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Abstract

In this report, a parametric formulation of Quantum Decision Theory
(QDT) is developed to estimate risk preferences from experimental data
on portfolio choice. The suggested parametrization extends previous
works on risky binary lotteries and constitutes the first operational ap-
plication of parametric QDT to non-binary choices. Risk preferences
are recovered at the aggregate and individual level, using QDT based
on Disappointment Aversion Theory (DA). Results are compared to the
risk preferences elicited from deterministic and probabilistic versions
of DA. QDT and the probabilistic version of DA both report risk and
disappointment aversion at the aggregate level, while deterministic DA
reports no disappointment aversion but higher risk aversion. Interest-
ingly, QDT performs significantly better than probabilistic DA for two
specific subjects, that were considered as outliers in the original exper-
iment paper and explains their choices parametrically. An interpreta-
tion for the two introduced quantum parameters is suggested.
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Introduction

Most real-world decisions involve a risk component and it is well estab-
lished that individuals show varying behaviour towards risk. Modeling risk
attitudes is therefore a major topic in economics and finance where it finds
a wide range of applications (Holt and Laury, 2014). The shortcomings of
standard expected utility in describing the differing risk attitudes (Camerer,
1992) gave rise to the development of a large set of extensions to expected
utility (Weber and Camerer, 1987). Empirical tests of such models show
varying results in the elicited preferences and still occupies a large part of
the literature (Hey and Orme, 1994). In this report, risk preferences are es-
timated at the aggregate and individual level from experimental portfolio
choice data.

In the experiment conducted by Choi et al. (2007a), each subject faces 50 ran-
domly generated portfolio choice tasks in which they allocate their wealth
between two risky assets. The participants enter their choice through an
intuitive graphical interface by clicking the corresponding point on a visu-
alization of the portfolio budget line (Choi et al., 2007b). This experimental
setting provides a rich data set of non-binary choices and allows to study
preferences at the individual level. The authors of the experiment report
high heterogeneity of behaviour between subjects but significant consistency
with preference ordering at the individual level. Moreover, a significant frac-
tion of subjects behave according to standard expected utility.

The standard approach to such portfolio choice problems is to test con-
sistency with any form of utility maximization, using the framework of
revealed preference theory (Samuelson, 1948). As to parametric recovery
of preferences, it is performed via different methods (Halevy et al., 2018).
A usual approach is to minimize the error between observed and optimal
choices, where optimal choices are calculated by maximizing a deterministic
utility function. Following the work of Hey and Orme (1994), some advan-
tages were found in recovering preferences through a probabilistic model of
choice using maximum likelihood estimation.
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1. Introduction

Taking advantage of the probabilistic nature of quantum physics, Quantum
Decision Theory (QDT) was introduced by Yukalov and Sornette (2008) as a
probabilistic model of choice. By relying on the mathematical structure of
Hilbert spaces, QDT can accommodate some famous paradoxes of standard
expected utility such as Allais’ paradox (Yukalov and Sornette, 2010) and the
conjunction fallacy (Kovalenko and Sornette, 2017). The goal of this report
is to adapt the parametric formulation of Quantum Decision Theory to elicit
risk preferences and describe the choices from the experimental data on
portfolio choice gathered by Choi et al. (2007a). The QDT model presented
in this report extends previous works on parametric recovery of preferences
in risky binary lottery choices (Vincent et al., 2016) and applies QDT to a
portfolio choice problem for the first time. The suggested parametrization
is based on Disappointment Aversion Theory (DA) and allows to elicit risk
and disappointment aversion at the individual and aggregate level. The two
additional parameters of the model pertain to the quantum contribution. An
interpretation of these parameters is suggested.

The report is organized as follows. First, preliminary notions of traditional
decision theory are defined in Section 2, including the standard utility func-
tions and risk aversion measures used in this study. Section 3 presents the
mathematical framework of Quantum Decision Theory. Section 4 outlines
the experimental setting and data from the portfolio choice experiment by
Choi et al. (2007a). In Section 5, the ’classical’ methods used to elicit risk
preferences, namely deterministic and probabilistic versions of DA, are ex-
plained. Section 6 presents the parametrization of QDT suggested to model
the portfolio choice problem considered. Section 7 reports the risk prefer-
ences elicited at the aggregate and individual level using both ’classical’ and
quantum methods. Parameter estimation results from the different models
are discussed. Finally, a synthesis is provided in Section 8.
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Preliminary notions of decision theory

A large body of literature focuses on modeling decisions under risk (Gollier,
2004). This section defines the notions of decision theory that will be used
in this report. First, standard utility models and in particular Disappoint-
ment Aversion Theory are presented. An overview of probabilistic choice
modeling follows.

2.1 Standard utility theory

2.1.1 Expected Utility Theory

Expected Utility Theory (EU) was formalized by Von Neumann and Mor-
genstern (1944). Consider a lottery L = {(xi, pi)}N

i=1 with N outcomes where
outcome xi is associated with probability pi. The expected utility of lottery
L is given by:

EU(L) =
N

∑
i

u(xi)p(xi) (2.1)

where u(x) is a so-called Bernoulli utility function representing how decision-
makers value each outcome. The decision-maker behaves according to EU
if he chooses the lottery L that maximizes EU(L).

2.1.2 Disappointment Aversion Theory

Disappointment aversion theory (DA) was introduced by Gul (1991) as a gen-
eralization of EU with one additional parameter. It therefore represents one
of the most parsimonious generalizations of EU. DA accounts for the possi-
ble disutility from being disappointed by an outcome. Following Abdellaoui
and Bleichrodt (2007), consider a binary choice between two prospects x and
y where x is received with probability p and y is received with probability
1− p. If the disappointment component is y, x is called the elation component
and the decision-maker evaluates the prospects as follows:
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2. Preliminary notions of decision theory

DA(x, y) = γ(p) · u(x) + (1− γ(p)) · u(y) (2.2)

with
γ(p) =

p
1 + (1− p) · β (2.3)

where β > −1 is the coefficient of disappointment aversion. An individual
is said to be disappointment averse if β ≥ 0 and elation loving if −1 < β < 0.

Since γ(0) = 0 and γ(1) = 1, γ : [0, 1] → [0, 1] satisfies the weighting prob-
abilities conditions. Disappointment aversion is therefore a special case of
Rank-Dependent Utility (Quiggin, 1982). If β = 0, standard EU is retrieved,
as one can see from the reformulation below:

DA(x, y) =
p

1 + (1− p) · β · u(x) +
(1 + β)(1− p)
1 + (1− p) · β · u(y) (2.4)

Figure 2.1 shows the behavior of the weighting probability γ(p) with respect
to p for different values of β.
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Figure 2.1: Behavior of the weighting probability γ(p) for different values
of β as a function of the probability p.

The functional form below was used in the paper by Choi et al. (2007a) to
recover probabilities:

DA(x, y) = min {α · u(x) + u(y), u(x) + α · u(y)} (2.5)
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2.1. Standard utility theory
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Figure 2.2: Indifference curves of Disappointment aversion theory. There is
a characteristic ’kink’ at the 45-degree line if outcomes x and y are equiprob-
able

However, for the purpose of this report, the functional form used in Halevy
et al. (2018) is preferred, as the disappointment parameter β is more tractable:

DA(x, y) = γ(p) · u(max{x, y}) + (1− γ(p)) · u(min{x, y}) (2.6)

with γ(p) defined as in 2.3, leading to:

DA(x, y) =
p

1 + (1− p) · β · u(max{x, y}) + (1 + β)(1− p)
1 + (1− p) · β · u(min{x, y})

(2.7)

Figure 2.2 shows some indifference curves generated by equation 2.7. In-
difference curves are the values of (x, y) for which the decision-maker is
indifferent between prospect x and prospect y, i.e. such that DA(x, y) is con-
stant. The value function u chosen is a power function, namely the CRRA
utility function equation 2.11. The CRRA specification will be detailed in the
next section. If outcomes x and y are equiprobable, the indifference curve of
DA shows what is commonly referred to as a ’kink’ at the 45-degree line.

DA was chosen in this study because it is one of the most parsimonious gen-
eralizations of EU (only one additional parameter) and therefore provides
good tractability of the results. Moreover, the retrieval of EU is straightfor-
ward (β = 0). DA was also chosen to perform parametric recovery of risk
preferences in the reference paper to this study (Choi et al., 2007a), as well
as as in an alternative study replicating the experiment (Halevy et al., 2018).
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2. Preliminary notions of decision theory

2.1.3 Measures of risk aversion

Risk aversion plays a central role in explaining economic decisions (Holt
and Laury, 2014). The following definitions define two common measures
of risk aversion (Gollier, 2004).

Constant absolute risk aversion The Arrow-Pratt Absolute Risk Aversion
is defined as:

ARA(x) = −u′′(x)
u(x)

(2.8)

The most commonly used utility displaying ARA is Constant Absolute Risk
Aversion (CARA).

uCARA(x) = −e−A·x (2.9)

with A > 0.

Constant relative risk aversion The Arrow-Pratt relative risk aversion is
defined as:

RRA(x) = −u′′(x) · x
u(x)

= x · ARA(x) (2.10)

The most commonly used utility function displaying RRA is Constant Rela-
tive Risk Aversion (CRRA):

uCRRA(x) =

{
x1−ρ−1

1−ρ if ρ ≥ 0, ρ 6= 1
ln(x) if ρ = 1

(2.11)

Figure 2.3 shows the behavior of the CRRA utility function for different
values of ρ.

In this report, the CRRA utility index will be used. The CARA function has
also been implemented but was not retained due to computational issues
and no added value to the results. Moreover, the used CRRA utility index
is different from the specifications in Choi et al. (2007a) and Halevy et al.
(2018). Indeed, for ρ 6= 1, using the specification described in Equation 2.11
rather than u(x) = x1−ρ

1−ρ ensures a smooth transition at the discontinuity
point ρ = 1 which is important for an optimization procedure.

2.2 Probabilistic choice models

Standard utilities mainly have an ordinal purpose, i.e. induce an ordering
of preferences. Probabilistic choice models however, provide the probability

6



2.2. Probabilistic choice models
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Figure 2.3: Behaviour of the CRRA function for different levels of risk aver-
sion ρ

of choosing a prospect. While utility is traditionally at the center of eco-
nomic research, the numerous evidences of varying individual behavior has
triggered the development of probabilistic choice models.

2.2.1 Random utility theory

Random utility was introduced by Luce (1959) to account for deviations
from standard utility. Random utility of a lottery L is expressed as follows:

W(L) = U(L) + εL (2.12)

Where U(L) is a deterministic utility such as EU or DA. The disturbance εL
is a random component. Therefore, the chosen lottery might not necessarily
maximize U(L).

2.2.2 Multinomial logit model

It can be shown (McFadden, 1980) that random utilities are equivalent to
practical logit or probit forms. In the case study of this report, the choices
are not binary but multiple. Therefore, the appropriate probabilistic for-
mulation is the multinomial logit model. According to Bunch (1987), the
probability of choosing lottery Lj given a set of parameters θ and a set of
explanatory variables Z is given by:
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2. Preliminary notions of decision theory

P(Lj|θ, Z) =
ev(θ,zj)

∑k ev(θ,zk)
(2.13)

where v(θ, zj) is a non linear function of the parameters and the explanatory
variables. In the probabilistic models studied in this report, the response
strength v(·) will be identified with Disappointment Aversion Theory.
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Quantum Decision Theory

Quantum Decision Theory (QDT) is a probabilistic choice model relying on
the mathematics of Hilbert spaces. It interprets quantum probabilities as
behavioural probabilities. QDT was first introduced in (Yukalov and Sor-
nette, 2008) and further developed in a series of articles including (Yukalov
and Sornette, 2009, 2010, 2016a). The theory has many applications such
as choice reversals in risky lotteries (Vincent et al., 2016), the decoy effect
(Yukalov and Sornette, 2016a) and the conjunction fallacy (Kovalenko and
Sornette, 2017).

3.1 Motivation for a quantum approach to decision the-
ory

Unresolved paradoxes in decision theory Needless to say the unresolved
paradoxes in Expected Utility Theory call for the development of further the-
ories. Among the most famous violations to standard utility theory stand
the Allais (1990) and Ellsberg (1961) paradoxes. Recently, quantum-like ap-
proaches to decision theory have been developed to address such shortcom-
ings. They however face difficulties in entering the economic literature as
one, due to a high heterogeneity in their formulations. Indeed, there are
many different views on the possible advantages of a quantum model in
decision theory.

A ’measurement’ problem In a preliminary work (Semester Project) the
following motivation was highlighted. In physics, the principle of the Re-
ceived View (Carnap, 1923) states that any concept used in a theory should
be related to observables, i.e. a quantity that can be measured. If a paral-
lel with decision theory was to be made, the observables in an experiment
would be the choices, i.e. the revealed preferences. Since the utility function
mainly has ordinal use, it is not possible to directly measure it. The reader
is referred to (Gilboa, 2009), p.59-71, for a detailed discussion. Probabilities
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3. Quantum Decision Theory

of choice are however directly measurable in an experiment, whether it is in
the form of the frequency of choice within a society or with respect to an
individual facing many decisions. The link between utility and behavioral
probabilities is not straightforward and was famously axiomatized by Luce
(Luce, 1959), showing the complementarity of these two notions. One may
find useful to rely on the mathematical framework of quantum mechanics
to develop probabilistic choice models rather than utility-based models. An
example of such a quantum-like model is QDT. In particular, the notion of
inconclusive events, detailed later in this section, comes as a natural answer
to what can be interpreted as a ’measurement problem’ in Economics: the
difficulty to elicit utility from observed choices.

Intrinsic probabilistic nature of quantum mechanics When considering
probabilistic choice models, it is only natural to make a link with the frame-
work to quantum theory, which is probabilistic in essence. However, as
discussed in Vincent et al. (2016) the stochastic nature is distinct in the two
approaches. In random utility theory it is an added term while in Quantum
Decision Theory, it arises from the mathematics of the Hilbert space in the
form of an interference term.

The classical limit Last but not least, recovering the classical limit is an im-
portant criterion in any theory of modern physics. In the context of Quan-
tum Decision Theory, the classical limit is attained when the interference
term vanishes and one retrieves a ’classical’ probabilistic model just as com-
monly used in economics. Therefore, Quantum Decision Theory offers great
possibilities of generalization of EUT and in particular in resolving the above
mentioned paradoxes also from a normative perspective.

3.2 Mathematical formalism of QDT

The basic scheme exposed below is inspired from Yukalov and Sornette
(2018). For a detailed explanation of the quantum probabilities underlying
the theoretical foundations of QDT, the reader is referred to Yukalov and
Sornette (2016b).

Lotteries Let {Ln} be a set of N lotteries with k outcomes such that

Ln = (xi, pn(xi)) where i = 1, ..., k and ∑
i

pn(xi) = 1 (3.1)

Conclusive operationally testable event The event An with n = 1, .., N cor-
responds to the action of choosing lottery Ln and is represented by the state
vector |n〉 pertaining to a Hilbert space HA = spann{|n〉} . An is consid-
ered a conclusive operationally testable event in the sense that it is possible to

10



3.2. Mathematical formalism of QDT

observe it in experiments in the form of a revealed preference. The An are
mutually exclusive events and the set {|n〉} thus forms an orthonormal basis
of HA.

Inconclusive event The choice of a lottery is accompanied by objective risk
(the outcome is not known with certainty), and subjective uncertainty (in
many possible forms: incorrect understanding of the setting, uncertainty on
the outcomes probabilities, abilities of the decision-maker, emotions, biases
etc.). Risk and uncertainty are both represented by a set of ’uncertain’ items
B = {|α〉 : α = 1, ...}. A so-called inconclusive event B is represented by a
vector in the Hilbert space HB = spanα{|α〉},:

|B〉 = ∑
α

bα |α〉 (3.2)

where bα are random complex numbers. Inconclusive events are not testable
in experiments.

Prospect The choice of a lottery Ln is thus considered a composite event
termed prospect consisting of a final choice An after deliberations involving
the set of uncertain events B. A composite prospect state is defined as an
element of H = HA ⊗HB = spannα{|nα〉} where |nα〉 = |n〉 ⊗ |α〉:

|πn〉 = |n〉 ⊗ |B〉 = ∑
α

bα |nα〉 (3.3)

The {|nα〉} are called elementary prospects and form an orthogonal basis of
H (not necessarily orthonormalized). The prospect operator plays the role
of the observable (operators) in the theory of quantum measurement, as
follows:

P̂n = |πn〉 〈πn| (3.4)

The {P̂(πn)} composes a positive operator-valued measure (POVM).

Strategic state of mind The decision-maker is characterized by a strategic
state of mind represented by an element |ψ〉 of H, as follows:

|ψ〉 = ∑
n,α

ζnα |nα〉 (3.5)

Probability of choice It then becomes possible to define a quantum behav-
ioral probability for each prospect πn:

11



3. Quantum Decision Theory

p(πn) = 〈ψ|P̂n|ψ〉 = ∑
α

|ζnαbα|2︸ ︷︷ ︸
f (πn)

+ ∑
α 6=β

ζnβbαζ∗nαb∗β︸ ︷︷ ︸
q(πn)

(3.6)

As a probability measure, the family of p(πn) satisfies:

∑
n

p(πn) = 1, 0 ≤ p(πn) ≤ 1 (3.7)

The quantum probability splits into two terms: p(πn) = f (πn) + q(πn). It is
then possible to associate p(πn) to a behavioral probability, as it takes into
account a rational utility factor and an irrational interference term.

Utility factor The utility factor f represents the classical objective utility of
the prospect:

f (πn) = ∑
α

|ζnαbα|2 (3.8)

satisfying
N

∑
n

f (πn) = 1 and 0 ≤ f (πn) ≤ 1 (3.9)

Attraction factor The attraction factor represents the subjective attitudes
towards that prospect:

q(πn) = ∑
β 6=α

ζnβbαζ∗nαb∗β (3.10)

Moreover, equations 3.2, 3.7 and 3.9 lead to the following properties for q:

N

∑
n

q(πn) = 0 and − 1 ≤ q(πn) ≤ 1 (3.11)

The latter property corresponding to the alternation law.

Preference model The prospect probability allows for preference ordering
as follows:

π1 � π2 ⇐⇒ p(π1) ≥ p(π2) (3.12)

Moreover, prospect π1 will be considered more useful than π2 if f (π1) >
f (π2) and more attractive if q(π1) > q(π2).

12



Description of the portfolio choice
experiment under risk by Choi et al.

(2007a)

In this section, the data set used to recover risk preferences in portfolio-
choice is presented.

The experimental setting introduced by Choi et al. (2007b) is a general graph-
ical interface for generating experimental portfolio choice data. It was used
to recover risk preferences in Choi et al. (2007a) and Halevy et al. (2018), as
well as to recover ambiguity preferences in Ahn et al. (2014).

4.1 Experimental setting

The experiment was conducted at the Experimental Social Science Labora-
tory (Xlab) at the University of California, Berkeley. Participants face 50
independent decision tasks. Each task consists in the following portfolio
choice problem: the subject must allocate his wealth between two assets
(risky securities) under budget constraint.

• Asset x (resp. Asset y) is an Arrow security that pays 1$1 with prob-
ability πx (resp. prrobability πy). px (resp. py) is the price of asset x
(resp. y).

• At each decision round, a portfolio is randomly generated by drawing
the prices px and py

2.

• The participants can buy x and y units of securities x and y such that
0 ≤ x ≤ 1

px
and 0 ≤ x ≤ 1

px
satisfying the budget constraint px · x +

1In the original experiment, the currency unit are Tokens and the payoff in $ is calculated
using the correspondence 1 Token = 0.50 $. For simplicity 1 Token = 1$ in this report

2Additional constraint on the prices: at least one of the asset prices pk is such that
1
pk
≥ 50$ and all asset prices pi should satisfy 1

pi
≤ 100$

13



4. Description of the portfolio choice experiment under risk by Choi et al.
(2007a)

py · y = 1.

• At the end of the experiment, one of the decision round will be ran-
domly chosen to be payoff relevant and the state of the world (x or y)
will be revealed. The participants get the returns x · 1$ if state x pays
off (with probability πx) and y · 1$ if state y pays off (with probability
πy).

Subjects choose a portfolio on the budget set by using a graphical interface
with a simple ’point-and-click’ method. Figure 4.1 below shows the graphi-
cal interface that participants use to choose a portfolio.

Figure 4.1: Graphical interface used to generate portfolio-choice data in the
Xlab. Portfolio choice problem with two risky assets. The line defines the
budget set for the subject. Figure from the appendix of Choi et al. (2007a).

Variations The authors offer treatment variations as described below. This
study focuses on the symmetric treatment under risk3.

• Risk (symmetric) Allocation between two Arrow securities x and y with
probabilities of states πx = πy = 1

2 (see Choi et al. (2007a))

• Risk (asymmetric) Allocation between two Arrow securities with proba-
bilities of states πx = 1

3 and πy = 2
3 (see Choi et al. (2007a))

• Uncertainty Allocation between three Arrow securities. Security x pays
off with probability πx = 1

3 and πy and πz are unknown (π2 +π3 = 2
3 .)

(see Ahn et al. (2014))

3The symmetric treatment under risk of the experiment by Choi et al. (2007a) is also the
treatment studied in Halevy et al. (2018)
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4.2. Main features of the data

4.2 Main features of the data

Some figures When taking into account both symmetric and asymmetric
risky treatments, there are 93 subjects facing 50 independent decisions lead-
ing to a total of 4650 available observation points. In the scope of this study,
only the symmetric treatment under risk will be considered. Therefore the
analysis relies on 47 subjects facing 50 decisions each, for a total of 2350
observation points.

Typical portfolio choices Figure 4.2 below illustrates examples of typical
portfolios a subject could choose. Point A (resp. point B) corresponds to an
individual investing all his wealth in the asset that pays in state x (resp. y)
and are called boundary portfolios. Point C corresponds to the intersection of
the budget line with the 45-degree line. In the symmetric treatment (where
πx = πy = 1

2 ) point C corresponds to a safe portfolio since the return x = y
is certain. Any portfolio that is not boundary or safe is called intermediate.

Figure 4.2: Figure from Choi et al. (2007a). Portfolio budget line with slope − px
py

.
Point A and B correspond to boundary portfolios. In the symmetric treatment, point
C corresponds to a safe portfolio with certain return. A portfolio that is not boundary
or safe is called intermediate.

Oberved choices Figure 4.3 describes the relationship between the log-
price ratio ln( px

py
) and the relative demand x

x+y for a selected set of rep-

resentative subjects4. The following description is reported by Choi et al.
(2007a). Some subjects show a stylized behaviour whereas for others, the
consistency in behaviour is less precise. In particular, ID 304 always chooses
safe portfolios with certain payoff x = y. This is consistent with infinite risk
aversion. Alternatively, subject ID 303 is the only subject, who made almost

4The set of selected subjects is the same as in Choi et al. (2007a).
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(2007a)

always equal expenditures px · x = py · y. Subject ID 307 would be consis-
tent with risk neutrality. The subject allocated all his tokens to the cheapest
security. When prices were approximately equal, the subject chose safe port-
folios. The switch in behaviours manifests loss or disappointment aversion.
Subjects ID 216 and 318 do not behave according to such clear patterns and
combines safe, intermediate and boundary portfolios.

Main results The authors report high heterogeneity at the aggregate level
but high consistency with preference ordering at the individual level. In-
deed, the homogeneity of choices is statistically significant at the individual
level. Figure 4.3 shows a set of selected representative subjects. They show
a high consistency in their choices but display very different behavior from
one another. Interestingly, the authors report that almost the majority of
subjects behave according to EU. The authors further report that the prefer-
ences are well represented by Disappointment Aversion Theory due to the
’kink’ in the model (see indifference curves of DA in Figure 2.2). The authors
conclude that there is no clear taxonomy that allows to classify all subjects.
However subjects seem to behave along a mixture of stylized facts.

4.3 Advantages of studying the data set

This data set was chosen for the present study because it presents signifi-
cant advantages. Advantages were found with respect to the economic liter-
ature of risk preference elicitation from experimental data but also given the
current state of the parametric analysis of data sets in Quantum Decision
Theory.

• The authors present a standard decision problem that can be inter-
preted either as a portfolio-choice problem (allocation of wealth be-
tween assets) or as a consumer decision problem (selection of a bundle
of state-contingent commodities with budget constraint.)

• The authors claim portfolio choice under budget constraint gives more
information than binary choices. Indeed, in the present experiment, a
revealed preference is considered preferred to all other preferences ad
not only to one other alternative.

• As pointed out by the authors of Choi et al. (2007b), the majority of
experimental studies of violations of EUT reviewed in Camerer (1992)
focus on binary choices and specific experimental designs studying
violated axioms of EUT. The presente framework is less specific. More-
over, there are not many data sets that allow to assess the heterogeneity
of preferences at the individual level.

• The unified framework of the graphical interface for portfolio choice
allows for many variations and is therefore easily adaptable to cus-
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4.3. Advantages of studying the data set

tomized experiments. Also on the descriptive side, it is possible to test
many theories against the same data set.

• The experiment is very well cited in the literature of experimental
studies of decisions under risk and uncertainty. The quality of data
and instructions meets the expectations of top publication journals in
economics. Experimental design is well argued with theoretical argu-
ments of revealed preference theory (Choi et al., 2007b).

• The data set is available online. Reproducibility of results allows for
different researchers to study the same data set or experimental frame-
work (Halevy et al., 2018) with different research questions and meth-
ods.

• For QDT in particular, it is the occasion to model a portfolio-choice
experiment for the first time. In the future, it will be possible to vary
the treatments under study (asymmetric, uncertainty) for a better re-
finement and interpretation of the parametric calibrations.

• The fact that almost a majority of subjects behaves according to EUT,
but that outlier stylized behaviours are observed allows for a good
starting point for a parametric model calibration.
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Figure 4.3: Portfolio-choices for a set of representative subjects. Relationship
between the log-price ratio ln( px

py
) and the relative demand x

x+y . Selection of
representative subjects showing high regularity of choices in the symmetric
treatment (πx = πy).
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Recovering preferences with ’classical’
choice models

The classical estimation methods used to retrieve risk preferences from the
data set are presented in this section. First of all, the error minimization be-
tween observed and optimal choices prescribed by deterministic DA utility
is explained. Then, the maximum likelihood estimation using a probabilistic
version of DA is detailed.

5.1 Differences with the original paper

Parameter estimation methods Both estimation methods, namely non-linear
least squares and maximum likelihood estimation described below were also
performed in the reference paper by Choi et al. (2007a) but some differences
are to be noted. In the present study, the optimal demands are derived
in a different manner. Moreover, the present work assumes a multinomial
logit model while Choi et al. (2007a) work directly with a random utility
formulation. Once again, we stress that the specification of DA used was
the one from Halevy et al. (2018) (Equation 2.6) rather than the one in Choi
et al. (2007a) (Equation 2.5). This allows us to directly estimate the parame-
ter β for disappointment aversion. Moreover, the CRRA specification used
(Equation 2.11) is also sightly different but ensures a smooth transition at the
discontinuity point ρ = 1 which is important for an optimization porcedure.

Notations In the following the maximal demand (xmax and ymax) will be pre-
ferred to the prices px and py. The relationships between maximal demands
and prices are xmax = 1

px
and ymax = 1

py
. Moreover, the demand in asset y

will be substituted by b(x), a function of x satisfying the budget constraint
px · x + py · y = 1 such that:

y = b(x) = ymax · (1−
x

xmax
) (5.1)
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5. Recovering preferences with ’classical’ choice models

5.2 Deterministic Disappointment Aversion Theory

In a first step, risk preferences will be estimated using deterministic DA
with the CRRA specification as described in equations 2.6 and 2.11.

5.2.1 Optimal demand

The optimal demand is such that :

x∗ = arg max
x

DA(x) (5.2)

or, equivalently:

d
dx

DA(x)
∣∣∣

x=x∗
= 0 (5.3)

Recall that :

DA(x) = γ(p) · u (max {x, b(x)}) + (1− γ(p)) · u (min {x, b(x)}) (5.4)

with γ(p) = p
1+(1−p)·β where p is the probability of occurrence of state x

and β the parameter of disappointment aversion. The allocation y has been
substituted using the budget constraint, such that

y = b(x) = ymax · (1−
x

xmax
) (5.5)

When using the CRRA specification, equation 2.6 rewrites:

• For ρ 6= 1

DA(x) =
γ(p)
1− ρ

· (max {x, b(x)} − 1)1−ρ

+
(1− γ(p))

1− ρ
· (min {x, b(x)} − 1)1−ρ (5.6)

• For ρ = 1

DA(x) = γ(p) · ln (max {x, b(x)})
+ (1− γ(p)) · ln (min {x, b(x)}) (5.7)
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5.2. Deterministic Disappointment Aversion Theory

For the optimal demand, the following four cases hold:

• If x∗ ≤ b(x∗) and ρ 6= 1:

x∗ =
xmax · C−

xmax + C−
where C− =

(
γ(p)

1− γ(p)
· ymax

1−ρ

xmax

)− 1
ρ

(5.8)

• If x∗ > b(x∗) and ρ 6= 1:

x∗ =
xmax · C+

xmax + C+
where C+ =

(
1− γ(p)

γ(p)
· ymax

1−ρ

xmax

)− 1
ρ

(5.9)

• If x∗ ≤ b(x∗) and ρ = 1:

x∗ = (1− γ(p)) · xmax (5.10)

• If x∗ > b(x∗) and ρ = 1:

x∗ = γ(p) · xmax (5.11)

5.2.2 Non-Linear Least Squares

The set of parameters θ̂ that best represents the data is estimated for each
individual by minimizing the squared distance between the observed choice
xobs

j and the optimal choice x∗j for each deision task j = 1, ..., Nd, where Nd

is the number of decisions that individuals face.
At the individual level, for each subject i, θi is estimated such that:

θ̂i = arg min
θi

d(θi) (5.12)

with

d(θi) =
Nd

∑
j=1
‖xobs

i,j − x∗(θi; xmax,i,j, ymax,i,j)‖2 (5.13)

At the aggregate level:
θ̂ = arg min

θ

d(θ) (5.14)

with

d(θ) =
NS

∑
i=1

Nd

∑
j=1
‖xobs

i,j − x∗(θ; xmax,i,j, ymax,i,j)‖2 (5.15)
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5. Recovering preferences with ’classical’ choice models

5.3 Probabilistic Disappointment Aversion Theory

In a second step, risk preferences will be retrieved using a probabilistic
choice model which consists in a probabilistic version of Disappointment
Aversion Theory.

5.3.1 Multinomial logit model

According to Bunch (1987), the probability of choosing allocation xj given a
set of parameters θ and a set of explanatory variables Z is given by:

P(xj|θ, Z) =
ev(θ,zj)

∑k ev(θ,zk)
(5.16)

where v(θ, zj) is a non linear function of the parameters θ and the elements
z of the set of explanatory variables Z.

P(xj|θ, Z) =
eDA(θ,zj)

∑k eDA(θ,zk)
(5.17)

The scale function v(·) is identified to Disappointment Aversion Theory with
the CRRA utility index, and it is further assumed that θ = {β, ρ} and Z =
{xj, xmax, ymax}.

• If ρ 6= 1, one has :

v(β, ρ; xj, xmax, ymax) = DACRRA(xj)

=
γ(p)
1− ρ

·
(
max

{
xj, b(xj)

})1−ρ

+
1− γ(p)

1− ρ
·
(
min

{
xj, b(xj)

})1−ρ(5.18)

with γ(p) = p
1+(1−p)·β where p is the probability of occurrence of state

x, β the parameter of disappointment aversion and ρ the parameter of
risk aversion. xj is the observed choice, namely the demand in secu-
rity x. The demand in security y has been substituted using the budget
constraint, such that y = b(x) = ymax · (1− x

xmax
).

• If ρ = 1:

v(β, ρ; xj, xmax, ymax) = DACRRA(xj)

= γ(p) · ln
(
max

{
xj, b(xj)

})
+ (1− γ(p)) · ln

(
min

{
xj, b(xj)

})
(5.19)
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5.3. Probabilistic Disappointment Aversion Theory

The term ∑k eDA(θ,zk) is calculated by discretizing the space of demands as
follows. The choice resolution of the experiment is r = 0.1$. Therefore,
for each decision task j, the individual can choose a demand xk of asset x
such that 0 ≤ xk ≤ xmax,j with k = 1, 2, ..., Nj where Nj =

⌊
xmax,j

r

⌋
. For each

decision task j, the sum is then computed over all possible demands xk.

5.3.2 Maximum Likelihood Estimation

The maximum likelihood method used to estimate the parameters of the
above presented model, is described below for the aggregate level. The
individual level estimation is performed by setting the number of subjects
Ns to 1.

The set of parameters θ̂ that best represents the observed data maximizes
the likelihood function l(θ) as follows:

θ̂ = arg max
θ

l(θ) (5.20)

with l(θ) the likelihood function defined below:

l(θ) =
Ns

∏
i=1

Nd

∏
j=1

P(Li
j|θ, Z)

=
Ns

∏
i=1

Nd

∏
j=1

ev(θ,zi
j)

∑k ev(θ,zi
k,j)

(5.21)

With Ns the number of subjects and Nd the number of decisions. The prob-
lem is then equivalent to the following:

θ̂ = arg max
θ

ln (l(θ)) = arg max
θ

L(θ) (5.22)

where

L(θ) = ln

(
Ns

∏
i=1

Nd

∏
j=1

P(Li
j|θ, Z)

)
=

Ns

∑
i=1

Nd

∑
j=1

ln
(

P(Li
j|θ, Z)

)
(5.23)

is the log-likelihood. The function to maximize is then rewritten as:

L(θ) =
Nobs

∑
j=1

(
v(θ, zj)− ln

(
∑

k
ev(θ,zk,j)

))
(5.24)

With Nobs = Nd · Ns the total number of observations.
When considering DA with CRRA, the set of parameters to estimate is θ =
{β, ρ}.
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5. Recovering preferences with ’classical’ choice models

The Nelder and Mead (1965) algorithm1 is used through the optim() func-
tion in R to optimize the log-likelihood L(θ) as an objective function with
respect to the set of parameters θ = {β, ρ}.

1The method that is commonly used to perform optimization with bounded constraints
is L-BFGS-B. However, in our situation, Nelder-Mead showed higher efficiency and stability.
The constraints on the parameters were directly implemented in the code.
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Recovering preferences with Quantum
Decision Theory

The goal of this report is to adapt Quantum Decision Theory (QDT) to para-
metric recoverability of preferences in the case of non-binary choices under
risk. Therefore, the developed parametrization is outlined below. In a sec-
ond step, the parameter estimation method when using QDT, namely maxi-
mum likelihood estimation, is presented.

6.1 Model specification

As explained in Section 3, Quantum decision Theory provides the proba-
bility p(πj) of choosing prospect πj. To apply QDT to the present data,
prospects πj are identified with the demands xj.

The choice resolution of demands in the experiment is of r =0.1 $. Therefore,
it is possible to discretize the demand such that for each decision task j =
1, ..., Nd, the individual chooses a demand xk of asset x with 0 ≤ xk ≤ xmax,j,

such that for each decision task j, one has k = 1, 2, ..., Nj where Nj =
⌊

xmax,j
r

⌋
.

Nd is the number of decisions.

The following formulation is suggested for the portfolio choice experiment
under consideration.

Prospects

|πk〉 = |xk〉 ⊗ { b1 |b1〉+ b2 |b2〉}
= b1 |xkb1〉+ b2 |xkb2〉

from which the measurement operator P̂j = |πj〉 〈πj| can be derived.
As explained in Section 3, |xk〉 represents the event of choosing demand xk,
which is an operationally testable event, i.e. the observed revealed preference
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6. Recovering preferences with Quantum Decision Theory

in the laboratory experiment.
The terms |b1〉 and |b2〉 represent the inconclusive events pertaining to the
Hilbert space HB and representing any influence on the decision that can-
not be observed in the laboratory experiment (emotional biases, incorrect
understanding of the experiment,...etc.). Without loss of generality, the car-
dinality of HB was chosen to be 2 to allow for the emergence of interference
terms (see Section 3.2 for further details). This choice was also motivated
by the fact that this study is a first step towards a parametrization of the
considered portfolio choice experiment and allows for more tractability of
the quantum contribution. As prescribed by QDT, the coefficients b1,2 are
random complex numbers.

Strategic state of mind

|ψ〉 =
Nj

∑
k
(ck1 |xkb1〉+ ck2 |xkb2〉) (6.1)

Leading to the following expression for the probability of choosing prospect
|πj〉.

p(πj) = 〈ψ|P̂j|ψ〉 = |cj1α1|2 + |cj2α2|2 + cj1α∗2c∗j2α1 + c∗j1α2cj2α∗1 (6.2)

The utility factor f and attraction factor q are given by:

f (πj) = |cj1α1|2︸ ︷︷ ︸
f j1

+ |cj2α2|2︸ ︷︷ ︸
f j2

(6.3)

and
q(πj) = c∗j1α∗1cj2α2 + cj1α1c∗j2α∗2 = 2<(c∗j1α∗1cj2α2) (6.4)

The expression for q can be reworked in a similar way than in Vincent et al.
(2016) by using

f = f j1 + f j2 ⇒ f j1 = t · f and f j2 = (1− t) · f (6.5)

with 0 ≤ t ≤ 1 to obtain:

q(πj) = 2 · f (πj) ·
√

t · (t− 1) · cos(∆j) (6.6)

With ∆j the uncertainty angle.

The derived attraction factor is thus found to have a similar form than in the
case of binary choices reported by Vincent et al. (2016). The parametrization
suggested below is however different.
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6.1. Model specification

For simplicity, xj replaces πj in the remainder of this report. The following
conditions have to be satisfied by the paramerization:

∑
j

p(xj) = 1 (6.7)

∑
j

f (xj) = 1 (6.8)

∑
j

q(xj) = 0 and − 1 ≤ q(xj) ≤ 1 (6.9)

q(xj)→ 0⇒ p(xj)→ f (xj) (6.10)

6.1.1 Utility factor

Following previous operational applications of QDT (Vincent et al., 2016),
the utility factor is associated with a classical probabilistic choice model. In
this study, it is the DA-based probabilistic choice model previously used.
Explicitly, one has:

f (xj) =
eDA(θ,zj)

∑k eDA(θ,zk)
(6.11)

This parametrization satisfies conditions 6.8 and 6.10.

The term ∑k eDA(θ,zk) is calculated in the same manner than for the probabilis-
tic version of DA by discretizing the space of demands. For each decision
task j = 1, ..., Nd, the sum is then computed over all possible demands xk
with k = 1, ..., Nj.

The specification of the utility factor is the same than in Section 5.3.1. The
CRRA specification is used and θ = {β, ρ}. Again, it is assumed that Z =
{xj, xmax, ymax}. If ρ 6= 1, DA(θ, Z) is identified with Equation 5.18. If ρ = 1,
DA(θ, Z) is identified with Equation 5.19.

6.1.2 Attraction factor

The suggested parametrization of the attraction factor q in the case of the
experiment under study is based on Equation 6.6 and is as follows:

q(xj) = 2 ·min
{

f (xj), 1− f (xj)
}
·
√

t(t− 1) · cos (δ · (EU (xmax)− EU (ymax)))

(6.12)
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6. Recovering preferences with Quantum Decision Theory

where EU(x) = 1
2 · x + 1

2 · y is the standard linear expected utility.

Therefore, one has:

q(xj) = 2 ·min
{

f (xj), 1− f (xj)
}
·
√

t(t− 1) · cos
(

δ · 1
2
· (xmax − ymax)

)
(6.13)

This parametrization ensures conditions 6.9 and 6.7. Indeed, the term
min

{
f (xj), 1− f (xj)

}
ensures the restriction |q(xj)| ≤ 1− f (xj) such that

p(xj) = f (xj) + q(xj) ≤ 1 as well as the restriction |q(xj)| ≤ f (xj) such that
p(xj) = f (xj) + q(xj) ≥ 0.

The motivation for the parametrization of the cosine term comes from the
heuristic that an individual would take into account the prices when buying
a security 1. More precisely, a decision-maker would mentally process and
weight the expected returns of the boundary portfolios, i.e. if allocating his
wealth in security x exclusively or in security y exclusively. This mental rep-
resentation may attract him towards asset x or y, giving all its meaning to
q, termed the attraction factor. The parameter δ measures one’s sensitivity to
the introduced heuristic on boundary portfolios.
Parameter t arises from the theoretical formulation and weights the contri-
butions of the inconclusive events b1 and/or b2.

The reparametrization α =
√

t · (t− 1) was found to be better performing
in estimations leading to the expression for the attriction factor:

q(xj) = 2 ·min
{

f (xj), 1− f (xj)
}
· α · tanh

(
δ · 1

2
· (xmax − ·ymax)

)
(6.14)

where 0 ≤ α ≤ 1
2 and δ ≥ 0.

6.2 Maximum Likelihood Estimation

The maximum likelihood method used to estimate the parameters is de-
scribed below for the aggregate-level. The individual-level estimation is
performed by setting the number of subjects Ns to 1.

The set of parameters θ̂ that best represents the observed data maximizes
the likelihood function l(θ) as follows:

θ̂ = arg max
θ

l(θ) (6.15)

1This heuristic was suggested by Prof. D. Sornette.
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with l(θ) the likelihood function defined below:

l(θ) =
Ns

∏
i=1

Nd

∏
j=1

p(xi
j)

=
Ns

∏
i=1

Nd

∏
j=1

(
f (xi

j) + q(xi
j)
)

=
Ns

∏
i=1

Nd

∏
j=1

(
eDA(θ,zi

j)

∑k eDA(θ,zi
k,j)

+ 2 ·min
{

f (xi
j), 1− f (xi

j)
}
· α · tanh

(
δ · 1

2
·
(

xi
max,j − yi

max,j

)))

With Ns the number of subjects and Nd the number of decisions. The prob-
lem is then equivalent to the following:

θ̂ = arg max
θ

ln (l(θ)) = arg max
θ

L(θ) (6.16)

where

L(θ) = ln

(
Ns

∏
i=1

Nd

∏
j=1

p(xi
j)

)
=

Ns

∑
i=1

Nd

∑
j=1

ln
(

p(xi
j)
)

(6.17)

is the log-likelihood to maximize.

When considering DA utility with the CRRA utility index, the set of param-
eters to estimate is θ = {β, ρ, α, δ}

Again, the Nelder-Mead algorithm is used through the optim() function in
R to maximize the log-likelihood L(θ) as an objective function with respect
to the set of parameters θ = {β, ρ, α, δ}.
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Parameter estimation results

Risk preferences were recovered at the aggregate and individual level us-
ing Disappointment Aversion Theory (DA), the probabilistic version of Dis-
appointment Aversion Theory (logit-DA)1 and Quantum Decision Theory
based on Disappointment Aversion Theory (DA-QDT).

7.1 Aggregate level

The table below provides the estimated parameters at the aggregate-level for
deterministic (DA) and probabilistic parameter estimation methods (logit-
DA and DA-based QDT.)

β̂ ρ̂ α̂ δ̂

DA 0.000 0.706 - -
logit-DA 0.817 0.237 - -
DA-based QDT 0.817 0.237 0.019 1.331

Table 7.1: Estimated risk preferences at the aggregatee level for each of the
investigated models

One sees that both logit-DA and DA-based QDT provide the same estima-
tions for the risk and disappointment aversion parameters at the aggregate-
level. According to these estimates, the sample is generally risk and disap-
pointment averse at the aggregate level, which is in good accordance with
the literature (Halevy et al., 2018; Haga and Rivenæs, 2016).

The quantum parameters α̂ and δ̂ of the DA-QDT model are however not
null at the aggregate level, although the estimations for β and ρ are the

1The appropriate notation would be logistic-DA, however due to space constraints, the
probabilistic version of DA is referred to as logit-DA (l-DA is also used).
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7. Parameter estimation results

same than with the two-parameter estimation in logit-DA. This leads to the
interpretation that they have a role to play in choices although do not inter-
fere with the aggregate risk and disappointment preferences, or at least not
in a straightforward manner.

On the other hand, the estimations from the deterministic DA are drastically
different, showing no disappointment aversion at the aggregate-level. A
higher-level of risk aversion is however observed. This trade-off between risk
and disappointment aversion is also visible at the individual-level in table
7.2 and figure 7.2. The DA estimation seems to systematically provide lower
disappointment aversion and higher risk aversion at the individual-level.
Choi et al. (2007a) also report similar differences between the deterministic
and probabilistic approaches.

7.2 Individual level

The estimated parameters at the individual level for all three models are
presented in the the appendix. The table below provides the statistical dis-
tribution of the estimated parameters for each of the investigated models at
the individual-level.

β̂DA ρ̂DA β̂l−DA ρ̂l−DA β̂QDT ρ̂QDT α̂QDT δ̂QDT

Mean 0.036 1.012 2.999 0.180 1.249 0.260 0.122 0.560
Maximum 0.314 9.672 48.332 0.771 13.928 0.762 0.500 14.563
3rd quartile 0.088 0.882 1.973 0.283 1.423 0.480 0.176 0.069
Median 0.000 0.605 1.093 0.147 0.140 0.164 0.049 0.016
1st quartile 0.000 0.536 0.580 0.009 0.259 0.066 0.000 0.000
Minimum -0.190 0.060 -0.461 0.000 -0.717 0.000 0.000 0.000

Table 7.2: Summary statistics for parameter estimation at the individual level
for each of the models investigated. Subjects 205, 206, 218, 304 and 320 were
removed from the logit-DA statistics due to high values of β

Figure 7.2 allows further examination of the individual estimated parame-
ters from the three different models. Subjects 205, 206, 218, 304 and 320 were
removed from the logit-DA statistics due to high values of β. DA-based QDT
seems to provide less aberrant values for risk and disappointment aversion
than logit-DA and therefore might handle outlier cases better while gener-
ally providing similar results for the rest of the sample. Again, the trade-off
between values of risk and disappointment aversion in the probabilistic and
deterministic approaches is visible.

Figure 7.1 shows the distribution of the quantum parameters. Subjects ID
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Figure 7.1: Estimated quantum parameters in the DA-QDT model. Subjects
ID 308, 309, 317 and 323 with values of δ higher than 0.8 were excluded for
better visibility.

308, 309, 317 and 323 with values of δ higher than 0.8 were excluded for
better visibility. While α covers the whole range of values between the pa-
rameter bounds 0 ≤ α ≤ 1

2 . The parameter δ is generally more concentrated
around 0 and seems to play a role only for a few individuals.

7.3 Model selection

The similar results obtained both at the aggregate and individual level with
DA-based QDT and logit-DA call for further investigation. In order to assess
their performance, we perform two common statistical tests: the Akaike
Information Criterion (Sakamoto et al., 1986) and a nested hypothesis testing
using Wilks (1938) theorem.

7.3.1 Akaike Information Criterion

It is possible that the likelihood increases from one model to another solely
due to adding more parameters. The Akaike Information Criterion (AIC) is a
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common method for model selection that accounts for this fact by penalizing
the number of parameters. The model with the lower AIC is chosen. The
AIC is computed for each model as follows:

AIC = −2 · L+ 2 · k (7.1)

where L is the log-likelihood and k the number of parameters of the model.
The table below reports the AIC values for the classical and quantum models
investigated at the aggregate level.

Aggregate-level AIC

logit-DA 28538.722
DA-based QDT 28539.374

Table 7.3: Values of the Akaike Information Criterion for the probabilistic
approaches logit-DA and DA-QDT at the aggregate level.

The logit-DA model shows a lower AIC value than DA-based QDT. However,
it is more suitable to consider the difference between the two AIC values
rather than the absolute values. Let the difference in AIC values be defined
as:

∆AIC = AIClogit−DA − AICQDT (7.2)

such that ∆AIC ≥ 0 if AICQDT ≤ AIClogit−DA, i.e. when DA-based QDT is
selected.

The AIC value for DA-based QDT is slightly smaller (∆AIC = −0.652),
meaning that the cost of the additional parameters in DA-based QDT is
not compensated by the gain in likelihood at the aggregate level.

The individual computation of the AIC is relegated to the Appendix.

7.3.2 Nested hypothesis testing

Models are said to be nested when the nested model can be obtained by
adding linear restrictions to certain parameters of the nesting model. In this
instance the logit-DA model is clearly a nested version of DA-QDT with α
and δ being restricted to 0.

The aim of a likelihood ratio is to compare the goodness of fit of two different
models. More specifically, it tests a null model against an alternative one.
Wilks (1938) has shown that, under the assumption of the null model, the
doubled difference between the log-likelihoods of a nested (null model) and
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its nesting model (alternative model) follows a chi-square distribution with
a degree of freedom equal to the difference in the number of parameters
such that:

− 2L(θlogit-DA) + 2L(θDA-QDT) ∼ χ2(kDA-QDT − klogit-DA) (7.3)

with k being the number of parameters used in the model and L(θ) being
the log-likelihood.

From there, the p-value can be computed as the probability of observing
such or more extreme evidence under the null hypothesis. At a significant
level of 5 %, the null hypothesis is rejected when the p-value is smaller than
0.05.

p-value

logit-DA vs. DA-QDT 0.187

Table 7.4: p-value from the nested hypothesis testing with logit-DA being
nested in DA-QDT.

The p-value shows that the null hypothesis of logit-DA being the true model
cannot be rejected at the 5% confidence level. However, this p-value in-
dicates that under the null hypothesis there is a 18.7% probability of ob-
serving an improvement in likelihood when using the DA-QDT model by
chance. This result indicates that DA-QDT shows better fit at the aggregate
level, however not significantly using the conventional threshold of a 0.05
p-value.

The individual computations of the p-value are relegated to the Appendix.

7.4 Subjects represented by QDT

After performing both the Akaike Information Criterion and Wilk’s theorem
at the individual-level (see Table with individual values in the Appendix),
it was found that DA-based QDT is selected for two subjects ID: 205 and
320. The results of the statistical tests are provided in Table 7.5. The p-
value of the nested hypothesis testing shows that for both subjects, the null
hypothesis of logit-DA being the true model is rejected at the 5% confidence
level. Moreover, the AIC values of DA-QDT were found to be lower than the
AIC values of the logit-DA model. Both these results indicate that DA-QDT
represents Subjects ID 205 and 320 significantly better than logit-DA.

Interestingly, these are both subjects that are systematically considered as
outliers in the article from Choi et al. (2007a). These subjects show a stylized
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p-value ∆AIC

ID 205 0.001 10.697
ID 320 0.008 5.772

Table 7.5: p-value from the nested hypothesis testing and value of the Akaike
Information Criterion of two subjects (ID 205 and 320) for whom both statis-
tical tests imply they are represented by DA-QDT

behaviour in that they always choose to buy a minimum of 10 $ in one of
the securities. QDT explains this behaviour with the parameters presented
in table 7.6:

β̂logit−DA ρ̂logit−DA β̂QDT ρ̂QDT α̂QDT δ̂QDT

ID 205 11650.430 2.120 -0.716 0.665 0.000 0.608
ID 320 320 6036.808 -0.698 0.721 0.442 0.016

Table 7.6: Parameter estimations in the probabilistic approaches (logit-DA
and DA-QDT) for subjects ID 205 and 320 for whom both statistical tests
imply they are represented by DA-QDT

Indeed, one sees that the estimations from logit-DA are off-track. QDT in-
stead provides the explanation that the subjects are both disappointment
loving while both risk averse. Moreover, given the suggested interpretation
of the quantum parameters α and δ, it is possible to interpret the choices
with respect to the quantum contribution. Subject ID 205 might have used
the heuristic of the mental weighting between the two boundary portfolios
since the sensitivity parameter to this heuristic (δ) is high as compared to α.
On the contrary, Subject ID 320 might have acted due to some unobservable
’reasons’, as encoded in the inconclusive (unobservable) events represented
by the parameter α (emotions, biases, incorrect understanding of the experi-
mental setting etc.).
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(b) Risk aversion parameter ρ̂

Figure 7.2: Estimated parameters of risk and disappointment aversion for
each investigated model at the individual level
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Synthesis

In the present work, the framework of Quantum Decision Theory (QDT)
for parametric recovery of preferences has been adapted to the case of non-
binary choices in a portfolio choice problem for the first time. The experi-
mental data set gathered by Choi et al. (2007a) reporting portfolio choices
under risk, allowed for an analysis of preferences at the aggregate and indi-
vidual level.

In the developed specification of QDT (DA-QDT), the utility factor was iden-
tified with a probabilistic version of Disappointment Aversion Theory, based
on a multinomial logit model of choice. The attraction factor derived from
the theoretical framework of QDT was found to have a similar form than in
previous works on binary choices by Vincent et al. (2016). However, the sug-
gested parametrization is different. The first parameter introduced measures
the sensitivity to a heuristic that assumes subjects mentally process and
weight the linear expected utility of choosing boundary portfolios (mean-
ing they pretend to allocate their wealth exclusively in either one of the two
risky assets). The second parameter arises from the theoretical derivation of
the attraction factor and reflects the contribution of the unobservable events
assumed by QDT (emotions, biases, incorrect understanding of the experi-
mental setting etc.).

To allow for comparison with ’classical’ models, preferences were also elicited
at the aggregate and individual level using both deterministic (DA) and
probabilistic versions of Disappointment Aversion Theory (logit-DA).

The parametric recovery of risk preferences using all three models provided
the following findings. The sample was found to be risk and disappoint-
ment averse at the aggregate-level and on average at the individual level
by logit-DA and DA-QDT which is in good accordance with the literature
(Haga and Rivenæs, 2016; Halevy et al., 2018). Both logit-DA and DA-based
QDT provide the same estimations for the risk and disappointment aversion
parameters at the aggregate-level. However, the quantum parameters are
not found to be null and thus play a role, also at the aggregate level. At the

39



8. Synthesis

individual level, an examination of the estimated risk preferences leads to
the conclusion that DA-based QDT seems to provide less aberrant values for
risk and disappointment aversion and therefore might handle outlier cases
better, while still describing the rest of the individuals similarly to logit-DA.

When using deterministic DA, the sample did not show any disappointment
aversion at the aggregate-level but higher risk aversion. This observed trade-
off between risk and disappointment aversion is also visible at the individual
level. This systematic difference was also reported in the analysis by Choi
et al. (2007a).

The similar results obtained with DA-based QDT and logit-DA was further
investigated with statistical tests. At the aggregate-level, the value for the
Akaike Information Criterion (AIC) of the logit-DA model is slightly lower
than the AIC value of DA-based QDT, but the difference is small and does
not allow for firm model selection. The p-value of the nested hypothesis
testing (0.187) showed that the null hypothesis of logit-DA being the true
model cannot be rejected at the 5% confidence level. Interestingly, the sta-
tistical tests at the individual level reveal that QDT performs significantly
better for two subjects (ID 205 and 320). These two subjects were often
considered among the outliers of the analysis by Choi et al. (2007a) due to
their stylized behaviour, always securing a minimum of 10$ in the cheapest
security. QDT explains these choices parametrically with plausible values
of disappointment and risk aversion and differing values of the quantum
parameters, while logit-DA gives aberrant estimates.

Other possible directions of research may include further statistical analysis
of the models and the parameter distributions. It would also be possible
to test the validity of EU-based QDT or other generalizations of EU as a
basis for QDT. Given the rich experimental data offered by the experimen-
tal framework of Choi et al. (2007b), it would be interesting to perform a
similar analysis in other treatments (asymmetric risk treatment, uncertainty
treatment) for a better refinement and interpretation of the parametric cali-
brations, in particular regarding the role of the quantum contribution.
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Appendix

Table of estimated risk preferences at the individual-level

ID β̂DA ρ̂DA β̂l−DA ρ̂l−DA β̂QDT ρ̂QDT α̂QDT δ̂QDT p-value ∆AIC

201 0.101 0.537 0.649 0.198 0.649 0.198 0 0.064 1 -4
202 0.056 0.948 1.658 0.373 -0.046 0.57 0 0 57615124.994 -39.739
203 0.223 0.654 2.005 0.062 2.008 0.062 0.029 0.052 0.876 -3.734
204 0 1.433 2.165 0.25 0.131 0.541 0 0 2425452410559.23 -61.034
205 0.095 0.06 11650.435 2.12 -0.717 0.666 0 0.609 0.001 10.697
206 0 2.929 8470.064 0.388 0.241 0.684 0 0.001 2405458676604299776 -88.649
207 0.058 0.299 0.538 0.001 0.537 0.001 0.035 0.074 0.99 -3.979
208 0.031 0.652 0.7 0.294 0.7 0.293 0.362 0.008 0.783 -3.512
209 0 0.591 0.761 0.183 0.761 0.183 0.091 0.004 0.993 -3.986
210 0.113 4.039 48.332 0.001 1.208 0.151 0.5 0 9.4174107211262e+28 -137.43
211 0 1.12 -0.461 0.771 -0.422 0.762 0 0.026 1.012 -4.023
212 -0.053 0.817 1.668 0.213 0.997 0.239 0.5 0 42.214 -11.486
213 -0.003 0.699 1.222 0.147 1.248 0.143 0.153 0.046 0.347 -1.881
214 0 1.288 2.252 0.299 0.551 0.505 0 0 8592302.749 -35.933
215 -0.115 0.409 0.792 0.063 0.793 0.063 0.22 0.01 0.825 -3.616
216 0 0.4 0.445 0.105 0.445 0.106 0.092 0.297 0.476 -2.515
217 0.181 0.605 1.443 0.135 1.443 0.134 0.186 0 1 -4
218 0 0.182 107831.561 2.04 -0.69 0.76 0.296 0 0.139 -0.061
219 0.126 0.534 1.398 0.004 1.402 0.003 0.015 0.028 0.928 -3.85
301 0.082 0.754 1.878 0.145 1.879 0.145 0.182 0.01 0.901 -3.792
302 0 0.298 0.406 0.026 0.406 0.026 0.099 0.114 0.533 -2.74
303 0.073 0.745 1.751 0.093 1.751 0.093 0 0.397 1 -4
304 0.313 9.672 17508214.947 0.001 0.682 0.26 0.5 0.004 1.03909898118178e+53 -248.151
305 -0.08 0.652 0.893 0.205 0.892 0.205 0.309 0.007 0.843 -3.657
306 0 2.758 11.829 0.191 7.784 0.164 0.5 0.001 1.154 -4.287
307 -0.055 0.188 0.335 0.001 0.161 0.001 0 0 591.562 -16.766
308 -0.19 0.975 3.862 0.001 3.8 0.001 0.05 14.563 1.923 -5.308
309 0 0.687 0.833 0.236 0.834 0.236 0.055 0 1 -4
310 0 2.295 13.9 0.492 13.928 0.492 0 3.336 1 -4
311 -0.052 0.213 0.367 0.001 0.369 0.001 0 0.025 1.001 -4.001
312 0.151 0.62 1.439 0.071 1.443 0.07 0.077 0.036 0.884 -3.753
313 -0.024 0.816 1.647 0.155 1.647 0.155 0.065 0.018 0.949 -3.895
314 0.075 0.204 0.437 0.001 0.161 0.001 0 0 3987941.117 -34.398
315 0 0.765 0.474 0.484 -0.001 0.564 0 0 10.844 -8.767
316 0.24 1.015 4.749 0.001 0.084 0.541 0 0 2.27394704990749e+41 -194.455
317 -0.034 1.201 2.717 0.135 2.716 0.135 0.06 3.645 0.697 -3.278
318 0.111 0.244 0.557 0.001 0.545 0.001 0 0.009 0.981 -3.961
319 0.13 0.446 0.839 0.087 0.839 0.087 0.034 0.063 0.939 -3.875
320 0.000 0.025 6036.808 2.031 -0.698 0.721 0.442 0.016 0.008 5.772
321 0.000 1.409 3.779 0.521 1.296 0.479 0.5 0.002 19.519 -9.943
322 0.000 0.794 0.95 0.341 0.277 0.482 0 0 87.315 -12.939
323 0.000 1.390 3.053 0.331 2.955 0.326 0.035 1.582 1.255 -4.454
324 0.000 0.362 0.278 0.001 0.28 0.001 0.066 0.055 0.813 -3.587
325 0.000 0.650 0.098 0.462 0.098 0.462 0 0.044 1 -4
326 0.159 0.674 1.567 0.001 1.585 0.001 0.037 0.303 0.588 -2.939
327 0.000 0.903 0.964 0.42 1.002 0.422 0.169 0.395 0.1 0.61
328 0.004 0.585 0.766 0.079 0.766 0.079 0.054 0.476 0.76 -3.45

Table 1: Table presenting the estimated parameters using the three different methods: DA, logit-DA and QDT. The
individual computations of the statistical tests between QDT and logit-DA are also reported.
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