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Abstract 

There is a rising importance of carbon emissions for policy setting, business, and 

research, but some concerns about data quality have appeared, including uncertainty, 

inconsistency, verification, and compliance. As one of the most influential data 

providers of carbon emissions, Morgan Stanley Capital International (MSCI) is 

frequently used by a wide range of stakeholders, such as governments, investors, and 

researchers. However, the quality of MSCI's carbon emissions data is not validated. 

This thesis investigates the MSCI data quality and the potential reasons for the data 

quality issues leveraging the scope 1 carbon emissions dataset established based on 

the World Electric Power Plants (WEPP) dataset by using emission factors and the 

production model, and the Carbon Disclosure Project (CDP) dataset. Through 

correlation analysis and statistical tests (Spearman’s rank correlation test, Wilcoxon 

signed-rank test, and Kruskal-Wallis H test), the results reveal that there is a 

monotonic moderate correlation existing between the scope 1 carbon emissions 

estimated based on WEPP and the one provided by MSCI, but there is a significant 

difference between the distributions of these two samples. As for the consistency 

between MSCI and CDP, scope 1, scope 2, and scope 1 and 2 of both carbon 

emissions and carbon intensity are highly consistent, demonstrating that the 

information companies disclose to the public is consistent with the information they 

disclose through CDP. But scope 1 and scope 1 and 2 have a higher consistency than 

scope 2. As expected, the consistency is higher for the companies that MSCI directly 

cites from CDP or estimates based on CDP than those both in MSCI and CDP 

datasets. However, MSCI and CDP have different distributions for carbon emissions 

and carbon intensity in all scopes. The data discrepancies may stem from raw data 

sources, methodology (e.g., capacity factors, energy sources classification, and the 
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ownership structure), and the company matching quality between different datasets. 

Based on the results, we cast doubt on the MSCI data quality at least for relatively 

pure electric power generation companies. Our findings suggest that all the 

stakeholders should pay attention to the data quality issues and validate the data 

through alternative independent data sources before applying it. To improve the data 

quality in carbon emissions and facilitate the carbon reduction process, greater 

transparency in data collection and reporting, and comparable data sources are 

needed.   
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CHAPTER I. INTRODUCTION  

1.1 Problem statements and challenges  

Anthropogenic activities have contributed notably to the negative consequences 

of climate change by increasing the concentration of greenhouse gases (GHGs) in the 

atmosphere [1]. 

Over the past few years, carbon footprint has grown in prominence in the 

financial sector as a technique of measuring and disclosing carbon emissions 

(greenhouse gas emissions) from both internal operations and investment portfolios. 

Carbon emissions and carbon intensity are utilized to project possible future 

scenarios, as well as the future changes in population, economic activities, and energy 

technologies, such as those used in the Intergovernmental Panel on Climate Change 

(IPCC) assessments.  

Corporations themselves report the majority of carbon emissions and carbon 

intensity data, normally without independent third parties' validation on the accuracy 

of this information. The data quality must be evaluated to provide high-quality data 

for transparent GHG monitoring and reliable future scenario prediction. 

1.2 Aims and objectives  

As one of the main GHG data providers, the carbon emissions and carbon 

intensity provided by Morgan Stanley Capital International (MSCI) are widely used 

by international organizations, researchers, institutes, and investors. Despite the wide 

usage of MSCI carbon emissions data and the recognized importance of the data on 

the policy setting, research, and business, the MSCI data quality is usually not 

validated before applying it. Hence, in this thesis, we mainly use the electric power 

plants data, provided by World Electric Power Plants (WEPP), to establish the scope 

1 carbon emissions dataset to validate the corresponding data in the MSCI dataset for 
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electric power generation companies. In the meantime, we leverage the Carbon 

Disclosure Project (CDP) data to assess the data consistency between MSCI and CDP.  

1.3 Thesis structure  

This thesis is divided into six sections. Following this introduction, Chapter II 

gives some background information on the data quality issues that exist in carbon 

emissions and carbon intensity data, as well as their potential influence on research, 

business, and policymaking. The four data sources used in this thesis are introduced in 

Chapter III. Continuing in Chapter IV, we introduce the methodology to validate the 

MSCI data quality through constructing a scope 1 carbon emissions dataset based on 

the WEPP data. The validation results are reported in Chapter V, along with a detailed 

explanation based on data analysis. In Chapter VI, we explore the potential causes of 

the results. Conclusions based on our work and a vision for future research directions 

are presented in the final chapter. 

CHAPTER II. LITERATURE REVIEW 

2.1 What are the carbon emissions?  

Carbon emissions are the total GHG emissions created directly and indirectly by 

an individual, event, organization, service, place or product, and are measured as 

carbon dioxide equivalent (CO2e) using the corresponding 100-year global warming 

potential (GWP100) [2].  

Carbon emissions are also expressed as carbon footprint, GHG emissions, carbon 

equivalent emissions, or carbon dioxide equivalent emissions. In this thesis, we have 

primarily used carbon emissions to denote GHG emissions.  

Per GHG Protocol, carbon emissions are grouped into three categories known as 

scope 1, scope 2 and, scope 3 carbon emissions. Scope 1 carbon emissions are direct 

emissions from owned or controlled sources. Scope 2 carbon emissions are indirect 
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emissions from the generation of purchased energy. Scope 3 carbon emissions are all 

indirect emissions (not included in scope 2) that occur in the value chain of the 

reporting company, including both upstream and downstream emissions [3].  

Scope 1 carbon emissions are direct emissions occurring from sources that the 

institution owns or controls, including on-campus stationary combustion of fossil 

fuels, mobile combustion of fossil fuels by institution-owned or controlled vehicles, 

and fugitive emissions. Fugitive emissions result from intentional or unintentional 

releases of GHGs, including the leakage of hydrofluorocarbons (HFCs) from 

refrigeration and air conditioning equipment as well as the release of methane (CH4) 

from institution-owned farm animals. Scope 2 carbon emissions are indirect emissions 

from the purchased energy generation, i.e., indirect emissions generated in the 

production of electricity consumed by the institution. Scope 3 carbon emissions 

encompass all indirect emissions (not included in scope 2) that occur in the value 

chain of the reporting company, including both upstream and downstream emissions, 

i.e., any other indirect emissions that are a result of the institution's activities but 

occur from sources that the institution does not own or control, such as commuting; 

waste disposal; embodied emissions from extraction, production, and transportation of 

purchased goods; outsourced activities; contractor-owned vehicles; and line loss from 

electricity transmission and distribution [3, 4].  

2.2 Importance of carbon emissions  

Since 1850, each of the last four decades has been successively warmer than the 

decade before it. Human-caused emissions drive the observed warming, with 

greenhouse gas warming partially concealed by aerosol cooling. Human activity has 

indisputably warmed the climate, oceans, and land. There have been widespread and 

rapid changes in the atmosphere, ocean, cryosphere, and biosphere. As the near-linear 
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relationship between cumulative carbon emissions and the increase in global surface 

temperature shows, every tonne of carbon emissions contributes to global warming. 

The stabilization of carbon-induced global surface temperature increases requires 

achieving worldwide net-zero carbon emissions, with anthropogenic carbon emissions 

balanced by anthropogenic carbon removals [1].  

To address the detrimental effects of climate change, 196 countries agreed in 

December 2015 to reduce global warming to well below 2 degrees Celsius, preferably 

1.5 degrees Celsius, compared to pre-industrial (1861-1880) levels through the Paris 

Agreement. The Paris Agreement requires all member countries to lower their carbon 

emissions and to strengthen their efforts in the coming years [5].  

There is an increasing importance of carbon emissions for policy setting, 

business, and research. Cities and organizations' carbon footprints have been 

quantified and reduced through legislative action, which is playing an essential role in 

policymaking [6]. Aside from legislative issues, the carbon footprint has become 

extremely important for business since it is linked to financial activities and the 

business world has predicted a carbon-constrained economy shortly [6].  

2.3 Carbon emissions data quality problems  

There are a rising number of voluntary or regulatory-driven initiatives, which 

require companies to disclose their GHG inventory following the GHG Protocol [7].  

Despite the generalized use of a common protocol, there is an increasing concern 

with the figures provided by corporations. The carbon emissions data is published or 

self-reported by the companies, instead of evaluating by independent bodies, thus it’s 

extremely self-serving, biased, and unreliable. With the increasing availability of data 

and information on carbon footprint, some concerns about data quality have arisen, 

including uncertainty, inconsistency due to variability of parameters, models, and 
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approaches, and verification and compliance under both proposed and legislated 

schemes aimed at reducing human-induced global climate impact [6, 8]. 

2.3.1 Data uncertainty and inconsistency  

Uncertainty about the carbon footprint data reported is an important parameter. 

Large uncertainties hinder progress in implementing, monitoring and verifying 

effective mitigation strategies [9].   

The methodology used in different datasets, as well as the reported carbon 

emissions data, varies significantly.  

There are three major concerns related to the quality of self-reported carbon 

emissions data: (1) the self-reporting bias introduced by voluntary investor-friendly 

reporting, limited data availability, (2) diversity of carbon emissions measurement 

methods and the disclosure recommendations and standards, raising the risk of 

companies intentionally greenwash their business activities, (3) inconsistency of 

reported data across different data providers [10].  

In the absence of mandatory reporting, around half of companies in the coverage 

disclose their carbon emissions voluntarily, and thus estimation of carbon emissions 

data is needed for the remaining half of companies, leading to ineffective investor 

actions whose purpose was to moderate climate change [11]. Assessing the accuracy 

of the estimated carbon emissions data, investors are at least 2.4 times less likely to 

identify the worst 5% of emitting companies when using estimated carbon emissions 

data as compared to using self-reported data [10].  

Important assumption disparities may not always be effectively addressed by 

researchers and policymakers due to the complexity of detecting and correcting gaps 

among various agency techniques and assumptions for energy and carbon statistics 

[12]. These distinctions are frequently overlooked, and presuming that the data given 
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is fungible may lead to erroneous comparisons and inconsistent conclusions across 

different datasets. If uncertainties and discrepancies are not effectively taken into 

account, these unmentioned uncertainties have the potential to undermine policy aims 

and scientific study outcomes.  

According to the study by Macknick [12], if not completely understood, data 

disparities in energy statistics and CO2 inventories can have a significant impact on 

climate modeling inputs as well as national and international policies that rely on 

precise estimates of carbon emissions. The study also found that depending on which 

datasets and methodologies are used to calculate emissions, intranational and 

international carbon emissions trading programs, such as the US Regional GHG 

Initiative and the EU Emissions Trading System, could have significantly different 

allocations of carbon emissions, and thus financial outcomes for individual member 

parties. Besides, the study revealed that while the uncertainty surrounding emissions 

from fuel combustion has been well documented in many cases, the inclusion of 

nonfuel combustion emissions, such as emissions from cement production and land-

use change, to the assessments of total anthropogenic impacts on the carbon cycle and 

carbon policy decisions, could add to the uncertainty. If new national carbon taxes 

were implemented in specific countries or credits were apportioned to carbon-emitting 

activities, much consideration would have to be given to what emissions, both fuel 

combustion-related and nonfuel combustion-related emissions, would be taxed or 

given credits, as well as how to collect, monitor and assess the data uncertainty [12].  

2.3.2 Data verification and compliance 

The common resources used in carbon footprint calculations are standards of 

greenhouse gas accounting, while footprint verification is not required [6].  
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As for the criterion “verification” when assessing how well the carbon-related 

datasets match the users’ expectations, needs, and preferences, stakeholders from 

intergovernmental organizations were most skeptical and only 6.7% would agree to 

use data without third-party verification while stakeholders from companies (private 

and state-owned) preferred to use data with third-party verification, with 58.3% 

agreeing [9].  

Moreover, the ability of the international community to provide some 

independent verification of emissions inventories, or at the very least the ability to 

falsify some components of an emissions inventory, would considerably boost 

confidence in an international treaty [13].  

2.4 Potential data quality problems in MSCI  

MSCI is one of the biggest carbon emissions data providers. However, the 

quality of the carbon emissions data provided by MSCI is not validated, and the 

uncertainty inhabited in MSCI carbon emissions data is not assessed.  

Besides, one of MSCI's main data sources is CDP and CDP also has a certain 

degree of uncertainty. Several studies have raised concerns about the quality of data 

collected and published by the CDP, regardless of its success [11]. As stated in the 

study by Faria [8], uncertainty estimates on total gross direct emissions (scope 1 

carbon emissions) are one of the CDP dataset's issues. The study has shown that less 

than 16% of companies in the CDP dataset have reported uncertainty figures higher 

than 10%, which is an acceptable uncertainty threshold used in the European Trading 

Scheme, and 8% of companies reported other things such as “no uncertainty” and 

“unknown”. 
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2.5 Carbon emissions in the energy sector 

Due to IPCC negotiations, GHG emission inventories have recently become 

more important in domestic and international policy settings, and many states have 

enacted policies to reduce national energy usage and GHG emissions, as this sector is 

typically the largest contributor of GHG emissions and statistics from this sector are 

readily available with a low level of uncertainty [7].   

As reported in the study by Ge Friedrich and Vigna [14], energy consumption is 

by far the most significant source of human-caused GHG emissions, accounting for 

76% (37.2 GtCO2e) of global emissions. The energy sector includes transportation, 

electricity and heat, buildings, manufacturing and construction, fugitive emissions, 

and other fuel combustion. Within the energy sector, the largest source of emissions is 

the heat and electricity generation (15.6 GtCO2e in 2018, or 31.9% of total GHG 

emissions), followed by transportation (6.9 GtCO2e in 2018, or 14.2% of total 

emissions), and manufacturing and construction (6.2 GtCO2e, or 12.6% of total 

emissions) [14]. Focusing on CO2 would allow independent checks (with a lower than 

10% uncertainty) on fossil-fuel combustion and deforestation, which account for 

three-quarters of GHG emissions under the United Nations Framework Convention on 

Climate Change (UNFCCC) [9].  

CHAPTER III. DATA SOURCES 

We derived a list of the datasets that are used in the following analysis, including 

MSCI, WEPP, CDP, and Orbis. Table 1 shows the carbon emissions or intensity type, 

reporting time, total company coverage, the source of the data, and the data 

granularity of each data source. The information is obtained through the data 

providers’ websites, the methodology, and the datasets they provided.  
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Table 1: Overview of the data sources, i.e., MSCI, WEPP, CDP, and Orbis, including 
the different types of carbon emissions and carbon intensity in the dataset, the 
reporting time (calendar year) of the carbon-related information, the number of 
companies in the dataset coverage, the original information source used by the data 
provider, and the data granularity.  
 
Data 
source 
 

Carbon emissions 
& carbon 
intensity type 

Reporting 
time 
 

Company 
coverage 
 

Source 
 

Data 
granularity 
 

MSCI Scope 1 carbon 
emissions, scope 
1 and 2 carbon 
emissions, scope 
1 and 2 carbon 
intensity 

2018, 
2021 

13 681 
(2018),  
12 055 
(2021) 

Corporate 
sources, CDP, 
government 
databases, 
MSCI 
estimation  

Company-
level 

WEPP NA 2018 33 281 Primary and 
secondary 
database 
sources 

Company-, 
plant-, unit 
-level 

CDP Scope 1 carbon 
emissions, Scope 
2 carbon 
emissions, scope 
1 and 2 carbon 
intensity 

2021 7158 CDP annual 
questionnaire 

Company-
level 

Orbis NA NA Around 
29 million 
companies 

NA Company-
level 

 

3.1 MSCI 

MSCI ESG Research collects carbon emissions data for the companies in its 

coverage universe. Data is collected once per year from most recent corporate 

sources, including Annual Reports (AR), Corporate Social Responsibility Reports 

(SR), or websites. In addition, MSCI ESG Research uses the carbon emissions data 

reported through CDP or government databases when reported data is not available 

through direct corporate disclosure. When companies do not disclose data, MSCI 

ESG Research uses proprietary methodologies to estimate Scope 1, Scope 2, 

Upstream Scope 3, and Downstream Scope 3 carbon emissions [4].  



 10 

In this thesis, we use two MSCI datasets, one is from 2018 and the other is from 

2021. In the following analysis, we use MSCI (2018) to indicate the MSCI dataset 

from 2018, and MSCI (2021) to indicate the one from 2021. All the year indicated in 

this thesis is the calendar year instead of the fiscal year.  

For MSCI (2018) dataset, the number of unique companies is 13 681. While for 

MSCI (2021) dataset, the number of unique companies is 12 055. Both of the datasets 

include the scope 1 carbon emissions, scope 1 and 2 carbon emissions, and scope 1 

and 2 carbon intensity data. 

3.2 WEPP 

Among all industries, the energy industry is by far the largest source of 

anthropogenic GHG emissions, with electricity and heat generation accounting for the 

majority of GHG emissions [14]. Electricity and heat production (31.9% of 2018 total 

GHG emissions [14]), i.e., the burning of coal, natural gas, and oil for electricity and 

heat, is the largest single source of global GHG emissions [15]. Fossil fuels account 

for about half of the electricity generated by thermal power plants. Fossil fuels (coal, 

oil, and gas) are still the predominant energy source for electricity generation [16].  

The WEPP is selected owing to its frequent usage in academic and policy studies 

of the energy sector, and its coverage of power plants, in terms of capacities and fuel 

types. WEPP is one of the most widespread power plant databases used by academics, 

NGOs, and businesses and it is greater in terms of the number of units and represented 

capacities, as well as geographical scope, amount of detail, and definitions (e.g., fuel 

types), compared to other commonly used energy databases, i.e. Carbon Monitoring 

for Action (CARMA), European Network of Transmission System Operators for 

Electricity (ENTSOE), DOE Energy Storage Exchange (only pumped storages) 
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(ESE), Global Energy Observatory (GEO), Open Power System Data (Conventional 

Power Plants) (OPSD), World Resources Institute (WRI) [17].  

The S&P Global Market Intelligence World Electric Power Plants Data Base 

(WEPP) is a comprehensive, global inventory of electric power generating units. It 

contains ownership, location, and engineering design data for power plants of all sizes 

and technologies operated by regulated utilities, private power companies, and 

industrial or commercial auto-producers in every country and major territory in the 

world, including units that are currently installed, projected, retired, or canceled. The 

WEPP is maintained and reissued quarterly in its entirety by S&P Global Market 

Intelligence, part of S&P Global Inc [18]. 

Direct surveys, vendor reference lists, power company financial and statistical 

reports, and websites, and the trade and business press are all sources of data for 

power plants. Primary sources are preferred, such as surveys and information created 

directly by owners, operators, and suppliers. Power plant data is retrieved, 

crosschecked, entered, and confirmed to the degree possible from various primary and 

secondary database sources. 

Electric power plant data are obtained from numerous sources, including direct 

surveys, vendor reference lists, power company financial and statistical reports and 

web pages, and the trade and business press. Power plant data are retrieved, 

crosschecked, entered, and verified to the degree possible from various primary and 

secondary data sources, and the primary sources such as surveys and materials 

directly produced by owners, operators, and suppliers are used preferentially [18].  

Information in the WEPP database is included at the company, plant, and unit 

levels. Units belong to plants, and plants belong to companies. One plant can have 

many electric power units, and one company can have many power plants. Company 
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data include the company name, electric type, and business type. Plant (site) location 

data include the city, state or province, country, geographic area, subregion, and 

postal code. Unit data include unit name, operating status, capacity (MWe), year-on-

line, primary and alternate fuels, equipment vendors for the boiler (or reactor), turbine 

and/ or engine, and generator/ alternator, steam conditions, pollution control 

equipment, engineering and construction contractors, and cooling system data [18].  

The WEPP dataset used in this analysis is from 2018 and contains information 

about 33 281 parent companies at 111 969 power plants with 220 478 units, among 

which 37 001 units are in commercial operation.   

3.3 CDP  

The CDP is a not-for-profit charity that runs the global disclosure system for 

investors, companies, cities, states, and regions to manage their environmental 

impacts [19]. Its goal is to encourage investors, companies, cities, states, and regions 

to share more information about their climate-change-related risks and opportunities, 

thereby making environmental reporting and risk management a business norm and 

driving disclosure, insight, and action toward a more sustainable economy [20].  

The CDP holds the largest database of primary corporate climate change 

information in the world [8]. It is the largest climate change-focused data collection 

and assessment program, requesting information on GHG emissions, energy use, and 

the risks and opportunities from climate change from the world’s largest companies in 

various capital markets via an annual questionnaire [21, 22]. Currently, there are 

companies, cities, states, and regions from over 90 countries disclosing through CDP 

on an annual basis [19]. Since 2002, over 8400 companies have publicly disclosed 

environmental information through CDP [20]. 

The CDP dataset used for the analysis is from 2021, including 7158 companies.  
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3.4 Orbis  

The Orbis is Bureau van Dijk's flagship company database. Bureau van Dijk, a 

Moody's Analytics firm, is a significant business information publisher, and a 

specialist of private company data combined with software for searching and 

analyzing companies [23].   

The Orbis dataset contains information on companies across the world, around 

400 million companies, with focuses on private companies as well as presenting 

companies in comparable formats. Bureau van Dijk gathers the information from over 

170 different providers and claims that it brings extra value by standardizing the data 

and connecting the sources [23].  

The Orbis dataset is used by CorpIndex [24], mainly using fuzzy name matching 

algorithm implemented by Swiss Re, and contains data about roughly 29 million 

companies. The Orbis dataset includes the company's ID, company name, country, 

revenue, workforce, industry, etc. It's in form of multiple JSONs which are collected 

by data scraping.  

CHAPTER IV. METHODOLOGY 

For the whole analysis covered in this paper, we only focus on scope 1, scope 2, 

and scope 1 and 2 carbon emissions and carbon intensity due to the data availability 

and precision. Most companies only disclose scope 1 and scope 2 carbon emissions. 

Around 475 world’s largest companies disclosed their carbon footprints through CDP 

(2009), but around 83% of those participating companies only reported scope 1 and 2 

carbon footprint, while the scope 3 carbon emissions of 5.8 × 109 tonsCO2e were 

much higher than combined emissions of scope 1 and scope 2 (0.6 and 3.6 × 109 

tonsCO2e, respectively) [6]. In addition, the MSCI (2018), MSCI (2021), and CDP 

datasets, provided by MSCI and CDP, used for this analysis only contain scope 1 and 
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scope 2 carbon emissions. Even though the scope 3 emissions left the largest 

footprint, the data accuracy was the lowest [6]. 

4.1 WEPP-based scope 1 carbon emissions dataset construction  

GHG data could be gathered in two ways: directly on-site real-time 

measurements or estimates based on emission variables and models. The best 

technique to use is determined by the goal (mandatory, voluntary, or for internal 

management), credibility, feasibility, cost, and capacity factors [6]. 

It is uncommon to quantify GHG emissions directly by measuring concentration 

and flow rate. Emissions are frequently estimated using a mass balance or 

stoichiometric basis unique to a facility or process. The use of documented emission 

factors and models are, nevertheless, the most popular and widely used approaches for 

estimating GHG emissions [6, 25]. In many situations, reliable emission statistics can 

be derived from fuel consumption data, especially when direct monitoring is 

unavailable or prohibitively expensive [25].  

The WEPP dataset provides detailed electric power plants information, including 

company name, unit name, operating status, fuel type, capacity (MWe), etc. To 

leverage the WEPP data to validate the quality of the MSCI scope 1 carbon emissions 

data, we use the following five steps to construct the WEPP-based scope 1 carbon 

emissions dataset leveraging emission factors. The method to establish the dataset can 

be broken down into five steps: (1) translation of the terms in the WEPP dataset, (2) 

mapping of the fuel types in WEPP to higher-level fuel types, (3) calculation of the 

full load hours for each fuel type, (4) aggregation of individual electric power plant 

units into power plants and parent companies, (5) estimation of scope 1 carbon 

emissions.  

Step 1. Translate the terms in the WEPP raw database 
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The first step aims to translate the abbreviation of key columns in the WEPP 

dataset, i.e., current unit status and fuel types, into full names based on the 

abbreviation list WEPP provided [18].  

Step 2. Map the fuel types in WEPP to higher-level fuel types 

The 62 fuel types in the WEPP dataset need to be mapped to one of the 

encompassing energy source or higher level of fuel types groups: biofuel, coal, 

geothermal, H2, Helium, hydro, liquid fuel, natural gas, nuclear, solar, waste, or wind. 

The details about the mapping and classification of each fuel type in WEPP to energy 

source groups adopted are shown in Table 2. 

Step 3. Calculate the full load hours for each fuel type 

The capacity factors differ significantly depending on the plant and fuel type 

[26], and it's unrealistic to get the exact capacity factors of each fuel type for each 

plant in the WEPP dataset. The average capacity factor can be determined for any 

form of electricity-generating installations, such as a fossil fuel consuming power 

plant or one that uses renewable energy, and it can be used to compare different types 

of electricity generation [27]. Hence, we use the average capacity factor of each fuel 

type for all the electric power plants in the WEPP dataset, shown in Table 3. The full 

load hours are calculated based on the capacity factor, given by 

 𝐹𝑢𝑙𝑙	𝑙𝑜𝑎𝑑	ℎ𝑜𝑢𝑟𝑠	𝑝𝑒𝑟	𝑦𝑒𝑎𝑟	(ℎ) = 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦	𝑓𝑎𝑐𝑡𝑜𝑟 × 365 × 24	ℎ/𝑦𝑒𝑎𝑟.	 (1) 

Step 4. Aggregate individual electric power plant units into power plants 

and parent companies 

Each data record in the WEPP dataset represents the information of an individual 

electric power plant unit. The listed company in WEPP is both the facility operator 

and sole or majority owner, while the parent company in WEPP is used to track 

multinational power companies and holding companies and may also contain listings 
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for two or more companies in the joint venture or other arrangements [18]. However, 

MSCI reports individual companies, i.e., the parent companies stated in the WEPP 

dataset, so an aggregation of individual units into power plants and parent companies 

in the WEPP dataset is needed to ensure the comparability with the companies in the 

MSCI coverage universe. At the same time, the installed capacity per fuel type for 

each company is also aggregated to get the fuel capacity matrix for each company.  

Besides, the WEPP dataset includes electric power units in different operation 

statuses, but only the units that are currently in commercial operation status contribute 

to the existing carbon emissions, thus we only focus on these electric power units for 

the whole analysis. 

Step 5. Estimate scope 1 carbon emissions based on the WEPP dataset 

According to the definition of different carbon emissions scopes, the estimated 

carbon emissions based on the WEPP dataset for electric power generation companies 

are scope 1 carbon emissions. Scope 1 carbon emissions based on WEPP for each 

company could be estimated using  

𝐶𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 

 ∑ 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟! × 𝐹𝑢𝑙𝑙	𝑙𝑜𝑎𝑑	ℎ𝑜𝑢𝑟𝑠! × 𝑃𝑜𝑤𝑒𝑟	𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛!! , (2) 

where 𝑖 indicates the fuel type 𝑖 in a sample company power generation mix. 

The full load hours per year and the emission factor of each fuel type are listed in 

Table 3. 
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Table 2: Mapping and classification of the fuel types in the WEPP dataset to the 
energy source, i.e., the higher level of fuel types groups. 
 
Energy source 
 

Fuel types in the WEPP dataset 
 

Biofuel Wood or wood-waste fuel, refuse (unprocessed municipal solid 
waste), bagasse, biomass excluding wood chips but including 
agricultural waste and energy crops, pulping liquor (black liquor), 
landfill gas, biogas (produced by anaerobic digestion of 
biodegradable materials in closed systems), bioderived liquid fuels 
such as palm oil or vegetable oils or biodiesel or bio-oil or other 
bioliquids, sewage digester gas, syngas from gasified refuse, 
syngas from gasified wood or biomass, paper mill waste or sludges 
or wastepaper, waste paper and/or waste plastic, ethanol, 
wastewater sludge, methanol, syngas from gasified agricultural 
waste or poultry litter, meat and bonemeal, lignin (a wood 
polymer) 

Coal Coal, coal syngas (fuel for IGCC plants from gasified coal), 
petroleum coke, oil shale, peat, synthetic gas from petroleum coke, 
bitumen or asphalt or asphaltite, coal-water mixture (aka coal-
water slurry), Orimulsion (trade name for emulsified bitumen 
manufactured in Venezuela - production terminated in 2006) 

Geothermal Geothermal 
H2 Hydrogen gas 
Helium  Helium 
Hydro Water 
Liquid fuel Fuel oil, gasified crude oil or refinery bottoms or bitumen, 

kerosene (also see jet fuel), naphtha, liquified petroleum gas 
(usually butane or propane), jet fuel (typically kerosene, also 
naphtha-type), dimethyl ether, tar sands 

Natural gas Natural gas, liquified natural gas, blast-furnace gas also converter 
gas or LDG or finex gas (approx. 10% of the heat content of 
pipeline gas), refinery off-gas, flare gas or wellhead gas or 
associated gas, coal seam gas (aka coal bed gas or coal bed 
methane or CBM), mine gas (methane from active or abandoned 
coal mines), coke oven gas (approximately 50% of the heat content 
of pipeline natural gas), waste gas or low calorific gas from 
refineries or other industrial processes, corex process offgas, 
natural gas liquids (also natural gas condensate), top gas 

Nuclear Uranium 
Solar Solar power 
Waste Waste heat, scrap tires, industrial waste or refinery waste, 

hazardous waste, medical waste, manure fuel 
Wind Wind-powered turbines 
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Table 3: The capacity factors [28, 29, 30, 31, 32, 33, 34, 35, 36, 37], full load hours 
per year calculated using Eq. (1), and the scope 1 emission factors [4] of each fuel 
type or energy sources after the mapping and classification of the fuel types in the 
WEPP dataset to the higher level of fuel types groups in step 2. 
 
Fuel Type 
 

Capacity factor 
 

Full load hours 
(h/year) 
 

Scope 1 Emission 
factor  
(tonsCO2e/MWh) 
 

Coal 40%  3504  1.02  
Liquid Fuel 30% 2628 0.758  
Natural Gas 30% 2628 0.515  
Hydro 45% 3942 0 
Solar  18% 1577 0 
Wind 40% 3504 0 
Biofuel 70% 6132 0 
Nuclear 81% 7096 0 
Geothermal 85% 7446 0 
H2 50% 4380 0 
Waste 35% 3066 0 

 

4.2 MSCI (2018) validation leveraging WEPP  

4.2.1 WEPP and MSCI (2018) datasets matching 

Because there is no common column in the original WEPP and MSCI (2018) 

datasets, we link the separate WEPP and MSCI (2018) dataset together for the same 

company through the CorpIndex [24], mainly using fuzzy name matching algorithm 

implemented by Swiss Re, to ensure the companies in different datasets can be 

compared to each other. In the meanwhile, additional features are added from Orbis to 

benefit further analysis.  

The matching process between two different datasets denote as A and B, through 

CorpIndex [24] mainly has the following 3 steps: (1) matching and enrichment dataset 

A with CorpIndex [24], (2) matching and enrichment dataset B with CorpIndex [24], 

(3) matching dataset A and B through the common and unique values introduced by 

CorpIndex [24]. 
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We enrich and match the companies in WEPP and MSCI (2018) to companies in 

Orbis separately through CorpIndex [24], and then match the companies in WEPP to 

the companies in MSCI (2018) based on the “bvd_id”, which is an identical id for 

each company and is introduced into WEPP and MSCI (2018) datasets by CorpIndex 

[24].  

The WEPP and MSCI (2018) datasets have 33 281 parent companies and 13 681 

companies originally. After matching and enrichment by CorpIndex [24], the WEPP 

dataset still has 33 281 companies, while the MSCI (2018) dataset has 13 680 

companies, losing 1 company without matching. The matching result between WEPP 

and MSCI (2018) in a sample of 1002 companies, with 857 companies have the 

revenue data.  

4.2.2 WEPP scope 1 carbon intensity estimation 

To estimate the scope 1 carbon intensity for the companies in the WEPP dataset, 

we leverage the estimated scope 1 carbon emissions based on the WEPP dataset and 

the company revenue data from the MSCI (2018) dataset, given by 

 𝑆𝑐𝑜𝑝𝑒	1	𝑐𝑎𝑟𝑏𝑜𝑛	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = "#$%&	(	#)*+$,	&-!..!$,.	
/&0&,1&	

.  (3) 

4.2.3 Electric power generation company definition 

The WEPP dataset provides the data of electric power generating units and the 

ownership structure, but not all the companies that own power plants included in the 

WEPP dataset belong to the energy sector and are electric power generation 

companies. For example, many paper mills have combined heat and power plants that 

use purchased natural gas or coal, as well as black liquor produced in their mills, to 

process heat and generate electricity, and some companies generate electricity through 

their own on-site solar photovoltaic systems [38]. Hence, defining the electric power 

generation companies is needed in the WEPP dataset.  



 20 

For the electric power generation companies, their main business activity is the 

electric power generation, and almost half the electricity produced in thermal power 

plants using fossil fuels, with fossil fuels (coal, oil, gas) as the predominant energy 

source for electricity production [16]. Thus, their carbon intensity is higher than 

companies belonging to other sectors, which can be used to define the relatively pure 

electric power generation companies in the WEPP dataset. 

Since the coverage of the MSCI (2018) dataset, in terms of company and 

industry, is way larger than the WEPP dataset, the MSCI (2018) dataset is chosen as 

the base to decide the benchmark of the relatively pure electric power generation 

companies in the WEPP dataset. According to the MSCI (2018) scope 1 carbon 

intensity percentile plots, shown in FIG. 1, the 95th percentile of the MSCI (2018) 

scope 1 carbon intensity is around 1000 tonsCO2e/mln USD. Applying the Pareto 

Principle and leveraging the percentile plots, we set the threshold of scope 1 carbon 

intensity as 600 tonsCO2e/mln USD to define the relatively pure electric power 

generation companies, i.e., for companies in the WEPP dataset with carbon intensity 

equal to or more than 600 tonsCO2e/mln USD, they are defined as the electric power 

generation companies. In the MSCI (2018) dataset, more than 80% of total scope 1 

carbon intensity is contributed by around 6.7% companies, with scope 1 carbon 

intensity greater than or equal to 600 tonsCO2e/mln USD, shown in FIG. 2. Hence, 

the companies with scope 1 carbon intensity greater than or equal to 600 

tonsCO2e/mln USD can be defined as relatively pure electric power generation 

companies. This dataset that only contains the defined electric power generation 

companies is used as the basis for further analysis. 
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FIG. 1: Percentile plots of the MSCI (2018) scope 1 carbon intensity. The left panel 
shows the 1st to 99th percentile of the MSCI (2018) scope 1 carbon intensity, indicating 
that the MSCI (2018) scope 1 carbon intensity increases dramatically from around the 
90th percentile. The right panel shows the 70th to 99th percentile of the MSCI (2018) 
scope 1 carbon intensity, giving a detailed look at the turning point in the percentile 
plot. The percentile plots of the MSCI (2018) scope 1 carbon intensity could be used to 
define the original range of the scope 1 carbon intensity threshold for the relatively pure 
electric power generation companies.  
 

 

FIG. 2: The scope 1 carbon intensity from 0 to 1100 tonsCO2e/mln USD to define the 
threshold for the relatively pure electric power generation companies. The blue line 
represents the percentage of the total scope 1 carbon intensity contributed by the 
companies with the scope 1 carbon intensity larger than or equal to the threshold. The 
red line represents the number of companies, with the scope 1 carbon intensity larger 
than or equal to the threshold, accounts for the total number of companies in the 
MSCI (2018) dataset universe. The green dashed-dotted line represents the number of 
companies with scope 1 carbon intensity larger than or equal to the threshold. For 
instance, if the scope 1 carbon intensity threshold is set as 600 tonsCO2e/mln USD, it 
means that companies with the scope 1 carbon intensity larger than or equal to 600 
tonsCO2e/mln USD are defined as relatively pure electric power generation 
companies. Their total scope 1 carbon intensity contributes around 83% of the total 
scope 1 carbon intensity produced by all the companies in the MSCI (2018) dataset 
universe. In the meanwhile, the number of these companies is around 600, which 
accounts for around 6.5% of the total number of companies. 
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4.2.4 Scope 1 carbon emissions difference calculation  

For the data quality validation of the MSCI (2018) dataset leveraging the WEPP 

dataset, we only focus on the scope 1 carbon emissions instead of the scope 1 carbon 

intensity. Since we use the revenue data from the MSCI (2018) dataset to estimate the 

scope 1 carbon intensity based on the WEPP dataset, the pattern and thus the analysis 

of scope 1 carbon emissions are the same as it for the scope 1 carbon intensity, only 

with a different scale, caused by the revenue. 

We calculate the difference between the estimated scope 1 carbon emissions 

based on the WEPP dataset and the one provided by the MSCI (2018) dataset and use 

it as the base of further analysis, instead of the absolute difference or relative 

difference. For absolute difference, the positive and negative differences are ignored 

so that it’s hard to detect if it's overestimation or underestimation and accordingly the 

environmental impact due to the inaccurate data is overestimated. For relative 

difference, it may cover up the big difference, i.e., the relative difference can be small, 

even though the difference between the estimated scope 1 carbon emissions based on 

the WEPP dataset and the one provided by the MSCI (2018) dataset is large with huge 

scope 1 carbon emissions provided by MSCI (2018). The scope 1 carbon emissions 

difference between the one estimated based on the WEPP dataset and the one 

provided by the MSCI (2018) dataset is calculated based on is given by 

 𝑆𝑐𝑜𝑝𝑒	1	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 

𝑊𝐸𝑃𝑃	𝑠𝑐𝑜𝑝𝑒	1	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 − 𝑀𝑆𝐶𝐼	(2018)	𝑠𝑐𝑜𝑝𝑒	1	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠. (4) 

Estimated scope 1 carbon emissions based on WEPP is supposed to be greater 

than or equal to the scope 1 carbon emissions provided by MSCI because the WEPP 

dataset only provides unit capacity value data and thus the estimated carbon emissions 
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cover part of the total scope 1 carbon emissions, i.e., the part from the on-campus 

stationary combustion of fossil fuels.  

4.2.5 Statistical tests 

To determine whether a relationship is existing between the scope 1 carbon 

emissions estimated based on WEPP and the one provided by MSCI (2018), and if so, 

how significant or how strong this relationship is between them. We conduct the 

Spearman’s rank correlation test to test if there is an association and the Wilcoxon 

signed-rank test to test if their distributions are the same or not. 

4.2.5.1 Spearman’s rank correlation test  

Correlation is measured by the correlation coefficient statistically, and there are 

different types of correlation coefficients. We investigate the data characteristics to 

decide the most suitable correlation coefficient for our analysis. 

The most appropriate coefficient, in this case, is Spearman’s rank correlation 

coefficient due to the following four reasons: (1) outliers, (2) nonnormality of 

variables, (3) nonlinearity, (4) heteroskedasticity. The scatter plot (FIG. 3) and the 

distribution plots (FIG. 4 and FIG. 5) of the scope 1 carbon emissions estimated based 

on WEPP and the one provided by MSCI (2018) does not seem compatible with a 

bivariate normal distribution, and the relationship appears to be monotonic but 

nonlinear. Besides, there are some relevant outliers. Spearman’s rank correlation 

coefficient, which is robust when outliers are present, can be utilized for the analysis 

of the monotonic association between such data [39].  
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FIG. 3: The scatter plot between the scope 1 carbon emissions estimated based on 
WEPP and the one provided by MSCI (2018). The red line represents the 45-degree 
diagonal line. Theoretically, all the data points should be in/ under the 45-degree 
diagonal line as the scope 1 carbon emissions estimated based on the WEPP dataset 
only cover part of the total scope 1 carbon emissions, i.e., the scope 1 carbon 
emissions provided by the MSCI (2018) dataset. The scatter plot shows the 
relationship between the scope 1 carbon emissions estimated based on WEPP and the 
one provided by MSCI (2018) is not linear nor homoscedastic, and there are potential 
outliers, indicating that the most appropriate coefficient, in this case, is the 
Spearman’s rank correlation coefficient, instead of the Pearson correlation coefficient, 
which is used frequently for correlation analysis. 
 



 25 

 
 
FIG. 4: The distribution plot of the estimated scope 1 carbon emissions based on the 
WEPP dataset, which is not normally distributed and highly right-skewed or positive-
skewed.  
 

 

FIG. 5: The distribution plot of the MSCI (2018) scope 1 carbon emissions, which is 
not normally distributed, which is not normally distributed and highly right-skewed or 
positive-skewed.  
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The Spearman’s rank correlation coefficient is given by  

 𝜌 = 1 − 2∑4!
"

,(,"6()
 , (5) 

where 𝜌 is Spearman’s rank correlation coefficient, 𝑑! is the difference between the 

ranks of corresponding variables, and 𝑛 is the number of observations. 

Several labeling systems have been suggested to roughly categorize correlation 

coefficients (in the absolute values) into different descriptive categories, e.g., “weak,” 

“moderate,” or “strong” relationship. However, the cutoff points are arbitrary and 

inconsistent and should be used judiciously depending on the application's needs. 

Normally most researchers would probably agree that a coefficient of > 0.90 is a very 

strong relationship and a coefficient between 0.70 to 0.90 indicates a strong 

relationship, while the strength for values < 0.70 are disputable [39, 40, 41].  

In addition, the coefficient of determination (𝑅8) can be utilized to better 

evaluate and interpret the correlation coefficient and assess its practical significance. 

It's calculated by squaring the correlation coefficient and is defined as the percent of 

the variation in the dependent variable's values that can be "explained" by changes in 

the independent variable's value, indicating how much variation in one variable is 

linked to variation in the other [42].  

The Spearman’s rank correlation coefficient, 𝜌, tells us about the strength and 

direction of the monotonic relationship between the scope 1 carbon emissions 

estimated based on WEPP and the one provided by MSCI (2018). However, the 

reliability of the monotonic relationship also depends on how many observed data 

points are in the sample. We need to look at both the value of Spearman’s rank 

correlation coefficient 𝜌 and the number of observations 𝑛, together. Thus, we 

perform a hypothesis test of the “significance of the correlation coefficient” to decide 
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whether the monotonic relationship in the sample data is strong enough to use the 

relationship in the population. 

Hypothesis tests can be used to determine the statistical significance of the 

results and to estimate the strength of the relationship in the population from which 

the data is sampled. The null hypothesis (H0) and the alternative hypothesis (H1) for 

Spearman’s rank correlation test in this case are: 

H0: There is no monotonic association between the scope 1 carbon emissions 

estimated based on WEPP and the one provided by MSCI (2018) in the population. 

H1: There is a monotonic association between the scope 1 carbon emissions 

estimated based on WEPP and the one provided by MSCI (2018) in the population. 

The significance level (denoted as α or alpha) is set as 0.05. A significance level 

of 0.05 indicates a 5% risk of concluding that a difference exists when there is no 

actual difference.  

4.2.5.2 Wilcoxon signed-rank test 

To determine whether the scope 1 carbon emissions estimated based on WEPP 

and the one provided by MSCI (2018) are drawn from the same population 

distributions, we use the Wilcoxon signed-rank test to conduct this statistical 

hypothesis test.  

The Wilcoxon signed-rank test is chosen due to the following three reasons: (1) 

the scope 1 carbon emissions data estimated based on WEPP and the one provided by 

MSCI (2018) is uniquely matched, (2) both do not follow a Gaussian distribution, as it 

shown in FIG. 4 and FIG. 5, (3) there are some potential outliers. The Wilcoxon 

signed-rank test is much more robust against outliers and heavy tail distributions. 

The Wilcoxon signed-rank test statistic is given by  

 𝑊 = ∑ [sgn(𝑋! − 𝑌!) ∙ 𝑅!]9
!:( , (6) 
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where 𝑊 is the Wilcoxon signed-rank test statistic, 𝑋! , 𝑌! are the paired data samples 

from two distributions, 𝑁 is the sample size excluding pairs where 𝑋! = 𝑌!, sgn 

denotes the sign function that is sgn(𝑥) = 1	if	𝑥 > 0 and sgn(𝑥) = −1	if	𝑥 < 0, and 

𝑅! is the rank of |𝑋! − 𝑌!| so that 0 < `𝑋/# − 𝑌/#` < `𝑋/" − 𝑌/"` <	∙∙∙	< `𝑋/$ − 𝑌/$`. 

The null hypothesis (H0) and the alternative hypothesis (H1) for the Wilcoxon 

signed-rank test in this case are: 

H0: the distributions of the scope 1 carbon emissions estimated based on WEPP 

and the one provided by MSCI (2018) are equal, i.e., both are drawn from a 

population with the same distribution, and therefore the same population parameters, 

such as mean or median.  

H1: the distributions of the scope 1 carbon emissions estimated based on WEPP 

and the one provided by MSCI (2018) are not equal.  

The significance level (denoted as α or alpha) of the Wilcoxon signed-rank test is 

also set as 0.05. 

4.2.6 Analysis for the scope 1 carbon emissions difference 

To figure out the potential reasons behind the scope 1 carbon emissions 

difference between the one estimated based on WEPP and the one provided by MSCI 

(2018) or if there is any pattern of the difference, we conduct the correlation analysis 

for the quantitative factors, and the distribution analysis and Kruskal-Wallis H test for 

each qualitative factor in the dataset.  

For the quantitative factors, we first draw the histograms, the scatter plots, and 

the kernel density estimate (KDE) plots and then calculate Spearman’s rank 

correlation coefficients to find the potential associations. The histograms, the scatter 

plots, and the KDE plots, can be used to identify trends for follow-up analysis. The 

histogram and the KDE plots show the distribution of a single variable while the 
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scatter plots show the relationship (or lack thereof) between two variables. The scatter 

plots and the Spearman’s rank correlation coefficients between the scope 1 carbon 

emissions difference (tonsCO2e) and the rest of the quantitative factors, are shown 

Appendix A. Besides, we calculate Spearman’s rank correlation coefficients (𝜌), 

chosen due to the data characteristics shown in the histograms, the scatter plots, and 

the KDE plots between different quantitative variables (refer to Appendix A).   

Leveraging different labeling systems of categorizing correlation coefficients, we 

define the labeling system in our case, shown in Table 4, used to interpret Spearman’s 

rank correlation coefficient in our analysis.  

 

Table 4: Interpretation of the Spearman's rank correlation coefficient. 
 
The absolute magnitude of the 
observed correlation coefficient 

Interpretation 

0.00 - 0.20 Negligible correlation 
0.20 - 0.39 Weak correlation 
0.40 - 0.69 Moderate correlation 
0.70 - 0.89 Strong correlation 
0.90 - 1.00 Very strong correlation 

 

For the qualitative factors, we categorize the available qualitative factors in the 

dataset into four categories: data sources, calculation or estimation methods, industry 

classifications, and company’s locations. For each category, we select the most 

representative factor for the analysis, i.e., for the industry classifications, we use the 

Global Industry Classification Standard (GICS) sub-industry level, and for the 

company's locations, we only focus on the country level rather than the states level, 

city level, etc.  

Since the estimated scope 1 carbon emissions based on WEPP is supposed to be 

greater than or equal to the scope 1 carbon emissions provided by MSCI, we divide 

the company distribution analysis into three parts for each qualitative category, one 
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part is the scope 1 carbon emissions difference larger than 0, another part is the scope 

1 carbon emissions difference greater than or equal to 0, and the third part includes all 

the scope 1 carbon emissions difference. 

To test whether samples in each qualitative factor originate from the same 

distribution, for example, if different data sources lead to different levels of the scope 

1 carbon emissions difference, we perform a Kruskal-Wallis test to determine if the 

median of the scope 1 carbon emissions difference is the same across the different 

groups of each qualitative factor. The Kruskal-Wallis test is chosen due to the 

independence of each data sample, the number of observations, and the difference in 

the data samples size. 

The Kruskal-Wallis test statistic is given by  

 𝐻 = (𝑁 − 1)
∑ ,!
%
!&# (*̅!∙6*̅)"

∑ ∑ (*!(6*̅)"
$!
(&#

%
!&#

, (7) 

where 𝐻 is the Kruskal-Wallis test statistic, 𝑁 is the total number of observations 

across all groups, 𝑔 is the number of groups, 𝑛! is the number of observations in 

group 𝑖, 𝑟!< denotes the rank (among all observations) of observation 𝑗 from group 𝑖, 

�̅�!∙ =
∑ *!(
$!
(&#

,!
 is the average rank of all observations in group 𝑖, and �̅� = (

8
(𝑁 + 1) is 

the average of all the 𝑟!<. 

The Kruskal-Wallis test uses the following null hypothesis (H0) and alternative 

hypothesis (H1): 

H0: The median is equal across all groups. 

H1: The median is not equal across all groups. 

The significance level (denoted as α or alpha) for the Kruskal-Wallis test is set as 

0.05. 
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4.3 Consistency between CDP and MSCI (2021)  

MSCI ESG Research uses the carbon emissions data reported through CDP when 

reported data is not available through direct corporate disclosure [4]. Hence, the CDP 

dataset could also be used to validate the accuracy of the MSCI (2021) dataset and 

examine the consistency between CDP and MSCI (2021), both for the part that is 

directly quoted from the CDP dataset and the part that is collected from corporate 

sources and estimated by MSCI (2021). To make CDP and MSCI (2021) datasets 

more comparable, the MSCI (2021) dataset is selected for this part of the analysis due 

to the CDP data availability, only the CDP dataset from 2021 is available.  

4.3.1 Data preparation 

4.3.1.1 MSCI (2021) data preparation  

MSCI provides scope 1 carbon emissions, scope 1 and 2 carbon emissions, and 

scope 1 and 2 carbon intensity, thus we calculate scope 2 carbon emissions, revenue, 

scope 1 carbon intensity, and scope 2 carbon intensity, which are given by  

 𝑆𝑐𝑜𝑝𝑒	2	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 

 𝑆𝑐𝑜𝑝𝑒	1	𝑎𝑛𝑑	2	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠	– 	𝑆𝑐𝑜𝑝𝑒	1	𝑐𝑎𝑟𝑏𝑜𝑛	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠, (8) 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒	 = 	 "#$%&	(	),4	8	#)*+$,	&-!..!$,.
"#$%&	(	),4	8	#)*+$,	!,>&,.!>?

, (9) 

 𝑆𝑐𝑜𝑝𝑒	1	𝑐𝑎𝑟𝑏𝑜𝑛	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = "#$%&	(	#)*+$,	&-!..!$,.
/&0&,1&

, (10) 

 𝑆𝑐𝑜𝑝𝑒	2	𝑐𝑎𝑟𝑏𝑜𝑛	𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = "#$%&	8	#)*+$,	&-!..!$,.
/&0&,1&

. (11) 

4.3.1.2 CDP data preparation  

CDP provides scope 1 carbon emissions, scope 2 carbon emissions, and scope 1 

and 2 carbon intensity, thus we calculate the scope 1 and 2 carbon emissions, revenue, 

scope 1 carbon intensity, and scope 2 carbon intensity using Eqs. (8) – (11).  
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For scope 2 carbon emissions, the CDP dataset provides two different data for 

each company, one is the reported market-based scope 2 carbon emissions and the 

other one is the location-based scope 2 carbon emissions. Besides, CDP indicates the 

scope 2 carbon emissions data used for the scope 1 and 2 carbon intensity calculation 

for each company in its dataset, which is the one that we use for scope 2 carbon 

intensity calculation and the further analysis related to scope 2 carbon emissions.   

4.3.1.3 CDP and MSCI (2021) datasets matching 

Since there are no common columns in the original CDP and MSCI (2021) 

datasets, we link the separate the CDP and MSCI (2021) datasets together for the 

same company based on the “bvd_id” introduced by Orbis through CorpIndex [24].  

The CDP and MSCI (2021) datasets have 7158 companies and 14 742 companies 

originally. After matching and enrichment by CorpIndex [24], the CDP and MSCI 

(2021) datasets still hold the same number of companies. The matching result 

between CDP and MSCI (2021) in a sample of 4170 companies, and there are 4054 

companies in the sample after dropping the missing value.  

4.3.2 Statistical tests 

We investigate the consistency between CDP and MSCI (2021) based on seven 

different kinds of data in two different coverages of companies. The seven different 

kinds of data are scope 1 carbon emissions, scope 2 carbon emissions, scope 1 and 2 

carbon emissions, scope 1 carbon intensity, scope 2 carbon intensity, scope 1 and 2 

carbon intensity, and the revenue data. And the two company coverages are: (1) all 

the companies that are both in the CDP and MSCI (2021) dataset, (2) the companies 

that MSCI (2021) directly quotes the relevant data from the CDP dataset or uses the 

CDP data as the basis for estimation. For the second situation, there are 534 

companies in this sample.  
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4.3.2.1 Spearman’s rank correlation test 

We use Spearman’s rank correlation coefficient to measure the strength of the 

association and thus the degree of consistency between CDP and MSCI (2021). It's 

chosen due to the existing outliers, nonnormality of variables, nonlinearity, and 

heteroskedasticity, which are shown in Appendix B.  

4.3.2.2 Wilcoxon signed-rank test  

To examine whether the corresponding data from the CDP and the MSCI (2021) 

datasets are drawn from the same population distributions, we use the Wilcoxon 

signed-rank test to conduct this statistical hypothesis test. The Wilcoxon signed-rank 

test is chosen due to three reasons: (1) observations in the CDP and the MSCI (2021) 

datasets are independent and identically distributed (iid), (2) observations the CDP 

and the MSCI (2021) datasets can be ranked, (3) observations across the CDP and the 

MSCI (2021) datasets are paired. 

CHAPTER V. RESULTS 

5.1 The results of MSCI (2018) dataset validation leveraging WEPP dataset  

Since the scope 1 carbon intensity threshold is set as 600 tonsCO2e/mln USD to 

define the relatively pure electric power generation companies, there are 211 

companies both in the WEPP dataset and the MSCI (2018) dataset with scope 1 

carbon intensity equal to or more than 600 tonsCO2e/mln USD and the descriptive 

statistics of this dataset is shown in Table 5, which is used as the basis for the 

analysis. 
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Table 5: Descriptive statistics of the defined relatively pure electric power generation 
companies, with scope 1 carbon intensity larger than or equal to 600 tonsCO2e/mln 
USD, that are both in the WEPP dataset and the MSCI (2018) dataset. It includes the 
counts, means, standard deviations (std.), minimum values, 25th percentile, 50th 
percentile, 75 percentile, and maximum values. 
 
 Estimated 

electricity 
generation 
based on 
WEPP 
(MWh) 
 

Scope 1 carbon 
emissions  
(tonsCO2e) 
 

Revenue 
(mln USD) 
 

Scope 1 carbon 
intensity 
(tonsCO2e/mln USD) 
 

Estimated 
based on 
WEPP 
 

MSCI 
(2018) 
 
 

Estimated 
based on 
WEPP 
 

MSCI 
(2018) 
 

Count 211 211 211 211 211 211 
Mean 2.0 × 107 9.8 × 106 2.8 × 107 1.4 × 104 1.4 × 103 3.1 × 103 
Std. 4.5 × 107 2.4 × 107 3.9 × 107 2.0 × 104 2.1 × 104 3.0 × 103 
Min 26 0 4.8 × 104 20 0 600 
25% 2.5 × 105 5.2 × 104 4.1 × 106 1.9 × 103 8.3 990 
50% 1.8 × 106 7.2 × 105 1.5 × 107 6.3 × 103 160 2.3 × 103 
75% 1.5 × 107 7.3 × 106 3.5 × 107 1.4 × 104 1.5 × 103 4.2 × 103 
Max 2.6 × 108 1.6 × 108 2.5 × 108 8.7 × 104 1.9 × 104 1.8 × 104 

 

Besides, the descriptive statistics of the scope 1 carbon emissions difference are 

shown in Table 6. Estimated scope 1 carbon emissions based on WEPP is supposed to 

be greater than or equal to the scope 1 carbon emissions provided by MSCI, however, 

there are 23 companies with the scope 1 carbon emissions difference larger than 0, 

i.e., the estimation based on the WEPP dataset for around 11% of all the defined 

relatively pure electric power generation companies is unexpected. 
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Table 6:  Descriptive statistics of the estimated scope 1 carbon emissions based on 
WEPP (WEPP scope 1 carbon emissions), the scope 1 carbon emissions in MSCI 
(2018) dataset (MSCI (2018) scope 1 carbon emissions), the carbon emissions 
difference between the estimated scope 1 carbon emissions based on the WEPP 
dataset and the one provided by the MSCI (2018) dataset (Scope 1 carbon emissions 
difference), the carbon emissions difference that is larger than 0 (Scope 1 carbon 
emissions difference > 0), and the carbon emissions difference that is less than or 
equal to 0 (Scope 1 carbon emissions difference <= 0). The descriptive statistics 
contain the counts, means, standard deviations(std.), minimum values, 25th percentile, 
50th percentile, 75th percentile, and maximum values. 
 
 WEPP scope 

1 carbon 
emissions  
(tonsCO2e) 
 

MSCI 
(2018) scope 
1 carbon 
emissions  
(tonsCO2e) 
 

Scope 1 
carbon 
emissions 
difference  
(tonsCO2e) 
 

Scope 1 
carbon 
emissions 
difference > 
0 
(tonsCO2e) 
 

Scope 1 
carbon 
emissions 
difference 
<= 0 
(tonsCO2e) 
 

Count   211 211 211 23 188 
Mean 1.4 × 103 2.8 × 107 -1.8 × 107 7. 7 × 106 -2.2 × 107 
Std. 2.1 × 103 3.9 × 107 3.3 × 107 1.3 × 107 3.3 × 107 
Min 0 4.8 × 104 -1.7 × 108 9.2 × 104 -1.7 × 108 
25%   8 4.1 × 106 -2.3 × 107 6.0 × 105 -2.6 × 107 
50%   160 1.5 × 107 -5.2 × 106 3.1 × 106 -7.9 × 106 
75% 1.5 × 103 3.5 × 107 -1.5 × 106 7.2 × 106 -2.3 × 106 
Max 1.9 × 104 2.5 × 108 5.8 × 107 5.8 × 107 -7.7 × 104 

 

As for the correlation analysis, a Spearman’s rank correlation coefficient of 0.56 

is noted between the scope 1 carbon emissions estimated based on WEPP and the one 

provided by MSCI (2018) in the evaluation of these 211 companies in the relatively 

pure electric power generation sector. The correlation coefficient of 0.56 corresponds 

to a coefficient of determination (𝑅8) of 0.32, suggesting that about 32% of the 

variability of the scope 1 carbon emissions estimated based on WEPP can be 

“explained” by the relationship with the one provided by MSCI (2018). As more than 

68% of the variability is yet unexplained, there must be one or more other relevant 

factors that are related to the scope 1 carbon emissions provided by MSCI (2018).  

According to the results of the Spearman’s rank correlation test (p-value = 8.9 × 

10-74), the scope 1 carbon emissions estimated based on WEPP and the one provided 
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by MSCI (2018) represent a correlation coefficient (𝜌 = 0.56) which is significantly 

(p-value < α) different from zero. In other words, the relationship existing between the 

scope 1 carbon emissions estimated based on WEPP and the one provided by MSCI 

(2018) is statistically significant at α = 0.05 with 211 samples. 

With regard to the analysis of the population distributions, according to the 

results of the Wilcoxon signed-rank test (statistic = 1.7 × 10-3, p-value = 7.6 × 10-27), 

we do reject H0, i.e., the difference between the distributions is significantly different, 

because p-value < α (p-value = 7.6 × 10-27, α = 0.05). Therefore, we do have 

statistically significant evidence at α = 0.05, to show that the distributions of the scope 

1 carbon emissions estimated based on WEPP and the one provided by MSCI (2018) 

are not equal, i.e., the scope 1 carbon emissions estimated based on WEPP and the 

one provided by MSCI (2018) are not drawn from a population with the same 

distribution.  

According to the statistical tests above, there is a monotonic association existing 

between the scope 1 carbon emissions estimated based on WEPP and the one 

provided by MSCI (2018) in the population, but there is a significant difference 

between the distributions of these two samples.  

To identify the possible reasons for the scope 1 carbon emissions difference 

between the one estimated based on WEPP and the one provided by MSCI (2018), we 

use both quantitative and qualitative elements in the dataset to conduct the correlation 

analysis, distribution analysis, and the statistical test as well.  

For the quantitative factors, the histograms, the scatter plots, and the KDE plots 

are shown in Appendix A, and the Spearman’s rank correlation coefficients between 

different quantitative variables are shown in FIG. 6.  
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FIG. 6: Spearman’s rank correlation coefficients plot of the quantitative factors, i.e., 
total power generation (MW), WEPP estimated electricity (MWh), MSCI revenue 
(mlnUSD), WEPP estimated scope 1 carbon emissions (tonsCO2e), MSCI scope 1 
carbon emissions (tonsCO2e), scope 1 carbon emissions difference (tonsCO2e), MSCI 
scope 1 carbon intensity (tonsCO2e/mln USD), number of children companies, 
number of employees, the cost of employees (mln/USD), average annual growth rate, 
compound annual growth rate, geometric annual growth rate, and the Orbis revenue 
(mln USD). 
 

For the qualitative factors, the company distribution analysis is conducted for 

four categories (data sources, calculation or estimation methods, industry 

classifications, and company’s locations) under three situations (one part is the scope 

1 carbon emissions difference larger than 0, another part is the scope 1 carbon 

emissions difference greater than or equal to 0, and the third part includes all the 

scope 1 carbon emissions difference). 

The distribution analysis results of data sources and the calculation or estimation 

methods are shown in Table 7. In total, there are 23 companies (11% of the total 

companies) with the scope 1 carbon emissions difference larger than 0. There are 8 
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companies in this part (4% of the total companies, and 35% of this part) source from 

the Corporate Social Responsibility Reports (SR), and 17 companies' (8% of the total 

companies, and 74% of this part) data is gathered through reporting. The distribution 

analysis results of industry classifications, the Global Industry Classification Standard 

(GICS) sub-industry level, are shown in FIGs. 7-9. The five biggest compositions of 

the defined relatively pure electric power generation companies are in the electric 

utilities, multi-utilities, steel, construction materials, and independent power producer 

& energy traders GICS sub-industry, indicating that our definition for the relatively 

pure electric power generation companies is accurate. The distribution analysis results 

of the company’s locations, the country level, are shown in FIGs. 10-12.  

To investigate if the different groups in each qualitative factor trigger different 

levels of the scope 1 carbon emissions difference, the Kruskal-Wallis test is 

conducted, with the results shown in Table 8.  
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Table 7: The distribution of the MSCI (2018) data sources and the methods used for 
the defined relatively pure electric power generation companies. The distribution is 
shown for three parts according to the scope 1 carbon emissions difference between 
the one estimated based on WEPP and the one provided by MSCI (2018), one part is 
the scope 1 carbon emissions difference large than 0 (Scope 1 carbon emissions 
difference > 0), another part is the scope 1 carbon emissions difference no greater 
than 0 (Scope 1 carbon emissions difference <= 0), and the third part is all the scope 1 
carbon emissions difference (Total). There are both the number of companies in each 
category and the corresponding percentage of each category in the defined relatively 
pure electric power generation company universe. These statistics are given for: (1) 
nine data sources, including Annual Reports (AR), Corporate Social Responsibility 
Reports (SR), Carbon Disclosure Project (CDP), Annual Reports and Corporate 
Social Responsibility Reports (AR + SR), Annual Reports or Corporate Social 
Responsibility Reports, and Carbon Disclosure Project (AR / SR + CDP), third party, 
website, filings, and unknown sources (NaN), (2) eight methods, including quotation 
of reported data (Reported), estimation using the production model (E. Production 
Data), estimation using the company-specific intensity model (E.CSI), and estimation 
using industry segment-specific intensity model with low confidence level (E. Segmt-
Low), moderately low confidence level (E.Segmt-Moderate Low), moderate 
confidence level (E. Segmt-Moderate), moderately high confidence level (E. Segmt-
Moderate High), and high confidence level (E. Segmt- High).  
 
Category Scope 1 carbon 

emissions 
difference > 0 

Scope 1 carbon 
emissions 
difference <= 0 

Total 

Data 
sources 

AR 3 (1.4%) 35 (16.6%) 38 (18.0%) 
SR 8 (3.8%) 65 (30.8%) 73 (34.6%) 
CDP 3 (1.4%) 37 (17.5%) 40 (19.0%) 
AR + SR 1 (0.5%) 2 (1.0%) 3 (1.4%) 
AR / SR + CDP 0 (0.0%) 1 (0.5%) 1 (0.5%) 
Third party 1 (0.5%) 2 (1.0%) 3 (1.4%) 
Website  1 (0.5%) 0 (0.0%) 1 (0.5%) 
Filings  0 (0.0%) 2 (1.0%) 2 (1.0%) 
NaN 6 (2.8%) 44 (20.9%) 50 (23.7%) 
Total 23 (10.9%) 188 (89.1%) 211 

Methods Reported 17 (8.1%) 139 (65.9%) 156 (73.9%) 
E. Production 
Data 

1 (0.5%) 13 (6.2%) 14 (6.6%) 

E. CSI 0 (0.0%) 5 (2.4%) 5 (2.4%) 
E. Segmt-Low 0 (0.0%) 3 (1.4%) 3 (1.4%) 
E. Segmt-
Moderate Low 

0 (0.0%) 3 (1.4%) 3 (1.4%) 

E. Segmt-
Moderate  

1 (0.5%) 4 (1.9%) 5 (2.4%) 

E. Segmt-
Moderate High 

3 (1.4%) 14 (6.6%) 17 (8.1%) 

E. Segmt- High 1 (0.5%) 7 (3.3%) 8 (3.8%) 
Total 23 (10.9%) 188 (89.1%) 211  
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FIG. 7: The distribution of industry classifications, the Global Industry Classification 
Standard (GICS) sub-industry level, for all the defined relatively pure electric power 
generation companies, that are 211 companies in total.  
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FIG. 8: The distribution of industry classifications, the Global Industry Classification 
Standard (GICS) sub-industry level, for the defined relatively pure electric power 
generation companies with the scope 1 carbon emissions difference larger than 0. 
There are 23 defined relatively pure electric power generation companies with the 
scope 1 carbon emissions difference larger than 0 in total.  
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FIG. 9: The distribution of industry classifications, the Global Industry Classification 
Standard (GICS) sub-industry level, for the defined relatively pure electric power 
generation companies with the scope 1 carbon emissions difference greater than or 
equal to 0. There are 188 defined relatively pure electric power generation companies 
with the scope 1 carbon emissions difference greater than or equal to 0 in total. 
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FIG. 10: The distribution of the country, using country abbreviation ISO-3166-1 
alpha-2 country code standard [43], that the defined relatively pure electric power 
generation companies are located. There are 211 defined relatively pure electric 
power generation companies. 
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FIG. 11: The distribution of the country, using country abbreviation ISO-3166-1 
alpha-2 country code standard [43], that the defined relatively pure electric power 
generation companies with the scope 1 carbon emissions difference larger than 0 are 
located. There are 23 defined relatively pure electric power generation companies 
with the scope 1 carbon emissions difference larger than 0 in total. 
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FIG. 12: The distribution of the country, using country abbreviation ISO-3166-1 
alpha-2 country code standard [43], that the defined relatively pure electric power 
generation companies with the scope 1 carbon emissions difference greater than or 
equal to 0 are located. There are 188 defined relatively pure electric power generation 
companies with the scope 1 carbon emissions difference larger than 0 in total. 
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Table 8: Kruskal-Wallis test for the different groups in four qualitative factors: (1) 
data sources, (2) methods used in calculating and estimating the scope 1 carbon 
emissions in MSCI (2018), (3) industry classifications, the Global Industry 
Classification Standard (GICS) sub-industry level, and (4) country, using country 
abbreviation ISO-3166-1 alpha-2 country code standard [43]. This test aims to figure 
out whether the different groups of data sources and methods originate from the same 
distribution, i.e., if these different groups have the same impact on the scope 1 carbon 
emissions between the one estimated based on WEPP and the one provided by MSCI 
(2018).  
 
Qualitative factors Kruskal-Wallis test 

Statistic P-value 
Data sources 18 0.01 
Methods 22 0.00 
Industry 20 0.61 
Country 49 0.19 

 

5.2 The results of the consistency between CDP and MSCI (2021)  

After matching the CDP and MSCI (2021) datasets, there are 4170 companies in 

this sample, with 4054 companies remain in the sample after dropping the missing 

value. A sample of 4054 companies with valid data points is used as the basis for the 

analysis. 

To examine the consistency between CDP and MSCI (2021), we conduct both 

the Spearman’s rank correlation test and the Wilcoxon signed-rank test. Two 

situations are considered for the tests: (1) all the companies that are both in the CDP 

and MSCI (2021) dataset, (2) the companies that MSCI (2021) directly quotes the 

relevant data from the CDP dataset or uses the CDP data as the basis for estimation. 

For the first situation, there are 4054 companies in the sample, while there are 534 

companies in the second situation.  

The results of Spearman’s rank correlation test and the Wilcoxon signed-rank 

test for the two situations are shown in Table 9.  
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Table 9: Statistical Tests, including the Spearman’s rank correlation test and the 
Wilcoxon signed-rank test, between the different types of carbon emissions and 
carbon intensity, and the revenue data in the CDP and MSCI (2021) dataset. The 
statistical tests are conducted under two situations: (1) all the companies that are both 
in the CDP and MSCI (2021) dataset, and the results are shown in the upper side, (2) 
the companies that MSCI (2021) directly quotes the relevant data from the CDP 
dataset or uses the CDP data as the basis for estimation, and the results are shown in 
the lower side, i.e., in the parentheses.  
 
Data type Spearman’s rank 

correlation test 
Wilcoxon signed-rank test 

Statistic P-value Statistic  P-value 
Carbon 
emissions 

Scope 1 0.88 
(0.99) 

0.00  
(0.00) 

1.4 × 106 

(3.6 × 103) 
3.1 × 10-95 
(1.9 × 10-10) 

Scope 2 0.79 
(0.91) 

0.00  
(3.1×10-200) 

2.7 × 106 

(2.3 × 104) 
1.7 × 10-26 

(5.7 × 10-16) 
Scope 1 
and 2  

0.87 
(0.97) 

0.00  
(0.00) 

2.4 × 106 

(2.6 × 104) 
5.0 × 10-59 

(3.8 × 10-14) 
Carbon 
intensity 

Scope 1 0.82 
(0.97) 

0.00  
(0.00) 

2.3 × 106 

(4.8 × 104) 
6.7 × 10-134 

(5.3 × 10-10) 
Scope 2 0.66 

(0.85) 
0.00  
(1.4×10-146) 

3.0 × 106 

(4.8 × 104) 
3.2 × 10-45 

(4.1 × 10-10) 
Scope 1 
and 2  

0.79 
(0.94) 

0.00  
(3.0×10-242) 

2.5 × 106 

(5.4 × 104) 
2.3 × 10-98 

(3.0 × 10-6) 
Revenue  0.99 

(0.99) 
0.00  
(0.00) 

3.3 × 106 

(4.7 × 104) 
2.8 × 10-29 

(3.5 × 10-11) 
 

CHAPTER VI. DISCUSSION 

6.1 MSCI data quality  

According to the results of the Spearman’s rank correlation test (statistic = 0.56, 

p-value = 8.9 × 10-74) and the Wilcoxon signed-rank test (statistic = 1.7 × 103, p-value 

= 7.6 × 10-27), there is a monotonic moderately correlation existing between the 

WEPP estimated scope 1 carbon emissions and the MSCI (2018) scope 1 carbon 

emissions, and the correlation is statistically significant at α = 0.05 with 211 samples. 

But the distributions of these two samples are significantly different. Based on the 

calculation results of the Spearman’s rank correlation coefficients between different 

quantitative variables in FIG. 6 and the interpretation of the Spearman's rank 

correlation coefficient in Table 4, we can know that the scope 1 carbon emissions 
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difference between the figure estimated based on WEPP and the one provided by 

MSCI (2018) is moderately correlated with the MSCI (2018) revenue and the scope 1 

carbon emissions provided by MSCI (2018). The negative correlation between the 

scope 1 carbon emissions difference and the MSCI (2018) revenue and the scope 1 

carbon emissions provided by MSCI (2018) showing that the defined relatively pure 

electric power generation companies with higher revenue in the MSCI (2018) dataset 

and higher scope 1 carbon emissions in the MSCI (2018) dataset tend to be more 

accurately estimated through the WEPP dataset. 

Besides, for most of the defined relatively pure electric power generation 

companies (188 companies, i.e., 89% of total companies), their scope 1 carbon 

emissions difference is greater than or equal to 0 as assumed, indicating that most of 

the scope 1 carbon emissions data in MSCI (2018) for electric power generation 

companies is in the right direction.  

Furthermore, the Kruskal-Wallis test is used to investigate if the distinct groups 

in each qualitative factor cause various degrees of the scope 1 carbon emissions 

difference, with the results shown in Table 8. For data sources and methods used for 

the calculation or estimation of scope 1 carbon emissions, the decision to reject the 

null hypothesis is made (p-value < α = 0.05), indicating that different data sources and 

methods lead to different calculation and estimation results. While for industry and 

country, we fail to reject the null hypothesis (p-value > α = 0.05) that the median of 

scope 1 carbon emissions is the same for all the industries and all the countries. Thus, 

we have sufficient evidence to conclude that the data sources and methods used for 

calculation and estimation lead to statistically significant differences in the scope 1 

carbon emissions difference, nevertheless, the various industry and countries make no 

difference to scope 1 carbon emissions difference. 
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Concerning the consistency between MSCI (2021) dataset and the CDP dataset, 

the results of Spearman’s rank correlation test and the Wilcoxon signed-rank test 

show that the carbon emissions and carbon intensity for scope 1, scope 2, and scope 1 

and 2 are highly consistent in two different company coverages, i.e., all the companies 

that are both in the CDP and MSCI (2021) dataset, and the companies that MSCI 

(2021) directly cites from the CDP dataset or uses the CDP data as the basis for 

estimation, indicating that the carbon-related information disclosed by companies 

publicly is consistent with the one they disclose to CDP. As shown in Table 9, scope 1 

and scope 1 and 2 tend to have a higher consistency than scope 2 both for carbon 

emissions and carbon intensity, no matter considering all the companies nor only 

considering the companies that MSCI directly cites from CDP or uses CDP for 

estimation. Comparing the results of these two different company coverages, we 

could find that the consistency is higher for the part that MSCI (2021) directly cites 

from CDP or estimation based on CDP than the companies both in MSCI (2021) and 

CDP dataset. However, the distributions of all the carbon emissions and carbon 

intensity of MSCI (2021) and CDP are different in both company coverages.  

In contrast to the consistency of scope 1 carbon emissions between MSCI (2021) 

and CDP (𝜌 = 0.88 or 𝜌 = 0.99), the consistency of between the scope 1 carbon 

emissions estimated based on WEPP and the one provided by MSCI (2018) is much 

lower (𝜌 = 0.56). But the distribution of the MSCI dataset is different from the 

distribution of both WEPP and CDP datasets. 

6.2 Potential reasons for the data discrepancy  

Sources of discrepancies for scope 1 carbon emissions between WEPP 

estimation and the MSCI reporting result from differences in the following three 

aspects: (1) raw data sources, (2) methodology, including the capacity factors, the 
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energy sources classification, and the ownership structure, (3) matching quality 

between different datasets.  

The raw data used to compile carbon emissions data may often be different 

among different data providers. MSCI sends annual surveys to its member companies 

as the primary method of collecting data. By contrast, WEPP relies primarily on 

national reports and information from regional agencies. Differences in surveys and 

collection sources can lead to disparities in the values of reported physical quantities 

of fuels (such as tonnes of coal or m3 of natural gas).  

The potential discrepancy sources of the methodology are capacity factors, the 

energy source classification, and ownership structure.  

 When estimating the carbon emissions using the production model for the 

electric power generation companies, the capacity factors used in the model vary 

substantially depending on the plant and fuel source [26]. To convert estimates of 

physical quantities of electric power generated into carbon emissions values, data 

providers utilize a conversion factor termed capacity factor. The capacity factor of an 

energy source is the ratio of a given period's actual electricity generated over a given 

period to the maximum potential electrical energy output during the same period [44]. 

Data providers estimate the carbon emissions of each plant or each company based on 

the capacity factors of energy sources. Capacity factors utilized by data providers are 

country- and region-specific [44], because the technical constraints, such as 

availability of the plant, economic reasons, and availability of the energy resource of 

different plants are often not uniform within any particular country. Country-specific 

capacity factors utilized by data providers are often different, which has the effect of 

creating apparent differences in carbon emissions of the same company with plants in 

various countries where the reported value of physical quantities of energy sources 
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consumed are identical. For our estimation, we use the average capacity factors for 

each energy source, while MSCI doesn’t disclose the capacity factors used in their 

calculation. The potential difference of the capacity factors used in the calculation 

may bring the discrepancy of the carbon emissions estimation. 

Aside from capacity factors differences, carbon emissions may differ owing to 

the energy source classification, i.e., the boundary criteria for which energy sources 

are included. The inclusion or exclusion of international bunker fuels, modern 

renewable energy sources, and energy from biomass and wastes are the most evident 

differences in system boundaries [12]. 

Further differences in carbon emissions between the one estimated based on the 

WEPP dataset and the one provided by MSCI may result from the ownership structure 

of companies utilized for the estimation, especially when it comes to the joint venture. 

A substantial number of power facilities, notably large nuclear, coal, and 

hydroelectric plants, are jointly owned. Power companies, as well as other parties 

such as fuel or manufacturing corporate entities, investment funds and financial 

institutions, and different national or local government agencies, could be among the 

owners. Since the WEPP database does not track joint ownership shares and the 

parent company in the WEPP dataset may also contain listings for two or more 

companies in the joint venture or other arrangements, we aggregate plant-level and 

unit-level data to a higher “institutional” level only based on the available information 

in the WEPP dataset. However, the ownership structure of the corresponding 

companies in the MSCI dataset is unclear, which may cause the estimation difference 

to a certain degree. 

Beyond all the possible sources of the difference, the company matching quality 

between WEPP and MSCI datasets may also bring additional disturbance to the whole 
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analysis. To make parameters of the same company across different datasets 

comparable, it's necessary to match these datasets sophistically, especially when there 

is no common aspect to indicate the identity of the companies. In our analysis, the 

CorpIndex [24], mainly using fuzzy name matching algorithm implemented by Swiss 

Re, is the tool we leverage for the company matching among different datasets, 

however, it may result in mismatching when it comes to the joint venture. 

CHAPTER VII. CONCLUSIONS AND FUTURE WORK  

Our results of the MSCI carbon emissions data validation provide detailed 

insights on the data quality issues. There is considerable uncertainty inhabited in the 

MSCI carbon emissions data at least for the relatively pure power generation 

companies. Given the potential severe climatic consequences and enormous economic 

and political implications of efforts to reduce carbon emissions, accurate, consistent, 

and comparable datasets and their associated uncertainties are needed for transparent 

reference and progress monitoring [9]. Additional attention to the data quality issues 

in this area from all the stakeholders is needed and special efforts should be taken to 

improve the data quality.  

Different primary data sources and methodology (including capacity factors, the 

energy sources classification, and the ownership structure) can lead to significantly 

different results of carbon emissions by the choice of one dataset over another. Thus, 

stakeholders are suggested to conduct data quality validation and assessment using 

alternative independent data sources, which can provide a more comprehensive 

glimpse into what actual carbon emissions might be. For effective independent 

validation and verification, data collection, and reporting, and the overall transparency 

must improve among different data providers, providing directly comparable values. 
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Besides, it's also important to improve the company matching quality across different 

datasets to ensure an accurate comparison.   

Improving the quality and consistency of data in carbon emissions data providers 

could facilitate the development of more robust mitigation measures to reduce carbon 

emissions.   
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APPENDIX A: THE HISTOGRAMS, THE SCATTER PLOTS, AND THE 

KERNEL DENSITY ESTIMATE (KDE) PLOTS BETWEEN WEPP DATASET 

AND MSCI (2018) DATASET 

 

 

FIG. 13: The histograms of quantitative factors in WEPP dataset and MSCI (2018) 
dataset, enriched by Orbis through CorpIndex, i.e., total power generation (MW), 
WEPP estimated electricity (MWh), MSCI revenue (mln USD), WEPP estimated 
scope 1 carbon emissions (tonsCO2e), MSCI scope 1 carbon emissions (tonsCO2e), 
scope 1 carbon emissions difference (tonsCO2e). The histogram of the scope 1 carbon 
emissions difference shows it is heavily right-skewed. 
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FIG. 14: The histograms of quantitative factors in WEPP dataset and MSCI (2018) 
dataset, enriched by Orbis through CorpIndex, i.e., MSCI scope 1 carbon intensity 
(tonsCO2e/mln USD), number of children companies, number of employees, the cost 
of employees (mln/USD), average annual growth rate, compound annual growth rate, 
geometric annual growth rate, and Orbis revenue (mln USD). 
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FIG. 15: The scatter plots between total power generation (MW) and other 
quantitative factors in WEPP dataset and MSCI (2018) dataset, enriched by Orbis 
through CorpIndex, i.e., WEPP estimated electricity (MWh), MSCI revenue (mln 
USD), WEPP estimated scope 1 carbon emissions (tonsCO2e), MSCI scope 1 carbon 
emissions (tonsCO2e), scope 1 carbon emissions difference (tonsCO2e), and MSCI 
scope 1 carbon intensity (tonsCO2e/mln USD).  
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FIG. 16: The scatter plots between total power generation (MW) and other 
quantitative factors in WEPP dataset and MSCI (2018) dataset, enriched by Orbis 
through CorpIndex, i.e., number of children companies, number of employees, the 
cost of employees (mln/USD), average annual growth rate, compound annual growth 
rate, and geometric annual growth rate. 
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FIG. 17: The scatter plot between total power generation (MW) and Orbis revenue 
(mln USD). And the scatter plots between WEPP estimated electricity (MWh) and 
other quantitative factors, i.e., MSCI revenue (mln USD), WEPP estimated scope 1 
carbon emissions (tonsCO2e), MSCI scope 1 carbon emissions (tonsCO2e), scope 1 
carbon emissions difference (tonsCO2e), and MSCI scope 1 carbon intensity 
(tonsCO2e/mln USD). 
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FIG. 18: The scatter plot between total power generation (MW) and Orbis revenue 
(mln USD). And the scatter plots between WEPP estimated electricity (MWh) and 
other quantitative factors, i.e., MSCI revenue (mln USD), WEPP estimated scope 1 
carbon emissions (tonsCO2e), MSCI scope 1 carbon emissions (tonsCO2e), scope 1 
carbon emissions difference (tonsCO2e), and MSCI scope 1 carbon intensity 
(tonsCO2e/mln USD). 
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FIG. 19: The scatter plot between WEPP estimated electricity (MWh) and Orbis 
revenue (mln USD). And the scatter plots between MSCI revenue (mln USD) and 
other quantitative factors, i.e., WEPP estimated scope 1 carbon emissions (tonsCO2e), 
MSCI scope 1 carbon emissions (tonsCO2e), scope 1 carbon emissions difference 
(tonsCO2e), MSCI scope 1 carbon intensity (tonsCO2e/mln USD), and number of 
children companies. 
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FIG. 20: The scatter plots between MSCI revenue (mln USD) and other quantitative 
factors, i.e., number of employees, the cost of employees (mln/USD), average annual 
growth rate, compound annual growth rate, geometric annual growth rate, and Orbis 
revenue (mln USD). 
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FIG. 21: The scatter plots between WEPP estimated scope 1 carbon emissions 
(tonsCO2e) and other quantitative factors, i.e., MSCI scope 1 carbon emissions 
(tonsCO2e), scope 1 carbon emissions difference (tonsCO2e), MSCI scope 1 carbon 
intensity (tonsCO2e/mln USD), number of children companies, number of employees, 
and the cost of employees (mln/USD). 
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FIG. 22: The scatter plots between WEPP estimated scope 1 carbon emissions 
(tonsCO2e) and other quantitative factors, i.e., average annual growth rate, compound 
annual growth rate, geometric annual growth rate, and Orbis revenue (mln USD). And 
the scatter plots between MSCI scope 1 carbon emissions (tonsCO2e) and other 
quantitative factors, i.e., scope 1 carbon emissions difference (tonsCO2e), and MSCI 
scope 1 carbon intensity (tonsCO2e/mln USD). 
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FIG. 23: The scatter plots between MSCI scope 1 carbon emissions (tonsCO2e) and 
other quantitative factors, i.e., number of children companies, number of employees, 
the cost of employees (mln/USD), average annual growth rate, compound annual 
growth rate, and geometric annual growth rate. 
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FIG. 24: The scatter plot between MSCI scope 1 carbon emissions (tonsCO2e) and 
Orbis revenue (mln USD). And the scatter plots between scope 1 carbon emissions 
difference (tonsCO2e) and other quantitative factors, i.e., MSCI scope 1 carbon 
intensity (tonsCO2e/mln USD), number of children companies, number of employees, 
the cost of employees (mln/USD), and average annual growth rate. 
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FIG. 25: The scatter plots between scope 1 carbon emissions difference (tonsCO2e) 
and other quantitative factors, i.e., compound annual growth rate, geometric annual 
growth rate, and Orbis revenue (mln USD). And the scatter plots between MSCI 
scope 1 carbon intensity (tonsCO2e/mln USD) and other quantitative factors, i.e., 
number of children companies, number of employees, and the cost of employees 
(mln/USD). 
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FIG. 26: The scatter plots between MSCI scope 1 carbon intensity (tonsCO2e/mln 
USD) and other quantitative factors, i.e., average annual growth rate, compound 
annual growth rate, geometric annual growth rate, and Orbis revenue (mln USD). And 
the scatter plots between number of children companies and other quantitative factors, 
i.e., number of employees, and the cost of employees (mln/USD). 
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FIG. 27: The scatter plots between number of children companies and other 
quantitative factors, i.e., average annual growth rate, compound annual growth rate, 
geometric annual growth rate, and Orbis revenue (mln USD). And the scatter plots 
between number of employees and other quantitative factors, i.e., the cost of 
employees (mln/USD), and average annual growth rate. 
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FIG. 28: The scatter plots between number of employees and other quantitative 
factors, i.e., compound annual growth rate, and geometric annual growth rate, and 
Orbis revenue (mln USD). And the scatter plots between the cost of employees 
(mln/USD) and other quantitative factors, i.e., average annual growth rate, compound 
annual growth rate, and geometric annual growth rate. 
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FIG. 29: The scatter plot between number of employees and Orbis revenue (mln 
USD). The scatter plots between average annual growth rate and other quantitative 
factors, i.e., compound annual growth rate, geometric annual growth rate, and Orbis 
revenue (mln USD). The scatter plots between compound annual growth rate and 
other quantitative factors, i.e., geometric annual growth rate, and Orbis revenue (mln 
USD). The scatter plot between geometric annual growth rate and Orbis revenue (mln 
USD). 
 



 76 

 

FIG. 30: The kernel density estimate (KDE) plots between total power generation 
(MW) and other quantitative factors in WEPP dataset and MSCI (2018) dataset, 
enriched by Orbis through CorpIndex, i.e., WEPP estimated electricity (MWh), MSCI 
revenue (mln USD), WEPP estimated scope 1 carbon emissions (tonsCO2e), MSCI 
scope 1 carbon emissions (tonsCO2e), scope 1 carbon emissions difference 
(tonsCO2e), and MSCI scope 1 carbon intensity (tonsCO2e/mln USD). 
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FIG. 31: The kernel density estimate (KDE) plots between total power generation 
(MW) and other quantitative factors in WEPP dataset and MSCI (2018) dataset, 
enriched by Orbis through CorpIndex, i.e., number of children companies, number of 
employees, the cost of employees (mln/USD), average annual growth rate, compound 
annual growth rate, and geometric annual growth rate. 
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FIG. 32: The kernel density estimate (KDE) plot between total power generation 
(MW) and Orbis revenue (mln USD). And the kernel density estimate (KDE) plots 
between WEPP estimated electricity (MWh) and other quantitative factors, i.e., MSCI 
revenue (mln USD), WEPP estimated scope 1 carbon emissions (tonsCO2e), MSCI 
scope 1 carbon emissions (tonsCO2e), scope 1 carbon emissions difference 
(tonsCO2e), and MSCI scope 1 carbon intensity (tonsCO2e/mln USD). 
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FIG. 33: The kernel density estimate (KDE) plot between total power generation 
(MW) and Orbis revenue (mln USD). And the kernel density estimate (KDE) plots 
between WEPP estimated electricity (MWh) and other quantitative factors, i.e., MSCI 
revenue (mln USD), WEPP estimated scope 1 carbon emissions (tonsCO2e), MSCI 
scope 1 carbon emissions (tonsCO2e), scope 1 carbon emissions difference 
(tonsCO2e), and MSCI scope 1 carbon intensity (tonsCO2e/mln USD). 
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FIG. 34: The kernel density estimate (KDE) plot WEPP estimated electricity (MWh) 
and Orbis revenue (mln USD). And the kernel density estimate (KDE) plots between 
MSCI revenue (mln USD) and other quantitative factors, i.e., WEPP estimated scope 
1 carbon emissions (tonsCO2e), MSCI scope 1 carbon emissions (tonsCO2e), scope 1 
carbon emissions difference (tonsCO2e), MSCI scope 1 carbon intensity 
(tonsCO2e/mln USD), and number of children companies. 
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FIG. 35: The kernel density estimate (KDE) plots between MSCI revenue (mln USD) 
and other quantitative factors, i.e., number of employees, the cost of employees 
(mln/USD), average annual growth rate, compound annual growth rate, geometric 
annual growth rate, and Orbis revenue (mln USD). 
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FIG. 36: The kernel density estimate (KDE) plots between WEPP estimated scope 1 
carbon emissions (tonsCO2e) and other quantitative factors, i.e., MSCI scope 1 carbon 
emissions (tonsCO2e), scope 1 carbon emissions difference (tonsCO2e), MSCI scope 
1 carbon intensity (tonsCO2e/mln USD), number of children companies, number of 
employees, and the cost of employees (mln/USD). 
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FIG. 37: The kernel density estimate (KDE) plots between WEPP estimated scope 1 
carbon emissions (tonsCO2e) and other quantitative factors, i.e., average annual 
growth rate, compound annual growth rate, geometric annual growth rate, and Orbis 
revenue (mln USD). And the kernel density estimate (KDE) plots between MSCI 
scope 1 carbon emissions (tonsCO2e) and other quantitative factors, i.e., scope 1 
carbon emissions difference (tonsCO2e), and MSCI scope 1 carbon intensity 
(tonsCO2e/mln USD). 
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FIG. 38: The kernel density estimate (KDE) plots between MSCI scope 1 carbon 
emissions (tonsCO2e) and other quantitative factors, i.e., number of children 
companies, number of employees, the cost of employees (mln/USD), average annual 
growth rate, compound annual growth rate, and geometric annual growth rate. 
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FIG. 39: The kernel density estimate (KDE) plot between MSCI scope 1 carbon 
emissions (tonsCO2e) and Orbis revenue (mln USD). And the kernel density estimate 
(KDE) plots between scope 1 carbon emissions difference (tonsCO2e) and other 
quantitative factors, i.e., MSCI scope 1 carbon intensity (tonsCO2e/mln USD), 
number of children companies, number of employees, the cost of employees 
(mln/USD), and average annual growth rate. 
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FIG. 40: The kernel density estimate (KDE) plots between scope 1 carbon emissions 
difference (tonsCO2e) and other quantitative factors, i.e., compound annual growth 
rate, geometric annual growth rate, and Orbis revenue (mln USD). And the kernel 
density estimate (KDE) plots between MSCI scope 1 carbon intensity (tonsCO2e/mln 
USD) and other quantitative factors, i.e., number of children companies, number of 
employees, and the cost of employees (mln/USD). 
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FIG. 41: The kernel density estimate (KDE) plots between MSCI scope 1 carbon 
intensity (tonsCO2e/mln USD) and other quantitative factors, i.e., average annual 
growth rate, compound annual growth rate, geometric annual growth rate, and Orbis 
revenue (mln USD). And the kernel density estimate (KDE) plots between number of 
children companies and other quantitative factors, i.e., number of employees, and the 
cost of employees (mln/USD). 
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FIG. 42: The kernel density estimate (KDE) plots between number of children 
companies and other quantitative factors, i.e., average annual growth rate, compound 
annual growth rate, geometric annual growth rate, and Orbis revenue (mln USD). And 
the kernel density estimate (KDE) plots between number of employees and other 
quantitative factors, i.e., the cost of employees (mln/USD), and average annual 
growth rate. 
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FIG. 43: The kernel density estimate (KDE) plots between number of employees and 
other quantitative factors, i.e., compound annual growth rate, and geometric annual 
growth rate, and Orbis revenue (mln USD). And the kernel density estimate (KDE) 
plots between the cost of employees (mln/USD) and other quantitative factors, i.e., 
average annual growth rate, compound annual growth rate, and geometric annual 
growth rate. 
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FIG. 44: The kernel density estimate (KDE) plot between number of employees and 
Orbis revenue (mln USD). The kernel density estimate (KDE) plots between average 
annual growth rate and other quantitative factors, i.e., compound annual growth rate, 
geometric annual growth rate, and Orbis revenue (mln USD). The kernel density 
estimate (KDE) plots between compound annual growth rate and other quantitative 
factors, i.e., geometric annual growth rate, and Orbis revenue (mln USD). The kernel 
density estimate (KDE) plot between geometric annual growth rate and Orbis revenue 
(mln USD). 
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APPENDIX B: THE HISTOGRAMS AND THE SCATTER PLOTS BETWEEN 

CDP DATASET AND MSCI (2021) DATASET 

 

 

FIG. 45: The histograms of different types of carbon emissions and carbon intensity in 
CDP dataset, i.e., CDP scope 1 carbon emissions (tonsCO2e), CDP scope 2 carbon 
emissions (tonsCO2e), CDP scope 1 and 2 carbon emissions (tonsCO2e), CDP scope 
1 carbon intensity (tonsCO2e/mln USD), CDP scope 2 carbon intensity 
(tonsCO2e/mln USD), and CDP scope 1 and 2 carbon intensity (tonsCO2e/mlnUSD).  
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FIG. 46: The histograms of different types of carbon emissions and carbon intensity in 
CDP dataset and MSCI (2021) dataset, and the revenue, i.e., CDP revenue (mln 
USD), MSCI scope 1 carbon emissions (tonsCO2e), MSCI scope 2 carbon emissions 
(tonsCO2e), MSCI scope 1 and 2 carbon emissions (tonsCO2e), MSCI scope 1 carbon 
intensity (tonsCO2e/mln USD), MSCI scope 2 carbon intensity (tonsCO2e/mln USD), 
MSCI scope 1 and 2 carbon intensity (tonsCO2e/mln USD), and MSCI revenue (mln 
USD).  
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FIG. 47: The scatter plots between CDP scope 1 carbon emissions (tonsCO2e) and 
other types of carbon emissions and carbon intensity and the revenue, i.e., CDP scope 
2 carbon emissions (tonsCO2e), CDP scope 1 and 2 carbon emissions (tonsCO2e), 
CDP scope 1 carbon intensity (tonsCO2e/mlnUSD), CDP scope 2 carbon intensity 
(tonsCO2e/mln USD), CDP scope 1 and 2 carbon intensity (tonsCO2e/mln USD), and 
CDP revenue (mln USD). 
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FIG. 48: The scatter plots between CDP scope 1 carbon emissions (tonsCO2e) and 
other types of carbon emissions and carbon intensity, i.e., MSCI scope 1 carbon 
emissions (tonsCO2e), MSCI scope 2 carbon emissions (tonsCO2e), MSCI scope 1 
and 2 carbon emissions (tonsCO2e), MSCI scope 1 carbon intensity (tonsCO2e/mln 
USD), MSCI scope 2 carbon intensity (tonsCO2e/mln USD), and MSCI scope 1 and 2 
carbon intensity (tonsCO2e/mln USD). 
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FIG. 49: The scatter plot between CDP scope 1 carbon emissions (tonsCO2e) and 
MSCI revenue (mln USD). The scatter plots between CDP scope 2 carbon emissions 
(tonsCO2e) and other types of carbon emissions and carbon intensity and the revenue, 
i.e., CDP scope 1 and 2 carbon emissions (tonsCO2e), CDP scope 1 carbon intensity 
(tonsCO2e/mlnUSD), CDP scope 2 carbon intensity (tonsCO2e/mln USD), CDP scope 
1 and 2 carbon intensity (tonsCO2e/mln USD), and CDP revenue (mln USD).  
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FIG. 50: The scatter plots between CDP scope 2 carbon emissions (tonsCO2e) and 
other types of carbon emissions and carbon intensity, i.e., MSCI scope 1 carbon 
emissions (tonsCO2e), MSCI scope 2 carbon emissions (tonsCO2e), MSCI scope 1 
and 2 carbon emissions (tonsCO2e), MSCI scope 1 carbon intensity (tonsCO2e/mln 
USD), MSCI scope 2 carbon intensity (tonsCO2e/mln USD), and MSCI scope 1 and 2 
carbon intensity (tonsCO2e/mln USD). 
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FIG. 51: The scatter plot between CDP scope 2 carbon emissions (tonsCO2e) and 
MSCI revenue (mln USD). The scatter plots between CDP scope 1 and 2 carbon 
emissions (tonsCO2e) and other types of carbon emissions and carbon intensity, i.e., 
CDP scope 1 carbon intensity (tonsCO2e/mlnUSD), CDP scope 2 carbon intensity 
(tonsCO2e/mln USD), CDP scope 1 and 2 carbon intensity (tonsCO2e/mln USD), 
CDP revenue (mln USD), and MSCI scope 1 carbon emissions (tonsCO2e). 
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FIG. 52: The scatter plots between CDP scope 1 and 2 carbon emissions (tonsCO2e) 
and other types of carbon emissions and carbon intensity and the revenue, i.e., MSCI 
scope 2 carbon emissions (tonsCO2e), MSCI scope 1 and 2 carbon emissions 
(tonsCO2e), MSCI scope 1 carbon intensity (tonsCO2e/mln USD), MSCI scope 2 
carbon intensity (tonsCO2e/mln USD), MSCI scope 1 and 2 carbon intensity 
(tonsCO2e/mln USD), and MSCI revenue (mln USD). 
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FIG. 53: The scatter plots between CDP scope 1 carbon intensity (tonsCO2e/mlnUSD) 
and other types of carbon emissions and carbon intensity, i.e., CDP scope 2 carbon 
intensity (tonsCO2e/mln USD), CDP scope 1 and 2 carbon intensity (tonsCO2e/mln 
USD), CDP revenue (mln USD), MSCI scope 1 carbon emissions (tonsCO2e), MSCI 
scope 2 carbon emissions (tonsCO2e), and MSCI scope 1 and 2 carbon emissions 
(tonsCO2e). 
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FIG. 54: The scatter plots between CDP scope 1 carbon intensity (tonsCO2e/mlnUSD) 
and other types of carbon emissions and carbon intensity and the revenue, i.e., MSCI 
scope 1 carbon intensity (tonsCO2e/mln USD), MSCI scope 2 carbon intensity 
(tonsCO2e/mln USD), MSCI scope 1 and 2 carbon intensity (tonsCO2e/mln USD), 
and MSCI revenue (mln USD). And the scatter plots between CDP scope 2 carbon 
intensity (tonsCO2e/mln USD) and other types of carbon emissions and carbon 
intensity and the revenue, i.e., CDP scope 1 and 2 carbon intensity (tonsCO2e/mln 
USD), and CDP revenue (mln USD). 
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FIG. 55: The scatter plots between CDP scope 2 carbon intensity (tonsCO2e/mln 
USD) and other types of carbon emissions and carbon intensity, i.e., MSCI scope 1 
carbon emissions (tonsCO2e), MSCI scope 2 carbon emissions (tonsCO2e), MSCI 
scope 1 and 2 carbon emissions (tonsCO2e), MSCI scope 1 carbon intensity 
(tonsCO2e/mln USD), MSCI scope 2 carbon intensity (tonsCO2e/mln USD), and 
MSCI scope 1 and 2 carbon intensity (tonsCO2e/mln USD). 
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FIG. 56: The scatter plot between CDP scope 2 carbon intensity (tonsCO2e/mln USD) 
and MSCI revenue (mln USD). The scatter plots between CDP scope 1 and 2 carbon 
intensity (tonsCO2e/mln USD) and other types of carbon emissions and carbon 
intensity and revenue, i.e., CDP revenue (mln USD), MSCI scope 1 carbon emissions 
(tonsCO2e), MSCI scope 2 carbon emissions (tonsCO2e), MSCI scope 1 and 2 carbon 
emissions (tonsCO2e), and MSCI scope 1 carbon intensity (tonsCO2e/mln USD). 
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FIG. 57: The scatter plots between CDP scope 1 and 2 carbon intensity 
(tonsCO2e/mln USD) and other types of carbon emissions and carbon intensity and 
revenue, i.e., MSCI scope 2 carbon intensity (tonsCO2e/mln USD), MSCI scope 1 and 
2 carbon intensity (tonsCO2e/mln USD), and MSCI revenue (mln USD). The scatter 
plots between CDP revenue (mln USD) and other types of carbon emissions and 
carbon intensity, i.e., MSCI scope 1 carbon emissions (tonsCO2e), MSCI scope 2 
carbon emissions (tonsCO2e), and MSCI scope 1 and 2 carbon emissions (tonsCO2e). 
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FIG. 58: The scatter plots between CDP revenue (mln USD) and other types of carbon 
emissions and carbon intensity, i.e., MSCI scope 1 carbon intensity (tonsCO2e/mln 
USD), MSCI scope 2 carbon intensity (tonsCO2e/mln USD), MSCI scope 1 and 2 
carbon intensity (tonsCO2e/mln USD), and MSCI revenue (mln USD). The scatter 
plots between MSCI scope 1 carbon emissions (tonsCO2e) and other types of carbon 
emissions and carbon intensity, i.e., MSCI scope 2 carbon emissions (tonsCO2e), and 
MSCI scope 1 and 2 carbon emissions (tonsCO2e). 
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FIG. 59: The scatter plots between MSCI scope 1 carbon emissions (tonsCO2e) and 
other types of carbon emissions and carbon intensity and the revenue, i.e., MSCI 
scope 1 carbon intensity (tonsCO2e/mln USD), MSCI scope 2 carbon intensity 
(tonsCO2e/mln USD), MSCI scope 1 and 2 carbon intensity (tonsCO2e/mln USD), 
and MSCI revenue (mln USD). The scatter plots between MSCI scope 2 carbon 
emissions (tonsCO2e) and other types of carbon emissions and carbon intensity, i.e., 
MSCI scope 1 and 2 carbon emissions (tonsCO2e), and MSCI scope 1 carbon 
intensity (tonsCO2e/mln USD). 
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FIG. 60: The scatter plots between MSCI scope 2 carbon emissions (tonsCO2e) and 
other types of carbon emissions and carbon intensity and the revenue, i.e., MSCI 
scope 2 carbon intensity (tonsCO2e/mln USD), MSCI scope 1 and 2 carbon intensity 
(tonsCO2e/mln USD), and MSCI revenue (mln USD). The scatter plots between 
MSCI scope 1 and 2 carbon emissions (tonsCO2e) and other types of carbon 
emissions and carbon intensity, i.e., MSCI scope 2 carbon intensity (tonsCO2e/mln 
USD), and MSCI scope 1 and 2 carbon intensity (tonsCO2e/mln USD). 
 



 107 

 

 

FIG. 61: The scatter plot between MSCI scope 1 and 2 carbon emissions (tonsCO2e) 
and MSCI revenue (mln USD). The scatter plots between MSCI scope 1 carbon 
intensity (tonsCO2e/mln USD) and other types of carbon emissions and carbon 
intensity and the revenue, i.e., MSCI scope 2 carbon intensity (tonsCO2e/mln USD), 
and MSCI scope 1 and 2 carbon intensity (tonsCO2e/mln USD), and MSCI revenue 
(mln USD). The scatter plots between MSCI scope 2 carbon intensity (tonsCO2e/mln 
USD) and MSCI scope 1 and 2 carbon intensity (tonsCO2e/mln USD), and MSCI 
revenue (mln USD). The scatter plot between MSCI scope 1 and 2 carbon intensity 
(tonsCO2e/mln USD) and MSCI revenue (mln USD). 


