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Abstract

Recently, Kaizoji et al. (2015) proposed an equilibrium model of funda-
mentalist and noise traders, which exhibits transient super-exponential
bubble growth. This emergent bubble growth phenomens makes the
model interesting as a potential testing environment for financial bubble
detection mechanism. In order to enhance future endeavour in this direc-
tion, the current thesis is studying the different market regimes present
in the model of Kaizoji et al. (2015) in more detail.

We focus on analysing the market dynamics from the perspective of the
noise trader imitation and trend following. For elaborating on the effects
of the self-referential nature of noise traders, we introduce a mean-field
Ising based toy model of noise trader behaviour. We observe that besides
the standard paramagnetic disordered and ferromagnetic ordered phases,
the toy model has two additional ordered phases, indicating that the
self-referential tendencies of noise traders enhance order.

Motivated by the observations from the toy model, we analyse the full ar-
tificial market model in the limiting cases of noise trader strategy, where
all traders invest in the same asset type (either risky or risk-free), i.e
they are ordered. Using these limits, we derive fixed points for the price
growth rate, which present rough bounds for the long-term average price
growth. Combining these fixed points with the necessary criteria for
the emergence of ordered noise traders, we propose an analytic phase
diagram of the market model.

Both, the fixed points and the phase diagram, are compared with numeric
simulations. The numeric results verify the analytic fixed points. We find
that the numeric phase diagram exhibits all of the features proposed
analytically. However, there is one extra regime, which our limiting
case analysis did not predict. The final phase diagram has five different
regimes: (1) noise traders only invest in the risky asset; (2) noise traders
invest either only in the risky or only in the risk-free asset, depending
on the initial perturbations; (3) noise traders only invest in the risk-
free asset; (4) noise traders are invested in both assets; (5) noise trader
allocations undergo regular oscillations. The first four regimes are present
in both the analytical and numerical phase diagram, while the fifth is only
observed on the numerically.
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Chapter 1

Introduction

It has been argued by Arthur (1999) that in order to fully appreciate the fea-
tures of the financial markets, it is crucial to embrace the fact that the world
economy is an organically evolving complex system. A natural framework for
exploring such an adaptive system is presented by the so-called agent based
models (ABMs), which focus on the properties and actions of the individual
market participants. Farmer and Foley (2009) have urged the necessity and
potential of employing ABMs as testing environments for policy-making. In
this spirit, the thesis at hand studies the behaviour of a promising ABM pro-
posed by Kaizoji et al. (2015), which shows transient super-exponential bubble
growth and has recently been used by Kohrt (2016) as a testing environment
for the Johansen-Ledoit-Sornette (JLS) bubble detection technique (Sornette
and Johansen, 1997; Johansen and Sornette, 1999; Johansen et al., 2000). We
analyse limiting cases of the Kaizoji et al. (2015) and Kohrt (2016) model and
elaborate on different market regimes and their dependence on the herding
and trend following nature of the traders.

The literature on ABMs is vast and an overarching introduction is beyond
this thesis. For a general introduction to ABMs in social context, we suggest
reviews by Bonabeau (2002) and Castellano et al. (2009), while the reviews by
Sornette (2014), Chakraborti et al. (2011) and Samanidou et al. (2007) have a
stronger focus on financial markets. Like Bonabeau put it, agent based mod-
elling is not just a technique, but rather an ideology of bottom-up description
of the world. He emphasises that one of the primary benefits of a bottom-up
approach, is the capability to model the emergence of non-trivial collective
behaviour. In other words, ABMs enable the modelling of systems which are
more than the sum of their parts. In statistical physics, such systems are
said to exhibit emergent phenomena. An enlightening example of emergent
phenomena in the socio-economic context is the work of Schelling (1971) on
racial segregation. He showed that large scale segregation, e.g existence of
urban ghettos, does not require strong preferential differences between the
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segregated groups. Schelling (1971) conducted manual Monte Carlo simula-
tions of two groups of people on a square lattice. People from both groups
were modelled to slightly prefer neighbours belonging to the same group. He
observed that, even with very small preferential differences, large scale spatial
segregation emerged.

From the viewpoint of physics, the Schelling (1971) model of segregation re-
minds us of a square lattice Ising model with Kawasaki dynamics, i.e constant
magnetisation. The Ising model was originally introduced as a mathematical
model of ferromagnetism (Brush, 1967). It is one of the simplest statistical
physics models encompassing the struggle between order and disorder. The
Ising model considers a large number of magnetic spins, pointing either up or
down, positioned on some specific graph structure. The interactions between
neighbouring spins tend to align the spins in the same direction, i.e inter-
actions create order. Thermal noise, on the other hand, pushes the system
towards random configurations. Due to this competition between imitation
and random noise, in system with at least two dimensions, the model exhibits
a non-trivial phase transition between para- and ferromagnetic states.

There is a long history of applying Ising based models in socio-economic con-
text. For example, the similarity between polarised opinion and magnetisation
was pointed out already by Weidlich (1971) and Galam et al. (1982). For a
wider review of using Ising-like models in finance and sociology see Sornette
(2014), Phan et al. (2004) or Stauffer (2013). Here, we will only provide a
short motivation for usage of the Ising model in finance by its connection with
discrete choice models. The latter consider systems consisting of agents, who
have to choose between a finite set of alternatives. For example, such a model
could be used for describing voter dynamics. One of the most common dis-
crete choice models is the Logit model, which is very similar to Boltzmann
statistics that describes the Ising model. Due to this, the Ising model can be
mapped onto a binary choice model of interacting agents. For a more detailed
argumentation, refer to section 20.2.1 of Phan et al. (2004).

Let us now return our focus to stock markets. Consider forming a portfolio of
N different assets. This can be formulated as some specific N-choice model.
The aforementioned connection has been used by Kaizoji et al. (2015), who
introduced a two asset, risky and risk-free, artificial market model with two
different competing trading strategies. The first group of traders, called fun-
damentalists, base their decisions on maximising their constant relative risk
aversion expected utility, which results in a value investor mentality: buy-low-
and-sell-high. The second group, called noise traders, are driven by social
imitation and trend following, both of which are modelled with an Ising like
dynamics. As a results of these two strategies, the artificial market has highly
non-trivial dynamics. Most interestingly, the model exhibits transient faster-
than-exponential bubble growth with approximate log-periodic oscillations,



which has been shown to correspond well with the characteristics observed
during the 1995-2000 dot-com bubble.

Owing to its emergent bubble growth phenomena, the artificial market model
of Kaizoji et al. (2015) can be employed as a testing environment for finan-
cial bubbles detection techniques. Recently, Kohrt (2016) has done just that.
He used a modified version of their model for evaluating the potential im-
pact of exploiting bubbles detected with the Johansen-Ledoit-Sornette (JLS)
model (Sornette and Johansen, 1997; Johansen and Sornette, 1999; Johansen
et al., 2000). In the JLS framework, bubbles are modelled as super-exponential
price growth fuelled by imitation induced positive-feedbacks. Based on the the-
ory of critical phenomena, during such a bubble, prices are expected to follow
log-periodically oscillating power-laws, which have a finite time singularity.
This singularity is explained as a reflection of the bubble bursting. Real world
stock crashes have been shown to agree with JLS model (Johansen and Sor-
nette, 1999; Johansen et al., 2000; Sornette, 2009). Kohrt (2016) showed that
if bubbles are ad-hoc postulated to have a log-periodic power-law shape, then
it is possible to compose successful JLS model based trading strategies. More-
over, he concluded that the profits of the bubble exploiters are mainly due to
losses by the noise traders and successful bubble exploitation results in milder
bubbles, while unsuccessful trials of exploitation lead to more sever bubbles.
These are very promising results and call for further investigation.

In order to empower future work on financial bubble detection techniques,
the current thesis is focused on a more in-depth analysis of the underlying
market model used by Kohrt (2016). Specifically, we explore the effects of
noise trader imitation and trend following in greater detail. In Kaizoji et al.
(2015) and Kohrt (2016) the noise trader decision process relied equally on
social factors and the market trend. We have extended the model such that
we can control the relative importance of these indicators. This allows us to
further investigate the impact of the noise trader strategy. More specifically,
we focus on the different market regimes and conclude with profiling a phase
diagram of the model. In the following we highlight the structure of this thesis.

A detailed introduction of the market model is given in chapter 2. In chap-
ter 3 we call attention to the most relevant characteristics of the market model.
Section 3.1 presents the model parameters used in this thesis and highlights
the typical features of the model dynamics. In order to elaborate on the self-
referential nature of the noise traders, in section 3.2 we introduce a simplified
toy model of the noise trader behaviour, which is based on a coupled iterative
mean-field Ising model. We show that besides the standard disordered para-
magnetic and ordered ferromagnetic phases, the toy model has two additional
ordered regimes which we visualise in a phase diagram. In chapter 4 we con-
sider the limiting cases of the noise trader strategy, where all traders invest
in the same asset type (either risky or risk-free), i.e they are ordered. Using
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these special ordered states of the market, we derive two fixed points for the
risky asset price growth. These fixed points effectively act as upper and lower
bounds on the long-term average price growth. In chapter 5 we employ the
results from chapter 4 to propose an analytical phase diagram, with four dif-
ferent regimes, for the market model. The analytic results are compared with
numeric simulations in chapter 6, where we map a numeric phase diagram
of the market model. We find that this numeric phase diagram exhibits all
of the features proposed analytically, however, it has one extra regime. The
final phase diagram, with five regimes, is sketched in section 6.2.3. Finally, in
chapter 7 we conclude the theses.



Chapter 2

The artificial market formulation

The following chapter presents the artificial market model used in this thesis.
It is an agent based model adapted from the model used in Kohrt (2016),
which in itself is a modification of the model proposed in Kaizoji et al. (2015).
In its core, it is a simple two asset, risky and risk-free, market model with two
ideologically different trader types. The first of these are value investors named
fundamentalists, whose investment decisions are based on maximising their
constant risk averse utility. The second group, called noise traders, base their
decision on their perception of market trend and sentiments of other traders.
Both of the trader groups can be equivalently reformulated into the framework
of a single representative trader. The risk-free asset has a perfectly elastic
supply and constant return on investment. The risky asset, on the other hand,
pays a dividend and its price is determined by a market clearing condition. We
model the noise traders as giving market orders, i.e their investment decisions
do not depend on the current price. The fundamentalists, on the other hand,
are modelled following the mentality of Walrasian auctions (Walras, 1874):
they simultaneously calculate their demand for each possible current price.
The equilibrium risky asset price is then determined so that the total demand
would equal the total supply. Before the equilibrium price formation can be
discussed, the different trader strategies must be introduced. Therefore, we
start by introducing the assets and the dividend process in section 2.1. We
define the fundamentalist strategy in section 2.2 and the noise trader strategy
in section 2.3. Finally, in section 2.4 we derive the equilibrium price equation.

2.1 The assets and the dividend process

For the sake of simplicity and clarity, the market model has only two assets: a
risk-free asset and a risky asset. The risk-free asset can be thought of as cash
or a government bond. It has perfect elastic supply, i.e it is guaranteed to pay
a fixed interest 7; on an arbitrary amount of investments. It is convenient to
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define the risk-free growth factor Ry = 1+ ry. Holding a risk-free investment

of Wy for t market time steps provides an output Wmsk free

W SEIT = Wy (14 1p)" = WoRY. (2.1)

On the other hand, the risky asset can be considered to represent an index
fund. At every market time step t, it will pay a dividend d; and its price P;
is set by supply and demand. As in Kohrt (2016), the dividends undergo a
multiplicative stochastic growth process with respect to time

dy = dyy (1 + rf) = dy f[ (1 + rg) . (2.2)

k=1

At time step t, the growth rate rf is Gaussian distributed around a positive
mean value r4 > 0.0 with variance 03

ri = rq+ oqu, (2.3)

where the random variables u; are identical and independently distributed
according to the standard normal distribution (zero mean and unit variance)

Ut l’ZVdN (O, 1) .

It is convenient to define the average dividend growth factor Ry

Ri=1+ry. (24)

The total risky asset return consists of two terms. First is due to the specu-
lative nature of the market, namely the price return Ry, which describes the
profitability of buying with P;_; and selling with P;

P

R
tPtl

=1+ (2.5)

In the above, r; is the price return rate. Both R; and r; are used throughout
this thesis. The second term in the risky asset return is, of course, the dividend
yield %. Thus, holding Wy in the risky asset for ¢ market time steps provides

an output W7isky

P, d d
risky __ k k — k 9
Wrisky — W, H (Pk , PH) wo ] (Rk + Pk:—l) : (2.6)



2.2. Fundamentalist traders

Naturally, the risk-free rate can be viewed as a lower base line for capital
returns. Any investment strategy should at least earn as much as the risk-free
asset, otherwise it should be discarded. Therefore, it is convenient to define
the excess return of the risky asset over the risk-free rate

d d
Rexcesst = Ry — Ry + = re— 15+ L (2.7)
t

1 Py
The excess return Rexcess,t Provides a measure for the profitability of the risk
of buying the risky, instead of the risk-free, asset.

2.2 Fundamentalist traders

The fundamentalist traders are risk averse value investors. They allocate a
fraction zf of their wealth to the risky asset and all else into the risk-free
asset. Decisions on their portfolio diversification are done via myopic mean-
variance maximisation of their constant relative risk aversion expected utility.
This means that, at every time step, they reconsider their wealth allocations
based on the current expected portfolio value and its variance. For simplicity,
all of the fundamentalists are assumed to be identical. Consequently, their
behaviour can be reformulated as that of a single representative trader.

The investment strategy of the fundamentalists can be described by their
choice of risky fraction x/. Its derivation, presented in the following, is based
on Kaizoji et al. (2015). Consider the capital gains of fundamentalists, who

have at time ¢t — 1 allocated x{_l of their wealth Wtf_ 1 into the risky asset and

the rest into the risk-free asset. The change of their market value from Wtf_ 1

to Wtf is given by

dy
Wtf — Wtjil = Wtjil {(1 — x{fl) ry+ 33,{,1 <rt =+ Pt1>:|

d
= Wtf_1 [rf + xf—1 (T't —rft Pt:)] (2.8)

= Wtf_l (Tf + xf_lRexcess,t) )

where r; and Rexcess,t are the risky asset price return rate and excess return
over the risk-free rate 7, respectively, as defined in equations (2.5) and (2.7).
Recall that fundamentalists are maximising their constant relative risk aver-
sion expected utility. Their utility function U (W) is chosen so that it would
be compliant with their relative risk aversion « being constant (Kaizoji et al.,
2015). Consider the Arrow-Pratt measure of relative risk aversion (Pratt, 1964;
Arrow, 1965, 1970)
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1"

u (w)
U (W)

(W) =-Ww (2.9)

where U" (W) and U (W) are the first and second derivatives of the utility
function U(W) with respect to the wealth W. The risk aversion 7 is constant
for the isoelastic utility function

logW for vy =1,

UW) = I—y 2.10
") ‘f/ for v # 1. ( )
-7

As stated before, the fundamentalists are myopic mean-variance maximisers of
their expected utility. This means that, at every time step t, they choose allo-
cations x{ which would maximise their expected utility in the mean-variance
approximation. It is shown in Kaizoji et al. (2015), that the mean-variance
optimal risky fraction is independent of the trader wealth and it is given by

x{,opt _ l IEt [Rexcess,t] ‘ (211)
v Var; [Rexcess,t]

Here E; [-] and Var; [] denote the expectation and variance as estimated at

time ¢, i.e all information available up-to and at time ¢ is being taken into

account. The expected value of the excess returns is given by

d d
Et [Rexcess,t] - Et [Tt-i-l] - Tf + Fz (1 + Td) == Et [Rt+1] — Rf + éRd (2.12)

The fundamentalists consider the expected value of the price return E; [Ry41] =
Eg, and the variance of the excess returns Var; [Rexcesst] = U%Gx to be con-
stants. Therefore, the risky fraction of fundamentalist traders at time ¢ is

given by

Er, — Ry + &Ry di Ry

f= =z 4+ = 2.13
Ty 70_}2%% min P, ’70-%{% ) ( )
where x{nm is the minimum risky fraction of the fundamentalists
Er, — R
f _5ER f
i = ———— (2.14)

2
TORes



2.3. Noise traders

Considering equation (2.13) explains why these traders are called fundamen-
talists. They regard the underlying “fundamental” value of the risky asset
to be the dividend payments. Accordingly, they expect the long-term price
growth to be due to the growth of dividends, thus Eg, ~ R4. This does not
mean that they are blind to speculative behaviour of the markets. Rather,
they benchmark the risky asset against the fundamental state, where price
and dividend growth are of similar order R4,y ~ R4. Thus, any deviations
from the fundamental state are perceived as investment opportunities. As is
evident from equation (2.13), the current dividend-price ratio %ﬁ is used for
probing whether the asset is over or under valued. The corresponding signal
is used for a clear cut strategy: buy at low price (high %tt) and sell at high

price (low %tt).

2.3 Noise traders

The noise traders are significantly different from the fundamentalists. They
embody the lack-of-diversification puzzle (Kelly, 1995; Baxter and Jermann,
1997), over-reactions (De Bondt and Thaler, 1985, 1987), imitation and herd-
ing (Welch, 2000) as well as chartist trend following.

None of the N, noise traders ever diversify their portfolio. They are always
either fully invested in the risky or the risk-free asset. At every time step t, all
of the noise traders have a probability to change their position: switch from
risky to risk-free asset, or vice versa. In a few paragraphs we explain how the
evolution of these switching probabilities incorporates imitation and trend fol-
lowing into the noise trader strategy. However, as a reflection of idiosyncratic
properties, at any given time step t, the decisions of different noise traders
are independent from each other, i.e their specific choices correspond to i.7.d
random numbers. At time ¢, there are NtJr and N, noise traders invested in
the risky and the risk-free asset, respectively. Therefore, even as individual
noise traders are proponents of the “all or nothing” mentality, on the group
level they can still be characterised by their risky fraction x}'

N N
h=—>1 ="t c]o,1]. 2.15
t Nt—‘r—i—Nt_ Nn [ ] ( )

Clearly, the larger the risky fraction 2™ the more noise traders are currently
viewing the risky asset as a good investment, and wvice versa for smaller z"
values. Following Lux and Marchesi (1999), the risky fraction can be mapped
onto the noise trader opinion indexr s

N — N/
sp = —t——1t =227 —1¢[-1,1]. (2.16)
Ny,
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Evidently, the sign of the opinion index indicates whether the prevailing sen-
timents on the risky asset are optimistic (s; > 0.0) or pessimistic (s; < 0.0).
Zero valued opinion index corresponds to the special case when the noise
traders are neutral regarding the risky asset.

As mentioned earlier, each noise trader makes the decision, whether to change
their position or not, in a probabilistic manner. Those invested in the risky
asset at time ¢, will sell their stocks and buy the risk-free asset with probability
p; . Similarly, traders owning the risk-free asset at time ¢, will decide to sell
it and buy the risky asset with probability p, . Accordingly, the risky fraction
x™ evolves as

Nttl N,y
1 1
a2 (&) by G, @1D)
k=1 =1

with £ (p) being Bernoulli random numbers: £ (p) = 1 with probability p
and £ (p) = 0 with probability 1 — p. The switching probabilities pti define
the noise trader behaviour. Correspondingly, they should reflect their trend
following and imitative nature. Thus, the dynamics of pf must depend on the
sentiments of other traders and the market trend. Equation (2.16) has already
defined the opinion index, which noise traders use as a proxy for other traders
sentiments. Similarly, a measure of the market trend must be defined. The
notion of price momentum Hy is used for this. Following Kaizoji et al. (2015),
it is defined as an exponential moving average of the historical price returns

P
H;,=60H;_ 1+ (1 — 9) re =0H; 1+ (1 - 9) (Pttl — 1) , (2.18)

where 0 < 6 < 1 is a measure of the noise trader memory length. The smaller
it is, the longer their memory 7ypise ~ 1%09. Now, the dynamic equation for the
switching probabilities pfﬁ can be defined. It has a Ising model like structure

pE = % (1 F 5 (cosy + cpHy)) L. (2.19)

Here x; describes the time-dependent part of the noise trader social interaction
strength. In the following, we use the naming convention introduced in Kaizoji
et al. (2015), i.e k¢ is called the herding propensity. The constants py and

Tt should be noted that compared to the switching probabilities used in Kohrt (2016)
there have been two changes. One of them is the addition of the weight coefficients ¢s and
cn. This is highly relevant for the current thesis, as it enables the comparison between the

effects of trend following and imitation. The second modification is a cosmetic one. Namely,
Kohrt (2016)

the herding propensity used in Kohrt (2016) has been slightly redefined: « = o

This allows a more elegant formulation for equation (2.19).
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p_ control the average holding time of the corresponding assets when there is
no imitation nor trend following. As already mentioned in the introduction
(chapter 1), this thesis focuses on the effects of the noise trader imitation and
trend following. Thus we have introduced the weight coefficients ¢; and ¢y,
which determine the relative importance of herding and trend-following to the
noise traders behaviour. In order to make these effect clearer, in most of this
theses a constant valued herding propensity x; = k is considered. Therefore,
the coefficients c¢; and ¢j, determine the feedback mechanisms that noise traders
induce.

Thus far, no mention of the noise trader wealth has been made. As with
fundamentalist, the noise trader strategy is also independent of their current
wealth. A critical difference between the two trader types, besides the obvious,
is that while all of the fundamentalists are always making identical investment
choices, this is not true for noise traders. This thesis will continue in the same
spirit as Kaizoji et al. (2015) by only considering the aggregate impact of
the noise traders rather than describing their heterogeneity. Therefore, it
is appropriate to re-frame the group of non-diversifying noise traders into a
representative noise trader, who is diversifying by micro managing NV,, equal
sized endowments.

2.4 Equilibrium price equation

The price of the risky asset is set by the market clearing condition: the as-
set price P; always has a value at which the excess demands of all market
participants sum to zero. In short, an equilibrium of supply and demand
is postulated. In the following, expressions for the excess demands will be
derived and used for finding the equilibrium price.

First, it should be emphasised that the risky fraction does not equal the num-
ber of stocks owned. Throughout this thesis, the focus is usually on the risky
fraction, or the noise trader opinion index, as they are more convenient than
the number of stocks owned. Nevertheless, one should always bear in mind
that constant risky fraction does not imply constant number of stocks. It only
states how much of the trader’s wealth has been invested into the risky asset.
Taking this into account, it is helpful to define the number of stocks a trader
holds at time step ¢

it
ziW/
P’

nt (2.20)
where ¢ € {f,n} can indicate either the fundamentalists or noise traders.
Using the number of stocks the trader holds at a certain time step, it is

possible to define their excess demand of the risky asset during the transition
t—1—=1¢

11
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ADy_y_yy =P —ny_, P
o , . P 2.21
= ,IlZthz — xi_lwtz_l?il. ( )

Now, consider the wealth W} of traders, who at time ¢t — 1 invested z¢_; of
their wealth W} _; into the risky asset and all else into the risk-free asset

Wti — Wti—l + Wti—l (Tf + xi_lRexcess,t)

. . d 2.22
= thfl |:Rf + xi,l <Rt - Rf + L >:| . ( )

Py

Inserting the wealth equation (2.22) into the excess demand equation (2.21)
gives

i i i i dy PR &
ADy 1 = Wi, {xt {Rf + T <Rt — Ry + >] - xtl} )
P P

which can be rewritten into a more convenient format

Py
P4

7 A 7 dt

ADg—l—n = Wti—lxi—l (%Zt - 1)

(2.23)

Substituting ¢ with either f or n in equation (2.23) gives the excess demands
for fundamentalists D{fl _,; and noise traders D ;_,,. Now, the equilibrium

price P, can be found from the market clearing condition

AD!, ,,+AD! =0, (2.24)

Let us note, that we are modelling the market clearing as a Walrasian auc-
tion (Walras, 1874). In a Walrasian auction, each agent simultaneously cal-
culates their demand for each possible price value and the price is then set
so that demand and supply would be in an equilibrium. Now, as it is clear
from equations (2.17) and (2.19) that noise traders do not take the current
price into consideration, we can conclude that fundamentalists follow the Wal-
rasian auction mentality and noise traders just give market orders. That is,



2.4. Equilibrium price equation

they state the amount of assets they wish to buy or sell, independent of the
price. Recall the fundamentalist risky fraction 2/ given in equation (2.13). It

depends linearly on the current dividend-price ratio

f_ o % Ba

Ty =

min

_ 5
Pt ’YO’REI

Inserting the definition of fundamentalist risky fraction in equation (2.13)
together with the excess demands given by equation (2.23) for both traders
into the market clearing condition in equation (2.24) gives a quadratic equation

for the equilibrium price

atP? +bPy 4 ¢ =0,

where the terms a;, by and ¢; are given as follows

dy
+$£u'n [xtfl <Pt1 - Rf> + Rf}
mn n n dt
+Vt—f1xt |:xt1 (Pt—l - Rf) "‘Rf} )

dt(l‘f'rd) d
c= " el (5 Ry ) Ry

VR,
In the above, v}’ 7 is the wealth ratio
W’n/
Wi

The quadratic equation is solved by

P —bt + \ b% — 4atct
t = .

2at

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

Consider the signs of the terms a¢, by and ¢;. We can take it as given that the

model parameter are always such that z}' —1 <0, m&m
Ti_y € {x{—p%?—l}

— 1 < 0 and for any
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[ d
2, <Ptt1 - Rf) + Ry > 0.0. (2.31)

Consequently, the following inequalities are true

ar < 0.0, by > OO, c; > 0.0. (232)

It is reasonable to expect that only positive prices are economically valid.
Considering equation (2.32) it can be seen that only one of the solution in
equation (2.30) gives positive prices

p— —by — \/b% —4dazct . by + \/b% —|—4]at|ct
t — = .

2a4 2|ay|




Chapter 3

Market model characteristics

In chapter 2 we have introduced the artificial market model studied in this
thesis. Based on the previous work of Kohrt (2016) and Kaizoji et al. (2015),
it consists of two trader types, the fundamentalists and the noise traders, in-
vesting in a two asset market. The first asset is a fixed interest rate risk-free
asset, while the other is a dividend paying risky asset, whose price is deter-
mined by supply and demand. The fundamentalists maximise their constant
risk aversion expected utility, which leads them to the buy-low-and-sell-high
strategy: their risky fraction x{ is a linear function of the risky asset dividend-
price ratio %’i. Consequently, they induce negative feedback to deviation from
the fundamental state R,,q ~ Rq. The noise traders, however, invest accord-
ing to social factors and market trend, which they measure with the noise
trader opinion index s; and the price momentum H;. Their decision process
is self-referential in nature. Depending on the signs of the imitation and trend
following weight coefficients, c¢s; and cp, they have either conformist or con-
trarian attitudes towards opinion s; and momentum H;. Correspondingly,
their behaviour imposes a non-trivial combination of feedback loops upon the
market.

This chapter aims to give a qualitative overview of characteristic features of
the above mentioned market model. Section 3.1 considers the artificial market
model in general, while section 3.2 turns a tighter focus on the Ising-like noise
trader behaviour by introducing an iterative coupled mean-field Ising based
toy model.

3.1 Typical model dynamics

In this section, we elaborate on the typical set-up and features of the artificial
market model (see chapter 2). First, in section 3.1.1, we present the general
parameter set-up used throughout this thesis. Following that, in section 3.1.2,
we qualitatively highlight several important features of market dynamics in

15
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two sets of time series plots in figures 3.1 and 3.2. Both of these correspond to
a market where ¢; = ¢;, = 1, i.e noise traders have a full-conformist attitude.
The difference, between the two considered markets, is in the functional form
of the noise trader herding propensity x;: figure 3.1 corresponds to a constant
herding propensity, while figure 3.2 corresponds to an Ornstein-Uhlenbeck
herding propensity, which is adapted from Kaizoji et al. (2015).

3.1.1 Model parameters and set-up

In chapter 2 we introduced the mathematical formulation of the artificial mar-
ket model studied in this thesis. The model is adapted from the works of
Kohrt (2016) and Kaizoji et al. (2015). In this section, we present the general
parameter set used throughout the thesis. As we only ever make slight changes
to the model parameters, we find it convenient to define the most often used
basic parameter set. The full basic parameter set is listed in table 3.1.

Table 3.1: The basic parameter set used for the market simulations throughout
the thesis. In cases where different parameter set is used, the difference is always
specifically highlighted.

zh = 0.5 =1 p,.=0199375 p_ = 0.200625
zl =05  dy=000016 Ry=1.00016 Hy=0.00016
0=099 Ep =1.00016 Py=10  R;=1.00008
N, =1000 o4=0.000016 0% =0.02 K = 0.98

Note, that table 3.1 does not give an explicit value to the fundamentalist con-
stant risk aversion . However, using the definition of the fundamentalist risky
fraction, given in equation (2.13), we can express the constant risk aversion -y
as a function of Eg,, Ry, do, Py and mg

Er, — Ry + %Ry

7= 7
2
:EOURW

(3.1)

Let us consider the basic parameter set given in table 3.1. We can see that both
trader types start out with the same wealth, i.e their wealth ratio is v F = 1,
and their initial allocations follow an equal weights portfolio :z:g; = x5 = 0.5.
There are N, = 1000 noise traders with a memory parameter 8 = 0.99, which
corresponds to a memory length ~ 100 simulation time steps. The constants
p+ and p_ are defined as in Kohrt (2016). Notice, that p_ > p, which means
that on average noise trader hold the risky asset longer than the risk-free asset.
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Similarly, the mean value of the herding propensity x = 0.98 is the same as
in Kohrt (2016)?.

As in Kohrt (2016), we start with a unit price Py = 1 and let the initial
dividends be dy = %‘E?g = 0.00016. Thus, if one simulation time step represents
one day, then the initial yearly dividend yield is 4%. The average dividend
growth rate is also set to rgy = 0.00016, thus R; = 1.00016. Notice, that the
initial price momentum equals the dividend growth rate Hy = r4 = 0.00016
and the fundamentalists expectation for the price growth equals the average
dividend growth Er, = Ry = 1.00016. The risk-free rate is set to be half of the
dividend rate ry = 0.5r4 and thus the risk-free growth R; = 1.00008. Similarly
to Kohrt (2016), the standard deviation of the dividend process o4 = 0.1y
and the constant fundamentalists perception of the standard deviation of the

excess returns U% = 0.02.
exr

It might be argued that the standard deviation of the dividend process oy,
given in table 3.1, is too small. Indeed, with the basic parameters set, the
dividend process is nearly deterministic. However, in chapter 6 we show that
the numeric phase diagram is rather robust to changes in o4: even for o4 ~ 61y
the phase diagram is the same as for 04 = 0.1r4. Thus, for the purposes of this
thesis, taking o4 = 0.17 is still reasonable. We stress the fact that calibration
of the model to the real world market is beyond the scope of this thesis. Rather
we aim to compile a phase diagram of the market model on the cs-¢;, plane.
Nevertheless, in the following we find it worthwhile to discuss one of the key
ideas for connecting the model parameters to the real world.

Thus far, we have only used the notion of a simulation time step, or equiva-
lently an iteration step ¢t — ¢ + 1. However, in order to make a connection
between the model and the real-world, we need to know what is the time
scale of the market simulations. We now argue, that this time scale is ac-
tually a good starting point for calibrating the model to the real world. It
is important to recall that the typical real world daily volatility is around
1% (Sornette, 2009). Now, if we wish to calibrate our model to the real world,
of course, we wish to have the same typical daily volatility. The key idea is to
reverse engineer the correct time scale of the simulations. We start by roughly
approximating the price returns with a Wiener process. Then, we know that
the relation between period 7, volatility o7, and period T}, volatility o, is

given by
T
oT, = 0T,/ ?Z. (3.2)

'Recall that compared to Kohrt (2016) the noise trader switching probability equa-

Kohrt (2016)
E . Thus
P4

the exact numeric value of x is not the same as in Kohrt (2016), rather the product xkp4 is
numerically equal the herding propensity used in Kohrt (2016).

tion (2.19) is modified and the herding propensity is re-defined as: k =
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This allows us to evaluate the number of time steps T, so that the T time
step volatility would match the daily volatility o7, = 04aily

2 2
Odai 0.01
TN — < dazly) — < > , (33)
Osim Osim
Osim 18 the one time step volatility of market model, i.e the one time step

standard deviation of the price returns. Therefore a single time step in our
simulation corresponds to 7 days, where 7 is given by

T=—. (3.4)

As pointed out earlier, calibration of the model is beyond the scope of this
thesis. Therefore, throughout the thesis, we find it more convenient to measure
“time” in simulation time steps not in days. Nevertheless, we provided the
estimated simulation time scale 7 for each of the market model time series
plots found in this thesis. Additionally, in chapter 6 we provide a colour-
coded heat-map of the time scale 7 values over the cs-c;, plane for the basic
parameter set in table 3.1.

Finally, let us consider the noise trader herding propensity x;. As stated
before, in this thesis we study the effects of noise trader imitation and trend
following by introducing weight coefficients c¢; and ¢;, for the opinion index s
and the price momentum H; respectively (see equation (2.19)). In the works
of Kohrt (2016) and Kaizoji et al. (2015), these coefficients were equal to one.
Also, both of them used a time-dependent herding propensity x;. In Kaizoji
et al. (2015) the herding propensity followed an Ornstein—Uhlenbeck process.
Kohrt (2016), on the other hand, used a constant k; for most of the time,
but had transient log-periodic signals imprinted into x;, such that ad-hoc log-
periodic power-law bubbles could be generated in a controlled manner. In
this thesis we are using a constant valued herding propensity x = 0.98. This
is because a time-dependent herding propensity can be interpreted as moving
along a line in the cs-¢, plane. The slope of this line is set by the ratio of
the coefficients ¢ and ¢j, used in equation (2.19). Thus, in order to analyse
the different effects of opinion and momentum, it is helpful to set the herding
propensity to a constant value.

Nevertheless, the time series we present in section 3.1.2 are generated us-
ing both the constant herding propensity x = 0.98 (figure 3.1) and a Orn-
stein—Uhlenbeck herding propensity (figure 3.2). This is done exactly because
a time-dependent herding propensity can be seen as moving on the cs-cp plane.
Thus, using the Ornstein—Uhlenbeck x;, we can compactly see the character-
istic features of different market regimes. In chapter 6, we present the time
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series for all of the different market regimes separately. Before turning to the
time series in section 3.1.2, let us define the Ornstein—Uhlenbeck s

Kt4+1 = Kt + n (/‘&“ — /it) + O kU,

1 0.25—:r
n:EIOg — . |’ UH:O.QP_\/277.

K
P+ H

(3.5)

In the above, the mean value of the Ornstein-Uhlenbeck herding propensity is
equal to the constant herding propensity x, = £ = 0.98. The mean-reversion
rate 1 and the steps size o, are calculated using the formulas from Kaizoji
et al. (2015)2. Here AT = 20 and thus the mean-reversion rate n ~ 0.044 and
the step size o, ~ 0.006.

3.1.2 Qualitative time series description

In section 3.1.1, we presented the common set-up of the market model through-
out the thesis. Here, we give a qualitative overview of the characteristic market
dynamics. We base this description on the time series shown in figures 3.1
and 3.2. In the following, we point out key features of the typical model
behaviour, several of which are essential for the analysis in chapters 4 and 5.

The general structure of figures 3.1 and 3.2 is the following: the plots show
eight panels, which contain time series for the risky asset price P;, return rate

r¢, momentum H;, dividend-price ratio %tt, noise trader switching probabilities

pi, both of the risky fractions :r{ and z}', the traders wealth ratio v}’ I =

wp/ Wtf and the noise trader herding propensity ;. In order to emphasise
that the price momentum H; is the exponential moving average of the price
return rate r;, the momentum has also been plotted onto the price return
rate panel. Similarly, to hold an comparison with the risky asset dividends
and price, the average dividend growth rate ry has been plotted onto the
momentum panel.

The asset price P; is depicted on a log-linear scale and all other time series
are on a linear scale. Note, that the notation le — x indicates that the values
on the y-axis are to be multiplied with 107*. Time series in both figures 3.1
and 3.2 are shown for the first 7' = 5000 time steps. Based on equating the
daily model- and real-volatility, we estimate that each time step in figures 3.1
and 3.2 correspond to 7 &~ 1.3-1.4 days. In both figures 3.1 and 3.2, a market
with unit weight coefficients ¢s = ¢, = 1 and the basic parameter set (table 3.1)
is illustrated. The difference between figures 3.1 and 3.2 is in the herding

2The formulas have been modified to correspond to our different definition of equa-
tion (2.19).
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propensity used: figure 3.1 corresponds to the constant herding propensity
r = 0.98 and figure 3.2 to the Ornstein-Uhlenbeck herding propensity defined
in the end of section 3.1.1.

In the following we emphasise on qualitative features of the time series in
figure 3.1. First, the switching probabilities look like mirror images of each
other, which reflects the structure of the switching probability dynamic equa-
tion (2.19). A similar feature can be seen for the momentum and the dividend-
price ratio: they are roughly moving in the opposite directions of each other.
This becomes more pronounced during periods of high volatility. For example,
examine the behaviour for the interval ¢ = 2000-3000. Let us now consider
the risky fractions. Recall, that the fundamentalist risky fraction zf is a linear
function of the dividend-price ratio (see equation (2.13)). With careful obser-
vations it is possible to detect that indeed fundamentalists follow the same
movements as the dividend-price ratio. Due to the relatively small variance
of the fundamentalists allocations, this is rather hard to notice in figure 3.1.
Now, consider that the dividend-price ratio encodes fluctuations from both
the price and the dividends. Nevertheless, we see that the noise traders, who
follow the momentum and the opinion index, have much larger variations than
fundamentalists. From this, we can conclude that noise traders self-referential
decision making process is more prone to signal amplifications than the fun-
damentalist strategy.

We have seen that even with a constant herding propensity, the market can
show relatively volatile periods. For the following, it is more convenient to
turn to figure 3.2, because its more volatile nature makes noticing the market
features easier. For example, we can now detect a mirroring effect for the risky
fractions. The fundamentalists are always moving in the opposite direction
to the noise traders. A rather more interesting feature of figure 3.2 is the
existence of transient periods of extreme behaviour. Recall that the asset price
P, is plotted with a log-linear scale: a linear line on the price panel indicates
an exponential relation. Thus, during these transient extreme periods the
price is growing or declining super-exponentially; i.e there are bubbles. We
will now discuss how these bubbles shed light onto some of the main ideas
used in chapters 4 and 5 for forming the analytical phase diagram.

First, we can observe that all bubbles end abruptly with a plateau like shape.
Looking at the noise trader risky fraction z}', we can find the reason for these
abrupt stops. These plateaus correspond to noise traders reaching their max-
imum or minimum risky fraction, i.e they become polarised into ™ = 1 or
2™ = 0. Interestingly, the noise traders tend to have a transient lock-in effect
to these polarised investment decisions. Consequently, there is a period dur-
ing which no radical changes happen on the market. From the noise trader
switching probabilities, we can observe a natural cause for these lock-in effects.
Namely, during a lock-in, the corresponding switching probability, either p;r
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(risk-free — risky) or p; (risky — risk-free), is non-positive. As the simulation
code treats all non-positive probabilities as zero valued, we can conclude that
there is an actual lock in: the probability for noise traders to change their
position is zero.

It is helpful to analyse these lock-in periods in more detail. For convenience,
in the following the noise trader lock-in effect is referred to as just lock-in. Let
us start with considering the price return rate r;. We can see that during lock-
ins, 7 is effectively constant. This results in an exponential decay or growth
of the price momentum Hy, as is expected from the definition of H; (see
equation (2.18)). Now, let us take the dividend-price ratio. Evidently, during
lock-ins the dividend-price ratio is nearly constant, which indicates that the
average price and dividend growths are similar R,,y ~ Rq4. In section 4.3 we
analytically show that indeed, for both limiting cases " = 1 and ™ = 0, the
price growth has fixed points, which are functions of the dividend and risk-free
rates. For now, however, it is sufficient to recognize that during noise trader
lock-ins, 7.e when only fundamentalists are actively shaping the market, the
price growth is similar to the dividend growth. From this we can claim that
bubbles are driven by noise traders.

Finally, we call attention to the wealth ratio /. In both figures 3.1 and 3.2,
there are two features to note. Firstly, the wealth ratio has an underlying
downward trend: it appears that with these parameters on average the funda-
mentalists strategy earns more. Secondly, the wealth ™f ratio peaks together
with the noise trader risky fraction z™. There are two reasons for this. One
is that the risk-free rate is smaller than the dividend rate ry < rg, i.e on aver-
age the risky asset pays more than the risk-free asset. A more subtle reason
is, that during transient super-exponential price growth, the wealth invested
into the risky asset temporarily grows super-exponentially. In other words,
bubbles create fictitious riches.

We finish by highlighting features most relevant for chapters 4 and 5:

1. For certain kcs and k.cp, values, noise traders drive the price to grow or
decay super-exponentially.

2. Extreme price growth can lead to non-positive noise trader switching
probabilities and create a lock-in effect.

3. As the fundamentalists strategy depends linearly on the dividend-price
ratio, they enforce a connection between the price and the dividends.

4. The self-referential nature of noise traders induces strong amplification
even for a constant herding propensity.

5. On average, the risky asset pays more than the risk-free asset.

21
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Figure 3.1: Typical time series of the market model (see chapter 2) with unit noise
trader imitation and trend following weight coefficients, ¢s = 1.0 and ¢, = 1.0, and
the constant herding propensity ks = k = 0.98. The rest of the market parameters
correspond to the basic parameter set given in table 3.1. Based on equating the
daily model- and real-volatility, we estimate that each time step correspond to 7 =
1.31 days. Notice that the switching probabilities pf are each others mirror images.
Similar mirroring feature can roughly be observed for momentum H; and dividend-
price ratio d;/P; as well. Recall, that the fundamentalists risky fraction :c{ is a
linear function of the dividend-price ratio. Noise traders, however, follow the opinion
index s; = 2zxy — 1 and the momentum H;. We can see, that the noise traders
self-referential investment decisions are much more volatile than the fundamentalists
strategy. Finally, notice that the wealth ratio v”f peaks together with the noise trader
22 risky fraction zy', which indicates that the rlsky asset pays more than the risk-free

asset.
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Figure 3.2: Typical time series of the market model (see chapter 2) with unit noise
trader imitation and trend following weight coefficients, ¢s = 1.0 and ¢, = 1.0, and
the Ornstein—Uhlenbeck herding propensity x; defined by equation (3.5). The rest
of the market parameters correspond to the basic parameter set given in table 3.1.
Based on equating the daily model- and real-volatility, we estimate that each time
step correspond to 7 &~ 1.40 days. Notice that all transient periods with super-
exponential price movements end with a plateau like shape. This can be explained
by considering the noise traders. During these super-exponential price movements,
one of the noise trader switching probabilities becomes non-positive, thus creating a
transient lock-in effect for the corresponding asset type, which leads to polarised noise
traders (2" € {0,1}). While noise traders are locked-in, the market is calm: average
price and dividend growth is of similar order R,,q ~ Rq. As during noise trader
lock-in only fundamentalists actively effect the market, the above supports the claim
that fundamentalists enforce a connection between the price and dividends. Finally,
notice that the wealth ratio v;" f peaks together with the noise trader risky fraction
xy, which is mainly due to temporary wealth growth during the bubble.
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3.2 Toy model

In this section we introduce a simplified toy model, which qualitatively repro-
duces some of the characteristics of the more complicated artificial market
model presented in chapter 2. We have already argued that the fundamental-
ists strategy enforces a connection between the risky asset price and dividends.
Their behaviour is stabilising the system so that the average price and divi-
dend growth is of similar magnitude R4,y ~ R4. The noise traders strategy,
however, introduces self-referential feedback loops. It is the effect of this self-
enforcing behaviour that we aim to study with the toy model present in this
section.

As already mentioned in chapter 1, using Ising based models of opinion dy-
namics dates back to the works of Weidlich (1971) and Galam et al. (1982).
As stated before, that the Ising model is a mathematical model of ferromag-
netism (Brush, 1967). It considers a large number of magnetic spins on a
lattice structure, so that the interaction between neighbouring spins tends to
order the spins in the same direction. At the same time, thermal noise is
causing random fluctuations and thus introducing disorder. The Ising model
is one of the simplest statistical physics models for describing the competition
between imitation induced order and noise induced disorder. In chapter 1 we
discussed how the Ising model can be linked with a binary choice model of
interacting agents. This connection is used in our artificial market model: the
noise trader switching probabilities have an Ising-like dynamic equation (2.19).
Due to this, we base our toy model on the mean-field Ising model, which in
itself is a common toy model for the full Ising model.

In sections 3.2.1 and 3.2.2 we briefly introduce the mean-field Ising model and
define the used toy model, respectively. Finally, in section 3.2.3, we construct
a numeric phase diagram of the toy model on the cs-c;, plane.

3.2.1 The mean-field Ising model

In this section, we give a short overview of the mean-field Ising model. As
stated before, the Ising model is a model for explaining the transition between
paramagnetic (disordered spins) and ferromagnetic (ordered spins) phases. In
statistical physics, when considering phase transitions, it is common to define
a so-called order parameter, which distinguishes between the different phases.
For magnetic phase transitions, a suitable order parameter is the average
magnetisation m, as this is zero for the paramagnetic regime and non-zero in
the ferromagnetic regime. Let us now write the Hamiltonian, ¢.e the energy
of the system, for the Ising model

H == —J Z 0'7;0']' — Hex ZO’Z', (36)

<1,5> %
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where < i,j > indicates that spins o; and o; are nearest neighbours, J is the
interaction strength between spins and H., is the external magnetic field.

In the mean-field paradigm, instead of separately considering the effects of all
spins on their neighbours, we approximate these effects with that of the mean
magnetisation (o) = m. Thus the mean-field Hamiltonian reads

Hmf:—szzi()'j—HE;EZUi:—(JmZ‘i‘He:c)ZUi? (3.7)
j=1 i i

i

where z; is the number of nearest neighbours of spin ¢; and z is the average
number of nearest neighbours for each spin. Observe that the Hamiltonian
Hmys in equation (3.7) is equivalent to the Hamiltonian of non-interacting spins
in an effective field Hepr = Jmz + He,. Using equation (3.7) we can express
the single spin Boltzmann distribution

(o) o 38)

ploi) = - :
D oseqat,1y € 1%

In the above, § = = is the inverse temperature, where 7" is the temperature

Tkp
and kp is the Boltzmann factor. This leaves us with the final step in the mean-

field approximation. Namely the self-consistency condition, which demands
that the mean magnetisation, calculated using the single spin distribution
function in equation (3.8), has to equal the mean magnetisation used to define
the distribution function (o) = m. Therefore, we get

eBHess — e=BHeys
m = Z p(oj)o; = FTlerr & o Blerr tanh 8 (Jmz + Hez).  (3.9)
Uje{+17_1}

It is convenient to analyse the self-consistency condition in equation (3.9)
graphically. This is done in figure 3.3. It shows two panels, one with a zero
external field He, = 0 for illustrating the effects of temperature (figure 3.3a)
and the other for illustrating the effects of the external field (figure 3.3b). Both
panels show a plane where both axes correspond to the mean magnetisation
m. Thus, the self-consistency condition m = m defines a line with a unit
slope on these planes. The self-consistency condition is satisfied only at the
points where the self-consistency line m = m and the the hyperbolic tangent
magnetisation m = tanh 3 (Jmz + He,) cross.

Let us first discuss the effects of temperature. In figure 3.3a three hyperbolic
tangent lines are drawn using equation (3.9) with different inverse tempera-
ture 8 values. Notice, that there is a special inverse temperature value, for
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Figure 3.3: Graphical analysis of the self-consistency equation (3.9) of the mean-field
Ising model. Panel (a) demonstrates the temperature dependence of the system and
panel (b) demonstrates the field dependence. In (a) there is no external field H, = 0
and in (b) the inverse temperature is below the critical inverse temperature 8 < (.
(above the critical temperature T' > T;). Both panels show a plane where both axes
correspond to the mean magnetisation m and thus the diagonal straight black line
corresponds to the self-consistency condition m = m. Panel (a) demonstrates that
for inverse temperatures below the critical temperature 8 < ., the self-consistency
condition is only satisfied at m = 0, while above the critical inverse temperature g >
B, the self-consistency condition is also satisfied at two non-zero magnetisation values.
It can be shown (not done here) that the for 5 > beta. these non-zero magnetisations
are stable, while m = 0 is not. Thus the system is in the ordered ferromagnetic phase.
The critical inverse temperature is given by the condition that at m = 0 the slopes of
the straight line and the hyperbolic tangent are equal, which gives equation (3.10) and
leads to equation (3.11). From panel (b) we see, that even at inverse temperatures
below the critical value 8 < S, if there is a non-zero external field H,., # 0, then
the self-consistency condition is satisfied at a non-zero magnetisation value. It can be
shown (not done here) that in case of inverse temperature values above the critical
value 8 > ., a non-zero external field breaks the symmetry between the positive and
negative ordering.

which the slope of the hyperbolic tangent is exactly one at the origin, i.e it
overlaps with the self-consistency line m = m. This is the critical inverse tem-
perature 3., which corresponds to the critical temperature T,. If the inverse
temperature is lower than the critical value g < B, (T > T.), the hyperbolic
tangent crosses the self-consistency line only at the origin, meaning that the
self-consistency condition is satisfied only for zero mean magnetisation m = 0.
On the other hand, if the inverse temperature is higher than the critical value
B> B. (T < T,), then the lines cross at three points and the self-consistency
condition is satisfied also for non-zero magnetisation values m = +my. It can
be shown, that for 8 > (. the non-zero magnetisation values correspond to
stable minima, while the zero magnetisation is unstable. Therefore, the criti-
cal temperature marks the boundary between para- and ferromagnetic phases.
We can find the value of the critical inverse temperature (., by demanding
that the slope of figure 3.3 at the origin is equal to one
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d
1= 7 tanh 8 (Jmz + Hey) = fBJz. (3.10)

m m=0,Hcz=0

Therefore, the critical inverse temperature 5. is given by

Be=—. (3.11)

Let us shortly discuss the effects of the external field as well. In figure 3.3b
three hyperbolic tangent lines are drawn using equation (3.9) with an inverse
temperature below the critical value § < 8. and with zero, positive and nega-
tive external field values. We can see that turning on the external field shifts
the hyperbolic tangent, so that the self-consistency condition is satisfied for a
single non-zero magnetisation already below the critical inverse temperature.
Thus, the external field forces the system to order. It can also be shown that
in case of inverse temperature values above the critical value 8 > f., a non-
zero external field breaks the symmetry between the positive and negative
ordering.

3.2.2 Toy model definition

Let us now turn to our toy model. As stated above, this model is designed to
highlight the effects of the self-referential feedback loops in the noise trader
strategy. We have already pointed out that the Ising model can be linked
with a binary choice model of interacting agents. Of course, interacting binary
decision makers is exactly what our noise traders are: they constantly have to
decide whether to buy the risky or risk-free asset. The interaction between the
noise traders is represented by their imitating and trend following tendencies.
We can see two mediators for these interactions. First is the market: the noise
traders are following the price momentum, which reflects the composition
of the decisions of all the market participants. Second is the overall social
communications between the noise traders, i.e they are aware of the noise
trader opinion index. The respective interaction strengths are given by the
products of the herding propensity x; and the corresponding weight coefficients
cp, and cs.

We can incorporate this into the mean-field Ising framework, by modelling
the opinion index s as corresponding to the magnetisation and the momen-
tum H as corresponding to the external field. The interaction strengths are
represented by kics and kicp. For the sake of parsimony, in the following we
only consider cases with constant herding propensity x; = . Thus, for the
toy model, the mean-field magnetisation equation (3.9) turns into

s = tanh [n (css +cnH) ] (3.12)
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Consider, for a moment, the critical herding propensity 0 for which equa-
tion (3.12) satisfies the self-consistency condition for a non-zero opinion |s| > 0
at a zero valued momentum. Similarly to the derivation of the critical inverse
temperature in section 3.2.1 (see equations (3.10) and (3.11)) we get

1= c% tanh k (css + e H) 00 = K= cls (3.13)
Recall that, in the market model, the noise traders are dynamically updat-
ing their investment positions. Therefore, it is reasonable to change equa-
tion (3.12) into a dynamical formulation, so that s; depends on the previous
opinion and momentum values s; = s; (s¢—1, Hy—1). Besides the opinion, we
need to define the evolution of the momentum H;. In the market model, the
price momentum is the exponential moving average of the price return rate;
it is defined by equation (2.18). We wish to use a similar structure in our toy
model. The main question is how to model the non-trivial relation between
the opinion and the price returns. For the sake of simplicity, we approximate
this with a one-to-one correspondence between price return rate r; and the
noise trader opinion index s;. Thus, the toy model is given by the following
set of iterative equations

St41 = tanh [n (csst + cpHy) },
Ht_|_1 = HHt + (1 — 0) St.

(3.14)

The toy model has some features, which resemble the full artificial market (see
chapter 2). For, example the term inside the hyperbolic tangent & (css¢ + ¢ Hy)
is exactly the non-constant term in the noise trader switching probability equa-
tion (2.19). On the other hand, there also are several differences between the
two models. Let us highlight these differences:

1. The toy model does not explicitly consider the fundamentalists. This
can be interpreted in two ways: (a) the toy model considers a market
which only consists of noise traders; (b) in the toy model, the effect of
the fundamentalists is decimated into the coefficients cs and ¢y,.

2. The toy model approximates the non-trivial functional relation between
the opinion index s and the price return rate r; with a simple one-to-one
correspondence.

3. In the toy model the stochastic dynamics of the noise traders risky
fraction, given by equation (2.17), is approximated by a deterministic
threshold-like behaviour of the hyperbolic tangent function.

It is enlightening to consider the fixed point of the iterative system given in
equation (3.14). Let us assume that a fixed point exists
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Hy\1 = Hy=H and s;11 = 8¢ = s. (3.15)

From equation (3.14), it is straightforward to see that momentum fixed point
must equal the opinion fixed point

H=0H+(1-60)s = H=s. (3.16)
Inserting the above into the fixed point equation for the opinion, we get
s = tanh [sm (cs + cn) } (3.17)

We can find the critical herding propensity k., of the fixed point in equa-
tion (3.17), by again using the self-consistency condition

d 1
1 = — tanh = = .
ds anh £ (¢s + cn) s=0 e cs +cp

(3.18)

Finally, let us consider the difference between the two critical herding propen-
sities k. and k2. The first, corresponds to the fixed point of the dynamical toy
model in equation (3.14). The second, however, is the critical herding propen-
sity of a static version of the toy model, where there is no self-referential
effect of the momentum. This gives us the first glimpse of the effect of the
self-referential momentum. Namely, for positive coefficient ¢;, value the critical
herding propensity k.. is lower than x0, i.e self-referential momentum enhances
order. In the next section we use numerical analysis for composing a phase
diagram of the toy model on the cs-c;, plane. The resulting phase diagram
shows that the self-referential nature of the toy model not only enhances order,
but also induces new ordered regimes.

3.2.3 Toy model numerical phase diagram

In this section we use numerical simulations for profiling a phase diagram
of the toy model on the cs-¢;, plane. This phase diagram enlightens us on
the effects of the noise traders self-referential nature. Namely, we see that the
interplay of positive and negative feedback mechanisms leads to the emergence
of two new ordered regimes besides the regular “ferromagnetic” phase.

The phase diagram is constructed by a parametric scan over the coefficients ¢
and ¢p,. For each pair of the coefficient values, we calculate a set of scalar indi-
cators from the opinion and momentum time series. These indicators charac-
terise the system behaviour for the corresponding coefficient values. To guide
our choice of indicators, we conducted exploratory scans of the parameter
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space, which revealed four regimes with distinct characteristics: (1T) “para-
magnetic” disordered phase with s ~ H ~ 0; (2T) “jumping” regime, where
the opinion systematically jumps between the polarised values s = £1; (37T)
“ferromagnetic” ordered phase with s & H =~ 1; (4T) “oscillating” regime,
where opinion and momentum undergo smooth oscillations. The characteris-
tic features of these regimes are demonstrated in figure 3.4, which shows eight
panels with time series of s; and H; for the first 200 time steps. The two upper
panels show the disordered regime (1T), the following two illustrate the usual
ordered phase (3T), then there is one panel demonstrating the dynamics of
the jumping regime (2T) and the final three panels characterise the oscillating
phase (4T).

We have chosen three indicators, which are effective in distinguishing between
the distinct characteristics illustrated in figure 3.4. For a time series of variable
x, the indicators are: (1) mean value of x; (2) mean relative change Ax/x,
where Az = z; — 24—1; (3) the number of frequencies in the time series. The
number of frequencies is found by counting peaks in the positive half of the
Fourier spectrum. For each (cg,cp,) pair, we equilibrate the system for 2000
time steps and calculate the three indicators for both s; and H; over the
interval ¢ = 2000-10000. We visualise the results with colour coded heat-
maps on the cs-cp, plane. For simplicity, we refer to these as just heat-maps.
In the heat-maps, the value of an indicator at a certain point on cs-cp plane is
represented by the colour of that point. We ensure the readability of the heat-
maps, even when printed in greyscale, by employing a colour scheme from the
cubehelix family introduced by Green (2011) for astrophysical intensity plots.

Figure 3.5a shows all six heat-maps corresponding to a toy model with unit
herding propensity x = 1 and the memory coefficient § = 0.99. On the left
hand side, we find the the mean opinion and momentum heat-maps, which
outline three regions sgug &~ Haypg € {0,1,—1}. Areas with s4y = £1 corre-
spond to the “ferromagnetic” ordered phase (3T). In figure 3.4 we can see the
time series of the ordered phase for weight coefficients ¢; = 1.0 and ¢, = 2.0
with both positive and negative initial momentum. As we can see, the initial
conditions determine which of the ordered states, s = 1 or s = —1, is realised.
From figure 3.5a we see that the sign of ¢j, has similar effect. Let us now turn
to the heat-maps for the relative change and the frequency counts. In these,
we can see a triangular region in the lower right part of the plane, where there
is a large number of frequencies and a distinctly uneven relative change. This
corresponds to the oscillating phase (4T). On the left side of the plane, we can
find an area with large negative valued relative change and a single opinion
index frequency. This corresponds to the jumping regime (27T). In the middle
of the heat-map for the opinion index frequency count, we can see a narrow
region where the frequency count is strictly zero. This corresponds to the
“paramagnetic” disordered phase (17°). These results are combined into the
toy model phase diagram sketch in figure 3.5b.
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Let us give an qualitative explanation to the four different phases. Consider
the feedback mechanisms of the toy model. From equation (3.14) we can
conclude that the signs of c¢s and c¢; define whether the system has positive
or negative feedback from s and H respectively. Furthermore, the absolute
value of ¢; and ¢ sets the strength of the corresponding feedback. In the
following, we consider which feedback, positive or negative, is dominant in
each of the four phases. First, take the ordered phase (3T). It is in the upper
right corner of the plane, where we expect the system to be dominated by
positive feedbacks. Usually such uncontrolled positive feedback would lead to
infinite growth, but as the hyperbolic tangent is bound by =+1, the toy model
just saturates at one of the polarised states |s| = 1. Next, consider what
happens if negative feedback dominates. This would mean that the system is
always pulled back towards the neutral state s = 0. Both disordered (1T) and
jumping (2T) regimes are located in areas where we would expect either both
the negative and the positive feedback to be relatively weak or the negative
feedback to dominate. In the case of (2T), the negative feedback is too strong
and it always overshoots the neutral state s = 0. Finally, we come to the case
where both feedbacks are of similar strength. This corresponds to the region
around the diagonal on the lower right quarter of the plain, i.e it corresponds
to the oscillating phase (47T).

Before concluding with the toy model, let us point out that we have tested sev-
eral different memory parameter 6 values. The memory parameter effectively
controls the lag between the opinion and momentum. The larger the memory
parameter is, the larger the lag. We can report that varying the memory
parameter changes the layout and relation between the jumping and oscillat-
ing regimes. For example, for very small 6 values, smooth oscillations vanish,
while for medium valued memory parameter, we can find regimes which are
a mixture of jumping and smooth oscillations. While the dependence on 8 is
interesting, its detailed investigation is beyond the scope of this thesis. For
the purposes of this thesis, it is sufficient to note that the phase diagram has
a significant dependence on the memory parameter.

We conclude by highlighting the most important findings from the toy model:
1. The toy model’s self-referential nature induces new ordered regimes.

2. Balanced positive and negative feedback leads to smoothly oscillating
dynamics, while overwhelmingly dominating (over shooting) negative
feedback leads to “jumping” dynamics.
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Figure 3.4: Characteristic toy model time series in different regimes. The toy model
is a dynamic mean-field Ising-like model defined by equation (3.14). It features two
coupled variables: the opinion index s and the momentum H. These time series are
generated for a toy model with unit herding propensity x = 1, memory parameter
0 = 0.99 and initial opinion sg = 0. The initial momentum and the noise trader
imitation and trend following weight coefficients c¢s; and ¢, are specified for each time
series panel separately. Trials with different parameters have shown that the initial
opinion and momentum values define two features: (a) in case of ordered phase, they
define the sign of the opinion; (b) in case of jumping or oscillating regimes they define
the cycle-phase. Considering the regimes on the sketch in figure 3.5b, the first two
panels show time series correspond to disordered (paramagnetic) regime (1T). The
following two panel show characteristics of the ordered (ferromagnetic) regime (37T).
32 The fifth panel corresponds to the jumping phase (2T) and the final three all describe

different smooth oscillations in regime (47T).
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(a) The scalar indicator heat-maps on the cq-cp plane.
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(b) Sketch of the toy model phase diagram c,-c;, plane.

Figure 3.5: The toy model numeric phase diagram on the noise trader imitation
and trend following weight coefficients c,-c, plane. The toy model is a dynamic mean-
field Ising-like model defined by equation (3.14). It features two coupled variables:
the opinion index s and the momentum H. Here we use unit herding propensity
k = 1 and memory parameter § = 0.99. In panel (a) we see three heat-maps for
both opinion s and momentum H: (1) mean value of the time series; (2) mean value
of the relative changes in the time series; (3) the number of frequencies in the time
series. The number of frequencies is found by counting peaks in the positive half
of the Fourier spectrum. The heat-maps indicate five separable regimes, which are
highlighted with the sketch in panel (b): (1T) “paramagnetic” disordered phase with
s H ~0; (2T) “jumping” regime, where the opinion systematically jumps between
the polarised values s = +1; (3T) “ferromagnetic” ordered phase with s ~ H ~ 1;
(4T) “oscillating” regime, where opinion and momentum undergo smooth oscillations.
The characteristic time series of these regimes are shown in figure 3.4.
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Chapter 4

Limiting noise trader behaviour

In chapter 3 we described the main characteristics of the artificial market. We
argued that the fundamentalist traders enforce a connection between the risky
asset price and dividends. Their buy-low-and-sell-high strategy pushes the
market towards the fundamental-state, where the price and dividend growth
is of the same order R,,y ~ R4. The noise trader, on the other hand, have
a more complex self-referential nature. In section 3.2 we elaborated on the
noise trader behaviour by introducing a simplified toy model based on an iter-
ative coupled Ising model. Besides the standard disordered paramagnetic and
ordered ferromagnetic phases, we witnessed the emergence of two additional
ordered regimes. From this, we concluded that the self-referential nature of
the noise trader enhances order.

In this chapter, we focus on the limiting noise trader behaviour, where all
trader, are invested in the same asset type, ¢.e the noise trader opinion has a
polarised value, either s = 1 or s = —1. Both of these are analogues to the
ferromagnetic phase in the toy model and thus we refer to them as positive and
negative ordered states. In Section 4.1 we consider the necessary conditions
for these polarised regimes and observed that it is convenient to consider
threshold momentum values below or above which the noise traders start
ordering. These critical momenta are discussed in more detail in section 4.2,
where we show that they naturally divide the noise trader imitation and trend
following weight coeflicients cs-cp, plane into four quarters. In section 4.3 we
use the limits of ordered noise traders to find two fixed points Ryn and Ryqq
for the price growth R, or equivalently 7,,;, and 7,4, for the growth rate
r¢. The naming convention of min and max is because these fixed points
effectively act like bounds on the long-term average price growth Ry,, and
growth rate 74,4. All of these results are later used in chapter 5 to consider
the feasibility and stability of the ordered states on different regions of the
cs-cp, plane and thus propose a theoretical phase diagram for the artificial
market.
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4.1 Ordered noise traders

Let us consider the limits, where all noise traders are invested in the same
asset type. We refer to such regimes as ordered or polarised phases. These
correspond to cases where after some relaxation time 7p the risky fraction x}'
of the representative noise trader is zero or one, or equivalently the opinion
index is +1

Vi >Ty >0, zp € {0,1} & Vt>Ty>0, s € {—1,1}. (4.1)

The dynamics of the noise trader risky fraction z} is given by equation (2.17),
which reads

N N,
Z 1_§kpt1 +7Z§lptl
n

k=1

’I’L

Here &; (p) are one with probability p and zero otherwise, i.e they are Bernoulli
random variables. The number of traders owning risky and risk-free asset at
time ¢ are given by N,” and N, respectively. For any time ¢, their sum is the
total number of noise traders Vt, N, = Nt+ + N, .

By definition (equation (2.17)) the risky fraction 2™ is stochastic. As long
as the switching probabilities pf and p, are non-zero, there is a finite prob-
ability for the risky fraction to change. For the condition in equation (4.1)
to be satisfied for all time steps, one (and only one) of the switching proba-
bilities must equal zero. This creates a lock-in effect for the corresponding
asset, where none of the noise traders, who are invested in that asset, change
their position. The aforementioned observation shifts the focus from finding
conditions for polarised noise traders to finding conditions for zero valued
switching probabilities. Recall that the switching probabilities pfc have an
Ising-like dynamics, given by equation (2.19)

+
pi = BE (LF ki (cose + cuHy))

The probability of selling the risky and buying the risk-free asset is given
by pj' . Conversely, p, is the probability of switching from risk-free to risky
investment. The opinion index s; = 2z} — 1 € [—1,1] measures the market
sentiments and the the price momentum H; the trend. Coefficients ¢; and
¢, indicate the relative weights of s; and Hy, and whether the traders have
a conformist or contrarian attitude. The noise trader herding propensity is
given by k; and p4 are constants. For simplicity, in this and the following
chapter, we only consider a constant valued herding propensity x; = k. The
results can be extended to time-dependent herding propensities.
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Evidently, switching probabilities in equation (2.19) are even allowed to be-
come negative. However, such values are treated as zero. Necessary conditions
for non-positive switching probabilities can be expressed from equation (2.19)

p <0.0: 1—k(cssy+cpHy) <0, (4.2)
p; <0.0: 14 k(csst+epHe) <O. '
In this thesis we focus on the interplay between the noise trader trend following
and imitative behaviour. Thus, as with the toy model in section 3.2, different
market regimes are considered on the cs-c;, plane. Consequently, for constant
herding propensity x, the only free variables in equation (4.2) are opinion s;
and price momentum H;. By definition (equation (2.16)), the opinion index
is bound by 4+1. As the momentum is less restricted, it is convenient to
reformulate the inequalities in equation (4.2) as

pfﬁ0.0: chHZ%—csst, (4.3)
p; <0.0: chHS—(%—chst). ’
The inequalities in equation (4.3) are valid only if the social herding propen-
sity k is positive. If k is negative, the inequalities have opposite directions.
For simplicity, we are going to consider only positive herding propensities.
The results can be trivially extended for negative herding propensities. Equa-
tion (4.3) indicates the existence of threshold momentum values, beyond which
the switching probabilities vanish. We refer to these as critical momenta HZE.
They can be expressed from equation (4.3)

1 /1
Hf =4+— < T csst) : (4.4)

Ch \ Kt

Let us consider the requirements for vanishing switching probabilities given in
equation (4.3). Depending on the sign of the coefficient ¢y, these are satisfied
if the momentum value H; is either higher or lower than the corresponding
critical threshold (H or H ). Figure 4.1 gives a graphical illustration of the
directions of these inequalities. It features the cs-cp plane cut in two by the
line ¢, = 0.0. The direction of the inequalities changes when crossing the line
cp, = 0. On this line, the critical momenta diverge to +0o. We discuss this
divergence and other peculiar features of the critical momenta in more detail
in section 4.2.
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Figure 4.1: A graphical representation of the directions of inequalities in equa-
tion (4.3) on the noise trader imitation and herding weight coefficients cs-¢j, plane
for both of the critical momenta: (a) Hf and (b) H; . HF are threshold momentum
values, below or above which the corresponding switching probability pti vanishes,
creating a lock-in effect for the respective asset, which leads to polarised noise trader
opinion s = £1. The critical momenta are defined in equation (4.4). For positive ¢,
HF is the lower threshold for p; being zero, while H is the upper threshold for p;
being zero. The opposite holds for negative cy,.

4.2 The critical momenta

In section 4.1 we established that regimes with ordered, i.e polarised, noise
traders are possible only if one of the switching probabilities pf is zero valued.
The necessary conditions for vanishing pf = 0 are defined by the inequali-
ties in equation (4.3). We found it convenient to formulate the criteria in
equation (4.3) with respect to threshold momentum values HF. Such a formu-
lation is illustrated in figure 4.1. In the following section, we elaborate on the
specifics of the threshold critical momenta and demonstrate how they impose
a natural frame of reference upon the cs-c;, plane. Let us start by restating
the definition of the critical momenta, as given in equation (4.4)

Hf = 1 (1 F csst> : (4.5)

cp \ K
On a closer examination of equation (4.5) we can find two characteristic fea-
tures of Hf on the cs-c¢;, plane. First, as ¢, — 0 the critical momenta tend
towards infinity Hci — Fo00. Notice, that when ¢;, = 0 the switching prob-
abilities do not depend on the momentum and thus the concept of critical
momenta is irrelevant when ¢;, = 0. Nevertheless, the line ¢;, = 0 arises as
a natural reference when considering the critical momenta. In figure 4.1 we
already demonstrated that on either side of ¢; = 0 the direction of the in-
equalities in equation (4.3) are different. Let us now consider the signs of the
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Figure 4.2: A graphic overview of the signs of the critical momenta HX on the
noise trader imitation and herding weight coefficients c,-c;, plane. HF are threshold
momentum values, below or above which the corresponding switching probability pf
vanishes, creating a lock-in effect for the respective asset, which leads to polarised
noise trader opinion s = £1. The critical momenta are defined in equation (4.5). The
plane has been divided into four quarters by the lines ¢, = 0.0 and ¢5 = ﬁ Panel
(a) shows signs for positive opinion s > 0 and panel (b) for negative s < 0. If the
opinion is positive, H changes sign on crossing either of the division lines. As a
result, its signs form a chequered pattern. On the other hand, H_ only changes sign
when crossing the line ¢;, = 0.0. The case of negative opinion index is antisymmetric
to the positive case. H_ signs have a chequered pattern on the plane, while the sign of
H7 only changes when crossing the line c¢;, = 0.0. As the lines ¢;, = 0.0 and ¢ = ATt
separate regions, where HF have different signs, they form a natural reference frame
on the cs-cj, plane. When considering HF as the threshold values for ordered noise
traders |s| = 1, the relevant position of the critical point is (+,0).

critical momenta. From equation (4.5) we see that the signs of HX depend
on the signs of ¢; and % F stcs. Which leads us to the second characteristic
feature of H Ci: if % F s;cs = 0, then the corresponding critical momentum is
zero. This defines an other natural reference line c¢f = j:ﬁ%t, where the plus
and minus refer to H and H_ respectively.

In regard to the signs of H the lines ¢;, = 0 and ¢f = i%s/t define a natural
frame of reference on the cs-cp, plane. In figure 4.2 we illustrate this notion by
using these lines to divide the cs-¢p plane into four quarters and indicate the
signs of HF in each of them for (a) positive opinion s > 0 and (b) negative
opinion s < 0. Recall the definition of the critical momenta given in equa-
tion (4.5). We can see that for a finite ¢, the critical momenta H. can only
become zero valued when the opinion is positive and H, can only become zero
when the opinion is negative. In either case, the critical momenta become zero
valued at ¢; = ﬁ&l This is reflected in figure 4.2 by the fact that for positive
opinion, the signs of H have a chequered pattern on the cs-cp, and H is
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negative for ¢, > 0 and positive for ¢, < 0, while for negative opinion signs
of H have a chequered pattern and H_ is positive for ¢;, > 0 and negative
for ¢, < 0. Thus, the lines ¢, = 0 and ¢; = ﬁ define a natural frame of
reference on the cs-¢p, plane.

We have established that ¢;, = 0 and ¢; = ﬁ define a natural reference frame
on the cs-cp, plane, as they separate areas where H Ci have different signs (see
figure 4.2). When ¢; — 0 the critical momenta diverge and H have different

signs on either side of ¢, = 0. On the other hand, depending on the sign of s;,

along the line ¢; = ﬁ one of H f is zero valued. We call ¢; = ﬁ the critical
line and the point (ﬁ,()) the critical point. It is illuminating to visualise

the shape of the critical momenta on the cs-cp plane as presented in figure 4.3.
It features both of the critical momenta using opinion index values s = 1
and s = —1 for H} and H_ respectively. Due to the divergence at ¢; = 0.0,
cut-off values for the absolute momenta are used to improve visibility. We see
that the values of the critical momenta spiral from —oo to +o00 during a 180°
turn around the critical point (ﬁ, 0). Additionally, we can observe that a
cut-off value defines a region in the vicinity of the critical line, inside which

the critical momenta have absolute values below this cut-off.

Let us now consider the position of the critical line ¢ = ﬁ It depends
hyperbolically on the opinion index |s;¢|. For polarised noise traders |s| = 1, it
is at ¢ = %, while for neutral noise traders s = 0, it is at +co. We illustrate
this very sensitive dependence in figure 4.4, which shows heat-maps of H¥ on
the cs-c, plane for three different opinion values s € £{0.90,0.95,1.0} for HF
respectively. To improve visualisation, we use a cut-off value |[HZE| < 0.001 ~
674, which corresponds to the scale relevant for our market simulations in
chapter 6. We can now notice two things: (a) the location of the critical line
is very sensitive to the opinion index; (b) the critical momenta have values,
which are reachable in our market simulation, only in a narrow double conical
region centred at the critical point (%St', 0). Recall that we are considering the
critical momenta as the thresholds a{)ove or below which one of the switching
probabilities pfﬁ vanishes, which leads to ordered noise traders |s| = 1. In this
light, we can see that the only relevant position of the critical line corresponds
1

to the polarised noise traders: cs = .

We finish by highlighting the most important results:

1. The criteria for vanishing pf, and thus ordered noise traders, can be for-
mulated with respect to threshold critical momenta HZ (see figure 4.1).

2. The shape of HF defines a natural reference frame on the cs-c; plane,
given by: ¢, =0 and ¢s = % These divide the plane into four quarters,
where HF have different signs (see figure 4.2).

3. The condition HX < H_ yiory defines a double conical shape centred at
the critical point (%, 0) on the cs-cp, plane.
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Figure 4.3: Illustration of the spiralling shape of the critical momenta HF around
critical point ¢y = % on the noise trader imitation and herding weight coefficients cs-cp
plane. H Ci are threshold momentum values, below or above which the corresponding
switching probability ptjE vanishes, creating a lock-in effect for the respective asset,
which leads to polarised noise trader opinion s = +1. The critical momenta are
defined in equation (4.5). In the above plots we use polarised opinion index values
s = +1 for HF respectively. The critical momentum HF, can be seen in the column on
the left hand side column, while the right hand side corresponds to H; . To improve
visibility, we use three different cut-off values |[HE| < Heyuops € {0.1,0.01,0.001}.
The cut-off Heutopy = 0.001 corresponds to the relevant momentum scale for our
market simulations in chapter 6. We can see that for the corresponding polarised
opinion values HF change sign when crossing the lines ¢;, = 0 and ¢, = % We use
this to define a natural reference frame on the cs-c;, plane. We see that the values 41
of HF spiral from —o0 to 400 during a 180° turn around the crossing point of the
reference frame (1,0). We call this point the critical point.
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Figure 4.4: Illustration of the opinion index dependence of the critical momenta
HZF on the noise trader imitation and herding weight coefficients c,-c;, plane. HF
are threshold momentum values, below or above which the corresponding switch-
ing probability pti vanishes, creating a lock-in effect for the respective asset, which
leads to polarised noise trader opinion s = +1. The critical momenta are defined in
equation (4.5). In the above heat-maps we use four different opinion index values
s € £{0.90,0.95,1.0} for HF respectively. The critical momentum H. are in the
heat-maps in the upper row and H_ in the lower row. To improve visibility we use a
cut-off |H, Ci| < Heytops = 0.001, which corresponds to the relevant momentum scale
for our market simulations in chapter 6. Therefore, the condition |Hci| < Heutorf
roughly outlines the region where the critical momenta have values which can be
reached in the market simulations presented in chapter 6. This region has a double
conical shape centred at the point (ﬁ, 0), which we call the critical point. It is also
the crossing point of the two perpendicular white lines, which correspond to ¢, = 0
and c; = Al We can see that for the opinion index values, used in the above
heat-maps, these lines divided the c4-c, plane into four quarters based on the signs
of H Ci Due to this feature, these lines are a natural reference frame on the cs-cp,
plane. Observe, that the ¢4 coordinate of the critical point has a sensitive hyperbolic
dependence on the opinion index | T : for |s| =1 the critical point is at (£, 0), while

for s = 0 it is at (00,0). When considering HF as the threshold values for ordered
noise traders |s| = 1, the relevant position of the critical point is (1,0).
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4.3 Fixed points of the price returns

In section 4.1 we discussed so-called ordered or polarised states, which are
limiting regimes, where all noise traders own the same asset type. We argued
that the necessary condition for such states are equivalent to conditions for
zero valued switching probabilities. In other words, if either pf or p, van-
ishes, the noise traders have a lock-in effect for the corresponding asset, which
respectively leads to the formation of the positive s = 1 or negative s = —1
ordered state. We argued that it is convenient to consider the criteria for
vanishing pfﬁ with respect to threshold momentum values HX. In section 4.2
we analysed these critical momenta Hci in more detail and found that they
impose a reference frame on the cs-c, plane. In this section, we take it as given
that a lock-in effect has occurred and the system is in one of the ordered states.
We analyse the corresponding behaviour of the price returns and derive fixed
points for it.

Recall our discussion of typical market dynamics in section 3.1. We argued
that fundamentalists enforce a connection between the risky asset price and
dividends, while the noise traders can induce super-exponential price gro