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Abstract

The main goal of this Master thesis is to find an appropriate bubble detection method that combines
bubble dynamics leading to a finite-time singularity (positive feedback of either price on return
or of return on return) with the standard of the financial industry to model volatility clustering
and to assess volatiliy risk, namely the GARCH(1, 1) model. One form of the resulting stochastic
model is the so called Finite-Time Singularity GARCH model (invented by Corsi and Sornette
(2012)), a GARCH(1, 1) enhanced by adding a regression component in the equation for the condi-
tional mean. We demonstrate an algorithm to consistently estimate the coefficients of this kind of
model. Then, we test several modified versions of the original FTS GARCH model from Corsi and
Sornette for their ability to detect speculative bubbles. Finally, we add a second regression
component modeling the possibility of positive feedback of volatility on return in addition.
As an alternative class of models we consider Markov switching models which characterize finan-
cial returns as a process with different regimes (e.g. a regime of slow growth, a bubble regime and a
crash regime). Again, we find an algorithm to consistently estimate the coefficients of such a model
and consequently apply it for detection of financial bubbles.
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1
Introduction

Financial bubbles have been analyzed by academics and practitioners for decades. Nevertheless,
there have been plenty of financial bubbles in history which most people did not expect to burst.
Quite the contrary, people usually extrapolate the past price evolution and continue their expecta-
tion of a rising asset price ("trend following"). This leads to a well-known phenomenon of financial
markets, the herding behavior of its participants. A rising market attracts more and more buy-
ers, whereas a falling market leads people rather to sell (downward movements often occur even
a lot faster than upward movements). This is probably the most obvious mechanism leading to
positive feedback on price. By analyzing a bubble simulation experiment, Huesler, Sornette and
Hommes (2012) find evidence that financial bubbles are characterized by super-exponential growth
(the growth rate is growing itself). This is contradictory to many previously developed models
describing bubbles as periods of exponentially growing prices. The positive feedback loops make
the price run into a singularity within finite time. This motivates the goal of this Master thesis to
develop appropriate mathematical methods that can be used to analyze time series for the presence
of a super-exponentially growing bubble. Such tools might be useful for the purpose of risk man-
agement of financial institutions since they can serve as early warning systems for financial crashes.
Also, they could potentially be used to develop trading strategies generating alpha (risk-adjusted
excess return).
The thesis is organized in 7 chapters. After this short introduction, we start with an analysis of
the empirical characteristics of typical financial time series where we demonstrate these findings
using the time series of NASDAQ Composite. Then, in Chapter 3 we define the GARCH regression
model and show how to consistently estimate its parameters. Also, we analyze the characteristics
of returns defined as a GARCH process. In Chapter 4 we use the empirical autocorrelation function
in order to find time windows of financial bubbles where the correlation of consecutive returns is
increased. In Chapter 5 we present in detail the above mentioned bubble experiment and the emerg-
ing evidence for super-exponential growth of prices in bubble periods. This is our motivation for a
model combining the GARCH process, which is commonly used to model volatility of financial re-
turns, and bubble dynamics incorporating positive feedback effects. We start with the basic version
of the so called "Finite-Time Singularity GARCH" model developed by Corsi and Sornette (2012)
and test various enhanced versions for their ability to detect financial bubbles. As examples for
historical bubbles we choose the DAX, NASDAQ and NIKKEI time series. The Gold price serves as
a candidate for a real-time bubble. In Chapter 6 we propose a method how to use Markov switching
models, which incorporate the possiblity of regime shifts, to detect periods of super-exponentially
growing prices. We conclude the thesis with a short summary of our findings.
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2
Characteristics of Financial Time Series

As a first step, we would like to do an empirical study on the characteristics of a typical financial
time series P0, . . . , Pn. Since the price process is usually non-stationary (it does not have any long-run
price level), one analyzes the corresponding series of continuous returns calculated over a certain
horizon τ:

rτ
t := log

(
Pt·τ

P(t−1)·τ

)
, where t = 1, . . . ,

[n
τ

]
=: T. (2.1)

Typically, the return series is implicitly assumed to be a trajectory from a (weak)-stationary pro-
cess, which we also call rτ

t (for simplicity). This process fulfills the following properties (weak- or
covariance-stationarity):

1. E[rτ
t ] = µ ∈ R, ∀ t = 1, . . . , T

2. Cov(rτ
t−k, rτ

t ) = E[(rτ
t−k − µ)(rτ

t − µ)] = γk ∈ R, ∀ t = k + 1, . . . , T, and k = 1, . . . , K < T

Stationarity is a necessary condition in order to estimate the moments of the return distribution
with data from different time periods. But stationarity is not sufficient. We have to keep in mind
that only for an ergodic process the empirical time average converges to the theoretical moment of
rt. This is another implicit assumption usually made when analyzing time series data. Nevertheless,
in many cases the concepts of stationarity and ergodicity turn out to require the same conditions.
(Cont (2001) [C], Hamilton (1994) [H])
In the empirical analysis below we use the daily return series rt := r1

t , t = 1, . . . , T, of the NASDAQ
Composite Index from 5th February 1971 to 26th October 2012 in order to illustrate several "stylized
facts" listed by Perner and Schlener (2011) [PS]. Sewell (2011) [S1] nicely explains a stylized fact as
"a term used in economics to refer to empirical findings that are so consistent (for example, across a
wide range of instruments, markets and time periods) that they are accepted as truth. Due to their
generality, they are often qualitative."

Stylized fact 1: Small linear autocorrelation

Typically, price changes of financial assets do have little or even insignificant autocorrelation. The
autocorrelation function of returns defined as

C(lag, τ) := Corr(rτ
t , rτ

t−lag), where t = lag + 1, . . . , T, (2.2)
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2. Characteristics of Financial Time Series

(Corr being the sample correlation) is usually at low levels for all lags (lag < T). Using intraday
data one can find a decline to levels around 0 within a few minutes (lag ≥ 15 min). (Cont (2001)
[C])
There are many studies on the autocorrelation of returns in the literature. Sewell (2011) [S1] finds
quite a nice summary: "Weekly and monthly stock returns are weakly negatively correlated, whilst
daily, weekly and monthly index returns are positively correlated. Campbell et al. (1996) (p. 74)
point out that this somewhat paradoxical result can mean only one thing: large positive cross-
autocorrelations across individual securities across time. High frequency market returns exhibit
negative autocorrelation."
In our empirical analysis we found a few
lags (using daily steps) where one can re-
ject H0 : Corr(rt, rt−lag) = 0 at the 95%
confidence level (see Figure 2.1). As we
will notice later in the thesis, the NAS-
DAQ time series includes periods of strong
autocorrelation at certain lags (especially
at a lag of 1 day). This is one of the reasons
why we will include a regression compo-
nent of lag 1 into the return equation of
the standard GARCH model.
Cont (2001) [C] explains the intuition be-
hind the small linear autocorrelation ex-
hibited by financial price movements as
follows. If returns are significantly

Figure 2.1.: NASDAQ Composite (1971-2012): Auto-
correlation of daily returns

correlated, arbitrage strategies yielding positive expected earnings can be developed. These strate-
gies in turn reduce the autocorrelation of returns except for the reaction time of the market to
new information (which is usually very short). Further, he cites Mandelbrot who describes this
as "arbitrage tends to whiten the spectrum of price changes". Therefore, traditional tools based on
second-order properties, for instance, ACF analysis or ARMA modeling, cannot distinguish between
asset returns and white noise. Hence, nonlinear measures to analyze the dependence of financial
returns are necessary.

Stylized fact 2: Leptokurtic return distribution (fat tails)

The unconditional distribution of daily returns has heavier tails than a normal distribution. Notice
how the histogram in Figure 2.2 has longer and fatter tails and how it is more peaked around zero
than the normal distribution. One way to quantify the deviation from the normal distribution is by
using the sample excess kurtosis of the return series defined as

K :=
m4

m2
2
− 3, (2.3)

where mp, p ∈N, is the p-th sample central moment

mp :=
1
T

T

∑
t=1

(rt − r̄t)
p. (2.4)
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The excess kurtosis is defined such that K = 0 for a Gaussian distribution (mesokurtic). A distri-
bution with K > 0 is called leptokurtic and with K < 0 it is called platykurtic, respectively. We
calculated quite a high sample excess kurtosis of 9.71 for the NASDAQ time series. Hence, the
return distribution is leptokurtic.

Stylized fact 3: Asymmetric return distribution

Looking at stock market indizes, the un-
conditional distribution of daily returns is
asymmetric or negatively skewed. This
means there occur more large drops than
large gains (see again Figure 2.2) or, in
other words, downward movements occur
faster than upward movements. A com-
mon measure for the gain/loss asymmetry
is the sample skewness

S :=
m3

m3/2
2

. (2.5)

The NASDAQ return series has a sample
skewness of about -0.29. In other markets
such as that for foreign exchange one of-
ten finds a smaller gain/loss asymmetry.
Interestingly, Johansen et al. (2006) [JSJ]
show that although one usually finds a

Figure 2.2.: NASDAQ Composite (1971-2012): His-
togram of daily returns with kernel and
normal density estimator

gain/loss asymmetry in the stock index, this effect is not present in the time series of the individual
stocks nor their average. They take a closer look at the Dow Jones Industrial Average. To find the
reason for the negative skewness in stock indizes, Johansen et al. simply compare the gain and loss
distributions of the DJIA with the corresponding distributions for single stocks in the DJIA as well
as their average. For all 21 stocks in the DJIA by the year 2004 they find the same waiting time
distributions for both a positive and a negative return level of 5%. Furthermore, they average the
gain and loss distributions separately in order to obtain an average behavior for the stocks in the
DJIA and detect an almost perfect agreement of both distributions. Finally, they assess it is twice as
slow to move the DJIA down and four times as slow to move it up compared to the average time to
move one of its stocks up or down.
Consecutive similar movements of stocks of different economic areas (as there are included in
the DJIA) can have hardly any economically fundamental relation, which means there need to be
significant correlations between these stocks. Thus, the authors conclude that the gain/loss asym-
metry in the market must also be attributed to human psychology. People are in general much
more risk averse than risk taking. The implication is that a movement in the DJIA can be initiated
by a movement in some particular stock of a certain economic sector. This is often followed by a
movement in economically related stocks resulting in a cascade of consecutive movements in all the
sectors covered by the DJIA and hence in the DJIA itself ("feedback loop").

In order to quantify the deviation of the unconditional return distribution from a normal distribu-
tion one can perform the Jarque-Bera test (we follow the way of Buening and Thadewald (2004)

5



2. Characteristics of Financial Time Series

[BT]). Under the null hypothesis H0 : rt ∼ N(µ, σ2), t = 1, ..., T, the Jarque-Bera test statistic JB
fulfills

JB :=
T
6
(S2 +

K2

4
)

D−→ χ2
2. (2.6)

Therefore, H0 has to be rejected at level α if JB ≥ χ2
1−α,2. Any deviation from the normal distribution,

which has zero skewness and zero excess kurtosis, increases JB. The asymptotic χ2-distribution has
two degrees of freedom because the test statistic is a sum of two asymptotically independent stan-
dard normal distributions (see Bowman and Shenton (1975)).
As anticipated, the Jarque-Bera test finds an extremely high test statistic of JB = 41539 for the NAS-
DAQ Composite return series between 1971 and 2012. Hence, the p-value is almost zero even for
an α of only 0.1% or smaller and we can reject the null hypothesis of a normal distribution. This
definitely relies more on the high excess kurtosis of 9.71 than on the relatively small sample skew-
ness of -0.29 we found. In a nutshell, the return distribution is highly leptokurtic and has light
negative skewness.

It is worthwile to make a short excursion to the field of Extreme Value Theory in order to find out
more about the estimation of heavy tails (following Winker and Jeleskovic (2006) [WJ]). In general,
a fat tail distribution is defined as a distribution whose tails follow a power law (slower than the
decline in the tails of a normal distribution). Looking for example at the right tail, the distribution
is of Pareto-type with tail index α > 0 if

lim
x→∞

(1− F(x))xα = β, with β > 0. (2.7)

Note that for a heavy-tailed Pareto-type distribution the higher order moments E[rp
t ] do only exist

for p < α (Embrechts et al., 1999). Hence, the estimation of the tail index α informs us on the one
hand about the heaviness of the tails and on the second hand about the existence of moments. For
α < 4 the kurtosis of the return distribution does not exist and for α < 2 not even the variance does
exist. As the case may be, sample estimates of variance, skewness or kurtosis will not converge.
From a theoretical point of view they should even increase as the sample size increases, but this
behavior is not found empirically. Hence, in case α < 4 we should use the sample kurtosis and the
Jarque-Bera test statistic with additional care.
The most popular estimator for α is the Hill estimator developed by Hill (1975). We describe the
method for the right tail, the estimator for the left tail is obtained analogously. The Hill estimator is a
conditional maximum likelihood estimator based on the order statistics exceeding a high threshold
m > 0. The crucial assumption is that m is known. Thus, let us define the order statistics of a return
time series {rt}T

t=1 as r1,T ≤ r2,T ≤ . . . ≤ rT,T. If k = k(T) is the number of order statistics exceeding
m, the Hill estimator for α = 1

ξ is

1
α̂k

= ξ̂k =
1
k

k

∑
j=1

log(rT−j+1,T)− log(rT−k,T). (2.8)

ξ is the shape parameter in a generalized extreme value (GEV) distribution (see Embrechts et al.
(1999) or Winker and Jeleskovic (2006) for details). Wagner and Marsh (2003) postulated m to be
chosen such that

k(T) −→ ∞,
k(T)

T
−→ 0 as T −→ ∞. (2.9)
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Under these conditions the Hill estimator is consistent, asymptotically normal distributed, asymp-
totically quite robust with respect to deviations of the return series from independence and con-
verges optimally.
The key issue when we estimate α by the
Hill estimator is the choice of the threshold
m. It is common practice to analyse the
Hill plot defined as

{(k, α̂k), k = 1, . . . , K}, (2.10)

where one usually chooses α from a sta-
ble region. Nevertheless, we would like
to have a look at a slightly different ver-
sion, we plot the Hill estimator against the
threshold value m (see Figure (2.3)). Firstly,
this enables us to directly compare the
graph with the histogram in Figure (2.2),
and secondly, the comparison of the tails is
more meaningful.

Figure 2.3.: NASDAQ Composite (1971-2012): Hill
estimator for tail index α against absolute
value of threshold m

Looking at the stable region around levels of |m| = 3− 4%, we found great evidence of α < 4 for the
NASDAQ Composite return series. α is even around levels of 3− 3.5, which means the distribution
is heavy-tailed and does not have a finite forth moment. At least the second moment of rt does exist,
which is a condition for the return series to be stationary. Moreover, we do not find a significant
difference in the decline of the left and right tail. This corresponds to the above finding of only a
light skewness.

However, the Hill estimator does have many drawbacks. This is why it has been critized a lot
in the finance literature. More recently developed estimation methods use the generalized Pareto
distribution (additional location and scale parameters) and estimate its parameters either with the
"Block Maxima Method" or the "Peak-over-Threshold Method". The interested reader is referred to
the studies of P. Embrechts et al.

Stylized fact 4: Standard deviation of returns dominates mean

The standard deviation of daily returns clearly dominates their mean. Typically, it is not possibile
to statistically reject a zero mean return. We calculated a mean of 0.032% and a standard deviation
of 1.26% for the NASDAQ return series between 1971 and 2012.

Stylized fact 5: Volatility clustering and the Taylor effect

Due to the small linear autocorrelation of returns, random walk models were often considered to
model financial prices. But these models assume that returns are independent which is definitely
not the case.

7



2. Characteristics of Financial Time Series

As we will see soon (following the ideas of
Cont (2001) [C]), there is significant posi-
tive serial correlation in the series of abso-
lute as well as squared returns which indi-
cates there occurs volatility clustering in
the return series. If the increments were
independent, these nonlinear functions of
the return series would neither exhibit any
autocorrelation. As Mandelbrot noted al-
ready back in 1963, "large changes tend to
be followed by large changes - of either
sign - and small changes tend to be fol-
lowed by small changes" [M1]. The NAS-
DAQ return series in Figure 2.4 shows
multiple volatility clusters.

Figure 2.4.: NASDAQ Composite (1971-2012): Daily
return series (2 typical volatility clusters
marked in red)

A commonly used measure for this effect is the autocorrelation of squared returns:

C2(lag, τ) := Corr(|rτ
t |2, |rτ

t−lag|2), where t = lag + 1, . . . , T. (2.11)

The autocorrelations are significantly positive and slowly decaying for increasing lag (see Figure
2.5). This phenomenon makes at least the amplitude of returns to some degree predictable. Some-
times volatility clustering is also called the "ARCH effect" since it is a feature of (G)ARCH models
(see Chapter 3).
Similarly one can generalize the above measure for volatility clustering to arbitrary powers of re-
turns (α > 0):

Cα(lag, τ) := Corr(|rτ
t |α, |rτ

t−lag|α), where t = lag + 1, . . . , T. (2.12)

Comparing the decay of Cα, Ding et al. (1993) remarked that, for fixed lag and τ, this correlation
is highest for α = 1, which means that absolute returns are more predictable than other powers
of returns. According to Mora-Galan, Perez and Ruiz (2004) [MPR], Granger and Ding (1995) call
this empirical property Taylor effect. They find (1994, 1996) the maximum autocorrelation to be
obtained rather for values of α < 1 than for α = 1. Finally, they also point out that autocorrelations
of absolute returns are always larger than autocorrelations of squared returns.
Furthermore, for fixed τ, the decay of the autocorrelation function Cα(lag, τ) as lag increases is well
reproduced by a power law (Cont (2001) [C])

Cα(lag, τ) ∼ A
lagβ

, (2.13)

with a coefficient β ∈ [0.2, 0.4] for absolute or squared returns respectively (see Figure 2.5). This
characteristic of a slowly decaying serial correlation is a sign for long term persistence in volatility.
There are models for financial returns that incorporate this effect (e.g. the GARCH model in Chap-
ter 3).

8



Figure 2.5.: NASDAQ Composite (1971-2012): Autocorrelation of absolute and squared daily returns

Stylized fact 6: Leverage effect

Cont (2001) [C] finds another measure of nonlinear dependence in returns measuring the "leverage
effect". For fixed τ the correlation of returns with subsequent squared returns

L(lag, τ) := Corr(rτ
t−lag, |rτ

t |2), where t = lag + 1, . . . , T, (2.14)

starts from a negative value and declines to 0 (see Figure 2.6), suggesting that negative returns lead
to a rise in volatility and positive returns lead to a fall in volatiliy.
According to Ait-Sahalia, Fan and Li (2013)
[AFL], Black (1976) and Christie (1982)
found an economic interpretation for the
"leverage effect": If a company’s stock de-
creases, the ratio of debt to equity (its
"leverage") is increased. Consequently, the
business becomes riskier and hence the
stock’s volatility rises. Nevertheless, this
explanation is quite controversial in the
literature and several alternatives can be
found. The inversion, meaning that a
movement in volatility influences the di-
rection of subsequent returns, seems neg-
ligible (L(lag, τ) ≈ 0, for lag < 0, see
again Figure 2.6). Moreover, according to
Reigneron et al. (2011) [RAB], for a stock

Figure 2.6.: NASDAQ Composite (1971-2012): Lever-
age effect of daily returns (τ = 1)

index the leverage effect can be decomposed into a volatility and a correlation effect. They confirm
that downward index trends increase the average correlation between stocks, which explains why
the index leverage effect is stronger than for single stocks.
The fact of almost no linear autocorrelation of returns but significant correlation in their volatility
motivated a decomposition of the return as a product (Cont (2001) [C])

rτ
t =

√
hτ

t · ut, (2.15)

where ut is white noise and uncorrelated in time, and hτ
t a conditional variance factor whose dy-

namics should consider the volatility clustering effect. Examples of such models are GARCH (see

9



2. Characteristics of Financial Time Series

Chapter 3) and long-memory stochastic volatility models.

Stylized fact 7: Time varying correlation between assets

Correlations between different financial assets tend to vary within time. Especially in highly volatile
bear markets they appear to increase. During market crashes they might even tend to one. There
has been developed a large amount of literature on Extreme Value Theory and Copulas during the
last few years extending this topic, but in this thesis we do not want to go into more detail on it.
The interested reader is again referred to the studies of P. Embrechts et al.

Stylized fact 8: Conditional heavy tails

An interesting question might be if standardizing returns by a time-varying volatility measure (e.g.
via GARCH-type models) can lead to a normal conditional distribution of returns. Hence, we fit a
GARCH(1, 1) model (see Chapter 3 for
more details) to the NASDAQ daily return
series rt

rt = µ + εt, with εt ∼ N(0, ht), (2.16)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = 1, . . . , T,

(2.17)

and calculate standardized daily returns

rGARCH
t :=

rt√
ht

, t = 1, . . . , T. (2.18)

As one can see in Figure 2.7, the standard-
ized returns still show fatter than normal
tails. However, they are less heavy than in
the unconditional case.

Figure 2.7.: NASDAQ Composite (1971-2012):
GARCH(1, 1)-standardized daily returns

Stylized fact 9: Aggregational Gaussianity

Figure 2.8.: NASDAQ Composite (1971-2012): Histogram (scaled to density), kernel density estima-
tor and normal density estimator for daily, weekly, monthly and quarterly returns.
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As one can see in Figure 2.8, increasing the horizon τ over which the returns are calculated leads
the unconditional distribution to look more and more like a normal distribution.

In this chapter we have tried to give the reader a nice overview of empirical properties emerging
from the statistical analysis of financial returns. These characteristics should be viewed as con-
straints a stochastic process has to verify in order to reproduce a typical return series accurately
(Cont (2001) [C]). But finding and calibrating a model that incorporates all stylized facts at once
is quite a difficult task. Nevertheless, there are models available that incorporate some of the most
fundamental properties. Moreover, usually the purpose of the model determines which features
need to be included inevitably to have an appropriate model and which do not.

11





3
The Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) Model

3.1. Introducing the GARCH(p, q) process

Investors want to be rewarded with a premium for investing in risky assets. Since volatility is
considered as a measure of risk, modeling and forecasting volatility, respectively, the covariance
structure of asset returns (e.g. for risk management applications as Value-at-Risk) is an important
task (Andersen, Davis, Kreiss and Mikosch (2009) [ADKM]). The standard model used in the fi-
nancial industry to assess volatility risk is the so called Generalized Autoregressive Conditional
Heteroskedasticity model. In 1986, Tim Bollerslev [B] developed the GARCH model as a general-
ization of Engle’s original ARCH volatility model from 1982 [E]. Bollerslev designed GARCH to
use fewer parameters than the ARCH model. Thereby, the computational burden can be reduced.
The name can be decomposed in two terms: Autoregressive describes the dependence of the process
on its own past and conditional heteroskedasticity means time-varying conditional variance (as we will
see, the unconditional variance does not vary) (The MathWorks (2000) [M2]).
In a GARCH model (following the ideas of its inventor, Bollerslev (1986) [B]), the conditional
variance of the innovations depends on the past of the process: Let {εt}T

t=1 denote a real-valued
discrete-time stochastic process, and {Ft}T

t=0 a σ-algebra such that Ft includes exactly all available
information until time t. Then, a GARCH(p, q) process with Gaussian innovations is given by

εt | Ft−1 ∼ N(0, ht), (3.1)

where

ht = α0 +
q

∑
i=1

αiε
2
t−i +

p

∑
i=1

βiht−i = α0 +
q

∑
i=1

αiLiε2
t +

p

∑
i=1

βiLiht =: α0 + A(L)ε2
t + B(L)ht. (3.2)

Li is the backshift- or lag-operator defined as Li(xt) := xt−i for given time series xt. A(L) and
B(L) are the corresponding lag-polynomials. For the model orders p, q we require p, q ∈ N0. For
p = 0 the process reduces to the ARCH(q) process, and for p = q = 0 εt is simply white noise.
In an ARCH(q) process the conditional variance is computed from past innovations only, whereas
a GARCH(p, q) process uses also past conditional variances. We impose the constraints α0 > 0,
{αi}

q
i=1 ≥ 0 and {βi}

p
i=1 ≥ 0, to ensure the conditional variance ht is strictly positive. Additionally,
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3. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model

one can require αq and βp to be stricly positive as well in order to definitely include the maximum
lags in a GARCH process of order p and q.

If all solutions of the polynomial equation 1− B(z) = 0, z ∈ C, lie outside the unit circle (|z| > 1),
then, the definition of ht in (3.2) can be rewritten as an ARCH(∞) process:

ht = α0(1− B(1))−1 + A(L)(1− B(L))−1ε2
t = (3.3)

= α0

(
1−

p

∑
i=1

βi

)−1

+
∞

∑
i=1

δiε
2
t−i, (3.4)

The coefficients δi can be obtained from a power series expansion of D(L) := A(L)(1− B(L))−1,
where

δi :=

{
αi + ∑n

j=1 β jδi−j, i = 1, . . . , q,
∑n

j=1 β jδi−j, i > q + 1,
(3.5)

and n := min(p, i − 1). If B(1) < 1, the δi’s are decreasing for i > m := max(p, q). Therefore, if
D(1) < 1, we can find an ARCH process approximating the GARCH(p, q) process arbitrarily close.
Nevertheless, GARCH is the more parsimonious model and therefore often preferable (reduced
computational burden).
Also, S. Pantula found an ARMA(m, p) representation for the squared GARCH(p, q) process:

ε2
t = α0 +

q

∑
i=1

αiε
2
t−i +

p

∑
j=1

β jε
2
t−j −

p

∑
j=1

β jνt−j + νt, (3.6)

where

νt = ε2
t − ht = (η2

t − 1)ht and ηt
i.i.d.∼ N(0, 1). (3.7)

3.2. Characteristics of returns in a GARCH model

Bollerslev (1986) [B] finds the following sufficient condition for the GARCH(p, q) process εt in (3.1)
to be weak-stationary:

A(1) + B(1) =
q

∑
i=1

αi +
p

∑
i=1

βi < 1. (3.8)

In particular, the unconditional mean and variance are given by

E[εt] = 0 and Var[εt] =
α0

1− A(1)− B(1)
. (3.9)

This means the unconditional variance is homoscedastic (i.e. constant long-run variance expecta-
tion) (Aradhyula and Holt (1988) [AH]).
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3.2. Characteristics of returns in a GARCH model

Furthermore, the GARCH(p, q) process models the volatility clustering effect: The current volatility
level is calculated from past innovations and even from past volatility levels. This introduces some
kind of "memory effect". If there occur large movements of either sign, they increase the volatility
level and hence further large movements are likely to follow (analog for small movements). Obvi-
ously, GARCH(p, q) innovations are not independent, but they are uncorrelated. In fact, they can
be decomposed in two components:

εt :=
√

htut, (3.10)

where ht is the conditional variance defined in (3.2) and ut ∼ i.i.d. N(0, 1) with ut independent
of Ft−1. Hence, a GARCH process simply rescales an i.i.d. process where the conditional variance
introduces serial dependence (The MathWorks (2000) [M2]).

From (3.6) Bollerslev (1986) [B] finds for the squared GARCH(p, q) process ε2
t the following ana-

logue to the Yule-Walker equations of an ARMA process (m = max(p, q)):

γn = γ−n = Cov(ε2
t−n, ε2

t ) =
q

∑
i=1

αiγn−i +
p

∑
i=1

βiγn−i =
m

∑
i=1

φiγn−i, for n ≥ p + 1, (3.11)

with

φi = αi + βi, for i = 1, . . . , q, αi = 0, for i > q and βi = 0 for i > p. (3.12)

Thus, we end up with

ρn =
γn

γ0
=

m

∑
i=1

φiρn−i, for n ≥ p + 1. (3.13)

Given ρp+1−m, . . . , ρp one can use these equations to uniquely determine ρn for n ≥ p + 1. In prac-
tice, one usually consistently estimates them by the corresponding sample analogues ρ̂p+1−m, . . . , ρ̂p.
Furthermore, Bollerslev also finds a similar analogue for the partial autocorrelation. These two to-
gether can be used for identification and diagnostic checking of the appropriate lag structure (p, q).

There exist many different variations of the standard GARCH(p, q) model, e.g. absolute GARCH,
exponential GARCH, integrated GARCH and so forth. Also, many different distributions have been
applied to modeling the innovations. But the GARCH(1, 1) with Gaussian innovations is still the
most used in practice. For p, q = 1 the GARCH process gets the following form:

εt | Ft−1 ∼ N(0, ht), where ht = α0 + α1ε2
t−1 + β1ht−1. (3.14)

For simplicity, we calculate the following properties only for the standard GARCH(1, 1) process.

The skewness of εt is zero since E[ε3
t ] = E[h

3
2
t ] ·E[u3

t ] = 0. Assuming (α1 + β1)
2 + 2α2

1 < 1, the forth
moment E[ε4

t ] exists and one can compute the excess kurtosis to be

E[ε4
t ]

E[ε2
t ]

2
− 3 =

6α2
1

1− (α1 + β1)2 − 2α2
1
> 0. (3.15)

Therefore, the unconditional distribution of εt is leptokurtic (see Bollerslev (1986) [B] for details).
Moreover, the GARCH model does not account for the leverage effect. For arbitrary lag < T one
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3. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model

finds:

E[εt−lagε2
t ] = E[εt−laghtu2

t ] = E[εt−laght] = E[εt−lag(α0 + α1ε2
t−1 + β1ht−1)] = (3.16)

= α1E[εt−lagε2
t−1] + β1E[εt−laght−1] = . . . . . . = (3.17)

= C1E[εt−lagε2
t−lag] + C2E[εt−laght−lag] = 0, (3.18)

(3.19)

for some constants C1, C2 ∈ R.

⇒ L(lag) = Corr(εt−lag, ε2
t ) = 0. (3.20)

3.3. Maximum likelihood estimation

In this section we present the maximum likelihood procedure for the more general GARCH(p, q)
regression model, which is obtained by letting the εt’s be innovations in a linear regression

rt = b · xt + εt (3.21)

where rt is the dependent variable (in our case the financial return), xt a vector of l explanatory
variables (e.g. past prices or past returns), and b an l-dimensional row vector of unknown parame-
ters.

We follow the way of T. Bollerslev (1986) [B]: First of all, let us reformulate the considered model.
We define zt := (1, ε2

t−1, . . . , ε2
t−q, ht−1, . . . , ht−p)T, ω := (α0, α1, . . . , αq, β1, . . . , βp) and θ ∈ Θ, where

θ := (b, ω) and Θ is a compact subspace of an Euclidean space such that εt possesses finite second
moments. Further, we call the true parameters θ0, where θ0 ∈ int Θ. Using these definitions the
model has the following form:

rt = b · xt + εt, where εt | Ft−1 ∼ N(0, ht) with ht = ω · zt. (3.22)

According to Hamilton (1994) [H], for given parameter values θ, estimates for the sequence of
innovations {εt}T

t=1 can be inferred from the regression for the return in (3.22) immediately. In
order to find with help of the estimated sequence of innovations the sequence of conditional vari-
ances {ht}T

t=1 from the second equation in (3.22), one needs pre-sample values for h−p+1, . . . , h0 and
ε2
−q+1, . . . , ε2

0. Therefore, it is convenient to condition on m = max(p, q) pre-sample values for both
ht and εt. Since we have observations on rt and xt for t = 1, . . . , T, Bollerslev (1986) [B] suggested
setting

hj = ε2
j = σ̂2 :=

1
T

T

∑
t=1

ε2
t , for j = −m + 1, . . . , 0. (3.23)

The conditional distribution of rt is Gaussian with mean b · xt and variance ht:

f (rt|xt,Ft−1) =
1√

2πht
· exp

(
−(rt − b · xt)2

2ht

)
. (3.24)
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3.3. Maximum likelihood estimation

Hence, conditioning on m pre-sample values, the log likelihood function for a sample of T obser-
vations is

LT(θ) =
1
T

T

∑
t=1

lt(θ) =
1
T

T

∑
t=1

log f (rt|xt,Ft−1; θ) = (3.25)

= − 1
2T

T

∑
t=1

[
log(2π) + log(ht) +

ε2
t

ht

]
. (3.26)

Differentiating lt(θ) with respect to the variance parameters ω yields

∂lt

∂ω
=

1
2ht

∂ht

∂ω

(
ε2

t
ht
− 1
)

, (3.27)

∂2lt

∂ω ∂ωT =

(
ε2

t
ht
− 1
)

∂

∂ωT

(
1

2ht

∂ht

∂ω

)
− 1

2h2
t

∂ht

∂ω

∂ht

∂ωT
ε2

t
ht

, (3.28)

where

∂ht

∂ω
= zt +

p

∑
i=1

βi
∂ht−i

∂ω
. (3.29)

Differentiating lt(θ) with respect to the mean parameters b yields

∂lt

∂b
=

εtxt

ht
+

1
2ht

∂ht

∂b

(
ε2

t
ht
− 1
)

, (3.30)

∂2lt

∂b ∂bT = − xtxT
t

ht
− 1

2h2
t

∂ht

∂b
∂ht

∂bT
ε2

t
ht
− εtxt

h2
t

∂ht

∂b
+

(
ε2

t
ht
− 1
)

∂

∂bT

(
1

2ht

∂ht

∂b

)
, (3.31)

where

∂ht

∂b
= −2

q

∑
j=1

αjxt−jεt−j +
p

∑
j=1

β j
∂ht−j

∂b
. (3.32)

In order to have all derivatives of the Hessian to calculate the Fisher-Information matrix

I(θ) =
(
Ibb Ibω

Iωb Iωω

)
=

1
T

T

∑
t=1

E

[
∂lt(θ)

∂θ

∂lt(θ)

∂θT

]
= − 1

T

T

∑
t=1

E

[
∂2lt(θ)

∂θ ∂θT

]
(3.33)

we finally need to compute the mixed derivative of lt(θ):

∂2lt

∂b ∂ωT = −εtxt

h2
t

∂ht

∂ωT +
∂

∂ωT

(
1

2ht

∂ht

∂b

)(
ε2

t
ht
− 1
)
− 1

2h2
t

∂ht

∂b
∂ht

∂ωT
ε2

t
ht

(3.34)

Taking conditional expectations of the Hessian
(

E
[

∂2lt(θ)
∂θ ∂θT

]
= E

[
E
[

∂2lt(θ)
∂θ ∂θT |Ft−1

]])
and using that

ht is Ft−1-measureable, E[εt|Ft−1] = 0 and E[ε2
t |Ft−1] = ht, we find the following blocks in the
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3. The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Model

Fisher-Information:

Ibb =
1
T

T

∑
t=1

E

[
xtxT

t
ht

+
1

2h2
t

∂ht

∂b
∂ht

∂bT

]
(3.35)

Iωω =
1
T

T

∑
t=1

E

[
1

2h2
t

∂ht

∂ω

∂ht

∂ωT

]
(3.36)

Ibω =
1
T

T

∑
t=1

E

[
1

2h2
t

∂ht

∂b
∂ht

∂ωT

]
(3.37)

Consistent estimates for Ibb and Iωω are given by the sample analogues. These estimates involve
first derivatives only. Furthermore, the elements in the off-diagonal block Ibω are zero (see Engle
(1982) [E] for a proof). This finding is of great importance. It means that b and ω are asymptotically
independent and thus, they can be estimated separately without loss of asymptotic efficiency. Their
variances can be calculated separately as well. Nevertheless, either can be estimated with full effi-
ciency based only on a consistent estimate of the other.
Note, the only difference to the estimation of an ARCH(q) regression model is an additional recur-
sive term appearing in equation (3.29) and (3.32) (compare Engle (1982) [E]). But this complicates
the procedure. For the GARCH(p, q) regression model the Berndt, Hall, Hall and Hausman (1974)
algorithm [BHHH] is an appropriate method to find second-order efficient maximum likelihood
estimates:
Let us call the estimates for the parameters θ after i iterations θ(i). Then, one can iteratively compute
the subsequent estimate θ(i+1) by

θ(i+1) = θ(i) + λi

(
1
T

T

∑
t=1

∂lt

∂θ

∂lt

∂θT

)−1(
1
T

T

∑
t=1

∂lt

∂θ

)
, (3.38)

where ∂lt
∂θ is evaluated at θ(i). The parameter λi is a variable step length chosen to maximize the

likelihood function in the given direction. The direction vector can easily be calculated from a
regression of a T × 1 vector of ones on ∂lt

∂θ .
As already mentioned above, we perform the iterations for ω(i) and b(i) separately due to the block
diagonality in the Fisher-information. It follows from Weiss (1982) that (under certain regularity
conditions) the maximum likelihood estimates b̂T and ω̂T are strongly consistent for b0 and ω0 and
asymptotically normal with limiting distributions

√
T(b̂T − b0)

D−→ Nl(0, I−1
bb ), (3.39)

√
T(ω̂T −ω0)

D−→ Np+q+1(0, I−1
ωω). (3.40)

Consistent estimates for the asymptotic covariance matrices can be found by Î−1
bb =

(
1
T ∑T

t=1
∂lt
∂b

∂lt
∂bT

)−1

and Î−1
ωω =

(
1
T ∑T

t=1
∂lt
∂ω

∂lt
∂ωT

)−1
from the last iteration of the BHHH algorithm.
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3.3. Maximum likelihood estimation

As we have seen, GARCH is a time series modeling technique that uses past innovations and past
variances to forecast future variances. It considers heavy tails and volatility clustering, which are
two of the most important characteristics of financial time series (see Chapter 2). It provides accu-
rate forecasts of variances and covariances of asset returns through its ability to model time-varying
conditional variances.
Despite the broad applications of GARCH in many fields of finance (e.g. risk management, port-
folio management, foreign exchange), it does have limitations: Although it is explicitly designed
to model time-varying conditional volatility, it works best in relatively stable markets. Irregular
phenomena, meaning wild market fluctuations and other highly unanticipated events (e.g. bubbles
or crashes), are even with GARCH hardly predictable. Moreover, GARCH often fails to fully model
the heavy tails of the unconditional return distribution. The included phenomenon of heteroskedas-
ticity explains part of the fat tail behavior, but typically not all of it. Leptokurtic distributions, such
as student-t, have been used to model GARCH innovations, but often the choice of distribution is a
matter of trial and error (The MathWorks (2000) [M2]).

19





4
Testing for Dependences in Bubble Periods

4.1. Empirical autocorrelation function

As we have seen in the analysis of typical financial time series in Chapter 2, daily returns do exhibit
little or even insignificant autocorrelation in general. In this section we analyze some historical asset
bubbles for their autocorrelation at lag 1 during times of large gains. In contrast to our analysis
in Chapter 2, we apply an exponentially weighted moving average to the returns. This leads to
significantly higher autocorrelation at lag 1 during times of well-known bubble periods.
To start off, let us consider a time series of daily prices P0, . . . , Pn. The corresponding daily returns
can be computed as

rt := log
(

Pt

Pt−1

)
, for t = 1, . . . , n. (4.1)

Using the daily returns, one usually estimates the autocorrelation of returns with lag k as

ρ̂k :=
γ̂k

γ̂0
, with γ̂k :=

1
n

n−k

∑
t=1

(rt+k − r̄)(rt − r̄) and r̄ :=
1
n

n

∑
t=1

rt. (4.2)

In contrast to the common procedure, we average the daily returns over a horizon τ as follows:

rEWMA
t := EWMA(r, τ, α)t :=

1− δ

1− δτ
·

τ−1

∑
k=0

δk · rt·τ−k, for t = 1, . . . ,
[n

τ

]
=: T, (4.3)

where δ = e−α and α > 0 constant.
Now, we are able to estimate for various time windows (tstart, . . . , tend), with tstart, tend ∈ {1, . . . , T}
and tstart < tend, the autocorrelation of EWMA returns:

ρ̂EWMA
k :=

γ̂EWMA
k

γ̂EWMA
0

, with γ̂EWMA
k :=

1
T

T−k

∑
t=1

(rEWMA
t+k − r̄EWMA)(rEWMA

t − r̄EWMA) (4.4)

and r̄EWMA :=
1
T

T

∑
t=1

rEWMA
t . (4.5)

Let us have a look at some empirical results for the DAX, Gold and the NASDAQ Composite (Fig-
ures 4.1-4.3).
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We detect quite a high empirical autocorrelation at lag 1 of 0.3-0.4 for the DAX time series if we
choose a window starting in 1995 and ending either in 1998 or 2000. At these two end dates there
are exactly the sharpest peaks in the DAX price evolution. The bubble in 2000 lets us find such a
high empirical ACF even for multiple windows starting between 1995 and 1997. Furthermore, the
crash in 2011 was preceded by an ACF of 0.4-0.5 over a window starting at the trough in 2009.

Especially in the years 2009-2012 Gold exhibited a high ACF at lag 1 which obviously corresponds
to the continuous rising of the price during the aftermath of the crisis. For time windows starting in
2007 one can find values of 0.3-0.4 for the empirical ACF. Interestingly, looking at the peak in 2006,
we computed the highest values for windows ending a few months before it. The reason is a period
of stable prices shortly before the bubble peak. Also, around the peak in 2008 the autocorrelation
was relatively low compared to the other maxima.

Analyzing the NASDAQ Composite time series, we find a strong empirical autocorrelation at lag 1
of even 0.4-0.5 for windows ending around the bubble peak in 2000. Moreover, we detect this high
ACF for the majority of starting dates between the crash in 1987 and the year 1998 which empha-
sizes the strength of the signal even further. Also, we find quite a large empirical ACF of 0.3-0.4 for
a window of 1 year starting before the crash in 1987.

Figure 4.1.: DAX 1991-2011: Empirical ACF at lag 1 of EWMA returns over a horizon of τ = 40 days
computed over different time windows
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4.1. Empirical autocorrelation function

Figure 4.2.: Gold 1999-2012: Empirical ACF at lag 1 of EWMA returns over a horizon of τ = 40 days
computed over different time windows

Figure 4.3.: NASDAQ Composite 1983-2002: Empirical ACF at lag 1 of EWMA returns over a hori-
zon of τ = 40 days computed over different time windows
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5
Finite-Time Singularity (FTS) GARCH

5.1. A bubble experiment in the laboratory

Our starting point is the paper "Super-exponential bubbles in lab experiments: evidence for an-
choring over-optimistic expectations on price" (2012) [HSH] where Huesler, Sornette and Hommes
analyze the dynamics of bubbles generated in a controlled price formation experiment in the labo-
ratory by Hommes et al. in 2008 [HSTV]. In this bubble experiment 36 participants were split into
6 different groups trading on 6 different assets. Each "trader" had to forecast the price of an asset
in every round. The market price Pt was then formed as an average of all traders’ discounted price
expectations (H = 6 participants per group):

Pt =
1

1 + r

(
1
H

H

∑
h=1

Ph
t+1 + D

)
, (5.1)

with an interest rate of r = 5%, a dividend D = 3 and from each participant a price forecast Ph
t+1

for time t + 1 based only on information
until time t − 1. Traders were able to cal-
culate the fundamental price P f = D

r = 60
since they knew the interest and the divi-
dend. They were rewarded in dependence
on the precision of their price forecasts, but
did not know how the market price was
formed. Therefore, the reward depended
more on one’s forecast of the other partici-
pant’s forecasts than on a precise estimate
of the fundamental value which made the
market price Pt loosely tied to the funda-
mental price P f (expectations-driven price
formation). In 5 of the 6 groups the mar-
ket price built a bubble, it approached 1000
and subsequently dropped (recall P f =

60!). In 4 of them this bubble seemed to
burst due to the reason that price forecasts
were restricted to be below 1000. Next, the

Figure 5.1.: Realized market prices from the bubble ex-
periment for different groups (Figure from
Hommes et al. (2008) [HSTV])
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5. Finite-Time Singularity (FTS) GARCH

price fell even to the lowest value since the start, but then increased again and reached another
peak. The authors interpret this as an indication that the dynamics in most of the groups were
driven by the interaction between participants trying to extrapolate trends and the restrictions on
the price forecasts (0 and 1000). Furthermore, they conclude that the bubbles in the experiment
do not correspond to rational bubbles, they rather seem to be speculative bubbles driven by the
predicition strategies of the traders (by analyzing the individual strategies within a group, one can
see that traders coordinated on a common prediciton strategy). According to the ideas of Blanchard
and Watson (1982) [BW], in a rational expectations bubble the price can deviate significantly from
its fundamental value, however, it fulfills the condition of rational expectations (the best estimation
for Pt+1 at time t is Et[Pt+1]) and the no-arbitrage condition that the expected return of the asset is
equal to the risk-free rate r. Any price process of the form (R := 1 + r = 1.05)

Pt = P f + cRt, with a constant c ≥ 0, (5.2)

is a rational bubble satisfying

Et

[
Pt+1 + D

Pt

]
=

P f + cRt+1 + rP f

Pt
= 1 + r ∀t ∈N0. (5.3)

Hommes et al. (2008) [HSTV] found implied growth rates R̂ that are significantly higher than 1.05
in 4 of the 6 groups (except for group 1 and 5). Hence, the trader’s expectations are no longer
rational (participants know r and P f !). They seem to apply trend following investment strategies.
When they observe small gains, they forecast the price to grow further which in turn makes this
prediction to become self-fulfilling ("positive feedback expectations"). There is substantial evidence
that real investors act similar as the participants in the experiment. Many professional traders use
trend following strategies extrapolating current trends in market prices into the future.

5.2. Super-exponential growth and positive feedback on return

Huesler, Sornette and Hommes (2012) [HSH] show that the explosive increase in price during a
bubble can not be described by an exponential growth, rather one needs to incorporate a positive
feedback mechanism corresponding to even faster than exponential growth. There had already been
papers providing empirical evidence that prices grow super-exponentially during bubble periods,
but this paper was actually the first demonstrating it unambiguously in a controlled laboratory ex-
periment. Huesler, Sornette and Hommes find strong evidence for super-exponential growth during
bubble periods by fitting two models (in which traders anchor their price predictions either on price
or on return) to the bubbles built in the experiment (P̄t := Pt − P f is the excess price):

(1) Anchoring on price:
The growth rate rt := log( P̄t

P̄t−1
) is equal to a constant a plus b times the last excess price:

rt = a + b · P̄t−1 (5.4)

For b = 0 the corresponding price grows exponentially (rational bubble), but if a > 0 and b > 0 it
grows even super-exponentially (positive feedback of price on return):

P̄t = P̄t−1 · ea+b·P̄t−1 (5.5)
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(2) Anchoring on return:
Alternatively, one can also test for positive feedback of return on return:

rt = a + b · rt−1 (5.6)

Again, if a > 0 and b > 0 there is faster than exponential growth in the excess price.

In addition, we would like to have a closer look at the explicit form for rt in (5.6) and its asymptotics:

rt = a + brt−1 = a + ab + b2rt−2 = ... = a(1 + b + b2 + ... + bt−2) + bt−1r1. (5.7)

Thus, in case a > 0 and b > 1 rt grows exponentially and the corresponding price Pt grows super-
exponentially. By applying the formula for a finite geometric series we find for the case a > 0 and
0 < b < 1

rt = a
1− bt−1

1− b
+ bt−1r1 −→ a

1− b
as t −→ ∞. (5.8)

Thus, the return is asymptotically constant. Nevertheless, one can have faster than expontential
growth even for 0 < b < 1. Looking at the differences in return from (5.7):

rt − rt−1 = bt−2(r2 − r1) =

{
> 0, if r2 > r1,
≤ 0, if r2 ≤ r1.

(5.9)

This implies the price process Pt grows super-exponentially (although the returns grow in a decel-
erating fashion) for a > 0 and 0 < b < 1 if r2 > r1.
Now, we come back to the results of Huesler, Sornette and Hommes (2012) [HSH] in their analysis
of the bubble experiment. They estimate the coefficients a and b in (5.4) and (5.6) over different win-
dows of the bubbles in group 2, 3, and 4. Then, they compare the lower 95% confidence intervals
for the null hypothesis that a, respectively, b is zero.
To sum up, they find evidence for positive feedback on price (equation 5.4) for windows ending
around the bubble peak or shortly before. For smaller end dates they detect b around 0, implying
exponential growth in the initial phase of the bubble. a is significantly greater than 0 for almost all
time windows.
For the analysis of positive feedback on return (equation 5.6) the picture is not that clear. The win-
dows where a > 0 and b > 0 are only those with the earliest starting dates (largest time windows)
and, interestingly, all possible end dates, not only the ones around the bubble peak (we will find
similar results for the coefficient of the regression component in an FTS GARCH model later in
the thesis). They also detect high significance for b > 0 for windows starting later and ending
around the bubble peak, but for these windows a is around 0. They conclude that traders seem to
anchor their expectations more on price rather than on return (in the latter case the signal for jointly
positive a and b is relatively small).
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5.3. Finite-time singularities and the log-periodic power law (LPPL)

As we have seen in the analysis of the laboratory experiment, bubbles can be characterized by
super-exponential growth in market price due to positive feedback effects. Generalizing the stan-
dard mathematical models by incorporating positive feedback loops let’s them exhibit a finite-time
singularity. Therefore, the solutions of these models exist only over a finite time horizon. As the
singularity is approached, new mechanisms come into play leading to new price dynamics (e.g. a
crash), a change of regime occurs (Corsi and Sornette (2012) [CS], Kaizoji and Sornette (2009) [KS]).
Typically, economists avoid to work with models where there does not exist a solution for all times,
but actually this captures quite well the transient nature of bubbles. According to Johansen and
Sornette (1999) [JS], the simplest formula to describe the price in a super-exponential bubble is a
power law with finite-time singularity at some critical time tc > 0:

Pt = A + B(tc − t)z, where A, B are constant and z < 0. (5.10)

Such an expression can be obtained as solution of models incorporating positive feedback, namely
the typical population growth models. Cohen and others idealized the logistic equation

dP(t)
dt

= R · P(t)(K− P(t)), (5.11)

where R is a constant and K is a finite carrying capacity, by letting K be time-dependent instead: K(t)
is assumed to increase with P(t) due to technological progress, which means that for K(t) > P(t)
the limiting factor −P(t) can be dropped. Under the assumption of a power law relation K ∝ Pδ,
for a δ > 1, their model has the following form:

dP(t)
dt

= R · P(t)1+δ. (5.12)

Due to the acceleration in growth according to a power law (corresponding to super-exponential
growth), the solution exhibits a finite-time singularity (Corsi and Sornette (2012) [CS]):

P(t) = P(0)(1− t
tc
)−1/δ, (5.13)

where one can find the critical time tc to be

tc =
1

δR
P(0)−1/δ. (5.14)

One obtains the standard exponential solution P(t) = P(0)eRt as δ→ 0+, which can be proved by a
Taylor approximation:

(1− t
tc
)−1/δ = e−1/δ · log(1−t/tc) ≈ e1/δ · t/tc δ→0+−→ eRt for t� tc → ∞. (5.15)

Johansen and Sornette (2008) [JS] fit formula (5.10) to empirical data for super-exponential bubbles.
They find the acceleration in growth to be well described, but the simple power fit fails to determine
the critical time tc precisely. There exists great variability around the average power law behavior,
which brings them to the idea of a generalisation to power laws with complex exponents z := β+ iω.
The real part of (tc − t)β+iω has the form

Re((tc − t)β+iω) = Re(e(β+iω)log(tc−t)) = (tc − t)βcos(ωlog(tc − t)). (5.16)

28



5.3. Finite-time singularities and the log-periodic power law (LPPL)

This leads to the so-called log-periodic power law (LPPL) modeling faster-than-exponential price
growth:

Pt ≈ A + B(tc − t)β + C(tc − t)βcos(ωlog(tc − t) + φ), (5.17)

with an additional constant C and another
phase constant φ. The cosine leads to log-
periodic oscillations (periodic in log(tc− t)
instead of t) around the average power law
behavior that accelerate before the criti-
cal date. The time intervals between con-
secutive local maxima of the price tend
to zero as the critical time is approached
(with a constant ratio of consecutive inter-
vals λ = e2π/ω). The authors find that
these oscillations succeed to capture a large
part of the variability about the power law
growth in developing bubbles in a variety
of markets. Including log-periodic correc-
tions provides a better parametrization of
the data and better constraints on β and tc.

Figure 5.2.: LPPL model fit for the ROSI index: A ≈
4254, B ≈ −3166, C ≈ 246, β ≈ 0.4, tc =

97.61, φ ≈ 0.44 and ω ≈ 7.7) (Example and
Figure from Johansen, Sornette and Ledoit
(1999) [JSL]).

Johansen and Sornette (2008) [JS] propose also a nonlinear log-periodic model which expands to
the next order of corrections to the power law. The interested reader is referred to the studies of
D. Sornette et al. (e.g. in [JS] or [S2]). Furthermore, Johansen, Sornette and Ledoit (1999) [JSL]
propose to model the price evolution as a jump diffusion process, embedding the LPPL model in a
stochastic framework (JLS model). This goes beyond the objective of the current chapter, however,
we would like to give an interesting summary in Appendix A.
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5.4. Introducing the FTS GARCH model

In this section our goal is to develop a suitable tool that analyzes financial time series for the pres-
ence of bubble-like dynamics. As we have seen so far, financial bubbles exhibit high autocorrelation
of returns (compare Chapter 4) and grow even faster than exponential. This can be captured in
a mathematical model by incorporating positive feedback of either price on return or return on
return leading to a finite-time singularity. Inspired by the ideas of F. Corsi and D. Sornette (2012)
[CS], we would like to combine this bubble dynamics with the standard of the financial industry to
model volatility clustering and to assess volatiliy risk, namely the GARCH(1, 1) model. The result-
ing stochastic model is the so called Finite-Time Singularity GARCH model. This is the standard
GARCH(1, 1) enhanced by adding a regression component yt (e.g. last price or last return) in the
conditional mean modeling positive feedback:

rt = µ + γ · yt−1 + εt, where εt | Ft−1 ∼ N(0, ht), (5.18)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, (5.19)

where the daily continuous return rt is computed from a time series of daily prices P0, . . . , Pn as

rt := log
(

Pt

Pt−1

)
, for t = 1, . . . , n =: T. (5.20)

Note that this is a GARCH(1, 1) regression model as defined in (3.22), where b := (µ, γ) and
xt := (1, yt−1)

T. In Section 3.3 we already presented the full maximum likelihood procedure to
consistently estimate the parameters of this model. In its original form the FTS GARCH model is
proposed with regression component yt := Pt (last price). Recall that according to Huesler, Sornette
and Hommes (2012) [HSH], traders seem to anchor their expectations more on price rather than
on return. Nevertheless, the price series is highly non-stationary which is definitely an undesirable
property as we already pointed out at the beginning of Chapter 2. On account of this we propose to
use the logarithm of price instead. This should manage to reduce the non-stationarity problem, al-
though the log price is in general non-stationary as well. We will also try to find improved versions
of using daily returns as regression component and test all these different regression components.
However, the two main models we will have a closer look at are:

(1) Using the logarithm of last price as regression component (yt = log(Pt)):

rt = µ + γ · log(Pt−1) + εt, with εt ∼ N(0, ht), (5.21)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = 1, . . . , T. (5.22)

(2) Using last return as regression component (yt = rt):

rt = µ + γ · rt−1 + εt, with εt ∼ N(0, ht), (5.23)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = 2, . . . , T. (5.24)

Our main interest lies in the parameter γ since it represents the strength of the feedback. We propose
a standard one-sided t-test of

H0 : γ ≤ 0 against H1 : γ > 0 (5.25)
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and interpret the rejection of the null hypothesis as evidence for an FTS dynamics (with positive γ),
and hence, for the presence of a bubble (compare the analysis of the bubble experiment in Section
5.2). Actually, one could also test for H0 : γ = 0, but we would like to have as alternative hypothesis
only positive feedback (and no negative feedback).

Before we apply the FTS GARCH model to real data, we would like to analyze it in a few syn-
thetic tests where we work with simulated data. The idea of these experiments is to get a feeling
for the model itself and its ability to detect regimes of positive feedback of both log price on return
and return on return.

Quality of the maximum likelihood estimation

In order to assess the quality of the maximum likelihood procedure for the estimation of the
coefficients in an FTS GARCH model we propose the following synthetic test. We first of all
estimate realistic parameters of an FTS GARCH model from empirical data (Nasdaq Composite).
Then, we simulate an FTS GARCH process with the estimated coefficients (γinput is the estimated
γ) 1000 times and infer the coefficient of the regression component from the simulated data. Finally,
we calculate the t-statistics of the test H0 : γ = γinput against H1 : γ 6= γinput. If the ML estimation
works appropriately, there should be at most 50 exceptions lying either below the 2.5% quantile or
above the 97.5% quantile as well as only 10 outside the 0.5% and 99.5% quantile (due to the large
sample size the t-quantile is almost the same as the normal quantile). Using log price as regres-
sion component, we find 45, respectively, 10 exceptions (see Figure 5.3). Using return as regression
component, we obtain almost the same result (Figure 5.4: 46 t-statistics below the 2.5% or above the
97.5% quantile and 10 outside the 0.5% and 99.5% quantile).
Note, this test does not say that the FTS GARCH model describes the empirical data well, neither
that the parameters inferred from empirical data are estimated appropriately. But what it does tell
us is that at least for simulated data the used ML procedure estimates the coefficient γ properly
(consistent with the theoretical result from Section 3.3).

How do simulated trajectories from an FTS GARCH model look like?

Another preliminary step to get a feeling for the FTS GARCH model is to look at some simulated
trajectories and compare them to bubbles in real data. For this reason we estimate appropriate
coefficients for a GARCH(1, 1) from the first 6000 prices of NASDAQ Composite between 1971 and
2000 as well as for an FTS GARCH model from the subsequent 1350 prices. Then, we simulate
GARCH(1, 1) for 6000 days and finally, FTS GARCH dynamics until the price exceeds the maxi-
mum price of the NASDAQ time series. As regression component we use (1) log price and (2) daily
returns for both estimation and simulation of the FTS GARCH. We find the simulated prices in
Figure 5.5 and 5.6 (the corresponding log prices are plotted in 5.7 and 5.8) to look quite similar to
the real time series of NASDAQ.
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Figure 5.3.: FTS GARCH model (yt = log(Pt)): Goodness-of-fit test for synthetic data simulated
with coefficients estimated from NASDAQ Composite (1982-2000) (γ = 4 · 10−4)

Figure 5.4.: FTS GARCH model (yt = rt): Goodness-of-fit test for synthetic data simulated with
coefficients estimated from NASDAQ Composite (1982-2000) (γ = 0.2)
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Figure 5.5.: Simulated trajectories of 6000 days GARCH(1, 1) and then, FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ Composite, γ = 2 · 10−4) until the
price level exceeds the maximum of NASDAQ

Figure 5.6.: Simulated trajectories of 6000 days GARCH(1, 1) and then, FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ Composite, γ = 0.1) until the price level
exceeds the maximum of NASDAQ
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Figure 5.7.: Simulated trajectories (in log price) of 6000 days GARCH(1, 1) and then, FTS GARCH
dynamics (yt = log(Pt), coefficients estimated from NASDAQ Composite, γ = 2 · 10−4)
until the price level exceeds the maximum of NASDAQ

Figure 5.8.: Simulated trajectories (in log price) of 6000 days GARCH(1, 1) and then, FTS GARCH
dynamics (yt = rt, coefficients estimated from NASDAQ Composite, γ = 0.1) until the
price level exceeds the maximum of NASDAQ

34



5.4. Introducing the FTS GARCH model

Can we detect a simulated bubble regime with γ > 0?

The main idea of the FTS GARCH model is to have a tool that enables us to detect positive feedback
regimes where γ is greater than 0. Therefore, a basic simulation experiment that should definitely
be done is to simulate two regimes, one where γ = 0 and another one where γ > 0, and look if
the FTS GARCH model is able to detect the different regimes. So we simulate again trajectories of
GARCH(1, 1) for 6000 days and then, FTS GARCH for another 1350 days (the fixed end date is the
single difference to the simulation procedure from above) with (1) log price and (2) daily returns as
regression component.
Now, we fit an FTS GARCH model to the daily return series calculated from various windows of
each of the simulated price trajectories. We plot a rescaled version of the NASDAQ Composite price
series between 1971 and 2000, the average of the 50 simulated trajectories at each point in time and
finally, the average of the 50 t-statistics of the coefficient γ for each window size and various points
in time, where we shift the window by 100 days each time. In order to reduce the computational
effort the parameters are estimated only every 100 days and not each day.
In both cases (Figure 5.9 and 5.10) the t-statistic reacts immediately to the bubble regime and in-
creases. If we use log prices as regression component, the t-statistic at the end of the simulation
(where the price is at its highest level) is the higher the larger the chosen time window is. Inter-
estingly, the t-statistic of γ decreases during the last days of the bubble period for windows of size
800 and 1350 days. This shows that the window needs to include part of the GARCH(1, 1) regime
to yield high significance for a positive γ. Thus, this method is influenced mainly by the change of
regime to a higher slope in log price around point 6000 but rarely by the positive feedback simu-
lated in the last 1350 days per se (otherwise the t-statistic at the end would be higher for a window
of 1350 days).
In this experiment the method of using return as regression component performs better. When
γ > 0 the t-statistic is continuously increasing for all windows and reaches its highest value for the
window equal to the length of the bubble period (1350 days). Hence, the FTS GARCH model (with
yt = rt) reacts to a regime shift from γ = 0 to γ > 0 in simulated data.

How does the FTS GARCH model react to a regime with high µ but γ = 0 instead of γ > 0?

Let us further investigate the reasons for the evolution of the t-statistics in the last two simulation
experiments. We propose to do another synthetic test where we simulate trajectories of 6000 days
GARCH(1, 1) and then, again GARCH(1, 1) dynamics but with different coefficients (instead of
FTS GARCH as usual) for another 1350 days. Subsequently, we estimate an FTS GARCH model
from the simulated return series with (1) yt = log(Pt) and (2) yt = rt. The results for the corre-
sponding average t-statistics of γ are plotted in Figure 5.11 and 5.12.
This synthetic test confirms our recent finding for the usage of log price as regression component:
The FTS GARCH model shows the same evidence for a bubble regime as before (compare Figures
5.9 and 5.11) although we simulated only exponential price growth in both regimes (γ = 0). Hence,
the FTS GARCH model using log price as regression component signals super-exponential behav-
ior as soon as there is an increase in the average return.
On the contrary, the FTS GARCH model with yt = rt strictly distinguishes between a switch from
γ = 0 to γ > 0 and an increase in µ. It does not signal evidence for faster than exponential growth
in this simulation experiment, although there is a jump in the average return µ at point 6000.
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Figure 5.9.: MC Simulation (50 simulations): Sim. trajectories of 6000 days GARCH(1, 1) and then,
FTS GARCH dynamics with log price as regression component (coefficients estimated
from NASDAQ, γ = 6 · 10−4) for another 1350 days. Estimation of an FTS GARCH
model (yt = log(Pt)) from the simulated return series and plot of the average evolution
of the t-statistic of γ calculated over different window sizes.

Figure 5.10.: MC Simulation (50 simulations): Sim. trajectories of 6000 days GARCH(1, 1) and then,
FTS GARCH dynamics with return as regression component (coefficients estimated
from NASDAQ, γ = 0.7) for another 1350 days. Estimation of an FTS GARCH model
(yt = rt) from the simulated return series and plot of the average evolution of the
t-statistic of γ calculated over different window sizes.
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Figure 5.11.: MC Simulation (50 simulations): Sim. trajectories of 6000 days GARCH(1, 1) and then,
again GARCH(1, 1) dynamics with different coefficients (both estimated from NAS-
DAQ) for another 1350 days. Estimation of an FTS GARCH model (yt = log(Pt))
from the simulated return series and plot of the average evolution of the t-statistic of γ

calculated over different window sizes.

Figure 5.12.: MC Simulation (50 simulations): Sim. trajectories of 6000 days GARCH(1, 1) and then,
again GARCH(1, 1) dynamics with different coefficients (both estimated from NAS-
DAQ) for another 1350 days. Estimation of an FTS GARCH model (yt = rt) from the
simulated return series and plot of the average evolution of the t-statistic of γ calculated
over different window sizes.
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How does the t-statistic of the regression component in an FTS GARCH model evolve if we in-
clude a period of alternating regimes (GARCH(1, 1) and FTS GARCH)?

So far we have always simulated 6000 days of a non-bubble regime followed by 1350 days of a
bubble regime. Now, let us include a period of alternating bubble and non-bubble regimes where
each of them lasts for a quarter (60 days). This means we simulate 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics for 3000
days and finally, a pure FTS GARCH regime (where γ is chosen even higher than in the alternating
regime) for another 350 days. We would like to know at which point in time the FTS GARCH gives
a signal for a bubble regime. Concerning the regression component, we do not only use (1) log
price and (2) return for both simulation and estimation, but also mix the regression components
(simulation and estimation are done with different regression components). The results of these
four simulation experiments can be found in Figures 5.13 - 5.16.
Independent of the chosen regression component for simulation, if we use log price as regression
component in the FTS GARCH model used for estimation, we find the t-statistic to increase a bit
in the period of alternating regimes and to increase rapidly as soon as the strong bubble regime at
the end of the simulation starts. At first glance this evolution of the t-statistic looks quite good, but
we should keep in mind we could find high significance for a positive γ estimated over windows
reaching to the end of the simulated series also in case of exponential growth with high µ (compare
with the synthetic test in Figure 5.11).
We also estimate an FTS GARCH model from the same bubbles by using return as regression
component and find quite different results depending on the chosen regression component for
simulation. If we choose log price in the simulation step, we find only a pretty small increase in
the evolution of the t-statistic of the coefficient of yt = rt at the end of the simulation period. We
do not detect a significantly positive γ (Figure 5.14). On the contrary, if we choose return in the
simulation step, we detect high significance for a positive γ already in the alternating period (Figure
5.16). On the one hand this means the model shows a nice consistency, but on the other hand it
gives us a bubble signal already in rather calm periods. We would prefer a lower signal / lower
t-statistic in the alternating period becoming higher for the pure bubble regime at the end of the
simulation, which then could serve as an early warning signal at the right time. Hence, depending
on the type of simulated bubble (positive feedback of log price on return or return on return) we
get either almost no signal or a very strong (in our case even undesirably strong) signal. This is one
of the main drawbacks of using return as regression component in an FTS GARCH model (we will
find similar results for empirical data below).
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Figure 5.13.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ, γ = 4 · 10−4) for another 3000
days and finally, a pure FTS GARCH regime with even higher γ = 6 · 10−4 for 350
days. Estimation of an FTS GARCH model (yt = log(Pt)) from the simulated return
series and plot of the average evolution of the t-statistic of γ calculated over different
window sizes.

Figure 5.14.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ, γ = 4 · 10−4) for another 3000
days and finally, a pure FTS GARCH regime with even higher γ = 6 · 10−4 for 350
days. Estimation of an FTS GARCH model (yt = rt) from the simulated return series
and plot of the average evolution of the t-statistic of γ calculated over different window
sizes.
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Figure 5.15.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ, γ = 0.2) for another 3000 days and
finally, a pure FTS GARCH regime with even higher γ = 0.7 for 350 days. Estimation
of an FTS GARCH model (yt = log(Pt)) from the simulated return series and plot of
the average evolution of the t-statistic of γ calculated over different window sizes.

Figure 5.16.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ, γ = 0.2) for another 3000 days and
finally, a pure FTS GARCH regime with even higher γ = 0.7 for 350 days. Estimation
of an FTS GARCH model (yt = rt) from the simulated return series and plot of the
average evolution of the t-statistic of γ calculated over different window sizes.
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Empirical results:

We propose the following time window analysis to find windows where γ is significantly greater
than 0 (evidence for a bubble regime):
Choose various time windows (tstart, . . . , tend), with tstart, tend ∈ {1, . . . , T} and tstart < tend, and fit
an FTS GARCH model to the corresponding return series rtstart , ..., rtend :

rt = µ + γ · yt−1 + εt, where εt | Ft−1 ∼ N(0, ht), (5.26)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = tstart + 1, . . . , tend. (5.27)

Then, we plot the parameter γ and its t-statistic for the chosen windows in a heat color plot. On
the x-axis we have the start date tstart and on the y-axis the end date tend of the corresponding
time window. Also, we add the logarithmic price series for both the start and the end dates. The
numbers 1.28, 1.64, 1.96 and 2.32 are the 90%, 95%, 97.5% and 99% quantiles of a standard normal
distribution. We analyze the time series of DAX, Gold, NASDAQ Composite and NIKKEI, where
we use both log price and return as regression component.

Using yt = log(Pt), the result for the DAX time series is quite nice (Figure 5.17). There is very
high significance for a positive γ for windows ending around the bubble peaks in 1997, 1998 and
2000. The start dates leading to the highest t-statistics are in 1991 and 1994 where one can find local
maxima in the price series.
Looking at the analysis of the Gold price series (Figure 5.18), we see that a start date around 1998
enables us to identify the maxima in 2006 and 2008 as bubbles. Also, there has been a strong signal
for a positive feedback of log price on return for the last three years. Therefore, the FTS GARCH
model with log price as regression component has suggested a bubble in the Gold price.
For NASDAQ Composite we find many different start dates indicating a bubble regime around the
peak in 2000 (Figure 5.19). If one uses windows starting at the local maxima in 1981 or 1983, one
finds evidence for a positive γ even for windows ending already in 1997.
Fitting an FTS GARCH model with log price as regression component to various time windows of
the NIKKEI time series (Figure 5.20), one detects a positive feedback regime for windows ending
between 1986 and 1992. This means the NIKKEI price series with its peak in 1990 leads to the
strongest bubble signal compared to the other three assets we analyzed.

The results using an FTS GARCH model with return as regression component for the same time
series (DAX, Gold, NASDAQ Composite and NIKKEI) are not that clear.
Let’s start again with the analysis of the results for the DAX (Figure 5.21). For the peaks in 1997
and 1998 we can not find evidence for a bubble regime. At least for windows ending in 1999 and
around the peak in 2000 there are bubble signals. The windows leading to the highest t-statistics
are those starting either in 1991 or at the peaks in 1997 and 1998.
For the Gold price (Figure 5.22) we see even lower significance for a positive γ, where the window
with the highest t-statistic is from 2004 to 2008.
The analysis of the NASDAQ Composite (Figure 5.23) and the NIKKEI time series (Figure 5.24) face
a different problem. We observe the t-statistic of γ depending heavily on the size of the chosen
window. We find very high significance for a positive coefficient for the majority of windows we
are looking at. This is even a too strong signal we certainly do not want to have because we can not
use it as an early warning signal at the right time. One idea to handle this strong signal is to modify
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the test and analyze

H0 : γ ≤ 1 against H1 : γ > 1. (5.28)

The rejection of H0 would then signal a very strong explosive bubble since the return itself grows
exponentially (recall the result from equation 5.7). But even for the time windows with the highest
γ’s we have only values around 0.3 at most (Figures 5.23 and 5.24 for γ). Hence, in general we will
reject H0 in 5.28 for all considered time windows.

In summary, we found positive feedback of log price on return for all four assets analyzed, whereas
for many time windows of DAX and Gold the positive feedback of return on return is only low and
very high for NASDAQ Composite and NIKKEI. Recall we found similar results for the estimation
of an FTS GARCH model with return as regression component in the simulation experiments in
Figures 5.14 and 5.16. Fitting an FTS GARCH model with yt = rt to a simulated bubble where
yt = log(Pt) led to almost no significance for a positive γ, however, by using yt = rt for the simula-
tion we found strong evidence for a bubble already during the alternating period.
In the next section we try to overcome the above problem with three different methods that reduce
the volatility of the return series. First of all, we apply a Kalman filter to the daily return series that
finds an optimal estimate with minimal variance for the true state of the return process. Then, we
also estimate the FTS GARCH model for returns averaged over longer than daily horizons. And
finally, we use an exponentially weighted moving average of the returns as regression component.
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Figure 5.17.: DAX 1991-2000: estimated γ (upper panel) and corresponding t-statistic (lower panel)
in an FTS GARCH model (yt = log(Pt)) fitted over different time windows
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Figure 5.18.: Gold 1991-2013: estimated γ (upper panel) and corresponding t-statistic (lower panel)
in an FTS GARCH model (yt = log(Pt)) fitted over different time windows
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Figure 5.19.: NASDAQ Composite 1971-2001: estimated γ (upper panel) and corresponding t-
statistic (lower panel) in an FTS GARCH model (yt = log(Pt)) fitted over different
time windows
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Figure 5.20.: NIKKEI 1976-1992: estimated γ (upper panel) and corresponding t-statistic (lower
panel) in an FTS GARCH model (yt = log(Pt)) fitted over different time windows
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Figure 5.21.: DAX 1991-2000: estimated γ (upper panel) and corresponding t-statistic (lower panel)
in an FTS GARCH model (yt = rt) fitted over different time windows
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Figure 5.22.: Gold 1991-2012: estimated γ (upper panel) and corresponding t-statistic (lower panel)
in an FTS GARCH model (yt = rt) fitted over different time windows

48



5.4. Introducing the FTS GARCH model

Figure 5.23.: NASDAQ Composite 1971-2000: estimated γ (upper panel) and corresponding t-
statistic (lower panel) in an FTS GARCH model (yt = rt) fitted over different time
windows
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Figure 5.24.: NIKKEI 1976-1994: estimated γ (upper panel) and corresponding t-statistic (lower
panel) in an FTS GARCH model (yt = rt) fitted over different time windows

50



5.5. Improving the usage of return as regression component

5.5. Improving the usage of return as regression component

5.5.1. Kalman �ltered return

The Kalman filter is a remarkable method to reduce the noise in a time series. Hence, we will try to
use it in order to improve the usage of return as regression component in an FTS GARCH model.
We start off with a general description of the discrete Kalman filter following the ideas of Welch
and Bishop (1995) [WB]. Subsequently, we look in detail at the implemented Kalman filter method.

The system of equations

The discrete Kalman filter provides an estimate for the true state x ∈ Rp of a discrete-time process.
The estimation is done in a way that minimizes the mean of the squared error. The true state x is
assumed to follow the linear stochastic difference equation

xk = A · xk−1 + B · uk−1 + wk−1, for k = 2, . . . , n, (5.29)

where u ∈ Rl is an optional control input and A ∈ Rp×p and B ∈ Rp×l are constant coefficient
matrices. The noisy measurement z ∈ Rq of the true state should satisfy

zk = H · xk + vk, for k = 1, . . . , n, (5.30)

where H ∈ Rq×p is another constant coefficient matrix. wk and vk are the process and the measure-
ment noise, respectively. They are assumed to be white noise, independent of each other and with
normal probability distributions

wk ∼ N(0, Qk) and vk ∼ N(0, Rk). (5.31)

The process noise covariance Qk and the measurement noise covariance Rk change with each time
step. In practice, their estimation is quite a challenging task. There is a variety of techniques
proposed in the literature. In order to estimate them, for example, by the sample covariance or
an exponentially weighted moving average calculated over a certain time window N, one needs
a surrogate for the true process state xk. Even more promising but also more complicated is the
Autocovariance Least-Squares method.

The method of estimation

Let x̂−k ∈ Rp be the a priori state estimate for x at step k given knowledge of the process prior to
step k, and x̂k ∈ Rp the a posteriori estimate at step k given measurement zk. Then, one can define
the a priori and a posteriori estimate errors by

e−k := xk − x̂−k and ek := xk − x̂k. (5.32)

Hence, the corresponding error covariance matrices can be computed as

P−k := E[e−k · e
−T
k ] and Pk := E[ek · eT

k ]. (5.33)
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Now, let us rougly describe how Maybeck (1979) [M3] finds the optimal estimator algorithm. From
a Bayesian point of view, one is interested in using the density of the random variable xk−1 condi-
tioned on the entire measurement history Zk−1 := (z1, . . . , zk−1) to find the density of xk conditioned
on Zk. Maybeck starts with the assumption that

xk−1|Zk−1 ∼ N(x̂k−1, Pk−1). (5.34)

In particular, this means

E[xk−1|Zk−1] = x̂k−1 and Pk−1 = E[ek−1 · eT
k−1|Zk−1]. (5.35)

This assumption is verified in form of an inductive proof type of derivation (k− 1 ⇒ k) to be true
for all k = 1, . . . , n (see Maybeck (1979) [M3] for details). In other words, the optimal estimator
is found to coincide with the conditional mean and the covariance recursion does not depend on
the measurement history (not only Pk can be shown to be independent of Zk, but also P−k of Zk−1).
If Zk changes, then the conditional mean of xk changes, but the shape of the density of xk|Zk
remains unchanged. Maybeck interprets this independence in the following way: "[...] the estimator
gleans out as much information from the measurements as possible, and there is nothing left in the
measurements that could tell you anything about the error." Hence, we can compute the covariance
of the errors by using x̂k as the optimal estimate of the true state xk.
These thoughts (and some further arguments that can be found in Maybeck (1979) [M3] as well)
initiate the goal to find the a posteriori state estimate x̂k as a linear combination of the a priori
estimate x̂−k and a weighted difference between the actual measurement zk and the measurement
prediction H · x̂−k (Welch and Bishop (1995) [WB]):

x̂k = x̂−k + Kk · (zk − H · x̂−k ) (5.36)

The difference zk − H · x̂−k is called measurement innovation or residual. The Kalman gain Kk ∈
Rp×q is chosen to minimize the a posteriori error covariance Pk. In order to find an explicit form for
the minimizer, one substitutes x̂k from (5.36) into the definition for ek (5.32) and subsequently puts
that into the formula for Pk in (5.33). Then, one takes the derivative of the trace of Pk with respect to
Kk and sets the result equal to 0. Finally, one can solve for the optimizing Kk (please see Appendix
B for the full derivation of the minimizer Kk and the optimal form for Pk).
Eventually, Kalman found the following two-step procedure as solution for the filtering problem.
At first, the optimal state estimate and the error covariance are predicted from measurement time
k− 1 to k by (time update)

x̂−k = Ax̂k−1 + Buk−1, (5.37)

P−k = APk−1 AT + Qk. (5.38)

Then, they are updated by computing the Kalman gain

Kk = P−k HT(HP−k HT + Rk)
−1. (5.39)

and incorporating it in both the mean and covariance relations (measurement update):

x̂k = x̂−k + Kk · (zk − H · x̂−k ), (5.40)

Pk = (I − Kk H)P−k . (5.41)
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Figure 5.25.: Illustration of the discrete Kalman filter method (Figure from Welch and Bishop (1995)
[WB]).

In summary, the Kalman filter operates along some kind of feedback control: At first, it estimates
the true state of the process and then obtains feedback in form of a measurement. The time update
equations forecast the state and error covariance estimates to obtain a priori estimates for the next
time step, whereas the measurement update equations are responsible for the feedback. They in-
corporate the measurement into the a priori estimate to obtain an improved a posteriori estimate.

According to Maybeck (1979) [M3], Kalman originally developed the filter by the geometrical rela-
tion that the optimal estimate x̂k is the orthogonal projection of the true state xk onto the subspace
spanned by the measurement history Zk. Furthermore, the Kalman filter estimate is optimal with
respect to other criteria as well, which makes it a quite powerful tool for different applications. The
optimal estimate x̂k minimizes the mean square error since it is equal to the conditional mean. Also,
it is the minimum variance unbiased linear estimate and, if there is no a priori state information,
even the maximum likelihood estimate.

The implemented form of the Kalman filter

For the calculation of the Kalman filtered returns rKalman
k , k = 1, . . . , n, we use a one dimensional

discrete Kalman filter (p = 1, q = 1). Moreover, we simplify the filter by setting A = 1, B = 0 and
H = 1. Therefore, we start off with the following system of equations:

xk = xk−1 + wk−1, k = 2, . . . , n, (5.42)

rk = xk + vk, k = 1, . . . , n, (5.43)
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where

wk ∼ N(0, Qk) and vk ∼ N(0, Rk). (5.44)

For the estimation of the process noise variance Qk and the measurement noise variance Rk in each
time step we use the sample variance over a window of length N. An exponentially weighted mov-
ing average of the noisy measurements rk (window length MAlen = N) serves as a surrogate for
the true process state xk.

Algorithm:

Smoothing data: rsmoothed = EWMA(r, N),

where

EWMA(r, N)t := λ · EWMA(r, N)t−1 + (1− λ) · rt, for t = 2, . . . , T, (5.45)

with

EWMA(r, N)1 = 0 and λ := 1− 1
N + 1

. (5.46)

Start values: x̂k = rsmoothed
k , for k = 1, . . . , 2 · N − 2, P2·N−2 = 1

for k = 2 · N − 1, . . . , T

1. A priori state estimate (project the state ahead):

H · x̂−k = x̂−k = x̂k−1,

which means the preceding Kalman filtered return is used as measurement forecast.

2. Estimate process and measurement noise:

Q̂k =
1

N − 1

k

∑
j=k−N+1

(
rsmoothed

j − 1
N

k

∑
j=k−N+1

rsmoothed
j

)2

R̂k =
1

N − 1

k

∑
j=k−N+1

(
(rj − rsmoothed

j )− 1
N

k

∑
j=k−N+1

(rj − rsmoothed
j )

)2

Project error variance ahead:

P−k = Pk−1 + Q̂k

3. Compute Kalman gain:

Kk = P−k · (P−k + R̂k)
−1
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4. Combine forecast optimally with measurement rk:

rKalman
k := x̂k = x̂−k + Kk · (rk − x̂−k ) (a posteriori state estimate)

5. Update error variance:

Pk = (1− Kk) · P−k

end

Using the filtered returns rKalman
k , k = 1, . . . , n, we are now able to estimate the FTS GARCH

model with Kalman filtered regression component for various time windows (tstart, . . . , tend), where
tstart, tend ∈ {1, . . . , n} and tstart < tend:

rt = µ + γ · rKalman
t−1 + εt, with εt ∼ N(0, ht), (5.47)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = tstart + 1, . . . , tend, (5.48)

and test for

H0 : γ ≤ 0 against H1 : γ > 0. (5.49)

Synthetic tests:

How does the t-statistic of the regression component (yt = rKalman
t ) in an FTS GARCH model

evolve if we simulate a bubble using the FTS GARCH model including a period of alternating
regimes (GARCH(1, 1) and FTS GARCH)?

We propose to repeat the simulation experiments from Figures 5.13 - 5.16, but instead of using either
return or log price as regression component in the fitted FTS GARCH model we use the Kalman
filtered returns. For both types of simulated bubbles we find an improvement of the bubble signal
in the preferred way (Figures 5.26 and 5.27). Now, we successfully detect a bubble simulated with
yt = log(Pt) for windows ending at the end of the simulation period. Moreover, in case of yt = rt in
the simulated FTS GARCH, we see a reduction in the strength of the bubble signal. There is high
significance for a positive γ during the pure bubble regime but not during the alternating regime.
Hence, the applicaton of a Kalman filter to the return series could improve our empirical results as
well.

Empirical results:

Summing up the empirical results for DAX and Gold using Kalman filtered returns as regression
component, we could not achieve a rise in the strength of the bubble signals (independent of the
chosen parameter N). Nevertheless, the filter manages to reduce the strength of the bubble signal in
case of the NASDAQ Composite and NIKKEI time series. For the NIKKEI we detect a perfect bubble
signal between 1988 and 1990 preceding the peak in 1990 using almost all start dates (Figure 5.29).
But the results for NASDAQ show there is no guarantee the filter solves our problem completely.
Obviously it reduces the signal strength, however, we still observe increasing significance for larger
time windows (Figure 5.28).
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Figure 5.26.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ, γ = 4 · 10−4) for another 3000 days
and finally, a pure FTS GARCH regime with even higher γ = 6 · 10−4 for 350 days.
Estimation of an FTS GARCH model (yt = rKalman

t , N = 20) from the simulated return
series and plot of the average evolution of the t-statistic of γ calculated over different
window sizes.

Figure 5.27.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ, γ = 0.2) for another 3000 days and
finally, a pure FTS GARCH regime with even higher γ = 0.7 for 350 days. Estimation
of an FTS GARCH model (yt = rKalman

t , N = 20) from the simulated return series and
plot of the average evolution of the t-statistic of γ calculated over different window
sizes.
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Figure 5.28.: NASDAQ Composite 1991-2000: t-statistic of γ in an FTS-GARCH model (yt = rKalman
t ,

N = 10) fitted over different time windows

Figure 5.29.: NIKKEI 1976-1994: t-statistic of γ in an FTS-GARCH model (yt = rKalman
t , N = 20)

fitted over different time windows
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5.5.2. Average return

Another alternative instead of using the daily return series itself for the estimation of an FTS GARCH
model is to use averages of multiple returns. Hence, let us define the average return over a certain
horizon of τ ∈N days as

rτ
t|s := log

(
Ps+t·τ

Ps+(t−1)·τ

)
=

s+t·τ
∑

k=s+(t−1)·τ+1

rk

τ
, for t = 1, . . . ,

[
n− s

τ

]
=: T, (5.50)

where s ∈ {0, . . . , τ − 1} is the start date in the price series Ps, . . . , Pn chosen for the calculation.
Note that for s = 0 we obviously use the whole sample P0, . . . , Pn for the analysis. We will now
show that the estimation over various time windows (tstart, . . . , tend), with tstart, tend ∈ {1, . . . , T}
and tstart < tend, of the following form of an FTS GARCH process depends a lot on the chosen start
date s:

rτ
t|s = µ + γ · rτ

t−1|s + εt, with εt ∼ N(0, ht), (5.51)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = tstart + 1, . . . , tend. (5.52)

For this purpose, let us consider, for example, the NASDAQ Composite time series between De-
cember 9th, 1986 and May 18th, 2001 including 3650 prices P0, . . . , P3649. Using a horizon of τ = 40
days, the number of average returns T is equal to

T =

[
n− s

τ

]
=

{
91, for s ∈ {0, . . . , 9},
90, for s ∈ {10, . . . , 39}. (5.53)

One can see the dependence on s in Figure 5.30 where we plot the t-statistic of γ in 5.51-5.52 for
s ∈ {0, . . . , 39}, tstart = 1 and

tend ∈
{
{66, . . . , 91}, for s ∈ {0, . . . , 9},
{65, . . . , 90}, for s ∈ {10, . . . , 39}, (5.54)

We label the y-axis with the date of the last price included in the corresponding window of prices
whose index is n′ = s + tend · τ. Let us compare, for example, the cases s = 3 and s = 33 (the
corresponding first date of the price series used for calculating the average returns is December
12th, 1986, respectively, January 27th, 1987). For s = 3 we find high significance for a positive γ for
the time windows ending around the bubble peak, whereas for s = 33 the maximum likelihood
estimation finds a negative value for γ. The reason is that due to the averaging over a certain
horizon the obtained return series look quite different for different start dates s (although the sum
of all returns over each series of average returns is approximately the same). Figure 5.31 shows the
average return series (τ = 40 days) for NASDAQ Composite between December 9th, 1986 and 18th

May, 2001 for s = 3 and s = 33. Intuitively, for s = 33 (in blue color) we find 4 highly negative
average returns followed by highly positive ones which leads to a negative coefficient γ, whereas
for s = 3 (in red color) there are less extreme returns. Alternatively, this can be visualized nicely in
a scatterplot with regression line for the following regression

r40
t|s = µ + γ · r40

t−1|s + εt, t = 2, . . . , tend and s ∈ {3, 33}. (5.55)

For tend we choose the end date near the bubble peak where we found the highest significance for
a positive γ. εt are the residuals. In Figure 5.32 we see that in a standard regression analysis one
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finds a quite similar result for γ as in the FTS GARCH model, the slope γ is positive for s = 3 and
negative for s = 33.

Figure 5.30.: NASDAQ Composite (December 9th, 1986 - May 18th, 2001): t-statistic of γ in an
FTS GARCH model with regression component yt = r40

t|s fitted for s ∈ {0, . . . , 39},
tstart = 1 and various tend.

Figure 5.31.: NASDAQ Composite 1986-2001: Comparison of average returns over τ = 40 days
calculated for s = 3 and s = 33 (r40

t|3 and r40
t|33).
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Figure 5.32.: NASDAQ Composite 1986-2001: Scatterplot of r40
t+1|s against r40

t|s with corresponding

regression line for s = 3 and s = 33.

If we let s′ vary even in {0, . . . , 3τ− 1} we find some kind of periodicity in s′ (3 periods). This is due
to the fact that s′ ≥ τ corresponds to the case s = s′ mod τ ∈ {0, . . . , τ− 1}with tstart =

[
s′
τ

]
+ 1 > 1,

which means we are analyzing for various tend as defined in equation 5.54 the windows of average
returns {rτ

t′|s′ , t′ = 1, . . . , tend − tstart + 1} = {rτ
t|s , t = tstart, . . . , tend}, and thus, subsets of the

series {rτ
t|s , t = 1, . . . , tend}. Since the difference between these two sets is only the first few av-

erage returns, the maximum likelihood estimation yields quite similar coefficients for fixed s and
tstart ∈ {1, 2, 3} or equivalently for s′ ∈ {s, s + τ, s + 2τ} (Figure 5.33).
The upcoming question is how to choose the parameter s. I propose to pick s such that one maxi-
mizes the t-statistic of γ, or with other words, one gets the highest significance for a positive γ (in
particular for windows ending around the bubble peak). Recall that we are looking for indication
of super-exponential growth in price. Now, if we can find a way of averaging the return series such
that there is positive feedback in the average returns we found evidence for such a behavior (even if
there are other start dates s where we do not get such a strong signal). Basically this is just part of
our goal to find a window in the price series with high significance for a positive γ around bubble
peaks.
In the example above this means we choose s = 3 as start date for the price time series, where P3 is
the price of NASDAQ Composite on December 12th, 1986.
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Figure 5.33.: NASDAQ Composite (December 9th, 1986 - May 18th, 2001): t-statistic of γ in an
FTS GARCH model with regression component yt = r40

t|s fitted for s ∈ {0, . . . , 39},
tstart ∈ {1, 2, 3} and various tend.

Synthetic tests:

Now, let us have a look at the performance of the method of using average returns to fit an
FTS GARCH model in various simulation experiments. We simulate again 50 trajectories of two
types of bubbles. We start with the simulation of 4000 days GARCH(1, 1), then, alternating with
a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics for another 3000 days and
finally, a pure FTS GARCH regime with γ chosen even higher as in the alternating period for 350
days. The coefficients are estimated from NASDAQ Composite between 1971 and 2000 in order to
use realistic values. Note that we could do the same experiment with totally different parameters
as well and that the analysis does not depend on the NASDAQ time series itself. As regression
component in the FTS GARCH model used for simulation we use (1) log prices yt = log(Pt) and
(2) daily returns yt = rt.
Next, we fit the FTS GARCH model from equations 5.51 - 5.52 to various windows of the average
returns calculated as in definition 5.50 from each of the simulated price trajectories with s = 0 and
two different horizons τ. As usual, we plot a rescaled version of the NASDAQ Composite price
series between 1971 and 2000, the average of the 50 simulated trajectories at each point in time and
finally, the average of the 50 t-statistics of the coefficient γ for each window size and various points
in time, where we shift the window by 100 days each time. For simplicity we assume that s = 0.
Since we simulate multiple trajectories and average the corresponding t-statistics, the choice of s
should not have any influence on our results. Actually, one could also look for an optimal start date
s for each trajectory separately such that the t-statistic of γ is maximized. In general this would lead
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to higher significance for a positive γ.
The results can be found in Figures 5.34 - 5.37. In Figure 5.34 and 5.35 we consider the cases
yt = log(Pt) and (1) τ = 20 days and (2) τ = 40 days. Comparing the results with Figure 5.14
where we used daily returns as regression component in the fitted FTS GARCH model, we see that
the averaging of returns leads to higher significance for a positive γ in the bubble period (a pure
FTS GARCH regime lasting for 350 days). Moreover, if we compare the cases yt = rt and (1) τ = 5
days and (2) τ = 20 days in Figure 5.36 and 5.37 with Figure 5.16 where we used daily returns as
regression component we can find an improvement as well.
In a nutshell, the usage of average returns improves the bubble signal found from simulated tra-
jectories in a preferable way for both simulation experiments, using log price and daily returns as
regression component.

Figure 5.34.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ, γ = 4 · 10−4) for another 3000 days
and finally, a pure FTS GARCH regime with even higher γ = 6 · 10−4 for 350 days.
Estimation of an FTS GARCH model (average return, τ = 20) from the simulated
return series and plot of the average evolution of the t-statistic of γ calculated over
different window sizes.
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Figure 5.35.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ, γ = 4 · 10−4) for another 3000 days
and finally, a pure FTS GARCH regime with even higher γ = 6 · 10−4 for 350 days.
Estimation of an FTS GARCH model (average return, τ = 40) from the simulated
return series and plot of the average evolution of the t-statistic of γ calculated over
different window sizes.

Figure 5.36.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ, γ = 0.2) for another 3000 days and
finally, a pure FTS GARCH regime with even higher γ = 0.7 for 350 days. Estimation
of an FTS GARCH model (average return, τ = 5) from the simulated return series and
plot of the average evolution of the t-statistic of γ calculated over different window
sizes.
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Figure 5.37.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ, γ = 0.2) for another 3000 days and
finally, a pure FTS GARCH regime with even higher γ = 0.7 for 350 days. Estimation
of an FTS GARCH model (average return, τ = 20) from the simulated return series
and plot of the average evolution of the t-statistic of γ calculated over different window
sizes.

Empirical results:

In order to get the following empirical results, we have always looked for an optimal parameter
s such that one finds the highest t-statistics (as already described above), or equivalently, for an
appropriate start date for the price time series. Moreover, the most meaningful results are found for
τ = 20, τ = 40 and τ = 60 days (1 month, 2 months and 3 months) which are compared below.
Looking at the results for DAX (Figures 5.38-5.40), there is a strong bubble signal for the peak in
2000 in case τ = 20, for the peak in 1998 in case τ = 40 and for the peak in 1997 in case τ = 40 and
τ = 60.
Analyzing the Gold price, we could not detect a strong enough signal for a bubble in case τ = 20
or τ = 40. But for τ = 60 there is a bubble signal for the peaks in 2006 and 2008 (Figure 5.41).
Finally, fitting the FTS GARCH with average return as regression component to the NASDAQ
Composite, we manage to reduce the strength of the signal. In case τ = 20 (Figure 5.42) the
reduction in the strength of the signal is similar to the application of a Kalman filter (compare
Figure 5.28). In order to have a meaningful bubble signal we propose to use τ = 40 days (Figure
5.43). Then there is high significance for a positive γ only around the bubble peak in 2000 (and also
for the subsequent crash). A horizon of τ = 60 days seems to be already too large, we could not
detect a strong enough bubble signal.
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5.5. Improving the usage of return as regression component

Figure 5.38.: DAX (January 2nd, 1991 - November 10th, 2000): t-statistic of γ in an FTS GARCH
model (regression component = average return over τ = 20 days) fitted over different
time windows

Figure 5.39.: DAX (January 14th, 1991 - November 10th, 2000): t-statistic of γ in an FTS GARCH
model (regression component = average return over τ = 40 days) fitted over different
time windows
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Figure 5.40.: DAX (February 18th, 1991 - November 10th, 2000): t-statistic of γ in an FTS GARCH
model (regression component = average return over τ = 60 days) fitted over different
time windows

Figure 5.41.: Gold (July 17th, 1990 - April 22nd, 2013): t-statistic of γ in an FTS GARCH model
(regression component = average return over τ = 60 days) fitted over different time
windows
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Figure 5.42.: NASDAQ Composite (December 18th, 1986 - May 18th, 2001): t-statistic of γ in an
FTS GARCH model (regression component = average return over τ = 20 days) fitted
over different time windows

Figure 5.43.: NASDAQ Composite (December 12th, 1986 - May 18th, 2001): t-statistic of γ in an
FTS GARCH model (regression component = average return over τ = 40 days) fitted
over different time windows
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5.5.3. Exponentially weighted moving average return

The last method we propose to improve the FTS GARCH model with returns as regression com-
ponent is the usage of exponentially weighted moving average returns instead. The EWMA return
over a certain horizon of τ ∈N days is defined as

rEWMA
t|s :=

1− δ

1− δτ
·

τ−1

∑
k=0

δk · rs+t·τ−k, for t = 1, . . . ,
[

n− s
τ

]
=: T, (5.56)

where s ∈ {0, . . . , τ− 1} is again the start date in the price series Ps, . . . , Pn chosen for the calculation,
δ = e−α and α > 0 constant.
Now, we would like to estimate for various time windows (tstart, . . . , tend), with tstart, tend ∈ {1, . . . , T}
and tstart < tend, the following FTS GARCH process:

rτ
t|s = µ + γ · rEWMA

t−1|s + εt, with εt ∼ N(0, ht), (5.57)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = tstart + 1, . . . , tend, (5.58)

and test again for

H0 : γ ≤ 0 against H1 : γ > 0. (5.59)

Synthetic tests:

As usual, we do some simulation experiments before we apply the method to real world data. We
simulate the two types of bubbles (yt = log(Pt) and yt = rt) where we include a period of alternating
regimes once again, but now we use the FTS GARCH model with exponential weighting of returns
from 5.57-5.58 for estimation. The results are quite similar compared to the usage of average returns
as regression component (compare Figures 5.34-5.37). They can be found in Figures 5.44-5.47. For
both types of simulated bubbles we find a preferable bubble signal compared to the usage daily
returns as regression component.
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5.5. Improving the usage of return as regression component

Figure 5.44.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ, γ = 4 · 10−4) for another 3000
days and finally, a pure FTS GARCH regime with even higher γ = 6 · 10−4 for 350
days. Estimation of an FTS GARCH model (EWMA return, τ = 20, α = 0.15) from the
simulated return series and plot of the average evolution of the t-statistic of γ calculated
over different window sizes.

Figure 5.45.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = log(Pt), coefficients estimated from NASDAQ, γ = 4 · 10−4) for another 3000
days and finally, a pure FTS GARCH regime with even higher γ = 6 · 10−4 for 350
days. Estimation of an FTS GARCH model (EWMA return, τ = 40, α = 0.1) from the
simulated return series and plot of the average evolution of the t-statistic of γ calculated
over different window sizes.
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Figure 5.46.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ, γ = 0.2) for another 3000 days and
finally, a pure FTS GARCH regime with even higher γ = 0.7 for 350 days. Estimation
of an FTS GARCH model (EWMA return, τ = 5, α = 0.3) from the simulated return
series and plot of the average evolution of the t-statistic of γ calculated over different
window sizes.

Figure 5.47.: MC Simulation (50 simulations): Sim. trajectories of 4000 days GARCH(1, 1), then,
alternating with a regime length of 60 days GARCH(1, 1) and FTS GARCH dynamics
(yt = rt, coefficients estimated from NASDAQ, γ = 0.2) for another 3000 days and
finally, a pure FTS GARCH regime with even higher γ = 0.7 for 350 days. Estimation
of an FTS GARCH model (EWMA return, τ = 20, α = 0.15) from the simulated return
series and plot of the average evolution of the t-statistic of γ calculated over different
window sizes.
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Empirical results:

In order to find plausible results for real data (we choose again the DAX, Gold and NASDAQ time
series such that we are able to directly compare the results), we need to look again for an optimal
parameter s (an optimal start date for the analyzed time series) in order to maximize the t-statistics
of γ. Analog to the usage of average returns, we observe the most meaningful results for τ = 20,
τ = 40 and τ = 60 days (1 month, 2 months and 3 months).
As usual, let us start with the analysis of the DAX time series (Figures 5.48-5.50). For τ = 20 days
we have a clear bubble signal around the peak in 2000 for various start dates of the time window.
Using a horizon of τ = 40, there is very strong positive feedback on return for the whole period
1998-2000. For windows ending at the peak in 2000 the t-statistic of γ is above the 99% quantile for
almost all start dates we consider. There is also a strong bubble signal before the peak in 1998. The
peak in 1997 is detected best by using τ = 60 days (independent of the chosen start date for the
window).
Next, we analyze the t-statistics of γ for the Gold price (Figures 5.51-5.53). In case τ = 20 the t-
statistic is above the 90% quantile for many windows ending between 2011 and 2013. For τ = 40 the
signal is even stronger, telling us there has been a bubble in Gold since 2009. Enlarging τ to 60 days
we detect a Gold bubble already in 2006, where the t-statistic of γ has its peaks around the peaks
in the Gold price. The highest t-statistics are found for 2008 (in particular, there is strong positive
feedback during the crash period).
Finally, let us consider the NASDAQ Composite time series (Figures 5.54-5.56). Consistent with our
previous results for NASDAQ, a horizon of τ = 20 days seems too small to identify the critical time
of the bubble (we find high significance for a bubble during the whole period 1997-2001). But if
one increases τ to 40, the time around the bubble peak in 2000 can be identified as the most critical
period. The 90% quantile is reached already at the beginning of 1999, and in 2000 even the 97.5%
quantile is exceeded. Analog to the Gold price, we find also positive feedback during the time of
the subsequent crash in 2001. The results in case of τ = 60 days are quite similar, however, there is
an even stronger signal for the crash.
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Figure 5.48.: DAX (January 2nd, 1991 - November 10th, 2000): t-statistic of γ in an FTS GARCH
model (regression component = EWMA return over τ = 20 days, α = 0.15) fitted over
different time windows

Figure 5.49.: DAX (January 31st, 1991 - November 10th, 2000): t-statistic of γ in an FTS GARCH
model (regression component = EWMA return over τ = 40 days, α = 0.1) fitted over
different time windows
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5.5. Improving the usage of return as regression component

Figure 5.50.: DAX (February 18th, 1991 - November 10th, 2000): t-statistic of γ in an FTS GARCH
model (regression component = EWMA return over τ = 60 days, α = 0.05) fitted over
different time windows

Figure 5.51.: Gold (July 18th, 1990 - April 22nd, 2013): t-statistic of γ in an FTS GARCH model
(regression component = EWMA return over τ = 20 days, α = 0.15) fitted over different
time windows
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Figure 5.52.: Gold (July 6th, 1990 - April 22nd, 2013): t-statistic of γ in an FTS GARCH model
(regression component = EWMA return over τ = 40 days, α = 0.1) fitted over different
time windows

Figure 5.53.: Gold (July 16th, 1990 - April 22nd, 2013): t-statistic of γ in an FTS GARCH model
(regression component = EWMA return over τ = 60 days, α = 0.05) fitted over different
time windows
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Figure 5.54.: NASDAQ (December 17th, 1986 - May 18th, 2001): t-statistic of γ in an FTS GARCH
model (regression component = EWMA return over τ = 20 days, α = 0.15) fitted over
different time windows

Figure 5.55.: NASDAQ (January 13th, 1987 - May 18th, 2001): t-statistic of γ in an FTS GARCH
model (regression component = EWMA return over τ = 40 days, α = 0.1) fitted over
different time windows
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Figure 5.56.: NASDAQ (January 6th, 1987 - May 18th, 2001): t-statistic of γ in an FTS GARCH model
(regression component = EWMA return over τ = 60 days, α = 0.05) fitted over different
time windows
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5.6. Positive feedback of volatility on return

The goal of this section is to find an appropriate way how to incorporate the ideas of Andersen
and Sornette (2004) [AS] in an FTS GARCH model. They define the so called nonlinear rational
expectation bubble model that considers not only positive feedback of return on return, but also
positive feedback of volatility on return. In comparison to previous bubble models where the price
process Pt is a jump-diffusion process of the form

dPt

Pt
= µdt + σdWt − κdJt, (5.60)

where µ > 0 is the drift, σ > 0 the volatility, Wt a standard Brownian motion and Jt a jump process
modeling corrections or crashes of size κ · Pt, they let µ = µ(Pt) and σ = σ(Pt) be nonlinearly
dependent on the instantaneous price. More specifically,

µ(Pt)Pt =
m

2Pt
(Ptσ(Pt))

2 + µ0

(
Pt

P0

)m

, (5.61)

σ(Pt)Pt = σ0

(
Pt

P0

)m

, (5.62)

where P0, µ0, σ0, m > 0 are fixed parameters of the model.
Hence, the authors model the possibility that a speculative bubble exhibits two behaviors simultane-
ously that are usually seen as conflicting: (1) super-exponential price growth and (2) accompanying
volatility growth (which in turn leads to return growth due to equation 5.61 - positive feedback of
volatility on return). They call this type of speculative bubble a "fearful singular bubble" (risk-
aversion increases as the bubble builds up). These two properties seem to disagree due to the
leverage effect (compare Chapter 2, stylized fact 6): negative returns lead to a rise in volatility and
positive returns lead to a fall in volatiliy. However, the leverage effect describes only a short-term
correlation and does not exclude isolated periods of positive correlation between return and future
volatility. Of course, there can be market regimes where only one of the two properties is satisfied
as well.
As a last step in this chapter, we thus include the possibility of positive feedback of volatility on
return (growth of return due to growth of volatility) in our model. Since we found the most mean-
ingful empirical results when we used exponentially weighted moving average returns, we use this
type of the FTS GARCH model as a starting point and add the exponentially weighted average of
the absolute returns as a second regression component. For this purpose let us define the EWMA
absolute return over a certain horizon of τ ∈N days as

rEWMA abs
t|s :=

1− δ

1− δτ
·

τ−1

∑
k=0

δk · |rs+t·τ−k|, for t = 1, . . . ,
[

n− s
τ

]
=: T, (5.63)

where s ∈ {0, . . . , τ − 1} is as usual the start date in the price series Ps, . . . , Pn chosen for the
calculation. Hence, we propose the following form of the FTS GARCH to model a "fearful singular
bubble" (including the possibility of positive feedback of volatility on return):

rτ
t|s = µ + γ1 · rEWMA

t−1|s + γ2 · rEWMA abs
t−1|s + εt, with εt ∼ N(0, ht), (5.64)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = tstart + 1, . . . , tend, (5.65)
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where (tstart, . . . , tend) are all possible windows with tstart, tend ∈ {1, . . . , T} and tstart < tend. Note
that this is still a GARCH(1, 1) regression model as defined in (3.22), where b := (µ, γ1, γ2) and
xt := (1, rEWMA

t−1|s , rEWMA abs
t−1|s )T, which means we can use the same maximum likelihood procedure to

consistently estimate the parameters of this model (compare Section 3.3).
We perform t-tests for γ1 and γ2 of the form

H0 : γ1 ≤ 0 against H1 : γ1 > 0 (5.66)

as well as

H0 : γ2 ≤ 0 against H1 : γ2 > 0. (5.67)

The rejection of H0 for γ1 will then indicate positive feedback of return on return and the rejection
of H0 for γ2 positive feedback of volatility on return. If we can reject both null hypotheses for the
same time window, we have indication for a "fearful bubble".

Empirical results:

As usual, we analyze the DAX, Gold and NASDAQ time series and maximize the t-statistics by
choosing an appropriate start date for the analyzed time series. Note that we need to analyze the
t-statistics of γ1 and γ2 separately. In Figures 5.57-5.59 we present the results of each time series for
a single choice of τ.
For the DAX one finds strong positive feedback of return on return (γ1) and also positive feedback
of volatility on return (γ2) around the bubble peak in 2000 (in particular for windows starting in
1991 or 1996). For the maximum value in 1998 there are also start dates with significantly positive
values for either γ1 or γ2. Moreover, one can detect high t-statistics for γ2 around the peak in 1997,
however, for these windows γ1 is often negative.
In the Gold time series there is positive feedback of return for the whole period 2006-2013, attaining
its maximum in 2008. Around the peak in 2006 and during the period 2009-2013 we find positive
feedback of volatility in addition.
The t-statistics obtained from analyzing NASDAQ show a pretty clear pattern. For various start
dates we detect strong evidence for growth in return due to growth in both return and volatility at
the peak in 2000 and in advance. Also, during the crash period in 2001 there was strong positive
feedback of return.
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Figure 5.57.: DAX (January 31st, 1991 - November 10th, 2000): t-statistic of γ1 (upper panel) and γ2

(lower panel) in an FTS GARCH model (regression components = EWMA return and
absolute value of EWMA return over τ = 40 days, α = 0.1) fitted over different time
windows
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Figure 5.58.: Gold (July 13th, 1990 - April 22nd, 2013): t-statistic of γ1 (upper panel) and γ2 (lower
panel) in an FTS GARCH model (regression components = EWMA return and absolute
value of EWMA return over τ = 60 days, α = 0.05) fitted over different time windows
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Figure 5.59.: NASDAQ (December 26th, 1990 - May 18th, 2001): t-statistic of γ1 (upper panel) and γ2

(lower panel) in an FTS GARCH model (regression components = EWMA return and
absolute value of EWMA return over τ = 40 days, α = 0.1) fitted over different time
windows
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Alternatively, we propose to analyze a reduced form of 5.64 by defining γ2 := γ1. This leads

rτ
t|s = µ + γ1 · (rEWMA

t−1|s + rEWMA abs
t−1|s ) + εt, with εt ∼ N(0, ht), (5.68)

ht = α0 + α1 · ε2
t−1 + β1 · ht−1, t = tstart + 1, . . . , tend. (5.69)

Summing EWMA returns and EWMA absolute returns means we use an exponentially weighted
average of only the positive returns. Hence, there could be stronger positive feedback on this
combined form of the regression component in times of a bubble. Moreover, this FTS GARCH
model has the advantage of only one regression component. As usual, we propose the following
t-test:

H0 : γ1 ≤ 0 against H1 : γ1 > 0. (5.70)

Empirical results:

We apply the common procedure to receive empirical results for the t-statistic of γ1 for DAX, Gold
and NASDAQ. In a nutshell, this method yields very nice results, showing clear evidence for strong
positive feedback at all bubble peaks we have usually analyzed. Apparently this tool could serve as
a good early warning system.

Figure 5.60.: DAX (January 22nd, 1991 - November 10th, 2000): t-statistic of γ1 in an FTS GARCH
model (regression component = sum of EWMA return and EWMA absolute return
over τ = 40 days, α = 0.1) fitted over different time windows
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Figure 5.61.: Gold (July 18th, 1990 - April 22nd, 2013): t-statistic of γ1 in an FTS GARCH model
(regression component = sum of EWMA return and EWMA absolute return over τ =

60 days, α = 0.1) fitted over different time windows

Figure 5.62.: NASDAQ Composite (December 27th, 1990 - May 18th, 2001): t-statistic of γ1 in an
FTS GARCH model (regression component = sum of EWMA return and EWMA ab-
solute return over τ = 40 days, α = 0.1) fitted over different time windows
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6
Markov Switching Model

In order to define the Markov switching model and estimate it’s coefficients we follow the way of
J.D. Hamilton (1994) [H].
We start off by considering a process st that should describe changes in regime. We model st as an
N-state Markov chain assuming values in {1, . . . , N} where the probability that st equals j depends
on the past only through the latest value st−1:

P[st = j|st−1 = i, st−2 = k, . . .] = P[st = j|st−1 = i] =: pij. (6.1)

Therefore, pij is the probability that state i will be followed by state j. We call {pij}i,j=1,...,N transition
probabilities and collect them in the transition matrix P:

P =


p11 p21 · · · pN1

p12 p22 · · · pN2
...

... · · ·
...

p1N p2N · · · pNN

 (6.2)

Note that the element in row j and column i is pij, the probablity to switch from state i to j. The
transition probabilities satisfy

N

∑
j=1

pij = 1 ∀i ∈ {1, . . . , N}. (6.3)

Hence, the sum of each column in P is 1.
It is quite useful to have a representation of a Markov chain with a vector autoregression. For this
reason let us define

ξt :=


(1, 0, 0, . . . , 0)T, if st = 1,
(0, 1, 0, . . . , 0)T, if st = 2,

...
...

(0, 0, 0, . . . , 1)T, if st = N.

(6.4)

If the process is in state i at time t, then the j-th element of ξt+1 is a random variable that is 1 with
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probability pij and 0 otherwise. Thus, its expectation is pij, and we find

E[ξt+1|st = i] =


pi1
pi2
...

piN

 , (6.5)

the i-th column of the transition matrix P. Recall that ξt is simply the i-th column of the identity
matrix IN if st = i. Thus, equation 6.5 yields

E[ξt+1|ξt] = P · ξt (6.6)

and using the Markov property from equation 6.1 one finds

E[ξt+1|ξt, ξt−1, . . .] = P · ξt. (6.7)

This result let’s us express a Markov chain in form of a first-order vector autoregression for ξt:

ξt+1 = P · ξt + vt+1, (6.8)

where

vt+1 := ξt+1 −E[ξt+1|ξt, ξt−1, . . .]. (6.9)

Note that the innovation process vt is a martingale difference sequence that is on average 0 and
impossible to forecast on the basis of previous states of the process.
From 6.8 we can also find m-period-ahead forecasts by using

ξt+m = vt+m + P · vt+m−1 + . . . + Pm−1 · vt+1 + Pm · ξt, (6.10)

where Pm is the matrix multiplication of P by itself m times, and taking the conditional expectation

E[ξt+m|ξt, ξt−1, . . .] = Pm · ξt. (6.11)

Note that the element in the j-th row and i-th column of Pm is P[st+m = j|st = i], the probability
that an observation from regime i will be followed m periods later by an observation from regime j.

6.1. Maximum likelihood estimation

Let us denote by yt a vector of observed endogenous variables and by xt a vector of observed exoge-
nous variables. Then, Yt := (yT

t , yT
t−1, . . . , yT

−m, xT
t , xT

t−1, . . . , xT
−m)

T is the vector of all observations
until time t. We assume the conditional density of yt in regime j to be given as

f (yt|st = j, xt,Yt−1; α), (6.12)

where α is a parameter vector characterizing the density. We collect the N different densities in a
vector ηt. Note that we assume in 6.12 that the conditional density depends only on the current
state:

f (yt|st = j, xt,Yt−1; α) = f (yt|st = j, st−1 = i, st−2 = k, . . . , xt,Yt−1; α). (6.13)
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In terms of the Markov chain st we assume independence of past xt’s and yt’s in addition

P[st = j|st−1 = i, st−2 = k, . . . , xt,Yt−1] = P[st = j|st−1 = i] = pij (6.14)

and that xt is strictly exogenous, meaning it is independent of sτ for all t and τ.
Next, we would like to collect all parameters characterizing yt in a vector θ, i.e. α and all transition
probabilities pij. The main goal of this section is to find an appropriate algorithm to estimate θ

based on all observations in YT. However, let us assume for the moment we know the parameter
vector θ. Then, one can find an optimal inference about the regime at each time t based on θ and all
observations up to time t:

P[st = j|Yt; θ] ∀ j = 1, . . . , N, (6.15)

which are collected in a vector denoted ξ̂t|t. Moreover, consider also forecasts of how likely the
process is to be in regime j at time t + 1 based on θ and observations until t:

P[st+1 = j|Yt; θ] ∀ j = 1, . . . , N, (6.16)

which are collected in ξ̂t+1|t.
Given a starting value ξ̂1|0 and the assumed θ the optimal inference and forecast for each time t is
found by iterating on the equations

ξ̂t|t =
ξ̂t|t−1 � ηt

1T(ξ̂t|t−1 � ηt)
(6.17)

ξ̂t+1|t = P · ξ̂t|t, (6.18)

where � stands for element-by-element multiplication and 1 is an N × 1 vector of 1s. The j-th
element of ηt is f (yt|st = j, xt,Yt−1; θ). At the same time one can evaluate the log likelihood
function LT(θ) for the observations YT at θ by

LT(θ) =
T

∑
t=1

log f (yt|xt,Yt−1; θ), (6.19)

where

f (yt|xt,Yt−1; θ) = 1T(ξ̂t|t−1 � ηt). (6.20)

A proof for this algorithm can be found in Appendix C. However, the choice of the starting value
ξ̂1|0 is still an open question. There are several possibilites. One approach is to set ξ̂1|0 = ρ, where
ρ is a constant vector of nonnegative values summing to 1 (e.g. ρ = N−11). Another possibility
is to estimate ρ by maximum likelihood along with θ with constraints 1Tρ = 1 and ρj ≥ 0 for
j = 1, . . . , N.
Now, let us generalize the probabilities from equations 6.15 and 6.16 by considering P[st = j|Yτ; θ]

for arbitrary t and τ. We collect them in a vector ξ̂t|τ. In case t > τ this is a forecast about the state
at t, whereas in case t < τ it is the smoothed inference about the state the process was in at t based
on information up to time τ.
Recall the formula for the conditional expectation of ξt+m in equation 6.11. Taking on both sides the
expectation conditional on Yt yields the optimal m-period-ahead forecast

ξ̂t+m|t = Pm · ξ̂t|t, (6.21)
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where ξ̂t|t comes from the iteration in equations 6.17-6.18.
Smoothed inferences can be derived by the following algorithm developed by Kim (1993) (a deriva-
tion can be found in the Appendix of Hamilton (1994) [H]):

ξ̂t|T = ξ̂t|t � (PT · [ξ̂t+1|T � ξ̂t+1|t]), (6.22)

where the operator � denotes element-by-element division. Hence, the smoothed probabilities ξ̂t|T
are computed from 6.22 backwards for t = T − 1, T − 2, . . . , 1. The starting value for the iteration is
ξ̂T|T, which is obtained from equations 6.17-6.18.
Recall that in the algorithm from equations 6.17-6.20 θ has been assumed as known. Now, we present
how to estimate the value of θ that maximizes the log likelihood function. If ξ̂1|0 is a constant vector
ρ and the transition probabilities need to satisfy only pij ≥ 0 and sum to 1 in each column of P, then
the maximum likelihood estimates for pij fulfill (shown in Hamilton (1990))

p̂ij =
∑T

t=2 P[st = j, st−1 = i|YT; θ̂]

∑T
t=2 P[st−1 = i|YT; θ̂]

, (6.23)

where θ̂ is the full vector of maximum likelihood estimates. This is essentially the number of regime
switches from i to j divided by number of times s was in regime i, which can be estimated based on
the smoothed probabilites.
The maximum likelihood estimate of ρ constrained on 1Tρ = 1 and ρj ≥ 0 for j = 1, . . . , N is found
to be the smoothed inference about the initial state:

ρ̂ = ξ̂1|T. (6.24)

Last but not least, the maximum likelihood estimate of the parameter vector α is characterized by
the condition

T

∑
t=1

(
∂ log ηt

∂ αT

)T

ξ̂t|T = 0, (6.25)

where here ηt is again the vector of densities for yt from equation 6.12.
Now, we have all the necessary tools to estimate the coefficients of a Markov-switching regression
model of the form

yt = βT
st

xt + εt, with εt ∼ N(0, σ2), (6.26)

where xt is a vector of explanatory variables that can include lagged values of y as well. The
coefficient vector βst takes different values depending on the regime at time t:

βst = β j, if st = j, j = 1, . . . , N. (6.27)

The parameter vector α = (βT
1 , . . . , βT

N , σ2)T can be estimated by the following procedure:
Since the vector ηt of conditional densities of yt has the form

ηt =


1√
2πσ

exp
(
−(yt−βT

1 xt)2

2σ2

)
...

1√
2πσ

exp
(
−(yt−βT

N xt)2

2σ2

)
 , (6.28)
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6.1. Maximum likelihood estimation

condition 6.25 becomes

T

∑
t=1

(yt − β̂T
j xt)xt ·P[st = j|YT; θ̂] = 0 for j = 1, . . . , N, (6.29)

and

σ̂2 =
1
T

T

∑
t=1

N

∑
j=1

(yt − β̂T
j xt)

2 ·P[st = j|YT; θ̂]. (6.30)

Equation 6.29 shows β̂ j to satisfy a weighted OLS orthogonality condition, each observation is
weighted by the probability that it came from regime j. Thus, by defining

x̃t(j) :=
√

P[st = j|YT; θ̂] · xt, (6.31)

ỹt(j) :=
√

P[st = j|YT; θ̂] · yt, (6.32)

(6.33)

β̂ j can be found from an OLS regression of ỹt(j) on x̃t(j):

β̂ j =

(
T

∑
t=1

x̃t(j)T x̃t(j)

)−1 T

∑
t=1

x̃t(j)ỹt(j) ∀ j = 1, . . . , N. (6.34)

Hence, σ̂2 in equation 6.30 is just 1/T times the combined sum of the squared residuals of the above
regressions.
The full algorithm to obtain the maximum likelihood estimate for the parameter vector θ works
as follows (an application of the expectation-maximization (EM) algorithm that was developed by
Dempster, Laird and Rubin (1977)): In case of a fixed starting value ξ̂1|0 = ρ and given an initial
guess θ(0) we find first estimates ξ̂t|t and ξ̂t+1|t from the algorithm in 6.17-6.18. Using these estimates
we obtain the smoothed probabilities ξ̂t|T by iterating on 6.22. Now, we are able to evaluate 6.23,
6.34 and 6.30 to find estimates p̂ij, β̂ j and σ̂2 based on θ(0). Hence, we derive a new estimate θ(1)

for the full parameter vector. In the same fashion we compute θ(2), θ(3), . . . until the change between
two consecutive estimates is smaller than some predefined convergence criterion. It can be shown
that this algorithm numerically maximizes the value of the likelihood function.
In case ρ is to be estimated by maximum likelihood as well, 6.24 is added to the equations that are
reevaluated in each iteration.
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6. Markov Switching Model

6.2. Synthetic tests

Simulation of a Markov switching model

Let us consider the following form of the Markov switching regression model

rt = µ + γst rt−1 + εt, with εt ∼ N(0, σ2). (6.35)

The only switching parameter is γ, where we interpret a positive value as an indication for a bubble
regime. The idea of the first simulation experiment is to simulate three different regimes for γ (0,
0.3 and 0.7). Then, we fit an MS regression model and compare the estimated parameters with the
simulated ones. It is also interesting if the correct time periods can be identified. Figure 6.1 shows
the result of this synthetic test, where we use realistic parameters for µ and σ estimated from the
NASDAQ Composite time series for simulation. We plot the price of the NASDAQ time series,
the simulated price trajectory and the smoothed states probabilities. Moreover, we give the simu-
lated and estimated parameters of each regime. We do not only find similar values for the fixed
parameters µ and σ from the simulated trajectory, but also the approximate values for γ (0, 0.26 and
0.74) and their time periods. This synthetic test shows that the MS model where only γ switches is
consistent in the sense that it estimates similar parameters than we estimated.

Figure 6.1.: Simulation experiment for MS model (only gamma switches): 6000 days γ = 0, 1200
days γ = 0.3 and 300 days γ = 0.7

Another interesting simulation experiment is to let µ and σ switch as well. In this case the Markov
switching regression model has the form

rt = µst + γst rt−1 + εt, with εt ∼ N(0, σ2
st
). (6.36)
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6.2. Synthetic tests

The results in Figure 6.2 show that we find again quite similar parameters as we simulated, espe-
cially the volatility levels are estimated quite precisely. Obviously, the time period of each regime is
identified.

Figure 6.2.: Simulation experiment for MS model (all parameters switch): 6000 days γ = 0, 1200
days γ = 0.15 and 300 days γ = 0.3

Fitting an MS model to a simulated FTS GARCH trajectory

The following synthetic test should test if the MS model is able to detect bubbles generated by an-
other class of models. Thus, we simulate 6000 days of a GARCH model, then alternate GARCH and
FTS GARCH (γ = 0.1) regimes for another 1200 days and finally generate an FTS GARCH regime
with doubled γ = 0.2 for 300 days. We use returns as regression component for the simulation and
choose 100 days as length of the alternating regimes (Note this is the same kind of bubble as we
simulated several times in Chapter 5). We fit the following MS regression model to the simulated
trajectory:

rt = µst + γst rt−1 + εt, with εt ∼ N(0, σ2
st
). (6.37)

The results are shown in Figure 6.3. In this test the following problem of the MS model arises: The
bubble regime in red color (positive γ) is the regime with the highest volatility and subsequently
every peak in the level of volatility leads to a jump to the bubble regime, even if the price is
decreasing. This means the MS model depends too much on the volatility level and consequently
we are not able to detect the FTS GARCH bubble regime appropriately. So, we could try to reduce
this dependence by using again one of the 3 methods we have already used for the noise reduction
of the regression component in an FTS GARCH model (compare Chapter 5.5). Moreover, we have
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6. Markov Switching Model

also tried to overcome this problem by simply fixing the parameter σ. The best results for synthetic
as well as empirical data are found by using a combination of both approaches: fixing the volatility
parameter and using average returns. The resulting MS regression model using average returns
has the form

rτ
t = µst + γst r

τ
t−1 + εt, with εt ∼ N(0, σ2), (6.38)

where the average returns rτ
t are calculated as usual:

rτ
t := log

(
Pt·τ

P(t−1)·τ

)
, for t = 1, . . . ,

[n
τ

]
=: T. (6.39)

Looking at the results in Figure 6.4 for the detection of a simulated FTS GARCH bubble by using
the new approach above, we see that in the period of alternating regimes we sometimes jump to
a bubble regime for a short time (in red color), and even more importantly, we find quite a strong
bubble regime with µ = 0.04 and γ = 0.49 for the last 200 days of the simulated trajectory (in green
color). Hence, this method clearly identifies the simulated bubble regime at the end.

Figure 6.3.: Simulated trajectory generated by 6000 days of GARCH, then alternating GARCH and
FTS GARCH (γ = 0.1) regimes for another 1200 days (regime length = 100 days) and
finally FTS GARCH with doubled γ = 0.2 for 300 days (yt = rt). Estimation of an MS
regression model where all parameters switch.
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6.3. Detecting bubbles in real data

Figure 6.4.: Simulated trajectory generated by 6000 days of GARCH, then alternating GARCH and
FTS GARCH (γ = 0.1) regimes for another 1200 days (regime length = 100 days) and
finally FTS GARCH with doubled γ = 0.2 for 300 days (yt = rt). Estimation of an MS
regression model for the averaged simulated returns with τ = 20 (µ and γ switch).

6.3. Detecting bubbles in real data

6.3.1. Usage of average returns

We would like to apply the MS model using average returns from equation 6.38 to real data. Recall
it manages to detect the bubble period in the above synthetic test. Figure 6.5 shows the results for
the NASDAQ time series. We fit 3 different regimes and use average returns calculated over τ = 40
days. We find the MS model to indicate a regime switch from γ = 0 to γ = 0.67 as the peak of
NASDAQ in 2000 is approached. This can be interpreted as a signal for a bubble regime (compare
the indication for a bubble using FTS GARCH with τ = 40 in Figure 5.43).
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6. Markov Switching Model

Figure 6.5.: NASDAQ Composite (November 4th, 1994 - March 27th, 2000): MS model for average
returns (τ = 40 days) with 3 different regimes (µ and γ switch).

6.3.2. Usage of EWMA returns

In case of the FTS GARCH model in Chapter 5, using EWMA returns as regression component
yields more plausible results than using uniformly averaged returns. Hence, we would like to
apply also a slightly different version of the MS model in equation 6.38 by using exponentially
weighted moving average returns. Recall that EWMA returns with horizon τ are calculated from
the daily return series r1, . . . , rn by

rEWMA
t := EWMA(r, τ, α)t :=

1− δ

1− δτ
·

τ−1

∑
k=0

δk · rt·τ−k, for t = 1, . . . ,
[n

τ

]
=: T, (6.40)

where δ = e−α and α > 0 constant.
The Markov switching model using EWMA returns as regression component has the form

rτ
t = µst + γst r

EWMA
t−1 + εt, with εt ∼ N(0, σ2). (6.41)

Let us now analyze the results for DAX, Gold and NASDAQ in Figures 6.6-6.8.
For the DAX time series we use a horizon of τ = 40 days. We find a non-bubble regime with
γ = 0 between 1993 and 1996. Around the peaks in 1997, 1998 and 2000 the model switches to a
bubble regime with γ = 0.94, after each peak it switches back to γ = 0. Hence, the MS model finds
super-exponential growth during each of the 3 bubble periods.
Concerning the Gold price we concentrate on the analysis of the two peaks in 2006 and 2008. The
smoothed state probabilities show indication for a bubble regime already between 2002 and 2006
with γ = 0.16. Subsequently, there is an even stronger bubble period with γ = 0.42 until 2008 where
the model switches to a negative feedback regime (γ = −1.33). Comparing it with the results for
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6.3. Detecting bubbles in real data

the FTS GARCH model using EWMA returns with τ = 60 days as regression component, there is
quite a strong signal already in the initial phase of the bubble. Using the FTS GARCH model we
find strong evidence for a bubble around 2008, but between 2002 and 2005 there is not such a strong
indication.
Looking at the results for the NASDAQ using EWMA returns with τ = 40 days as regression
component, we see a quite similar picture as for average returns with τ = 40. Between 1991 and
1997 there is a non-bubble regime (γ = 0) and as the peak in 2000 is approached the state probability
of a bubble regime (γ = 0.3) increases continuously.

Figure 6.6.: DAX (January 6th, 1993 - March 7th, 2000): MS model for EWMA returns (τ = 40 days)
with 3 different regimes (µ and γ switch).
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Figure 6.7.: Gold (March 13th, 2000 - August 28th, 2009): MS model for EWMA returns (τ = 60 days)
with 5 different regimes (µ and γ switch).

Figure 6.8.: NASDAQ Composite (December 26th, 1990 - March 27th, 2000): MS model for EWMA
returns (τ = 40 days) with 3 different regimes (µ and γ switch).
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7
Conclusion

Let us give a summary of the main results of this thesis. Based on the evidence for super-exponential
growth during bubble periods, we propose to enhance the standard GARCH(1, 1) model by adding
a regression component that incorporates the possiblity for positive feedback effects (in accordance
with the ideas of Corsi and Sornette (2012)). The focus lies on the analysis of different versions of
this so called FTS GARCH model, where we use various regression components.
Using log price as regression component, the method works quite well. This method is also in
accordance with Huesler, Sornette and Hommes who find that traders anchor their expectations
more on price than on return. We apply it to different time windows of the DAX, Gold, NASDAQ
and NIKKEI time series and find high significance for a positive coefficient γ of the regression
component around peaks in the price series. The problem of using log price is its non-stationarity.
Even though it is an improvement to use log price instead of price, γ is still dominated by the higher
price levels at the end of the chosen time windows. As we have seen in one of the synthetic tests,
there is also high significance for a positive γ if we simulate a single regime shift to a period with
higher average return but let γ = 0 (only exponential growth).
Alternatively, one can use return as regression component. Using daily returns the results for
simulated as well as empirical data are not that clear. We find either quite a low signal or an even
too strong signal that can no longer be used as an early warning signal at the right time. Thus, we
propose three different methods to reduce the noise of the return series. The first one is the Kalman
filter that helps us to find an almost perfect bubble signal for the NIKKEI time series around 1990.
In case of the NASDAQ the result is improved but still not very satisfying. Then, we form either
uniformly or exponentially weighted averages over a certain horizon of the daily returns and use
them as regression component in the FTS GARCH model. We use 20, 40 and 60 day horizons. For
an appropriately chosen time horizon and an optimal starting date of the price series, this methods
succeed to identify the peaks in the DAX, Gold and NASDAQ price series, although the empirical
results using the EWMA returns are even more meaningful. Finally, we include a second regression
component (the absolute return) in the FTS GARCH modeling positive feedback of volatility on
return. This approach enables us to test for a "fearful singular bubble", meaning super-exponential
price growth accompanied by volatility growth. We find evidence for a fearful bubble in the DAX
and the NASDAQ around 2000 and for the Gold price in 2006 and from 2009-2013. As an alternative
we simplify this form of the FTS GARCH model a bit by using the sum of exponentially weighted
return and exponentially weighted absolute return as only one regression component. This sum
reflects an average of only the positive returns. The idea is there could be stronger feedback on this
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7. Conclusion

combined form during bubbles, which indeed can be observed in the empirical results (all bubble
peaks are clearly identified).
In the last part of the thesis we use another class of models for the detection of financial bubbles,
namely the Markov switching model. We find meaningful results only if we work with averages
of returns (either uniformly or exponentially weighted). Also, we need to fix the volatility level,
otherwise there is too high dependence of the regime on this parameter. This is a big disadvantage
compared to the FTS GARCH model which considers time-varying volatility. Estimating a Markov
switching model for DAX and NASDAQ, we manage to identify the bubble peaks in these two time
series. There is a high smoothed state probability for a bubble regime right before each of the peaks.
For the Gold price we find indication for a positive γ even for quite a long period (2002-2008).
Finally, we should keep in mind the high dependence on the date chosen as the beginning of the
time series (the parameter s). This seems to be a disadvantage of both the FTS GARCH and the
Markov switching model as soon as we work with averages of returns.
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A
Appendix - The Johansen-Ledoit-Sornette (JLS) model

The idea of Johansen, Ledoit and Sornette (1999) [JSL] is to model the bubble behavior of a price Pt

as a jump diffusion process:

dPt

Pt
= µ(t)dt + σ(t)dWt − κdJt, (A.1)

where µ(t) is the drift, σ(t) the volatility and Wt a standard Brownian motion. The jump process Jt

evolves with the dynamics

dJt =

{
1, with prob. h(t)dt,
0, with prob. (1− h(t))dt,

(A.2)

which is governed by the hazard rate h(t) reflecting the instantaneous probability of a crash at time t
conditioned that it has not happened yet. So the main idea of this dynamics is that the price evolves
as a geometric Brownian motion with the possibility of a jump of size −κPt modelling a crash (κ is
a constant percentage). Recall that according to the ideas of Blanchard and Watson (1982) [BW] in a
rational expectations bubble the no-arbitrage condition needs to hold. This in turn means the price
process should be a martingale:

Et[Ps] = Pt ∀ s > t ≥ 0 ⇐⇒ Et[dPt] = 0. (A.3)

Taking the expectation of the dynamics under the condition that no crash has occured yet

Et

[
dPt

Pt

]
= µ(t)dt− κEt[dJt] = (µ(t)− κh(t))dt (A.4)

shows that Pt is a martingale iff

µ(t) = κh(t). (A.5)

Therefore, the unconditioned return of the asset is 0, whereas conditioned on staying in the bubble
(no crash occurs) it is µ(t) = κh(t). From this relation we infer the following: the higher the
probability of a crash the faster the price increases (the higher the return) during a time of no crash.
Intuitively, investors are compensated for the increasing risk of a crash.
Before the crash, the price Pt has the dynamics

dPt

Pt
= κh(t)dt + σ(t)dWt. (A.6)
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By integration one finds the expected price to be equal to

E[Pt] = P0E

[
exp

(
κ
∫ t

0
h(s)ds +

∫ t

0
σ(s)dWs

)]
= P0exp

(
κ
∫ t

0
h(s)ds

)
. (A.7)

Now, by choosing an explicit form for the hazard rate h(t) we determine the evolution of the bubble.
The first reasonable choice (leading to price growth according to a power law) we consider is

h(t) = B(tc − t)β−1, (A.8)

with a constant B > 0 and the critical point tc > 0 (theoretical date of bubble burst). Please notice,
for an economically meaningful model β should be between 0 and 1. This guarantees there is a
finite upper bound Pc for the price as time tc is approached and no crash has happened (however,
the slope of Pt is unbounded as t −→ tc). Also, tc is only the most probable time for the crash, but it
can occur at any time before tc as well (although not very likely). The probability that tc is reached
without a crash in price is positive (otherwise rational agents could anticipate the crash):

1−
∫ tc

0
h(s)ds > 0 (A.9)

Plugging the explicit form for h(t) from (A.8) into the expected price in (A.7) yields:

log(E[Pt]) = log(P0) + κB
∫ t

0
(tc − s)β−1ds = (A.10)

= log(P0) +
κB
β

tβ
c −

κB
β
(tc − t)β =: log(Pc)− α(tc − t)β, (A.11)

where α = κB
β and Pc = P0 · exp(αtβ

c ).
This can be generalized further by using the following hazard rate that includes log-periodic oscil-
lations:

h(t) = B(tc − t)β−1 + C(tc − t)β−1cos(ωlog(tc − t) + φ), (A.12)

Substituting the above form of h(t) into (A.7) and integrating yields the log-periodic power law
(LPPL)

log(E[Pt]) = log(Pc)− α(tc − t)β − γ(tc − t)βcos(ωlog(tc − t) + φ), (A.13)

with γ = κC√
β2+ω2

.

Note that the JLS model does not specify what happens beyond the critical time tc. At tc the
bubble regime ends and a new regime (e.g. a crash or growth at a new rate) starts. Nevertheless,
it can be used to predict crashes (or rebounds in case of an anti-bubble). For a detailed description
of the prediction method and the development of trading strategies using the JLS model in equity
markets we refer to Yan, Rebib, Woodard and Sornette (2011) [YRWS].
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B
Appendix - Kalman �lter: Derivation of the optimal Kalman gain

We would like to show the derivations of the optimal Kalman gain Kk from (5.39) as well as the
optimal error covariance matrix Pk from (5.41). Since the Kalman filter seeks for an estimate that
minimizes the mean-square error (which is equivalent to minimize the trace of the error covariance
matrix), we start with the computation of the error covariance matrix by using the measurement
update for x̂k from (5.36):

Pk = Cov(ek) = Cov(xk − x̂k) = Cov(xk − x̂−k − Kk(zk − Hx̂−k )) = (B.1)

= Cov(xk − x̂−k − Kk(Hxk + vk − Hx̂−k )) = (B.2)

= Cov((I − Kk H)(xk − x̂−k )− Kkvk) = (B.3)

= (I − Kk H)P−k (I − Kk H)T + KkRkKT
k = (B.4)

= P−k − Kk HP−k − P−k HTKT
k + Kk HP−k HTKT

k + KkRkKT
k (B.5)

Next, we set the derivative of the trace of the error covariance matrix by the Kalman gain equal to 0
and solve for the optimizing Kk:

∂tr(Pk)

∂Kk
= −2P−k HT + 2Kk(HP−k HT + Rk)

!
= 0 (B.6)

⇐⇒ Kk = P−k HT(HP−k HT + Rk)
−1 (B.7)

Using the optimal Kalman gain from above, one can easily find the optimal error covariance matrix:

Pk = (I − Kk H)P−k + (Kk(HP−k HT + Rk)− P−k HT)︸ ︷︷ ︸
=0 for the optimizing Kk

KT
k = (I − Kk H)P−k (B.8)

�
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C
Appendix - MS model: Derivation of the inference algorithm

We verify the algorithm for the optimal state inference and forecast as well as the evaluation of the
likelihood function from equations 6.17-6.20 (Hamilton (1994) [H]).
Note that the j-th element of the forecast ξ̂t|t−1 can also be written as P[st = j|xt,Yt−1; θ] since xt is
exogenous and hence does not contain information about st beyond Yt−1. Using this form we find
the j-th element of the vector ξ̂t|t−1 � ηt to be the conditional joint density-distribution of yt and st:

P[st = j|xt,Yt−1; θ] · f (yt|st = j, xt,Yt−1; θ) = p(yt, st = j|xt,Yt−1; θ). (C.1)

By summing these joint-density distributions we get the density of yt conditioned on past observa-
tions and θ:

f (yt|xt,Yt−1; θ) = 1T(ξ̂t|t−1 � ηt), (C.2)

as claimed in 6.20.
Dividing the joint density-distribution in C.1 by the density of yt from C.2 we get the conditional
distribution of st:

p(yt, st = j|xt,Yt−1; θ)

1T(ξ̂t|t−1 � ηt)
=

p(yt, st = j|xt,Yt−1; θ)

f (yt|xt,Yt−1; θ)
= P[st = j|yt, xt,Yt−1; θ] = P[st = j|Yt; θ] (C.3)

Collecting equation C.3 for j = 1, . . . , N in a vector yields

ξ̂t|t =
ξ̂t|t−1 � ηt

1T(ξ̂t|t−1 � ηt)
(C.4)

as claimed in 6.17.
Recall equation 6.8, where we expressed the Markov chain st in form of a first-order vector autore-
gression for ξt:

ξt+1 = P · ξt + vt+1. (C.5)

Taking the expectation conditional on Yt yields

E[ξt+1|Yt] = P ·E[ξt|Yt] + E[vt+1|Yt]. (C.6)

Since vt+1 is a martingale difference sequence with respect to Yt its conditional expectation is 0.
Hence,

ξ̂t+1|t = P · ξ̂t|t, (C.7)

as claimed in 6.18. �
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