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Abstract

Recently, Kaizoji et al. (2015) proposed an equilibrium model of funda-
mentalist and noise traders, which exhibits transient super-exponential
bubble growth. This emergent bubble growth phenomena makes the
model interesting as a potential testing environment for financial bubble
detection mechanism. In order to enhance future endeavour in this direc-
tion, the current thesis is studying the different market regimes present
in the model of Kaizoji et al. (2015) in more detail.

We focus on analysing the market dynamics from the perspective of the
noise trader imitation and trend following. For elaborating on the effects
of the self-referential nature of noise traders, we introduce a mean-field
Ising based toy model of noise trader behaviour. We observe that besides
the standard paramagnetic disordered and ferromagnetic ordered phases,
the toy model has two additional ordered phases, indicating that the
self-referential tendencies of noise traders enhance order.

Motivated by the observations from the toy model, we analyse the full ar-
tificial market model in the limiting cases of noise trader strategy, where
all traders invest in the same asset type (either risky or risk-free), i.e
they are ordered. Using these limits, we derive fixed points for the price
growth rate, which present rough bounds for the long-term average price
growth. Combining these fixed points with the necessary criteria for
the emergence of ordered noise traders, we propose an analytic phase
diagram of the market model.

Both, the fixed points and the phase diagram, are compared with numeric
simulations. The numeric results verify the analytic fixed points. We find
that the numeric phase diagram exhibits all of the features proposed
analytically. However, there is one extra regime, which our limiting
case analysis did not predict. The final phase diagram has five different
regimes: (1) noise traders only invest in the risky asset; (2) noise traders
invest either only in the risky or only in the risk-free asset, depending
on the initial perturbations; (3) noise traders only invest in the risk-
free asset; (4) noise traders are invested in both assets; (5) noise trader
allocations undergo regular oscillations. The first four regimes are present
in both the analytical and numerical phase diagram, while the fifth is only
observed on the numerically.
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Chapter 1

Introduction

It has been argued by Arthur (1999) that in order to fully appreciate the fea-
tures of the financial markets, it is crucial to embrace the fact that the world
economy is an organically evolving complex system. A natural framework for
exploring such an adaptive system is presented by the so-called agent based
models (ABMs), which focus on the properties and actions of the individual
market participants. Farmer and Foley (2009) have urged the necessity and
potential of employing ABMs as testing environments for policy-making. In
this spirit, the thesis at hand studies the behaviour of a promising ABM pro-
posed by Kaizoji et al. (2015), which shows transient super-exponential bubble
growth and has recently been used by Kohrt (2016) as a testing environment
for the Johansen-Ledoit-Sornette (JLS) bubble detection technique (Sornette
and Johansen, 1997; Johansen and Sornette, 1999; Johansen et al., 2000). We
analyse limiting cases of the Kaizoji et al. (2015) and Kohrt (2016) model and
elaborate on different market regimes and their dependence on the herding
and trend following nature of the traders.

The literature on ABMs is vast and an overarching introduction is beyond
this thesis. For a general introduction to ABMs in social context, we suggest
reviews by Bonabeau (2002) and Castellano et al. (2009), while the reviews by
Sornette (2014), Chakraborti et al. (2011) and Samanidou et al. (2007) have a
stronger focus on financial markets. Like Bonabeau put it, agent based mod-
elling is not just a technique, but rather an ideology of bottom-up description
of the world. He emphasises that one of the primary benefits of a bottom-up
approach, is the capability to model the emergence of non-trivial collective
behaviour. In other words, ABMs enable the modelling of systems which are
more than the sum of their parts. In statistical physics, such systems are
said to exhibit emergent phenomena. An enlightening example of emergent
phenomena in the socio-economic context is the work of Schelling (1971) on
racial segregation. He showed that large scale segregation, e.g existence of
urban ghettos, does not require strong preferential differences between the
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1. Introduction

segregated groups. Schelling (1971) conducted manual Monte Carlo simula-
tions of two groups of people on a square lattice. People from both groups
were modelled to slightly prefer neighbours belonging to the same group. He
observed that, even with very small preferential differences, large scale spatial
segregation emerged.

From the viewpoint of physics, the Schelling (1971) model of segregation re-
minds us of a square lattice Ising model with Kawasaki dynamics, i.e constant
magnetisation. The Ising model was originally introduced as a mathematical
model of ferromagnetism (Brush, 1967). It is one of the simplest statistical
physics models encompassing the struggle between order and disorder. The
Ising model considers a large number of magnetic spins, pointing either up or
down, positioned on some specific graph structure. The interactions between
neighbouring spins tend to align the spins in the same direction, i.e inter-
actions create order. Thermal noise, on the other hand, pushes the system
towards random configurations. Due to this competition between imitation
and random noise, in system with at least two dimensions, the model exhibits
a non-trivial phase transition between para- and ferromagnetic states.

There is a long history of applying Ising based models in socio-economic con-
text. For example, the similarity between polarised opinion and magnetisation
was pointed out already by Weidlich (1971) and Galam et al. (1982). For a
wider review of using Ising-like models in finance and sociology see Sornette
(2014), Phan et al. (2004) or Stauffer (2013). Here, we will only provide a
short motivation for usage of the Ising model in finance by its connection with
discrete choice models. The latter consider systems consisting of agents, who
have to choose between a finite set of alternatives. For example, such a model
could be used for describing voter dynamics. One of the most common dis-
crete choice models is the Logit model, which is very similar to Boltzmann
statistics that describes the Ising model. Due to this, the Ising model can be
mapped onto a binary choice model of interacting agents. For a more detailed
argumentation, refer to section 20.2.1 of Phan et al. (2004).

Let us now return our focus to stock markets. Consider forming a portfolio of
N different assets. This can be formulated as some specific N -choice model.
The aforementioned connection has been used by Kaizoji et al. (2015), who
introduced a two asset, risky and risk-free, artificial market model with two
different competing trading strategies. The first group of traders, called fun-
damentalists, base their decisions on maximising their constant relative risk
aversion expected utility, which results in a value investor mentality: buy-low-
and-sell-high. The second group, called noise traders, are driven by social
imitation and trend following, both of which are modelled with an Ising like
dynamics. As a results of these two strategies, the artificial market has highly
non-trivial dynamics. Most interestingly, the model exhibits transient faster-
than-exponential bubble growth with approximate log-periodic oscillations,
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which has been shown to correspond well with the characteristics observed
during the 1995–2000 dot-com bubble.

Owing to its emergent bubble growth phenomena, the artificial market model
of Kaizoji et al. (2015) can be employed as a testing environment for finan-
cial bubbles detection techniques. Recently, Kohrt (2016) has done just that.
He used a modified version of their model for evaluating the potential im-
pact of exploiting bubbles detected with the Johansen-Ledoit-Sornette (JLS)
model (Sornette and Johansen, 1997; Johansen and Sornette, 1999; Johansen
et al., 2000). In the JLS framework, bubbles are modelled as super-exponential
price growth fuelled by imitation induced positive-feedbacks. Based on the the-
ory of critical phenomena, during such a bubble, prices are expected to follow
log-periodically oscillating power-laws, which have a finite time singularity.
This singularity is explained as a reflection of the bubble bursting. Real world
stock crashes have been shown to agree with JLS model (Johansen and Sor-
nette, 1999; Johansen et al., 2000; Sornette, 2009). Kohrt (2016) showed that
if bubbles are ad-hoc postulated to have a log-periodic power-law shape, then
it is possible to compose successful JLS model based trading strategies. More-
over, he concluded that the profits of the bubble exploiters are mainly due to
losses by the noise traders and successful bubble exploitation results in milder
bubbles, while unsuccessful trials of exploitation lead to more sever bubbles.
These are very promising results and call for further investigation.

In order to empower future work on financial bubble detection techniques,
the current thesis is focused on a more in-depth analysis of the underlying
market model used by Kohrt (2016). Specifically, we explore the effects of
noise trader imitation and trend following in greater detail. In Kaizoji et al.
(2015) and Kohrt (2016) the noise trader decision process relied equally on
social factors and the market trend. We have extended the model such that
we can control the relative importance of these indicators. This allows us to
further investigate the impact of the noise trader strategy. More specifically,
we focus on the different market regimes and conclude with profiling a phase
diagram of the model. In the following we highlight the structure of this thesis.

A detailed introduction of the market model is given in chapter 2. In chap-
ter 3 we call attention to the most relevant characteristics of the market model.
Section 3.1 presents the model parameters used in this thesis and highlights
the typical features of the model dynamics. In order to elaborate on the self-
referential nature of the noise traders, in section 3.2 we introduce a simplified
toy model of the noise trader behaviour, which is based on a coupled iterative
mean-field Ising model. We show that besides the standard disordered para-
magnetic and ordered ferromagnetic phases, the toy model has two additional
ordered regimes which we visualise in a phase diagram. In chapter 4 we con-
sider the limiting cases of the noise trader strategy, where all traders invest
in the same asset type (either risky or risk-free), i.e they are ordered. Using
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1. Introduction

these special ordered states of the market, we derive two fixed points for the
risky asset price growth. These fixed points effectively act as upper and lower
bounds on the long-term average price growth. In chapter 5 we employ the
results from chapter 4 to propose an analytical phase diagram, with four dif-
ferent regimes, for the market model. The analytic results are compared with
numeric simulations in chapter 6, where we map a numeric phase diagram
of the market model. We find that this numeric phase diagram exhibits all
of the features proposed analytically, however, it has one extra regime. The
final phase diagram, with five regimes, is sketched in section 6.2.3. Finally, in
chapter 7 we conclude the theses.
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Chapter 2

The artificial market formulation

The following chapter presents the artificial market model used in this thesis.
It is an agent based model adapted from the model used in Kohrt (2016),
which in itself is a modification of the model proposed in Kaizoji et al. (2015).
In its core, it is a simple two asset, risky and risk-free, market model with two
ideologically different trader types. The first of these are value investors named
fundamentalists, whose investment decisions are based on maximising their
constant risk averse utility. The second group, called noise traders, base their
decision on their perception of market trend and sentiments of other traders.
Both of the trader groups can be equivalently reformulated into the framework
of a single representative trader. The risk-free asset has a perfectly elastic
supply and constant return on investment. The risky asset, on the other hand,
pays a dividend and its price is determined by a market clearing condition. We
model the noise traders as giving market orders, i.e their investment decisions
do not depend on the current price. The fundamentalists, on the other hand,
are modelled following the mentality of Walrasian auctions (Walras, 1874):
they simultaneously calculate their demand for each possible current price.
The equilibrium risky asset price is then determined so that the total demand
would equal the total supply. Before the equilibrium price formation can be
discussed, the different trader strategies must be introduced. Therefore, we
start by introducing the assets and the dividend process in section 2.1. We
define the fundamentalist strategy in section 2.2 and the noise trader strategy
in section 2.3. Finally, in section 2.4 we derive the equilibrium price equation.

2.1 The assets and the dividend process

For the sake of simplicity and clarity, the market model has only two assets: a
risk-free asset and a risky asset. The risk-free asset can be thought of as cash
or a government bond. It has perfect elastic supply, i.e it is guaranteed to pay
a fixed interest rf on an arbitrary amount of investments. It is convenient to
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2. The artificial market formulation

define the risk-free growth factor Rf ≡ 1 + rf . Holding a risk-free investment

of W0 for t market time steps provides an output W risk−free
t

W risk−free
t = W0 (1 + rf )t = W0R

t
f . (2.1)

On the other hand, the risky asset can be considered to represent an index
fund. At every market time step t, it will pay a dividend dt and its price Pt
is set by supply and demand. As in Kohrt (2016), the dividends undergo a
multiplicative stochastic growth process with respect to time

dt ≡ dt−1
(

1 + rdt

)
= d0

t∏
k=1

(
1 + rdk

)
. (2.2)

At time step t, the growth rate rdt is Gaussian distributed around a positive
mean value rd > 0.0 with variance σ2d

rdt ≡ rd + σdut, (2.3)

where the random variables ut are identical and independently distributed
according to the standard normal distribution (zero mean and unit variance)

ut
i.i.d∼ N (0, 1) .

It is convenient to define the average dividend growth factor Rd

Rd ≡ 1 + rd. (2.4)

The total risky asset return consists of two terms. First is due to the specu-
lative nature of the market, namely the price return Rt, which describes the
profitability of buying with Pt−1 and selling with Pt

Rt ≡
Pt
Pt−1

≡ 1 + rt. (2.5)

In the above, rt is the price return rate. Both Rt and rt are used throughout
this thesis. The second term in the risky asset return is, of course, the dividend
yield dt

Pt−1
. Thus, holding W0 in the risky asset for t market time steps provides

an output W risky

W risky = W0

t∏
k=1

(
Pk
Pk−1

+
dk
Pk−1

)
= W0

t∏
k=1

(
Rk +

dk
Pk−1

)
. (2.6)
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2.2. Fundamentalist traders

Naturally, the risk-free rate can be viewed as a lower base line for capital
returns. Any investment strategy should at least earn as much as the risk-free
asset, otherwise it should be discarded. Therefore, it is convenient to define
the excess return of the risky asset over the risk-free rate

Rexcess,t ≡ Rt −Rf +
dt
Pt−1

= rt − rf +
dt
Pt−1

. (2.7)

The excess return Rexcess,t provides a measure for the profitability of the risk
of buying the risky, instead of the risk-free, asset.

2.2 Fundamentalist traders

The fundamentalist traders are risk averse value investors. They allocate a
fraction xf of their wealth to the risky asset and all else into the risk-free
asset. Decisions on their portfolio diversification are done via myopic mean-
variance maximisation of their constant relative risk aversion expected utility.
This means that, at every time step, they reconsider their wealth allocations
based on the current expected portfolio value and its variance. For simplicity,
all of the fundamentalists are assumed to be identical. Consequently, their
behaviour can be reformulated as that of a single representative trader.

The investment strategy of the fundamentalists can be described by their
choice of risky fraction xf . Its derivation, presented in the following, is based
on Kaizoji et al. (2015). Consider the capital gains of fundamentalists, who

have at time t− 1 allocated xft−1 of their wealth W f
t−1 into the risky asset and

the rest into the risk-free asset. The change of their market value from W f
t−1

to W f
t is given by

W f
t −W

f
t−1 ≡W

f
t−1

[(
1− xft−1

)
rf + xft−1

(
rt +

dt
Pt−1

)]
= W f

t−1

[
rf + xft−1

(
rt − rf +

dt
Pt−1

)]
= W f

t−1

(
rf + xft−1Rexcess,t

)
,

(2.8)

where rt and Rexcess,t are the risky asset price return rate and excess return
over the risk-free rate rf , respectively, as defined in equations (2.5) and (2.7).
Recall that fundamentalists are maximising their constant relative risk aver-
sion expected utility. Their utility function U(W ) is chosen so that it would
be compliant with their relative risk aversion γ being constant (Kaizoji et al.,
2015). Consider the Arrow-Pratt measure of relative risk aversion (Pratt, 1964;
Arrow, 1965, 1970)
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2. The artificial market formulation

γ (W ) ≡ −W U
′′
(W )

U ′(W )
, (2.9)

where U
′′
(W ) and U

′
(W ) are the first and second derivatives of the utility

function U(W ) with respect to the wealth W . The risk aversion γ is constant
for the isoelastic utility function

U (W ) ≡


logW for γ = 1,

W 1−γ

1− γ
for γ 6= 1.

(2.10)

As stated before, the fundamentalists are myopic mean-variance maximisers of
their expected utility. This means that, at every time step t, they choose allo-
cations xft which would maximise their expected utility in the mean-variance
approximation. It is shown in Kaizoji et al. (2015), that the mean-variance
optimal risky fraction is independent of the trader wealth and it is given by

xf,optt =
1

γ

Et [Rexcess,t]

Vart [Rexcess,t]
. (2.11)

Here Et [·] and Vart [·] denote the expectation and variance as estimated at
time t, i.e all information available up-to and at time t is being taken into
account. The expected value of the excess returns is given by

Et [Rexcess,t] = Et [rt+1]− rf +
dt
Pt

(1 + rd) = Et [Rt+1]−Rf +
dt
Pt
Rd. (2.12)

The fundamentalists consider the expected value of the price return Et [Rt+1] ≡
ERt and the variance of the excess returns Vart [Rexcess,t] ≡ σ2Rex to be con-
stants. Therefore, the risky fraction of fundamentalist traders at time t is
given by

xft ≡
ERt −Rf + dt

Pt
Rd

γσ2Rex
= xfmin +

dt
Pt

Rd
γσ2Rex

, (2.13)

where xfmin is the minimum risky fraction of the fundamentalists

xfmin ≡
ERt −Rf
γσ2Rex

. (2.14)
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2.3. Noise traders

Considering equation (2.13) explains why these traders are called fundamen-
talists. They regard the underlying “fundamental” value of the risky asset
to be the dividend payments. Accordingly, they expect the long-term price
growth to be due to the growth of dividends, thus ERt ≈ Rd. This does not
mean that they are blind to speculative behaviour of the markets. Rather,
they benchmark the risky asset against the fundamental state, where price
and dividend growth are of similar order Ravg ∼ Rd. Thus, any deviations
from the fundamental state are perceived as investment opportunities. As is
evident from equation (2.13), the current dividend-price ratio dt

Pt
is used for

probing whether the asset is over or under valued. The corresponding signal
is used for a clear cut strategy: buy at low price (high dt

Pt
) and sell at high

price (low dt
Pt

).

2.3 Noise traders

The noise traders are significantly different from the fundamentalists. They
embody the lack-of-diversification puzzle (Kelly, 1995; Baxter and Jermann,
1997), over-reactions (De Bondt and Thaler, 1985, 1987), imitation and herd-
ing (Welch, 2000) as well as chartist trend following.

None of the Nn noise traders ever diversify their portfolio. They are always
either fully invested in the risky or the risk-free asset. At every time step t, all
of the noise traders have a probability to change their position: switch from
risky to risk-free asset, or vice versa. In a few paragraphs we explain how the
evolution of these switching probabilities incorporates imitation and trend fol-
lowing into the noise trader strategy. However, as a reflection of idiosyncratic
properties, at any given time step t, the decisions of different noise traders
are independent from each other, i.e their specific choices correspond to i.i.d
random numbers. At time t, there are N+

t and N−t noise traders invested in
the risky and the risk-free asset, respectively. Therefore, even as individual
noise traders are proponents of the “all or nothing” mentality, on the group
level they can still be characterised by their risky fraction xnt

xnt ≡
N+
t

N+
t +N−t

=
N+
t

Nn
∈ [0, 1]. (2.15)

Clearly, the larger the risky fraction xn the more noise traders are currently
viewing the risky asset as a good investment, and vice versa for smaller xn

values. Following Lux and Marchesi (1999), the risky fraction can be mapped
onto the noise trader opinion index s

st ≡
N+
t −N

−
t

Nn
= 2xnt − 1 ∈ [−1, 1]. (2.16)

9



2. The artificial market formulation

Evidently, the sign of the opinion index indicates whether the prevailing sen-
timents on the risky asset are optimistic (st > 0.0) or pessimistic (st < 0.0).
Zero valued opinion index corresponds to the special case when the noise
traders are neutral regarding the risky asset.

As mentioned earlier, each noise trader makes the decision, whether to change
their position or not, in a probabilistic manner. Those invested in the risky
asset at time t, will sell their stocks and buy the risk-free asset with probability
p+t . Similarly, traders owning the risk-free asset at time t, will decide to sell
it and buy the risky asset with probability p−t . Accordingly, the risky fraction
xn evolves as

xnt =
1

Nn

N+
t−1∑
k=1

(
1− ξk

(
p+t−1

))
+

1

Nn

N−t−1∑
l=1

ξl
(
p−t−1

)
, (2.17)

with ξ (p) being Bernoulli random numbers: ξ (p) = 1 with probability p
and ξ (p) = 0 with probability 1 − p. The switching probabilities p±t define
the noise trader behaviour. Correspondingly, they should reflect their trend
following and imitative nature. Thus, the dynamics of p±t must depend on the
sentiments of other traders and the market trend. Equation (2.16) has already
defined the opinion index, which noise traders use as a proxy for other traders
sentiments. Similarly, a measure of the market trend must be defined. The
notion of price momentum Ht is used for this. Following Kaizoji et al. (2015),
it is defined as an exponential moving average of the historical price returns

Ht ≡ θHt−1 + (1− θ) rt = θHt−1 + (1− θ)
(

Pt
Pt−1

− 1

)
, (2.18)

where 0 ≤ θ < 1 is a measure of the noise trader memory length. The smaller
it is, the longer their memory τnoise ∼ 1−θ

θ . Now, the dynamic equation for the
switching probabilities p±t can be defined. It has a Ising model like structure

p±t =
p±
2

(1∓ κt (csst + chHt))
1. (2.19)

Here κt describes the time-dependent part of the noise trader social interaction
strength. In the following, we use the naming convention introduced in Kaizoji
et al. (2015), i.e κt is called the herding propensity. The constants p+ and

1It should be noted that compared to the switching probabilities used in Kohrt (2016)
there have been two changes. One of them is the addition of the weight coefficients cs and
ch. This is highly relevant for the current thesis, as it enables the comparison between the
effects of trend following and imitation. The second modification is a cosmetic one. Namely,

the herding propensity used in Kohrt (2016) has been slightly redefined: κ = κKohrt (2016)

p+
.

This allows a more elegant formulation for equation (2.19).
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2.4. Equilibrium price equation

p− control the average holding time of the corresponding assets when there is
no imitation nor trend following. As already mentioned in the introduction
(chapter 1), this thesis focuses on the effects of the noise trader imitation and
trend following. Thus we have introduced the weight coefficients cs and ch,
which determine the relative importance of herding and trend-following to the
noise traders behaviour. In order to make these effect clearer, in most of this
theses a constant valued herding propensity κt = κ is considered. Therefore,
the coefficients cs and ch determine the feedback mechanisms that noise traders
induce.

Thus far, no mention of the noise trader wealth has been made. As with
fundamentalist, the noise trader strategy is also independent of their current
wealth. A critical difference between the two trader types, besides the obvious,
is that while all of the fundamentalists are always making identical investment
choices, this is not true for noise traders. This thesis will continue in the same
spirit as Kaizoji et al. (2015) by only considering the aggregate impact of
the noise traders rather than describing their heterogeneity. Therefore, it
is appropriate to re-frame the group of non-diversifying noise traders into a
representative noise trader, who is diversifying by micro managing Nn equal
sized endowments.

2.4 Equilibrium price equation

The price of the risky asset is set by the market clearing condition: the as-
set price Pt always has a value at which the excess demands of all market
participants sum to zero. In short, an equilibrium of supply and demand
is postulated. In the following, expressions for the excess demands will be
derived and used for finding the equilibrium price.

First, it should be emphasised that the risky fraction does not equal the num-
ber of stocks owned. Throughout this thesis, the focus is usually on the risky
fraction, or the noise trader opinion index, as they are more convenient than
the number of stocks owned. Nevertheless, one should always bear in mind
that constant risky fraction does not imply constant number of stocks. It only
states how much of the trader’s wealth has been invested into the risky asset.
Taking this into account, it is helpful to define the number of stocks a trader
holds at time step t

nit ≡
xitW

i
t

Pt
, (2.20)

where i ∈ {f, n} can indicate either the fundamentalists or noise traders.
Using the number of stocks the trader holds at a certain time step, it is
possible to define their excess demand of the risky asset during the transition
t− 1→ t
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2. The artificial market formulation

∆Di
t−1→t ≡ nitPt − nit−1Pt

= xitW
i
t − xit−1W i

t−1
Pt
Pt−1

.
(2.21)

Now, consider the wealth W i
t of traders, who at time t − 1 invested xit−1 of

their wealth W i
t−1 into the risky asset and all else into the risk-free asset

W i
t = W i

t−1 +W i
t−1
(
rf + xit−1Rexcess,t

)
= W i

t−1

[
Rf + xit−1

(
Rt −Rf +

dt
Pt−1

)]
.

(2.22)

Inserting the wealth equation (2.22) into the excess demand equation (2.21)
gives

∆Di
t−1→t = W i

t−1

{
xit

[
Rf + xit−1

(
Rt −Rf +

dt
Pt−1

)]
− xit−1

Pt
Pt−1

}
,

which can be rewritten into a more convenient format

∆Di
t−1→t = W i

t−1x
i
t−1
(
xit − 1

) Pt
Pt−1

+W i
t−1x

i
t

{
xit−1

[
dt
Pt−1

−Rf
]

+Rf

}
.

(2.23)

Substituting i with either f or n in equation (2.23) gives the excess demands

for fundamentalists Df
t−1→t and noise traders Dn

t−1→t. Now, the equilibrium
price Pt can be found from the market clearing condition

∆Df
t−1→t + ∆Dn

t−1→t = 0, (2.24)

Let us note, that we are modelling the market clearing as a Walrasian auc-
tion (Walras, 1874). In a Walrasian auction, each agent simultaneously cal-
culates their demand for each possible price value and the price is then set
so that demand and supply would be in an equilibrium. Now, as it is clear
from equations (2.17) and (2.19) that noise traders do not take the current
price into consideration, we can conclude that fundamentalists follow the Wal-
rasian auction mentality and noise traders just give market orders. That is,
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2.4. Equilibrium price equation

they state the amount of assets they wish to buy or sell, independent of the
price. Recall the fundamentalist risky fraction xf given in equation (2.13). It
depends linearly on the current dividend-price ratio

xft = xfmin +
dt
Pt

Rd
γσ2Rex

.

Inserting the definition of fundamentalist risky fraction in equation (2.13)
together with the excess demands given by equation (2.23) for both traders
into the market clearing condition in equation (2.24) gives a quadratic equation
for the equilibrium price

atP
2
t + btPt + c = 0, (2.25)

where the terms at, bt and ct are given as follows

at =
1

Pt−1

[
νnft−1x

n
t−1 (xnt − 1) + xft−1

(
xfmin − 1

)]
, (2.26)

bt = xft−1
1

γσ2Rex

dt (1 + rd)

Pt−1

+xfmin

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
+νnft−1x

n
t

[
xnt−1

(
dt
Pt−1

−Rf
)

+Rf

]
,

(2.27)

ct =
dt (1 + rd)

γσ2Rex

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
. (2.28)

In the above, νnft is the wealth ratio

νnft ≡
Wn
t

W f
t

. (2.29)

The quadratic equation is solved by

Pt =
−bt ±

√
b2t − 4atct

2at
. (2.30)

Consider the signs of the terms at, bt and ct. We can take it as given that the
model parameter are always such that xnt − 1 ≤ 0, xfmin − 1 < 0 and for any

xit−1 ∈ {x
f
t−1, x

n
t−1}
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2. The artificial market formulation

xit−1

(
dt
Pt−1

−Rf
)

+Rf > 0.0. (2.31)

Consequently, the following inequalities are true

at < 0.0, bt ≥ 0.0, ct ≥ 0.0. (2.32)

It is reasonable to expect that only positive prices are economically valid.
Considering equation (2.32) it can be seen that only one of the solution in
equation (2.30) gives positive prices

Pt =
−bt −

√
b2t − 4atct

2at
=
bt +

√
b2t + 4|at|ct
2|at|

.
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Chapter 3

Market model characteristics

In chapter 2 we have introduced the artificial market model studied in this
thesis. Based on the previous work of Kohrt (2016) and Kaizoji et al. (2015),
it consists of two trader types, the fundamentalists and the noise traders, in-
vesting in a two asset market. The first asset is a fixed interest rate risk-free
asset, while the other is a dividend paying risky asset, whose price is deter-
mined by supply and demand. The fundamentalists maximise their constant
risk aversion expected utility, which leads them to the buy-low-and-sell-high
strategy: their risky fraction xft is a linear function of the risky asset dividend-
price ratio dt

Pt
. Consequently, they induce negative feedback to deviation from

the fundamental state Ravg ∼ Rd. The noise traders, however, invest accord-
ing to social factors and market trend, which they measure with the noise
trader opinion index st and the price momentum Ht. Their decision process
is self-referential in nature. Depending on the signs of the imitation and trend
following weight coefficients, cs and ch, they have either conformist or con-
trarian attitudes towards opinion st and momentum Ht. Correspondingly,
their behaviour imposes a non-trivial combination of feedback loops upon the
market.

This chapter aims to give a qualitative overview of characteristic features of
the above mentioned market model. Section 3.1 considers the artificial market
model in general, while section 3.2 turns a tighter focus on the Ising-like noise
trader behaviour by introducing an iterative coupled mean-field Ising based
toy model.

3.1 Typical model dynamics

In this section, we elaborate on the typical set-up and features of the artificial
market model (see chapter 2). First, in section 3.1.1, we present the general
parameter set-up used throughout this thesis. Following that, in section 3.1.2,
we qualitatively highlight several important features of market dynamics in
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3. Market model characteristics

two sets of time series plots in figures 3.1 and 3.2. Both of these correspond to
a market where cs = ch = 1, i.e noise traders have a full-conformist attitude.
The difference, between the two considered markets, is in the functional form
of the noise trader herding propensity κt: figure 3.1 corresponds to a constant
herding propensity, while figure 3.2 corresponds to an Ornstein-Uhlenbeck
herding propensity, which is adapted from Kaizoji et al. (2015).

3.1.1 Model parameters and set-up

In chapter 2 we introduced the mathematical formulation of the artificial mar-
ket model studied in this thesis. The model is adapted from the works of
Kohrt (2016) and Kaizoji et al. (2015). In this section, we present the general
parameter set used throughout the thesis. As we only ever make slight changes
to the model parameters, we find it convenient to define the most often used
basic parameter set. The full basic parameter set is listed in table 3.1.

Table 3.1: The basic parameter set used for the market simulations throughout
the thesis. In cases where different parameter set is used, the difference is always
specifically highlighted.

xn0 = 0.5 νnf0 = 1 p+ = 0.199375 p− = 0.200625

xf0 = 0.5 d0 = 0.00016 Rd = 1.00016 H0 = 0.00016

θ = 0.99 ERt = 1.00016 P0 = 1.0 Rf = 1.00008

Nn = 1000 σd = 0.000016 σ2Rex = 0.02 κ = 0.98

Note, that table 3.1 does not give an explicit value to the fundamentalist con-
stant risk aversion γ. However, using the definition of the fundamentalist risky
fraction, given in equation (2.13), we can express the constant risk aversion γ

as a function of ERt , Rf , d0, P0 and xf0

γ =
ERt −Rf + d0

P0
Rd

xf0σ
2
Rex

. (3.1)

Let us consider the basic parameter set given in table 3.1. We can see that both
trader types start out with the same wealth, i.e their wealth ratio is νnf0 = 1,

and their initial allocations follow an equal weights portfolio xf0 = xn0 = 0.5.
There are Nn = 1000 noise traders with a memory parameter θ = 0.99, which
corresponds to a memory length ∼ 100 simulation time steps. The constants
p+ and p− are defined as in Kohrt (2016). Notice, that p− > p+, which means
that on average noise trader hold the risky asset longer than the risk-free asset.
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3.1. Typical model dynamics

Similarly, the mean value of the herding propensity κ = 0.98 is the same as
in Kohrt (2016)1.

As in Kohrt (2016), we start with a unit price P0 = 1 and let the initial
dividends be d0 = 0.04

250 = 0.00016. Thus, if one simulation time step represents
one day, then the initial yearly dividend yield is 4%. The average dividend
growth rate is also set to rd = 0.00016, thus Rd = 1.00016. Notice, that the
initial price momentum equals the dividend growth rate H0 = rd = 0.00016
and the fundamentalists expectation for the price growth equals the average
dividend growth ERt = Rd = 1.00016. The risk-free rate is set to be half of the
dividend rate rf = 0.5rd and thus the risk-free growth Rf = 1.00008. Similarly
to Kohrt (2016), the standard deviation of the dividend process σd = 0.1rd
and the constant fundamentalists perception of the standard deviation of the
excess returns σ2Rex = 0.02.

It might be argued that the standard deviation of the dividend process σd,
given in table 3.1, is too small. Indeed, with the basic parameters set, the
dividend process is nearly deterministic. However, in chapter 6 we show that
the numeric phase diagram is rather robust to changes in σd: even for σd ≈ 6rd
the phase diagram is the same as for σd = 0.1rd. Thus, for the purposes of this
thesis, taking σd = 0.1rd is still reasonable. We stress the fact that calibration
of the model to the real world market is beyond the scope of this thesis. Rather
we aim to compile a phase diagram of the market model on the cs-ch plane.
Nevertheless, in the following we find it worthwhile to discuss one of the key
ideas for connecting the model parameters to the real world.

Thus far, we have only used the notion of a simulation time step, or equiva-
lently an iteration step t → t + 1. However, in order to make a connection
between the model and the real-world, we need to know what is the time
scale of the market simulations. We now argue, that this time scale is ac-
tually a good starting point for calibrating the model to the real world. It
is important to recall that the typical real world daily volatility is around
1% (Sornette, 2009). Now, if we wish to calibrate our model to the real world,
of course, we wish to have the same typical daily volatility. The key idea is to
reverse engineer the correct time scale of the simulations. We start by roughly
approximating the price returns with a Wiener process. Then, we know that
the relation between period Ta volatility σTa and period Tb volatility σTb is
given by

σTa = σTb

√
Ta
Tb
. (3.2)

1Recall that compared to Kohrt (2016) the noise trader switching probability equa-

tion (2.19) is modified and the herding propensity is re-defined as: κ = κKohrt (2016)

p+
. Thus

the exact numeric value of κ is not the same as in Kohrt (2016), rather the product κp+ is
numerically equal the herding propensity used in Kohrt (2016).
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3. Market model characteristics

This allows us to evaluate the number of time steps TN , so that the TN time
step volatility would match the daily volatility σTN ≡ σdaily

TN =

(
σdaily
σsim

)2

=

(
0.01

σsim

)2

, (3.3)

σsim is the one time step volatility of market model, i.e the one time step
standard deviation of the price returns. Therefore a single time step in our
simulation corresponds to τ days, where τ is given by

τ =
1

TN
. (3.4)

As pointed out earlier, calibration of the model is beyond the scope of this
thesis. Therefore, throughout the thesis, we find it more convenient to measure
“time” in simulation time steps not in days. Nevertheless, we provided the
estimated simulation time scale τ for each of the market model time series
plots found in this thesis. Additionally, in chapter 6 we provide a colour-
coded heat-map of the time scale τ values over the cs-ch plane for the basic
parameter set in table 3.1.

Finally, let us consider the noise trader herding propensity κt. As stated
before, in this thesis we study the effects of noise trader imitation and trend
following by introducing weight coefficients cs and ch for the opinion index st
and the price momentum Ht respectively (see equation (2.19)). In the works
of Kohrt (2016) and Kaizoji et al. (2015), these coefficients were equal to one.
Also, both of them used a time-dependent herding propensity κt. In Kaizoji
et al. (2015) the herding propensity followed an Ornstein–Uhlenbeck process.
Kohrt (2016), on the other hand, used a constant κt for most of the time,
but had transient log-periodic signals imprinted into κt, such that ad-hoc log-
periodic power-law bubbles could be generated in a controlled manner. In
this thesis we are using a constant valued herding propensity κ = 0.98. This
is because a time-dependent herding propensity can be interpreted as moving
along a line in the cs-ch plane. The slope of this line is set by the ratio of
the coefficients cs and ch used in equation (2.19). Thus, in order to analyse
the different effects of opinion and momentum, it is helpful to set the herding
propensity to a constant value.

Nevertheless, the time series we present in section 3.1.2 are generated us-
ing both the constant herding propensity κ = 0.98 (figure 3.1) and a Orn-
stein–Uhlenbeck herding propensity (figure 3.2). This is done exactly because
a time-dependent herding propensity can be seen as moving on the cs-ch plane.
Thus, using the Ornstein–Uhlenbeck κt, we can compactly see the character-
istic features of different market regimes. In chapter 6, we present the time
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3.1. Typical model dynamics

series for all of the different market regimes separately. Before turning to the
time series in section 3.1.2, let us define the Ornstein–Uhlenbeck κt

κt+1 = κt + η (κµ − κt) + σκut,

η =
1

∆T
log

(
0.2p−p+
p−
p+
− κµ

)
, σκ = 0.2p−

√
2η.

(3.5)

In the above, the mean value of the Ornstein-Uhlenbeck herding propensity is
equal to the constant herding propensity κµ = κ = 0.98. The mean-reversion
rate η and the steps size σκ are calculated using the formulas from Kaizoji
et al. (2015)2. Here ∆T = 20 and thus the mean-reversion rate η ≈ 0.044 and
the step size σκ ≈ 0.006.

3.1.2 Qualitative time series description

In section 3.1.1, we presented the common set-up of the market model through-
out the thesis. Here, we give a qualitative overview of the characteristic market
dynamics. We base this description on the time series shown in figures 3.1
and 3.2. In the following, we point out key features of the typical model
behaviour, several of which are essential for the analysis in chapters 4 and 5.

The general structure of figures 3.1 and 3.2 is the following: the plots show
eight panels, which contain time series for the risky asset price Pt, return rate
rt, momentum Ht, dividend-price ratio dt

Pt
, noise trader switching probabilities

p±t , both of the risky fractions xft and xnt , the traders wealth ratio νnft =

Wn
t /W

f
t and the noise trader herding propensity κt. In order to emphasise

that the price momentum Ht is the exponential moving average of the price
return rate rt, the momentum has also been plotted onto the price return
rate panel. Similarly, to hold an comparison with the risky asset dividends
and price, the average dividend growth rate rd has been plotted onto the
momentum panel.

The asset price Pt is depicted on a log-linear scale and all other time series
are on a linear scale. Note, that the notation 1e− x indicates that the values
on the y-axis are to be multiplied with 10−x. Time series in both figures 3.1
and 3.2 are shown for the first T = 5000 time steps. Based on equating the
daily model- and real-volatility, we estimate that each time step in figures 3.1
and 3.2 correspond to τ ≈ 1.3–1.4 days. In both figures 3.1 and 3.2, a market
with unit weight coefficients cs = ch = 1 and the basic parameter set (table 3.1)
is illustrated. The difference between figures 3.1 and 3.2 is in the herding

2The formulas have been modified to correspond to our different definition of equa-
tion (2.19).

19



3. Market model characteristics

propensity used: figure 3.1 corresponds to the constant herding propensity
κ = 0.98 and figure 3.2 to the Ornstein-Uhlenbeck herding propensity defined
in the end of section 3.1.1.

In the following we emphasise on qualitative features of the time series in
figure 3.1. First, the switching probabilities look like mirror images of each
other, which reflects the structure of the switching probability dynamic equa-
tion (2.19). A similar feature can be seen for the momentum and the dividend-
price ratio: they are roughly moving in the opposite directions of each other.
This becomes more pronounced during periods of high volatility. For example,
examine the behaviour for the interval t = 2000–3000. Let us now consider
the risky fractions. Recall, that the fundamentalist risky fraction xf is a linear
function of the dividend-price ratio (see equation (2.13)). With careful obser-
vations it is possible to detect that indeed fundamentalists follow the same
movements as the dividend-price ratio. Due to the relatively small variance
of the fundamentalists allocations, this is rather hard to notice in figure 3.1.
Now, consider that the dividend-price ratio encodes fluctuations from both
the price and the dividends. Nevertheless, we see that the noise traders, who
follow the momentum and the opinion index, have much larger variations than
fundamentalists. From this, we can conclude that noise traders self-referential
decision making process is more prone to signal amplifications than the fun-
damentalist strategy.

We have seen that even with a constant herding propensity, the market can
show relatively volatile periods. For the following, it is more convenient to
turn to figure 3.2, because its more volatile nature makes noticing the market
features easier. For example, we can now detect a mirroring effect for the risky
fractions. The fundamentalists are always moving in the opposite direction
to the noise traders. A rather more interesting feature of figure 3.2 is the
existence of transient periods of extreme behaviour. Recall that the asset price
Pt is plotted with a log-linear scale: a linear line on the price panel indicates
an exponential relation. Thus, during these transient extreme periods the
price is growing or declining super-exponentially; i.e there are bubbles. We
will now discuss how these bubbles shed light onto some of the main ideas
used in chapters 4 and 5 for forming the analytical phase diagram.

First, we can observe that all bubbles end abruptly with a plateau like shape.
Looking at the noise trader risky fraction xnt , we can find the reason for these
abrupt stops. These plateaus correspond to noise traders reaching their max-
imum or minimum risky fraction, i.e they become polarised into xn = 1 or
xn = 0. Interestingly, the noise traders tend to have a transient lock-in effect
to these polarised investment decisions. Consequently, there is a period dur-
ing which no radical changes happen on the market. From the noise trader
switching probabilities, we can observe a natural cause for these lock-in effects.
Namely, during a lock-in, the corresponding switching probability, either p+t
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3.1. Typical model dynamics

(risk-free→ risky) or p−t (risky→ risk-free), is non-positive. As the simulation
code treats all non-positive probabilities as zero valued, we can conclude that
there is an actual lock in: the probability for noise traders to change their
position is zero.

It is helpful to analyse these lock-in periods in more detail. For convenience,
in the following the noise trader lock-in effect is referred to as just lock-in. Let
us start with considering the price return rate rt. We can see that during lock-
ins, rt is effectively constant. This results in an exponential decay or growth
of the price momentum Ht, as is expected from the definition of Ht (see
equation (2.18)). Now, let us take the dividend-price ratio. Evidently, during
lock-ins the dividend-price ratio is nearly constant, which indicates that the
average price and dividend growths are similar Ravg ∼ Rd. In section 4.3 we
analytically show that indeed, for both limiting cases xn = 1 and xn = 0, the
price growth has fixed points, which are functions of the dividend and risk-free
rates. For now, however, it is sufficient to recognize that during noise trader
lock-ins, i.e when only fundamentalists are actively shaping the market, the
price growth is similar to the dividend growth. From this we can claim that
bubbles are driven by noise traders.

Finally, we call attention to the wealth ratio νnf . In both figures 3.1 and 3.2,
there are two features to note. Firstly, the wealth ratio has an underlying
downward trend: it appears that with these parameters on average the funda-
mentalists strategy earns more. Secondly, the wealth νnf ratio peaks together
with the noise trader risky fraction xn. There are two reasons for this. One
is that the risk-free rate is smaller than the dividend rate rf < rd, i.e on aver-
age the risky asset pays more than the risk-free asset. A more subtle reason
is, that during transient super-exponential price growth, the wealth invested
into the risky asset temporarily grows super-exponentially. In other words,
bubbles create fictitious riches.

We finish by highlighting features most relevant for chapters 4 and 5:

1. For certain κtcs and κtch values, noise traders drive the price to grow or
decay super-exponentially.

2. Extreme price growth can lead to non-positive noise trader switching
probabilities and create a lock-in effect.

3. As the fundamentalists strategy depends linearly on the dividend-price
ratio, they enforce a connection between the price and the dividends.

4. The self-referential nature of noise traders induces strong amplification
even for a constant herding propensity.

5. On average, the risky asset pays more than the risk-free asset.
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Figure 3.1: Typical time series of the market model (see chapter 2) with unit noise
trader imitation and trend following weight coefficients, cs = 1.0 and ch = 1.0, and
the constant herding propensity κt = κ = 0.98. The rest of the market parameters
correspond to the basic parameter set given in table 3.1. Based on equating the
daily model- and real-volatility, we estimate that each time step correspond to τ ≈
1.31 days. Notice that the switching probabilities p±t are each others mirror images.
Similar mirroring feature can roughly be observed for momentum Ht and dividend-
price ratio dt/Pt as well. Recall, that the fundamentalists risky fraction xft is a
linear function of the dividend-price ratio. Noise traders, however, follow the opinion
index st = 2xnt − 1 and the momentum Ht. We can see, that the noise traders
self-referential investment decisions are much more volatile than the fundamentalists
strategy. Finally, notice that the wealth ratio νnft peaks together with the noise trader
risky fraction xnt , which indicates that the risky asset pays more than the risk-free
asset.
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Figure 3.2: Typical time series of the market model (see chapter 2) with unit noise
trader imitation and trend following weight coefficients, cs = 1.0 and ch = 1.0, and
the Ornstein–Uhlenbeck herding propensity κt defined by equation (3.5). The rest
of the market parameters correspond to the basic parameter set given in table 3.1.
Based on equating the daily model- and real-volatility, we estimate that each time
step correspond to τ ≈ 1.40 days. Notice that all transient periods with super-
exponential price movements end with a plateau like shape. This can be explained
by considering the noise traders. During these super-exponential price movements,
one of the noise trader switching probabilities becomes non-positive, thus creating a
transient lock-in effect for the corresponding asset type, which leads to polarised noise
traders (xn ∈ {0, 1}). While noise traders are locked-in, the market is calm: average
price and dividend growth is of similar order Ravg ∼ Rd. As during noise trader
lock-in only fundamentalists actively effect the market, the above supports the claim
that fundamentalists enforce a connection between the price and dividends. Finally,
notice that the wealth ratio νnft peaks together with the noise trader risky fraction
xnt , which is mainly due to temporary wealth growth during the bubble.
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3.2 Toy model

In this section we introduce a simplified toy model, which qualitatively repro-
duces some of the characteristics of the more complicated artificial market
model presented in chapter 2. We have already argued that the fundamental-
ists strategy enforces a connection between the risky asset price and dividends.
Their behaviour is stabilising the system so that the average price and divi-
dend growth is of similar magnitude Ravg ∼ Rd. The noise traders strategy,
however, introduces self-referential feedback loops. It is the effect of this self-
enforcing behaviour that we aim to study with the toy model present in this
section.

As already mentioned in chapter 1, using Ising based models of opinion dy-
namics dates back to the works of Weidlich (1971) and Galam et al. (1982).
As stated before, that the Ising model is a mathematical model of ferromag-
netism (Brush, 1967). It considers a large number of magnetic spins on a
lattice structure, so that the interaction between neighbouring spins tends to
order the spins in the same direction. At the same time, thermal noise is
causing random fluctuations and thus introducing disorder. The Ising model
is one of the simplest statistical physics models for describing the competition
between imitation induced order and noise induced disorder. In chapter 1 we
discussed how the Ising model can be linked with a binary choice model of
interacting agents. This connection is used in our artificial market model: the
noise trader switching probabilities have an Ising-like dynamic equation (2.19).
Due to this, we base our toy model on the mean-field Ising model, which in
itself is a common toy model for the full Ising model.

In sections 3.2.1 and 3.2.2 we briefly introduce the mean-field Ising model and
define the used toy model, respectively. Finally, in section 3.2.3, we construct
a numeric phase diagram of the toy model on the cs-ch plane.

3.2.1 The mean-field Ising model

In this section, we give a short overview of the mean-field Ising model. As
stated before, the Ising model is a model for explaining the transition between
paramagnetic (disordered spins) and ferromagnetic (ordered spins) phases. In
statistical physics, when considering phase transitions, it is common to define
a so-called order parameter, which distinguishes between the different phases.
For magnetic phase transitions, a suitable order parameter is the average
magnetisation m, as this is zero for the paramagnetic regime and non-zero in
the ferromagnetic regime. Let us now write the Hamiltonian, i.e the energy
of the system, for the Ising model

H = −J
∑
<i,j>

σiσj −Hex

∑
i

σi, (3.6)
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3.2. Toy model

where < i, j > indicates that spins σi and σj are nearest neighbours, J is the
interaction strength between spins and Hex is the external magnetic field.

In the mean-field paradigm, instead of separately considering the effects of all
spins on their neighbours, we approximate these effects with that of the mean
magnetisation 〈σ〉 ≡ m. Thus the mean-field Hamiltonian reads

Hmf = −Jm
∑
i

zi∑
j=1

σj −Hex

∑
i

σi = − (Jmz +Hex)
∑
i

σi, (3.7)

where zi is the number of nearest neighbours of spin σi and z is the average
number of nearest neighbours for each spin. Observe that the Hamiltonian
Hmf in equation (3.7) is equivalent to the Hamiltonian of non-interacting spins
in an effective field Heff ≡ Jmz +Hex. Using equation (3.7) we can express
the single spin Boltzmann distribution

p(σi) =
eβHeffσi∑

σj∈{+1,−1} e
βHeffσj

. (3.8)

In the above, β = 1
TkB

is the inverse temperature, where T is the temperature
and kB is the Boltzmann factor. This leaves us with the final step in the mean-
field approximation. Namely the self-consistency condition, which demands
that the mean magnetisation, calculated using the single spin distribution
function in equation (3.8), has to equal the mean magnetisation used to define
the distribution function 〈σ〉 = m. Therefore, we get

m =
∑

σj∈{+1,−1}

p(σj)σj =
eβHeff − e−βHeff
eβHeff + e−βHeff

= tanhβ (Jmz +Hex). (3.9)

It is convenient to analyse the self-consistency condition in equation (3.9)
graphically. This is done in figure 3.3. It shows two panels, one with a zero
external field Hex = 0 for illustrating the effects of temperature (figure 3.3a)
and the other for illustrating the effects of the external field (figure 3.3b). Both
panels show a plane where both axes correspond to the mean magnetisation
m. Thus, the self-consistency condition m = m defines a line with a unit
slope on these planes. The self-consistency condition is satisfied only at the
points where the self-consistency line m = m and the the hyperbolic tangent
magnetisation m = tanhβ (Jmz +Hex) cross.

Let us first discuss the effects of temperature. In figure 3.3a three hyperbolic
tangent lines are drawn using equation (3.9) with different inverse tempera-
ture β values. Notice, that there is a special inverse temperature value, for
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m

m
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0
−1

1
β = βc
β < βc

β > βc
m = m

(a) Temperature dependence (Hex = 0)

m

m

0

0
−1

1
Hex = 0
Hex < 0

Hex > 0
m = m

(b) Field dependence (β < βc)

Figure 3.3: Graphical analysis of the self-consistency equation (3.9) of the mean-field
Ising model. Panel (a) demonstrates the temperature dependence of the system and
panel (b) demonstrates the field dependence. In (a) there is no external field Hex = 0
and in (b) the inverse temperature is below the critical inverse temperature β < βc
(above the critical temperature T > Tc). Both panels show a plane where both axes
correspond to the mean magnetisation m and thus the diagonal straight black line
corresponds to the self-consistency condition m = m. Panel (a) demonstrates that
for inverse temperatures below the critical temperature β < βc, the self-consistency
condition is only satisfied at m = 0, while above the critical inverse temperature β >
βc the self-consistency condition is also satisfied at two non-zero magnetisation values.
It can be shown (not done here) that the for β > betac these non-zero magnetisations
are stable, while m = 0 is not. Thus the system is in the ordered ferromagnetic phase.
The critical inverse temperature is given by the condition that at m = 0 the slopes of
the straight line and the hyperbolic tangent are equal, which gives equation (3.10) and
leads to equation (3.11). From panel (b) we see, that even at inverse temperatures
below the critical value β < βc, if there is a non-zero external field Hex 6= 0, then
the self-consistency condition is satisfied at a non-zero magnetisation value. It can be
shown (not done here) that in case of inverse temperature values above the critical
value β > βc, a non-zero external field breaks the symmetry between the positive and
negative ordering.

which the slope of the hyperbolic tangent is exactly one at the origin, i.e it
overlaps with the self-consistency line m = m. This is the critical inverse tem-
perature βc, which corresponds to the critical temperature Tc. If the inverse
temperature is lower than the critical value β < βc (T > Tc), the hyperbolic
tangent crosses the self-consistency line only at the origin, meaning that the
self-consistency condition is satisfied only for zero mean magnetisation m = 0.
On the other hand, if the inverse temperature is higher than the critical value
β > βc (T < Tc), then the lines cross at three points and the self-consistency
condition is satisfied also for non-zero magnetisation values m = ±m0. It can
be shown, that for β > βc the non-zero magnetisation values correspond to
stable minima, while the zero magnetisation is unstable. Therefore, the criti-
cal temperature marks the boundary between para- and ferromagnetic phases.
We can find the value of the critical inverse temperature βc, by demanding
that the slope of figure 3.3 at the origin is equal to one
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3.2. Toy model

1 =
d

dm
tanhβ (Jmz +Hex)

∣∣∣
m=0,Hex=0

= βJz. (3.10)

Therefore, the critical inverse temperature βc is given by

βc =
1

Jz
. (3.11)

Let us shortly discuss the effects of the external field as well. In figure 3.3b
three hyperbolic tangent lines are drawn using equation (3.9) with an inverse
temperature below the critical value β < βc and with zero, positive and nega-
tive external field values. We can see that turning on the external field shifts
the hyperbolic tangent, so that the self-consistency condition is satisfied for a
single non-zero magnetisation already below the critical inverse temperature.
Thus, the external field forces the system to order. It can also be shown that
in case of inverse temperature values above the critical value β > βc, a non-
zero external field breaks the symmetry between the positive and negative
ordering.

3.2.2 Toy model definition

Let us now turn to our toy model. As stated above, this model is designed to
highlight the effects of the self-referential feedback loops in the noise trader
strategy. We have already pointed out that the Ising model can be linked
with a binary choice model of interacting agents. Of course, interacting binary
decision makers is exactly what our noise traders are: they constantly have to
decide whether to buy the risky or risk-free asset. The interaction between the
noise traders is represented by their imitating and trend following tendencies.
We can see two mediators for these interactions. First is the market: the noise
traders are following the price momentum, which reflects the composition
of the decisions of all the market participants. Second is the overall social
communications between the noise traders, i.e they are aware of the noise
trader opinion index. The respective interaction strengths are given by the
products of the herding propensity κt and the corresponding weight coefficients
ch and cs.

We can incorporate this into the mean-field Ising framework, by modelling
the opinion index s as corresponding to the magnetisation and the momen-
tum H as corresponding to the external field. The interaction strengths are
represented by κtcs and κtch. For the sake of parsimony, in the following we
only consider cases with constant herding propensity κt = κ. Thus, for the
toy model, the mean-field magnetisation equation (3.9) turns into

s = tanh
[
κ (css+ chH)

]
. (3.12)
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3. Market model characteristics

Consider, for a moment, the critical herding propensity κ0c for which equa-
tion (3.12) satisfies the self-consistency condition for a non-zero opinion |s| > 0
at a zero valued momentum. Similarly to the derivation of the critical inverse
temperature in section 3.2.1 (see equations (3.10) and (3.11)) we get

1 =
d

ds
tanhκ (css+ chH)

∣∣∣
s=0,H=0

⇒ κ0c =
1

cs
. (3.13)

Recall that, in the market model, the noise traders are dynamically updat-
ing their investment positions. Therefore, it is reasonable to change equa-
tion (3.12) into a dynamical formulation, so that st depends on the previous
opinion and momentum values st = st (st−1, Ht−1). Besides the opinion, we
need to define the evolution of the momentum Ht. In the market model, the
price momentum is the exponential moving average of the price return rate;
it is defined by equation (2.18). We wish to use a similar structure in our toy
model. The main question is how to model the non-trivial relation between
the opinion and the price returns. For the sake of simplicity, we approximate
this with a one-to-one correspondence between price return rate rt and the
noise trader opinion index st. Thus, the toy model is given by the following
set of iterative equations

st+1 = tanh
[
κ (csst + chHt)

]
,

Ht+1 = θHt + (1− θ) st.
(3.14)

The toy model has some features, which resemble the full artificial market (see
chapter 2). For, example the term inside the hyperbolic tangent κ (csst + chHt)
is exactly the non-constant term in the noise trader switching probability equa-
tion (2.19). On the other hand, there also are several differences between the
two models. Let us highlight these differences:

1. The toy model does not explicitly consider the fundamentalists. This
can be interpreted in two ways: (a) the toy model considers a market
which only consists of noise traders; (b) in the toy model, the effect of
the fundamentalists is decimated into the coefficients cs and ch.

2. The toy model approximates the non-trivial functional relation between
the opinion index s and the price return rate rt with a simple one-to-one
correspondence.

3. In the toy model the stochastic dynamics of the noise traders risky
fraction, given by equation (2.17), is approximated by a deterministic
threshold-like behaviour of the hyperbolic tangent function.

It is enlightening to consider the fixed point of the iterative system given in
equation (3.14). Let us assume that a fixed point exists
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3.2. Toy model

Ht+1 = Ht = H and st+1 = st = s. (3.15)

From equation (3.14), it is straightforward to see that momentum fixed point
must equal the opinion fixed point

H = θH + (1− θ) s ⇒ H = s. (3.16)

Inserting the above into the fixed point equation for the opinion, we get

s = tanh
[
sκ (cs + ch)

]
. (3.17)

We can find the critical herding propensity κc, of the fixed point in equa-
tion (3.17), by again using the self-consistency condition

1 =
d

ds
tanhκ (cs + ch)

∣∣∣
s=0

⇒ κc =
1

cs + ch
. (3.18)

Finally, let us consider the difference between the two critical herding propen-
sities κc and κ0c . The first, corresponds to the fixed point of the dynamical toy
model in equation (3.14). The second, however, is the critical herding propen-
sity of a static version of the toy model, where there is no self-referential
effect of the momentum. This gives us the first glimpse of the effect of the
self-referential momentum. Namely, for positive coefficient ch value the critical
herding propensity κc is lower than κ0c , i.e self-referential momentum enhances
order. In the next section we use numerical analysis for composing a phase
diagram of the toy model on the cs-ch plane. The resulting phase diagram
shows that the self-referential nature of the toy model not only enhances order,
but also induces new ordered regimes.

3.2.3 Toy model numerical phase diagram

In this section we use numerical simulations for profiling a phase diagram
of the toy model on the cs-ch plane. This phase diagram enlightens us on
the effects of the noise traders self-referential nature. Namely, we see that the
interplay of positive and negative feedback mechanisms leads to the emergence
of two new ordered regimes besides the regular “ferromagnetic” phase.

The phase diagram is constructed by a parametric scan over the coefficients cs
and ch. For each pair of the coefficient values, we calculate a set of scalar indi-
cators from the opinion and momentum time series. These indicators charac-
terise the system behaviour for the corresponding coefficient values. To guide
our choice of indicators, we conducted exploratory scans of the parameter
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3. Market model characteristics

space, which revealed four regimes with distinct characteristics: (1T) “para-
magnetic” disordered phase with s ≈ H ≈ 0; (2T) “jumping” regime, where
the opinion systematically jumps between the polarised values s = ±1; (3T)
“ferromagnetic” ordered phase with s ≈ H ≈ 1; (4T) “oscillating” regime,
where opinion and momentum undergo smooth oscillations. The characteris-
tic features of these regimes are demonstrated in figure 3.4, which shows eight
panels with time series of st and Ht for the first 200 time steps. The two upper
panels show the disordered regime (1T), the following two illustrate the usual
ordered phase (3T), then there is one panel demonstrating the dynamics of
the jumping regime (2T) and the final three panels characterise the oscillating
phase (4T).

We have chosen three indicators, which are effective in distinguishing between
the distinct characteristics illustrated in figure 3.4. For a time series of variable
x, the indicators are: (1) mean value of x; (2) mean relative change ∆x/x,
where ∆x = xt − xt−1; (3) the number of frequencies in the time series. The
number of frequencies is found by counting peaks in the positive half of the
Fourier spectrum. For each (cs, ch) pair, we equilibrate the system for 2000
time steps and calculate the three indicators for both st and Ht over the
interval t = 2000–10000. We visualise the results with colour coded heat-
maps on the cs-ch plane. For simplicity, we refer to these as just heat-maps.
In the heat-maps, the value of an indicator at a certain point on cs-ch plane is
represented by the colour of that point. We ensure the readability of the heat-
maps, even when printed in greyscale, by employing a colour scheme from the
cubehelix family introduced by Green (2011) for astrophysical intensity plots.

Figure 3.5a shows all six heat-maps corresponding to a toy model with unit
herding propensity κ = 1 and the memory coefficient θ = 0.99. On the left
hand side, we find the the mean opinion and momentum heat-maps, which
outline three regions savg ≈ Havg ∈ {0, 1,−1}. Areas with savg = ±1 corre-
spond to the “ferromagnetic” ordered phase (3T). In figure 3.4 we can see the
time series of the ordered phase for weight coefficients cs = 1.0 and ch = 2.0
with both positive and negative initial momentum. As we can see, the initial
conditions determine which of the ordered states, s = 1 or s = −1, is realised.
From figure 3.5a we see that the sign of ch has similar effect. Let us now turn
to the heat-maps for the relative change and the frequency counts. In these,
we can see a triangular region in the lower right part of the plane, where there
is a large number of frequencies and a distinctly uneven relative change. This
corresponds to the oscillating phase (4T). On the left side of the plane, we can
find an area with large negative valued relative change and a single opinion
index frequency. This corresponds to the jumping regime (2T). In the middle
of the heat-map for the opinion index frequency count, we can see a narrow
region where the frequency count is strictly zero. This corresponds to the
“paramagnetic” disordered phase (1T ). These results are combined into the
toy model phase diagram sketch in figure 3.5b.
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Let us give an qualitative explanation to the four different phases. Consider
the feedback mechanisms of the toy model. From equation (3.14) we can
conclude that the signs of cs and ch define whether the system has positive
or negative feedback from s and H respectively. Furthermore, the absolute
value of cs and ch sets the strength of the corresponding feedback. In the
following, we consider which feedback, positive or negative, is dominant in
each of the four phases. First, take the ordered phase (3T). It is in the upper
right corner of the plane, where we expect the system to be dominated by
positive feedbacks. Usually such uncontrolled positive feedback would lead to
infinite growth, but as the hyperbolic tangent is bound by ±1, the toy model
just saturates at one of the polarised states |s| = 1. Next, consider what
happens if negative feedback dominates. This would mean that the system is
always pulled back towards the neutral state s = 0. Both disordered (1T) and
jumping (2T) regimes are located in areas where we would expect either both
the negative and the positive feedback to be relatively weak or the negative
feedback to dominate. In the case of (2T), the negative feedback is too strong
and it always overshoots the neutral state s = 0. Finally, we come to the case
where both feedbacks are of similar strength. This corresponds to the region
around the diagonal on the lower right quarter of the plain, i.e it corresponds
to the oscillating phase (4T).

Before concluding with the toy model, let us point out that we have tested sev-
eral different memory parameter θ values. The memory parameter effectively
controls the lag between the opinion and momentum. The larger the memory
parameter is, the larger the lag. We can report that varying the memory
parameter changes the layout and relation between the jumping and oscillat-
ing regimes. For example, for very small θ values, smooth oscillations vanish,
while for medium valued memory parameter, we can find regimes which are
a mixture of jumping and smooth oscillations. While the dependence on θ is
interesting, its detailed investigation is beyond the scope of this thesis. For
the purposes of this thesis, it is sufficient to note that the phase diagram has
a significant dependence on the memory parameter.

We conclude by highlighting the most important findings from the toy model:

1. The toy model’s self-referential nature induces new ordered regimes.

2. Balanced positive and negative feedback leads to smoothly oscillating
dynamics, while overwhelmingly dominating (over shooting) negative
feedback leads to “jumping” dynamics.
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Figure 3.4: Characteristic toy model time series in different regimes. The toy model
is a dynamic mean-field Ising-like model defined by equation (3.14). It features two
coupled variables: the opinion index s and the momentum H. These time series are
generated for a toy model with unit herding propensity κ = 1, memory parameter
θ = 0.99 and initial opinion s0 = 0. The initial momentum and the noise trader
imitation and trend following weight coefficients cs and ch are specified for each time
series panel separately. Trials with different parameters have shown that the initial
opinion and momentum values define two features: (a) in case of ordered phase, they
define the sign of the opinion; (b) in case of jumping or oscillating regimes they define
the cycle-phase. Considering the regimes on the sketch in figure 3.5b, the first two
panels show time series correspond to disordered (paramagnetic) regime (1T). The
following two panel show characteristics of the ordered (ferromagnetic) regime (3T).
The fifth panel corresponds to the jumping phase (2T) and the final three all describe
different smooth oscillations in regime (4T).
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Figure 3.5: The toy model numeric phase diagram on the noise trader imitation
and trend following weight coefficients cs-ch plane. The toy model is a dynamic mean-
field Ising-like model defined by equation (3.14). It features two coupled variables:
the opinion index s and the momentum H. Here we use unit herding propensity
κ = 1 and memory parameter θ = 0.99. In panel (a) we see three heat-maps for
both opinion s and momentum H: (1) mean value of the time series; (2) mean value
of the relative changes in the time series; (3) the number of frequencies in the time
series. The number of frequencies is found by counting peaks in the positive half
of the Fourier spectrum. The heat-maps indicate five separable regimes, which are
highlighted with the sketch in panel (b): (1T) “paramagnetic” disordered phase with
s ≈ H ≈ 0; (2T) “jumping” regime, where the opinion systematically jumps between
the polarised values s = ±1; (3T) “ferromagnetic” ordered phase with s ≈ H ≈ 1;
(4T) “oscillating” regime, where opinion and momentum undergo smooth oscillations.
The characteristic time series of these regimes are shown in figure 3.4.
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Chapter 4

Limiting noise trader behaviour

In chapter 3 we described the main characteristics of the artificial market. We
argued that the fundamentalist traders enforce a connection between the risky
asset price and dividends. Their buy-low-and-sell-high strategy pushes the
market towards the fundamental-state, where the price and dividend growth
is of the same order Ravg ∼ Rd. The noise trader, on the other hand, have
a more complex self-referential nature. In section 3.2 we elaborated on the
noise trader behaviour by introducing a simplified toy model based on an iter-
ative coupled Ising model. Besides the standard disordered paramagnetic and
ordered ferromagnetic phases, we witnessed the emergence of two additional
ordered regimes. From this, we concluded that the self-referential nature of
the noise trader enhances order.

In this chapter, we focus on the limiting noise trader behaviour, where all
trader are invested in the same asset type, i.e the noise trader opinion has a
polarised value, either s = 1 or s = −1. Both of these are analogues to the
ferromagnetic phase in the toy model and thus we refer to them as positive and
negative ordered states. In Section 4.1 we consider the necessary conditions
for these polarised regimes and observed that it is convenient to consider
threshold momentum values below or above which the noise traders start
ordering. These critical momenta are discussed in more detail in section 4.2,
where we show that they naturally divide the noise trader imitation and trend
following weight coefficients cs-ch plane into four quarters. In section 4.3 we
use the limits of ordered noise traders to find two fixed points Rmin and Rmax
for the price growth Rt, or equivalently rmin and rmax for the growth rate
rt. The naming convention of min and max is because these fixed points
effectively act like bounds on the long-term average price growth Ravg and
growth rate ravg. All of these results are later used in chapter 5 to consider
the feasibility and stability of the ordered states on different regions of the
cs-ch plane and thus propose a theoretical phase diagram for the artificial
market.
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4. Limiting noise trader behaviour

4.1 Ordered noise traders

Let us consider the limits, where all noise traders are invested in the same
asset type. We refer to such regimes as ordered or polarised phases. These
correspond to cases where after some relaxation time T0 the risky fraction xnt
of the representative noise trader is zero or one, or equivalently the opinion
index is ±1

∀t > T0 > 0, xnt ∈ {0, 1} ⇔ ∀t > T0 > 0, st ∈ {−1, 1}. (4.1)

The dynamics of the noise trader risky fraction xnt is given by equation (2.17),
which reads

xnt =
1

Nn

N+
t−1∑
k=1

(
1− ξk

(
p+t−1

))
+

1

Nn

N−t−1∑
l=1

ξl
(
p−t−1

)
.

Here ξi (p) are one with probability p and zero otherwise, i.e they are Bernoulli
random variables. The number of traders owning risky and risk-free asset at
time t are given by N+

t and N−t respectively. For any time t, their sum is the
total number of noise traders ∀t, Nn = N+

t +N−t .

By definition (equation (2.17)) the risky fraction xn is stochastic. As long
as the switching probabilities p+t and p−t are non-zero, there is a finite prob-
ability for the risky fraction to change. For the condition in equation (4.1)
to be satisfied for all time steps, one (and only one) of the switching proba-
bilities must equal zero. This creates a lock-in effect for the corresponding
asset, where none of the noise traders, who are invested in that asset, change
their position. The aforementioned observation shifts the focus from finding
conditions for polarised noise traders to finding conditions for zero valued
switching probabilities. Recall that the switching probabilities p±t have an
Ising-like dynamics, given by equation (2.19)

p±t =
p±
2

(1∓ κt (csst + chHt)) .

The probability of selling the risky and buying the risk-free asset is given
by p+t . Conversely, p−t is the probability of switching from risk-free to risky
investment. The opinion index st = 2xnt − 1 ∈ [−1, 1] measures the market
sentiments and the the price momentum Ht the trend. Coefficients cs and
ch indicate the relative weights of st and Ht, and whether the traders have
a conformist or contrarian attitude. The noise trader herding propensity is
given by κt and p± are constants. For simplicity, in this and the following
chapter, we only consider a constant valued herding propensity κt = κ. The
results can be extended to time-dependent herding propensities.
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Evidently, switching probabilities in equation (2.19) are even allowed to be-
come negative. However, such values are treated as zero. Necessary conditions
for non-positive switching probabilities can be expressed from equation (2.19)

p+t ≤ 0.0 : 1− κ (csst + chHt) ≤ 0,
p−t ≤ 0.0 : 1 + κ (csst + chHt) ≤ 0.

(4.2)

In this thesis we focus on the interplay between the noise trader trend following
and imitative behaviour. Thus, as with the toy model in section 3.2, different
market regimes are considered on the cs-ch plane. Consequently, for constant
herding propensity κ, the only free variables in equation (4.2) are opinion st
and price momentum Ht. By definition (equation (2.16)), the opinion index
is bound by ±1. As the momentum is less restricted, it is convenient to
reformulate the inequalities in equation (4.2) as

p+t ≤ 0.0 : chH ≥ 1
κ − csst,

p−t ≤ 0.0 : chH ≤ −
(
1
κ + csst

)
.

(4.3)

The inequalities in equation (4.3) are valid only if the social herding propen-
sity κ is positive. If κ is negative, the inequalities have opposite directions.
For simplicity, we are going to consider only positive herding propensities.
The results can be trivially extended for negative herding propensities. Equa-
tion (4.3) indicates the existence of threshold momentum values, beyond which
the switching probabilities vanish. We refer to these as critical momenta H±c .
They can be expressed from equation (4.3)

H±c ≡ ±
1

ch

(
1

κt
∓ csst

)
. (4.4)

Let us consider the requirements for vanishing switching probabilities given in
equation (4.3). Depending on the sign of the coefficient ch, these are satisfied
if the momentum value Ht is either higher or lower than the corresponding
critical threshold (H+

c or H−c ). Figure 4.1 gives a graphical illustration of the
directions of these inequalities. It features the cs-ch plane cut in two by the
line ch = 0.0. The direction of the inequalities changes when crossing the line
ch = 0. On this line, the critical momenta diverge to ±∞. We discuss this
divergence and other peculiar features of the critical momenta in more detail
in section 4.2.
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Figure 4.1: A graphical representation of the directions of inequalities in equa-
tion (4.3) on the noise trader imitation and herding weight coefficients cs-ch plane
for both of the critical momenta: (a) H+

c and (b) H−c . H±c are threshold momentum
values, below or above which the corresponding switching probability p±t vanishes,
creating a lock-in effect for the respective asset, which leads to polarised noise trader
opinion s = ±1. The critical momenta are defined in equation (4.4). For positive ch,
H+
c is the lower threshold for p+t being zero, while H−c is the upper threshold for p−t

being zero. The opposite holds for negative ch.

4.2 The critical momenta

In section 4.1 we established that regimes with ordered, i.e polarised, noise
traders are possible only if one of the switching probabilities p±t is zero valued.
The necessary conditions for vanishing p±t = 0 are defined by the inequali-
ties in equation (4.3). We found it convenient to formulate the criteria in
equation (4.3) with respect to threshold momentum values H±c . Such a formu-
lation is illustrated in figure 4.1. In the following section, we elaborate on the
specifics of the threshold critical momenta and demonstrate how they impose
a natural frame of reference upon the cs-ch plane. Let us start by restating
the definition of the critical momenta, as given in equation (4.4)

H±c = ± 1

ch

(
1

κ
∓ csst

)
. (4.5)

On a closer examination of equation (4.5) we can find two characteristic fea-
tures of H±c on the cs-ch plane. First, as ch → 0 the critical momenta tend
towards infinity H±c → ±∞. Notice, that when ch = 0 the switching prob-
abilities do not depend on the momentum and thus the concept of critical
momenta is irrelevant when ch = 0. Nevertheless, the line ch = 0 arises as
a natural reference when considering the critical momenta. In figure 4.1 we
already demonstrated that on either side of ch = 0 the direction of the in-
equalities in equation (4.3) are different. Let us now consider the signs of the
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H−c ≤ 0 H−c ≤ 0

H−c ≥ 0 H−c ≥ 0

0.0

1
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(a) Positive opinion s > 0

ch

cs

H+
c ≥ 0 H+

c ≥ 0

H+
c ≤ 0 H+

c ≤ 0

H−c ≤ 0 H−c ≥ 0

H−c ≥ 0 H−c ≤ 0

0.0

1
κ|st|

(b) Negative opinion s < 0

Figure 4.2: A graphic overview of the signs of the critical momenta H±c on the
noise trader imitation and herding weight coefficients cs-ch plane. H±c are threshold
momentum values, below or above which the corresponding switching probability p±t
vanishes, creating a lock-in effect for the respective asset, which leads to polarised
noise trader opinion s = ±1. The critical momenta are defined in equation (4.5). The
plane has been divided into four quarters by the lines ch = 0.0 and cs = 1

κ|st| . Panel

(a) shows signs for positive opinion s > 0 and panel (b) for negative s < 0. If the
opinion is positive, H+

c changes sign on crossing either of the division lines. As a
result, its signs form a chequered pattern. On the other hand, H−c only changes sign
when crossing the line ch = 0.0. The case of negative opinion index is antisymmetric
to the positive case. H−c signs have a chequered pattern on the plane, while the sign of
H+
c only changes when crossing the line ch = 0.0. As the lines ch = 0.0 and cs = 1

κ|st|
separate regions, where H±c have different signs, they form a natural reference frame
on the cs-ch plane. When considering H±c as the threshold values for ordered noise
traders |s| = 1, the relevant position of the critical point is ( 1

κ , 0).

critical momenta. From equation (4.5) we see that the signs of H±c depend
on the signs of ch and 1

κ ∓ stcs. Which leads us to the second characteristic
feature of H±c : if 1

κ ∓ stcs = 0, then the corresponding critical momentum is
zero. This defines an other natural reference line c±s = ± 1

κst
, where the plus

and minus refer to H+
c and H−c respectively.

In regard to the signs of H±c the lines ch = 0 and c±s = ± 1
κst

define a natural
frame of reference on the cs-ch plane. In figure 4.2 we illustrate this notion by
using these lines to divide the cs-ch plane into four quarters and indicate the
signs of H±c in each of them for (a) positive opinion s > 0 and (b) negative
opinion s < 0. Recall the definition of the critical momenta given in equa-
tion (4.5). We can see that for a finite ch, the critical momenta H+

c can only
become zero valued when the opinion is positive and H−c can only become zero
when the opinion is negative. In either case, the critical momenta become zero
valued at cs = 1

κ|st| . This is reflected in figure 4.2 by the fact that for positive

opinion, the signs of H+
c have a chequered pattern on the cs-ch and H−c is
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4. Limiting noise trader behaviour

negative for ch > 0 and positive for ch < 0, while for negative opinion signs
of H−c have a chequered pattern and H+

c is positive for ch > 0 and negative
for ch < 0. Thus, the lines ch = 0 and cs = 1

κ|st| define a natural frame of
reference on the cs-ch plane.

We have established that ch = 0 and cs = 1
κ|st| define a natural reference frame

on the cs-ch plane, as they separate areas where H±c have different signs (see
figure 4.2). When ch → 0 the critical momenta diverge and H±c have different
signs on either side of ch = 0. On the other hand, depending on the sign of st,
along the line cs = 1

κ|st| one of H±c is zero valued. We call cs = 1
κ|st| the critical

line and the point ( 1
κ|st| , 0) the critical point. It is illuminating to visualise

the shape of the critical momenta on the cs-ch plane as presented in figure 4.3.
It features both of the critical momenta using opinion index values s = 1
and s = −1 for H+

c and H−c respectively. Due to the divergence at ch = 0.0,
cut-off values for the absolute momenta are used to improve visibility. We see
that the values of the critical momenta spiral from −∞ to +∞ during a 180◦

turn around the critical point ( 1
κ|st| , 0). Additionally, we can observe that a

cut-off value defines a region in the vicinity of the critical line, inside which
the critical momenta have absolute values below this cut-off.

Let us now consider the position of the critical line cs = 1
κ|st| . It depends

hyperbolically on the opinion index |st|. For polarised noise traders |s| = 1, it
is at cs = 1

κ , while for neutral noise traders s = 0, it is at ±∞. We illustrate
this very sensitive dependence in figure 4.4, which shows heat-maps of H±c on
the cs-ch plane for three different opinion values s ∈ ±{0.90, 0.95, 1.0} for H±c
respectively. To improve visualisation, we use a cut-off value |H±c | < 0.001 ≈
6rd, which corresponds to the scale relevant for our market simulations in
chapter 6. We can now notice two things: (a) the location of the critical line
is very sensitive to the opinion index; (b) the critical momenta have values,
which are reachable in our market simulation, only in a narrow double conical
region centred at the critical point ( 1

κ|st| , 0). Recall that we are considering the
critical momenta as the thresholds above or below which one of the switching
probabilities p±t vanishes, which leads to ordered noise traders |s| = 1. In this
light, we can see that the only relevant position of the critical line corresponds
to the polarised noise traders: cs = 1

κ .

We finish by highlighting the most important results:

1. The criteria for vanishing p±t , and thus ordered noise traders, can be for-
mulated with respect to threshold critical momenta H±c (see figure 4.1).

2. The shape of H±c defines a natural reference frame on the cs-ch plane,
given by: ch = 0 and cs = 1

κ . These divide the plane into four quarters,
where H±c have different signs (see figure 4.2).

3. The condition H±c ≤ Hcutoff defines a double conical shape centred at
the critical point ( 1

κ , 0) on the cs-ch plane.

40



4.2. The critical momenta

cs
0.80

0.85
0.90

0.95
1.00

1.05
1.10

1.15
1.20

c
h

60
40

20
0

20
4060

0.10

0.05

0.00

0.05

0.10

0.15

H +
c : cut­off at ±0. 1

cs
0.80

0.85
0.90

0.95
1.00

1.05
1.10

1.15
1.20

c
h

60
40

20
0

20
4060

0.10

0.05

0.00

0.05

0.10

0.15

H −
c : cut­off at ±0. 1

cs
0.80

0.85
0.90

0.95
1.00

1.05
1.10

1.15
1.20

c
h

60
40

20
0

20
4060

0.010

0.005

0.000

0.005

0.010

0.015

H +
c : cut­off at ±0. 01

cs
0.80

0.85
0.90

0.95
1.00

1.05
1.10

1.15
1.20

c
h

60
40

20
0

20
4060

0.010

0.005

0.000

0.005

0.010

0.015

H −
c : cut­off at ±0. 01

cs
0.80

0.85
0.90

0.95
1.00

1.05
1.10

1.15
1.20

c
h

60
40

20
0

20
4060

0.0010

0.0005

0.0000

0.0005

0.0010

H +
c : cut­off at ±0. 001

cs
0.80

0.85
0.90

0.95
1.00

1.05
1.10

1.15
1.20

c
h

60
40

20
0

20
4060

0.0010

0.0005

0.0000

0.0005

0.0010

H −
c : cut­off at ±0. 001

Figure 4.3: Illustration of the spiralling shape of the critical momenta H±c around
critical point cs = 1

κ on the noise trader imitation and herding weight coefficients cs-ch
plane. H±c are threshold momentum values, below or above which the corresponding
switching probability p±t vanishes, creating a lock-in effect for the respective asset,
which leads to polarised noise trader opinion s = ±1. The critical momenta are
defined in equation (4.5). In the above plots we use polarised opinion index values
s = ±1 forH±c respectively. The critical momentumH+

c , can be seen in the column on
the left hand side column, while the right hand side corresponds to H−c . To improve
visibility, we use three different cut-off values |H±c | ≤ Hcutoff ∈ {0.1, 0.01, 0.001}.
The cut-off Hcutoff = 0.001 corresponds to the relevant momentum scale for our
market simulations in chapter 6. We can see that for the corresponding polarised
opinion values H±c change sign when crossing the lines ch = 0 and cs = 1

κ . We use
this to define a natural reference frame on the cs-ch plane. We see that the values
of H±c spiral from −∞ to +∞ during a 180◦ turn around the crossing point of the
reference frame ( 1

κ , 0). We call this point the critical point.

41



4. Limiting noise trader behaviour

60

40

20

0

20

40

60

c h

H +
c  : s= 0. 9 H +

c  : s= 0. 95 H +
c  : s= 1. 0

0.8 0.9 1.0 1.1 1.2
cs

60

40

20

0

20

40

60

c h

H −
c  : s= − 0. 9

0.8 0.9 1.0 1.1 1.2
cs

H −
c  : s= − 0. 95

0.8 0.9 1.0 1.1 1.2
cs

H −
c  : s= − 1. 0

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.01e 3

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.01e 3

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.01e 3

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.01e 3

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.01e 3

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8
1.01e 3

Figure 4.4: Illustration of the opinion index dependence of the critical momenta
H±c on the noise trader imitation and herding weight coefficients cs-ch plane. H±c
are threshold momentum values, below or above which the corresponding switch-
ing probability p±t vanishes, creating a lock-in effect for the respective asset, which
leads to polarised noise trader opinion s = ±1. The critical momenta are defined in
equation (4.5). In the above heat-maps we use four different opinion index values
s ∈ ±{0.90, 0.95, 1.0} for H±c respectively. The critical momentum H+

c are in the
heat-maps in the upper row and H−c in the lower row. To improve visibility we use a
cut-off |H±c | ≤ Hcutoff = 0.001, which corresponds to the relevant momentum scale
for our market simulations in chapter 6. Therefore, the condition |H±c | ≤ Hcutoff

roughly outlines the region where the critical momenta have values which can be
reached in the market simulations presented in chapter 6. This region has a double
conical shape centred at the point ( 1

κ|st| , 0), which we call the critical point. It is also

the crossing point of the two perpendicular white lines, which correspond to ch = 0
and cs = 1

κ|st| . We can see that for the opinion index values, used in the above

heat-maps, these lines divided the cs-ch plane into four quarters based on the signs
of H±c . Due to this feature, these lines are a natural reference frame on the cs-ch
plane. Observe, that the cs coordinate of the critical point has a sensitive hyperbolic
dependence on the opinion index 1

κ|st| : for |s| = 1 the critical point is at ( 1
κ , 0), while

for s = 0 it is at (∞, 0). When considering H±c as the threshold values for ordered
noise traders |s| = 1, the relevant position of the critical point is ( 1

κ , 0).
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4.3. Fixed points of the price returns

4.3 Fixed points of the price returns

In section 4.1 we discussed so-called ordered or polarised states, which are
limiting regimes, where all noise traders own the same asset type. We argued
that the necessary condition for such states are equivalent to conditions for
zero valued switching probabilities. In other words, if either p+t or p−t van-
ishes, the noise traders have a lock-in effect for the corresponding asset, which
respectively leads to the formation of the positive s = 1 or negative s = −1
ordered state. We argued that it is convenient to consider the criteria for
vanishing p±t with respect to threshold momentum values H±c . In section 4.2
we analysed these critical momenta H±c in more detail and found that they
impose a reference frame on the cs-ch plane. In this section, we take it as given
that a lock-in effect has occurred and the system is in one of the ordered states.
We analyse the corresponding behaviour of the price returns and derive fixed
points for it.

Recall our discussion of typical market dynamics in section 3.1. We argued
that fundamentalists enforce a connection between the risky asset price and
dividends, while the noise traders can induce super-exponential price growth.
Indeed, in figure 3.2 we observed such bubble regimes. All of them ended
with a plateau-like shape, which was due to noise traders undergoing a lock-in
effect. This is, of course, the key feature of the ordered states discussed in
sections 4.1 and 4.2. In figure 3.2 we saw that while the system could show
high volatility on ordinary times, during these noise trader lock-ins the market
dynamics became very calm. We argued that this is because at such times the
fundamentalists are the only one actively effecting the market and thus the
systems falls to the fundamental state, where the average price and dividend
growth are similar Ravg ∼ Rd.

In this section we analytically prove the existence of two fixed points of the
price growth, which act as rough bounds on the long-term average price growth
Ravg. Notice, that the limiting noise trader behaviour, i.e xn = 0 and xn = 1,
correspond to their lowest and highest possible demands for the risky asset.
Thus it is reasonable to look for the upper and lower fixed points for the
average price growth from these limits. The derivation of the lower fixed
point Rmin (rmin) is present in section 4.3.1 and the derivation of the upper
fixed point Rmax (rmax) is given in section 4.3.2. Later, in chapter 6 we present
numeric results verifying these analytical fixed points.

First, let us reformulate the quadratic price equation (2.25) for the price re-
turns Rt

rt + 1 = Rt =
−b∗t −

√
b∗2t − 4a∗t c

∗
t

2a∗t
, (4.6)

where the terms a∗t , b
∗
t and c∗t are given by
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a∗t = νt−1x
n
t−1 (xnt − 1) + xft−1

(
xfmin − 1

)
, (4.7)

b∗t = xft−1
1

γσ2Rex

dtRd
Pt−1

+xfmin

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
+νt−1x

n
t

[
xnt−1

(
dt
Pt−1

−Rf
)

+Rf

]
,

(4.8)

c∗t =
1

γσ2Rex

dtRd
Pt−1

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
. (4.9)

4.3.1 Lower fixed point

Let us assume polarised noise traders xn = 0 and insert this into equa-
tions (4.7) to (4.9)

a∗t = xft−1

(
xfmin − 1

)
, (4.10)

b∗t = xft−1
1

γσ2Rex

dtRd
Pt−1

+xfmin

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
,

(4.11)

c∗t =
1

γσ2Rex

dtRd
Pt−1

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
. (4.12)

Next, consider the stochastic multiplicative dividend process in equation (2.2).
Here we focus on the average behaviour and thus the dividends can be approx-
imated by their average, i.e by a deterministic exponential growth with the
rate rd

dt ≈ d0 (1 + rd)
t = d0R

t
d. (4.13)

In the following, we assumed that the average price returns have a lower
fixed point Ravg ≈ Rmin = const, such that the dividend-price ratio can be
expressed as

dt
Pt
≈ d0
P0

(
Rd
Rmin

)t
. (4.14)

Let us compare the lower fixed point Rmin with the average dividend growth
Rd. There are three possible scenarios: (1) Rmin > Rd; (2) Rmin < Rd; (3)
Rmin = Rd. We now treat these cases separately.
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Exponentially diminishing dividend-price ratio: Rmin > Rd

First, let us consider the case where Rmin > Rd. This means that on average
the price is growing faster than the dividends. Consequently, the dividend-

price ratio is exponentially diminishing dt
Pt

t→∞−−−→ 0. As a result, the fundamen-

talist risky fraction converges towards its lower bound xf
t→∞−−−→ xfmin. Using

these two approximations in equations (4.10) to (4.12), gives

a∗t ≈ x
f
min

(
xfmin − 1

)
, (4.15)

b∗t ≈ x
f
min

(
1− xfmin

)
Rf , (4.16)

c∗t ≈ 0. (4.17)

Therefore, if the lower fixed point is larger than the average dividend growth
Rmin > Rd, the price returns in equation (4.6) can be expressed as

Rmin ≈ −
b∗t
a∗t

= Rf ⇒ Rmin = Rf . (4.18)

We see that, if Rmin > Rd then the lower fixed point is equal to the risk-free
growth Rmin = Rf . Of course, in case Rd > Rf , this leads to a contradiction
and the case Rmin > Rd should be discarded.

Exponentially growing dividend-price ratio: Rmin < Rd

Let us turn to the second case, where the lower fixed point is assumed to be
smaller than the average dividend growth rate Rmin < Rd. This means that
the dividend-price ratio grows exponentially

dt
Pt
≈ d0
P0

(
Rd
Rmin

)t
t→∞−−−→∞. (4.19)

It should be mentioned, that while noise traders by construction can not have
a risky fractions above 1, this is not the case for fundamentalists. The funda-
mentalist risky fraction, defined by equation (2.13), does not have an upper
bound. In other words, fundamentalists can borrow at the risk-free rate rf
and invest that borrowed money into the risky asset. Thus if the dividend-
price ratio grows exponentially, then so does the fundamentalist risky fraction.
It is clear that the exponentially growing term dominates over the constant
xfmin and we can approximate xf by

xft ≈ x
f
min +

d0
P0

Rd
γσ2Rex

(
Rd
Rmin

)t
≈ d0
P0

Rd
γσ2Rex

(
Rd
Rmin

)t
. (4.20)
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For the following, it is convenient to define

C0 ≡
d0
P0

Rd
γσ2Rex

and A ≡
(

Rd
Rmin

)
. (4.21)

Now, the terms a∗t , b
∗
t and c∗t in the quadratic equation (4.6) can be expressed

as

a∗t ≈ C0A
t−1
(
xfmin − 1

)
, (4.22)

b∗t ≈ Rd
(
C0A

t−1)2
+xfmin

[
C0A

t−1 (γσ2RexC0A
t−1 −Rf

)
+Rf

]
,

(4.23)

c∗t ≈ RdC0A
t−1 [C0A

t−1 (γσ2RexC0A
t−1 −Rf

)
+Rf

]
. (4.24)

Clearly, for large t, the exponentially growing C0A
t−1 dominates the constant

Rf and the above expressions can be further simplified into

a∗t ≈ C0A
t−1
(
xfmin − 1

)
, (4.25)

b∗t ≈
(
C0A

t−1)2 [Rd + γσ2Rexx
f
min

]
, (4.26)

c∗t ≈ γσ2RexRd
(
C0A

t−1)3 . (4.27)

The price returns given by equation (4.6) now read

Rmin =
−b∗t −

√
b∗2t − 4a∗t c

∗
t

2a∗t
≈ C0A

t−1ζ, (4.28)

where ζ is a constant

ζ ≡

(
Rd + γσ2Rexx

f
min

)
+

√(
Rd + γσ2Rexx

f
min

)2
− 4γσ2RexRd

(
xfmin − 1

)
2
(

1− xfmin
) .

Inserting the definitions of C0 and A from equation (4.21) into equation (4.28)
and rearranging terms gives

Rtmin ≈ Rtd
d0
P0

ζ

γσ2Rex
⇒

46



4.3. Fixed points of the price returns

Rmin ≈ Rd

(
d0
P0

ζ

γσ2Rex

) 1
t
t→∞−−−→ Rd. (4.29)

Thus, even if we assume that at some τ <∞ the lower fixed point is smaller
than the average dividend growth Rmin,τ < Rd, then as time goes by t → ∞
it approaches Rmin → Rd. Therefore, we can summarise the results from both
assumption Rmin > Rd and Rmin < Rd, as

Rmin =

{
Rd, if Rd > Rf ,

Rf , if Rd < Rf .
and rmin =

{
rd, if rd > rf ,

rf , if rd < rf .
(4.30)

In chapter 6 we see that the existence of this lower bound is supported by
numeric simulations of the artificial market.

4.3.2 Upper fixed point

Now, let us assume the limit of positively ordered noise traders, i.e the limit
where all noise traders are invested in the risky asset xn = 1. Note, that xn = 1
corresponds to the highest possible demand for the risky asset that noise trader
can have, while the limit xn = 0 is the lower possible demand the noise trader
can have. Therefore, it is reasonable to expect that if an upper fixed point
Rmax exists, then it is larger than the lower fixed point Rmax > Rmin. In
the following we show that an upper fixed point does indeed exist. We start
by inserting the assumption xn = 1 into the terms in equations (4.7) to (4.9),
which gives

a∗t = xft−1

(
xfmin − 1

)
, (4.31)

b∗t = xft−1
1

γσ2Rex

dtRd
Pt−1

+xfmin

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
+νt−1

dt
Pt−1

.

(4.32)

c∗t =
1

γσ2Rex

dtRd
Pt−1

[
xft−1

(
dt
Pt−1

−Rf
)

+Rf

]
. (4.33)

Recall, that in section 4.3.1 we showed that the lower fixed point equals Rd,
if Rd > Rf , and Rf otherwise. Thus, we can assume that, if there is an upper
fixed point, it is larger than the average dividend growth Rmax > Rd. Of
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course, if there is no upper fixed point, the price grows even faster. In the
long-run this leads to an exponentially, or faster, diminishing dividend-price

ratio dt
Pt

t→∞−−−→ 0. Consequently, the fundamentalist risky fraction falls to its

minimum value xf
t→∞−−−→ xfmin. Besides the dividend-price ratio, consider also

the wealth ratio νt. From above, we know that Rmax > Rf and xn > xf .
Note, that if there is no upper bound, then the average price growth is even
larger and Ravg > Rf still holds. Therefore, noise traders are systematically
earning a larger return on their investment than fundamentalists. Accordingly,

the wealth ratio grows exponentially, or faster, νt
t→∞−−−→ ∞. However, it is

important to note, that at the moment it is unclear whether the product νt
dt
Pt

tends towards zero, infinity or a finite value. Inserting the above assumption
into the terms a∗t , b

∗
t and c∗t , gives

a∗t ≈ x
f
min

(
xfmin − 1

)
, (4.34)

b∗t ≈ x
f
min

(
1− xfmin

)
Rf + νt−1

dt
Pt−1

, (4.35)

c∗t ≈ 0. (4.36)

The solution of the quadratic equation for average price returns can now be
simplified

Rt ≈
−b∗t −

√
b∗2t

2a∗t
= − b

∗
t

a∗t
. (4.37)

With a∗t and b∗t from equations (4.34) and (4.35), equation (4.37) gives

Rt −Rf ≈
νt−1

dt
Pt−1

xfmin

(
1− xfmin

) . (4.38)

Let us evaluate the relative change of Rt −Rf

Rt −Rf
Rt−1 −Rf

≈
νt−1

dt
Pt−1

νt−2
dt−1

Pt−2

≈ νt−1
νt−2

Rd
Rt−1

. (4.39)

Consider for a moment the wealth ratio

νt−1 = νt−2
xnt−2

(
Rt−1 −Rf + dt−1

Pt−2

)
+Rf

xft−2

(
Rt−1 −Rf + dt−1

Pt−2

)
+Rf

, (4.40)
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4.3. Fixed points of the price returns

inserting the same assumptions as before (xn = 1.0, xf = xfmin and d
P → 0)

gives

νt−1 = νt−2
Rt−1 + 1

xfmin (Rt−1 −Rf ) +Rf
. (4.41)

Using the above expression for the wealth ratio together with equation (4.39)
gives

Rt −Rf
Rt−1 −Rf

≈ Rd

xfmin (Rt−1 −Rf ) +Rf
. (4.42)

If an upper fixed pointRmax exists, then then
Rt−Rf
Rt−1−Rf = 1, otherwise

Rt−Rf
Rt−1−Rf >

1. As stated above, it is not clear yet whether there is an upper fixed point,
thus consider the inequality

Rt −Rf
Rt−1 −Rf

≥ 1 ⇒

Rd ≥ xfmin (Rt−1 −Rf ) +Rf ⇒
Rd −Rf
xfmin

≥ Rt−1 −Rf .

(4.43)

We can see that indeed there is an upper fixed point Rmax, which acts as an
upper bound on the long-term average price growth Ravg

Rmax ≡ Rf +
Rd −Rf
xfmin

= Rf +
Rd −Rf
ERt −Rf

γσ2Rex

= Rf +
Rd −Rf
ERt −Rf

ERt −Rf + d0
P0
Rd

xf0
.

(4.44)

It is trivial to see that the upper fixed point for the average growth rate ravg
is given by

rmax = Rmax − 1 = rf +
Rd −Rf
ERt −Rf

ERt −Rf + d0
P0
Rd

xf0
. (4.45)

The existence of this upper fixed point is supported by numeric results pre-
sented in chapter 6.
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Chapter 5

Analytical phase diagram

In section 3.2 we introduced an iterative self-referential mean-field Ising based
toy model of the noise trader behaviour and profiled its numeric phase diagram
on the imitation and trend following weight coefficients cs-ch plane. Besides
the standard ferromagnetic ordered and paramagnetic disordered regimes, there
were two additional ordered phases. One with smooth oscillations and the
other with regular jumping behaviour between the two polarised states. From
this we concluded that the self-referential nature of the toy model enhances
order. This result was foreshadowed by the short fixed point analysis in the
end of the toy model definition in section 3.2.2. We showed that compared
to the standard mean-field Ising model, the toy model had a lower critical
inverse temperature (herding propensity), indicating that its self-referential
nature enhances order. In this chapter, we conduct an analogues analysis for
the full artificial market. We consider the limiting cases presented in chap-
ter 4 in order to propose an analytical phase diagram for the average market
behaviour on the cs-ch plane. We refer to this phase diagram as “analytical”
in order to differentiate from the numeric phase diagram, which is profiled in
chapter 6.

Here, similarly to chapter 4, the key idea is to look at the limiting noise
trader behaviour, i.e the ordered (polarised) states where all noise traders
are invested in the same asset type. These correspond to the risky fraction
values xn ∈ {1, 0} or equivalently to opinion index values s ∈ {1,−1}. We
call the states s = ±1 the positive and the negative ordered states, respec-
tively. In section 4.1 we showed that necessary conditions for such polarised
states are equivalent to conditions for the corresponding switching probabili-
ties p±t being zero. When describing the typical model dynamics in the case
of Ornstein-Uhlenbeck herding propensity in section 3.1.2, we saw that zero
valued switching probabilities create a lock-in effect for the respective asset,
risky for p+t = 0 and risk-free for p−t = 0, which leads to the onset of the cor-
responding ordered state. It is convenient to formulate the criteria for these
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5. Analytical phase diagram

lock-ins with respect to threshold momentum values H±c above or below which
the corresponding lock-in occurs. Figure 4.1 illustrates that for ch > 0, H+

c

is the lower threshold above which p+t = 0 and H−c is the upper threshold
below which p−t = 0. For ch < 0 the inequalities have the opposite direction.
Section 4.2 discusses these threshold critical momenta H±c in detail and shows
that the shape of H±c on the cs-ch plane defines a natural reference frame given
by the lines ch = 0 and cs = 1

κ . These lines divided the cs-ch plane into four
quarters. As illustrated in figure 4.2, depending on the sign of the opinion
index s, the critical momenta have different signs on these four quarters.

In sections 5.1 to 5.3 we analyse the possibility and stability of lock-in effects
for the risky (p+t = 0) and the risk-free (p−t = 0) assets on the four quarters
of cs-ch plane. We start with the upper right quarter in section 5.1 and move
in a clockwise direction, finishing with the upper left quarter in section 5.4.
For all four parts of the plane, the argumentation is rather similar. Figure 4.4
illustrated that the condition |H±c | < Hcutoff defines a double conical region
centred at the critical point ( 1

κ , 0). In the following, conceptually similar
conditions are employed to divided each of the quarters into to parts with
distinct characteristics. As mentioned above, we are analysing the average
model behaviour. Therefore the relevant momentum value is given by the
average momentum Havg. In section 4.3 we used the limiting cases of negative
and positive ordered noise traders for deriving two positive valued fixed points
rmin and rmax of the price return rate rt. These fixed points effectively act
as rough lower and upper bounds on the average return rate 0 < rmin .
ravg . rmax. As the price momentum Ht is defined as the exponential moving
average of the price return rate rt, these rough bound apply for the average
momentum as well: 0 < rmin . Havg . rmax.

5.1 Upper right quarter
(
cs >

1
κ , ch > 0.0

)
In this section we consider the lock-in effects for the risky (p+t = 0) and risk-
free (p−t = 0) assets on the upper right quarter of the noise trader imitation and
trend following cs-ch plane. The plane is divided into four quarters with the
natural reference frame imposed by the critical momenta H±c (see section 4.2)
and the upper right quarter correspond to: cs > ccriticals = 1

κ and ch > 0.
Let us recall the necessary conditions for the lock-in effects in the upper right
quarter:

1. Lock-in to the risky asset p+t = 0 occurs above H+
c

p+t = 0 if H ≥ H+
c , where H+

c =
1

ch

(
1

κ
− csst

)
,

such that

{
H+
c < 0 if s > 0,

H+
c > 0 if s < 0.

(5.1)
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5.1. Upper right quarter
(
cs >

1
κ , ch > 0.0

)
2. Lock-in to the risk-free asset p−t = 0 occurs below H−c

p−t = 0 if H ≤ H−c , where H−c = − 1

ch

(
1

κ
+ csst

)
,

such that

{
H−c < 0 if s > 0,

H−c > 0 if s < 0.

(5.2)

Let us now assume that 0 < s and consider whether the lock-in effects can
occur. First, take the condition for the lock-in to the risk-free asset: H ≤
H−c < 0. As the long-term average momentum is positive Havg > 0, then this
condition can never be satisfied stably. Next, consider the condition for the
lock-in to the risky asset: H ≥ H+

c < 0. Because Havg > 0, this condition
is on average always satisfied. Thus we see, if the opinion is positive, then
there is always a lock-in for the risky asset and never for the risk-free asset.
Consequently, the system falls to the positive ordered state s = 1.

We now turn to the case of negative opinion 0 > s and consider the possibility
of lock-in effects. From equations (5.1) and (5.2) we see that for a negative
opinion, both H±c > 0. Consider the stability of the lock-in to the risky asset.
If p+t vanishes, the noise trader opinion rapidly rises and becomes positive. At
which point, the threshold H+

c becomes negative and the condition H ≥ H+
c

is always satisfied. The system goes to the ordered phase s = 1.

Now, take the condition for the risk-free asset lock-in effect: H ≤ H−c > 0.
If the upper threshold is higher then the average momentum H−c > Havg,
then on average this lock-in occurs, while when H−c < Havg it does not. It is
important to note, that if the lock-in to the risk-free asset occurs, the noise
trader opinion plummets and the momentum value decreases. This means,
that the lock-in induced noise trader behaviour does not destabilise the lock-
in itself. Thus as soon as the condition Havg < H−c gets satisfied, the a
stable lock-in effect occurs. The condition Havg = H−c allows us to separate
the upper right quarter into two regions, one in which lock-in to risky asset
always occurs and one in which a the lock-in to risky or risk-free asset occurs.

While we do not know the exact value of the average momentum, we do
know that it is roughly bound by the fixed points of the price return rate:
rmin . Havg . rmax. The conditions H−c = rmin and H−c = rmax define two
lines on the cs-ch plane

ch = − 1

rmin

(
1

κ
− cs

)
and ch = − 1

rmax

(
1

κ
− cs

)
. (5.3)

Somewhere in the area between the lines defined by H−c = rmin and H−c =
rmax there is a boundary, which divides the upper right quarter into two
parts: (1) where on average the lock-in to the risk-free asset (p−t = 0) does
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5. Analytical phase diagram

ch

cs

1

2

0.0

1
κ

Figure 5.1: Illustrative sketch of the upper right quarter of the analytical phase
diagram on the noise trader imitation and trend following weight coefficients cs-ch
plane. The upper right quarter of the plane corresponds to the regions where ch > 0
and cs >

1
κ , where κ is the noise trader herding propensity. Here the necessary

conditions for the lock-in effects are: H ≥ H+
c for the risky asset (p+t = 0) and

H ≤ H−c for the risk-free asset (p−t = 0). Both of the critical momenta always have
the opposite sign than the noise trader opinion index. Considering the conditions for
the lock-in effects, the upper right quarter can be divided into two parts: (1) where on
average the lock-in to the risk-free asset (p−t = 0) does not happen, while the lock-in
to the risky asset (p+t = 0) always does, i.e the system is in the positive ordered state
s = 1; (2) where either p−t = 0 or p+t = 0, depending on which of the lock-ins occurs
first, i.e the system is either in the positive or the negative ordered state. Which of
the polarised regimes gets realised in (2) depends on the initial perturbations of the
system. The boundary line between (1) and (2) is expected to be found in the shaded
area: it is at or between the lines defined by (a) H−c = rmin and (b) H−c = rmax.
The corresponding line equations are given in equation (5.3). Thus we can expect the
slope of the boundary to be in the interval [ 1

rmax
, 1
rmax

].

not happen, while the lock-in to the risky asset (p+t = 0) always does, i.e the
system is in the positive ordered state s = 1; (2) where either p−t = 0 or p+t = 0,
depending on which of the lock-ins occurs first, i.e the system is either in the
positive or the negative ordered state. The sketch in the figure 5.1 illustrates
this division.

5.2 Lower right quarter
(
cs >

1
κ , ch < 0.0

)
In this section we consider the lock-in effects for the risky (p+t = 0) and risk-
free (p−t = 0) assets on the lower right quarter of the noise trader imitation and
trend following cs-ch plane. The plane is divided into four quarters with the
natural reference frame imposed by the critical momenta H±c (see section 4.2)
and the lower right quarter correspond to: cs > ccriticals = 1

κ and ch < 0.
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5.2. Lower right quarter
(
cs >

1
κ , ch < 0.0

)
Let us recall the necessary conditions for the lock-in effects in the lower right
quarter:

1. Lock-in to the risk-free asset p+t = 0 occurs below H+
c

p+t = 0 if H ≤ H+
c , where H+

c =
1

ch

(
1

κ
− csst

)
,

such that

{
H+
c > 0 if s > 0,

H+
c < 0 if s < 0.

(5.4)

2. Lock-in to the risky asset p−t = 0 occurs above H−c

p−t = 0 if H ≥ H−c , where H−c = − 1

ch

(
1

κ
+ csst

)
,

such that

{
H−c > 0 if s > 0,

H−c < 0 if s < 0.

(5.5)

The following analysis is similar to the one for the upper right quarter in
section 5.1. Compared to section 5.1, it is more convenient to start with
considering the case of negative opinion s < 0, in which case both critical
momenta are negative H±c < 0 (see equations (5.4) and (5.5)). Thus, as
0 < rmin . Havg, on average the condition for lock-in to risky asset H ≤
H+
c < 0 is never satisfied, while the condition for lock-in to the risk-free asset

H ≥ H−c < 0 always is. Consequently, the system stabilises into the negative
ordered phase s = −1.

Now, assume positive opinion, in which case both critical momenta are positive
H±c > 0 (see equations (5.4) and (5.5)). Consider the stability of the lock-in
to the risk-free asset. If the momentum becomes larger than the lower bound
H−c for vanishing p−t , the opinion rapidly lowers until it turns negative. As
shown above, in such a case the state p−t = 0 is stable and the system falls to
the negative ordered regime s = −1.

Now, take the condition for the risky lock-in: H ≤ H+
c > 0. If the upper

threshold for p+t = 0 is higher then the average momentum H+
c > Havg, then

on average the lock-in to the risky asset occurs, while if H+
c < Havg then it

does not. It is important to note, that if the lock-in to the risky asset occurs,
the noise trader opinion index start rapidly rising, casing the momentum to
also rise. Therefore, the lock-in induced noise trader behaviour destabilises
the lock-in if the the momentum rises to values above the threshold value H+

c .
Recall, that the average momentum has a rough upper bound Havg . rmax.
Therefore, the condition H+

c = rmax divides the lower right quarter into two
regions with a boundary line given as
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5. Analytical phase diagram
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Figure 5.2: Illustrative sketch of the lower right quarter of the analytical phase
diagram on the noise trader imitation and trend following weight coefficients cs-ch
plane. The lower right quarter of the plane corresponds to the regions where ch < 0
and cs >

1
κ , where κ is the noise trader herding propensity. Here the necessary

conditions for the lock-in effects are: H ≤ H+
c for the risky asset (p+t = 0) and

H ≥ H−c for the risk-free asset (p−t = 0). Both of the critical momenta always have
the same sign than the noise trader opinion index. Considering the conditions for
the lock-in effects, the lower right quarter can be divided into two parts: (1) where
on average the lock-in to the risky asset never occurs, but for the risk-free asset it
always does, leading the system to the negative ordered phase s = −1; (2) where the
system is either in the positive or negative ordered phase, depending on which lock-in
occurs first. Which of the polarised regimes gets realised in (2) depends on the initial
perturbations of the system. The boundary line between (1) and (2) is defined by the
condition H+

c = Rmax, which gives rise to equation (5.6).

ch =
1

rmax

(
1

κ
− cs

)
. (5.6)

Figure 5.2 illustrates how the boundary line defined with the condition H+
c =

rmax divides the lower right quarter into two regions: (1) where on average
the lock-in to the risky asset never occurs, but for the risk-free asset it always
does, leading the system to the negative ordered phase s = −1; (2) where the
system is either in the positive or negative ordered phase, depending on which
lock-in occurs first.

5.3 Lower left quarter
(
cs <

1
κ , ch < 0.0

)
In this section we consider the lock-in effects for the risky (p+t = 0) and risk-
free (p−t = 0) assets on the lower left quarter of the noise trader imitation and
trend following cs-ch plane. The plane is divided into four quarters with the
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5.3. Lower left quarter
(
cs <

1
κ , ch < 0.0

)
natural reference frame imposed by the critical momenta H±c (see section 4.2)
and the lower left quarter correspond to: cs < ccriticals = 1

κ and ch < 0. Let us
recall the necessary conditions for the lock-in effects in the lower right quarter:

1. Lock-in to the risk-free asset p+t = 0 occurs below H+
c

p+t = 0 if H ≤ H+
c , where H+

c =
1

ch

(
1

κ
− csst

)
,

such that

{
H+
c < 0 if s > 0,

H+
c < 0 if s < 0.

(5.7)

2. Lock-in to the risky asset p−t = 0 occurs above H−c

p−t = 0 if H ≥ H−c , where H−c = − 1

ch

(
1

κ
+ csst

)
,

such that

{
H−c > 0 if s > 0,

H−c > 0 if s < 0.

(5.8)

Let us consider the directions of the inequalities stated above. We can see,
that on the left hand side of the critical line ccriticals = 1

κ , the signs of H±c
are independent of the opinion index. In the lower left quarter H+

c < 0 and
H−c > 0. In the following we use similar arguments as in the case of upper
and lower right quarters in sections 5.1 and 5.2. First, recall that the average
momentum is roughly bound by the positive valued fixed points of the price
growth rate: 0 < rmin . Havg . rmax. This allows us to rule out the occurs
of a lock-in to the risky asset. Namely, the condition for this is H ≤ H+

c < 0.
As the average momentum is positive, then on average this condition is never
satisfied.

Now, consider the condition for the lock-in to the risk-free asset: H ≥ H−c >
0. If the critical threshold H−c is lower than the average momentum H−c <
Havg, then on average the lock-in to risk-free asset occurs, while if H−c >
Havg it does not. It is important to note that if the lock-in to the risk-free
asset occurs, the noise trader opinion index lowers and correspondingly the
momentum decreases as well. Therefore, the lock-in induced noise trader
behaviour destabilises the lock-in if the momentum becomes lower than the
threshold H−c . We know that the average momentum is roughly bound from
below rmin . Havg. Therefore, the condition H−c = ravg divides the lower left
quarter into two regions, with a boundary line

ch = − 1

rmin

(
1

κ
− cs

)
. (5.9)

The division of the lower left quarter is illustrated in figure 5.3. There are two
distinct areas: (1) where on average neither of the lock-in effects occurs and
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5. Analytical phase diagram
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Figure 5.3: Illustrative sketch of the lower left quarter of the analytical phase
diagram on the noise trader imitation and trend following weight coefficients cs-ch
plane. The lower left quarter of the plane corresponds to the regions where ch < 0
and cs <

1
κ , where κ is the noise trader herding propensity. Here the necessary

conditions for the lock-in effects are: H ≤ H+
c for the risky asset (p+t = 0) and

H ≥ H−c for the risk-free asset (p−t = 0). On the left hand side of the plane, the signs
of H±c are independent of the opinion index. In the lower left quarter H+

c < 0 and
H−c > 0. Considering the conditions for the lock-in effects, the lower left quarter can
be divided into two parts: (1) where on average neither of the lock-in effects occurs
and the system is in a disordered state |s| < 0; (2) where on average the lock-in to
the risk-free asset occurs and the system is in the negative ordered state s = −1.
The boundary between these regions is defined with the condition H−c = rmin, which
leads to the line equation (5.9).

the system is in a disordered state |s| < 0; (2) where on average the lock-in
to the risk-free asset occurs and the system is in the negative ordered state
s = −1.

5.4 Upper left quarter
(
cs <

1
κ , ch > 0.0

)
In this section we consider the lock-in effects for the risky (p+t = 0) and risk-
free (p−t = 0) assets on the upper left quarter of the noise trader imitation and
trend following cs-ch plane. The plane is divided into four quarters with the
natural reference frame imposed by the critical momenta H±c (see section 4.2)
and the upper left quarter correspond to: cs < ccriticals = 1

κ and ch > 0. Let us
recall the necessary conditions for the lock-in effects in the lower right quarter:
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5.4. Upper left quarter
(
cs <

1
κ , ch > 0.0

)
1. Lock-in to the risky asset p+t = 0 occurs above H+

c

p+t = 0 if H ≥ H+
c , where H+

c =
1

ch

(
1

κ
− csst

)
,

such that

{
H+
c > 0 if s > 0,

H+
c > 0 if s < 0.

(5.10)

2. Lock-in to the risk-free asset p−t = 0 occurs below H−c

p−t = 0 if H ≤ H−c , where H−c = − 1

ch

(
1

κ
+ csst

)
,

such that

{
H−c < 0 if s > 0,

H−c < 0 if s < 0.

(5.11)

Considering the conditions in equations (5.10) and (5.11) we can see that in
the upper left quarter the signs of the critical momenta are independent of
the opinion index: H+

c > 0 and H−c < 0. Following similar arguments as for
previous regions (see sections 5.1 to 5.3) we can eliminate the possibility for
a lock-in to the risk-free assets. First, recall that the average momentum is
roughly bound by the positive valued fixed points of the price growth rate:
0 < rmin . Havg . rmax. Thus, on average the condition H ≤ H−c < 0 is not
satisfied.

Now, take the condition for the lock-in to the risky asset: H ≥ H+
c > 0. If the

critical threshold is lower then the average momentum H+
c < Havg then on

average the lock-in occurs, but if H+
c > Havg it does not. Note that if the lock-

in to the risky asset occurs, the noise trader opinion index rises, which also
rises the momentum. Therefore, the lock-in induced noise trader behaviour
does not destabilise the lock-in. As soon as the momentum becomes larger
than the threshold H+

c , the lock-in is stable. The condition H+
c = Havg can

be used for dividing the upper left quarter into two parts. We do not know the
exact value of the average momentum, however, we do know that it is roughly
bound with the price return rate fixed points rmin and rmax. The conditions
conditions H+

c = rmin and H+
c = rmax define two lines on the cs-ch plane

ch =
1

rmax

(
1

κ
− cs

)
and ch =

1

rmin

(
1

κ
− cs

)
. (5.12)

In figure 5.4 we illustrate how this area (shaded in the figure) divides the
upper left quarter into two parts: (1) where neither of the lock-in effects ever
occur and the system is in the disordered regime |s| < 0; (2) where on average
the lock-in to the risky asset always occurs and the system is in the positive
ordered regime s = 1. The boundary between these regions is somewhere in
the shaded area defined with conditions H+

c = rmin and H+
c = rmax.
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5. Analytical phase diagram

ch

cs

1

2

0.0

1
κ

Figure 5.4: Illustrative sketch of the upper left quarter of the analytical phase
diagram on the noise trader imitation and trend following weight coefficients cs-ch
plane. The upper left quarter of the plane corresponds to the regions where ch < 0 and
cs <

1
κ , where κ is the noise trader herding propensity. Here the necessary conditions

for the lock-in effects are: H ≥ H+
c for the risky asset (p+t = 0) and H ≤ H−c for

the risk-free asset (p−t = 0). On the left hand side of the plane, the signs of H±c are
independent of the opinion index. In the upper left quarter H+

c > 0 and H−c < 0.
Considering the conditions for the lock-in effects, the lower left quarter can be divided
into two parts: ((1) where neither of the lock-in effects ever occur and the system is
in the disordered regime |s| < 0; (2) where on average the lock-in to the risky asset
always occurs and the system is in the positive ordered regime s = 1. The boundary
between these regions is somewhere in the shaded area defined with the conditions
H+
c = rmin and H+

c = rmax, which lead to the lines defined in equation (5.12).

5.5 The combined phase diagram

In sections 5.1 to 5.4 we have analysed the possibility and stability of lock-
in effects for both the risky (p+t = 0) and the risk-free (p−t = 0) asset in
the four quarters of the cs-ch plane. The plane is divided into four quarters
with the natural reference frame imposed by the critical momenta H±c (see
section 4.2). For each of the quarters, we have found the existence of two
distinct regimes. From the sketches of the four quarters, given in figures 5.1
to 5.4, we can observe that regimes situated next to each other on either sides
of the reference lines ch = 0 and cs = 1

κ have the same characteristics. This
suggest that the results, for the four quarters individually, can be merged into
a full phase diagram for the artificial market on the cs-ch plane.

Figure 5.5 presents a sketch of this analytical phase diagram. There are four
distinct phases centred around the point ( 1

κ , 0): (1a) where noise traders are
in the positive ordered phase s = 1; (2a) where noise traders are either in
the positive s = 1 or the negative s = −1 ordered state, depending on the
initial perturbations of the system; (3a) where noise traders are in the nega-
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5.5. The combined phase diagram

ch

cs

4a

1a

2a

3a

0.0

1
κ

Figure 5.5: Illustrative sketch of the market model analytical phase diagram on
the noise trader imitation and trend following weight coefficients cs-ch plane. The
plane is divided into four quarter by the lines ch = 0 and cs = 1

κ . The analytical
is constructed by considering the possibility and stability of lock-in effect for both
asset types in all four quarters of the plane separately. The analysis for each of these
quarters is given in sections 5.1 to 5.4. There are four distinct phases centred around
the point ( 1

κ , 0): (1a) where noise traders are in the positive ordered phase s = 1; (2a)
where noise traders are either in the positive s = 1 or the negative s = −1 ordered
state, depending on the initial perturbations of the system; (3a) where noise traders
are in the negative ordered phase s = −1; (4a) where noise traders are disordered
|s| < 1. Here s is the noise trader opinion index. The boundaries of the positive
ordered phase (1a) can be found in the two triangular shaded areas, which are defined
by the conditions H+

c ∈ [rmin, rmax] and H−c ∈ [rmin, rmax] for the left and right hand
side respectively. The negative ordered phase (3a), however, is outlined from the left
by the condition H−c = rmin and from the right by H+

c = rmax.

tive ordered phase s = −1; (4a) where noise traders are disordered |s| < 1.
The boundaries of the positive ordered phase (1a) can be found in the two tri-
angular shaded areas, which are defined by the conditions H+

c ∈ [rmin, rmax]
and H−c ∈ [rmin, rmax] for the left and right hand side respectively. The neg-
ative ordered phase (3a), however, is outlined from the left by the condition
H−c = rmin and from the right by H+

c = rmax.
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Chapter 6

The numerical phase diagram

In chapter 5 we proposed an analytical phase diagram for the artificial mar-
ket model on the cs-ch plane. The key idea for constructing this analytical
phase diagram was to consider in which regions are lock-in effects for the risky
(p+t = 0) and the risk-free (p−t = 0) assets possible, i.e in which regions are
noise traders polarised |s| = 1. In chapter 4 the limiting cases of ordered noise
traders were analysed in detail: necessary criteria for lock-in effects were dis-
cussed in sections 4.1 and 4.2 and in section 4.3 we derived two fixed points for
the price growth rate rt. These results were employed in chapter 5 for propos-
ing an analytical phase diagram for the average market behaviour on the cs-ch
plane. The results from chapter 5 are summarised in the sketch of the ana-
lytical phase diagram in figure 5.5, which shows four distinct regions centred
around the critical point ( 1

κ , 0). In this chapter we construct a numeric phase
diagram for the artificial market model. First, in section 6.1 we introduce the
phase diagram mapping process and in section 6.2 present the numeric results.
We see that the four regimes proposed in the analytical phase diagram are
indeed present in the numeric phase diagram and their position and shape
corresponds well to the analytic treatment. However, in the numeric phase
diagram, we also see a fifth phase, which was not predicted in chapter 5.

6.1 The mapping process

In this section we give an overview of the numeric phase diagram mapping
process. Our general work-flow is very similarly to the one used in section 3.2.3
for mapping the phase diagram of the toy model. First, we conduct parameter
scans over the cs-ch plane. For each pair of coefficient values (cs, ch), the
market is evolved in a numerical simulation. The time series characterising
these simulations are analysed to produce a set of scalar indicators of the
market dynamics. The indicators are chosen so that they would enable us to
differentiate between different market regimes. We visualise the indicators by
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6. The numerical phase diagram

plotting colour coded heat-maps. In the heat-maps, the value of an indicator
at a specific point on the plane is given by the colour of that point. We ensure
readability, even for greyscale prints, by employing a colour scheme from the
cubehelix family introduced by Green (2011) for astrophysical intensity plots.

There is, however, a clear difference between the toy model and the artificial
market model. Namely, the toy model is deterministic, while the market model
is stochastic. Consequently, the results for the artificial market are averaged
over 100 realisations with different random number generator seeds. All other
parameters are kept the same. We use the basic parameter set defined in
table 3.1. In some cases, we find it necessary to vary a specific parameter
for making certain features clearer. In these cases, the changed parameter is
always highlighted. All simulations last for T = 105 time steps.

Let us describe the scalar indicators used for distinguishing the different
regimes. Similarly to the toy model phase diagram mapping in section 3.2.3,
our choice of indicators has been guided by a variety of exploratory simula-
tions. During these, we observed several distinct features, for example the
existence of ordered phases, which had very low volatility, as well as the exis-
tence of oscillatory dynamics. The specifics of different regimes are discussed
in section 6.2. Below, we explain the set of informative indicators employed
in this chapter. All of the listed indicators are averaged over 100 simulations
realisations with different random number generator seeds.

1. Prop of p±t = 0 : The proportion of time steps during which the corre-
sponding switching probability, either p+t or p−t , is non-positive.

2. Mean x
n/f
t : The mean value of the corresponding risky fraction, either

xft or xnt , average over all T = 105 time steps.

3. Log of Var xn/f : The logarithm of the corresponding risky fraction
variance, calculated over all T = 105 time steps.

4. Final Ht/rd : The final momentum Ht, calculated as an average over
the final 1000 time steps and given in the units of rd.

5.
(
Hmax
t −Hmin

t

)
/rd : The difference of the maximum and minimum

momentum, given in the units of rd.

6. Log of Var Ht/rd : The logarithm of the momentum Ht variance, calcu-
lated over all T = 105 time steps.

7. Log of final Wn
t /W

f
t : The logarithm of the final wealth ratio νt =

Wn
t /W

f
t , calculated as an average over the final 1000 time steps.

8. Mean rt/rd : The mean value of the price return rate rt, calculated over
all T = 105 time steps and given in the units of rd.

9. Log of time scale τ/day : The logarithm of the estimated time scale of
the simulation time step given in the units of days.
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Figure 6.1: Illustration of the non-uniform to uniform grid interpolation during the
parameter scan over the imitation and trend following weight coefficients cs-ch plane.
The illustration uses the data for the mean noise traders risky fraction xn. In the
left most panel, we see the original raw data sampled with the non-uniform grid, in
the middle panel we see the corresponding linearly interpolated uniform grid and the
right most panel shows the final heat-map. The non-uniform grid is designed so that
we sample more densely in the regions near the lines cs = ccriticals = 1

κ and ch = 0.
The grid covers the region defined by cs ∈ [−1.5, 2.5] and ch ∈ [−500, 500]. When
considering these heat-maps, and other in the current chapter, keep in mind that
the cs axis is scaled by its critical value ccriticals = 1

κ . With careful observations, we
can already see the relevant phase structure on the non-uniform grid in the left most
panel. Thus we can be sure, that the interpolation process just makes it easier to
read the plots.

We now explain the parameter scanning over the cs-ch plane. Recall that the
critical momenta, discussed in section 4.2, defined a natural frame of reference
on the cs-ch plane with the lines ch = 0 and cs = 1

κ . Moreover, the crossing
point of these lines corresponds to the critical point of the analytical phase
diagram ( 1

κ , 0) (see figure 5.5). Motivated by the analytical phase diagram
(see chapter 5), we conduct the parameter scan over the cs-ch plane using
a non-uniform grid, which is denser near the lines ch = 0 and cs = 1

κ . As
the heat-map plotting algorithm requires equally spaced data, we linearly
interpolate the raw data onto a uniform grid using methods implemented in
the scientific Python package SciPy (Jones et al.). This process is illustrated
in figure 6.1, where moving from left-to-right we see panels with: (1) raw data
on the non-uniform grid; (2) linearly interpolated uniformly spaced data; (3)
the final heat-map. The grid covers the region given by cs ∈ [−1.5, 2.5] and
ch ∈ [−500, 500]. Notice that, with careful observations we can see the key
structure of the heat-map already from the non-uniform raw data, but the
linear interpolation allows us to make a better visualisation. The full set of
heat-maps of the market model with the basic parameter set (section 3.1.1)
can be found in figure 6.2.
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Figure 6.2: The full set of indicator heat-maps used for the numeric market model
phase diagram mapping on the noise trader imitation and trend following weight
coefficients cs-ch plane. All indicators are calculated as averages of 100 simulations
with different random number generator seeds. The basic parameter set (table 3.1) is
used and all simulations last for T = 105 time steps. Take care that cs-axis is scaled
with the critical value ccriticals = 1

κ , where κ is the noise trader social herding. The
two perpendicular white lines correspond to ch = 0 and cs = 1

κ , i.e they cross at the
analytical critical point ( 1

κ , 0), which due to the scaling fall at (1, 0). Notice that there
are regions, which are outlines in several heat-maps. For example we can see that the
upper right corner is dominated by noise traders (ν >> 1) and has a high noise trader
risky fraction, as well as relatively high price return and momentum. Or that the
lower right corner is fundamentalist dominated (log ν < 0 ⇒ ν < 1) and has very
low noise trader risky fraction xn ≈ 0. Similarly we can notice a triangular region in
the upper left quarter, where the trader investment decisions are significantly more
volatile then elsewhere. Finally note that right above the critical point there is a
narrow triangular region where constantly p+t = 0, indicating the positive ordered
regime, and below the critical point there is large region where constantly p−t = 0,
indicating the negative ordered regime. A more detailed analysis of the heat-maps is
given in section 6.2.
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6.2. Results

6.2 Results

We presented the methodology used for profiling the numeric phase diagram
of the artificial market model in section 6.1. In this section we present re-
sults from the numeric mapping process. First, in section 6.2.1, we provide a
short general overview of the heat-maps in figure 6.2 and in section 6.2.2 we
present the numeric phase diagram. Finally, in section 6.2.3 we conclude with
presenting an illustrative sketch of the phase diagram.

6.2.1 General overview of the heat-maps

In this section we shortly describe the full set of indicator heat maps for a
market model with the basic parameter set (table 3.1) shown in figure 6.2.
Take care that the cs-axis is in the units of the critical value ccriticals = 1

κ ,
which for the basic parameter set is ccriticals = 1

0.98 ≈ 1.02. In each heat-map
we see two white lines, which correspond to the lines ch = 0 and cs = ccriticals .
Thus the crossing point (1, 0) of the white lines corresponds to the analytical
critical point ( 1

κ , 0). Finally, note that the notation 1e−x, found on the colour
bars of the heat-maps, indicates that the colour bar is in the units of 10−x.

Notice that in figure 6.2 there are regions, which are outlined in several heat-
maps. For example we can see that the upper right corner is dominated by
noise traders (ν >> 1) and has a high noise trader risky fraction, as well as
relatively high price return and momentum. Or that the lower right corner
is fundamentalist dominated (ν < 1) and has very low noise trader risky
fraction xn ≈ 0. Similarly we can observe a triangular region in the upper left
quarter, where the trader investment decisions are significantly more volatile
than elsewhere. An other striking feature is that all of the structure seen
in figure 6.2 seems to be centred at the crossing point of the lines ch = 0
and cs = 1

κ . This correspond to the analytical critical point ( 1
κ , 0). A more

detailed analysis of the critical point and the phase structure around it is given
in section 6.2.2.

Finally, we call attention to the heat-map for the mean price return rate. Note,
that rt is given in the units of the average divided growth rate rd. Recall the
lower and upper fixed points rmin and rmax of the average price return rate ravg
(see equation (4.44)). For the basic parameter set (table 3.1) used in figure 6.2
these are rmin = rd and rmax ≈ 3.5rd. We have argued that these fixed points
effectively act as bounds on the long-term average price growth. Indeed, we
can see that in the fundamentalist dominated lower right corner, where xn ≈ 0,
the mean price return rate equals the lower fixed point ravg ≈ rmin = rd. In
the upper right corner, where noise traders dominate, we see that rt becomes
progressively larger as the mean noise trader risky fraction becomes larger,
culminating at ravg ≈ rmax in the narrow triangular region above the critical
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Figure 6.3: A magnification of a selection of heat-maps from figure 6.2, which visu-
alise the phase structure of the artificial market model on noise trader imitation and
trend following weight coefficients cs-ch plane. The white dashed lines on the lower
half of the plane correspond to the analytical boundaries of the negative ordered state
(3a) and the dotted white lines on the upper half of the plain define the analytical
regions where the boundaries for the positive ordered state (1a) are found (see chap-
ter 5). Recall, that the ordered states corresponded to polarised noise trader opinion
s = 2xn− 1. We have observed five different regimes in the numerical phase diagram:
(1n) positive ordered phase s = 1; (2n) bifurcating ordered regime, where either s = 1
or s = −1, depending on the initial perturbation; (3n) negative ordered phase s = −1;
(4n) disordered regime |s| < 1; (5n) oscillating regime, with regular transient lock-in
effects. In chapter 5 we proposed an analytical phase diagram for the average market
behaviour. It is sketched in figure 5.5. We can observe that the main structure and
all four phase of the analytical phase diagram are indeed present in the numerical
phase diagram. However, in chapter 5 we were not able to predict the existence of
the triangular oscillating regime in the upper left quarter of the plane.

point, where p+t = 0 and xn = 1. Throughout the left hand side of the plane,
rt is only slight larger than the lower fixed point.

6.2.2 Regime structure

In this section we discuss the general structure of the numeric phase diagram.
Let us turn to figure 6.3, which shows magnified heat-maps for the switching
probabilities p±t , the mean and variance of the noise trader risky fraction xnt ,
the variance and final value of the momentum Ht. The white dashed lines
on the lower half of the plane correspond to the boundaries of the analytical
negative ordered state (3a) and the dotted white lines on the upper half of
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the plain define the regions where the boundaries of the analytical positive
ordered state (1a) are found (see chapter 5). We have highlighted five regions:
(1n) positive ordered phase s = 1; (2n) bifurcating ordered regime, where
either s = 1 or s = −1, depending on the initial perturbation; (3n) negative
ordered phase s = −1; (4n) disordered regime |s| < 1; (5n) oscillating regime,
with regular transient lock-in effects. The first four were also proposed in the
analytical phase diagram sketched in figure 5.5. However, the fifth region (5n)
was not. We argue that this is similar to the case of the toy model, where
the fixed point analysis was not able to predict the jumping and oscillating
phases. In the following we discuss these five regimes in more detail.

First, let us take the left hand side of the cs-ch plane. In chapter 3 we already
introduced the disordered phase (4n) by describing the time series in figure 3.1,
which corresponded to a market with the basic parameter set and cs = ch =
1. Here we will not re-iterate the detailed description given in section 3.1.2,
instead make two general observation about (4n), which can be seen from
figure 6.2: (a) the average price return rate is almost the dividend growth rate
ravg ≈ rd; (b) the wealth ratio is nearly one, or slightly lower, indicating that
neither of the traders is strongly dominating. Let us turn to the region (5n).
Figure 6.7 gives an example of the typical oscillating behaviour observed in
(5n). It features regular switches between the two lock-in effects. From the
heat-maps in figures 6.2 and 6.3 we can observe that the properties of region
(5n) change smoothly from the border with (1n) to the border with (4n).
The corresponding change in the time series is illustrated in figure 6.8, which
shows the dynamics of the risky fractions at ch = 100 for different opinion
weights cs ∈ {0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}. We see that far from the
line cs = 1

κ , the regular oscillations between xn = 0 and xn = 1 last only for
a short time, while closer they last longer. Our simulations show that near
the ordered phase (1n), the oscillations last at least until the price becomes
too large to be stored as a double precision floating point number and the
simulations end due to numeric overflow. Thus, near (1n) the oscillations are
effectively permanent.

In the following we discuss the characteristics of the right hand side of the
cs-ch plane. Let us start with the positive (1n) and negative (3n) ordered
states, for which typical time series are presented in figures 6.9 and 6.10,
respectively. In case of (1n), in figure 6.9, we see super-exponential price
growth until noise traders reach their maximum risky fraction and are locked-
in to the positive ordered regime. After this lock-in has occurred, the market
becomes calm, essentially deterministic. This behaviour last tills the end of
the simulations (T = 105). For the negative ordered state (3n), in figure 6.10,
we see a similar pattern. Although, the relaxation to the negative ordered
state s = −1 (xn = 0) takes an order of magnitude longer than the relaxation
into the positive ordered state. Also, before the lock-in to the negative ordered
state occurs, instead of clear super-exponential dynamics, as in figure 6.9, the
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time series show behaviour typical of (4n). Nevertheless, once the system
reaches the negative ordered phase, fluctuations fade and the market becomes
effectively deterministic till the end of the simulation.

Let us consider the region (2n). First, remember the characterisation of the
area (2a) for the analytical phase diagram: the system is either in the positive
s = 1 or the negative s = −1 ordered regime, depending on which of the
lock-in effects (vanishing switching probability) occurs first. For more details
see sections 5.1 and 5.2. Keeping the aforementioned in mind, let us consider
region (2n). In figure 6.3 the properties of (2n) seem to be smoothly varying
between the two ordered phases (1n) and (3n). However, we call attention to
the fact that in chapter 5 we found that depending on the initial perturbations
this region should be exhibiting dynamics corresponding either to the positive
or negative ordered phase. Our observations from the corresponding time
series support this claim. Figure 6.11 shows time series of the price momentum
Ht, noise trader switching probabilities p±t and the risky fractions xft and xnt in
region (2n) for two different random number seeds. For one seed, the dynamics
corresponds to the positive ordered phase (figure 6.11a), and for the other, it
corresponds to the negative ordered phase (figure 6.11b). We have observed
that this is the case throughout the region (2n). Due to this dependence on
initial perturbations, we call (2n) the bifurcating ordered phase. Now we can
interpret the seemingly smooth variation of properties throughout (2n), as a
change in the probabilities for the system to stabilise in either s = 1 or s = −1.

Consider the boundaries between (1n), (2n) and (3n). Recall, that in chap-
ter 5 we proposed straight lines with slopes 1

rmin
and − 1

rmax
as boundaries

for the analytical negative ordered phase (3a) on the left and right hand side,
respectively. Here rmin and rmax are the lower and upper fixed points for
the average price return rate ravg (see section 4.3). For the analytical posi-
tive ordered phase (1a), we proposed that its boundary lines have slopes in
the intervals ±[ 1

rmax
, 1
rmin

], where plus and minus correspond to right and left
hand side. In figure 6.3 the initial noise trader allocations are xn0 = 0.5. Thus
both of the ordered states are symmetric in regards of the initial state of the
market. In the light of the bifurcating nature of (2n), it would be natural to
consider the boundaries between (1n), (2n) and (3n) from heat-maps where
the symmetry between |s| = ± is broken, i.e where xn 6= 0.5. Figure 6.4 shows
the mean noise trader risky fraction heat-maps for three different initial noise
trader allocations xn0 ∈ {0.0, 0.5, 1.0}. All other parameter correspond to the
basic parameter set given in table 3.1. We can observe that adding a bias
to the noise trader allocations, i.e xn0 6= 0.5, pushes the bifurcating regime
towards the corresponding ordered state. From figure 6.4 we can observe that
even when the system is initially in the positive ordered state xn0 = 1, there is
a region where it ends up in the negative ordered state xn = 0, and vice versa.
These correspond to the positive and negative ordered phases (1n) and (3n),
respectively. In figure 6.4 the analytical boundaries are drawn with white dot-
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Figure 6.4: Heat-maps for determining the boundary between the positive, negative
and bifurcating ordered regimes ((1n), (3n) and (2n)). The heat-maps are given on the
noise trader imitation and trend following weight coefficient cs-ch plane. In order to
effectively observe the boundaries of these phases, it is helpful to break the symmetry
between the two ordered states. In the above we show mean noise trader risky fraction
heat-maps for three different initial noise trader allocations xn0 ∈ {0.0, 0.5, 1.0}. All
other parameter correspond to the basic parameter set given in table 3.1. We can
observe that adding a bias to the noise trader allocations, i.e xn0 6= 0.5, pushes the
bifurcating regime towards the corresponding ordered state. Recall, that the ordered
states corresponded to polarised noise trader opinion s = 2xn−1. In (1n) and (3n) the
noise traders will always fall to the positive and negative ordered state, respectively.
In (2a), however, whether the system stabilises at s = 1 or s = −1 depends on the
initial perturbations. This is demonstrated with the time series in figure 6.11, where
the system falls into the positive and negative ordered state depending on the random
number generator seed. In the above heat-maps we can observe that even when the
system is initially in the positive ordered state xn0 = 1, there is a region where it ends
up in the negative ordered state xn = 0, and vice versa. These correspond to the
positive and negative ordered phases (1n) and (3n), respectively. The white dotted
and dashed lines in the heat-maps correspond to the analytical boundaries proposed
in chapter 5 for (1n) and (3n), respectively. We can observe that the analytical and
numerical boundaries are in good accordance.

ted and dashed lines for (1n) and (3n), respectively. We can observe that the
analytical boundaries hold for the numeric phase diagram.

Let us now consider the analytical critical point ( 1
κ , 0). For this, turn to fig-

ure 6.5, which shows heat-maps for different herding propensity values, keeping
all other parameters as in the basic parameter set given in table 3.1. From left
to right it shows the mean noise trader risky fraction for κ ∈ {1.01, 0.98, 0.95}.
The corresponding analytical critical point cs coordinates are c1.01s = 1

1.01 ≈
0.99, c0.98s = 1

0.98 ≈ 1.02 and c0.95s = 1
0.95 ≈ 1.05. Note, that in order to make

the results easier to read in figure 6.5 the cs-axis is not scaled with the critical
coordinate ccriticals . We can see that indeed, the cs coordinate of the critical
point is well predicted by ccriticals = 1

κ .
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Figure 6.5: Illustration of testing the position of the phase diagram critical point on
the noise trader imitation and trend following weight coefficients cs-ch plane. In order
to test the analytical critical point ( 1

κ , 0) we compare the heat-maps of mean noise
trader risky fraction for three different herding propensity values κ ∈ {1.01, 0.98, 0.95},
which correspond to ccriticals ∈ {0.99, 1.02, 1.05}. The rest of the model parameters
correspond to the basic parameter set defined in table 3.1. Notice, that here the
cs-axis is not scaled with the critical value. The white lines correspond to ch = 0
and cs = 1

κ , i.e they cross at the analytical critical point ( 1
κ , 0). We can see that the

numeric and analytic ccriticals are in good accordance.

Finally, let us test how robust is the phase diagram to added noise. We do
this by increasing the standard deviation of the dividend process σd. Re-
call that in the basic parameter set (table 3.1) the standard deviation of
the dividend process is σd = 0.000016 = 0.1rd. Figure 6.6 shows heat-
maps for the mean and variance of the noise trader risky fraction, using
σd ∈ {0.000016, 0.001, 0.01} ≈ {0.1rd, 6rd, 60rd}. All other parameters are
given by the basic parameter set (table 3.1). We can observe that the heat-
maps for σd = 0.1rd and σd ≈ 6rd are almost identical. However, the heat-
map for σd ≈ 60rd is significantly difference compared to the heat-map for
σd = 0.1rd. As a 60 fold increase in σd does not make a notable difference to
the heat-maps, we can conclude that the phase diagram is rather robust to
changes in σd.
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Figure 6.6: Testing the robustness of the phase diagram to change of the standard
deviation of the dividend process. Above, we see heat-maps for the mean and variance
of the noise trader risky fraction for σd ∈ {0.000016, 0.001, 0.01} ≈ {0.1rd, 6rd, 60rd}.
All other parameters are given by the basic parameter set (table 3.1). In rest of this
thesis, we have used σd = 0.000016 = 0.1rd. We can observe that the heat-maps for
σd = 0.1rd and σd ≈ 6rd are almost identical. However, the heat-map for σd ≈ 60rd
is significantly difference compared to the heat-map for σd = 0.1rd. As a 60 fold
increase in σd does not make a notable difference to the heat-maps, we can conclude
that the phase diagram is rather robust to changes in σd.
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Figure 6.7: Characteristic time series for the oscillating regime (5n), where the
system undergoes regular oscillations between the two ordered states xn = 1 and
xn = 0. The basic parameter set given in table 3.1 is used. The noise trader imitation
and trend following weight coefficients are ch = 100 and cs = 0.95, respectively.
Based on equating the daily model- and real-volatility, we estimate that each time
step correspond to τ ≈ 0.50 days. We can see that the system is regularly switching
between two lock-ins. The period of the oscillations (the lock-in time) and the life-time
of the oscillations changes throughout the region (5n). Far from the ordered phase
(1n), the oscillation life-time (and period) is smaller, than near (1n). We have seen in
our simulations, that near the boundary with (1n), the oscillations last at least until
the price becomes too large to be stored as a double precision floating point number
and the simulation ends due to numeric overflow. The change of oscillations due to
change in cs is illustrated in figure 6.8.74
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Figure 6.8: Illustration of the the change in the oscillation life time and pe-
riod throughout the oscillating regime (5n). The basic parameter set given in
table 3.1 is used. The noise trader trend following weight coefficient is ch =
100. In above, we see eight panels with showing time series for the risky frac-
tion xft and xnt , for different noise trader imitation weight coefficient values cs ∈
{0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}. We can see that the system is regularly switch-
ing between two lock-ins. The period of the oscillations (the lock-in time) and the
life-time of the oscillations changes throughout the region (5n). Far from the ordered
phase (1n) (far from cs = 1

κ ), the oscillation life-time (and period) is smaller, than
near (1n). We have seen in our simulations, that near the boundary with (1n), the
oscillations last at least until the price becomes too large to be stored as a double
precision floating point number and the simulation ends due to numeric overflow. In
the last panel we see the system behaviour in the positive ordered regime (1n), but
near the border with (5n). We can see that even though the system first has a short
lock-in in the risky asset, in the end it becomes permanently locked-in to the risky
asset, i.e xn = 1.0.
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Figure 6.9: Characteristic time series for the positive ordered regime (1n), where all
noise traders are invested into the risky asset xn = 1 (opinion index: s = 1). The basic
parameter set given in table 3.1 is used. The noise trader imitation and trend following
weight coefficients are cs = 1.02 and ch = 10, respectively. Based on equating the daily
model- and real-volatility, we estimate that each time step correspond to τ ≈ 0.64
days. We can observe that in the beginning of the simulation, the price grows super-
exponentially, until noise traders reach their maximum risky fraction, at which point
the market dynamics effectively become deterministic. Our observations show that
this deterministic behaviour continues till the asset price becomes too large to be
represented as a double precision floating point number and the simulations end due
to numeric overflow. Thus, we can conclude that the lock-in effect is effectively
permanent.

76



6.2. Results

10­1

100

101
Price Pt

4
2
0
2
4

1e 2 Price return rate rt rt Ht

1.5
1.0
0.5
0.0
0.5
1.0
1.5 1e 3 Price momentum Ht

Ht rd

1.4

1.6

1.8

2.0 1e 4 Dividend­Price ratio dt/Pt

0.0

0.1

0.2
Noise trader switching probabilities p +

t p −t

0.0

0.5

1.0
Risky fraction xnt xft

0.2
0.4
0.6
0.8
1.0
1.2

Wealth ratio νnft =Wn
t /W

f
t

0 2000 4000 6000 8000 10000
Time steps (τ= 0. 48 days)

1.8

1.9

2.0

2.1 1e 1 Noise trader herding propensity  t

Figure 6.10: Characteristic time series for the negative ordered regime (3n), where
all noise traders are invested into the risk-free asset xn = 0 (opinion index: s = −1).
The basic parameter set given in table 3.1 is used. The noise trader imitation and
trend following weight coefficients are cs = 1.02 and ch = −30, respectively. Based
on equating the daily model- and real-volatility, we estimate that each time step cor-
respond to τ ≈ 0.48 days. We can observe that in the beginning of the simulation,
the market dynamics is similar to that of the disordered regime (4n), for which char-
acteristic time series can be seen in figure 3.1. When the noise trader risky fraction
becomes xn = 0, there is a lock-in effect and the market dynamics effectively become
deterministic. Our observations show that this deterministic behaviour continues till
the asset price becomes too large to be represented as a double precision floating point
number and the simulations end due to numeric overflow. Thus, we can conclude that
the lock-in effect is effectively permanent. 77
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Figure 6.11: Illustration of the bifurcating nature of the regime (2n). The basic
parameter set given in table 3.1 is used. The noise trader imitation and trend following
weight coefficients are cs = 1.15 and ch = 5, respectively. Panel (a) shows the time
series for the random number generator seed 10408 and panel (b) for 1518. Based
on equating the daily model- and real-volatility, we estimate that each time step
correspond to τa ≈ 0.25 and τb ≈ 0.25 days for panel (a) and (b) respectively. Observe,
that the market dynamics in panels (a) and (b) are significantly different. In panel (a),
the noise traders order into the positive ordered phase xn = 1, while in panel (b) they
stabilise in the negative ordered phase (b). The corresponding characteristic time
series for the positive and negative ordered state can be seen in figures 6.9 and 6.10,
respectively. We re-iterate that the only difference between the two simulations is in
the seed of the random number generator. Thus, we can conclude that in (2n) the
system is highly susceptible to initial perturbations. Due to this, we name this regime
the bifurcating ordered phase.
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6.2.3 Phase diagram summary

In section 6.1 we described the mapping procedure of the numeric phase dia-
gram and in section 6.2.2 we present a detailed overview of the regime struc-
ture of the phase diagram. Here we summaries these results with the sketch in
figure 6.12, which shows five regimes centred at the critical point ( 1

κ , 0): (1n)
positive ordered phase s = 1; (2n) bifurcating ordered regime, where either
s = 1 or s = −1, depending on the initial perturbation; (3n) negative ordered
phase s = −1; (4n) disordered regime |s| < 1; (5n) oscillating regime, with
regular transient lock-in effects. The regimes (1n)–(4n) correspond well with
the four phases found for the analytical phase diagram in chapter 5. The an-
alytical phase diagram is sketched in figure 5.5. Comparing the two sketches,
we can see that they are the same, except for (5n) in the numeric case.

The numeric phase diagram in figure 6.12 has been constructed using a con-
stant noise trader herding propensity κ. However, if the herding propensity is
time-depended, then this can be though of as moving on the phase diagram
in figure 6.12. For example, assume that the noise trader imitation and trend
following weight coefficients are kept fixed at some values c∗s and c∗h. If the
herding propensity κ is time dependent, then this means that the system is
moving along a line defined by c∗s and c∗h in the cs-ch plane. While moving
along this line, the system can cross between different phases. Thus, the
above phase diagram can be applied for analysing the time-depended regime
structure of the market model. Although, this is beyond the scope of this
thesis.

79



6. The numerical phase diagram

ch

cs

4n

5n

1n

2n

3n

0.0

1
κ

Figure 6.12: Illustrative sketch of the numerical phase diagram of the artificial
market model on the noise trader imitation and trend following weight coefficients
cs-ch plane. The numeric phase diagram has five separable regions which are centred
at the critical point ( 1

κ , 0), where κ is the noise trader herding propensity. These five
regimes are: (1n) positive ordered phase s = 1; (2n) bifurcating ordered regime, where
either s = 1 or s = −1, depending on the initial perturbation; (3n) negative ordered
phase s = −1; (4n) disordered regime |s| < 1; (5n) oscillating regime, with regular
transient lock-in effects. Here s is the noise trader opinion index. The analytical
boundaries of the positive ordered phase (1n) can be found in the two triangular
shaded areas; the slopes of these boundary lines are in the intervals ±[ 1

rmax
, 1
rmin

],
where minus and plus correspond to left and right hand side, respectively. The
boundaries for the negative ordered phase (3a), have slopes 1

rmin
and − 1

rmax
on the

left and right hand side, respectively. The regimes (1n)–(4n) correspond well with
the four phases found for the analytical phase diagram in chapter 5. The analytical
phase diagram is sketched in figure 5.5. Comparing the two sketches, we can see that
they are the same, except for (5n) in the numeric case.
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Chapter 7

Conclusion and discussion

The goal of this thesis was to study the different market regimes in the artificial
market model introduced by Kaizoji et al. (2015) and extended by Kohrt
(2016). In its essence, the model is an equilibrium model of fundamentalist
and noise traders. It has two assets, a constant interest rate risk-free asset
and a dividend paying risky asset, whose price is determined by the market
clearing condition. The fundamentalists base their investment decisions on
maximising their constant risk aversion expected utility, which leads them to
the value investor strategy: buy-low-and-sell-high. The noise traders, however,
guide their decisions by the opinion of other noise traders and the market
trend. The strength of the noise trader response to these signals is given
by their herding propensity. Kaizoji et al. (2015) showed that with a time
depended herding propensity, following an Ornstein-Uhlenbeck process, the
market model exhibits transient faster-than-exponential bubble growth.

In this thesis, we have explored the effects of the noise trader imitation and
trend following in greater detail. In Kaizoji et al. (2015) and Kohrt (2016) the
noise trader decision process relied equally on social factors and the market
trend. We extended the model by adding weight coefficients to these signals,
so that their relative importance can be controlled. This allowed us to view
the market regimes, e.g transient super-exponential bobble growth, from a
different perspective. Keeping the herding propensity a constant and varying
the imitation and trend following weight coefficients, we have mapped a phase
diagram of the market model on the plane defined by these weight coefficients.
The case of a time-dependent herding propensity, e.g in Kaizoji et al. (2015),
can now be though of as moving on this phase diagram, thus providing a way
to consider the regime switching during the market simulation.

In section 3.2 we introduced a mean-field Ising based toy model for elaborating
on the effects of the noise trader self-referential behaviour. The toy model con-
sisted of two coupled iterative equations. One for the magnetisation, which we
used to model the noise trader opinion, and one for the external field, which
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we used to model the price momentum. Compared to the full market model,
the toy model substitutes the stochastic noise trader decision process with a
threshold like behaviour given by the hyperbolic tangent function and approx-
imates the relation between the noise trader opinion and the price growth rate
with an one-to-one correspondence. We mapped a phase diagram of this toy
model on the imitation and trend following weight coefficients plane. Besides
the standard ferromagnetic ordered and paramagnetic disordered phases, we
observed two additional ordered regimes. One exhibited regular jumps be-
tween the two polarised states, while the other showed smoothly oscillating
dynamics.

In chapter 4 we considered the limiting cases of noise trader behaviour. We
derived two fixed points for the price growth in section 4.3. One for both
ordered noise trader state, i.e regimes where all noise traders are invested
into the same asset. These fixed points effectively act as upper and lower
bound for the long-term average price growth, which is proven numerically
in chapter 6. In section 4.1, we showed that the necessary condition for the
onset of these polarised noise trader regimes, is to have a lock-in effect for
one of the assets, which can be achieved by a zero valued probability for noise
traders to sell that asset. It is convenient to define threshold momentum
values above or below which the noise trader switching probabilities vanish,
inducing an ordered state. In section 4.2, we showed that these threshold
critical momenta introduce a natural frame of reference on the noise trader
imitation and trend following plane. In chapter 5 the centre of this reference
frame is shown to correspond to the critical point of the market model phase
diagram.

The results from chapter 4 were used in chapter 5 to propose an analytical
phase diagram for the market model on the noise trader imitation and trend
following weight coefficients plane. We found four different regimes centred at
the critical point ( 1

κ , 0), where κ is the constant noise trader herding propen-
sity. Figure 5.5 illustrates these four regimes: (1) positive ordered phase,
where all noise traders are invested in the risky asset; (2) bifurcating ordered
state, where depending on the initial perturbations all noise traders are either
invested in the risky or the risk-free asset; (3) negative ordered phase, where
all noise traders are invested in the risk-free asset; (4) disordered regime, where
around half of the noise traders is invested in the risky asset and the rest in
the risk-free asset. In chapter 6 we mapped a numeric phase diagram, which
is sketched in figure 6.12. We found that the analytical predicted the general
structure of the phase diagram well. However, for the numeric phase diagram
we also found a fifth phase: (5) oscillating phase, where the noise traders
regularly shift between lock-in effects for the risky and the risk-free asset.

Farmer and Foley (2009) have argued that incorporating agent-based models
into the policy making process would greatly benefit the society. With this in
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mind, the current thesis has elaborated on the regime structure of the market
model introduced by Kaizoji et al. (2015) and Kohrt (2016). This model has
been shown to exhibit emergent transient super-exponential bubble growth,
making it a potential testing environment for financial bubble detection mech-
anism. Our work has empowered future use of this model by mapping a phase
diagram of different market regimes in this model. Such a phase diagram
can for example be used for designing numeric “experiments” in the model or
guiding calibration to the real-world markets. Regarding the phase diagram
itself, the exact mechanism behind the oscillating phase is still unknown. This
is a question for future work. We have also introduced a simple mean-field
Ising based toy model of the noise trader behaviour. We find that further
investigation of this toy model could prove enlightening.

83





Bibliography

Kenneth Joseph Arrow. Aspects of the theory of risk-bearing. Yrjö Jahnssonin
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Léon Walras. Eléments d’Economie Politique Pure. L. Corbaz, Lausanne,
1874.

Wolfgang Weidlich. The statistical description of polarization phenomena in
society. Br. J. Math. Stat. Psychol., 24(2):251–266, 1971.

Ivo Welch. Herding among security analysts. J. financ. econ., 58(November
1999), 2000.

87

http://stacks.iop.org/0034-4885/70/i=3/a=R03
http://stacks.iop.org/0034-4885/70/i=3/a=R03
http://arxiv.org/abs/cond-mat/9704127


 
�
�
���������������������������
�
The  signed  declaration  of  originality  is  a  component  of  every  semester  paper,  Bachelor’s  thesis,  
Master’s  thesis  and  any  other  degree  paper  undertaken  during  the  course  of  studies,  including  the  
��������������������������������
�
����������������������������������������������������������������������������������������������������
���������
���������������������������������������������������������������������������
�
���������������������������������������������������������������������������������������������������������
���������������������������������������������������������������������������������������
�
����������������������������������

�

�
�
��������������������������������
��������������������������������������������������������������������

�
��������� ���������������
� � �

� � �

� � �

� � �

� � �

�
���������������������������������
−� ��have  committed  none  of  the  forms  of  plagiarism  described  in  the  ‘������������������’  information  

�������
−� ��������������������������������������������������������������
−� ���������������������������������
−� ����������������������������������������������������������������������������

�
������������������������������������������������������������������������
�
������������ �������������

� � �

� � �

� � �

� � �

� � �

� �
� ����������������������������������������������������������

�������������������������������������������������������������
������������������������������

MULTIPLE MARKET REGIMES IN AN EQUILIBRIUM MODEL OF 
FUNDAMENTALIST AND NOISE TRADERS

OLLIKAINEN MADIS

Zürich, 26.09.2016


	Contents
	Introduction
	The artificial market formulation
	The assets and the dividend process
	Fundamentalist traders
	Noise traders
	Equilibrium price equation

	Market model characteristics
	Typical model dynamics
	Model parameters and set-up
	Qualitative time series description

	Toy model
	The mean-field Ising model
	Toy model definition
	Toy model numerical phase diagram


	Limiting noise trader behaviour
	Ordered noise traders
	The critical momenta
	Fixed points of the price returns
	Lower fixed point
	Upper fixed point


	Analytical phase diagram
	Upper right quarter (cs > 1,ch > 0.0)
	Lower right quarter (cs > 1,ch < 0.0)
	Lower left quarter (cs < 1,ch < 0.0)
	Upper left quarter (cs < 1,ch > 0.0)
	The combined phase diagram

	The numerical phase diagram
	The mapping process
	Results
	General overview of the heat-maps
	Regime structure
	Phase diagram summary


	Conclusion and discussion
	Bibliography



