate this equality
below.

An EGARCH(1,1) process is defined as
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log[σ2
t ] = Ω + β1g(ξt−1) + α1log[σ2

t−1] (5.5)

where g(ξt) equals

g(ξt) = θξt + λ(|ξt| − E(|ξt|)) (5.6)

In such a process the expression for log[σ2
t−1] equals

log[σ2
t−1] = Ω + β1g(ξt−2) + α1log[σ2

t−2] (5.7)

We can substitute this expression into equation 5.5:

log[σ2
t ] = (1 + a1)Ω + β1g(ξt−1) + α1β1g(ξt−2) + α2

1log[σ2
t−2] (5.8)

With the following expressions for the process parameters

Ω = 0 (5.9)

β1 = 2h0exp(−ϕ) (5.10)

α1 = exp(−ϕ) (5.11)

θ = −1 (5.12)

λ = kabs (5.13)

the expression reduces to

2logσt = −2h0exp(−ϕ)g(ξt−1)− 2h0exp(−2ϕ)g(ξt−2)− exp(−2ϕ)log[σ2
t−2] (5.14)

If we iterate the step of substituting log[σ2
i ] by equation 5.7, we obtain a structure similar to the generalized

SEMF process:

σt = exp(−ω′) (5.15)

where the process ω′ is defined as:

ω′ = −h0

∞∑
k=1

exp(−kϕ)g(ξk) = −h0

∞∑
k=1

exp(−kϕ) [ξi − kabs(|ξi| − E[|ξi|])] (5.16)

Note that this process is identical to the generalized SEMF process if the innovations ξ are replaced by the
returns d. Taking Ω = 0 is equivalent to taking σ = 1 in the SEMF process, but the similarity is also valid for
different values of σ.

5.1.2 Conclusion
I have introduced the generalized Self-Excited Multifractal process which has an additional dependency on
past absolute returns. We have seen that this generalization of the SEMF process is very similar to the
EGARCH(1,1) process.
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5.2 Multifractal properties and heavy tails of generalized SEMF pro-
cess

In this section I demonstrate that the heavy tails and the effective multifractal properties of the original
SEMF process are also present in the generalized SEMF process. Therefore they are also possibly present in
the EGARCH(1,1) process.

5.2.1 Multifractal properties
The singularity spectrum for the generalized SEMF process is computed. Equations 2.7 and 2.8 can not
be used to demonstrate multifractality for non-stationary processes [27]. Multifractal Detrended Fluctuation
analysis (MF-DFA) [27] can be used to demonstrate multifractality for non-stationary processes. This method
was also used to demonstrate multifractality for the original SEMF process ([16], the singularity spectrum is
displayed in Fig. 2.4). The identical procedure is used in this research.

The scaling relation Fq(s) ∼ sh(q) is used to find the generalized Hurst exponent h(q) from equation 2.9,
where Fq(s) is defined as

Fq(s) =

{
1

2Ns

2Ns∑
v=1

[
F 2(v, s)

]q/2}1/q

(5.17)

Ns is a number of segments of length s within the time series dn of length N = 5e4. F 2(v, s) is the average of
the squared residuals of the linear fit of the time series dn within the time segment v. This technique is also
used by Sornette and Filimonov [16], who found that for 10 < s < N/10 an excellent scaling regime where
Fq(s) ∼ sh(q) is observed. Here the exponents h(q) are the slopes of the Fq(s) in the log-log plot in Fig. ??
and represent the generalized Hurst exponent h(q).

Figure 5.2: Log-log plot of the averaged fluctuations function given by 5.17 as a function of scale s, for q=0.5n,
n=1 to 16 (bottom to top), for σ = 1 and exponential kernel with ϕ = 0.1, kabs = 0.05 and h0 = 0.06. The
grey rectangle delineates the range of scales where the fluctuation function was approximated with a strict
power-law Fq(s) = Kqs

h(q). The bold line shows the power-law approximation for the case q=2.

.
I simulated M=1000 time series for different parameter sets for both kernel types (ϕ = 0.01, h0,exp =

(0.02, 0.06) and h0,pow = (0.06, 0.10)). The first half of the time series (0 < n < N/2) is not considered, to
ensure stability of the processes. I average F 2(v, s) over M time series, before we obtain Fq(s). Figure 5.3
displays the scaling spectra for different values of kabs (kabs = (0, 0.05, 0.10, 0.15, 0.20)) for each of these four
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sets. The scaling exponent ξ(q) of the standard multifractal structure function shown on the y-axis of Fig. 5.3
is obtained from the generalized Hurst exponent h(q) using the relationship ξ(q) = qh(q).
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Figure 5.3: Multifractal scaling exponents ξ(q) of the generalized SEMF process dn for σ = 1 and ϕ = 0.01
with an exponential kernel (Upper two plots) and a power law plot (Lower two plots).

We see that in all plots, for several values of kabs > 0, the exponent ξ(q) has a nonlinear dependence on
the order q. We can conclude that multifractal properties are observed for kabs > 0 for both memory kernel
types.

For the plots of both memory kernels with higher h0, the influence of kabs on the singularity spectrum
is ambiguous. In both plots, the non-linearity of the spectrum is increased if we increase kabs from zero to
kabs = 0.05 and kabs = 0.10. However, the non-linearity decreases for kabs > 0.15. Since the spectra have
wide quantiles, this behavior can be related to the uncertainty of the computation. However, since we observe
it for both memory kernels, it is unlikely that such a systemic effect is related to uncertainty. Moreover kabs
is a measure of the influence of past absolute returns on the process. The notion of quasi-multifractality was
derived for processes with a dependence on past returns (or another stochastic process)). It could be that at
these values of kabs the influence of the past absolute returns on the process becomes to great, and ’destroys’
the quasi-multifractal properties.

A higher h0 seems to increase the non-linearity of the spectrum. This was also observed in the original
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SEMF process with kabs = 0. However for values of h0 that are too high the process has no physical meaning
because volatility bursts dominate the process.

The multifractal properties therefore only hold in certain parameter ranges for the generalized SEMF
process.

5.2.2 Heavy tails
It is found that the generalized SEMF process also has heavy tails. I simulated 250 time series with length 104

for different values of kabs for the different kernel types. For the resulting collections of returns, histograms
were created that can be seen in Fig. 5.4.
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Figure 5.4: The probability distribution function of the generalized SEMF process. The histogram for the
exponential memory kernel uses ϕ = 0.01, h0 = 0.04 and σ = 1. For the power-law kernel plot I used ϕ = 0.1,
h0 = 0.10 and σ = 1.

We can conclude that the heavy tails in the SEMF process are also present for kabs > 0. Therefore the
generalized SEMF process also displays this stylized fact. Increasing kabs increases the weight of the tails.

5.3 Estimation of the volatility and process parameters in the gen-
eralized SEMF process

This section explores whether the estimation properties found for the pure SEMF process are also valid for
the generalized SEMF process with kabs > 0. We see that the estimation procedure proposed in section 3.1
that estimates the volatility with known process parameters is also effective if kabs > 0. However, we find that
the CML estimation method is not effective in accurately determining kabs in the case of a power-law kernel.

5.3.1 Volatility estimation
In this section equation 3.4 (we use the modified structure for ω with kabs > 0 from equation 5.4) from
section 3.1 is used to estimate the volatility in the generalized SEMF process for known values of the process
parameters.

I simulated 25 time series for five different sets of ϕ and h0 with four values of kabs for both kernel types.
Then, using the same parameters, I estimated the innovations and computed the estimation quality in terms
of R2. The results were averaged for each data set.
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It was found that for an exponential kernel the estimation quality R2 was approximately equal to 1 for all
values tested (ϕ ≥ 0.01,h0 ≤ 0.10,kabs ≤ 0.15). For a power law kernel the effect of kabs is more visible. The
resulting R2 for the different parameter sets used can be seen in Fig. 5.5.
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Figure 5.5: The average R2 decreases as a function of kabs in the case of known parameters for a power law
kernel

In the plot, we see that increasing kabs has a negative effect on R2. The strength of this effect increases
with higher h0 and lower ϕ. We have seen in section 3.1 that a higher h0 and lower ϕ have a negative effect
on R2 when kabs = 0. We see that this effect is enforced if kabs > 0.

For relatively low values of h0 and relatively high ϕ the estimation of the volatility is of high quality
(R2 > 0.8). However for combinations of large h0 and kabs, this quality decreases rapidly.

5.3.2 Parameter estimation in the generalized SEMF process
We also want to know whether we can estimate the parameter of a process with kabs > 0 using CML and
whether these parameters are sufficiently accurate to obtain high quality volatility estimations. It is found
that this is possible for an exponential kernel but for a power law kernel the estimated kabs are too inaccurate.

I simulated 10 time series for both kernel types for three different values of kabs (kabs,exp = (0; 0, 10; 0, 20)
and kabs,pow = (0; 0, 05; 0, 10)). I used σ = 1 and ϕexp = 0.01, h0,exp = 0.06 and ϕpow = 0.1, h0,pow = 0.10. For
each time series, I then performed a CML estimation of the kernel type and all four parameters using equation
3.13 (I use the modified structure for ω with kabs > 0 from equation 5.4)). As a next step, the volatility was
estimated using the parameter estimates. The quality of these estimations of volatility in terms of R2 was
then calculated. We see the resulting R2 as a function of the estimated kabs,est for the different values of kabs
used for simulations for both kernel types in Fig. 5.6.
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Figure 5.6: CML parameter estimations of a.o. kabs,est in time series with different kabs for both kernel
types. The R2 indicates the accuracy of the estimation of the volatility with the parameter estimates. For
the power-law kernel, two results with very negative R2 for kabs = 0.05 and kabs = 0.10 are excluded from the
plot.

We see that for an exponential kernel kabs,est is estimated accurately and high quality (R2 > 0.8) estimations
of the volatility are obtained. However, for a power-law kernel the estimations of the parameters and volatility
are less accurate. We see that the CML method determines kabs with an uncertainty of roughly ∆kabs ∼ 0.10.
Moreover most volatility estimations are of low quality (R2 < 0.8). The parameter type is estimated correctly
for all time series with either memory kernel.

The volatility estimation quality R2 is also low for a few realizations where kabs,est/kabs ≈ 1. This implies
that the lower quality is not only a result of uncertainty in kabs,est but also in the other parameters. Since
for kabs = 0 accurate volatility estimations are possible for the power-law parameter set, we can conclude that
kabs > 0 introduces additional uncertainty in the estimations of the other process parameters.

We can conclude that for an exponential kernel we can obtain accurate parameter estimations using CML
that lead to an accurate volatility estimation (R2 > 0.8). However, for a power-law kernel, we can estimate
kabs but only with limited accuracy. A process with kabs > 0 also introduces uncertainty in the estimation of
the other parameters. The volatility estimation with the parameter estimates was of a low quality for time
series with a power-law kernel. This volatility estimation quality is lower than the quality obtained for pure
SEMF processes.

5.4 Conclusion
We have introduced the generalized SEMF process that has an additional dependency on past absolute returns.
We have seen that for an exponential kernel this process is similar to the EGARCH(1,1) process.

The SEMF process with kabs > 0 has multifractal properties for both kernel types. Therefore we have
demonstrated that the generalized SEMF process also has multifractal properties for a certain parameter
range (kabs 0.1, ϕ 0.01, h0 0.06). The non-linearity of the spectrum increases as a function of kabs. However,
for combinations of high h0 and high kabs, increasing kabs seems to destroy the quasi-multifractal properties
and the spectrum returns to linearity. The generalized SEMF process also displays heavy tails for both kernel
types. The weight of the tails is increased by a higher kabs. This parameter kabs arranges the dependency of
ω on past absolute returns. It also increases the non-linearity of the scaling spectrum, increases the weight of
the tails and increases the non-stationary of a process. Therefore its influence on the statistical properties of
a generalized SEMF process is very similar to the influence of h0.
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We proposed to use the procedure developed for the original SEMF process for estimation in the generalized
SEMF process. Using this procedure for time series with exponential memory kernels, we can estimate the
parameters of a synthetic SEMF process with kabs > 0 with sufficient accuracy to obtain high quality (R2 > 0.8)
estimations of the volatility. However, for a power-law kernel, accurate estimation of the volatility was not
possible. We saw that if the parameters are known, kabs also has a negative effect on the estimation quality.
Moreover, the accuracy of parameter estimation is low in synthetic time series with kabs > 0.
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Conclusion

We have seen that the SEMF process needs to be modified to realistically describe financial data. I have
proposed a generalization of the SEMF process that includes a dependency on past absolute returns and show
that this process also has multifractal properties and heavy tails.

We have demonstrated that the volatility in synthetic SEMF processes can be estimated effectively (R2 >
0.8 for a broad range of parameters and kernel types). If the parameters are known, the volatility can be
estimated in a sufficiently large interval (104 data points) if we ignore the history of the process. Volatility
estimations have a lower quality in synthetic processes with a higher non-stationary (higher h0) and memory
strength (lower ϕ). The volatility estimation remains of a high quality if there is a limited (~0.10% in each
parameter) uncertainty in the kernel parameters. The parameters of a pure SEMF process can be estimated
with this required uncertainty for a broad parameter and kernel type range using Conditional Maximum
Likelihood (CML). I introduce a new method, based on Minimum Innovation Clustering (MIC), that can also
determine the parameters in a pure SEMF process

Application of the estimation procedure in real financial time series has unfeasible results. We have applied
the method to stock and stock index returns on days and 30 minute intervals, and to currency exchange returns
on 30 minute intervals. Both methods estimate parameters that do not correspond to a SEMF process with a
physical meaning (negative parameters of h0 > 1). Furthermore the estimated innovations have a significant
clustering and their probability distribution function has heavy tails. Also, the structure of the estimated
innovations is very similar to the structure of the returns. Since the pdf of the innovations are heavily tailed
and parameters are unrealistic, forecasting and accurate volatility estimations are not possible. Finally, we
find a strong correlation between the absolute ω (process that defines the volatility ) and the magnitude
innovations, which implies that ω in real financial time series also depends on past absolute returns.

A generalized SEMF process that has this dependency on absolute past returns is a promising candidate for
application to financial time series. I have demonstrated that this process also has heavy tails and multifractal
properties. Because of the small difference with the original SEMF process the generalized process most likely
also incorporates long range dependence and the leverage effect. The volatility and parameter estimation
method developed for the original SEMF process is used for the generalized SEMF model. The method is
effective (R2 > 0.8 for a broad range of parameters) for an exponential kernel in the generalized SEMF process
but not for a power-law kernel.

The generalized SEMF process with a power-law kernel most likely fully captures long-range dependence.
Since modifications of the estimation procedure (removing an observed bias and using multiple starting points
for the volatility estimation, see appendix B) only slightly improved the accuracy of the method, it is unlikely
that these estimators improve the estimation for the generalized process. Moreover it is unlikely that parameter
estimation using the pdf of the returns for this process is accurate, since the method has proved unsuccessful
for the original SEMF process (see appendix C).

In the appendix A I present a proxy for ω. I demonstrate that it accurately estimates ω as a function of
average (absolute) past returns in synthetic SEMF processes. When applied to real financial time series the
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proxy provides results that are very similar to those of synthetic time series.

Further work on the topic of Self-Excited Multifractal processes may include:

• The possibility of multifractality in the EGARCH(1,1) process in parameters ranges where multifractality
is observed in the generalized SEMF process.

• Methods to improve the parameter estimation and possibly the volatility estimation accuracy in gener-
alized SEMF processes with a power-law memory kernel

• The use of the proxy for ω to better understand the relation of ω with past returns in reality, to obtain
proxy’s of h0 and kabs in financial time series and to determine the memory kernel of financial data
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Appendix A

Proxy for volatility process ω

We compute 〈log[|dt|]〉 as a proxy for ω in financial time series. We study the relation ω has with past (absolute
returns). Therefore we study the relation of the proxy for ω conditional on past (absolute returns)〈

〈log[|dt|]〉

∣∣∣∣∣dt−i
〉

(A.1)

and 〈
〈log[|dt|]〉

∣∣∣∣∣ |dt−i|
〉

(A.2)

as a function of past (absolute) returns. The results for synthetic time series and real financial time series
can be seen in the Figures below.

We see that the proxy for ω is very effective in synthetic time series. Moreover we see that the plots
for synthetic time series and real financial time series are very similar. One could use this proxy to better
understand the relation of ω with past returns and the memory decay in financial time series.
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Figure A.1: The proxy of ω compared with the ’real’ ω in a synthetic time series. Exponential memory kernel
with parameters h0 = 0.06, ϕ = 0.01 and σ = 0.01
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Figure A.2: Synthetic time series with exponential kernel. h0 = 0.06, ϕ = 0.01, σ = 0.01
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Figure A.3: Synthetic time series with power-law kernel. h0 = 0.15, ϕ = 0.1, σ = 0.15
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Figure A.4: Dow Jones and IBM
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Figure A.5: Dow Jones and IBM
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Appendix B

Additional volatility estimators

B.1 Properties of the estimation procedure: initial volatility and
bias

As we have found in section 3.1.3, the estimation of volatility is not of sufficiently high accuracy for certain
parameter sets for power law kernels. This section shows that these properties can be used to improve the
estimation procedure. However, because the CML method resulted in a different domain of kernel parameters,
these results were not applied to real data.

B.1.1 Influence of the initial volatility
In section 3.1.4 we have seen that σnsp,real has a strong influence on the estimation of the process, particularly
in the case of a power law kernel with a strong memory. In this section we will discuss how this property can
be used to improve the estimation procedure.

Therefore a majority of reversals should provide estimations with high quality. However, deviations from
1 and low quality estimations are relatively probable as the probability distribution is quite wide.
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Figure B.1: Example of how nsp with high |log(σnsp,real)| can be excluded using realized volatility.

This problem could possibly be solved by reversing the time series from multiple starting points, expecting
the majority of to be close to 1.
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An additional tool to exclude starting points with large |log(σnsp,real)| was to calculate the realized volatility
σrel:

σrel(nrel, Lrel) =

√√√√ 1

n− 1

nrel+Lrel∑
i=nrel

(
di − d

)2
(B.1)

where

d̄ =
1

Lrel

nrel+Lrel∑
i=nrel

dn (B.2)

and where Lrel is the interval after the point in time nrel over which the realized volatility σrel was
calculated, which was set at Lrel = 100. We calculated the σrel(nrel) for different n, where nrel = n+ Lrel/2,
to take into account the σrel before and after each point. When Nnsp is the number of required starting points
nsp, the Nnsp points with the lowest |log(σrel)| were picked from a certain interval LNsp. This method proved
successful but only in generally excluding the starting points with the largest |log(σnsp,real)| (see Fig. B.1).

The limited success of the application of these principles are discussed in the appendix section (B.2).

B.2 Volatility estimation with bias compensation and multiple start-
ing points

In order to improve the quality of the estimation of the volatility for a power law kernel with higher h0 and
lower ϕ, we will propose several estimators based on the properties discussed in the last section. Also, their
performance will be evaluated and compared.

B.2.1 Introduction of proposed estimators
As σnsp,real had a large influence on R2 (see 3.1.4), it was proposed in the last section to use multiple starting
points nsp. However, multiple nsp would lead to multiple estimations σn,est and the procedure for obtaining
a single σn,est has to be defined. A straightforward procedure would be to take the average of multiple
estimations. If σn,est(n, nsp) is defined as

σn,est(n, nsp) = σ exp

−h0

σ

n−1∑
i=nsp

di(n− i− 1)−ϕ−1/2

 (B.3)

then the estimator that takes the average of multiple estimations is defined as σ̄n,est:

σ̄n,est =
1

Nsp

Nsp∑
j=1

σn,est(n, nj,sp) (B.4)

where Nsp denotes the number of starting points nj,sp which was set at Nsp = 21. The starting points nj,sp
were selected using the realized volatility (see subsection 3.1.4) from an interval LNsp = 1000 (this interval
length showed optimal over shorter interval lengths).

Another option would be to take the median of multiple σn,est, defined by the estimator σ̃n,est:

σ̃n,est = median(σn,est(n, n1,sp), σn,est(n, n2,sp), ..., σn,est(n, nNsp,sp)) (B.5)
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Since the volatility σn,est is generally estimated too low, also an operator σminn,est that takes the lowest value
out of multiple σn,est was defined:

σminn,est = min(σn,est(n, n1,sp), σn,est(n, n2,sp), ..., σn,est(n, nNsp,sp)) (B.6)

Finally, as a benchmark, we define the previously used operator σn,est (see ??):

σn,est = σn,est(n, nsp) (B.7)

This is also the estimator that uses the longest available interval for the estimation (instead of requiring
a relatively large interval to select starting points nj,sp). For equations B.4, B.5 and B.6 counts that n ≥
max(n1,sp, n2,sp, ....., nNsp,sp).

Since a positive bias was observed when estimating σn,est (see 3.1.5), we also investigated for each estimator
whether an improvement could be made by removing the average bias. The bias was therefore quantified
for different kernel parameter sets as σbias(n, ϕ, h0) = 1

N

∑N
i=1 σi,est(n, ϕ, h0)/σi,rel(n, ϕ, h0)) for N = 4000

simulations for each different estimator, which resulted in σ̄bias, σbias,min, σ̃bias and σbias. As a next step the
estimators defined in B.4, B.5, B.6 and B.7 were adjusted to create estimators without bias, σ̄biasn,est, σ̃biasn,est,
σmin,biasn,est , and σbiasn,est, defined as:

σ̄biasn,est =
1

σ̄bias
σ̄n,est, σ̃

bias
n,est =

1

σ̃bias
σ̃n,est, σ

min,bias
n,est =

1

σbias,min
σminn,est, σ

bias
n,est =

1

σbias
σn,est (B.8)

In the next section we will compare these 8 proposed estimators.

B.2.2 Performance of proposed estimators
To compare different estimators, the efficiency e(σest, n) was used as a quality indicator. A lower efficiency
e(σest, n) indicates a higher quality of estimation. The efficiency was calculated per data point and not over
intervals because there was no noise term in the estimator (in contrast with R2 where the varying order size
of σ introduces noise)

e(σest, n) =

(
σest(n)

σreal(n)
− 1

)2

(B.9)

An example of a typical experiment can be seen below in Figure ??.

B.2.2.1 Comparison

The performance of the estimators was evaluated using the efficiency e(σest, n) (equation ??). An example of
such a comparison can be seen in Fig. B.2, where e(σ̃biasn,est, n) indicated by ’median’ is most favorable.
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Figure B.2: Efficiency e(σest, n) of different estimators as a function of time. ’Longest possible’ indicates σbiasn,est.
Power law kernel with h0=0.2 and ϕ=0.01

The estimators with bias compensation performed equally to the estimators without bias compensation
only for two parameter sets (ϕ=0.4 and h0 = 0.10, 0.15) and outperformed them for all other tested parameters.
One can therefore conclude that bias compensation proved effective in improving the quality of the volatility
estimation.

Out of the estimators with bias compensation, σbiasn,est gave the most favorable performance for lower values
of h0 (0.10, 0.15) and all tested ϕ (0.01-0.4). For higher values of h0 (0.20, 0.25), and lower values of ϕ (0.01,
0.04 and 0.1), this was σ̃biasn,est. For ϕ = 0.4 and h0 = 0.20, 0.25 , again σbiasn,est showed the lowest efficiency.

The fact that σmin,biasn,est takes an outlier of multiple estimations and that therefore the variability of σmin,biasn,est

is likely to be higher, can explain that the efficiency e(σmin,biasn,est , n) is higher than e(σ̃biasn,est, n), as an average
bias of the outliers is therefore less likely to be accurate for single estimations. Also, it plausible that the
variability of a median (σ̃biasn,est) is lower than the variability of an average (σ̄biasn,est), and that therefore the bias
was more accurately estimated to result in lower efficiency. This can explain our observation that e(σ̃biasn,est, n)

is slightly lower than e(σ̄biasn,est, n) for all kernel parameters.
σbiasn,est with a single nsp showed lower efficiency than σ̃biasn,est and all other estimators using multiple starting

points nsp at most kernel parameter intervals . The results therefore demonstrate that the estimators σ̄biasn,est,
σ̃biasn,est and σminn,est were not sufficiently successful in either avoiding starting points with a high |log(σnsp,real)| or
reducing its influence, in order to justify the use of a shorter interval to estimate σest, in these kernel parameter
intervals.

Aside from its overall lowest efficiency e(σbiasn,est, n), σbiasn,est is also considerably simpler and easier to compute
than σ̃biasn,est. It was therefore concluded that overall σbiasn,est is the most suitable estimator. In the next paragraph,
the performance of this estimator in terms of R2 and the quantiles of the volatility with a confidence interval
of 95% is displayed.

B.2.2.2 Most accurate results

Figure B.3 (Left) shows isoplots of R2 for different h0 and ϕ for σbiasn,est. Figure B.3 (Right) displays the
percentage of simulations that reached R2 = 0.8 within 8000 data points for different kernel parameter sets.
Using the new estimator, indeed a significantly higher percentage of success could be reach for all parameter
sets (except for ϕ= 0.1 and h0 = 0.25, probably because of the instability due to the high h0). However the
increase in quality was not enough to elevate the quality of new kernel parameter sets (with R2 < 0.8 for the
old operator) above the R2 = 0.8 threshold.

Fig. B.4 shows the quantiles for the relative estimated volatility (σest/σrel) with a confidence level of 95%
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also after bias compensation. These results are significantly better than those without bias compensation (see
section 3.1.3).

However the proposed estimator can not be applied to real financial data. As we discuss in section ??,
parameter ranges are found for which Monte Carlo simulations are not possible. Therefore quantification of
the bias is not possible. Furthermore, the innovations of the real financial time series behave differently (not
i.i.d. nor a Gaussian distribution) than proposed for the process.
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Figure B.3: Left:Isoplots of the average R2 after bias compensation for different ϕ and h0. Right: Dependence
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simulations.
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Appendix C

Alternative methods for kernel type and
parameters estimation

C.1 Comparing distribution functions to estimate kernel parameters

Because the kernel type and parameters influence the distribution of the returns of the process, the final
proposal for parameter estimation is based on the probability distribution function (pdf) of the observed
process.

C.1.1 Minimizing Cramér-von-Mises distance
Several methods, such as Kolmogorov-Smirnov, Crámer-von-Mises and Anderson-Darling, can be used to test
the similarity of different (empirical) distributions. In this research, it is chosen to minimize the squared
distance between different distributions, which is known as the Crámer-von-Mises distance and is expressed as
[3]:

ω2 = int∞−∞ [FN (x)− F (x)]
2
dF (x) (C.1)

where F (x) is the theoretical cumulative distribution function and FN (x) is the empirical distribution
function.

It was derived by Anderson [3] for two empirical distribution functions this distance could be expressed as

U = N

N∑
i=1

(ri − i)2 +M

M∑
j=1

(sj − j)2 (C.2)

where ri and sj are the ranks of two different empirical samples in the pooled (r + s)sample.
Because an analytical expression for the cdf of the process in terms of the parameters was not found nor

approximated, a collection of returns r(θ) was created using Monte Carlo simulations with known kernel type
and parameters. For an empirically observed set of returns s, it was then tested for which parameters the
Cramér-von-Mises distance was the smallest.
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C.1.2 Influence of the kernel parameters on the distribution of the returns
To obtain the cumulative distribution functions (pdf) for different parameter sets, we simulate 103 time series
with length 104 for different kernel type and parameter sets (ϕexp = 0.01, 0.05, h0,exp = 0.04 − 0.10) and
(ϕpow = (0.01, 0.4), h0,pow = 0.10, 0.20). The resulting collection of absolute returns is distributed over a
histogram with logarithmic bin scale. The histogram is normalized for bin size and the total number of returns
and displayed in Fig. C.1 as a function of |r|. The resulting pdf has the same shape as the pdf published in
[9] (different parameters are used for the power law kernel).
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Figure C.1: Pdf of the absolute returns for different kernel types and parameters

We see that the distributions are very similar. The differences between all kernel and parameter sets are
the largest in the tails of the distributions, when |r| > 101. However, because a typical sample size has only
around 104 data points, the distribution in the range |r| < 5 ∗ 101 is most relevant. We see that low ϕ and
high h0 has a slightly distinctive shape for both kernel types in the range |r| = 100 − 101. Furthermore high
ϕ and high h0 has a quite distinctive shape in the range |r| = 5 ∗ 100 − 101.

C.1.3 Results of minimizing Cramér-von-Mises distance
As a next step we apply Anderson’s equation for computing Cramér-von-Mises distance (see equation C.2) for
Monte Carlo simulations. We simulate 20 time series for each of the earlier defined parameter sets to obtain
the returns r. For the sample s we use the 103 time series that were used to compute the cdf above. We then
calculate U for each of the eight available parameter sets. The parameter set for which U is the lowest, is the
final result. The fraction of simulations that pointed to each of the eight parameter sets can be seen in Table
C.1.

86



Above: resulting
parameters.

Below: Experiment
parameters

Exp:
low
ϕest
low
h0,est

Exp:
low
ϕest
high
h0,est

Exp:
high
ϕest
low
h0,est

Exp:
high
ϕest
high
h0,est

Pow:
low
ϕest
low
h0,est

Pow:
high
ϕest
low
h0,est

Pow:
high
ϕest
low
h0,est

Pow:
high
ϕest
high
h0,est

Percentage
of the results
that points
to right set

Exp: low ϕ low h0 50% 5% 5% 10% 30% 50%
Exp: low ϕ high h0 90% 10% 90%
Exp: high ϕ low h0 50% 5% 45% 50%
Exp: high ϕ high h0 30% 45% 5% 20% 45%
Pow: low ϕ low h0 20% 5% 10% 30% 35% 0%
Pow: low ϕ high h0 40% 60% 60%
Pow: high ϕ low h0 55% 45% 45%
Pow: high ϕ high h0 15% 15% 5% 65% 65%
Percentage of results

that is correct
44% 67% 42% 75% 0% 86% 33% 43% 51%

Table C.1: Results of minimizing Cramér-von Mises distance using Anderson’s ranking algortihm

We see that on average the method has an accuracy of indicating the same parameter set by which the time
series was generated as the optimal set of around 50%. This result is worse than the results for CML and MIC
(particularly for an exponential kernel, for which the accuracy is quite high for both methods). Furthermore
we observe biases for several parameter sets, for example the exponential kernel with low ϕ and high h0 is
indicated frequently as the optimal set by time series generated with different parameters or even kernel type.
The same counts for a power law kernel with high ϕ and high h0.

The method performs particularly bad in appointing the right kernel type (around 50%). The average
result of appointing the right parameter can be improved up to around 75% if the kernel type is known in
advance.

The accuracy of the method can not be improved by using a larger sample for s, as we see that the accuracy
does not increase with sample size after a sample size of around 2 ∗ 102 is used.

Another complication of the method are the long computation times and the difficulty of going to finer
grid scales. Analytical expressions for the distributions are unlikely to improve the accuracy of the method as
the exact distribution must be simplified with regards to the currently used distribution.

Therefore, we conclude that this method is inferior for kernel type and parameter estimation with respect
to MIC and especially CML.

C.2 Kendall tau coefficient
The Kendall tau rank correlation coefficient τ is a measure of correlation in rank between two different time
series x and y. It is expressed as:

τ =
number of concordant pairs− number of discordant pairs

1
2n(n− 1)

(C.3)

Where (xi, xj) and (yi, yj) is a concordant pair if

xi > xj and yi > yj or xi < xj and yi < yj (C.4)
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and discordant otherwise. Because the proposes SEMF process is self organizing, it is supposed that the
correlation in rank between d and ξ(θ) is minimum. Therefore, we tested whether there is any negative
correlation between optimal parameter set and Kendall tau coefficient and whether it is possible to use this
method for parameter estimation.

However it was found that the Kendall-tau coefficient has no correlation to the accuracy of the estimated
parameters. We simulated several time series for an exponential kernel and a power law kernel and estimated
the innovations with different ϕest and h0,est. For the resulting innovations the Kendall tau coefficient was
computed with the returns. Fig. C.2 shows the resulting values for the estimation parameters.

Kendall tau coefficient:
Exponential kernel

h0,est = 0.04 h0,est = 0.10 h0,est = 0.15

ϕest = 0.005 0.93 0.81 0.72
ϕest = 0.01 0.95 0.85 0.77
ϕest = 0.02 0.96 0.90 0.83

Kendall tau coefficient:
Power law kernel

h0,est = 0.10 h0,est = 0.15 h0,est = 0.25

ϕest = 0.01 0.93 0.89 0.81
ϕest = 0.04 0.94 0.90 0.84
ϕest = 0.1 0.95 0.92 0.87

Table C.2: Kendall tau coefficient of the returns and the innovations for a time series generated by an expo-
nential kernel with ϕ = 0.01 and h0 = 0.10 fitted by both kernel types with varying parameters. σ = 1 during
the experiment.

We see that the Kendall tau coefficient correlated more with the parameters used for estimation that the
accuracy of the parameters. E.g., the value for the correct kernel type and parameters, 0.85, is around the
average of the total sample.

Therefore we concluded that using the Kendall tau coefficient is not a promising method for kernel type
and parameters estimation.
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