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Abstract

This thesis investigates the impact of short selling and leverage on fi-
nancial bubbles. The impact is explored by extending a proven agent-
based model of super-exponential financial bubbles with two assets
and two types of traders by Kaizoji et al. [62]. Fundamentalists and
noise traders invest in a risky and a risk-free asset. Fundamentalists
are rational agents that maximize a constant relative risk aversion ex-
pected utility with respect to their allocation on the risky asset versus
the risk-free asset. The noise traders base their investment decision on
social imitation and momentum trading. The model is able to repro-
duce stylised facts of financial markets such as the fat-tail distribution
of returns and volatility clustering. A limitation of the model by Kaizoji
et al. [62] is that the agents only have access to their own wealth, which
consists of their initial wealth and the wealth generated by their invest-
ments. Therefore, the traders are unable to take credit and leverage
their position to invest more than their wealth. The number of traders
is constant, therefore there is also no influx of new investors. In con-
trast, financial bubbles are often accompanied by an influx of new in-
vestors, credit expansion and excessive leverage. These mechanism are
reported to be an important amplifier of financial bubbles.

The focus of the thesis is placed on the extension of the noise trader
class to incorporate the ability for them to short sell and leverage. The
noise trader is based on the Ising model, a model of ferromagnetism
from statistical physics. In the context of the noise trader class, the
Ising model describes two competing forces that act on the investment
decision: an ordering force, due to social imitation and momentum
trading, and a disordering force, due to the traders’ individual random
behaviour. After a review of the original market model, four different
extensions that incorporate leverage and short selling, are outlined and
analysed. The first extension is based on the Potts model, a generaliza-
tion of the Ising model. The other three models are implemented by
first defining the microscopic interactions between the traders and then
analysing the emerging system properties. The models are able to re-
produce some of the stylised facts. However, none of the extensions is
able to produce all of them. One of the three models, the ladder model,
highlights the potential impact that the combination of leverage, herd-
ing and the absence of government intervention can have. The ladder
model is linked to Minsky’s financial instability hypothesis. Finally,
the limitations of the individual models are discussed and directions
for further research are given.
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Chapter 1

Introduction

This thesis investigates the impact of short selling and leverage in the emer-
gence of financial bubbles. The impact is explored by extending a proven
agent-based model of super-exponential financial bubbles with two assets
and two types of traders by Kaizoji et al. [62]. In the model, fundamental-
ists and noise traders invest in a risky and a risk-free asset. The model is
extended to incorporate the ability for traders to short sell and leverage.

Financial history can be interpreted as a juxtaposition of financial bubbles
and crashes. One of the earliest examples for such a crisis can be traced
back to Mesopotamia around 3500 BC, where merchants extended credit
to farmers, which they were unable to pay back after a bad harvest [49].
The term bubble was first used to describe the South Sea Bubble, where the
stock price of the British South Sea Company rose considerably in value
before collapsing in 1720 [41]. More recent asset bubbles include the Roar-
ing Twenties stock market bubble of 1929, the bubble of 1987 and the Bitcoin
cryptocurrency bubble in 2017. Since the 19th century, there has hardly been
a decade without a financial bubble of some sorts [98, 66, 107]. The arena
in which this perpetual cycle of bubbles and crashes initially starts out in
are financial markets. Besides determining prices, sharing risk and reduc-
ing transaction costs, financial markets also allocate capital by channeling
funds from people or organisations who have an excess to people or organi-
sations who have a shortage. Well-functioning financial markets are engines
of growth and due to the flow of funds impact businesses, the production
of goods and services, and the economic well-being of countries. Because
financial markets are closely intertwined with the real economy, the efficient
allocation of capital is of critical importance to a healthy and vibrant over-
all economy and turmoil in financial markets can cause ripples through the
whole economy [87].

Despite the impact that financial bubbles can have on the economy as whole
they are a somewhat controversial topic in research. The susceptibility to
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1. Introduction

a financial bubble and the associated crash imply that there are still open
research questions, which is also reflected in the fact that there is no univer-
sally agreed upon definition of what constitutes a bubble. The most com-
mon definition of financial bubbles describes them as a significant disparity
between the asset price and its fundamental value [101, 44, 1]. Kindleberger
and Aliber define a bubble as ”a generic term for the increases in the prices
of securities or currencies in the mania phase of the cycle that cannot be
explained by the changes in the economic fundamentals“ [66]. However, in
many circumstances the determination of what constitutes the fundamental
value of an asset is difficult. Shiller describes bubbles as situations in which
the news of a price increase fuels excitement, which is passed on amongst
investors in a psychological epidemic [109]. This describes bubbles as an
epidemic of speculation. The ambiguous nature shows also in the difficulty
of identifying bubbles in real market situations. Often bubbles are only iden-
tified after a subsequent crash, which is characterized by a sharp decline in
asset prices [50]. An empirical definition of financial bubbles defines mar-
ket bubbles as the super-exponential growth of an asset price [111]. This
definition is also adopted in this thesis .

Financial bubbles also question the applicability of neoclassical financial
market theories. The neoclassical financial market theory started with Louis
Bacheliers who postulated that asset price dynamics can be modelled with
a stochastic process [11]. This insight forms the foundation of the random
walk theory, which postulates that asset price returns can be described by
a normal distribution, and the asset price itself evolves in time according
to a random walk [78]. In combination with the expected utility hypothe-
sis, which describes how rational individuals should behave under uncer-
tainty, the random walk theory forms the foundation of the efficient market
hypothesis. Fama [37, p. 383] defines a market as strongly efficient if the

”prices always fully reflect all available information“. This implies that a
price change is supposed to be associated with a specific exogenous event,
which is represented as new information that is incorporated by the market.
As a consequence, in informationally efficient markets the price must be im-
possible to forecast. This randomness is achieved trough the participation
of many investors that incorporate all available information immediately to
make their trading decisions. Consequently, the more efficient, the more
random are the market prices. This is summarised in the the title Samuel-
sons 1965 hallmark work ”Proof that properly anticipated prices fluctuate
randomly“ [103]. Besides the efficient market hypothesis, the portfolio selec-
tion theory (Makowitz [83]), the capital asset pricing model (Sharpe [108];
Lintner [75]; Mossin [90]), the arbitrage pricing theory and the factors mod-
els and their extensions are cornerstones of the neoclassical financial market
theory (Fama and French [39]).

Despite or perhaps because of its practical and academic impact, the neoclas-
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sical approach faces continued criticism, which is renewed especially after
major financial crises such as the Black Monday of 1987 or more recently
the Financial Crisis of 2008. While some argue that financial bubbles are
consistent with an efficient market [38], others point to the limitations of the
neoclassical approach to explain financial bubbles and other market anoma-
lies [20, 33, 57, 77, 109, 9].

The rising criticism primarily focuses on the underlying assumptions of neo-
classical market theories. Market participants are assumed to be rational eco-
nomic agents, ”always acting in their own self-interest and making decisions
in an optimal fashion by trading off costs and benefits weighted by the sta-
tistically correct probabilities and marginal utilities“ [76, p. 1]. Furthermore,
the rational market participants are often assumed to be homogeneous and
modelled by one representative agent. In this context, homogeneous means
that the participants all have the same information and process it identically
[71]. From an empirical perspective, the large price fluctuations associated
with financial bubbles and crashes cannot be associated with one specific
event or new information most of the time [112]. This is an example for a
market anomaly that cannot be explained by the efficient market hypothesis
alone. In addition, there is evidence that large positive and negative asset
price returns occur more often than prescribed by a normal distribution,
which is known as ”fat tails“ [17]. Fat tails and other statistical properties
of financial markets such as volatility clustering are summarised under the
umbrella term ”stylised facts“ [23, 30, 26, 27].

The criticism and limitations of the neoclassical financial market theory and
more generally neoclassical economics fostered the modification of existing
theories and the development of new methods and research areas starting
in the 1980s.

One tool that has gained significance are agent based models (ABM). ABMs
can transcend the aforementioned restrictive assumptions. They can model
characteristics of financial markets that neoclassical financial market theory
often does not account for. They are particularly suited to simulate the ac-
tions and interactions of individuals in complex and realistic ways [59] and
therefore offer an opportunity to model heterogeneous individuals with re-
spect to the information they process and how they make decisions. The
interactions between the individuals in the context of financial markets can
include social herding or information cascades [14]. The behaviour of the
individuals on a microscopic scale results in non trivial macroscopic proper-
ties. These macroscopic properties of the model do not simply correspond
to the aggregation of the individual behaviour but are emergent properties
only arising due to the interaction of agents [46]. Furthermore, ABMs can be
used to investigate out of equilibrium systems [8] and are able to reproduce
the stylised facts associated with financial markets [73].

9



1. Introduction

An example for an early agent based model was developed by Kim and
Markowitz [64], where two types of traders, re-balancers and portfolio insur-
ers, trade two assets, a stock and cash. The model attempted to investigate
the causes of the 1987 Black Monday. Another pioneering model is the Santa
Fe Institute artificial stock market. In the market, heterogeneous agents also
trade a stock and cash. The agents build an estimation to forecast the future
return of the stock and adapt their trading strategy using genetic algorithms
[95, 72]. A market model developed by Lux and Marchesi [81, 82] consists
of chartists and fundamentalists. The fundamentalists compare the market
price to a fair price and sell or buy accordingly. The chartists behaviour
depends on the historical price and their peers, meaning they are prone to
herding. The trader can switch between the fundamentalist or the chartist
strategy. The model is able to produce stylised facts such as volatility cluster-
ing. Extensive reviews of some of the agent-based financial market models
are provided by Hommes [55], Axtell and Farmer [10], Iori and Porter [59].

Rooted in the tradition of the aforementioned models is the contemporary
agent-based model by Kaizoji, Leiss, Saichev and Sornette [62], which is the
basis for this thesis. The model also consists of two types of traders, fun-
damentalists and chartists (or so-called noise trader) that trade a risky and
a risk-free asset. The total number of traders is fixed and the traders are
not allowed to switch between the types. The fundamentalists maximise a
constant relative risk aversion expected utility with respect to the allocation
of their wealth to the risk-free and risky asset. The chartists’ or noise traders’
investment decision depends on social imitation and the momentum of the
price of the risky asset. The behaviour of the noise traders is influenced by
a time varying herding propensity that controls if the chartists behave ran-
domly or are prone to social imitation and the price momentum. The model
is able to reproduce stylised facts such as the fat-tail distribution of returns
and volatility clustering. A key trait of the model is that it produces faster-
than-exponential price increases, known as super-exponential bubbles.

Since its inception the model has been modified several times. Westphal
and Sornette [122] investigate the impact and performance of arbitrageurs
on financial bubbles. The model is implemented with a third trader class,
the “dragon riders”. The dragon riders exploit their ability to diagnose
financial bubbles from the endogenous price history to determine optimal
entry and exit trading times. In a second paper, Westphal and Sornette
[121] analyse the direct market intervention by a policy maker. The policy
maker diagnoses bubbles by forming an expectation of the future returns,
then invests in burgeoning bubbles and sells countercyclically the overpriced
asset to fight market exuberance.

A limitation of the model by Kaizoji et al. [62] is that the agents only have
access to their own wealth, which consists of their initial wealth and the
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wealth generated by their investments. Therefore, the traders are unable
to take credit and leverage their position to invest more than their wealth.
The number of traders is constant, therefore there is also no influx of new
investors.

While there is no extension of the noise trader class to include leverage and
short selling, previous research extended the model of Kaizoji et al. [62]
to include multiple risky assets. Damiani [32] couples two Ising models to
create a model with two risky assets and one risk free asset. Each Ising
model consists of a risky and a risk free asset. The two Ising models are
coupled by allowing the noise traders to switch between the two risky assets.
Because the two risk free assets are identical, they are counted as one asset.
Kopp and Westphal [70, 120] apply the model to Fixed Income markets and
replicate the main stylized facts of Fixed Income markets with regards to
the emerging dynamics of the yield curves. The model is based on a multi-
asset extension. The Ising model describes the transition of the noise traders
between a risk free asset and the stock market that contains many assets.
A second mechanism is in place to model the decision of the noise traders
once they decided to invest in the stock market.

The impact of short selling and leverage on the creation and amplification of
financial bubbles and crises is debated and the literature associated with
this questions is inconclusive. Nonetheless, the opportunity to leverage, de-
fined broadly as using borrowed funds rather than equity to purchase an
asset, has been identified as an important component that contributes to the
amplification of bubbles. Kindleberger and Aliber [3, p. 21] suggest that
during periods of euphoria that are associated with bubbles ”an increasing
number of investors seek short-term profits from the increases in the prices
of real estate and of stocks [. . . ] and an exceptionally large share of these
purchases is financed with credit“. They note that each crisis is accompa-
nied by a credit expansion and excessive leverage. This perspective is also
shared for historical crisis by Galbraith [43] and Sornette [111]. Several stud-
ies find that the likelihood of a bubble increases if credit is available [21, 19]
or taking leverage [58] is possible. Allen and Gale [4] argue that investors
take into account the limited liability associated with investments financed
by credit, which can lead to bubbles. Reinhart and Rogoff [99] attest an in-
crease in credit in the run up to a financial crisis. Caginalp et al. [21] finds
that high liquidity increases market bubbles. In addition, Zhou and Li [126]
and Zhang and Li [125] find that leverage can contribute to liquidity and the
risk of a crisis. Ackert et al. [2] associates margin buying with increasing
bubbles. Sornette and Zhou [113] present evidence for foreign capital inflow
during the bubble in the US in the year 2000.

Besides leveraging, the practice of short selling is common in financial mar-
kets. Short selling refers to ”borrowing a financial instrument from another
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1. Introduction

investor to sell it immediately and close the position in the future by buy-
ing and returning the instrument“ [6, p. 1]. Shorting a stock is the mirror
position to buying a stock, which one does not own before. Buying a stock
can be viewed as a bet on the increase of the stock price while shorting
the stock bets on the decrease of the asset price. Therefore, short selling
enables investors to bet on decreasing prices. The traditional view on short-
selling is that it lowers prices and reduces bubbles [54, 2]. In line with this
view, several authors find that short sale constraints can serve as a bubble
amplification mechanism [19, 123, 105, 5], because optimistic traders can
push up the price while pessimistic trader have no tools to counteract them
[53, 84, 123, 56].

In the context of agent-based models, Thurner et al. [116] build a model in
which investors can allocate capital to funds, which can invest in assets. The
model links the ability of the funds to leverage and the associated margin
calls by banks with the fat tail distribution of the asset price fluctuations. Fis-
cher and Riedler [40] purpose a model in which boundedly rational agents
can invest in a risky and a risk free asset and also have the ability to lever-
age, but are limited in their ability to gain and dispose credit. The model
can replicate stylised facts and amongst others finds a positive relationship
between the target leverage ratio of the traders and price volatility. Given
the apparent importance of leverage and short selling in the context of finan-
cial bubbles and crisis, this thesis studies both within the scope of the model
provided by Kaizoji et al. [62]. The goal of the thesis is to extend the model
by Kaizoji to incorporate leverage and short selling and analyse their impact
on the creation of financial bubbles.

The numerical simulations of the financial market model are implemented
in C++. The results of the simulations are stored in a database using the
HDF5 high-performance data library. The analysis of the results is done in
Python 3.

1.1 Thesis outline

The thesis is structured as follows. Chapter 2 reviews the original market
model by Kaizoji et al. [62] and others. Chapter 3 presents the first extension
of the model. Specifically, the noise trader class is extended using the Potts
model, a generalisation of the Ising model. Chapter 4 presents a different
approach to the extension. Instead of using the tools from statistical physics,
three different extensions of the noise trader class are build by defining the
states and switching probabilities and studying the resulting properties of
the system. This approach is denoted as microscopic. Finally, Chapter 5
summarises the results and outlines future research directions.
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Chapter 2

Original market model

The following chapter presents the financial market model that serves as a
basis for further analysis. The original market model was first introduced
by Kaizoji et al. [62] and was later extended in several directions [25, 28, 96,
35, 70, 91, 32, 121, 122].

The financial market is modelled as an Agent-Based Modeling (ABM), which
constitutes two types of traders, fundamentalists and noise traders, that can
trade two types of assets, a risk-free and a risky asset. The risk-free asset
represents a zero-coupon government bond with a constant yield and the
risky asset represents a stock paying a dividend. An important property
of the model is the ability to produce super-exponential financial bubbles,
which means that the price of the risky asset exhibits faster-than-exponential
growth. Furthermore, the model reproduces several stylized facts of finan-
cial markets, for instance volatility clustering and a fat-tail distribution of
returns.

The description of the fundamentalists is based on Brock and Hommes [18]
and Chiarella et al. [23]. The fundamentalists split their wealth between
the risky and risk-free asset to maximize their expected utility from future
wealth. The utility is determined by an utility function with Constant Rela-
tive Risk Aversion (CRRA). All fundamentalists share the same risk aversion,
utility function and information (price, dividend and long-term expectations
of return and standard deviation) and, as a consequence, are represented by
one agent.

The noise traders are based on the setup in Lux and Marchesi [81]. In con-
trast to the fundamentalists, an individual noise trader invests her wealth
either into the risky asset or into the risk-free asset. Instead of forming
expectations on the fundamentals, namely the return and risk of the risky
asset, like the fundamentalists, their investment decision is determined by
past price momentum and social imitation. An Ising-like structure is em-
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2. Original market model

ployed to model the social imitation. Like the fundamentalists, the noise
traders are also modelled as a single representative noise trader who is en-
dowed with the aggregate wealth of all noise traders and invests into the
risky and risk-free asset according to the fraction of noise traders that are
invested into either asset.

The price formation process in the market with fundamentalists and noise
traders is governed by the market clearing conditions based on Walras’ gen-
eral equilibrium theory [119].

The chapter proceeds with section 2.1, which explains the assets and espe-
cially the dividend process in more detail. Sections 2.2 and 2.3 focus on the
two types of traders and section 2.4 details the market clearing conditions
and the price equation. Section 2.5 presents simulations of the model and
their time series.

2.1 Asset and wealth dynamics

There are two assets traded in the market model: a risky asset and a risk-
free asset. The risk-free asset represents a zero coupon government bond
with a constant rate of return r f . In the original model, the risk-free rate
is defined as the daily risk-free rate of return with the convention of 250
trading days per year. The model assumes that the supply of the risk-free
asset is of infinite supply.

The risky asset is modelled after a stock that pays dividends each period.
The inherent risk of the stock is associated with the stochastic dividends
and the uncertainty of the future price. The dividends are determined each
period, in this case each trading day, by a discrete stochastic process:

dt = (1 + rd
t )dt−1 (2.1)

rd
t ∼ N (rd, σ2

d ). (2.2)

dt is the dividend of the current period and depends on the previous pe-
riod dt−1 and on a stochastic dividend growth rate rd

t , which is determined
each period. The dividend growth rate is modeled by a normal distribution
with expectation value E[rd

t ] = rd and standard deviation σd. Therefore, the
dividend process can be represented by the following equation:

dt = d0

t

∏
i=1

(1 + rd
i ). (2.3)
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2.1. Asset and wealth dynamics

The total return of the risky asset rtot
t depends on the dividend yield dt

Pt−1

and the return on price rt:

rtot
t =

dt

Pt−1
+ rt. (2.4)

The return of price (or return on capital) is given in the following equation:

rt =
Pt

Pt−1
− 1. (2.5)

Equation 2.4 exhibits the two risk factors, the dividends with the stochastic
growth factor 2.2 and the uncertainty of the future price. The risk premium
is given by the difference between the two returns rtot

t − r f .

The following section describes the wealth of the traders. As mentioned
before, the noise traders and the fundamentalists are each modelled as a
single representative trader with their respective aggregate portfolios. The
portfolios of these two representative traders are determined by the fraction
of wealth (W f

t for the fundamentalist and Wn
t for the noise trader) invested

in the risky asset. The fraction of wealth invested in the risky asset is denom-
inated by x f

t for the fundamentalist and by xn
t for the noise trader, whereas

the fractions invested in the risk-free asset are defined as (1− x f
t ) and (1− xn

t )
respectively. The risky fraction is in the interval x f ,n

t ∈ [0, 1].

The wealth equation for the current period depends on the wealth of the
previous period:

W f ,n
t = W f ,n

t−1[1 +
dt

Pt−1
+ rt] + W f ,n

t−1(1− x f ,n
t−1)(1 + r f ) (2.6)

The first part describes the wealth invested in the risky fraction, whereas the
second part describes the wealth invested in the risk-free fraction. Equation
2.6 can be rewritten to

W f ,n
t = W f ,n

t−1[1 + r f + x f ,n
t−1(

dt

Pt−1
+

Pt

Pt−1
− (1 + r f )] (2.7)

with

rexcess
t = (

dt

Pt−1
+

Pt

Pt−1
− (1 + r f ) = (

dt

Pt−1
+ rt − r f ) (2.8)

being the excess return of the risky asset over the risk-free asset. For rexcess
t >

0 (rexcess
t < 0) the risky asset is more (less) profitable than the risk-free asset.
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2. Original market model

2.2 Fundamentalist trader

The fundamentalist traders in the model by Kaizoji et al. [62] are based on
Brock and Hommes [18] and Chiarella et al. [23]. They are rational, risk-
averse and maximize their expected utility each time period. The model
employs an utility function with Constant Relative Risk Aversion (CRRA).
Furthermore, the traders only consider a limited time interval, one time
step in case of the introduced model, when maximizing their expectation.

All fundamentalists can be modelled by a single representative fundamen-
talist under the following three assumptions: Each individual maximizes
the expectation value the same utility functions. It is furthermore endowed
with the same constant risk aversion and it has access to the same public
information (price, dividend and long-term expectations of return and stan-
dard deviation). The wealth of this representative agent is equal to the sum
of the wealth of the individual fundamentalists. Each time period t, the fun-
damentalists choose the fraction of wealth that they invest in the risky asset
by maximizing the expected utility function of their wealth in the future in
period t + 1:

x f
t = max

x f
t

Et[U(W f
t+1(x f

t ))]. (2.9)

The CRRA utility function is given by the following equation:

U(W) =

{
log(W), for γ = 1
W1−γ

1−γ , for γ 6= 1
(2.10)

where the constant risk aversion γ is given by

γ = −W
U′′(W)
U′(W)

. (2.11)

The approximation introduced in [24] leads to the final approximated result

x f
t =

1
γ

Et[rexcess
t+1 ]

Var[rexcess
t+1 ]

(2.12)

of the optimization problem in equation 2.9.

The solution in equation 2.12 showcases a trade-off between risk and return,
a result associated with modern portfolio theory and mean-variance anal-
ysis. Furthermore, the choice for the risky fraction is independent of the
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2.2. Fundamentalist trader

wealth of the fundamentalist, which is a result of the definition of the CRRA
utility function.

The expected value of the excess return (equation 2.8) is

Et[rexcess
t+1 ] = Et[

dt+1

Pt
+ rt+1 − r f ] =

dt(1 + rd)
Pt

+ Et[rt+1]− r f . (2.13)

Kaizoji et al. [62] assumes that the fundamentalists expect a constant rate of
return based on the long term behaviour of the stock market

Et[rt+1] := Er = cst (2.14)

and also a constant variance of the return

Vart[rt+1] := σ2
r = cst. (2.15)

Kaizoji et al. [62] relates the variance of the return in equation 2.15 to the
variance of the excess return in equation 2.12 by assuming that the dividend
policy is independent of the market price, following Modigliani and Miller

[88, 89], and that Pt �
√

Vart[dt+1]
Vart[rt+1]

. This implies in combination with equa-
tions 2.8 that the variance of excess return is constant:

Vart[rexcess
t+1 ] := Vart[rt+1] +

Vart[dt+1]
P2

t
≈ Vart[rt+1] = σ2

r = cst. (2.16)

As a result, the risky fraction in equation 2.12 is

xt
f =

1
γ

Er − r f + dt(1+rd)
Pt

σ2
r

. (2.17)

The terms Er, r f and σ2
r in equation 2.17 are constants and reflect the ex-

pectation of the fundamentalists. rd is the dividend growth rate that the
fundamentalist expects from the asset. In the long run, this is expected to be
the primary driver of the asset price. Therefore, the long run price growth
of the asset should correspond to the dividend payments. The fundamental
value of the stock is the discounted future dividend payments. Besides the
constant terms, the risky fraction depends on the dividend-price ratio dt

Pt
.

The fundamentalists strategy to allocate their funds depends on this ratio.
A high dividend-price ratio implies an undervalued stock and is interpreted
as a buying signal while a low dividend-price ratio implies an overvalued
stock and is interpreted as a sell signal.
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2. Original market model

2.3 Noise trader

The noise trader class introduced in Kaizoji [62] is based on the work of
Lux and Marchesi [81]. In contrast to the fundamentalists, the noise traders
are not rational and do not maximize their expected utility but base their
investment decision on social imitation and momentum trading strategies.
In addition, each noise trader allocates their total wealth to either the risky
asset or the risk-free asset, which models a lack of diversification that was
among others documented by Kelly [63].

The noise traders are modelled as a single representative agent. The repre-
sentative noise trader allocates the wealth to the risky and risk-free assets
based on the fraction of noise traders that are invested in the respective as-
set. The fraction of wealth allocated to the risky asset by the representative
noise trader is

xn
t =

N+
t

N+
t + N−t

∈ [0, 1]. (2.18)

Hence, the fraction of wealth allocated to the risk-free asset is given by
(1− xn

t ). N+
t are the number of noise traders that are invested in the risky

asset at time t, while N−t noise traders are invested in the risk-free asset. The
total number of noise traders Nn = N+

t + N−t is constant over time. The def-
inition of the risky fraction in equation 2.18 assumes that the noise traders
are homogeneous, meaning that each noise trader is endowed with the same
amount of wealth and follows the same trading strategy. Allowing for het-
erogeneity of the wealth distribution among noise traders has been investi-
gated by Bouchaud and Mézard [16] and Harras et al. [51]. Furthermore, the
definition of the risky fraction limits the noise traders to only investing their
initial wealth and the wealth generated by their investments. Therefore, the
traders are unable to take credit and leverage their position to invest more
than their wealth. The number of traders is constant, therefore there is also
no influx of new investors.

The decision to invest in the risky or risk-free asset is governed by social
imitation and price momentum following strategies. Each trading day, the
individual noise trader can choose to switch between the two assets or hold
the asset of the previous period. The decision to hold or switch is governed
by switching probabilities. As highlighted by Cividino [25], the investment
process of the noise traders can be represented as a discrete Markov chain
with two possible states that correspond to holding the risky or the risk-free
states as depicted in 2.1.

A trader holding the risk-free asset at the beginning of period t decides to
switch to the risky asset with probability p−t and to hold the risk-free asset
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2.3. Noise trader

Figure 2.1: Noise trader states

with probability (1− p−t ). A trader holding the risky asset at the beginning
of period t decides to switch to the risk-free asset with probability p+

t and to
hold the risky asset with probability (1− p+

t ).

The probabilities p
+−
t , that determine how many noise traders switch be-

tween the two assets or states per period, depend on several variables p
+−
t =

p
+−
t (p+−, κt, st, Ht). p+− is a constant switching probability controlling the aver-

age holding time, κt is the herding propensity, st is the opinion index (also
called sentiment) and Ht the price momentum. Before discussing the struc-
ture of the switching probabilities, each term is explained individually.

The price momentum term Ht represents the trend following characteristic
of noise traders. With the price momentum term, the noise traders evaluate
the past time series of the price of the risky asset in order to determine a
price trend. This is also called technical analysis. Depending on the value
of the price momentum term, the noise traders are more likely or less likely
to favour the risky asset. The definition of the momentum term is given by

Ht = θHt−1 + (1− θ)rt = θHt−1 + (1− θ)
(

Pt

Pt−1 − 1

)
, (2.19)

and depends on the price momentum of the previous period Ht−1, the cap-
ital return (see equation 2.5) and a parameter that weights these two contri-
butions θ. θin[0, 1) is the memory parameter and determines how far back in
time the time series of the price is analysed. τmemory = 1

1−θ is the characteris-
tic memory time length of the noise traders. For θ = 0 the noise traders only
consider the last period τmemory = 1. For θ → 1, the memory length increases
to the entire market history τmemory → ∞. A value of θ = 0.95 implies that
the noise traders look at the last 20 trading days τmemory = 20.
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2. Original market model

The other factor that influences the decision making of the noise traders are
their peers via the social imitation term, called sentiment or opinion index,
st. The opinion index is based on the work of Lux and Marchesi [81] and
defined in the following equation:

st =
N+

t − N−t
N+

t + N−t
∈ [−1, 1]. (2.20)

Hence, the sentiment is the difference between the number of traders in the
two states divided by the total number of traders and lies within the interval
[−1, 1]. A positive value of the sentiment represents a bullish opinion and
a negative value represents a bearish opinion. The risky fraction and the
sentiment are related by

st = 2xn
t − 1. (2.21)

The structure of the switching probabilities is given by Kaizoji et al. [62] and
is introduced in a modified form in the following equations:

p+
t =

p+

2
(1− κt (st + Ht)) , (2.22)

p−t =
p−
2

(1 + κt (st + Ht)) . (2.23)

As mentioned before, p+
t is the probability that a noise trader holding the

risky asset switches to the risk-free asset. p−t is the probability that a noise
trader holding the risk-free asset switches to the risky asset. The momentum
term Ht and the social imitation term st enter linearly into the equations for
the switching probabilities. In contrast to Kaizoji et al. [62] the constant
switching probability p is replaced by two constant switching probabilities
(p+ and p−), one for each switching probability. This implies that the switch-
ing probabilities are not symmetric (p+

t (p, kt, st, Ht) = p−t (p, kt,−st,−Ht)),
but biased, which was suggested by Kohrt [69]. In addition, the constant
switching probabilities are found outside of the bracket. The final compo-
nent of the switching probabilities is the herding propensity κt. The herding
propensity steers the impact of price momentum and social imitations.

A first step to gain an intuition for the switching probabilities is to set the
herding propensity is κt = 0, which means that the probabilities only depend
on the constant probabilities and are independent from price momentum

and social imitation, p
+−
t =

p+−
2 . This highlights the potential to introduce a

systematic bias towards one of the assets in the switching probabilities. If
p− > p+, there is everything else being equal a bias towards the risky asset
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2.3. Noise trader

as on average more traders switch to the risky asset than away from it to

the risk-free asset. Furthermore, the inverse of
p+−
2 can be interpreted as the

average holding time of a noise trader of the specific asset. t+
h = 2

p+
denotes

the average holding time of the risky asset and t−h = 2
p− denotes the average

holding time of the risk-free asset given that there is no herding behaviour
(κt = 0).

For κ 6= 0, the momentum and social imitation terms influence the switching
probabilities. A negative herding propensity κt < 0 implies a contrarian
trading strategy. In the following work the herding propensity is always
assumed to be positive, κt > 0.

To make sure that the switching probabilities are always contained within
the interval [0, 1], the switching probabilities distinguish three cases:

p
+−
t =


p+−
2 (1−+κt (st + Ht)) , if

p+−
2 (1−+κt (st + Ht)) ∈ [0, 1]

0, if
p+−
2 (1−+κt (st + Ht)) < 0

1, if
p+−
2 (1−+κt (st + Ht)) > 1.

(2.24)

Following the definition of the switching probabilities, the time evolution of
the number of traders in each state is outlined. An investment decision can
be seen as a Bernoulli random variable ξ(p). The investment decision for a
trader holding a risky asset is given by

ξ(p+
t−1) =

{
1, switch to risk-free with probability p+

t−1

0, hold risky with probability 1− p+
t−1,

(2.25)

while the investment decision for a trader holding a risk-free asset is given
by

ξ(p−t−1) =

{
1, switch to risky with probability p−t−1

0, hold risk-free with probability 1− p−t−1.
(2.26)

The number of traders invested in the risky asset are given by the number
of traders that switch to the risky asset and the number of traders that hold
the risky asset during period t:

N+
t =

N−t−1

∑
n=k

ξk(p−t−1) +
N−t+1

∑
n=k

[1− ξk(p+
t−1)]. (2.27)
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The number of traders invested in the risk-free asset are given by the number
of traders that switch to the risk-free asset and the number of traders that
hold the risk-free asset during period t:

N−t =
N+

t−1

∑
n=k

ξk(p+
t−1) +

N−t+1

∑
n=k

[1− ξk(p−t−1)]. (2.28)

The definitions for the number of noise traders in the risky state and the risk-
free state can be plugged into equations 2.18 and 2.20 to derive the dynamics
of the risky fraction and the sentiment.

2.3.1 Relation of the noise trader class and the Ising model

In the following subsection, the link between the Ising model, a model for
ferromagnetism employed in statistical physics, and the noise trader class
is outlined. Furthermore, the Ising model is of central importance to under-
stand the formation of bubbles in the model as highlighted. The following
section is mainly based the analysis of Harras et al. [51], Kaizoji et al. [62],
Ollikainen [91], Cividino [25] and Sornette [112].

The Ising model is the simplest model in statistical physics to represent the
interaction of elements with a finite number of possible states [112]. The
elements are called magnetic moments or spins and are placed on a grid
that can be represented by a graph, where the nodes are the spins and the
links represent connections between the spins. Each spin can take two val-
ues, spin up or down, and interacts only with its nearest neighbors. Each
spin tends to align with its neighboring spin to minimize the energy of
the system. However, this alignment process of the spins is disturbed by
heat energy, which is represented by the temperature. Therefore, there is a
competition between order (due to the tendency of the spins to align) and
disorder (due the tendency of temperature to orient the spins at random).
For the ordered state, the tendency of spins to align outweighs the influence
of the temperature, while for the disordered state, the spin orientation is
random, because the temperature influence is stronger.

The noise trader class is mapped onto the Ising model by assuming that
the noise traders are represented by the spins and can either invest in a
risky (up) or a risk-free (down) asset. The interactions of the spins and their
tendency to align represents the social imitation between the traders and the
temperature represents the individual opinion of their investment choice.

There are several steps to derive the switching probabilities in equations
2.22 and 2.23: choose the appropriate version of the Ising model, set up the
correct Hamiltonian (that describes the energy of the system), use the Boltz-
mann distribution and the detailed balance condition to derive the Glauber
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2.3. Noise trader

transition rates, linearize the rates and add the constant probability for the
holding time.

The Hamiltonian of the fully connected Ising model in an external magnetic
field is given by

HN ({s1, . . . , sN}) = − J
2N

N

∑
i 6=j=1

sisj − h
N

∑
i=1

si (2.29)

and based on Zamponi [124]. There are N spins that each can take on the
values si ∈ {−1, 1} that all interact with one another on fully connected
or complete graph. J represents the interaction term between the spins. h
defines the external magnetic field. The equilibrium distribution is given by
the Boltzmann distribution

Peq ({s1, . . . , sN}) = e−βHN (2.30)

with β = 1
kBT being the inverse temperature. The dynamics of the system are

given by the Glauber transition rates [47], which are derived by using the
detailed balance condition

p (si = 1→ si = −1)
p (si = −1→ si = 1)

=
Peq (si = −1)
Peq (si = 1)

=
e−β(Jm+h)

eβ(Jm+h) =
1− tanh(β(Jm + h))
1 + tanh(β(Jm + h))

(2.31)

p (si = 1→ si = −1) is the transition probability of a spin flip from 1 to −1
of spin si = 1 and P (si = −1) is the Boltzmann distribution of a configu-
ration with the spin si = 1. Peq (si = −1) describes the equilibrium distri-
bution with si = −1 in the Hamiltonian HN , whereas Peq (si = 1) describes
it for si = 1 in the Hamiltonian HN . The ratio of the two can be calcu-
lated using the difference of the two Hamiltonians P(HN(si=−1))

P(HN(si=1)) = e−βHN (si=−1)

e−βHN (si=+1) =
e−β(HN(si=−1)−HN(si=+1)), which is

Peq (si = −1)
Peq (si = 1)

=
e
−β

(
J

(
∑N

k 6=i=1 sk
N

)
+h

)

e
β

(
J

(
∑N

k 6=i=1 sk
N

)
+h

) (2.32)

All terms cancel except for the ones involving si = −1 and si = 1. Realizing
that the average magnetization is given by

m = ∑N
k=1 sk

N
. (2.33)
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yields Peq(si=−1)
Peq(si=1) = e−β(Jm+h)

eβ(Jm+h) . The last step in equation 2.31 is based on the

definition of the tangens hyperbolicus tanh(x) = ex−e−x

ex+e−x .

The Glauber rates are normalized by multiplying 1
2 , which yields

p+
G(m, h) =

1
2

[1− tanh(β(Jm + h))] (2.34)

and

p−G (m, h) =
1
2

[1 + tanh(β(Jm + h))]. (2.35)

In addition, the Glauber rates are linearized, which yields

p+(m, h) =
1
2

[1− β(Jm + h)] (2.36)

and

p−(m, h) =
1
2

[1 + β(Jm + h)]. (2.37)

Linear transition rates ensure that a full polarization is possible. While linear
rates p = 1

2 [1 + x] ∈ [0, 1] for x ∈ [−1, 1], the non-linear rates with tanh(x) ∈
[−0.76, 0.76] for x ∈ [−1, 1] can only reach values in the interval p = 1

2 [1 +
tanh(x)] ∈ [0.12, 0.88].

Furthermore, as Cividino [25] noted, the Glauber transition rates are multi-
plied by constant switching probabilities p+− which leads to

p+(m, h) =
p+

2
[1− β(Jm + h)] (2.38)

and

p−(m, h) =
p−
2

[1 + β(Jm + h)]. (2.39)

As mentioned before, these constant switching probabilities can be inter-
preted as the inverse of the holding time of the asset in the absence of the
social imitation and momentum:

t
+−
h =

2
p+−

(2.40)
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For instance, a constant switching probability of p+− ≈ 0.2 implies a aver-

age holding time of t
+−
h ≈ 10 time periods. Too short holding periods can

lead to unrealistic oscillatory behaviour and a high frequency of opposite
polarization of the traders as shown by Cividino [25].

Comparing the final Glauber transition rates in equations 2.38 and 2.39 with
the switching probabilities of the original model

p+
t =

p+

2
(1− κt (st + Ht)) (2.41)

p−t =
p−
2

(1 + κt (st + Ht)) , (2.42)

highlights how the noise trader class is mapped onto the Ising model.

The inverse of temperature β corresponds to the herding propensity

β⇔ κt, (2.43)

the average magnetization of the spins corresponds to the sentiment or opin-
ion index

m⇔ st, (2.44)

and the external magnetic field that is applied to the spins corresponds to
the price momentum:

h⇔ Ht. (2.45)

The interaction coupling term J is set to J = 1, which implies that all traders
interact homogeneously amongst each other.

As mentioned at the beginning of the section, the Ising model undergoes
a phase transition between the ordered and a disordered phase. The criti-
cal point at which the phase transition occurs can be derived from the self
consistency condition [118, 91]:

m = tanh(β(Jm + h). (2.46)

The critical point itself is denoted by the critical temperature Tc, which cor-
responds to the critical inverse temperature βc. If the inverse temperature
is lower than the critical value β < βc (T > Tc), disorder reigns. If the in-
verse temperature is higher than the critical value β > βc (T < Tc), order
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reigns. The critical value of the inverse temperature βc is found by taking the
derivative with respect to m on both sides of equation 2.46. The derivative
is evaluated at the points m = 0 and h = 0:

1 =
d

dm
tanh(β(Jm + h)

∣∣∣∣∣
m=0,h=0

= βJ. (2.47)

Therefore, the critical value of the inverse temperature is given by:

βc =
1
J

(2.48)

which equals to βc = 1 for J = 1. Hence, the critical value of the herding
propensity is expected to be at κc = 1, with κc < 1 referring to the disordered
phase where the noise traders make predominantly random investment de-
cisions and κc > 1 referring to the ordered phase where the noise traders
make investment decision predominantly based on social imitation and the
price momentum tradings strategies.

2.4 Market clearing and the price equation

This section brings the two assets and the two trader classes together by
introducing the market clearing conditions and the price equation. Noise
traders and fundamentalists interact through the price equation. As men-
tioned before, both trader classes are each modelled as a single represen-
tative agent, who invests in the risky and the risk-free asset according to
respective strategies.

The market clearing conditions are based on Walras’ theory of general equi-
librium [119] given by the following equation:

∆D f
t−1→t + ∆Dn

t−1→t = 0. (2.49)

∆D f
t−1→t and ∆Dn

t−1→t are the excess demand for the risky asset of the fun-
damentalists and the noise traders. There is no external supply of the risky
asset, hence the excess demands have to balance out.

Describing the excess demands of both trader classes in terms of the risky
fraction of the respective class leads to

∆D f
t−1→t = W f

t x f
t −W f

t−1x f
t−1

Pt

Pt−1
, (2.50)
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and

∆Dn
t−1→t = Wn

t xn
t −Wn

t−1xn
t−1

Pt

Pt−1
. (2.51)

Employing equation 2.6 for the wealth dynamics of both classes results in

∆D f
t−1→t = W f

t x f
t

[
1 + r f + x f

t−1

(
dt

Pt−1
+

Pt

Pt−1
− 1− r f

)]
−W f

t−1x f
t−1

Pt

Pt−1
,

(2.52)

and

∆Dn
t−1→t = Wn

t xn
t

[
1 + r f + xn

t−1

(
dt

Pt−1
+

Pt

Pt−1
− 1− r f

)]
−Wn

t−1xn
t−1

Pt

Pt−1
.

(2.53)

Employing the final formula of the risky fraction for the fundamentalist
(equation 2.17) and imposing the balance condition yield an equation for
the price pt. The derivation is found in Kohrt [69], which simplifies the
price equation to a quadratic equation:

atP2
t + btPt + ct = 0 (2.54)

The parameters at, bt and ct are given by the following equations:

at =
1

Pt−1

[
Wn

t−1xn
t−1(xn

t − 1) + W f
t−1x f

t−1

(
1
γ

Er − r f

σ2
r
− 1
)]

, (2.55)

bt =
1
γ

W f
t−1

σ2
r

(
x f

t−1
dt(1 + rd)

Pt−1
+ (Er − r f )

[
x f

t−1

(
dt

Pt−1
− 1− r f

)
+ 1 + r f

])
+ Wn

t−1xn
t−1

[
xn

t−1

(
dt

Pt−1
− 1− r f

)
+ 1 + r f

]
, (2.56)

ct = W f
t−1

1
γ

dt(1 + rd)
σ2

r

[
x f

t−1

(
dt

Pt−1
− 1− r f

)
+ 1 + r f

]
. (2.57)

For at < 0, bt > 0 and ct > 0, the solution to the quadratic equation 2.54 is

Pt =
−bt −

√
b2

t − 4atct

2at
. (2.58)
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2.5 Model dynamics

After the introduction of the assets, traders and the market clearing condi-
tions with the price equation, an exposition of the model dynamics follows.
As mentioned, the model evolves in time through discrete intervals, namely
trading days. A key role in the dynamical evolution of the market is taken
by the herding propensity κt of then noise trader class. Therefore, the sec-
tion first details the role κt in the model. Then the parameters chosen for
the simulation are outlined. Afterwards the results of the simulation of the
model, the time series, are described and analysed.

As mentioned in section 2.3, the herding propensity κt weights the impact of
the social imitation term (also called sentiment or opinion index) st and the
momentum term Ht. Kaizoji et al. [62] introduces the herding propensity
based on Harras et al. [51] to account for the variations that effect financial
markets such as changes in the economic and geopolitical climate. There
are two different description of the herding propensity: The first is to model
κt as constant value κt = κ = cst., which represents a stable environment
of the financial market. The second approach is to employ a time-varying
stochastic process, which represents the changes in the environment.

Kaizoji et al. [62] uses a discrete Ornstein-Uhlenbeck (OU) stochastic process

κt = κt−1 + ηκ(µκ − κt−1) + σκυt, (2.59)

which characterizes the dynamic regime-switching of financial markets Lux
[80]. µk is the mean reversion level around which the OU process varies. ηκ

represents the mean reversion rate, which describes the velocity with which
the OU reverts to the mean reversion level. υt is a series of standard inde-
pendent and identically distributed (i.i.d.) random variables with N (0, 1)
that realizes a Wiener process. σκ is the step size of the Wiener process.

The first two moments of the Ornstein-Uhlenbeck process are given by

Et[κt] = κ0 exp−ηκ t +µκ(1− exp−ηκ t) (2.60)

Cov[κs, κt] =
σ2

κ

2ηκ

(
exp−ηκ(t−s) + exp−ηκ(t+s)

)
s < t. (2.61)

In the long run, for t → ∞, the distribution of the process converges to
a stationary Gaussian distribution with mean equal to the mean reversion
level µG = µk and variance equal to σ2

G = σ2
κ

2ηκ

κt ∼ N (µκ ,
σ2

κ

2ηκ
). (2.62)
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2.5.1 Parameter set

After highlighting the relevance of herding propensity and the OU process,
the parameter set used to run the simulations are introduced. Table 2.1
summarizes the choices for the specific values. A more detailed discussion
of the choices can be found in Kaizoji et al. [62], Kohrt [69], Ollikainen [91]
and Westphal and Sornette [122].

Parameter set
Assets r f = 4× 10−5 rd = 1.6× 10−4

P0 = 1 d0 = 1.6× 10−4

σd = 1.6× 10−5

Fundamentalist W f
0 = 109 Er = 1.6× 10−4

traders σ
f
r = 0.02 x f

0 = 0.3
Noise Wn

0 = 109 Nn = 1000
traders θ = 0.95 H0 = 1.6× 10−4

p− = 0.200625 p+ = 0.199375
xn

0 = 0.3
Herding κ0 = µκ µκ = 0.98κc = 0.98

propensity ηκ ≈ 0.11 σκ ≈ 0.01

Table 2.1: Parameters for simulation of original market model. The values
are based on Westphal and Sornette [122].

The asset parameters are the following: The value of the risk-free rate r f
for the risk-free asset is set to r f = 0.004% per time period which accumu-
lates to an annualized risk-free rate of rannual

f ≈ r f × 250 = 0.01 assuming
250 trading days per year. The parameters for the dividend process are
determined according to Engsted and Pedersen [36]. The average value of
the dividend growth factor rd is set to rd = 0.016%, which accumulates to
rannual

d ≈ rd × 250 = 0.04. The standard deviation of the growth rate σd is
equal to σd = 0.0016%. The small value for σd is chosen to emphasize the
stochastic aspect of the noise trader strategy and not the dividend structure.
The initial dividend value d0 is set to d0 = 0.016%, which accumulates to an
annual growth rate of dannual

0 ≈ d0 × 250 = 0.04. The initial price is set to
P0 = 1.

Both traders, the fundamentalists and the noise traders start with an equal
amount of wealth, W f

0 = Wn
0 = 10 Billion. Furthermore, both invest thirty

percent of the initial wealth into the risky asset, x f
0 = xn

0 = 0.3. The fun-
damentalists expect, that the average return equals the dividend growth
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2. Original market model

Er = rd = 0.016%. The standard deviation of the return is expected to be
σr = 0.02. The initial number of noise traders is set to be Nn = 1000. θ is set to
be equal to 0.95, which corresponds to a memory length τmemory = 1

1−θ = 20
trading days. Hence, the noise traders consider the prices of the last 20 days
to calculate the momentum factor Ht. The initial price momentum is set
to the daily average dividend growth rate H0 = rd = 0.016%. The constant
switching probabilities for the noise traders introduced by Kohrt [69] are set
to p+ = 0.199375 and p− = 0.200625, which introduces a bias towards hold-
ing the risky asset. Without momentum trading or social imitation, more
traders tend to switch to the risky asset. This implies that the frequency of
positive price bubbles is higher than the frequency of negative price bubbles,
which is also observed in real market data.

As discussed before, the herding propensity is modelled by a constant factor
or by the OU stochastic process. When the constant herding propensity is
chosen for a simulation, it is set to κt = 0.98κc, below the critical value of the
simulation. This implies that there is no phase transition for the constant
herding propensity. The OU stochastic process requires the specification of
the mean reversion level µκ, the mean reversion rate ηκ and the standard
deviation of the Wiener process σκ. As for the CK simulation, it is useful for
the OU process to choose a mean reversion level below the critical value of
the herding propensity κc. This implies that due to stochastic fluctuations,
the model occasionally enters a regime with faster than exponential growth.
The mean reversion level is set to µκ = 0.98κc. The mean reversion rate
ηκ and the standard deviation of the Wiener process σκ are set such that
the the Gaussian distribution for t → ∞ has a standard deviation of 10%
of the critical kappa σG = 0.1κc and a deviation of the OU process two
standard deviations above the mean reversion level (µκ + 2σG), will revert
within ∆T = 20 trading days. As mentioned the standard deviation of the
limiting Gaussian distribution is σG = σκ√

2ηκ
. In combination with the starting

condition,

σκ = 0.1κc
√

2ηκ . (2.63)

Based on the expectation value of κ 2.60, it is possible to estimate the time
needed for the process to revert from a value κ0 > κc to the mean reversion
level µκ :

∆T =
1
ηκ

log
(

κ0 − µκ

κc − µκ

)
(2.64)

Inverting equation 2.64 yields the following expression for the mean rever-
sion rate
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ηκ =
1

∆T
log
(

µκ + 2 · 0.1κc − µκ

κc − µκ

)
=

1
20

log
(

0.2κc

0.02κc

)
=

1
20

log(10) ≈ 0.11

(2.65)

Plugging the value for ηκ into equation 2.63 yields

σκ = 0.1κc
√

2ηκ ≈ 0.05. (2.66)

The constant risk aversion γ is not externally fixed but calculated internally
each time period. Thus, the constant risk aversion is evaluated initially as

γ =
1

x f
0

Er − r f + d0(1+rd)
P0

σ2
r

. (2.67)

As mentioned earlier, one trading day represents one time period in the
model. As noted by Sornette [111], the empirical daily standard deviation of
realized returns in financial markets is approximately σmarket ≈ 0.01. There-
fore, as suggested by Ollikainen [91], the model adopts the daily standard
deviation of realized returns.

The returns are approximated by a Wiener process with standard deviation
at time t equal to σt = σ0

√
t. Therefore, the standard deviation at two differ-

ent times t1 and t2 of a Wiener process are related by

σt2 = σt1

√
t2

t1
. (2.68)

From equation 2.68, it is possible to infer the relation of a simulated trading
day to a real trading day

tsim

tmarket
=

σ2
sim

σ2
market

(2.69)

which yields

tsim =
σ2

sim
0.012 . (2.70)

Therefore, running a simulation with T = 5000 time-steps corresponds to
T
20 = 20 trading years in the model.
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2.5.2 Simulation and time series

After reviewing the structure of the original market model and the param-
eter set throughout the chapter, the following subsection details two simu-
lations of the original market model. The source code of the model was
written by Kohrt [69] and later extended by Ollikainen [91] and Westphal
[122]. The code is written in the Object Oriented programming paradigm.
The majority of the code, including the classes for the traders, the assets and
the market, is written in C++. The simulations are stored in a database em-
ploying the HDF5 library. The data analysis is done in Python. A pseudo-
random number generator with a random seed number is used to obtain
reproducible results.

The two simulations are identical with respect to the parameter values cho-
sen except for the herding propensity κt. The first simulation is set up using
a constant herding propensity and illustrated in figure 2.2 while the second
simulation is done using the Ornstein-Uhlenbeck (OU) stochastic process
and presented in figure 2.3. The figures show the time evolution of several
variables including the price pt, the return on capital rt also called price
return rate, the price momentum Ht, the dividend price ratio dt

Pt
, the switch-

ing probabilities of the noise traders p
+−
t , the risky fractions for both trader

classes xn, f
t , the wealth ratio vt = Wn

t

W f
t

and the herding propensity κt. In

the following the differences between the two figures are highlighted. The
first row in figures 2.2 and 2.3 exhibit the price dynamics for the constant
kappa (CK) and the Ornstein-Uhlenbeck OU kappa, which is plotted on a
log-linear-scale. The price time series for the CK can be characterized by
modest fluctuations around a long term linear growth, which is given by
the constant growth factor rd of the dividend. This is contrasted to the
large deviations of the price from this long term growth in figure 2.3 for the
OU kappa. There are clearly identifiable price bubbles followed by crashes
which manifest trough a sharp increase followed by a sharp decrease in the
price Pt at for instance t ≈ 2600 or t ≈ 4700.

The presence of endogenous bubbles is the defining difference between the
two figures and can also be observed in the return on capital rt and the
price momentum Ht. Both show a relatively uniform oscillatory behaviour
for the CK, whilst showing periods of small oscillations followed by periods
of large oscillations at the price spikes for the OU kappa simulation. In
addition, the interval for rt and Ht values are roughly twice the range for
OU kappa compared to compared to the CK simulation. The dividend price
ratio dt

Pt
shows an inverse relationship to the price evolution for CK and OU

kappa.

The switching probabilities of the noise trader mirror one another and its
sum is constant over time p+

t + p−t = p++p−
2 = cst. The probability to switch
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Figure 2.2: Simulation with κt = µκ = 0.98κc. The variables presented in the
individual panels are from top panel to bottom: the price pt, the return on
capital rt, the price momentum Ht, the dividend price ratio dt

Pt
, the switching

probabilities of the noise traders (from the risky to the risk-free asset p+
t and

vise versa p−t ), the risky fractions for both trader classes xn, f
t , the wealth

ratio vt = Wn
t

W f
t

and the herding propensity κt.
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Figure 2.3: Simulation with κt as the OU process. The variables presented
in the individual panels are from top panel to bottom: the price pt, the
return on capital rt, the price momentum Ht, the dividend price ratio dt

Pt
, the

switching probabilities of the noise traders (from the risky to the risk-free
asset p+

t and vise versa p−t ), the risky fractions for both trader classes xn, f
t ,

the wealth ratio vt = Wn
t

W f
t

and the herding propensity κt.
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from the risk-free to the risky asset p−t has a similar trajectory compared to
the risky fraction, because a high probability to switch to the risky asset im-
plies a high risky fraction and vice versa. When comparing both simulations,
the risky fraction of the noise traders, xn

t , exhibits larger fluctuations for the
OU process. A risky fraction of xn

t = 1 characterizes a full polarization of the
noise traders to the risky asset. This can be seen around t ≈ 3600 in figure
2.3. A polarization to the risk-free asset cannot be seen in the simulation but
would correspond to xn

t = 0.

The wealth ratio given by νt = Wn
t

W f
t

defines the total wealth of the noise

traders relative to the total wealth of the fundamentalists. The increase in the
ratio correlates with the price bubbles. During increases in price, the wealth
increases for both investors. While the noise traders tend to invest more in
rising prices, the fundamentalists tend to sell off the risky asset when the
price increases.

2.5.3 Stylized facts

After the qualitative discussion of the simulation results in the previous sec-
tion, this section continues with more quantitative aspects. A general prac-
tice to assess and validate agent based model of financial markets is to their
results to statistical properties of real financial market data, which are often
summarized under the umbrella term ’stylized facts’. This section verifies
that the model produces volatility clustering and the fat-tail distribution of
returns.

Volatility clustering describes the observation that large changes in prices
tend to cluster together and is tested for by calculating the auto-correlation
function (ACF) of the signed and absolute returns [34]. The ACF for a
stochastic process Xt at time τ with a lag l is given by equation 2.71

ACFl (Xt) (τ) =
Cov [Xt(τ)Xt(τ − l)]√

Var [Xt(τ)]Var [Xt(τ − l)]
. (2.71)

where the returns at time τ and at time (τ − t) are essentially tested for a
Pearson correlation.

Figures 2.4 and 2.5 show the ACF for the signed (blue) and absolute (red)
returns for the CK simulation (figure 2.4) and the OU kappa simulation
(figure 2.5).

The ACF for the CK simulation in figure 2.4 decays quickly to zero for in-
creasing lags l for both the signed and absolute returns. This signals that
the returns themselves are little correlated and that there are virtually no ar-
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Figure 2.4: ACF for singed (blue) and absolute (red) returns for simulation
with constant kappa (CK) with ACF on y-axis and l on x-axis.

Figure 2.5: ACF for singed (blue) and absolute (red) returns with OU kappa
with ACF on y-axis and l on x-axis.

bitrage opportunities in the presence of transaction costs as noted by Kaizoji
et al. [62].

The signed returns for the OU kappa simulation in figure 2.5 also decay
quickly to zero within l < 10. The absolute values of the returns have an
auto-correlation function with longer memory. This is also in agreement
with Kaizoji et al. [62], Ding et al. [34] and Cont [27] and signals volatility
clustering, which was also observed in the visual inspection of figure 2.3.

The fat tail distribution of returns refers to the empirical phenomenon
that extreme returns are far more frequent then suggested by the Gaussian
distribution [27, 48, 94]. The empirical fat-tail decay of the distribution

p(x) ∼ x−1−α (2.72)

is characterized by the exponent α ∈ [2, 4].

Figures 2.6 and 2.7 present the fitted parameter for the two simulations. The
parameter is α ≈ 4.2 for the CK simulation and α ≈ 2.0 for the OU kappa
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simulation. This implies that only the simulation with the OU kappa falls
within the required range of the parameter.

Figure 2.6: Log-log plot of the cumulative distribution function (CDF) of
returns for the CK simulation with α ≈ 4.2.

Figure 2.7: Log-log plot of the cumulative distribution function (CDF) of
returns for the OU kappa simulation with α ≈ 2.0.
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After introducing the essential aspects of the model with the two trader
classes, the market clearing and the model dynamics, the following chapters
describes the model extensions.
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Chapter 3

Extension of original market model
using statistical physics

The previous chapter introduced the original market model with two assets
and two trader classes. This chapter focuses on the first extension of the
noise trader class. While there are many ways to extend the original model
by Kaizoji et al. [62] and its modifications, keeping the essence of the noise
trader class imposes some constraints on possible extensions. In this chapter,
the goal is to extend the noise trader class to allow for leverage and short
selling while preserving the Ising-like structure of social imitation and trend
following that governs the polarization of the noise traders and the creation
of bubbles.

A natural way to preserve the Ising-like structure of the noise trader class
is to base the extension on generalizations of the Ising model from statisti-
cal physics. Cividino [25] extended the noise trader class to a multi asset
framework by employing the Potts model and the O(n) model amongst oth-
ers. The following sections outline the Potts and O(n) models and map them
from the multi-asset application to the case of one risky asset with leverage
and short selling.

3.1 Potts model (for q=4)

In order to describe noise traders that can invest in a risky and risk-free asset
but also take a leveraged and a short position in the risky asset, the noise
trader class is mapped onto the Potts model. The Potts model allows for
spins which can occupy q scalar values si ∈ {1, 2, ..., q}. In the context of the
extension of the noise trader class, the individual spins represent the noise
traders and the occupied state represents the investment decision. Hence,
an individual noise trader can choose between four different states si ∈
{s, r f , r, l}, where s represents taking a short position on the risky asset, r f
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represents investing in the risk-free asset, r represents investing in the risky
asset and l represents taking a leveraged position in the risky asset. The
investment decision process of an individual noise trader can be described
as a discrete Markov chain, which is depicted in figure 3.1.

Figure 3.1: Potts model with q = 4 states si ∈ {s = short selling position, r f
= risk-free asset, r = risky asset, l = leverage position}.

The derivation of the switching probabilities follows a similar approach to
the Ising model (see section 2.3) and is outlined for the general q-state Potts
model in Ostilli [93] and Cividino [25]. The main steps are summarized
in the following. The fully connected q-state Potts model with an external
magnetic field, which acts on the spins, is described by the Hamiltonian

HN ({s1, . . . , sN}) = − J
2N

N

∑
i,j=1

δsi ,sj −
q

∑
k=1

Hk

N

∑
i=1

δsi ,k, (3.1)

where N presents the number of spins. The individual spin si, i ∈ {1, ...N},
can take on values si ∈ {1, ...q}. The interaction among the individual spins
is determined by δsi ,sj , which equals one if si and sj are in the same state
and zero if not. The external magnetic field is described by Hkδsi ,k, where
k corresponds to one of the states of the spins k ∈ {1, ...q}. The transition
probability of an individual spin to switch from state a to b is given by

Pt(a→ b) =
eκt

(
Nb−Na

N +Hb−Ha

)

∑
q
k=1 eκt

(
Nk−Na

N +Hk−Ha

) =
eκt

(
Nb
N +Hb

)

∑
q
k=1 eκt

(
Nk
N +Hk

) . (3.2)
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Na the number of spins in state a ∈ {1, ...q} and Nb the number of spins in
state b ∈ {1, ...q}. κt corresponds to the inverse temperature β (see relation
2.43). Ha and Hk are the external magnetic fields that interact with spins in
state a and k. The interaction term of the Hamiltonian is set to J = 1. The
right side of the equation shows that the transition probability from state a
to b is independent of the initial state a.

Comparing these transition probabilities to the original model, it is clear that
the sentiment st of the original model is replaced by q new sentiments. Each
state is associated with a single sentiment defined by

sb
t =

Nb

N
with b ∈ {s, r f , r, l}. (3.3)

The transition probabilities can be represented as a matrix as shown in table
3.1.

P(a→ b) s r f r l

s P(s→ s)
= P(s)

P(s→ r f )
= P(r f )

P(s→ r)
= P(r)

P(s→ l)
= P(l)

r f P(r f → s)
= P(s)

P(r f → r f )
= P(r f )

P(r f → r)
= P(r)

P(r f → l)
= P(l)

r P(r → s)
= P(s)

P(r → r f )
= P(r f )

P(r → r)
= P(r)

P(r → l)
= P(l)

l P(l → s)
= P(s)

P(l → r f )
= P(r f )

P(l → r)
= P(r)

P(l → l)
= P(l)

Table 3.1: Transition probabilities P(a → b) for q-state Potts model, where
the start states a are on the vertical axis and the end states b are on the
horizontal axis.

The independence of the transition probabilities from the initial state a is re-
flected in the transition probability table, where each column only depends
on the respective end state.

Using equation 3.2, the probability of remaining in the same state from one
period to the next in the absence of herding behavior κt = 0 is given by
Pt(a → a)|κt=0= 1

q . Since Pt(a → a) is defined as the probability of switching
from state a to state a, (1− Pt(a → a)) defines the probability of switching
from state a to any other of the q − 1 states. Therefore, the average time
that a trader remains in one state in the absence of herding behavior is the
inverse of the probability to switch to another state
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th =
1

1− Pt (a→ a)|κt=0
. (3.4)

This implies an inverse proportion between the holding time and the num-
ber of states. As an example, for q = 4 the holding time equals th = 4

3 . If
q = 10, the holding time equals th = 10

9 . The more states there are, the
quicker the traders switch between states. The original market model as-
sumed a holding time of 10 periods th = 10. To remedy the issue of short
holding times, Cividino [25] introduces an average holding time th, which
was also introduced in the original market Ising model, with constant switch-

ing probabilities p+− and the related holding period t
+−
h = 2

p+−
to avoid an

unrealistically quick switching between the states.

In similar fashion, two constants c and d are introduced to enable an adjust-
ment of the time a trader remains in one state. This allows to increase the
probability to remain in state a, Pt(a → a) while decreasing the probability
to switch to any other state Pt(a → b). The probabilities have to obey the
condition

Pt(a→ a) + ∑
b 6=a

Pt(a→ b) = 1. (3.5)

Pt(a → a) is multiplied by the constant c and the probabilities Pt(a → b) are
multiplied by the constant d. If the herding propensity is set to zero kt = 0,
this yields c

q + d(q−1)
q = 1. In combination with equation 3.1, the constants c

and d are given by

c =
(

1− 1
th

)
q (3.6)

d =
q− c
q− 1

=
q−

(
1− 1

th

)
q− 1

(3.7)

This lead the new transition probabilities

Pt(a→ a) =
c · eκt( Na

N +Ha)

∑
q
k=1 eκt

(
Nk
N +Hk

) , (3.8)

Pt(a→ b) =
d · eκt

(
Nb
N +Hb

)

∑
q
k=1 eκt

(
Nk
N +Hk

) , (3.9)
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3.1. Potts model (for q=4)

For instance, assuming q = 4 where a, b ∈ {s, r f , r, l}, th = 4
3 leads to c = d = 1.

The switching probabilities are P(a → a)|κt=0= P(a → b)|κt=0= 1/q = 0.25.
However, assuming the holding time of the original market model th = 10
results in c = 3.6 and d ≈ 0.13. The associated switching probabilities are
P(a→ a)|κt=0= 0.9 and P(a→ b)|κt=0≈ 0.033.

In the case of the multi-asset extension, a, b ∈ {1, . . . q} represent the assets
that the noise trader can invest in. Furthermore, in the multi-asset extension
Ht

k corresponds to the price momentum of asset k. In the leverage and short
selling extension, there is only one price momentum Ht for the risky asset.
This allows for several ways to define the price momentum factor for the
individual states. This point is addressed in more detail in the next chapter
in table 4.2. For the Potts model the following definitions are adopted. The
risky asset position is associated with a price momentum factor Hr = Ht− r f .
When taking the leverage position, the noise trader invests twice the wealth
in the risky asset. Hence, the price momentum factor is set to Hl = 2Ht − r f .
The risk-free position yields the risk free return r f and is defined as the
opposite of the risky asset factor Hr f = r f −Ht. The short position is defined
by the opposite of the leveraged position Hs = r f − 2Ht.

Using the transition probabilities of the noise trader class, it is now possible
to write down the equations for the evolution of the number of traders in
each state. As in the original model, the investment decision is represented
by Bernoulli random variables. The discrete time evolution of the noise
traders in the different states is given by:

Ns
t =

Nr f
t−1

∑
k=1

ξk(ps
t−1) +

Nr
t−1

∑
k=1

ξk(ps
t−1) +

Nl
t−1

∑
k=1

ξk(ps
t−1)+

Ns
t−1

∑
k=1

[1− ξk(pr f
t−1)− ξk(pr

t−1)− ξk(pl
t−1)], (3.10)

Nr f
t =

Ns
t−1

∑
k=1

ξk(pr f
t−1) +

Nr
t−1

∑
k=1

ξk(pr f
t−1) +

Nl
t−1

∑
k=1

ξk(pr f
t−1)+

Nr f
t−1

∑
k=1

[1− ξk(ps
t−1)− ξk(pr

t−1)− ξk(pl
t−1)], (3.11)

43



3. Extension of original market model using statistical physics

Nr
t =

Ns
t−1

∑
n=k

ξk(pr
t−1) +

Nr f
t−1

∑
k=1

ξk(pr
t−1) +

Nl
t−1

∑
k=1

ξk(pr
t−1)+

Nr
t−1

∑
k=1

[1− ξk(ps
t−1)ξk(pr f

t−1 − ξk(pl
t−1], (3.12)

Nl
t =

Ns
t−1

∑
k=1

ξk(pl
t−1) +

Nr f
t−1

∑
k=1

ξk(pl
t−1) +

Nr
t−1

∑
k=1

ξk(pl
t−1)+

Nl
t−1

∑
k=1

[1− ξk(ps
t−1)− ξk(pr f

t−1)− ξk(pr
t−1)]. (3.13)

The definition of the risky fraction reflects the values for the polarization of
noise traders to the risky asset (xn

t = 1) and the risk-free asset (xn
t = 0) of

the original market model and adds the polarization to the leverage (xn
t = 2)

and short position (xn
t = −1). The risky fraction is given by

xn
t =

2Nl + Nr − Ns

N
∈ [−1, 2]. (3.14)

3.1.1 Model dynamics

After extending the noise trader class to include leverage and short selling
using the Potts model, this subsection provides an exposition of its model
dynamics. The parameter set of the model is introduced and the time series
is described for different simulations.

The parameter set is described in table 3.2. The parameter values for the
fundamentalist and the risky and risk-free asset are identical to the origi-
nal model. Besides investing their total wealth into either the risky or the
risk-free asset, each noise trader can double down on their investment by
investing twice their respective wealth into one of the two assets. Investing
twice their wealth into the risky asset corresponds to the leverage state and
investing twice in the risk-free asset to short selling. The probability of one
noise trader to initially chose state k ∈ {s, r f , r, l} is given by pk

0 = 0.25. The
price momentum for state i that the noise trader can occupy is excluded
from the simulations Hk = 0 for k ∈ {s, r f , r, l} to isolate the impact of the
sentiment. The holding time is set to th = 10.
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3.1. Potts model (for q=4)

Parameters
Assets r f = 4× 10−5 rd = 1.6× 10−4

P0 = 1 d0 = 1.6× 10−4

σd = 1.6× 10−5

Fundamentalist W f
0 = 109 Er = 1.6× 10−4

traders σ
f
r = 0.02

Noise Wn
0 = 109 Nn = 1000

traders θ = 0.95 H0 = 1.6× 10−4

q = 4 pk
0 = 0.25 k ∈ {s, r f , r, l}

th = 10 Hk = 0 k ∈ {s, r f , r, l}
Herding κ0 = µκ µκ = 0.98κc

propensity ηκ ≈ 0.11 σκ ≈ 0.16

Table 3.2: Parameters for simulating the q = 4 state Potts model.

The time series for the two different simulations are presented in figures
3.2 and 3.3. The simulations are identical with respect to the parameter
values chosen except for the herding propensity κt. The first simulation is
set up using a constant herding propensity while the second simulation is
done using the Ornstein-Uhlenbeck (OU) stochastic process given by

κt = κt−1 + ηκ(µκ − κt−1) + σκυt, (3.15)

with mean reversion level µκ = 0.98κc. As described in chapter 2.5.3 the
critical herding propensity corresponds to the critical inverse temperature
βc. For the mean-field q-state Potts model Ostilli and Mukhamedov [93]
derive the theoretical value for critical inverse temperature to be

βc =
2(q− 1)

q− 2
log(q− 1), (3.16)

which equals βc ≈ 3.30 for q = 4. Similar to the original model, the mean
reversion rate ηκ and the standard deviation of the Wiener process σκ are set
such that the deviation of the OU process two standard deviations above the
mean reversion level (µκ + 2σG), will revert within ∆T = 20 trading days. This
implies a mean reversion of ηκ = 1

∆T log
(

µκ+2·0.1κc−µκ

κc−µκ

)
= 1

20 log
(

0.2κc
0.02κc

)
=

1
20 log(10) ≈ 0.11. Then σκ = 0.1κc

√
2ηκ ≈ 0.16.

For the simulation with the constant herding propensity CK, κt is set to the
mean reversion level κt = µκ = 0.98κc, which is below the critical value of the
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3. Extension of original market model using statistical physics

simulation. The results for the CK simulation are depicted in figure 3.2. As
expected, the there is no phase transition for the constant herding propen-
sity, which is also confirmed when looking at the price time series in the
first row and the switching probabilities in the third row. The number of
noise traders in each state fluctuate around their mean values of 250. The
switching probabilities fluctuate between 0.03 and 0.04, which is in agree-
ment with the expected values based on equation 3.9. There is a steady
decline of wealth among the noise trader throughout the simulation com-
pared to the fundamentalists.

Figure 3.3 visualizes the OU simulation. From the two simulations the dif-
ference between the OU and CK seems to be marginal. The sentiments in
the fourth row of figure 3.3 show similarly small fluctuations compared to
the CK simulation. At T ≈ 3000, there is a noticeable spike in Pr f

t and
Nr f . However, there is no polarization to any state even though the herding
propensity enters the critical regime several times. The absence of polariza-
tion in the noise trader class can mainly be explained by the small switching
probabilities, which are a result of the holding time.

Figure 3.4 visualizes the OU simulation for th = 4
3 , which corresponds to the

Potts model without the adjustment for the holding time in equation 3.9. A
smaller holding time increases the switching probabilities and enables the
noise traders to polarize towards one state. For instance, at T ≈ 1000, they
polarize to the risk-free asset and at T ≈ 2200 to the leverage state. After T ≈
2200, the noise traders lost most of their wealth and have only little impact
on the price dynamics. It is worth noting that, whenever the noise traders
polarize towards on state, there is no gradual polarization but an abrupt
one. This is highlighted by the peaks in the row that describes the number
of noise traders in each state. An explanation for these discontinuous jumps
can be found by looking at the phase transitions for the q-state Potts model
in more detail.

The phase transitions for the mean-field q-state Potts model are studied in
several papers, for instance in Ostilli and Mukhamedov [93], Lorenzoni and
Moro [79], Cuff et al. [31], Kirkpatrick and Wolynes [68] and Thirumalai and
Kirkpatrick [115].

Ostilli and Mukhamedov [93] identifies two phase transitions for the mean
field Potts model. A first order phase transition at critical value

κc =
2(q− 1)

q− 2
log(q− 1), (3.17)

and a second order phase transition at
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3.1. Potts model (for q=4)
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Figure 3.2: Simulation of 4-state Potts model with CK herding propensity.
The herding propensity is set to κt = 0.98κc ≈ 3.23, which is below the
critical value κc ≈ 3.30. The price momentum factors are excluded Hi = 0
for i ∈ {s, r f , r, l} to highlight the impact of the sentiment. The holding time
is th = 10. There are no bubbles.

κc = q. (3.18)
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Figure 3.3: Simulation of 4-state Potts model with OU stochastic process
for herding propensity. The herding propensity is set to κt = 0.98κc = 3.23,
which is below the critical value κc ≈ 3.30. The effects of the price momen-
tum are excluded Ht = 0 and Hi = 0 for i ∈ {s, r f , r, l}. The holding time is
th = 10.

Figure 3.5 shows the bifurcation diagram for the q = 4 state mean-field Potts
model where the average sentiments (’opinion indexes’) of the individual
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Figure 3.4: Simulation of 4-state Potts model with OU stochastic process
for herding propensity. The herding propensity is set to κt = 0.98κc = 3.23,
which is below the critical value κc ≈ 3.30. The effects of the price momen-
tum are excluded Ht = 0 and Hi = 0 for i ∈ {s, r f , r, l}. The holding time is
th = 4

3 .

states si with i ∈ {s, r f , r, l} that the noise traders can occupy are plotted for
different values of κ. The sentiment of an individual state in the figure is
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3. Extension of original market model using statistical physics

defined as the time-average over all the simulation’s steps si = ∑T
t=1 sit
T . The

diagram is derived by running 1000 CK simulations with different seeds for
a list of constant herding propensities in the interval [0, 5]. The impact of
the price momentum on the switching probabilities for the noise traders is
set to zero to decouple the noise trader class from other external factors of
the market. The left figure describes the average sentiments for the different
constant kappas, while the right figure describes their standard deviations.
One can observe two different regimes, a disordered and an ordered regime,
that are separated by a phase transition. The figure highlights the discon-
tinuous phase transition at around κc,1st ≈ 3.3, which is in accordance with
the theoretical derivation of the first order phase transition and the associ-
ated bifurcation described in Ostilli and Mukhamedov [93]. In that regard,
this extension with Potts model differs from the original model, which em-
ploys the Ising model and features a 2nd order continuous phase transition
at kc = 1.

Figure 3.5: Time average and standard deviation of the sentiments si with
i ∈ {s, r f , r, l} for different constant κt = cst. The first order discontinuous
phase transition between the disordered and order state is at κc,1st ≈ 3.30
and in accordance with theoretical derivations.

Below the critical value κc,1st, there is a fixed point with a symmetric and
equal distribution of the noise traders among the states with si = 1

q = 0.25

or Ni = N
q , where Ni represents the number of noise traders in state i with

i ∈ {s, r f , r, l}. This is also in accordance with the linear stability analysis
done in Cividino [25].

Above the discontinuous phase transition, the noise traders polarize in one
of the four possible states. Due to the number of simulations involved, most
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3.2. O(n=4) model

of the points are overlapping which makes it more difficult to visualize all
four different colors.

The discontinuous phase transition is the reason for the abrupt polarization
of the noise traders in figure 3.4. This is also the most important drawback of
the Potts model, because a continuous phase transition is needed to describe
a continuous and more gradual polarization of the noise trader class towards
one state. In addition, in the Potts model all states are directly connected.
This implies that the transitions between the states are all equivalent. For
instance, a trader can directly switch from the short position to the leverage
position. This assumption is questioned in the following chapter.

In conclusion, the q = 4 state mean-field Potts model is inadequate to model
realistic financial markets due to the nature of the phase transition.

3.2 O(n=4) model

Another possibility to extend the Ising model is to replace the scalar spin
values with a vector quantity [25]. The Ising model then becomes the O(n) or
n-vector model. In the O(n) or n-vector model, the spins are not represented
by scalars but by n-dimensional vectors ~si = (si1, si2, ..., sin). The Hamiltonian
for the fully connected O(n) model with an external magnetic field is given
by

HN

({
~S1, . . . ,~SN

})
= − J

2N

N

∑
i,j=1

~Si · ~Sj −
N

∑
i=1

~h · ~Si (3.19)

where the spin is a n dimensional vector ~Si = (si1, . . . , sin) ∈ Sn−1 with
||~Si||= 1.

The transition probabilities to go from state ~A to ~B is given by

P(~A→ ~B) =
eκt

(
∑i~si ·~B

N + ~H · ~B
)

∫
~K∈Sn−1 e

κt

(
∑i~si ·~K

N +~H·~K
) (3.20)

While the O(n) model is useful for the extension to multiple risky assets, it is
not as useful for the extension to allow for leverage and short selling. In the
multi asset extensions the normalization of the spin vector ||~Si||= 1 implies
that only the total wealth can be invested. Introducing leverage and short
selling to the O(n) model requires values for the individual components sij
with j ∈ {1, ...n} to take on q different states as in the Potts model. Therefore,
the O(n) model can be a useful tool to model the leverage and short selling
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3. Extension of original market model using statistical physics

for the multi-asset extension, but does not seem to be promising for the
single risky asset case that is investigated in this thesis.
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Chapter 4

Extension of original market model
from a microscopic perspective

The previous chapter outlined the extension of the original market model
using the Potts model and its limitation, which is the discontinuous 1st or-
der phase transition that separates the ordered from the disordered regime.
The discontinuous phase transition leads to abrupt polarization of the noise
traders and to sharp peaks in the switching probabilities and price time
series.

Therefore, this chapter shifts the focus from borrowing concepts from statis-
tical physics to building an extension by formulating the microscopic inter-
actions between the traders and then studying the macroscopic properties
of the system. This microscopic perspective entails three steps. Firstly, the
state space that the noise traders can occupy is defined. Secondly, the tran-
sition rates between the states have to be defined. Together, the state space
and the transition rates define the microscopic behavior of the noise trader
class. The third step consists of analysing the macroscopic properties that
arise from the microscopic interactions of the noise traders.

The microscopic approach was already employed by Damiani [32] and Kopp
[70] to extend the original market model to a multi asset case. Damiani [32]
extends the market model by coupling different Ising models together at the
risky asset as depicted for the three asset case in figure 4.1. The risk-free
assets are treated as one asset. The noise traders can switch between the
risky assets and also between the risk-free and risky assets. The approach
to extend the model to multiple assets by Kopp [70] is depicted in figure 4.2.
The Ising model describes the transition of the noise traders between a risky
asset and a bond market that contains many bonds. A second mechanism is
in place to model the decision of the noise traders once they have decided
to invest in the bond market.
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4. Extension of original market model from a microscopic perspective

Figure 4.1: Coupled Ising model
with 3 risky assets.

Figure 4.2: Coupled Ising model
with risky asset and bond market.

The remainder of the chapter consists of defining the microscopic model
of the noise trader by firstly defining the states and secondly the transition
probabilities. Then three models that incorporate leverage and short selling
differently are presented. For each model, there is a description of the time
series and an explanation for the behaviour.

4.1 Definition of states

To include a leverage position and a short position besides the investment
into the risk-free and risky asset requires at least four states, similar to the
implementation of the Potts model in chapter 3. Therefore, as in the Potts
model extension, each noise trader is represented by a spin and can occupy
either the short, the risk-free, the risky or the leverage state si ∈ s, r f , r, l and
i ∈ {1, ...N}. The Potts model enables the noise traders to switch directly
between all possible states, which means that the graph of the states is fully
connected. This implies that the transitions between the states are all equiv-
alent. For instance, a trader can directly switch from the short position to
the leverage position.

However, the four states differ in the exposure to market risk. There is no
exposure for the risk-free asset. The risky position and the leverage position
are both long positions where the noise trader profits from a price increase,
which implies a positive exposure. The risky position exposes the noise
trader to risky asset once, while the leverage position exposes the noise
trader to the risky asset twice. The short position implies a negative expo-
sure to the market risk of the risky asset, because the noise traders profits
from a price decrease. Furthermore, the short and the risk-free position are
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4.1. Definition of states

associated with a pessimistic market sentiment and the risky and leverage
position are associated with a optimistic market position. In general, the
market sentiment reflects the attitude of the investors, which is based on a
variety of factors [12, 13]. From a behavioural perspective, one can assume
that traders first invest their own wealth before borrowing from another
entity. Thus, a transition from xni

t = 0 to xni
t = 2 can be discarded. Hence, an-

other approach to model the graph of states is to extend the original model
by the leverage state on top of the risky state and by the short state below the
risk-free state. This ’ladder’ structure bears a resemblance to coupling two
Ising models together and is visualized in figure 4.3. It is also conceivable to
map the transition approach for the multi-asset extension by Kopp [70] onto
the extension to include leverage and short selling. Here, the noise trader
first decides to invest either into the risk-free asset or the stock market. If
the stock market is chosen, a second choice is made to determine among the
three alternatives of investing the total wealth into the risky asset, borrowing
money to invest twice the amount into the risky asset or borrowing money
so take a short position. A visualization of this process is given in figure 4.4.

Figure 4.3: Ladder structure
with leverage and short position.

Figure 4.4: Coupled Ising model
with stock market and risky asset.

To summarize, three different ways to connect the four different states (short,
risk-free, risky and leveraged) are identified: the fully connected graph (fig-
ure 3.1), the ladder structure (figure 4.3), and the coupling of the risk-free
asset with a market (figure 4.4). With the states defined, it is possible to
describe the transition rates between the states.
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4. Extension of original market model from a microscopic perspective

4.2 Transition rates

The transition rates of the three structures (fully connected, ladder, stock
market) can be visualized in a transition matrix or table. For instance, table
4.1 illustrates the allowed transition rates for the ladder structure in figure
4.3. The rows in table 4.1 describe the transition probabilities from state a to
all other states. The probabilities of each row (each start state) have to sum
up to one with Pt(a→ a) + ∑b 6=a Pt(a→ b) = 1.

P(a→ b) s r f r l
s P(s→ s) P(s→ r f ) 0 0

r f P(r f → s) P(r f → r f ) P(r f → r) 0
r 0 P(r → r f ) P(r → r) P(r → l)
l 0 0 P(l → r) P(l → l)

Table 4.1: Transition rates for the ladder structure with leverage and short
position.

This section focuses on the features of the transition rates itself. The choices
made with respect to the features are of central importance for the dynamics.
The features to control are the structure of probabilities, the holding time,
the social imitation, the price momentum and other parameters and the
herding propensity.

The structure of probabilities describes how the probabilities are normal-
ized and if they are linearized. The original market model with its Ising-like
structure suggests to adopt linear switching probabilities which are normal-
ized by the number of states that the traders can occupy (see equation 2.22).
The Potts model employs non-linear switching probabilities and they are
normalized by the sum of all switching probabilities (see equation 3.2). In
addition, the switching probabilities in the original model by Kaizoji et al.
[62] are symmetric with no bias P−t (st, Ht) = P+

t (−st,−Ht). In later exten-
sions, a bias is introduced towards the risky asset [91].

The holding time is represented by the inverse of the probability to switch
from state a to any other state for a zero herding propensity and given
by th = 1

1−Pt(a→a)|κt=0
. In more general terms, the holding time th can be

expressed in terms of two constants c and d, which was done in equations
3.6 and 3.7. The individual probabilities are given by Pt(a → a)|κt=0= c

q and

Pt(a → b)|κt=0= d
q . Usually, c is larger than one while d is smaller than one.

The holding time can be the same for all states or can differ between states.
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Furthermore, the inverse of the holding time, the constant switching prob-
ability Pt(a → b)|κt=0 can be symmetric, Pt(a → b)|κt=0= Pt(b → a)|κt=0 or
asymmetric Pt(a → b)|κt=0 6= Pt(b → a)|κt=0. Asymmetric constant switch-
ing probabilities can be implemented to account for behavioral biases. For
instance, the notion of risk aversion of prospect theory, which states that
people react differently to potential losses compared to potential gains (Kah-
neman and Tversky [61]), can be accounted for by increasing the constant
probabilities from riskier states to less risky states and vice versa, Pt(r →
l)|κt=0< Pt(l → r)|κt=0 and Pt(s→ r f )|κt=0> Pt(r f → s)|κt=0.

The social imitation represented by the sentiment can be modeled in a
variety of ways if the noise trader can occupy more than two states. One
can define a global parameter that is the same for all switching probabil-
ities or multiple sentiments for individual switching probabilities. In the
following, the different possible definitions are outlined and each definition
is motivated and the advantages and disadvantages are highlighted.

The sentiment defined as a single global parameter is given by the form

st =
Nl + Nr − Nr f − Ns

N
∈ [−1, 1], (4.1)

where the states with a bullish market contribute positively and the states
associated with a bearish market contribute negatively. This definition does
not distinguish between investing the total wealth, which is done in the
risky and risk free state, and investing twice the total wealth which is done
in the leverage and short position. Therefore, the leverage and short position
can be counted double to make a distinction st = 2Nl+Nr−Nr f−2Ns

N ∈ [−2, 2].
Nonetheless using one global parameter with a scalar value is only useful
to distinguish two states.

Instead of one global sentiment one can define multiple sentiments. Borrow-
ing from the Ising-like structure of the original model, one approach is to
compare the two states involved in the transition probability Pt(a → b). For
the ladder structure, this implies three different sentiments sr f ,s

t , sr,r f
t and

sl,r
t . Here, the more pessimistic market opinion is subtracted from the more

optimistic one. The sentiments can be normalized by the involved states a
and b or by the total number of traders. The two definitions yield

sa,b
t =

Na − Nb

Na + Nb
∈ [−1, 1], (4.2)

with sr f ,s
t = Nr f−Ns

Nr f +Ns
, sr,r f

t = Nr−Nr f
Nr+Nr f

and sl,r
t = Nl−Nr

Nl+Nr
and
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sa,b
t =

Na − Nb

N
∈ [−1, 1], (4.3)

with sr f ,s
t = Nr f−Ns

N , sr,r f
t = Nr−Nr f

N and sl,r
t = Nl−Nr

N .

From the perspective of the noise trader, the definitions imply that each
trader compares herself with traders of similar sentiment. The definition in
equation 4.2 produces more volatile and larger sentiments compared to the
other definition in equation 4.3. Again, it would also be possible to weigh
leverage and short sales twice to emphasize these two states. In both cases,
the overall sentiment can be understood as a (pseudo) vector with three
components st = (sr f ,s

t , sr,r f
t , sl,r

t ). While the critical herding propensity for
definition 4.2 is the same as the original market model κc = 1, the critical
herding propensity for definition 4.3 is larger than one and has to be de-
termined numerically κc > 1. Furthermore, if the states are not organized
in a ladder structure but for instance are fully connected, there are q(q−1)

2
sentiments for q states.

Another way is to compare one state to all the other states. This can be done
in absolute terms

sa
t =

Na −∑b 6=a Nb

Na + ∑b 6=a Nb
∈ [−1, 1], (4.4)

with for instance sentiment for leverage being calculated as sl
t = Nl−Ns−Nr f−Nr

Ns+Nr f +Nr+Nl
.

The state in question can also be weighed by the number of other states
(q− 1)

sa
t =

(q− 1)Na −∑b 6=a Nb

(q− 1)Na + ∑b 6=a Nb
∈ [−1, 1], (4.5)

with for instance sentiment for leverage being calculated as sl
t = 3Nl−Ns−Nr f−Nr

3Ns+Nr f +Nr+Nl
.

The definition in equation 4.4 has the disadvantage that most of the senti-
ment values are small and negative. In addition, when the switching proba-
bilities depend on a and b and not only on a, there are only three sentiments
required for four states. Therefore, one could compare again the adjacent
sentiments, which yields the definitions of equation 4.2 or 4.3.

Finally, there is the possibility to adopt the sentiment used by the mean field
Potts model, where each transition probability depends on the sentiment of
the final state and is not compared to any other state. The sentiments are
given by
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4.2. Transition rates

sb
t =

Nb

N
∈ [0, 1], (4.6)

with b ∈ {s, r f , r, l}. Alternatively, the denominator N can be replaced by
the two states that the switching probability connects. These sentiments do
only range from zero to one.

The price momentum factor is the second factor besides social imitation
that is controlled by the herding propensity. Like the sentiment it can also be
modeled in a variety of ways if the noise trader can occupy more than two
states. The original market model only defines one price momentum factor,
which is represented by the external magnetic field Ht in the Ising model
(see eq. 2.29). In contrast, there are q external fields Hk

t with k ∈ {1, ...q} in
the generalized Potts model (see eq. 3.1).

The associations of the price momenta with the individual states are sum-
marized in table 4.2. Being invested in the risk-free asset is associated with
zero risk as the invested wealth is only subject to the risk-free rate r f . The
price momentum factor of the risky asset is the same as the factor in the
Ising model. Being invested twice in the risky asset exposes the noise trader
to twice the price momentum. The short selling position is associated with
the price momentum but opposite sign.

Leverage 2Ht − r f
Risky Ht

Risk-free r f
Short −Ht + r f

Table 4.2: Definitions of momentum factors for each state.

In general, the traders are exposed to different price momenta depending
on the state they are in. However, the choice of the definition of the price
momentum factors depends also on the structure of the transition probabil-
ities. As for the sentiment, one can also either compare the price momenta
of the states involved in the transition probability Pt(a→ b) or just focus on
the price momentum of the final state b.

Comparing the initial and final state yields

Ha,b
t = Hb

t − Ha
t , (4.7)

while focusing on the final state reduces the price momenta to
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4. Extension of original market model from a microscopic perspective

Hb
t . (4.8)

In addition, the noise traders do not consider the risk-free rate in their de-
cision about debt, which can be deemed unrealistic. The risk-free rate can
be interpreted as the opportunity cost of being in the other states. This is
not considered in the original market model, where the noise traders only
consider Ht and not r f in their decision about debt. However, the risk-free
rate is usually a fairly small and constant value and adjusting for it does not
make a significant difference.

Besides the social imitation and the momentum factor, there are other po-
tential factors that can be incorporated into the model. The transition rates
of the noise trader class to the leverage and short selling position is likely
to include some form of procyclicality. Therefore, other information and sig-
nals generated by the model can be incorporated by the noise trader class to
make their buying and selling decisions. A literature search on additional
trading signals or other parameters that could influence the switching prob-
abilities yielded two more factors: the price acceleration Γt, f and the trading
volume Vt, f .

The price acceleration Γt, f is defined as the first difference of returns
Γt, f = Ht − H f where t is the current period and f a previous period, for
instance f = t − 1. Ardila-Alvareza, Forroa and Sornette [7] indicate that
the price acceleration reflects the presence of transient positive feedback
loops that impact the price formation process. The original market model
by Kaizoji et al. [62] is an example of a model, where positive price accel-
eration leads to super-exponential bubble growth. From the perspective of
an individual noise trader, the incorporation of the price acceleration can be
justified with the habituation or desensitization phenomena. Habituation or
desensitization is defined as the decrease in a response to a constant stimu-
lus (Rankin et al. [97]). The price acceleration represents the change of the
price momentum and can create a newly perceived stimulus that can trigger
the noise traders to change their behaviour. This means that the Γ-effect
can represent the breakdown of the status-quo (Samuelson and Zeckhauser
[104], Kahneman et al. [60]). More concretely, when deciding to switch from
the risky to the leverage position or from the risk-free to the short position,
the acceleration can represent an additional stimulus besides momentum
that pushes the noise traders to deviate from the status quo and compen-
sates for the increase in risk associated with the leverage or short position.
Therefore, the price acceleration is a valid candidate to be incorporated as a
factor that determines the switching probabilities.
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4.3. Ladder model

The trading volume Vt, f is investigated from many different perspectives
in the literature. There are several studies that associate bubbles with high
trading volume [106, 52, 105]. Kim and Verrecchia link volume to the disper-
sion of beliefs with regards to public information [65] and Blume et al. [15]
to the quality of information. According to Blume et al. [15] traders can use
volume in their technical analysis to improve their trading strategy.

Due to the potential to differentiate the leverage and short state from the
risk-free and risky state, there were several attempts to incorporate the price
acceleration and the trading volume as factors into the transition probabil-
ities. However, preliminary implementations did not provide the desired
results. Before utilizing the factors in the a model extension, these factors
have to be tested rigorously and in more detail in the original market model.
This can provide a thesis topic in its own right (see chapter 5).

The section on the transition rates can be summarized by equation 4.9, which
shows the modeling decisions required for the extension to four states:

Pa→b
t = Pa→b

t

(
Pa→b, κt, sa,b

t , Ha,b
t , Γa,b

t, f , Va,b
t, f

)
. (4.9)

Pa→b
t is the transition probability of a noise trader to switch from state a

to state b. Pa→b is the associated constant transition probability. κt is the
herding propensity. sa,b

t is the sentiment. Ha,b
t the price momentum factor,

Γa,b
t, f the price acceleration and Va,b

t, f the trading volume over the time horizon
f .

After highlighting the choices that have to be made for the definition of
states and the transition rates, three implementations are discussed in the
following sections in more detail, namely the ladder model, the three cou-
pled Ising models and the coupled Ising Potts model.

4.3 Ladder model

The ladder model bears the most resemblance to the original market model.
The risk-free and the risky state for the noise trader is complemented by the
leverage and short position as visualized in figure 4.3, where the leverage
position is only connected to the risky state and the short position is only
connected to the risk-free state, which is also the example in table 4.1. The
model assumes that the noise traders first invest their own wealth before
borrowing from another entity. Thus, a transition from the risk-free state
to the leverage state is discarded (xni

t−1 = 0 9 xni
t = 2). The restriction to

the ladder structure ensures that noise traders leverage more when they are
in a transient regime with more wealth during bubbles. During a bubble,
a larger fraction of noise traders is invested in the risky asset. The noise
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4. Extension of original market model from a microscopic perspective

traders switch from the risky asset to the leverage state (xni
t−1 = 1↔ xni

t = 2)
with probability Pr→l

t . Hence the number of trades in the leverage state
depends on the number of traders with xni

t−1 = 1. In addition, the size of the
leverage position depends on the amount of their total wealth, because the
risky fractions are defined as a fraction of total wealth. A similar reasoning
applies to the short position.

The switching probabilities are linear and normalized by 1
2 and are pre-

sented in the following equations

Pr→l
t =

Pr→l

2

(
1 + κt

(
sl,r

t + Hl,r
t

))
Pl→r

t =
Pl→r

2

(
1− κt

(
sl,r

t + Hl,r
t

))
Pr f→r

t =
Pr f→r

2

(
1 + κt

(
sl,r

t + Hl,r
t

))
Pr→r f

t =
Pr→r f

2

(
1− κt

(
sl,r

t + Hl,r
t

))
Ps→r f

t =
Ps→r f

2

(
1 + κt

(
sl,r

t + Hr,s
t

))
Pr f→s

t =
Pr f→s

2

(
1− κt

(
sl,r

t + Hr,s
t

))

(4.10)

The constant switching probabilities are assumed to be symmetric Pa→b =
Pb→b. The sentiments are defined as a comparison of the two respective
states and dividing by their sum with sr f ,s

t = Nr f−Ns
Nr f +Ns

, sr,r f
t = Nr−Nr f

Nr+Nr f
and sl,r

t =
Nl−Nr
Nl+Nr

. The price momentum factors are defined as

Hl,r
t = Hr,s

t = 2Ht − r f (4.11)

Hr,r f
t = Ht − r f (4.12)

The definition of the risky fraction reflects the values for the polarization of
noise traders to the risky asset (xn

t = 1) and the risk-free asset (xn
t = 0) of

the original market model and adds the polarization to the leverage (xn
t = 2)

and short position (xn
t = −1). The risky fraction is given by

xn
t =

2Nl + Nr − Ns

N
∈ [−1, 2]. (4.13)

The asset and the wealth dynamics, the fundamentalist trader class and the
market clearing are defined as in chapter 2.
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4.3. Ladder model

4.3.1 Simulation and time series

In this section, the parameter set used for the simulations is introduced and
the time series are discussed.

The parameter set is summarized in table 4.3. The assets, the fundamental-
ist trader, the herding propensity and the associated OU stochastic process
are initialized with the same values as in the original model. Only the noise
trader class parameter values are adjusted.

The noise traders are initialized with equal distribution amongst the four
states Na = 250 for a ∈ {s, r f , r, l}. The constant switching probabilities are
set to Pa→b = 0.2 for a, b ∈ {s, r f , r, l}, which implies an average holding
time of th = 10.

Parameter set
Assets r f = 4× 10−5 rd = 1.6× 10−4

P0 = 1 d0 = 1.6× 10−4

σd = 1.6× 10−5

Fundamentalist W f
0 = 109 Er = 1.6× 10−4

traders σ
f
r = 0.02 x f

0 = 0.3
Noise Wn

0 = 109 Nn = 1000
traders θ = 0.95 H0 = 1.6× 10−4

Pa→b = 0.2 Na = 250
xn

0 = 0.5
Herding κ0 = µκ µκ = 0.98κc = 0.98

propensity ηκ ≈ 0.11 σκ ≈ 0.01

Table 4.3: Parameters for simulating the three coupled Ising models with
parameters a, b ∈ {s, r f , r, l}.

The time series are presented for two different simulations, as in the previ-
ous chapters. The first simulation is run with the constant herding propen-
sity (CK) and displayed in figure 4.6. The second is done with the OU
stochastic process.

The critical value of the OU is the same as for the original market model
κc = 1, which is verified in the figure 4.5. The diagram shows a plot of sen-
timents on the y-axis and kappa on the x-axis. Each sentiment is calculated
as the absolute average for a specific constant kappa. Then the sentiment is
averaged over a 1000 different seed values leading to the following equation
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4. Extension of original market model from a microscopic perspective

si,j|κ= ∑
seeds

∑T
t=1|s

i,j
t |

T
with i, j ∈ {s, r f , r, l}. (4.14)

The absolute average values are calculated for sr f ,s
t , sr,r f

t , sl,r
t with constant

kappas in the interval of [0, 2]. The plot confirms the phase transition be-
tween order and disorder of the ladder model at kc = 1.

Figure 4.5: Sentiment kappa plot of the ladder model confirming the critical
value κc = 1.0. The sentiments sr f ,s (red), sr,r f (light blue) and sl,r (blue)
and their standard deviations are plotted on the y-axis for different constant
kappas on the x-axis.

The first simulation with the constant herding propensity (CK) is presented
in figure 4.6. The price time series in the first row fluctuates around the lin-
ear upward price trajectory corresponding to the dividend payments. The
price returns fluctuate in the interval [−0.05, 0.05], which is similar to the
fluctuations of the original market model in absolute values. The next three
rows describe the noise trader behaviour in more detail. The noise trader
switching probabilities in the fifth row mirror their respective counterpart
(e.g. Pr,r f

t ↔ Pr f ,r
t ), which is to be expected by the structure of switching

probabilities (see eq. 4.10). Their absolute values are also in the range of the
original market models switching probabilities. In addition, an increase in
the price is accompanied by a switch from more pessimistic states (short and
risk-free) to more optimistic states (leverage and risky). The risky fractions
in row six show the opposing behaviour of noise traders and fundamental-
ists. The wealth ratio in row seven slightly decreases over the duration of
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4.3. Ladder model

the simulation, which implies that the noise trader looses wealth compared
to the fundamentalist.

100

2 × 100
3 × 100

Price Pt of simulation seed 50

Pt

0.05
0.00
0.05

Price return rate rt

rt

Ht

0

500
Number of noise traders in each state 

Ns

Nrf
Nr

N l

0.5
0.0
0.5

Sentiments of noise traders in each state 

s1

s2
s3

0.05
0.10
0.15

Noise trader switching probabilities

pr, rf
t

prf, r
t

pl, r
t

pr, l
t

prf, s
t

ps, rf
t

0.0

0.5

Risky Fraction

xn
t

xf
t

0.75
1.00
1.25

Wealth ratio t

t

0 1000 2000 3000 4000 5000
0.95
1.00

Noise trader herding prospensity t

Figure 4.6: Simulation of ladder model with CK herding propensity. The
herding propensity is set to κt = 0.98κc = 0.98, which is below the critical
value κc = 1.0.

The second simulation with the OU herding propensity is presented in fig-
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Figure 4.7: Simulation of ladder model with OU stochastic process for the
herding propensity with µκ = 0.98.

ure 4.7. As expected, the OU simulation exhibits more polarizations of the
noise trader class compared to the CK simulation, which is reflected in the
more volatile sentiments and switching probabilities. The simulation is char-
acterized by a steep price peak at T ≈ 1100. Before the peak, the simulation
shows a behaviour similar to the CK simulation. At around T ≈ 600, the
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4.3. Ladder model

noise traders start to polarize towards the risky asset. The resulting price
increase results in a sharp price bubble, which immediately bursts. Smaller
bubbles with associated crashes can be observed around T ≈ 1700, T ≈ 2100
and T ≈ 2500. The noise traders suffer significant losses and at each crash.
Their wealth decreases considerably relative to the fundamentalists. The
wealth development of the noise trader and the fundamentalist class in ab-
solute terms is shown in figure 4.8.

Figure 4.8: Development of absolute wealth of noise traders Wn
t and funda-

mentalists for simulation of ladder model with OU stochastic process for the
herding propensity with µκ = 0.98.

Because the fundamentalists tend to sell the risky asset when the price in-
creases quickly, their wealth development is largely unaffected by the bub-
bles and crashes in the simulation. In contrast, figure 4.8 highlights that the
noise traders’ wealth not only decreases relatively to the fundamentalists
but also in absolute terms. Contrary to the original market model, the noise
traders struggle to recover from the initial (at around T ≈ 1700) and the
subsequent crashes.

The impact of the two trader classes on the risky asset price depends on their
respective wealth Wn

t and W f
t , which is given in relative terms by νt = Wn

t

W f
t

.

A large value for νt indicates that the noise trader class has a large influence
on the price dynamics while a small value indicates that the fundamental-
ists have a large influence on the price dynamics. Hence, after the crash at
T ≈ 1100 , the market is determined by fundamentalists, which materialises
in the steady increase of the price, roughly proportional to the dividend
growth. Although, the total number of traders in the model is fixed (1000
noise traders and 1000 fundamentalists), the decrease in wealth of the noise
traders would be equivalent to the some noise traders ”exiting” from a real
financial market. After T ≈ 1100 a large portion of the noise traders have ex-
ited, which reduces their impact on the price dynamics visibly and explains
the smaller peaks later on. After T ≈ 2500 the noise traders have no more
meaningful impact on the price dynamics. This explains the small price fluc-
tuations around the long term price trend, which is given by the dividend
growth factor.

OU simulations over longer periods of time, namely T = 50000 and T =
100000, reveal that the noise traders are able to increase their wealth in ab-
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4. Extension of original market model from a microscopic perspective

solute terms after a large crash. However, the fundamentalists consistently
outperform the noise traders in the long run and thus the relative wealth of
noise traders to the fundamentalists tends to decrease.

The strong influence up to T ≈ 1200, a fading influence between T ≈ 1200
and T ≈ 2500 and virtually no impact after T ≈ 2500 of the noise traders
provides an explanation for why the price is non stationary. A visual inspec-
tion and comparison of different intervals of the price time series and the
return time series indicates the non stationary nature of the price process.
Comparing the original market model simulation with the ladder model,
the severity of the losses of the noise traders in the ladder model simulation
and their inability to recover to the same degree of wealth as in the original
market model may be attributed to their opportunity to take leverage.

Therefore, the following interpretation is formulated. The opportunity to
leverage in the ladder model can lead to more severe crashes, which is re-
flected by the decrease in wealth of the noise traders who are unable to
recover from the severity of their losses. The exit of the noise traders from
the system is mirrored in the non stationary price and return processes. The
exit of the noise traders hints at a key limitation of the ladder model. Both
the original market model and the ladder model extension do not account
for an intervention by a central bank or by a government. However, real
world financial crisis usually incite the intervention of a central bank, which
can increase or decrease the interest or use unconventional monetary poli-
cies, or of the government, which can use stimulus packages and bail outs
[87]. In another application of the market model, Westphal and Sornette
[121] demonstrate the usefulness of direct market intervention by a policy
maker.

A cautionary tale of an indecisive government response to a financial crisis
is found in the Great Depression of 1929. While the Great Depression is
not attributed to a single cause or event, the prolonged duration of the De-
pression termed the Great Contraction by Keynes [42], is in part attributed
to a tight monetary policy and a hesitant governmental response [100, 110].
The Great Depression had a large influence on handling subsequent crisis.
Roughly eighty years later, the financial crisis of 2008 sparked a number of
interventions by central banks and governments around the world. Many
governments bailed out financial institutions and employed fiscal stimulus
packages that included an increase in government spending and tax cuts as
immediate responses [87].

In context of the ladder model, government bailouts and active market in-
terventions would function as mechanisms to reboot the system. More con-
cretely, in the OU simulation of the ladder model, the decrease in wealth
of the noise traders and the associated decrease in impact on the market
indicates the need for an intervention that restores the wealth of the noise
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traders to pre-crisis heights to ensure their continued impact on the price
dynamics.

The necessity to incorporate a reboot mechanism in the model hints at a
larger question, namely if the model and financial systems in general are
intrinsically unstable and require at times a reboot. This notion was formed
amongst others by Hyman Minsky in his ”Financial Instability Hypothesis“,
which gained interest by the public and scholars alike after the financial
crisis of 2008.

With his hypothesis, Minsky provides an explanation for an inherently unsta-
ble financial system and reasons for its susceptibility to bubbles and crashes.
Minsky differentiates between three types of financing: hedge financing,
speculative financing and Ponzi financing. Hedge financing implies that the
borrowers can cover the interest and principal using the cash flow from their
investments. Speculative financing implies that the borrowers can cover the
interest using the cash flow from their investments but need to re-borrow
to cover the principal. Ponzi financing requires an appreciation of the asset
value to refinance the debt. Financial markets and the economy in general
are stable if the majority of firms and individuals employ hedge financing.
If the majority of the private sector shifts towards speculative or even Ponzi
financing, financial markets and the economy become more fragile and a
drop in asset prices or another external shock can cause a crash. Accord-
ing to Minsky, financial market go through cycles where periods of stability
are succeeded by periods of fragility depending on the prevalent financing
type of firms and individuals. The prevalent financing type depends on ex-
pectations of firms and individuals. During periods of prolonged economic
prosperity, profits and income increase, which makes debt more serviceable.
As a response, lending criteria are relaxed and the credit supply is increased,
which results in a credit boom. More participants shift from hedge financ-
ing to speculative or Ponzi financing in order to generate higher returns.
The credit boom propels the growth of asset prices. Hence, periods of eco-
nomic prosperity and stability can create financial fragility. In summary,
Minsky uses the accumulation of debt and the irrational expectations and
pro-cyclical behaviours of borrowers and lenders to explain the inherent in-
stability of financial markets [86, 67, 85].

Due to the focus of Minsky’s work on the role of financial markets, debt
and the irrationality of the market participants, it provides a useful context
for the interpretation of the ladder model. One important implication of the
financial instability hypothesis is the role of the government and the central
bank to reduce financial instability. In his view, the governments task is to
control exuberance and excessive speculation by regulation and intervention.
The central bank is required to act as a lender of last resort [86, 67]. While
Minsky’s views are not without criticism, the ladder model highlights the

69
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potential consequences of a lack of government intervention and the dan-
gers of credit accumulation. Minsky work and the ladder model provide a
direction for further research, which is outlined in the final chapter.
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4.3.2 Stylized facts

The following section describes the stylized facts, volatility clustering and
fat tails, for the ladder model.

The volatility clustering is visualized in figures 4.9 and 4.10, which show
the ACF for the signed (blue) and absolute (red) returns for the CK simula-
tion (figure 4.9) and the OU kappa simulation (figure 4.10).

Figure 4.9: ACF for singed (blue) and absolute (red) returns for simulation
with constant kappa (CK).

Figure 4.10: ACF for singed (blue) and absolute (red) returns with OU
kappa.

The ACF for the CK simulation in figure 4.9 decays quickly to zero for in-
creasing lags l for the signed returns. The absolute returns do not decay
to zero but oscillate around AFC(l)absolute ≈ 0.1. This marks a difference to
the original market model, where both the singed and absolute returns are
approximately zero for l > 0 (see figure 2.4).

The ACF of the signed returns for the OU simulation in figure 4.10 decreases
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quickly to zero. However, the fluctuations around zero are more pronounced
when compared to the signed returns for the OU simulation of the original
market model in figure 2.5. The absolute values of the returns have an auto-
correlation function with longer memory. Compared to the original market
model and the corresponding absolute returns for the OU simulation in
figure 2.5 the ACF exhibits larger fluctuations.

The fat tail distribution of returns for the CK simulation is presented in
figure 4.11 and for the OU simulation in figure 4.12. As highlighted in
chapter 2 the empirical fat-tail decay of the distribution is characterized by
the exponent −1 − α with α ∈ [2, 4]. The parameter is α ≈ 4.18 for the
CK simulation and α ≈ 0.58 for the OU kappa simulation. This implies
that both simulations do not fall within the required range of the parameter.
This conclusion is not surprising, because the bubbles and crashes in the OU
simulation are generated by the herding of the noise trader class, which has,
as highlighted in the previous section, an insignificant impact on the price
dynamics after T ≈ 1200.

In summary, the ladder model exhibits many similarities to the original mar-
ket model. The critical herding propensity is the same for the original and
the ladder model. For a constant kappa below the critical value, the ladder
model display a comparable behaviour to the original model. Nonetheless,
the ACF and a visual inspection of the simulation results indicated an in-
crease in volatility. The differences are more pronounced when employing
the OU process. The noise traders polarize rapidly, which results in singular
price peak after which they have an insignificant impact on the market.
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Figure 4.11: Log-log plot of the cumulative distribution function (CDF) of
returns for the CK simulation with α ≈ 4.18.

Figure 4.12: Log-log plot of the cumulative distribution function (CDF) of
returns for the OU kappa simulation with α ≈ 0.58.
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4.4 Three coupled Ising models

The second model that is investigated consists of three coupled Ising models.
The coupling is visualized in figure 4.13 and bears a resemblance to the
approach by Damiani [32] visualized in figure 4.1. The first Ising model
connects the so-called optimists with the pessimists. The optimists are noise
traders that are either invested in the risky or the leveraged position while
the pessimists are defined as the noise traders that are invested in either the
risk-free asset or the short position. The second Ising model consists of the
noise traders in the risky and leverage state. The third Ising model links
the risk-free with the short state. Therefore, one can define the following
equations:

N = No + Np

No = Nr + Nl

Np = Ns + Nr f .
(4.15)

The total number of noise trader is the sum of the number of optimists No
and pessimists Np. The number of optimists equals the sum of noise traders
in the leveraged (Nl) and risky state (Nl). The number of pessimists equals
the sum of noise traders in the risk-free (Nr f ) and short (Ns) state.

Figure 4.13: Three coupled Ising models.

The investment decision process for the noise trader is structured in three
steps. In the first step, the noise traders are allocated to either the optimistic
or the pessimistic state of the first Ising model according to the switching
probabilities Pp→o

t and Po→p
t . In the second step, the number of traders in

the optimistic state of the current period Nt
o are distributed to the risky state

and the leverage state according to the distribution of the previous period.
This implies
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4.4. Three coupled Ising models

Nt
l = xl,r

t−1 · N
t
o (4.16)

Nt
r = Nt

o − Nt
l . (4.17)

The number of traders in the pessimistic state Np is treated analogously,
which results in the following equations:

Nt
r f = xr f ,s

t−1 · N
t
p (4.18)

Nt
s = Nt

p − Nt
r f . (4.19)

In the third step, the noise traders switch between the risky and leverage
state in the second Ising model and between the risk-free and short state in
the third Ising model. Essentially, each state of the overarching Ising model
that governs the transitions between optimists and pessimists consists of its
own Ising model. Hence, the total number of traders in the first model is
conserved N = No + Np. This is not the case for the second and third Ising
model.

The switching probabilities for the first Ising model distinguishing between
optimists and pessimists are given by

Pp→o
t =

Pp→o

2
(
1 + κt

(
so,p

t + Ho,p
t
))

Po→p
t =

Po→p

2
(
1− κt

(
so,p

t + Ho,p
t
)) (4.20)

with so,p
t = No−Np

No+Np
and Ho,p

t = Ht.

The switching probabilities for the second Ising model consisting of the lever-
age and risky state are given by

Pr→l
t =

Pr→l

2

(
1 + κt

(
sr,l

t + Hr,l
t

))
Pl→r

t =
Pl→r

2

(
1− κt

(
sl,r

t + Hl,r
t

)) (4.21)

with sl,r
t = Nl−Nr

Nl+Nr
and Hl,r

t = 2Ht − r f .
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4. Extension of original market model from a microscopic perspective

The switching probabilities for the third Ising model consisting of the risk-
free and short state are given by

Ps→r f
t =

Ps→r f

2

(
1 + κt

(
sr f ,s

t + Hr f ,s
t

))
Pr f→s

t =
Pr f→s

2

(
1− κt

(
sr f ,s

t + Hr f ,s
t

)) (4.22)

with sr f ,s
t = Nr f−Ns

Nr f +Ns
and Hr f ,s

t = 2Ht − r f .

The risky fractions are given by

xo,p
t =

No

N

xl,r
t =

Nl

Nl + Nr

xr f ,s
t =

Nr f

Nr f + Ns

(4.23)

where in general sa,b
t = 2xa,b

t − 1 for a, b ∈ {o, p, s, r f , r, l}. At each time step,
first the number of optimists and pessimists are determined. Then the num-
ber of traders that switch between the short and the risk-free position as the
fractions of the pessimists are determined and the number of traders that
switch between the risky and leverage position as the fractions of the opti-
mists are determined. After outlining the model, the next section contains
the numerical simulation.

4.4.1 Simulation and time series

In this section, the parameter set used for the simulations is introduced and
the time series are discussed.

The parameter set is summarized in table 4.4. The assets, the fundamental-
ist trader, the herding propensity and the associated OU stochastic process
are initialized with the same values as in the original model. Only the noise
trader class parameter values are adjusted.

The time series are presented for two different simulations. The first sim-
ulation is run with the constant herding propensity (CK) and displayed in
figure 4.15. The second is done with the OU stochastic process and visual-
ized in figure 4.16.
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4.4. Three coupled Ising models

Parameter set
Assets r f = 4× 10−5 rd = 1.6× 10−4

P0 = 1 d0 = 1.6× 10−4

σd = 1.6× 10−5

Fundamentalist W f
0 = 109 Er = 1.6× 10−4

traders σ
f
r = 0.02 x f

0 = 0.3
Noise Wn

0 = 109 Nn = 1000
traders θ = 0.95 H0 = 1.6× 10−4

Pa→b = 0.2 Na = 250
xn

0 = 0.5
Herding κ0 = µκ µκ = 0.98κc

propensity ηκ ≈ 0.11 σκ ≈ 0.16

Table 4.4: Parameters for simulating the three coupled Ising models with
parameters a, b ∈ {s, r f , r, l}.

Since the model consists of three coupled Ising models, the critical value of
the OU process is the same for each of the three models and the same as in
the original market model. The value of kc = 1 is verified in the figure 4.14.
The calculation of the average absolute sentiments is done analogously to
the ladder model (see 4.14).

The price time series of the CK simulation output in figure 4.15 displays the
characteristic fluctuations around the upwards price trend known from the
original market model simulation with the CK in figure 2.2. This is also
confirmed by the price return rate in the second row. The noise trader class
is described in row three to five. The three Ising models that characterize the
behaviour of the noise trader class are color coded. Grey and black describe
the Ising model that distinguishes between optimists and pessimists. Red
and orange is associated with the Ising model of the optimist state and
describes the leverage and risky state. Dark and light blue depict the Ising
model of the pessimists consisting of the short and risk-free state.

The number of noise traders in each state are described in row three. As
expected from the symmetry of the switching probabilities in equation 4.20,
the optimists and pessimists mirror one another around the equal distribu-
tion No = Np = 500. In addition, the number of noise traders in the short
state is mirrored by the number of noise traders in the risk-free state and the
number of noise traders in the leverage state is mirrored by the number of
noise traders in the risky state. Both fluctuate around the equal distribution
of Ns = Nr f = Nr = Nl = 250, which is also a result of the symmetric switch-
ing probabilities (see equations 4.21 and 4.22). The fluctuation around the
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4. Extension of original market model from a microscopic perspective

Figure 4.14: Sentiment kappa plot of three coupled Ising models confirming
the critical value κc = 1.0. The average absolute sentiments so,p (grey), sl,r

(blue) and sr f ,s (red) and their standard deviations are plotted on the y-axis
for different constant kappas on the x-axis.

equal distribution of noise traders is also displayed by the sentiments in the
fourth row, which all vary around zero. While the sentiment that describes
the first Ising model consisting of the optimists and pessimists (colored in
gray) is contained in the interval so,p

t ∈ [−0.35, 0.35] the other two senti-
ments (sr f ,s

t and sl,r
t ) routinely reach values outside the interval [−0.5, 0.5].

Likewise, the switching probabilities and the risky fractions of the optimist-
pessimist Ising model show smaller variations compared to the other two
Ising models. The wealth ratio steadily decreases over time from ν = 1.0 to
ν = 0.5 indicating the a decrease in wealth for the noise trader class com-
pared to the fundamentalists.

The OU simulation is characterized by two large price peaks and plunges at
T ≈ 400 and T ≈ 600. This results in the loss of most of the noise traders
wealth resulting in the wealth ratio ν decreasing to almost zero in row six.
The mirroring of the number of traders observed in the CK simulation can
also be observed. However, the number of noise traders time series in row
three also highlights multiple polarizations of the noise trader class to one
state. The polarizations at for instance T ≈ 800 and T ≈ 2800 are accompa-
nied by highly volatile sentiments and switching probabilities. For instance
at T ≈ 800, almost all noise traders are in the optimistic state, with only few
pessimists left. This implies that there are only few trader left in the short or
risk-free state. A small number of traders implies a more volatile sentiment
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Figure 4.15: Simulation of three coupled Ising models with CK herding
propensity. The herding propensity is set to κt = 0.98κc = 0.98, which is
below the critical value κc = 1.0.

sr f ,s
t , because the switch of one trader has a larger impact. This explains the

jump of the sr f ,s
t at around T ≈ 900.

The arguments that concern the ladder model in terms of Minsky’s financial
instability hypothesis can be applied analogously to the three coupled Ising
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Figure 4.16: Simulation of three coupled Ising models with the OU stochastic
process for the herding propensity with µκ = 0.98.

model OU simulation.

4.4.2 Stylized facts

The following section describes the stylized facts, volatility clustering and
fat tails, for the ladder model.
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4.4. Three coupled Ising models

The volatility clustering is visualized in figures 4.17 and 4.18, which show
the ACF for the signed (blue) and absolute (red) returns for the CK simula-
tion (figure 4.15) and the OU kappa simulation (figure 4.16).

The ACF for the CK simulation in figure 4.17 behaves similarly to the ACF
for the CK simulation of the ladder model in figure 4.9. The ACF decays
quickly to zero for increasing lags l for the signed returns. However, the
absolute returns do not decay to zero but oscillate around AFC(l)absolute ≈
0.1, which differs from the original market model where both the singed
and absolute returns are approximately zero for l > 0 (see figure 2.4).

The ACF of the signed returns for the OU simulation in figure 4.18 decreases
quickly to zero. However, the fluctuations around zero are more pronounced
when compared to the signed returns for the CK simulation. The absolute
values of the returns have an auto-correlation function with longer memory.
Compared to the original market model and the corresponding absolute
returns for the OU simulation in figure 2.5, the ACF exhibits larger fluctua-
tions.

Figure 4.17: ACF for singed (blue) and absolute (red) returns for simulation
with constant kappa (CK).

Figure 4.18: ACF for singed (blue) and absolute (red) returns with OU
kappa.
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4. Extension of original market model from a microscopic perspective

The fat tail distribution of returns for the CK simulation is presented in
figure 4.19 and for the OU simulation in figure 4.20. As highlighted in
chapter 2 the empirical fat-tail decay of the distribution is characterized by
the exponent −1− α with α ∈ [2, 4]. The parameter is α ≈ 2.48 for the CK
simulation and α ≈ 0.07 for the OU kappa simulation. This implies that
only the simulation with the CK kappa falls within the required range of
the parameter.

To conclude, the model consisting of three coupled Ising models produces
similar results for the simulation with the constant herding propensity to
the original market model. However, for the OU process, the model behave
very differently to the original market model. Similarly to the ladder model,
the noise traders polarize quite rapidly, which results in a few price peaks
after which they do not have a significant impact on the market.
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4.4. Three coupled Ising models

Figure 4.19: Log-log plot of the cumulative distribution function (CDF) of
returns for the CK simulation with α ≈ 2.48.

Figure 4.20: Log-log plot of the cumulative distribution function (CDF) of
returns for the OU kappa simulation with α ≈ 0.07.
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4. Extension of original market model from a microscopic perspective

4.5 Coupled Ising Potts model

The following model consists of an Ising model and a q = 3 state Potts
model that are coupled. The model distinguishes between a risk-free asset
and a stock market. The stock market consists of one risky asset. The noise
trader can take a short position, a long position or a leveraged position. The
Ising model links the risk-free with the stock market, while the stock market
is modelled with the three state Potts model. The coupling of the Ising
and Potts model is visualized in figure 4.4 and bears a resemblance to the
approach by Kopp [32] visualized in figure 4.2.

The risky fractions of the model are given by

xn
t =

2Nl + Nr − Ns

N

xstock,r f
t =

Nstock

N

xi
t =

Ni

Nstock
, i ∈ {s, r, l}

(4.24)

The investment decision process for the noise trader is structured in three
steps. In the first step, the noise traders are allocated to either the risk-free
asset or the stock market according to the switching probabilities of the Ising
model Pr f→stock

t and Pstock→r f
t .

The transition probabilities for the Ising model are defined by

Pr f→stock
t =

Pr f→stock

2

(
1 + κt

(
sr f ,stock

t + Hr f ,stock
t

))
Pstock→r f

t =
Pstock→r f

2

(
1− κt

(
sr f ,stock

t + Hr f ,stock
t

)) (4.25)

with sstock,r f
t = Nstock−Nr f

N and Hstock,r f
t = Ht.

In the second step, the number of traders in the stock market Nstock are
distributed to the risky, the short and the leverage state according to the
distribution of the previous period. This implies

Nt
l = xl

t−1 · Nt
stock (4.26)

Nt
r = xr

t−1 · Nt
stock (4.27)
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4.5. Coupled Ising Potts model

Nt
s = Nt

stock − Nt
l − Nt

r . (4.28)

Once the noise traders are distributed to the three states of the stock market
they transition according the transition probabilities of the three state Potts
model (see also chapter 3 eq. 3.9) which are defined by

Pa→b
t =

d · eκt(sb
t +Hb

t )

∑k∈{s,r,l} eκt(sb+Hk
t )

, (4.29)

with sb
t = Nb

Nstock
, Hl

t = 2Ht, Hr
t = Ht and Hs

t = −2Ht. The constant d is
introduced to represent the holding time as outlined in chapter 3 (see eq.
3.7).

4.5.1 Simulation and time series

In this section, the parameter set used for the simulations is introduced and
the time series are discussed on a qualitative level.

Parameter set is summarized in table 4.5. The assets and the fundamental-
ist trader are initialized with the same values as in the original model. The
herding propensity and the associated OU stochastic process of the Ising
model are initialized with the same values as in the original model. For the
Potts model, the herding propensity is re-scaled based on the critical kappa.

Since the model consists of three coupled Ising models, the critical value of
the OU process is the same for each of the three models and the same as in
the original market model. The value of kc = 1 is verified in the figure 4.14.
The calculation of the average absolute sentiments is done analogously to
the ladder model (see 4.14).

Time series are presented for three different simulations. The first simu-
lation is run with the constant herding propensity (CK) and displayed in
figure 4.21. The second is done with the OU stochastic process and visu-
alized in figure 4.22. The third simulation (figure 4.23) also employs the
OU stochastic process but uses a different holding time for the Potts modell
th,p = 1.5.

The critical value of the OU process differs for the two state Ising model and
the three state Potts model. As in the previous model, the critical kappa for
the Ising model is kc,i = 1. The critical kappa for the q = 3 state Potts model
is kc,p = 2.77 (see eq. 3.17).

The price time series of the CK simulation output in figure 4.21 displays
larger fluctuations around the upwards price trend at the beginning up to
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4. Extension of original market model from a microscopic perspective

Parameter set
Assets r f = 4× 10−5 rd = 1.6× 10−4

P0 = 1 d0 = 1.6× 10−4

σd = 1.6× 10−5

Fundamentalist W f
0 = 109 Er = 1.6× 10−4

traders σ
f
r = 0.02 x f

0 = 0.3
Noise Wn

0 = 109 Nn = 1000
traders θ = 0.95 H0 = 1.6× 10−4

xn
0 = 0.5 Na = 250

th,i = 10 th,p = 5
Herding κ0,i = µκ,i µκ,i = 0.98κc,i

propensity ηκ,i ≈ 0.11 σκ,i ≈ 0.16
κt,p = κt,i · κc,p

Table 4.5: Parameters for simulating the Ising Potts model with parameters
a, b ∈ {s, r f , r, l}. For the Ising model, the herding propensity is initialised
with the values of the original market model. These values are tagged with
an i. The herding propensity for the Potts model is the kappa for the Ising
model but re-scaled to accommodate the differing critical kappa and de-
noted by p.

T ≈ 1000 followed by smaller price fluctuations later on. This is also re-
flected by the decreasing absolute value of the price return rate in the second
row. The number of noise traders in the risk-free asset and in the stock mar-
ket mirror one another as described by the switching probabilities in equa-
tion 4.25. In general, the number of noise traders in each state fluctuates
around their expectation value of Nr f = Nstock = 500 and Ns = Nr = Nl = 166.

The switching probabilities associated with the Ising model (Pr f ,m
t and Pm,r f

t )
exhibit larger fluctuations compared to the the Potts model switching prob-
abilities (Ps

t , Pr
t and (Pl

t ). This difference between the Ising and Potts model
is also reflected sentiments in row four. The wealth of the noise trader class
halves in the duration of the simulation compared to the fundamentalists.

The OU simulation in figure 4.21 is characterized by a similar price trajectory
compared to the CK simulation in figure 4.22. The Ising model exhibits
polarizations of the noise trader class from the risk-free asset towards the
stock market at T ≈ 2500 and T ≈ 3100. Within the stock market, the noise
traders almost behave in unison. This can be observed in row three where
there are Ns, Nr and Nl exhibits the same behaviour with small deviations
from one another at T ≈ 2500 and T ≈ 3100. There is little polarization
within the stock market. This lack of polarization can be attributed to the
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Figure 4.21: Simulation of the coupled Ising Potts model with CK herding
propensity.

holding time used for the Potts model th,p = 5. The impact of the holding
time can be observed when comparing the second simulation to the third
one in figure 4.23.

The first two simulations employ the holding times th,i = 10 for the Ising
model and th,p = 5 for the Potts model, which result in switching proba-
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Figure 4.22: Simulation of the coupled Ising Potts model with OU herding
propensity.

bilities equal to Pa→b
t |κt=0= 0.1 in the absence of herding for both the Ising

model and the Potts model. The third simulation changes the holding time
of the Potts model to th,p = 1.5, which corresponds to d = 1 in equation
4.29 and Pa→b

t |κt=0= 1
3 . The switching probabilities for the short, risky and

leverage state are significantly larger compared to figure 4.22 and allow for
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polarizations in the Potts model as can be observed at T ≈ 100 or T ≈ 1000.
However, the polarizations are not gradually but abrupt and result in the
noise traders losing most of their wealth and impact on the price dynamics.
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Figure 4.23: Simulation of the coupled Ising Potts model with OU herding
propensity with th,p = 1.5 and d = 1.
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The three state Potts model suffers from the same problem associated with
the four state Potts model outlined in chapter 3, namely the discontinuous
phase transition. As a result, the Ising Potts model is unable to produce
realistic price time series.

The chapter outlined three extensions of the original market model. Each
model is a different incarnation of the underlying idea to formulate the mi-
croscopic interactions between the traders first and to study the resulting
macroscopic properties of these interactions second. This microscopic ap-
proach permits to test many different variations on what states the traders
can occupy and how these states are connected. However, this flexibility in
model design comes with the challenge to explain the results without an
established methodology to compare the results to. This lack of established
theory is the major drawback of the microscopic approach.
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Chapter 5

Conclusion and Outlook

The present work is based on the agent based model of a financial market
first outlined by Kaizoji et al. [62]. The model is able to produce faster-
than-exponentially growing bubbles and several stylized facts of financial
markets. The goal of the present work has been to extend and apply this
ABM to incorporate the ability of the traders to short sell or leverage a
position.

Chapter 2 reviewed the original market model. The focus has been on the
understanding of the noise trader class and its constraint defined by the
risky fraction to only be able to invest the accumulated wealth. Chapter 3
outlined the general q state mean field Potts model and applied it to the
noise trader class to extend the two states of the original model to q = 4. The
implementation of the Potts model was unable to produce realistic market
simulations. The main drawback of the Potts model is the abrupt polariza-
tion of the noise traders. The abrupt polarization reflects the underlying
nature of the phase transition of the q = 4 state mean field Potts model,
which is characterized as of first order and discontinuous. The other candi-
date from statistical physics, the O(n) model or n-vector model, was found
to be only useful for a multi-asset extension.

Chapter 4 shifts the focus from borrowing concepts from statistical physics
to building an extension by formulating the microscopic interactions be-
tween the traders and then studying the macroscopic properties of the sys-
tem. The microscopic interactions are based on behavioural observations of
traders. The key levers in building the model are the definition of the states
and their connections, the structure of transition probabilities, the holding
time, the sentiment and the price momentum and other price related factors
such as trading volume and price acceleration. The first model discussed is
the ladder model, which arranges the states like a ladder starting from the
lowest stair, the short state, over the risk-free and the risky state, to the high-
est stair, the leverage state. A qualitative inspection of simulation shows
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promising behaviour for the CK process below the critical kappa. In the
OU simulation, the noise traders suffer significant losses in absolute terms
and also relative to the fundamentalists during crashes. Hence, the opportu-
nity to leverage in the ladder model can lead to more severe crashes, which
is reflected by the decrease in wealth of the noise traders who are unable
to recover from the severity of their losses. Due to the focus of Hyman
Minsky’s work on the role of financial markets, debt and the irrationality
of the market participants, his financial instability hypothesis provides a
useful context for the interpretation of the ladder model. Considering the
financial instability hypothesis, the OU simulation highlights the potential
impact that a combination of leverage, herding behaviour and the absence of
government intervention can have on financial markets. The ladder model
exhibits volatility clustering but no clear indication for fat tails over the sim-
ulation horizon, which can be viewed as a result of the non stationarity of
the price process of the OU simulation. The second model couples three
Ising models. The first Ising model consists of optimists and pessimists.
The second Ising model describes the optimists which can occupy the lever-
age and the risky state. The third Ising model describes pessimists which
can occupy the risk-free and the short state. Similarly to the ladder model,
the noise traders polarize quite rapidly, which results in a few price peaks
after which they do not have a significant impact on the market. There is
no clear indication of fat tails but the model exhibits volatility clustering.
The three coupled Ising models admit also the interpretation through the
lens of Minsky’s work. The third model couples an Ising model and a Potts
model. The Ising model describes the interaction of the risk-free asset and
the stock market. The q = 3 state mean field Potts model describes the stock
market consisting of a leverage, a risky and a short state. The three state
Potts model suffers from the same problem associated with the four state
Potts model outlined in chapter 3, namely the discontinuous phase transi-
tion. As a result, the Ising Potts model is unable to produce realistic price
time series. Chapter 4 also demonstrates the limitations of the microscopic
approach. While this approach permits great flexibility in model design, it
is challenging to explain the results without an established methodology to
compare the results to. There are many further directions to take with the
extended market models, which are summarized in the following.

5.1 Further directions of research

The analysis of the Potts model in chapter 3 and 4 of this thesis was restricted
to the mean field case, which is associated with a 1st order phase transition
for q > 2 and assumes an infinite number of trader, which can be questioned.
In real financial markets, the number of traders trading a stock is finite and
typically is in the thousands. A way to avoid the 1st order phase transition
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is to discard the mean field assumption and use other network topologies
for the noise traders. For instance, the Potts model exhibits a continuous
phase transition for complex networks with a power law exponent γ ≤ 3
for q ≥ 3 or on a complete graph in a microcanoncial ensemble [93]. More
information is also provided in [114, 74, 92, 102, 29]. However, dropping the
mean field assumption implies that the noise traders cannot be aggregated
to one representative agent and have to be modelled individually, which is
computationally expensive.

Minsky’s financial instability hypothesis in connection with the findings of
the ladder model provide another opportunity for further research. So far
the model does not incorporate a reboot mechanism in terms of a govern-
ment or a central bank. The model offers the opportunity to further investi-
gate the question if financial markets are intrinsically unstable and require
reboots. This can be done by including the government or central bank as
entities and study their impact and the impact of different policies on the
system. Furthermore, the impact of leverage on the price time series can be
quantified using for instance the draw-down epsilon delta method [45] to
compare the bubbles of the original market model and a model that incor-
porates leverage, or by investigating the non stationary nature of the price
process in more detail.

There are additional opportunities to couple Ising models to extend a two
state model to four states. For instance, instead of the ladder connection of
the states, the short state could be connected only to the risky and the lever-
age state and the risk-free asset could be connected only to the risky asset.
Furthermore, to avoid the discontinuous phase transition of the Potts model
in the model that couples an Ising model to a Potts model, the Potts model
could be replaced by three Ising models connecting the three states of the
Potts model. However, these approaches are only constructing additional
combinations.

A more promising alternative is to further investigate the behaviour of in-
vestors and derive other models from that. Specifically, the behavioural
reasons and signals for deciding to leverage or short sell are challenging to
determine. In this context, one group of modeling tools that might be inter-
esting to work with are multinomial choice models with correlations among
alternatives such as the Nested Logit model and Mixed Logit models [117].

In context of the noise trader class, additional parameters besides the senti-
ment and the price momentum could be included to create heterogeneous
trading strategies amongst the noise traders. An interesting aspect to in-
vestigate would be how a trader using acceleration Γt, f and volume Vt, f in
addition to momentum would perform compared to the fundamentalists
and the standard noise traders.

Finally, the original model and the extensions in this thesis all used either a
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constant herding propensity or the OU stochastic process. There are other
processes the herding propensity κt can follow, for instance the Lévy flight,
a random walk in which the step lengths have a Lévy distribution, which
exhibits a set of random short movements connected by infrequent longer
ones [22].
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