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Abstract

We study a dynamic model of earnings management in which asymmetric stock market

behavior around earnings benchmarks arises endogenously as a consequence of con-

strained managerial earnings manipulation. Our infinite horizon model reveals an equi-

librium that is characterized by managers leveraging precautionary savings (“cookie

jars”) to meet investors’ expectations in future periods. We show that for sufficiently

poor economic results, the manager underreports earnings by the maximum, hence pre-

ferring to take a “big bath” in hope of prompting a more favorable stock price reaction

in future periods. For high firm earnings, the manager’s reporting decision is ambiguous

and shifts from precautionary saving towards overstating earnings as firm savings and

the manager’s degree of myopia increase. In addition to providing comparative statics

for the asymmetric stock market behavior around benchmarks, we structurally estimate

our model. Our results provide a first estimate for the constraints on a manager’s re-

porting discretion relative to firm size and indicate a limit of 0.5% of total assets. We

complement empirical studies in the accounting literature which estimate the average

level of discretionary accruals on firms’ balance sheets.
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Chapter 1

Introduction

A significant stream of accounting literature focuses on explaining the prevalence of

earnings management. While firms’ reasons for managing earnings may vary widely,

managers’ incentives to manage earnings are frequently attributed to managerial com-

pensation being linked to a firm’s stock price. Since periodic earnings announcements by

managers serve as an important source of information for investors, managers thus have

an incentive to manage earnings.1 In addition, generally accepted accounting principles

(GAAP) provide managers with significant flexibility in their earnings reports. Recogni-

tion of sales not yet shipped, delay in maintenance expenditures and the recognition of

losses on assets that have a fair market value below the current book value are just a few

examples of the managerial leeway in reporting earnings.2 Managers therefore not only

have the incentives but also the ability to manipulate earnings in hope of prompting a

more favorable stock price reaction.3 An earnings management pattern commonly dis-

cussed in the literature is the tendency of managers manipulating earnings to meet or

beat certain benchmarks. For example, both survey evidence (Graham et al. [2005]) and

discontinuities in earnings distributions around benchmarks (Burgstahler and Dichev

[1997]) are consistent with earnings management to meet or beat certain earnings tar-

gets. More specifically, last period’s earnings, zero profits, and analysts’ forecasts have

been proven to be significant benchmarks (Degeorge et al. [1999]) for reported earnings.

Chen et al. [2003] finds that the stock market’s reaction to reports around these bench-

1See, for instance, Basu et al. [2013] and May [1971].
2Shilit [2002] provides an extensive analysis of means to manipulate earnings.
3For a review of empirical literature on earnings management, see Healy and Wahlen [1999].

1



2 CHAPTER 1. INTRODUCTION

marks is asymmetric: Earnings reports failing to meet a benchmark are penalized by a

drop in stock price that is significantly larger than the increase in stock price for a corre-

sponding report that beats the benchmark. We rely on the empirical results in Barton and

Simko [2002] to provide a potential explanation for the asymmetric stock price reaction

in a rational expectations framework. To this end, we rely on Barton and Simko [2002]

that finds that “a manager’s ability to optimistically bias earnings decreases with the ex-

tent to which net assets are already overstated on the balance sheet”. As a result, when

firms fail to meet a benchmark, investors infer that not only the current period’s earn-

ings are low but also that the firm has exhausted its reporting discretion. If a manager’s

discretionary behavior is indeed constraint by the history of earnings manipulations, this

suggests that earnings have been overstated in prior periods, causing investors to revise

downward their beliefs about past earnings. This in turn triggers a larger stock price

reaction for earnings that fall short of the benchmark than for earnings that meet or beat

the benchmark.

We suggest a rational expectations model in which asymmetric stock market behavior

around benchmarks arises endogenously. In equilibrium, investors believe that the man-

ager uses the available slack in the balance sheet to meet an earnings target whenever

possible. Since such beliefs result in large penalties when failing to meet the benchmark,

it is optimal for the manager to manipulate earnings consistent with investors’ beliefs.

Because investors revise their beliefs not only about concurrent earnings based on the

manager’s report but also about past earnings, stock prices are not linear in earnings

but follow a recursive Bayesian filtering process instead.4 To the best of our knowledge,

this is the first theoretical model in the literature in which the concept of precautionary

savings in a dynamic setting is applied to firms’ earnings management decision.

We study two models: a discrete two-period model and a continuous infinite-horizon

model which generalizes the findings of the parsimonious model. In the parsimonious

two-period model, the manager of a firm privately observes the firm’s true earnings be-

fore issuing a report to investors on the stock market. The manager is not confined

to report truthfully but can instead engage in earnings management and leverage lee-

way within accounting conventions to manipulate reported earnings. The amount of

4Linear stock prices are prevalent in prior literature. For instance, see Beyer et al. [2018], Fischer and
Verrecchia [2000] and Stein [1989].
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accumulated accruals is however constrained which precludes sustained overstating of

periodic earnings by the manager. Consistent with the theoretical literature on earnings

management, we assume that the manager’s utility is linked to the firm’s stock price, en-

couraging him to anticipate the stock market’s reaction to his earnings announcements.

A firm’s stock price is set by investors on the stock market, based on the publicly available

reported earnings.

We conjecture that the following is a Perfect Bayesian Equilibrium: For positive firm

earnings, themanager decides to understate earnings but only to the extent that reported

earnings still meet or beat the benchmark. This allows him to build up so called “cookie

jars”, hoping to use the additional savings to meet the benchmark in a future period.

For negative earnings, the manager overstates earnings to meet the benchmark unless

his reporting discretion is exhausted. In this case, he decides to take a “big bath”, i.e.,

accepts to report bad economic results hoping that the additional savings can be used

to meet the benchmark in a future period. We find that our conjectured long-sighted

manager behavior imposes equilibrium conditions on the manager’s assumed utility of

saving, i.e., his expected utility from increasing the likelihood that he will be able to

meet benchmarks in future periods by building up cookie jars today. When the utility

of saving is low, which corresponds to myopic manager behavior, the utility that follows

from overstating earnings in the current period exceeds the manager’s assumed benefit

from saving for future periods. By contrast, if the utility of saving is high, the asymme-

try of stock price reactions provides sufficient incentives for the manager to meet the

benchmark whenever possible and to save for future periods otherwise. We also find

that negative earnings surprises trigger a larger stock market reaction for all equilibrium

states consistent with the empirical findings in Chen et al. [2003].

The secondmodel we study extends the parsimonious model to amore general setting

while maintaining the same economic forces at its core. All distributions are continuous

and we consider an infinite horizon. The manager considers all future stock prices for

his reporting decision, but myopic behavior causes him to discount future stock prices.

Similar to the parsimonious model, the amount of accumulated discretionary accruals

the manager can use to optimistically bias earnings is constrained. The reporting dis-

cretion available to the manager in a given period hence depends on all prior reporting

decisions. The restriction is bi-directional and therefore limits not only the manager’s
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ability to meet or beat the earnings benchmark in this period but also his ability to

pessimistically bias reported earnings and build up cookie jars. Investors use recursive

Bayesian filtering to update their beliefs about firm earnings after an earnings announce-

ment. To increase tractability, we limit investors’ memory. Specifically, we assume that

investors summarize information between earnings announcements. We thus account

for limited memory. We conjecture that the following is a Perfect Bayesian Equilibrium:

Whenever possible, the manager reports earnings that just meet the benchmark. If the

discretionary constraints prohibit him from doing so, he understates earnings as much

as possible. Our conjectured equilibrium is the extension of the parsimonious model’s

equilibrium to continuous distributions and hence includes both “big bath” behavior and

the build up of “cookie jars”. In equilibrium, positive reported earnings allow investors

to infer the current period’s true firm earnings but do not provide information about

past earnings. Negative reported earnings reveal the current period’s true earnings and

provide information about past earnings. More specifically, they lead investors to revise

their beliefs about past earnings downward. The magnitude of the effect is higher if re-

ported earnings are closer to the benchmark than if reported earnings are very low. The

intuition is as follows. When reported earnings fall short of the benchmark but are not

very low, investors infer that the manager did not even build up a small cookie jar in the

past that would have allowed him to meet the benchmark this period when earnings only

fell short of the benchmark by a small amount. Thus, investors revise their expectations

about past earnings down by more than if reported earnings in the current period are so

low that even if the manager has built up a reasonable cookie jar in the past, the bench-

mark is out of reach. If reported earnings just meet the benchmark, investors increase

their expectation of past earnings since meeting the benchmark is a positive signal about

the cookie jars the manager has built up in the past.

Numerical analysis shows that the conjectured equilibrium holds for low discounting

factors, i.e., for a low degree of myopia. As the manager increasingly discounts the util-

ity obtained from future stock prices, he prefers overstating today’s earnings to saving

reporting discretion for the future. In the extreme case of perfectly myopic behavior, i.e.,

if the manager only considers the current period’s stock price, overstating earnings by

the maximum amount is the manager’s optimal choice for all earnings realizations. In

addition to the discounting factor, the size of the firm’s current cookie jars affects the
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manager’s equilibrium reporting strategy. If firm savings are high, additional savings

provide a low additional utility since the probability that they increase the likelihood of

meeting the benchmark in the near future is low. As firm savings increase, overstating

earnings hence replaces precautionary saving as the manager’s optimal reporting choice

for positive earnings reports. These two main findings suggest a refined equilibrium re-

porting strategy which specifies overstating earnings as the manager’s optimal reporting

choice for earnings above a threshold determined by firm savings and discounting factor.

The maximum size of “cookie jars” that managers are able to build up is naturally

unobservable. As a result, we use structural estimation to recover the latent variable that

captures the constraint the balance sheet places on managers’ ability to build up cookie

jars. Based on quarterly data on stock prices and reported net income from WRDS, we

structurally estimate the manager’s ability to understate earnings relative to total assets.

The manager’s ability to optimistically bias earnings is assumed to be constrained by

previous savings which eliminates the need for the estimation of an additional latent

parameter.5 We first estimate the parameter at the industry level which requires the

assumption that the parameter is constant both across firms of the same industry and

over time. We find that managers can understate earnings by around 0.44% of total

assets. The results are fairly consistent among industries, ranging from 0.32% to 0.87%.

An analysis based on firm size indicates that the estimate is also consistent across firms

of different sizes.

Related Literature Earnings management has been studied extensively in both em-

pirical and theoretical accounting literature. The prevalence of discretionary reporting

behavior has been established by an overwhelming amount of empirical evidence while

theoretical studies provided models to help understand firms’ and investors’ behavior in

different settings.

Theoretical models of earnings management are models in which the manager must

disclose a signal but is not confined to report truthfully. However, misreporting is either

costly to the manager or firm or is constraint in some other fashion. Early models of

earnings management in a capital market setting include Dye [1988] and Titman and

5In addition, we allow for discretion even in the absence of savings. However, the impact of this pa-
rameter converges to zero and is hence excluded from our structural estimation.
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Trueman [1986]. Both papers study investors’ inference problems when the manager’s

optimization problem is not entirely known to investors and establish the conditions un-

der which earnings management arises. Fischer and Verrecchia [2000] also assumes that

the manager’s objective is not perfectly known to investors but focuses on the amount

of information earnings management destroys from investors’ perspective. Similar to

many models of earnings management, Fischer and Verrecchia [2000] analyzes a linear

equilibrium. As a result, it does not capture managers’ incentives related to earnings tar-

gets. In contrast, Degeorge et al. [1999] focuses on the relevance of earnings thresholds

and shows that an exogenous bonus for meeting or exceeding a threshold induces the

manager to meet the threshold whenever possible, assuming a two-period setting. Our

model differs from Degeorge et al. [1999] in so far as managers’ incentives to meet or

beat a benchmark are not exogenously given as the result of some bonus contract but

rather arise endogenously as a result of investors’ inferences. This is similar to Guttman

et al. [2006] that studies equilibria in which discontinuities in the distribution of re-

ported earnings may emerge despite exclusively smooth distributions in the single period

model’s setup. Since Guttman et al. [2006] considers a single-period model, managers’

consideration of building up “cookie jars” is absent from the model. In contrast, Kirschen-

heiter and Melumad [2002] demonstrates managerial big bath behavior in a two-period

setting and thus extends our understanding of the multi-period nature of corporate re-

porting. Similar to other two-period models of earnings management (see, e.g., Ewert

andWagenhofer [2005]), Kirschenheiter andMelumad [2002] assumes that any accrual-

based earnings management in the first period must reverse in the second period. Beyer

et al. [2018] extends previous models and considers both a finite and infinite-horizon

setting. Instead of a forced exogenous reversal of bias after the last period, prominent in

two-period models, earnings manipulation is assumed to be unbounded but costly. Sim-

ilar to Beyer et al. [2018], we also study an infinite horizon setting in which reporting

bias is not forced to reverse at a specific point in time. However, in contrast to Beyer et al.

[2018], our model does not study linear equilibria but rather considers managements’

incentives to meet or beat benchmarks that arise endogenously in the capital market

setting. This causes the equilibrium to be non-linear. To summarize, we complement the

existing theoretical literature by applying ideas from precautionary savings models to an

earnings management setting and suggest an infinite horizon model in which asymmet-
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ric stock market behavior around benchmarks arises endogenously. Specifically, we focus

on an equilibrium in which constraints on a firm’s reporting discretion cause investors’

expectations to act as an important benchmark in the interaction between firmmanagers

and investors.

Earnings management is also the subject of numerous empirical studies. For a review,

see Dechow et al. [2010]. Our motivation to extend the existing theoretical literature

stems most notably from the following two empirical findings. First, Barton and Simko

[2002] finds that “a manager’s ability to optimistically bias earnings decreases in the

extent to which net assets on the balance sheet are already overstated” and therefore

confirms the intuition that a firm’s balance sheet constrains the amount of discretionary

accruals available to its manager. Second, empirical studies such as Chen et al. [2003]

find that the stock market’s reaction to positive and negative earnings surprises is asym-

metric with negative earnings surprises triggering a larger response. Consistent with

Chen et al. [2003], we find that the stock market’s reaction to negative news is approxi-

mately 1.69 times larger than its reaction to positive news.

In addition, we structurally estimate our infinite horizonmodel and provide a first val-

idation of the results in Hribar and Nichols [2007] and Gerakos and Kovrijnykh [2013]

based on a theoretical economic rather than statistical model. In both papers, the authors

conducted an empirical estimation of the magnitude of discretionary accruals on firms’

balance sheets relative to firm size. In contrast to Hribar and Nichols [2007] and Ger-

akos and Kovrijnykh [2013], we do not estimate the actual magnitude of discretionary

accruals on firms’ balance sheets at any point in time but rather estimate the maximum

possible magnitude of discretionary accruals capturing the idea of the balance sheet as

a constraint to cumulative earnings management.
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Chapter 2

Discrete Two-Period Model

The multi-agent problem we are trying to model poses many challenges and requires ex-

tensive mathematical efforts. For his decision on what earnings to report, a firm’s man-

ager engages in non-cooperative sequential decision-making with the firm’s investors on

the stock market who set the firm’s stock price based on their belief about true firm value.

Consequently, modeling their interaction requires the introduction of an equilibrium con-

cept. But even solving for an equilibrium turns out to be challenging. We therefore first

develop a simplified model with the ambition to illustrate the main economic forces of

our model. In the next chapter, we will then generalize our model to a more general

setting.

This chapter consists of three sections. We first describe the model setup. The second

section includes both a description of the equilibrium concept we use as well as our

approach to solving for an equilibrium. In the third and last part of this chapter we

describe and discuss the results.

2.1 Setup

In this section, we outline our model and discuss its assumptions as well as their eco-

nomic intuition. The model consists of three elements: a firm which generates economic

earnings, a manager who can engage in earnings management in order to maximize

his expected utility and the stock market which sets the firm’s stock price based on the

publicly available information.

9



10 CHAPTER 2. DISCRETE TWO-PERIOD MODEL

In each period, the manager privately observes the firm’s true earnings. He then

issues a report without being confined to report truthfully. Instead, he can overstate

or understate earnings. The reporting discretion is however constraint by his previous

reporting history. As his utility is assumed to be linked to the firm’s stock price, the

manager anticipates the stock market’s reaction when choosing the amount of discretion

included in reported earnings. The investors set the price based on the publicly available

reported earnings. We consider discrete time periods and analyze a two-period model.

Firm

We consider a firm whose true earnings et are uniformly distributed but can only take

the five discrete integer values between −2 and 2. The probability density function,

hereafter referred to as PDF, for the true earnings at time t is therefore given by

fet(ēt) =


1
5
∀ēt ∈ {−2,−1, 0,+1,+2}

0 otherwise
∀t. (2.1)

Since we chose a PDF that is symmetric around et = 0, the expected value of true earnings

at any time t is E[et] = 0 which will serve as the benchmark for our model. We will show

that the manager tries to meet this benchmark and failing to do so is penalized by the

stock market.

Manager

At every time t, the manager decides on what earnings to report. His reported earnings

rt are equal to the sum of true earnings et and the discretion δt, i.e., rt = et + δt. We con-

sider a rational manager who optimizes his current period’s utility. The manager’s utility

in turn is assumed to be tied to the firm’s stock price which is set by investors on the stock

market. For the manager’s reporting decision at time t, he considers the current period’s

stock price, which will be set by investors after the report has been issued, as well as

all expected future stock prices. Even though we only consider a two-period model we

are interested in obtaining results that may also occur in a model with more than two

periods. As the number of reporting periods increases, the manager’s strategy set of pos-
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sible reporting decisions increases exponentially. To maintain tractability, we therefore

assume that the manager considers the future in the form of a constant expected utility

of saving. This allows us to express the manager’s objective function without taking ex-

pectations along every possible price path. Let u denote the manager’s expected future

utility from having “saved” or underreported earnings by 1 in the current period t. The

manager’s maximization problem at time t is then given by

max
δt

ut =


Pt(rt = et + 1) δt = 1

Pt(rt = et) + u δt = 0

Pt(rt = et − 1) + 2u δt = −1

(2.2)

Barton and Simko [2002] showed that a firm’s ability to overstate reports decreases in

the extent to which previous balance sheets were overstated. To account for this result

we impose a constraint on the manager’s reporting discretion. We assume the manager

can only overstate by the amount saved in the past, i.e., to the extent to which previous

reported earnings were understated, which gives us the constraint

δt ≤
t−1∑
i=1

ei − ri. (2.3)

We further assume exogenously given upper and lower bounds for the discretion to ac-

count for an additional limitation of the discretion as a manipulation equal to or greater

than the true earnings appears to be unrealistic. We therefore require δt ∈ {−1, 0,+1}.

As described in the next section, some values of rt will not be part of the manager’s

reporting strategy in equilibrium. In order to avoid having to specify off-equilibrium be-

liefs, we therefore assume that the manager may strategically choose δt only with some

probability 1−α while with probability α ∈ (0, 1), the manager is forced to report truth-

fully. We define xt as a binary variable that describes whether the manager can engage

in earnings management in period t. xt is independent across periods and independent

of all other random variables such that its PDF is given by

fxt(x̄t) =

α x̄t = T

1− α x̄t = S

(2.4)
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where T is an abbreviation for ’truthful reporting’, S indicates the manager’s option for

’strategic reporting’ and α ∈ (0, 1). In case of xt = T , the manager’s report is equal to

true earnings, i.e., rt = et. This is equivalent to

fδt|xt(δ̄t|T ) =

1 δ̄t = 0

0 otherwise
. (2.5)

Stock Market

Our assumption that the manager’s payoff is linked to the firm’s stock price requires us

to specify how the stock price is set by investors. We assume that the firm does not make

any payouts to shareholders, e.g., in the form of dividends. The firm’s true equity at time

t is thus given by the sum of all true earnings up to period t. Investors form expectations

about the true firm value based on reported earnings which are the only publicly available

information. Since true earnings are not serially correlated and the expected value E[et]

is equal to zero, the expected change in firm value equals zero in each period. When

estimating the firm’s true value, investors therefore only need to price all previous as well

as the current period’s true earnings. If we were to assume perfect rationality of investors,

at time t, they would consider all previous reported earnings r1..t. For a longer horizon,

this assumption appears to be implausible. We will therefore assume limited memory of

investors for our parsimonious model despite its two-period setup. More specifically, we

assume that investors do not remember the earnings reported in the previous period. We

would like to remark that this assumption can be dropped without changing the results

of the model yet severely simplifies the notation and interpretation of the model. To

summarize, stock prices are set by investors who form their beliefs using

Pt(rt) = E
[ t∑
i=1

ei | rt
]
. (2.6)

2.2 Equilibrium

In this section, we introduce our equilibrium notion and describe an approach to derive

an equilibrium tuple that includes a reporting strategy and a pricing function. We will
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consider a Perfect Bayesian Equilibrium in which investors correctly infer the manager’s

discretion strategy. Given the resulting stock price function, themanager has no incentive

to deviate from the discretion strategy the investors inferred. Mathematically speaking,

a Perfect Bayesian Equilibrium is defined as a discretion strategy δ∗t for the manager,

together with a stock price function P ∗t , such that for any t:

i) P ∗t = E[
∑t

i=1 ei | r∗t ] and

ii) δ∗t (et) ∈ arg maxδt ut ∀et,

where r∗t = et + δ∗t . The two conditions guarantee sequential rationality and consistency,

both of which are required for a Perfect Bayesian Equilibrium. To derive an equilibrium,

we proceed as follows. We start by conjecturing an equilibrium discretion strategy for

the manager. We then calculate investors’ pricing strategy assuming they correctly infer

the manager’s discretion strategy. This allows us to derive the equilibrium conditions for

the manager’s assumed utility of saving u that need to be satisfied for the conjectured

equilibrium to hold.

In the previous section, we defined reporting discretion such that reported earnings

rt at time t are given by rt = et + δt. We can interpret δt as the difference between

reported and true earnings. Positive values of δt occur in case of overstating earnings

while negative values describe understating earnings, i.e., saving in hope of a higher

utility in the future. We proceed by conjecturing the equilibrium discretion strategy as

δt(e1..t, r1..t−1 | xt = S) =



−1 et ∈ {1, 2}

0 et = 0

+1 et = −1,
∑t−1

i=1 ei − ri ≥ 1

−1 et = −1,
∑t−1

i=1 ei − ri < 1

0 et = −2

(2.7)

for all t.6 Though being a discrete function, the conjectured discretion strategy is based

on the results in Degeorge et al. [1999] where the asymmetric stock market behav-

ior arose through an exogenous premium for meeting the benchmark. Our aim is to

6The uniqueness of our conjectured equilibrium is yet to be proved or disproved.
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Figure 2.1: The extensive form of the manager’s reporting strategy at t = 1 illustrates the poten-
tial outcomes for true earnings in the first period e1 and the binary variable x1 which describes
whether or not the manager can engage in earnings management in the first period. For each
combination, the network shows the feasible choices of reported earnings r1. Light gray nodes
correspond to off-equilibrium paths which we use to derive the equilibrium conditions.

provide evidence for similar discretionary behavior for a model where the asymmetric

stock market behavior arises endogenously. For positive earnings, the manager decides

to understate reported earnings allowing him to build up so called “cookie jars” so the

benchmark of rt = 0 can be met in future periods. For true earnings of et = 0, the man-

ager reports truthfully as true earnings just meet the benchmark. The case of et = −1

is of special interest as meeting the benchmark is a crucial element of our analysis. We

conjecture that the manager will report rt = 0 unless the discretion constraint is binding.

If he did not save in previous periods and is not able to overstate reported earnings, he

will instead engage in understating and report rt = −2. He accepts to take a big hit in

the current period hoping for a bigger payoff in the future. This phenomenon is com-

monly referred to as “big bath” strategy and has been studied by exisiting literature, e.g.

in Kirschenheiter and Melumad [2002]. The higher reward for meeting a benchmark

further incentivizes the manager to save in case of positive earnings. Our model hence

includes both big bath behavior as well as the build up of cookie jars to meet benchmarks

in future periods.

Figure 2.1 illustrates the extensive form of the manager’s reporting strategy in the

first period and shows the possible outcomes for true earnings e1 and x1. The bottom

row of nodes shows the feasible choices for the reported earnings r1. Light gray nodes

indicate paths that do not correspond to our conjectured equilibrium and that are used

to derive the equilibrium conditions for u.

For every period t, our conjectured discretion strategy imposes four conditions on

u for the equilibrium to hold. First, saving must be more attractive for positive true
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earnings, i.e., for both et = 1 and et = 2. Second, meeting the benchmark rt = 0

needs to be more attractive than saving and reporting rt = −1. Furthermore saving and

reporting rt = −2 must be preferred to reporting rt = −1 which corresponds to taking a

“big bath”.7

Lemma 1. There exists a Perfect Bayesian Equilibrium for the conjectured discretion strategy

specified in Equation 2.7 if and only if the stock price function fulfills the following four

conditions

i) Pt(2) < Pt(1) + u

ii) Pt(1) < Pt(0) + u

iii) Pt(−1) + u < Pt(0)

iv) Pt(−1) < Pt(−2) + u

for all t.

Before deriving the stock price functions, we note that linear price functions, which

have been the predominant focus of previous literature as in Beyer et al. [2018], Fischer

and Verrecchia [2000] and Stein [1989], do not illustrate the empirical findings we are

interested in. Instead of simplifying the price function by assuming linearity, we will

therefore calculate the price function as defined in section 2.1 using investors’ expecta-

tion of all true firm earnings {e1, . . . , et} given the earnings reports {r1, . . . , rt}. For the

discrete two-period model we consider in this chapter, this turns out to be a straight-

forward process. For the generalized continuous and infinite horizon model in the next

chapter, this requires some additional mathematical effort since the number of potential

paths is no longer finite.

To simplify our notation we introduce f(x) as an abbreviation for the PDF fx(x̄).

Additionally, wewill use {x1..t} to denote the set {x1, . . . , xt}. Stock prices are determined

by the expected value of the sum of true earnings based on the report at time t, i.e.,

Pt(rt) = E[
∑t

i=1 ei | rt]. Some analysis allows us to derive the stock price as a function of

known PDFs. For the proof, we refer to the appendix as with all other lemmas, theorems

and corollaries.

7For t > 1, a fifth condition Pt(2) < Pt(0) + 2u arises which can, however, be proven to be redundant
using the first two conditions.
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Lemma 2. In equilibrium, the imperfectly rational investors set the stock price according

to the equation

Pt(rt) =
∑
e1

· · ·
∑
et

[( t∑
i=1

ei

)
∗

∑
x1
· · ·
∑

xt

[
f(rt|e1..t, x1..t) ∗

∏t
i=1 f(xi)

]
∑

e1
· · ·
∑

et

∑
x1
· · ·
∑

xt

[
f(rt|e1..t, x1..t) ∗

∏t
i=1 f(xi)

]]

where the probability mass function

f(rt|e1..t, x1..t) =


1 rt = et, xt = T

1 rt = et + δt(e1..t−1, r1..t−1(e1..t−1, x1..t−1), et), xt = S

0 otherwise

can be evaluated using the decision network in Figure 2.1.8

Substitution of the stock prices using the equation above yields the equilibrium con-

ditions as univariate functions of α.

2.3 Proof of Existence for Equilibrium and Results

We proceed by calculating the stock price functions and analyzing the equilibrium con-

ditions and try to provide economic intuition for the results. We further characterize the

(a)symmetry of the stock price reaction to reported earnings which is one of our main

points of interest.

Stock Price Functions

Using Lemma 2 and the decision network illustrated in Figure 2.1, we can derive the

stock price functions for t = 1 and t = 2 which are shown in Figure 2.2. The explicit

functional forms are specified in the appendix.

Pt(2) and Pt(−1) are independent of α as investors can perfectly infer the true earn-

ings et. The reason is that both values will only be reported if the manager reports

8The resulting functional forms for P1(r1) and P2(r2) are listed in the Appendix.
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Figure 2.2: Equilibrium stock price reactions Pt(rt) to reported earnings rt for both periods as a
function of the parameter α which denotes the probability of the manager being forced to report
truthfully instead of engaging in earnings management

truthfully. In contrast, rt = 1 is reported in two cases: when the manager reports truth-

fully for et = 1 and when the manager reports strategically for et = 2. Pt(1) therefore

decreases from 2 to 1 as α increases and the manager is more and more forced to report

truthfully. With rt = 0 being the benchmark in our model, Pt(0) takes on a special re-

port as it may result from underreporting, overreporting or truthful reporting. However,

under- and overreporting are not equally likely. To see this, consider the manager’s re-

porting strategy for et = 1 and et = −1. When et = 1 and xt = S, the manager will

always report rt = 1. In contrast, when et = −1 and xt = S, the manager can report

rt = 0 only if he has saved in the past. This asymmetry of the discretion strategy explains

why the expected value of true earnings for rt = 0 is strictly positive.

Figure 2.3 provides an alternative illustration of the stock price reactions to reported

earnings for different values of α. The visualization of the asymmetry in stock prices

around the benchmark will be used to better understand the equilibrium conditions in

the following section.

Equilibrium Conditions

Inserting the stock price functions into the equilibrium conditions yields the range of u for

which our conjectured equilibrium holds, depending on α. To understand our results, it

is worthwhile taking a closer look at the equilibrium conditions. Each condition consists
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(a) t = 1 (b) t = 2

Figure 2.3: Equilibrium stock price reactions Pt(rt) to reported earnings rt for both periods for
different values of the parameter α which denotes the probability of forced truthful reporting

of two stock prices and the utility of saving u. The conjecture of the manager using his

discretion to report the benchmark rt = 0 when true earnings equal −1, imposes an

upper limit on u: if u were too high, the manager would always prefer to save instead of

using his discretion to meet the target. As discussed above, Pt(0) > 0 while Pt(−1) = −1.

As a result, the upper bound on u, Pt(0) − Pt(−1), always exceeds 1 and decreases in

α. We conjecture that the manager underreports earnings when the earnings et are

∈ {−1, 1, 2}. Based on our discussion of Pt(rt) above, we can see that the manager’s

foregone price premiums from reporting truthful when et = −2 and et = −1, Pt(2)−Pt(1)

and Pt(−1)−Pt(−2), are always ∈ (0, 1). In contrast, the managers price premium from

reporting truthfully rather than saving is always greater than 1 (but less than 1.5) when

et = 1, i.e., Pt(1) − Pt(0) ∈ (1, 1.5). It is decreasing in α and equals 1 for α = 0. The

binding lower bound on u therefore arises from the manager saving when et = 1 and

always exceeds 1. From the above discussion, we can see that for α = 0, the set of

equilibrium sustaining values of u is empty. The argument extends to small values of α.

In particular, for all α ≤ 0.427, our model results in an empty solution space for u as high

values of Pt(1) make reporting rt = 1 more attractive than saving and reporting rt = 0,

which contradicts our conjectured reporting strategy. In contrast for α > 0.427, our

model results in a non-empty solution space for u for which our conjectured discretion

strategy actually provides an equilibrium. For a visual explanation, consider Figure 2.3.

In the previous paragraph, we established that saving for et = 1 and overstating for

et = −1 constitute the binding lower and upper bounds for the utility of saving u. In other
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words, the price difference Pt(0)−Pt(−1) must exceed Pt(1)−Pt(0) for our conjectured

equilibrium to hold. Graphically, this corresponds to a steeper slope below zero. At

time t = 1, the slope below zero is greater or equal to the slope above zero for all α.

All equilibrium conditions are thus satisfied. The limited equilibrium range for α arises

at time t = 2. While the stock price decrease between r2 = 0 and r2 = −1 exceeds

P2(1) − P2(0) for α close to 1, the equilibrium conditions are violated for sufficiently

small values of α. For reporting r2 = 0 to be more attractive than saving and reporting

r2 = −1, the utility of saving needs to exceed a value that is higher than its upper

bound, imposed by the condition that saving and reporting r2 = 0 is more attractive

than reporting r2 = 1.

0 0.2 0.4 0.6 0.8 1

1

1.1

1.2

1.3

1.4

Figure 2.4: Equilibrium conditions for the utility of saving u as a function of the parameter α
which denotes the probability of forced truthful reporting

Figure 2.4 illustrates the range of u for which the conjectured equilibrium holds. The

first observation we make is the convergence of the solution range to 1. As α approaches

1, the manager is more and more likely to report truthfully. For α = 1 we get a fully

revealing model in which reported earnings are always equal to true earnings. Conse-

quently, Pt(rt) = rt for all rt which explains why u = 1 is the only viable solution to

the equilibrium conditions as the price difference between any two neighboring price

functions is equal to 1. A discretion of 1 or −1 causes a change in the stock price by 1

and −1, respectively, which is why u = 1 is the only equilibrium solution.

For all values α < 1 the equilibrium range lies above 1. For et ∈ {−2, 0} increasing
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current period’s reported earnings by 1 leads to a price increase higher than 1 which im-

plies that the expected utility of saving needs to be higher than 1. This result is consistent

with our intuition. For a continuous earnings distribution and an earnings realization far

off the benchmark, we expect that increasing the reported earnings by 1 should increase

the stock price by approximately 1. The manager would hence only save if the expected

utility of saving is greater than 1. This in turn could be realized by a price difference

between Pt(0) and Pt(−1) that is greater than 1 in future periods.

Asymmetry of Stock Price Reactions to Reported Earnings

After establishing that our conjectured discretion strategy, which includes both big bath

behavior and “cookie jars”, does indeed yield an equilibrium, we will now look at the

stock market’s reaction to reported earnings. More specifically, we are interested in the

(a)symmetry of the stock price sensitivity to positive and negative earnings surprises. In

our model, reported earnings of 0 equal the expected value of true earnings. Positive and

negative reported earnings can therefore be seen as positive and negative earnings sur-

prises, respectively. Empirical research as in Barth et al. [1999] and Bhojraj et al. [2009]

has shown that stock market reactions to positive and negative earnings surprises differ

in the form of a higher stock price decrease for negative earnings surprises compared to

the stock price increase for an equivalent positive earnings surprise. We are therefore

interested in the symmetry of stock price reactions in our model. Since our model in-

cludes a discretion constraint which is known to investors, we’re hoping for our model

to illustrate an asymmetric stock price reaction. As the stock prices in proximity of the

benchmark are of particular interest, we consider the stock price sensitivity to positive

surprises ∆P = Pt(1)−Pt(0) and negative surprises ∆P = Pt(0)−Pt(−1) and define an

asymmetric stock price reaction by the condition

Pt(1)− Pt(0) < Pt(0)− Pt(−1). (2.8)

Corollary 1. The stock price reaction to reported earnings is asymmetric for all equilibrium

values of α. Negative earnings surprises are penalized by a price decrease more stringent

than the price increase for positive earnings surprises.
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Figure 2.5: Stock price sensitivity to positive and negative earnings surprises as a function of the
parameter α which denotes the probability of forced truthful reporting

Figure 2.5 describes the results for all equilibrium values of α for t = 2. The price

difference P2(0)− P2(−1) is strictly greater than P2(1)− P2(0) for all equilibrium values

of α. The penalty for failing to meet the benchmark is hence higher then the reward for

beating it. The results of our model confirm the empirical results in Barth et al. [1999].
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Chapter 3

Continuous Infinite-Horizon Model

The parsimonious model we developed in the previous chapter provided an example in

which the main economic forces of interest, namely earnings management and asymmet-

ric stock market behavior, occur in a fairly simple setting. We showed that under certain

circumstances a constraint on discretionary accruals can cause asymmetric stock market

behavior for positive and negative earnings surprises. Our ambition for this chapter is

now to generalize the setting. The model in this chapter will be mainly based on contin-

uous variables and will further consider an infinite horizon. We will, again, consider a

manager who can engage in earnings management in hope of causing a more favorable

stockmarket reactionwhen hemeets the benchmark. Themanager’s reporting discretion

is however constraint by previous overstatements. The stock market, on the other hand,

tries to estimate the true firm value based on the publicly available earnings reports. This

two-agent model is a case of non-cooperative sequential decision making. The manager

anticipates the stock market’s reaction when deciding on what earnings to report, a fact

investors on the stock market are well aware of. For their estimation of the true firm

value, they hence need to consider the manager’s strategy which in turn depends on

their own strategy. The interdependence of the two agents’ strategies causes the system

to be intractable and makes an analysis of the general system dynamics impossible. We

are therefore required to limit our analysis to equilibrium states. By looking at equilibria

with constant strategies, we can transform the stock market’s estimation problem into

a case of state uncertainty. Given the manager’s discretion strategy, investors estimate

the true firm value recursively. After an earnings announcement, the new information

23



24 CHAPTER 3. CONTINUOUS INFINITE-HORIZON MODEL

is used to update the belief about the current period’s and all previous earnings. Since

accumulated savings determine the constraint on managerial reporting discretion, the

stock price updating process satisfies the Markov property and can thus be expressed by

recursive Bayesian filtering.9 The Markov property will further be leveraged to struc-

turally estimate our model in chapter 4.

This chapter is structured as follows. First, we describe the setup of our model. We

proceed by conjecturing an equilibrium and deriving the system equations for the con-

jectured equilibrium. In the third section, we provide a numerical proof of existence for

the equilibrium and discuss the results.

3.1 Setup

Our model consists of three elements: (i) a firm with randomly distributed earnings,

(ii) a manager who can engage in earnings management but whose discretion is limited

by both the amount saved in the past and an exogenous lower limit, (iii) and the stock

market that prices the firm based on publicly available information. In each period, the

manager privately observes the firm’s true earnings. He then issues a report but is not

confined to reporting truthfully. Instead, he can overstate or understate earnings hoping

for a more favorable stock market reaction. An upper and lower bound constrain the

manager’s discretion. We assume that the manager’s utility is linked to the firm’s stock

price. For his reporting decision, he thus anticipates the stock market’s reaction. The

investors on the stock market use the publicly available earnings reports to estimate the

true firm value, taking into account the manager’s option to engage in earnings man-

agement. We consider continuous distributions for all variables and look at an infinite

horizon model.

Firm

In order to choose a suitable probability density function for true earnings et, we analyze

data on earnings reports to derive a representative firm earnings distribution. The data

set we use contains 15.000 firms taken from the Compustat/Crsp merged database.
9A stochastic process satisfies the Markov property if the updating process depends only on the current

state of the system and not on the sequence of prior events.
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Accounting for growth, we consider the changes in reported earnings compared to the

corresponding quarter in the previous year. Minimizing the mean squared error for a set

of common distributions suggests that a Laplace distribution is the best fit to our data.

We therefore choose a Laplace distribution for the firm’s true earnings. More specifically,

we assume the probability density function

fet(ēt) =


1
2be

exp
ēt
2be ∀ēt ≤ 0

1
2be

exp−
ēt
2be ∀ēt > 0

∀t. (3.1)

The parameter be is the scaling parameter which is related to the variance by Var(et) =

2b2e.10 We assume that no dividends are paid out to shareholders. Aggregate earnings

which we will from now on denote by true equity θt are then given by θt = θt−1 + et for

all t.

Manager

At every time t, the manager privately observes the true earnings et and decides on what

earnings rt to report. His reported earnings rt equal the sum of true earnings et and the

discretion δt, i.e., rt = et + δt. We consider a rational and risk neutral manager who

optimizes his current period’s utility. The manager’s utility is assumed to be linked to

the firm’s stock price. He considers both current period’s stock price and all expected

future stock prices. The prevalence of myopic manager behavior has been well estab-

lished by existing literature (Graham et al. [2005]). All stock prices in the future are

therefore discounted by a discounting factor β. The objective function for the manager’s

optimization problem in period t can be denoted by

max
δt

ut =
∞∑
i=t

βi−t E[Pt | δt]. (3.2)

Barton and Simko [2002] showed that a firm’s ability to overstate reports decreases in

the extent to which previous balance sheets were overstated. To account for this result we

impose a constraint on the manager’s discretion. We assume the manager can overstate
10For our distribution we assume a mean of zero, thereby neglecting any kind of growth and serial

correlation of earnings. We will account for this when setting up our structural estimation and relate
earnings results of our model to changes in earnings in the data set.
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by the amount saved in the past plus a constant term δ0. We thereby allow for earnings

management even in the absence of prior savings.11 The discretion constraint follows as

δt ≤ δ0 +
t−1∑
i=1

ei − ri. (3.3)

Our constraint provides an upper limit to the manager’s discretion choice. As an un-

limited negative discretion appears to be unrealistic, we introduce an additional con-

straint on the discretion which sets a lower limit to big bath type behavior. We introduce

δmin ∈ R≤0 and denote the constraint by

δt ≥ δmin. (3.4)

Stock Market

The manager considers the stock market’s reaction to earnings announcements when

deciding on what earnings to report. We are therefore required to specify the stock

market’s behavior and formulate how the stock price is set by investors depending on

reported earnings. We start by introducing the variable γt which we define as the sum

of all reported earnings, i.e., γt :=
∑t

i=1 ri. Between two consecutive periods t and t+ 1,

investors learn the new reported earnings rt+1 and update their beliefs and the stock

price to incorporate the additional information. Figure 3.1 illustrates the sequence of

events between t and t+ 1.

We introduce an intermediate time step t+ε to accommodate limited recall. Between

t and t + ε, investors forget about the explicit values of γt−1 and rt and only remember

the sum γt. They summarize the two pieces of information γt−1 and rt in one piece of

information γt. We assume that the forgetting process is a passive process that happens

unconsciously. Setting a new stock price, at the contrary, is considered to be an active

process as the investors need to actively engage in the purchase or sale of shares. Con-

sequently, in our model, investors don’t update the stock price until new information

appears in the form of the reported earnings rt+1. Using the prior belief about firm eq-

11The impact of δ0 on the system dynamics can be shown to converge to zero. For our structural estima-
tion we can hence analyze the system without having to consider the impact of δ0 by excluding the first
periods from our analysis.
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Investors set the stock
price Pt(γt−1, rt) based
on their belief about firm
equity f(θt | γt−1, rt).

t

Investors summarize rt
and γt−1 by the sum
γt. They further forget
about the specific distri-
bution of the prior belief
f(θt|γt−1, rt) and assume
a Laplace distribution for
f(θt|γt).

t+ ε

After a new earnings
announcement, in-
vestors set the new
stock price Pt+1(γt, rt+1)
based on their updated
belief about firm equity
f(θt+1 | γt, rt+1).

t+ 1

Figure 3.1: Sequence of events between two consecutive time steps. Over time, investors forget
about the specific distribution used for the choice of the stock price Pt and summarize reported
equity γt−1 and reported earnings rt by γt. When learning about rt+1, they update their belief
and set the new stock price Pt+1 accordingly.

uity f(θt|γt), investors now incorporate rt+1 into their belief and update the stock price

accordingly. The new values Pt+1(γt, rt+1) and f(θt+1|γt, rt+1) are the updated versions of

Pt(γt−1, rt) and f(θt|γt−1, rt) at time t. We can now derive a first expression to structure

the remainder of our calculations.

Lemma 3. For any two consecutive periods t and t + 1, the stock price change can be

expressed as

Pt+1 (γt, rt+1)− Pt (γt−1, rt) = E
[
et+1 | γt, rt+1

]
+ E

[ t∑
i=1

ei | γt, rt+1

]
− E

[ t∑
i=1

ei | γt
]
.

The first summand on the right-hand side of the equation describes the expected

value of true earnings at t + 1. Investors try to infer the true value of et+1, given the

two pieces of information available, γt and rt+1. The difference between the second and

third summand describes the change in expectation about all past earnings after reported

earnings rt+1 are announced. The earnings announcement rt+1 contains information

about both the current period’s earnings et+1 and all past earnings e1..t. Some analysis

shown in Appendix A allows us to express all three summands as a function of the prior

belief about firm equity f(θt|γt) and the probability mass function f(rt+1|et+1, θt, γt). The

latter follows immediately from rt+1 = et+1 + δt+1(et+1, θt, γt). The stock price change in

the following lemma is therefore fully specified, given the manager’s reporting strategy

δt+1(et+1, θt, γt).
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Lemma 4. Following the structure from Lemma 3, the stock price change for any two con-

secutive periods is given by

Pt+1 (γt, rt+1)− Pt (γt−1, rt) =

∫
et+1

et+1f(et+1)
∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)∫

et+1
f(et+1)

∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)

+

∫
θt
θtf(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)∫
θt
f(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

−
∫
θt

θtf (θt|γt) ,

where f(θt|γt) corresponds to investors’ prior belief about firm equity, and f(rt+1|et+1, θt, γt)

follows from rt+1 = et+1 + δt+1(et+1, θt, γt).

The decision rules for firm manager and investors are specified in Equation 3.2 and

Lemma 4, respectively, and we proceed by analyzing an equilibrium for their interaction.

3.2 Equilibrium

Similar to the parsimonious model, we will consider a Perfect Bayesian Equilibrium in

which investors correctly conjecture themanager’s reporting strategy. Given the resulting

stock price function, themanager has no incentives to deviate from the reporting strategy

the investors conjectured. Mathematically speaking, a Perfect Bayesian Equilibrium is

defined as a discretion strategy δ∗t for the manager, together with a stock price function

P ∗t for the stock market investors, such that:

i) P ∗t is set by the equation in Lemma 4 and is updated after every earnings announce-

ment.

ii) δ∗t (et) ∈ arg maxδt ut ∀et.

The two conditions guarantee sequential rationality and consistency, both of which

are required for a Perfect Bayesian Equilibrium. To solve for an equilibrium, we first

conjecture an equilibrium discretion strategy for themanager. Second, we solve the stock

price equation assuming the conjectured discretion strategy. In our final step, we conduct

a numerical analysis to provide a proof of existence for the conjectured equilibrium.

The reporting discretion is defined by rt = et + δt. Positive values of δt describe

overstated earnings while negative values occur for understatements. We conjecture
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that, in equilibrium, the manager manages earnings according to

δt(et, θt−1, γt−1) =


δmin et < −(δ0 + θt−1 − γt−1)

−et −(δ0 + θt−1 − γt−1) ≤ et ≤ −δmin

δmin et > δmin

. (3.5)

The empirical results in Chen et al. [2003] and the results of our simple model suggest

that the stock market penalizes companies for not meeting a benchmark. The manager is

therefore encouraged to meet the benchmark whenever he can. In our model, E[et] = 0,

which acts as the benchmark. We conjecture the manager meeting the benchmark, i.e.,

δt = −et and rt = 0, for small negative earnings. For lower negative earnings, the

discretion constraint is eventually binding. Earnings below the savings force themanager

to report negative earnings. We conjecture that he will use what is commonly referred

to as big bath strategy and understate by the maximum amount possible. The manager

accepts bad economic results in the current period, also known as “taking a big bath”,

in hope of using the additional savings to meet the benchmark in a future period. We

conjecture similar behavior for earnings results above the benchmark. The manager

understates and hence saves to build up so called “cookie jars”. His understatements

are limited by the lower discretion bound δmin. The conjectured discretion strategy is

illustrated in Figure 3.2a. Figure 3.2b shows the corresponding reporting strategy rt(et).

The lower limit for true earnings et that still allows the manager to report rt = 0 depends

on the amount saved and therefore varies in time.

Assuming the conjectured equilibrium discretion strategy holds, we can now derive

the equilibrium stock price function using the approach laid out in Lemma 4. The double

integrals in both numerator and denominator of the first two summands require exten-

sive analysis to be solved. Integrating over θt turns out to be particularly challenging as

θt only appears in the definition of the sub-domains. For the details, the reader is invited

to consult Appendix A. Throughout the solution of the integrals, case distinctions among

two dimensions arise. It is no surprise that the stock price function is piecewise-defined

for different ranges of rt+1. The fact that the discretion strategy is a piecewise function

suggests that different reported earnings are interpreted differently by investors. First,

investors’ reaction differs for positive reported earnings rt+1 > 0, reported earnings just
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(a) Conjectured equilibrium reporting discretion strategy δt(et)

(b) Conjectured equilibrium reporting strategy rt(et)

Figure 3.2: (a) Conjectured equilibrium reporting discretion strategy δt(et) as a function of true
firm earnings et (specified in Equation 3.5), (b) and the corresponding reporting strategy rt(et).
The savings δ0+θt−1−γt−1 available to the manager at time t depend on the difference between
true equity θt−1 and reported equity γt−1. δ0 denotes the leeway in managing earnings in the
absence of savings. δmin denotes the lower limit on understating earnings.
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meeting the benchmark rt+1 = 0, and negative reports rt+1 < δmin. Second, observe

that γt − θt measures cumulative discretionary accruals up to time t and, consequently,

δ0 − (γt − θt) measures the maximum discretion the manager can exploit to overreport

earnings in t + 1. Investors cannot observe true cumulative earnings θt and therefore

conjecture that the manager’s maximum discretion equals δ0 − (γt − E[θt|Ωt]) where Ωt

is investors’ information set. Given investors’ prior belief, E[θt|Ωt] translates into µθt.

Combining the case distinctions along the two dimensions results in seven sub-domains

for the stock price change. The resulting stock price functions are summarized in the

following lemma. Due to their length and since the following corollaries will focus on

the second case, some of the functions for the first case are abbreviated.

Lemma 5. When assuming the manager acts according to the strategy specified in Equa-

tion 3.5, investors update the firm’s stock price according to a piecewise function, defined

on seven sub-domains. Suppose γt − δ0 − µθt < 0. Then, the stock price change is of form

Pt+1 (γt, rt+1)− Pt (γt−1, rt)

=



rt+1 − δmin + f1(bθt , δ0, δmin, γt, µθt) rt+1 < δmin+γt−δ0−µθt

rt+1 − δmin + f2(rt+1, γt, bθt , δmin, δ0) δmin+γt−δ0−µθt ≤ rt+1 ≤ δmin

f3(be, bθt , δ0, δmin, γt, µθt) + f4(be, bθt , δ0, δmin, γt, µθt) rt+1 = 0

rt+1 − δmin rt+1 > 0

Let now γt − δ0 − µθt ≥ 0. The stock price change then follows as

Pt+1 (γt, rt+1)− Pt (γt−1, rt)

=



rt+1 − δmin +
2µθt−(δmin+γt−δ0−rt+1+bθt) exp

−
δmin+γt−δ0−rt+1−µθt

bθt

2−exp
−
δmin+γt−δ0−rt+1−µθt

bθt

−µθt rt+1 < δmin

− 1
be

(
bebθt
be+bθt

)2
exp

−
γt−δ0−µθt

bθt +2
(

(δmin − be) exp
δmin
be +be

)
bθt

be+bθt
exp

−
γt−δ0−µθt

bθt +2
(

1− exp
δmin
be

)

+

2µθt

(
1−exp

δmin
be

)
+

bθt
be+bθt

exp
−
γt−δ0−µθt

bθt

[
γt−δ0+

2be+bθt
be+bθt

bθt

]
2
(

1−exp
δmin
be

)
+

bθt
be+bθt

exp
−
γt−δ0−µθt

bθt

−µθt

rt+1 = 0

rt+1 − δmin rt+1 > 0
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Despite their complexity, the stock price functions provide intuitive results consistent

with the model setup. We will characterize stock prices for the different sub-domains

in the following corollaries. For the proofs, we refer to the appendix. For simplicity, the

following corollaries only consider the case γt − δ0 − µθt ≥ 0. The stock price reaction is

then defined for three sub-domains: rt+1 < δmin, rt+1 = 0, and rt+1 > 0. We first consider

the simple case of rt+1 > 0, followed by rt+1 < δmin, and finally rt+1 = 0 which turns out

to be the most complex case.

Corollary 2. Positive reported earnings rt+1 > 0 allow investors to infer true earnings et+1

but do not provide information about past earnings.

Careful consideration of the equilibrium discretion strategy explains the simplicity of

the stock price reaction for positive earnings reports. In our model, rt+1 > 0 are only

reported for positive true earnings et+1 > δmin. Investors can therefore perfectly infer

true earnings by reconstructing the discretion choice as et+1 = rt+1 − δmin. We now turn

to the more interesting case of rt+1 < δmin.

Corollary 3. Let rt+1 < δmin. Investors can infer true earnings et+1. Investors’ updated

beliefs about past earnings satisfy the following properties:

i) Expectations of past earnings are lowered for all values of rt+1.

ii) The magnitude of the downward update of beliefs strictly increases in rt+1.

A report of rt+1 < δmin contains two pieces of information. First, it provides the in-

vestors with deterministic information about true earnings et+1. For the same reasons

as outlined above, investors can infer the true value of earnings et+1. Second, negative

earnings reports provide an upper limit for the amount saved in the past. More specifi-

cally, the firm savings cannot exceed the value of rt+1−δmin. If the manager had saved an

amount δ0+θt−γt > |rt+1−δmin|, his reporting strategy would have consisted of overstat-

ing earnings to meet the benchmark rt+1 = 0. Investors can hence infer an upper bound

for the amount saved. This additional piece of information motivates investors to revise

downward their belief about past earnings. The reason is that learning about an upper

bound of past savings (i.e., understatement of equity) must always result in investors

revising their belief about past earnings downward. Part (i) of the corollary formalizes
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this effect. Next, we are interested in the magnitude of the effect as a function of rt+1. To

provide intuition for the result in part (ii) of the corollary, we consider two extreme ex-

amples. First, assume the manager reports earnings of rt+1 � 0 significantly below zero.

The fact that the manager’s savings did not allow a report of zero only provides a high

upper bound on past savings and therefore only a small amount of information. Meeting

the benchmark would have required extremely high savings. The limit on savings the

investors can infer is hence high and does not lead to a significant negative surprise. On

the contrary, an earnings report just below zero contains a significantly higher level of

information about the firm savings. It proves that the manager did not even have suffi-

cient savings to counteract the barely negative earnings. As a conclusion, we expect that

the magnitude of the downward updating of beliefs increases in rt+1. Reports closer to

zero are penalized by a more severe decline in belief about past earnings. The proof in

the appendix formally confirms our intuition.

Corollary 4. Let rt+1 = 0. Investors’ update of beliefs about past earnings satisfies the

following properties:

i) Expectations of past earnings are raised for all values of γt and µθt.

ii) Suppose be and bθt satisfy

bθt < 2be

(
1− exp

δmin
be

)
.

The magnitude of the upward revision of beliefs about past earnings increases as in-

vestors’ belief about firm savings approaches zero, for all (µθt , γt). For all (be, bθt) that

do not satisfy this condition, there exists a combination (µ∗θt , γ
∗
t ) such that the effect

occurs for all µθt − γt > µ∗θt − γ
∗
t . The combination (µ∗θt , γ

∗
t ) satisfies the equation

γ∗t − δ0 − µ∗θt
bθt

− bθt
be + bθt

1

2
(

1− exp
δmin
be

) exp
−
γ∗t −δ0−µ

∗
θt

bθt = − be
be + bθt

.

Earnings of zero are reported in two cases: first, in case of positive earnings et+1 ∈

[0,−δmin]. For slightly positive earnings the manager understates and reports zero, inde-

pendently of savings. This case therefore does not provide any information to investors

about past earnings. Earnings of zero are further reported for negative earnings above
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the discretion constraint, i.e., for et+1 ∈ [−(δ0+θt−γt), 0). If investors believed the firm

savings were extremely high, they assigned a high probability to a report of rt+1 = 0 and

are not surprised. If they expected the firm savings to be low, they deemed a report of

rt+1 = 0 unlikely and are likely to update to a more positive belief about past earnings.

Two effects can be derived. First, a report of rt+1 = 0 can only prompt a positive up-

date of investors’ beliefs about past earnings. For high expected savings, investors revise

their beliefs only slightly. For low expected savings, they significantly revise their beliefs

resulting in an increased stock price. Second, this effect is stronger when investors con-

jecture the firm’s savings, µθt−γt, to be low, as the report is more surprising. Corollary 4

(i) establishes the first result. Since we only consider γt − δ0 − µθt ≥ 0, which corre-

sponds to a negative belief about firm savings, we cannot proof the second effect but

analyze the behavior for a negative belief about firm savings instead. We show that the

magnitude of the upward revision of beliefs about past earnings increases as the belief

about firm savings approaches zero. Depending on the parameters be and bθt, the effect

either holds for all values of (µθt , γt) or for all (µθt , γt) that exceed a threshold such that

µθt − γt > µ∗θt − γ
∗
t . The first term of the stock price function for rt+1 = 0 corresponds to

investors’ belief about et+1. It is the best estimate for et+1 given their belief about savings

and knowledge of the distribution of true earnings.

3.3 Proof of Existence for Equilibrium

After conjecturing an equilibrium strategy for the manager and deriving the correspond-

ing stockmarket behavior, we now turn towards proving that the conjectured equilibrium

exists as a Perfect Bayesian Equilibrium. The complexity of the system equations pro-

hibits us from providing an analytic proof. We are hence limited to a numerical proof of

existence. We first describe our approach, followed by a discussion of the results.

Approach We will provide numerical evidence that no alternative discretion choice

provides a higher utility for the manager given investors’ stock price reactions. To this

end, we develop a Matlab implementation to simulate the system dynamics. The code

follows the following structure.
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i) We simulate the system for a certain number of periods t∗−1 assuming both man-

ager and investors follow the equilibrium strategies.

ii) We want to show that at time t∗, the manager has no incentive to deviate from the

conjectured discretion strategy. To this end, we define a two-dimensional grid for

true earnings et∗ and the discretion δt∗. For every point on the grid, i.e., for every

combination of et∗ and δt∗, we want to calculate the corresponding utility ut∗.

iii) As the utility ut∗ depends on all future stock prices, we simulate the system for a

sufficiently large number of periods following t∗ for every point on the grid. To

increase stability, we simulate the future multiple times.

iv) Using both the immediate stock price reaction in period t∗ and all future stock

prices, we calculate the manager’s utility ut∗ for every point on the grid.

v) The graphs illustrate the discretion choice δt∗ that yields the highest utility ut∗ for

every value of et∗.

Results Similar to the future utility from saving, u, in our parsimonious model, the

discounting factor β plays an important role in the manager’s decision making. For lower

values of β, he cares less about the economic results of future periods. For this myopic

behavior, we expect a decrease of the likelihood of understated earnings. A low value of

β causes potential utility gains in the future by meeting the benchmark to be discounted

significantly. Figure 3.3 shows the optimal discretion strategy at t∗ for different values

of β.

We first look at the results for β = 1. The manager values all periods equally and

shows no myopic behavior. The fact that the current period and all future periods are

valued equally suggests that the conjectured understating does indeed occur. The nu-

merical results confirm our expectation. The numerically optimal discretion strategy

corresponds to our conjectured strategy with some numerical imprecision. Figure 3.3b

shows the numerical results for β = 0.5. The manager now discounts the future at a

rate of 1/2, making overstating in the current period more attractive. The optimal dis-

cretion strategy consequentially deviates from our conjectured strategy. For high values

of true earnings et∗, the manager is best off by reporting the maximum amount possible
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Figure 3.3: Numerical results for optimal discretion strategy δt∗(et∗) for different discounting
factors β. We consider period t∗ = 20, run 1, 000 iterations per grid point, and choose δmin =
−6.5.



3.3. PROOF OF EXISTENCE FOR EQUILIBRIUM 37

instead of saving for future periods. The existing firm savings are apparently sufficient

to make additional savings not worth the current period’s sacrifice over the manager’s

“shorter horizon.” In Figure 3.3c, we can observe the results for the extreme case of

β = 0. The manager only considers the current period’s stock prices which implies that

the utility function directly reflects the stock price functions. As expected the manager

hence chooses to overstate instead of saving for the majority of true earnings. For values

of et∗ below the amount saved, the manager cannot meet the benchmark and is forced

to report negative earnings. Looking at the stock price functions in Lemma 5 shows that

there are two opposite effects. The belief about current period’s earnings is strictly in-

creasing in rt. Reporting higher earnings is thus more beneficial. The belief about past

earnings, however, is strictly decreasing in rt as formulated in Corollary 3. For the result

in Figure 3.3c, the latter effect prevails, causing the manager to understate despite the

fact that savings are worthless to him.

The analysis of the optimal discretion strategy for different discounting factors indi-

cated the importance of another variable we did not consider explicitly in the previous

graphs, the firm savings at time t∗. Just like a lower discounting factor makes saving less

attractive, higher savings decrease the probability of an additional saving being used

to meet the benchmark over the course of the “remaining horizon”.12 We compare the

results for different savings at time t∗ while keeping the discounting factor constant at

β = 0.8. The results are shown in Figure 3.4.

The firm savings increase from (a) to (c). The results show that the range for which

the manager prefers overstating to saving increases in savings. For the lowest level of

savings in (a), the manager only deviates from the conjectured strategy for et∗ > −5.

For the two graphs with higher savings, the limit decreases to et∗ > −8 and et∗ > −30,

respectively. When savings are already high, the manager has a lower incentive to save

as the probability that the additional savings can be used to meet the benchmark in a

future period is low. We conclude that the limit up to which the manager follows our

conjectured savings strategy decreases both for a lower discounting factor β and for

higher savings δ0 + θt − γt.

12Mathematically speaking, the manager’s horizon is infinite. The expression “remaining horizon” refers
to the fact that periods in the distant future are discounted to a value close to zero.
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Figure 3.4: Numerical results for optimal discretion strategy δt∗(et∗) for different firm savings at
time t∗ = 20. The discounting factor is held constant at β = 0.8. We choose δmin = −6.5 and run
1, 000 iterations per grid point.
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Refined Equilibrium Discretion Strategy Based on the results of the equilibrium anal-

ysis in the previous section, we propose a refined equilibrium discretion strategy. To sim-

plify notation we introduce the variable st to denote the savings at time t as defined by

st := δ0 + θt− γt. The results in the previous section suggest that there exists an amount

of earnings such that for earnings above the threshold, the manager decides to overstate

by the maximum amount possible. Let f : R2 7→ R be a function that maps the discount

factor β and the savings st to a real valued number. Without specifying a functional form

for f(β, st), we formulate the following proposition for a refined equilibrium reporting

strategy.

Proposition 1. There exists a Perfect Bayesian Equilibrium in which the manager’s report-

ing strategy satisfies

δt(et, θt−1, γt−1) =



δmin et < min {−st, f(β, st)}

−et −st ≤ et ≤ min {−δmin, f(β, st)} , f(β, st) > −st

δmin −δmin < et < f(β, st) , f(β, st) > −δmin

st et > f(β, st)

for some real valued function f : (β, st) 7→ R with the properties:

i) ∂f(β,st)
∂β

> 0,

ii) ∂f(β,st)
∂st

< 0.

As β increases, the manager cares increasingly about future periods, thus making sav-

ing more attractive. Higher savings st make additional savings less attractive, thereby

lowering the threshold of overstating. In Figure 3.5, we illustrate the discretion strategy

for the two cases (a)−st < f(β, st) < −δmin and (b) f(β, st) > −δmin. For low earnings,

the manager follows a big bath strategy and accepts to take a big hit in the current pe-

riod, hoping to use the savings in a future period to meet the benchmark. Whenever

possible, the manager reports zero, thereby just meeting the benchmark. In contrast to

our previously conjectured strategy, the manager’s choice to understate for all positive

earnings is bounded by a function that depends on both savings and the manager’s dis-

counting factor. If savings are already high, or the future is severely discounted, the
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(a) −st < f(β, st) < −δmin (b) f(β, st) > −δmin

Figure 3.5: Refined equilibrium discretion strategy δt(et) as a function of true earnings et and
firm savings st. β denotes the manager’s discounting factor and δmin the lower bound for the
manager’s discretion choice.

manager prefers to overstate in the current period instead of saving for future periods.

Similar behavior is to be expected for a finite horizon model as the manager approaches

the end of its tenure at the firm, a phenomenon commonly referred to as “CEO horizon

problem”.



Chapter 4

Structural Estimation

4.1 Estimation Method and Identification

The objective of this chapter is to estimate the model parameters for the continuous

infinite-horizon model of the previous chapter: the maximum discretionary savings δmin,

the available discretion in the absence of savings δ0, and the variance of true earnings

be. To simplify the estimation process, we estimate be outside of the model relying on

reported rather than true earnings. We regress firm size on variance of earnings to es-

tablish a functional relationship between the two firm characteristics. To reflect this

relationship we will scale all relevant data by a proxy for firm size. By close inspec-

tion, we further notice that the impact of δ0 on the system dynamics converges to zero

for large t. Initially, a higher value of δ0 causes a shift of the discretion constraint and

thereby alters the manager’s discretionary behavior. After a sufficient number of peri-

ods, however, the savings for different values of δ0 converge. The manager’s subsequent

reporting decisions are thus independent of δ0. We conclude that the parameter δ0 is

not essential to the dynamics of our model. Instead of estimating the vector (δmin, δ0),

we estimate δmin, set δ0 = 0 and only consider the system dynamics in steady-state. For

the estimation, we overidentify our model and specify two moments. The complexity of

the stock price functions prevents us from finding closed form solutions for our identified

moments, making a generalized method of moments unfeasible. We conduct a simulated

method of moments instead. A Matlab implementation allows us to simulate the model

for different parameters, calculate the moments for each parameter choice, and choose

41
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the parameter value that best fits the moments from the data. The extensive model illus-

trates both asymmetric stock market behavior and earnings management, causing the

earnings distribution to be discontinuous at the benchmark. We construct two moments

based on these fundamental properties. In the previous chapter, we established an equi-

librium in which the manager engages in earnings management and uses discretionary

accruals to meet the benchmark as frequently as possible. Consequently, we observe both

a discontinuity around the benchmark and an imbalance of reported earnings above and

below the benchmark. In the following, we describe the two moments we use in the

estimation and provide intuition for the identification strategy.

Moment 1 Recall that we want to estimate the parameter δmin which specifies a bound

for the manager’s discretionary behavior. Its magnitude describes by howmuch the man-

ager can understate earnings in any given period. Higher savings in periods of signif-

icantly positive and negative earnings enhance the manager’s chances of meeting the

benchmark in subsequent periods. The magnitude of δmin is therefore expected to affect

the likelihood of positive earnings. More specifically, the model predicts a higher prob-

ability of an earnings report to meet the benchmark for higher values of δmin. To reflect

this intuition, we define our first moment as

m1 ≡ Pr (rt − E [rt | r1..t−1] ≥ 0) . (4.1)

In other words, the moment describes the probability of a given earnings report to meet

or beat the benchmark and we expect a value in excess of fifty percent. Implementing

the moment for our model is intuitive. Let x ∈ R2 be the data set including reported

earnings and stock prices and let x̂ ∈ R2 denote the simulated data set. Since E[et = 0],

we want the moment to be a measure for Pr(rt ≥ 0) and define

m̂1(x̂ | δmin) :=
npos

npos + nneg

(4.2)

where npos and nneg describe the number of positive and negative earnings reports in

the simulated data set x̂. For the data moment, we closely follow the method of Ball

and Brown [1968]. Under a priori reasoning, current period’s earnings are predicted
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to equal last period’s earnings, i.e., E [rt | r1..t−1] = rt−1. We implement our notion of

Pr(rt − rt−1 ≥ 0) in the form of

m1(x) :=
nbeat

nbeat + nfail

(4.3)

where nbeat describes the number of reported earnings that meet or beat last period’s

reported earnings and nfail describes the number of reported earnings below the bench-

mark of rt−1 in the data set x.

Moment 2 Given investors’ knowledge of the manager’s discretion constraints, positive

and negative earnings surprises trigger different responses by the stock market. Negative

surprises cause the stock price to decrease by more than positive surprises cause it to in-

crease. A failure to meet the benchmark indicates to investors not only that this period’s

earnings fall short but also that the manager has overstated earnings in the past such

that his available discretion is insufficient to make up for the current short-fall. The latter

prompts investors to revise downward their beliefs about past earnings. The discretion

limit δmin directly impacts the manager’s saving behavior. A change in δmin is therefore

expected to affect the extent to which investors update their belief about past earnings

when reported earnings fall short of the benchmark. We are thus interested in the asym-

metry of the stock price reaction and develop a notion closely related to the earnings

response coefficient. More specifically, let ∆P := Pt − Pt−1 and ∆r := rt − E [rt | r1..t−1].

We define the sensitivity to negative earnings surprises as

Sn ≡ lim
a→−∞

1

a

∫ 0

a

∂∆Pt − E[∆Pt]

∂∆rt
d∆rt. (4.4)

At the core of its definition is the stock price sensitivity to an earnings surprise ∂∆Pt/∂∆rt.

To account for general stock market growth, we include E [∆Pt] so as to only consider the

stock price change related to the firm’s earnings announcement. Finally, we integrate the

sensitivity to derive a measure for the mean sensitivity to negative earnings surprises.

We spare the reader the definition of a sensitivity to positive earnings surprises which

is symmetric and only differs in the integration range. After laying out the intuition of

the second moment, we proceed by deriving a specific definition for our model. Since
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E [et] = 0, an intuitive measure for the stock price sensitivity to negative earnings sur-

prises is given by the expression

Ŝn :=
1

nn

∑
Rn

Pt+1 − Pt
rt+1

(4.5)

whereRn is the set of all simulated periods in x̂ with rt ∈ (−∞, δmin], and nn denotes the

number of elements in Rn. The positive stock price sensitivity is defined equivalently by

Ŝp :=
1

nn

∑
Rp

Pt+1 − Pt
rt+1

(4.6)

where Rp is the set of all simulated periods with rt ∈ [−δmin,∞), and np denotes the

number of elements in Rp. We combine the two sensitivities and define

m̂2(x̂ | δmin) :=
Ŝn

Ŝp
. (4.7)

Related to the definition of the second data moment, we make three observations. First,

we note that under a priori reasoning, E [rt | r1..t−1] = rt−1. Second, the data shows

an increase of average stock prices over time. To account for that fact as well as firms’

diverging exposure to systematic risk, we benchmark firm i’s change in stock price to

β∆P̄t where P̄t denotes the average stock return in period t. Third, we account for

seasonality by comparing reported earnings to the corresponding quarter in the previous

year, i.e., we consider ∆rt = rt − rt−4. As a result, we can express the stock price

sensitivities by

Sn :=

1
n

∑n
i=1

1
nni

∑
t∈Rni

(Pi,t − Pi,t−1 − β∆P̄t)

1
n

∑n
i=1

1
nni

∑
t∈Rni

(ri,t − ri,t−4)
(4.8)

and

Sp :=

1
n

∑n
i=1

1
npi

∑
t∈Rpi

(Pi,t − Pi,t−1 − β∆P̄t)

1
n

∑n
i=1

1
npi

∑
t∈Rpi

(ri,t − ri,t−4)
, (4.9)

which fully describe the moment

m2(x) := Sn/Sp. (4.10)
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Rn
i and Rp

i denote the sets of all periods in which firm i reported positive and negative

earnings surprises, respectively. nni and npi describe the number of elements in Rn
i and

Rp
i while n denotes the number of firms in the data set x.

Optimization In our SMM estimation, we choose δmin such that some distance measure

of the data moments mi(x) from the simulated moments m̂i(x̂ | δmin) is minimized. Let

~e (x, x̂ | δmin) :=

(
m̂1(x̂ | δmin)−m1(x)

m1(x)

m̂2(x̂ | δmin)−m2(x)

m2(x)

) ᵀ
(4.11)

denote the relative error of simulated moments. Moreover, let W ∈ R2 be the weighting

matrix. We can express our minimization problem as

min
δmin

~e (x, x̂ | δmin) ᵀW~e (x, x̂ | δmin). (4.12)

We want W to produce precise estimates. To minimize the asymptotic variance, we

choose W using a two-step variance covariance estimator. We first derive an initial es-

timate δ̂min using the identity matrix I2 as weighting matrix. The resulting error vector

provides a new estimate for the variance covariance matrix. More specifically, we calcu-

late

Ω̂ =
1

2
~e (x, x̂ | δ̂min)~e (x, x̂ | δ̂min) ᵀ (4.13)

and use the inverse to choose W, i.e., W = Ω̂−1.

Proof of Convergence We prove the convergence of our structural estimation numeri-

cally in three steps. First, we choose a “true” value for δmin. Next, we simulate the model

for the given parameter and derive simulated data moments. Based on the resulting mo-

ments, we can now estimate δmin. We analyze the accuracy of the estimator depending

on the number of iterations.

Our model suggests a deterministic relation between reported earnings and stock

prices, an assumption that clearly does not hold for the data set. We add the assumption

that the price is further affected by unobserved random variables and prove that the

estimator converges to the true parameter value despite the noise. We assume this “noise”

term ε follows a Laplace distribution with mean 0 and is independent of all other random
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variables. The independence of ε allows us to estimate the variance of noise σ2
ε using data

on stock prices and reported earnings. Assuming ∆P = ∆r + ε, we derive

Var [ε] = Var [∆P ]− Var [∆r] . (4.14)

Based on the data set we describe in detail in the next section, we calculate Var[∆P ]

and Var[∆r] and use the resulting variance Var[ε] = 2b2e for the proof of convergence.

Figure 4.1 illustrates the results for the structural estimation for two values of δmin. Both

figures describe the error between estimated and true value of δmin as a function of the

number of iterations. Despite some numerical imprecision, the estimate appears to con-

verge to the true value of δmin. Even for low numbers of iterations, the estimate’s error

quickly falls below 0.3 which corresponds to a relative error of 6% and 3%.
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Figure 4.1: Error between estimated and true value of δmin, which describes the lower discretion
limit for the manager. The results are illustrated as a function of the number of iterations of the
simulated method of moments.

4.2 Data

The structural estimation requires data on market value and reported earnings. Data on

market value, reported net income, total assets, total revenue and SIC code are obtained

from the Compustat/Crspmerged database for the years from 2009 to 2019. Since earn-

ings announcements and the corresponding stock market reactions are an essential part

of this thesis, we use quarterly data. With the objective of removing all erroneous data
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Industry portfolio No. of firms No. of observations

1 Consumer Non-Durables 289 7,884
2 Consumer Durables 152 4,087
3 Manufacturing 547 15,952
4 Energy 404 9,579
5 Chemicals 148 4,123
6 Business Equipment 1,400 32,960
7 Telecom 210 5,523
8 Utilities 183 5,367
9 Wholesale and Retail 555 15,120

10 Healthcare 1,032 18,531
11 Finance 2,393 68,161
12 Other 979 24,927

Total 8,292 212,214

Table 4.1: Descriptive statistics for French-Fama industry portfolios. Data set includes quarterly
data from 2009 to 2019, taken from the Compustat/Crsp merged database.

entries, we drop entries with negative revenues, a negative market value, or a net income

higher than the total revenue. In addition, we ignore all firms with a total revenue below

USD 1 million per year. We further truncate both relative stock price change ∆P/P and

∆r/P at the 1% level. We expect both the stock price sensitivities to earnings reports as

well as the magnitude of discretionary behavior to vary across industries. Consequently,

we classify firms into industry portfolios following the Fama-French 12 industry classifi-

cation. Table 4.1 provides an overview of the split of the data set into the twelve industry

portfolios. Our data set includes 8, 292 firms and a total of 212, 214 quarterly data en-

tries. Table 4.2 provides descriptive statistics for market value, net income, total revenue

and total assets. While data on total revenue is primarily used to clean the data set,

total assets will serve as proxy for firm size. Table 4.3 provides descriptive statistics for

the relative market value change and changes in reported earnings relative to market

value. Since both variables are truncated at the 1% level, the most extreme market value

changes in the sample consist of a stock price decline by 50% and an increase by 106.5%.

We note that, on average, stock prices increase, which motivates our consideration of the

average market growth for the second moment in our structural estimation.
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mean median std. dev.
Market value 5, 590.6 692.8 24, 270.3
Net income 82.2 4.6 543.0
Total revenue 1, 268.0 149.5 5, 249.0
Total assets 17, 132.5 1, 096.4 121, 780.7

Table 4.2: Descriptive statistics for quarterly data on fundamentals. All values are in millions of
USD.

mean median std. dev. min max
Pt+1−Pt

Pt
0.063 0.027 0.783 −0.508 1.065

rt+1−rt−3

Pt
−0.019 −0.029 115.673 −0.310 0.333

Table 4.3: Descriptive statistics for the relative change in market value Pt and the change in
reported net income rt relative to market value Pt. Variables are based on quarterly data and the
data is truncated at the 1% level for both variables.

4.3 Findings

Based on the French-Fama 12 industry classification, we calculate the two data moments

and use the results to estimate the lower discretion limit δmin using simulated method of

moments. Recall that δmin is defined as the maximum amount by which a manager can

understate earnings. We therefore expect estimates of δmin to be negative. In the model,

δmin represents an absolute dollar amount. As a result, we expect its magnitude to be

a function of firm size. More specifically, a firm with a larger balance sheet is expected

to have greater leeway in reporting earnings. To account for δmin’s dependence on firm

size, we scale all variables by total assets as a measure of the size of a firm’s balance

sheet. Both the two data moments defined in Equation 4.3 and Equation 4.10 in sec-

tion 4.1 and the estimate for δmin that minimizes the objective function in Equation 4.12

are summarized by industry in Table 4.4. We first consider the results for the two data

moments. Both moments are fairly consistent between industry portfolios. The first mo-

ment, in particular, only varies marginally suggesting that the probability of meeting

a benchmark is independent of a firm’s industry. The first data moment’s consistency

further implies that differences in the result of our estimation will largely be caused by

differences in the second moment. The first moment m1 = 0.65 for the entire data set

reflects that, in our sample, firms meet or beat last period’s earnings in 65% of all quar-
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ters. Similarly, the second momentm2 = 1.69 for the entire data set reflects that a firm’s

failure to meet the benchmark by a small amount yields a 69% stronger market reaction

than if the firm beats the benchmark by the same amount. The last column in Table 4.4

shows the results of our estimation. All estimates take values just below zero and are

therefore consistent with our model. Their range from −0.87% to −0.32% of total assets

is consistent with the idea that manipulating earnings by more than a few percent of

total assets seems unrealistic. To the best of our knowledge, there is no prior evidence

for the magnitude of a parameter similar to δmin. However, while they do not provide

evidence for the discretion limits on a periodical basis, Hribar and Nichols [2007] and

Gerakos and Kovrijnykh [2013] estimate the level of discretionary accruals at a given

moment in time. They find that the absolute value of discretionary accruals amounts

to 5.2% and 0.7% of total assets, respectively. Even though the different definitions of

our parameter δmin and the level of discretionary accruals prevent a direct comparison,

their results provide a rough validation of our estimates. A close inspection of the results

further indicates that the magnitude of the estimate decreases in the magnitude of the

Industry portfolio m1(x) m2(x) δmin

TotalAssets

1 Consumer Non-Durables 0.62 1.43 −0.0065
2 Consumer Durables 0.64 1.46 −0.0061
3 Manufacturing 0.63 1.59 −0.0056
4 Energy 0.64 1.33 −0.0073
5 Chemicals 0.63 1.25 −0.0087
6 Business Equipment 0.63 1.83 −0.0032
7 Telecom 0.61 1.69 −0.0041
8 Utilities 0.66 1.50 −0.0058
9 Wholesale and Retail 0.64 1.56 −0.0052

10 Healthcare 0.64 1.60 −0.0049
11 Finance 0.69 1.78 −0.0038
12 Other 0.64 1.39 −0.0067

All 0.65 1.69 −0.0044

Table 4.4: Results for the data moments m1(x) and m2(x) of our simulated method of moments
(specified in Equation 4.3 and Equation 4.10), as well as the resulting estimate for the the lower
discretion bound δmin relative to firm size, approximated by total assets. m1(x) denotes the
probability of an earnings report meeting or beating last period’s earnings in the data set x. m2(x)
captures the asymmetry of stock price reactions to positive and negative earnings surprises. The
measure for firm size in our estimation process be is set to 50. Results are classified following the
French-Fama 12 industry classification. All values are dimensionless quantities.
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second moment. In other words, the stock price asymmetry decreases as the manager’s

discretionary slack increases. To understand this observation, consider the impact of

δmin on the manager’s reporting strategy and the resulting stock price reaction. If the

manager can significantly understate earnings, i.e., for low values of δmin, he will only

report significantly negative reports. The probability of meeting the benchmark conse-

quently increases. In Corollary 2, we established that the magnitude of the downward

update of beliefs about past earnings strictly increases in rt+1 for all negative reports.

In other words, the asymmetry of the stock price reaction decreases as rt+1 decreases.

Consequently, a lower value of δmin implies a lower asymmetry in the stock price reaction

to positive and negative earnings surprises.

The estimation results in Table 4.4 were created using the same constant value for

be, the scale parameter of the Laplace distribution describing the firm’s volatility of eco-

nomic earnings. In particular, we assume be = 50. The value of be describes the level of

variation in a firm’s economic and true earnings and needs to be specified in our esti-

mation model. Using a regression of the variance in reported earnings and total assets,

we establish a functional relationship between variation in earnings, be, and firm size.

We can thereby map any choice of be to the corresponding firm size. To understand the

effect of the choice of be on our estimates, we conduct a comparative statics analysis.

More specifically, we run the estimation for different values of be while considering the

same data moments. Table 4.5 provides the estimates we obtain for different values of

be while keeping the data moments m1(x) = 0.65 and m2(x) = 1.69 constant. First, re-

member that the standard deviation of a Laplace distribution is given by σe =
√

2be. Our

choices for be hence translate into standard deviations of earnings between $7M(be = 5)

and $350M(be = 250). Despite the significant differences in size, all estimates are al-

most identical. We conclude that our choice of be in the estimation process does not

significantly alter the estimation results.

In addition to the comparative statics in Table 4.5, we proceed by further examining

the impact of firm size on the estimate. We use total assets as proxy variable for firm size

and split the data set into four equally sized categories such that each group accounts

for 25% of firms in the sample. The results are summarized in Table 4.6. Similar to

our analysis per industry portfolio in Table 4.4, the variation in the first data moment

is insignificant suggesting that the probability of meeting or beating a benchmark is
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be
δmin

TotalAssets

5 −0.0043
25 −0.0043
50 −0.0044

150 −0.0043
250 −0.0044

Table 4.5: Estimation results for the lower discretion bound δmin relative to firm size, approx-
imated by total assets. We consider different values for be, which is our choice of firm size
in the estimation process. We consider the mean moments in our data set m1(x) = 0.65 and
m2(x) = 1.69.

independent of firm size. The asymmetry of stock price reactions to negative and positive

earnings surprises, which we denote by m2(x), decreases in firm size. The magnitude

of the effect is however small. Similar to the results in Table 4.4, the estimate for δmin

decreases marginally in firm size, caused by the decrease of m2(x). This suggests that

larger firms can use more discretionary accruals relative to total assets. The magnitude

of the effect is however small.

Total assets TA m1(x) m2(x) δmin

TA

TA < $306 0.644 1.71 −0.0041
$306 < TA < $1, 216 0.650 1.69 −0.0041

$1, 216 < TA < $4, 507 0.649 1.69 −0.0044
TA > $4, 507 0.650 1.64 −0.0045

Table 4.6: Estimation results after splitting the sample into four groups, according to total assets
TA. All four categories contain 25% of the sample. m1(x) and m2(x) are the data moments,
specified in Equation 4.3 and Equation 4.10. The last column contains the estimate for the lower
discretion bound δmin relative to firm size, approximated by total assets. Total assets are in
millions of USD. The remaining values are dimensionless quantities.
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Chapter 5

Conclusion

We study a dynamic model of earnings management in which asymmetric stock market

behavior around earnings benchmarks arises endogenously as a consequence of con-

strained managerial earnings manipulation. We conjecture an equilibrium reporting

strategy and analyze its validity in an infinite-horizon setting. Our results confirm the

hypothesis that managers use precautionary savings to meet investors’ expectations in

future periods. We show that the prevalence of both big bath behavior for poor eco-

nomic results and the build up of cookie jars for positive firm earnings can be explained

by asymmetric stock price reactions around earnings benchmarks. However, the equilib-

rium reporting strategies that evolved from two-period models in the accounting litera-

ture do not perfectly generalize to an infinite horizon setting. Myopic manager behavior,

e.g., towards the end of a manager’s tenure, and high existing firm savings cause the

manager’s optimal reporting choice to shift from precautionary saving towards overstat-

ing earnings. Future research may consider alternative equilibrium reporting strategies

to analyze the equilibrium’s uniqueness.

Based on the asymmetry of stock price reactions around earnings benchmarks and

the discontinuity in earnings distributions, we estimate the limit for downward earnings

management relative to firm size. Our results indicate a limit of 0.5% of total assets

and complement empirical studies in which the average level of discretionary accruals

on firms’ balance sheets is estimated. The structural estimation can be extended by

picking up the constraint on upwards earnings management and estimating both upper

and lower limit for a manager’s leeway in reporting earnings. In addition, further em-
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pirical research can estimate measures more closely related to our notion of reporting

constraints.



Appendix A

Mathematical Proofs

Proof of Lemma 1

Lemma 1 follows directly from the decision network in Figure 2.1. �

Proof of Lemma 2

By Bayes’ theorem and the independence of all f(et), stock prices follow as

Pt(rt) = E
[ t∑
i=1

ei|rt
]

=
∑
e1

· · ·
∑
et

[
(

t∑
i=1

ei) ∗ f(e1..t|rt)
]

=
∑
e1

· · ·
∑
et

[
(

t∑
i=1

ei) ∗
f(rt|e1..t) ∗ f(e1..t)

f(rt)

]

=
∑
e1

· · ·
∑
et

[
(

t∑
i=1

ei) ∗
f(rt|e1..t) ∗

∏t
i=1 f(ei)

f(rt)

]

=
∑
e1

· · ·
∑
et

[
(

t∑
i=1

ei) ∗
f(rt|e1..t) ∗

∏t
i=1 f(ei)∑

e1
· · ·
∑

et
f(rt|e1..t) ∗

∏t
i=1 f(ei)

]
.

We note that f(et) = 1/5 for all et and obtain

Pt(rt) =
∑
e1

· · ·
∑
et

[
(

t∑
i=1

ei) ∗
f(rt|e1..t)∑

e1
· · ·
∑

et
f(rt|e1..t)

]
where the distribution f(rt|e1..t) remains as the only unknown. To this end, note that all
f(xt) are independent which, in combination with the total probability theorem, yields

f(rt|e1..t) =
∑
x1

· · ·
∑
xt

[
f(rt|e1..t, x1..t) ∗

t∏
i=1

f(xi)

]
.
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Inserting the distribution into the stock price function gives

Pt(rt) =
∑
e1

· · ·
∑
et

[
(

t∑
i=1

ei) ∗

∑
x1
· · ·
∑

xt

[
f(rt|e1..t, x1..t) ∗

∏t
i=1 f(xi)

]
∑

e1
· · ·
∑

et

∑
x1
· · ·
∑

xt

[
f(rt|e1..t, x1..t) ∗

∏t
i=1 f(xi)

]].
To specify the remaining probability mass function f(rt|e1..t, x1..t), we note that

rt =

{
et xt = T

et + δt(e1..t−1, r1..t−1(e1..t−1, x1..t−1), et) xt = S

which we can translate into the PMF

f(rt|e1..t, x1..t) =


1 rt = et, xt = T

1 rt = et + δt(e1..t−1, r1..t−1(e1..t−1, x1..t−1), et), xt = S

0 otherwise
.

This PMF can easily be evaluated using the decision network in Figure 2.1. �
Table A.1 provides the resulting functional forms for stock prices at both t = 1 and t = 2.

Pt(2) Pt(1) Pt(0) Pt(−1) Pt(−2)

t = 1 2 2− α 1−α
2−α −1 α−3

2−α

t = 2 2 2− α −α2−3α+4
3α2−11α+13

−1 α2+3α−14
−3α2+α+7

Table A.1: Stock price reactions Pt(rt) to earnings reports rt for discrete two-period model as a
function of α which denotes the probability of forced truthful reporting

Proof of Lemma 3

By our model setup, the stock price change between any two consecutive periods t and
t+ 1 follows as

Pt+1 (γt, rt+1)− Pt (γt−1, rt) = Pt+1 (γt, rt+1)− Pt (γt)

= E

[
∞∑
i=1

ei | γt, rt+1

]
− E

[
∞∑
i=1

ei | γt

]

= E

[
t+1∑
i=1

ei | γt, rt+1

]
− E

[
t∑
i=1

ei | γt

]

= E
[
et+1 | γt, rt+1

]
+ E

[ t∑
i=1

ei | γt, rt+1

]
− E

[ t∑
i=1

ei | γt
]
.
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Note that reported earnings before period t do not provide any information about future
earnings et+1...∞. All subsequent earnings can thus be removed from the two sums. �

Proof of Lemma 4

The tripartite structure laid out in Lemma 3 defines our proceeding for the search of an
explicit stock price function.

First summand Note that et+1 and γt are independent. In addition, consider the condi-
tional independence of θt and et+1 given γt. Apply Bayes’ theorem to obtain the expected
value of new earnings et+1

E [et+1 | γt, rt+1] =

∫
et+1

et+1f(et+1|γt, rt+1)

=

∫
et+1

et+1
f(rt+1|et+1, γt)f(et+1|γt)

f(rt+1|γt

=

∫
et+1

et+1f(et+1)
∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)∫

et+1
f(et+1)

∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)

.

The Laplace distribution of true earnings f(et+1) is specified in the model setup. f(θt|γt)
denotes investors’ prior belief about past earnings, given the reported equity γt. The uni-
variate degenerate distribution f(rt+1|et+1, θt, γt) follows from rt+1 = et+1+δt+1(et+1, θt, γt).

Second summand We apply Bayes’ theorem to obtain

E

[
t∑
i=1

ei | γt, rt+1

]
= E [θt | γt, rt+1]

=

∫
θt

θtf(θt|γt, rt+1)

=

∫
θt

θt
f(θt|γt)f(rt+1|γt, θt)

f(rt+1|γt)

=

∫
θt
θtf(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1|γt, θt)∫
θt
f(rt+1|θt, γt)f(θt|γt)

=

∫
θt
θtf(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)∫
θt
f(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)
.

Note that the second summand comprises the same distributions that specify the first
summand.
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Third summand By definition of the expected value, the price difference’s third sum-
mand follows directly as

E

[
t∑
i=1

ei | γt

]
= E [θt | γt] =

∫
θt

θtf (θt|γt)

and hence only depends on investors’ prior belief.

Price difference equation We combine the three expressions derived above to obtain
the price difference for any two consecutive periods as

Pt+1 (γt, rt+1)− Pt (γt−1, rt) =

∫
et+1

et+1f(et+1)
∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)∫

et+1
f(et+1)

∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)

+

∫
θt
θtf(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)∫
θt
f(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

−
∫
θt

θtf (θt|γt) .

Proof of Lemma 5

We derive the equilibrium stock price functions by following the structure in Lemma 4.
Solving the three summands sequentially will show that the first and second summand
are piecewise functions over the same sub-domains. The resulting stock price function
will hence be defined by a piecewise function.

First summand Recall that the first summand is given by∫
et+1

et+1f(et+1)
∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)∫

et+1
f(et+1)

∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt)

.

Both numerator and denominator include two integrations over true equity θt and true
earnings et+1. By inspection, they only differ by the variable et+1 and share the same
inner integration. We first solve the common integral

∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt) (i),

and use the solution to derive expressions for denominator (ii) and numerator (iii).

i. Common integral The term
∫
θt
f(rt+1|et+1, γt, θt)f(θt|γt) contains two distribu-

tions: the degenerate univariate distribution f(rt+1|et+1, γt, θt) that follows from rt+1 =
et+1 + δt+1(et+1, θt, γt), as well as investors’ prior belief about true firm equity f(θt|γt).
Limited rationality causes investors to assume a Laplace distribution for the prior belief
f(θt|γt). Values of γt that exceed δ0 + θt are thus assigned a probability strictly greater
than zero, making hypothetical negative savings mathematically possible. To account for
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this, we adapt the discretion strategy to obtain

δt+1(et+1, θt, γt) =


δmin et+1 < min{−(δ0 + θt − γt), 0}
−et+1 et+1 ∈ [min{−(δ0 + θt − γt), 0},−δmin]

δmin et+1 > δmin

.

The solution of the common integral requires integrating over true equity θt which occurs
in the discretion strategy only in the definition of the sub-domains. Before solving the
common integral, we introduce the delta function g. Let g be a real function g : R 7→ R
of form

g(x) =

{
1 x = 0

0 otherwise
.

Some analysis yields the solution to the common integral.∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt) =

∫
θt

g(rt+1− et+1− δt+1(et+1, θt, γt))f(θt|γt)

=



∫ γt−δ0−et+1

−∞
g(rt+1− et+1− δmin)f(θt|γt) dθt

+

∫ ∞
γt−δ0−et+1

g(rt+1)f(θt|γt) dθt
et+1 < 0

∫ ∞
−∞

g(rt+1)f(θt|γt) dθt 0 ≤ et+1 ≤ −δmin∫ ∞
−∞

g(rt+1− et+1− δmin)f(θt|γt) dθt et+1 > −δmin

=



g (rt+1− et+1− δmin)
1

2
exp

γt−δ0−et+1−µθt
bθt

+ g(rt+1)
1

2

(
2− exp

γt−δ0−et+1−µθt
bθt

) et+1 < 0, γt−δ0−et+1 ≤ µθt

g (rt+1− et+1− δmin)
1

2

(
2− exp

−
γt−δ0−et+1−µθt

bθt

)
+ g(rt+1)

1

2
exp

−
γt−δ0−et+1−µθt

bθt

et+1 < 0, γt−δ0−et+1 > µθt

g(rt+1) 0 ≤ et+1 ≤ −δmin

g(rt+1 − et+1 − δmin) et+1 > −δmin

ii. Denominator Using the solution for the common integral, we solve the denom-
inator of the first summand. Substitution of the common integral gives∫

et+1

f(et+1)

∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt)
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=



∫ γt−δ0−µθt

−∞

[
g (rt+1− et+1− δmin)

1

2

(
2− exp

−
γt−δ0−et+1−µθt

bθt

)
+ g(rt+1)

1

2
exp

−
γt−δ0−et+1−µθt

bθt

]
1

2be
exp

et+1
be det+1

+

∫ 0

γt−δ0−µθt

[
g (rt+1− et+1− δmin)

1

2
exp

γt−δ0−et+1−µθt
bθt

+ g(rt+1)
1

2

(
2− exp

γt−δ0−et+1−µθt
bθt

)]
1

2be
exp

et+1
be det+1

γt− δ0− µθt < 0

∫ 0

−∞

[
g (rt+1− et+1− δmin)

1

2

(
2− exp

−
γt−δ0−et+1−µθt

bθt

)
+ g(rt+1)

1

2
exp

−
γt−δ0−et+1−µθt

bθt

]
1

2be
exp

et+1
be det+1

γt− δ0− µθt ≥ 0

+

∫ −δmin

0

g(rt+1)
1

2be
exp−

et+1
be det+1 +

∫ ∞
−δmin

g(rt+1− et+1− δmin)
1

2be
exp−

et+1
be det+1.

Let a := γt − δ0 − µθt to simplify notation of the case distinctions for the remainder of
this proof.∫

et+1

f(et+1)

∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt)

=



1

4be

(
2− exp

−a+δmin−rt+1
bθt

)
exp

rt+1−δmin
be rt+1 < δmin+a, a < 0

1

4be
exp

a+δmin−rt+1
bθt

+
rt+1−δmin

be δmin+a ≤ rt+1 ≤ δmin, a < 0

1

4

bθt
be+bθt

exp
a
be +

1

4

[
2(1− exp

a
be )

− bθt
bθt −be

exp
a
bθt (1− exp

a( 1
be
− 1
bθt

)
)

] rt+1 = 0, a < 0

1

4be

(
2− exp

−a+δmin−rt+1
bθt

)
exp

rt+1−δmin
be rt+1 < δmin, a ≥ 0

1

4

bθt
be + bθt

exp
− a
bθt rt+1 = 0, a ≥ 0

+
1

2
g(rt+1)

(
1− exp

δmin
be

)
+


0 rt+1 ≤ 0

1

2be
exp−

rt+1−δmin
be rt+1 > 0

The denominator is a piecewise function with seven sub-domains which are defined by
two factors: reported earnings rt+1 and the term γt − δ0 − µθt, abbreviated by a, which
we discussed in the discussion of Lemma 5. Let a < 0. The denominator is given by∫

et+1

f(et+1)

∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt)
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=



1

4be

(
2− exp

−a+δmin−rt+1
bθt

)
exp

rt+1−δmin
be rt+1 < δmin + a

1

4be
exp

a+δmin−rt+1
bθt

+
rt+1−δmin

be δmin + a ≤ rt+1 ≤ δmin

1

4

bθt
be+bθt

exp
a
be +

1

4

[
2
(

1− exp
a
be

)
− bθt
bθt−be

exp
a
bθt

(
1−exp

a

(
1
be
− 1
bθt

))]
+

1

2

(
1−exp

δmin
be

) rt+1 = 0

1

2be
exp−

rt+1−δmin
be rt+1 > 0

For a ≥ 0, we obtain∫
et+1

f(et+1)

∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt)

=



1

4be

(
2− exp

−a+δmin−rt+1
bθt

)
exp

rt+1−δmin
be rt+1 ≤ δmin

1

4

bθt
be + bθt

exp
− a
bθt +

1

2

(
1− exp

δmin
be

)
rt+1 = 0

1

2be
exp−

rt+1−δmin
be rt+1 > 0

iii. Numerator By inspection, numerator and denominator only differ by the vari-
able et+1. The derivation of the numerator is therefore similar to the previous calculations
but includes additional integrations by parts.

∫
et+1

et+1f(et+1)

∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt)

=



∫ a

−∞

[
g (rt+1−et+1−δmin)

1

2

(
2−exp

−a−et+1
bθt

)
+
g(rt+1)

2
exp

−a−et+1
bθt

]
1

2be
exp

et+1
be et+1 det+1 +

∫ 0

a

[
g (rt+1− et+1−δmin)

1

2
exp

a−et+1
bθt

+
g(rt+1)

2

(
2− exp

a−et+1
bθt

)]
1

2be
exp

et+1
be et+1 det+1

a < 0

∫ 0

−∞

[
g (rt+1−et+1−δmin)

1

2

(
2− exp

−a−et+1
bθt

)
+
g(rt+1)

2
exp

−a−et+1
bθt

]
1

2be
exp

et+1
be et+1 det+1

a ≥ 0

+

∫ −δmin

0

g(rt+1)
et+1

2be
exp−

et+1
be det+1 +

∫ ∞
−δmin

g(rt+1−et+1−δmin)
et+1

2be
exp−

et+1
be det+1
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=



1

4be

(
2−exp

− δmin+a−rt+1
bθt

)
exp

rt+1−δmin
be (rt+1 − δmin) rt+1 < δmin+a, a < 0

1

4be
exp

δmin+a−rt+1
bθt

+
rt+1−δmin

be (rt+1 − δmin) δmin+a ≤ rt+1 ≤ δmin, a < 0

1

4

[
bθt

be+bθt
exp

a
be

(
a− bebθt

be+bθt

)
− 2

(
a exp

a
be

+ be

(
1− exp

a
be

))
+

bθt
bθt−be

exp
a
bθt(

a exp
a

(
1
be
− 1
bθt

)
+

bebθt
bθt−be

(
1− exp

a

(
1
be
− 1
bθt

)))] rt+1 = 0, a < 0

1

4be

(
2− exp

− δmin+a−rt+1
bθt

)
exp

rt+1−δmin
be (rt+1 − δmin) rt+1 < δmin, a ≥ 0

− 1

4be

(
bebθt
be + bθt

)2

exp
− a
bθt rt+1 = 0, a ≥ 0

+ g(rt+1)
1

2

(
(δmin − be) exp

δmin
be +be

)
+


0 rt+1 ≤ 0

1

2be
exp−

rt+1−δmin
be (rt+1 − δmin) rt+1 > 0

Let a < 0.∫
et+1

et+1f(et+1)

∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt)

=



1

4be

(
2− exp

− δmin+a−rt+1
bθt

)
exp

rt+1−δmin
be (rt+1 − δmin) rt+1 < δmin+a

1

4be
exp

δmin+a−rt+1
bθt

+
rt+1−δmin

be (rt+1 − δmin) δmin+a ≤ rt+1 ≤ δmin

1

4

[
bθt

be+bθt
exp

a
be

(
a− bebθt

be+bθt

)
− 2

(
a exp

a
be +be(

1− exp
a
be

))
+

bθt
bθt−be

exp
a
bθt

(
a exp

a

(
1
be
− 1
bθt

)

+
bebθt
bθt−be

(
1− exp

a

(
1
be
− 1
bθt

)))]
+

1

2

(
(δmin−be) exp

δmin
be +be

) rt+1 = 0

1

2be
exp−

rt+1−δmin
be (rt+1 − δmin) rt+1 > 0

For a ≥ 0, we obtain∫
et+1

et+1f(et+1)

∫
θt

f(rt+1|et+1, γt, θt)f(θt|γt)
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=



1

4be

(
2− exp

− δmin+a−rt+1
bθt

)
exp

rt+1−δmin
be (rt+1 − δmin) rt+1 < δmin

− 1

4be

(
bebθt
be + bθt

)2

exp
− a
bθt +

1

2

(
(δmin − be) exp

δmin
be +be

)
rt+1 = 0

1

2be
exp−

rt+1−δmin
be (rt+1 − δmin) rt+1 > 0

Second summand We derive a solution for∫
θt
θtf(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)∫
θt
f(θt|γt)

∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

in three steps. We first solve the common integral (i)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1). The
solution is then used to calculate the denominator (ii) and numerator (iii).

i. Common integral The common integral follows directly from the equilibrium
reporting strategy defined in Equation 3.5 and we obtain

∫
et+1

f(rt+1|et+1, θt, γt)f(et+1) =


fet+1(rt+1 − δmin) rt+1 < δmin−max{0, δ0+θt−γt}∫ −δmin

min{0,−(δ0+θt−γt)}
f(et+1) det+1 rt+1 = 0

fet+1(rt+1 − δmin) rt+1 > 0

.

ii. Denominator Given the solution of the common integral, we proceed by solving
the denominator. Substitution of the common integral yields∫

θt

f(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=



∫ δmin+γt−δ0−rt+1

−∞

1

2bθt
exp

−
|θt−µθt |
bθt

1

2be
exp−

|rt+1−δmin|
be dθt rt+1 ≤ δmin∫ γt−δ0

−∞

1

2bθt
exp

−
|θt−µθt |
bθt

(∫ −δmin

0

1

2be
exp−

|et+1|
be det+1

)
dθt

+

∫ ∞
γt−δ0

1

2bθt
exp

−
|θt−µθt |
bθt

(∫ −δmin

−(δ0+θt−γt)

1

2be
exp−

|et+1|
be det+1

)
dθt

rt+1 = 0

∫ ∞
−∞

1

2bθt
exp

−
|θt−µθt |
bθt

1

2be
exp−

|rt+1−δmin|
be dθt rt+1 > 0

which evaluates to∫
θt

f(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)
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=



1

4be
exp

rt+1−δmin
be

exp
δmin+a−rt+1

bθt δmin+a ≤ rt+1

2−exp
− δmin+a−rt+1

bθt δmin+a > rt+1

rt+1 ≤ δmin



1

4

(
1−exp

δmin
be

)
exp

a
bθt +

1

4

[(
2−exp

δmin
be

)(
2−exp

a
bθt

)
− exp

γt−δ0
be
−
µθt
bθt

be
be − bθt

(
exp

µθt

(
1
bθt
− 1
be

)

− exp
(γt−δ0)

(
1
bθt
− 1
be

))
− be
be + bθt

exp
γt−δ0−µθt

be

] a < 0

1

4

(
1−exp

δmin
be

)(
2−exp

− a
bθt

)
+

1

4

[(
2−exp

δmin
be

)
exp

− a
bθt − be

be+bθt
exp

− a
bθt

] a ≥ 0

rt+1 = 0

1

2be
exp−

rt+1−δmin
be rt+1 > 0

Let a < 0. The denominator admits as its solution∫
θt

f(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=



1

4be
exp

rt+1−δmin
be

(
2−exp

− δmin+a−rt+1
bθt

)
rt+1 < δmin+a

1

4be
exp

rt+1−δmin
be exp

δmin+a−rt+1
bθt δmin+a ≤ rt+1 ≤ δmin

1

4

(
1−exp

δmin
be

)
exp

a
bθt +

1

4

[(
2−exp

δmin
be

)(
2−exp

a
bθt

)
− exp

γt−δ0
be
−
µθt
bθt

be
be − bθt

(
exp

µθt

(
1
bθt
− 1
be

)

− exp
(γt−δ0)

(
1
bθt
− 1
be

))
− be
be + bθt

exp
a
be

] rt+1 = 0

1

2be
exp−

rt+1−δmin
be rt+1 > 0

Let a ≥ 0. The solution evaluates to∫
θt

f(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=



1

4be
exp

rt+1−δmin
be

(
2−exp

− δmin+a−rt+1
bθt

)
rt+1 ≤ δmin

1

2

(
1−exp

δmin
be

)
+

1

4

bθt
be + bθt

exp
− a
bθt rt+1 = 0

1

2be
exp−

rt+1−δmin
be rt+1 > 0



65

iii. Numerator Substitution of the common integral provides the integrations we
need to solve for the numerator.∫

θt

θtf(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=



∫ δmin+γt−δ0−rt+1

−∞
θt

1

2bθt
exp

−
|θt−µθt |
bθt

1

2be
exp−

|rt+1−δmin|
be dθt rt+1 ≤ δmin∫ γt−δ0

−∞
θt

1

2bθt
exp

−
|θt−µθt |
bθt

(∫ −δmin

0

1

2be
exp−

|et+1|
be det+1

)
dθt

+

∫ ∞
γt−δ0

θt
1

2bθt
exp

−
|θt−µθt |
bθt

(∫ −δmin

−(δ0+θt−γt)

1

2be
exp−

|et+1|
be det+1

)
dθt

rt+1 = 0

∫ ∞
−∞

θt
1

2bθt
exp

−
|θt−µθt |
bθt

1

2be
exp−

|rt+1−δmin|
be dθt rt+1 > 0

Consider rt+1 ≤ δmin. The integral evaluates to∫
θt

θtf(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=
1

4be
exp

rt+1−δmin
be

(δmin+γt−δ0−rt+1−bθt) exp
δmin+a−rt+1

bθt δmin+a ≤ rt+1

2µθt−(δmin+γt−δ0−rt+1+bθt) exp
− δmin+a−rt+1

bθt δmin+a > rt+1

.

For rt+1 = 0, we obtain∫
θt

θtf(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=



1

4

(
2µθt−(γt − δ0 − bθt) exp

a
bθt

)
+

1

2
µθt

(
1−exp

δmin
be

)
− 1

4
exp

γt−δ0
be[

be
be − bθt

exp
−
µθt
bθt

(
µθt exp

µθt

(
1
bθt
− 1
be

)
−(γt−δ0) exp

(γt−δ0)
(

1
bθt
− 1
be

)

− bebθt
be − bθt

(
exp

µθt

(
1
bθt
− 1
be

)
−exp

(γt−δ0)
(

1
bθt
− 1
be

)))
+

be
be + bθt

exp
µθt
bθt

(
µθt exp

−µθt

(
1
bθt
− 1
be

)
+

bebθt
be + bθt

exp
−µθt

(
1
bθt
− 1
be

))]
a < 0

1

2
µθt

(
1− exp

δmin
be

)
+

1

4

bθt
be + bθt

exp
− a
bθt

[
γt−δ0+

bθt
be + bθt

(2be+bθt)

]
a ≥ 0

We used L’Hôpital’s rule to solve integration results of form

lim
θt→−∞

θt expθt = lim
θt→−∞

1

−exp−θt
= 0.

Finally, consider the case rt+1 > 0. Note that fet(rt+1 − δmin) is independent of θt. By
definition of the expected value, the remaining integral evaluates to the mean µθt. Con-
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sequently, the numerator equals∫
θt

θtf(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1) =
1

2be
µθt exp−

rt+1−δmin
be .

We combine the three cases and note that the sub-domains correspond to the denomi-
nator’s structure. Let a < 0.∫

θt

θtf(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=



1

4be
exp

rt+1−δmin
be

[
2µθt−(δmin+γt−δ0−rt+1+bθt) exp

− δmin+a−rt+1
bθt

]
rt+1 < δmin+a

1

4be
exp

rt+1−δmin
be (δmin+γt−δ0−rt+1−bθt) exp

δmin+a−rt+1
bθt δmin+a ≤ rt+1 ≤ δmin

1

4

(
2µθt−(γt − δ0 − bθt) exp

a
bθt

)
+

1

2
µθt

(
1−exp

δmin
be

)
− 1

4
exp

γt−δ0
be[

be
be − bθt

exp
−
µθt
bθt

(
µθt exp

µθt

(
1
bθt
− 1
be

)
−(γt−δ0) exp

(γt−δ0)
(

1
bθt
− 1
be

)

− bebθt
be − bθt

(
exp

µθt

(
1
bθt
− 1
be

)
−exp

(γt−δ0)
(

1
bθt
− 1
be

)))
+

be
be + bθt

exp
µθt
bθt

(
µθt exp

−µθt

(
1
bθt
− 1
be

)
+

bebθt
be + bθt

exp
−µθt

(
1
bθt
− 1
be

))]
rt+1 = 0

1

2be
µθt exp−

rt+1−δmin
be rt+1 > 0

Let a ≥ 0.∫
θt

θtf(θt|γt)
∫
et+1

f(rt+1|et+1, γt, θt)f(et+1)

=



1

4be
exp

rt+1−δmin
be

[
2µθt−(δmin+γt−δ0−rt+1+bθt) exp

− δmin+a−rt+1
bθt

]
rt+1 ≤ δmin

1

2
µθt

(
1− exp

δmin
be

)
+

1

4

bθt
be + bθt

exp
− a
bθt

[
γt−δ0+

bθt
be + bθt

(2be+bθt)

]
rt+1 = 0

1

2be
µθt exp−

rt+1−δmin
be rt+1 > 0

Third summand By definition, the Laplace distribution is symmetric around the mean.
The third summand immediately evaluates to

E

[
t∑
i=1

ei | γt

]
=

∫
θt

θtf (θt|γt) = µθt .

Results The three solutions we derived fully specify the equilibrium stock price be-
havior. The stock price difference equation is a piecewise function defined for seven
sub-domains. Let a < 0. The stock price reaction Pt+1 to any reported earnings rt+1
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follows

Pt+1 (γt, rt+1)− Pt (γt−1, rt)

=



rt+1−δmin +
2µθt−(δmin+γt−δ0−rt+1+bθt) exp

− δmin+a−rt+1
bθt

2−exp
− δmin+a−rt+1

bθt

−µθt rt+1 < δmin+a

rt+1−δmin + δmin+γt−δ0−rt+1−bθt δmin+a ≤ rt+1 ≤ δmin

f1(be, bθt , δ0, δmin, γt, µθt) + f2(be, bθt , δ0, δmin, γt, µθt) rt+1 = 0

rt+1 − δmin rt+1 > 0

Due to its length, the reaction to rt+1 = 0 is abbreviated. Let a ≥ 0.

Pt+1 (γt, rt+1)− Pt (γt−1, rt)

=



rt+1 − δmin +
2µθt−(δmin+γt−δ0−rt+1+bθt) exp

− δmin+a−rt+1
bθt

2−exp
− δmin+a−rt+1

bθt

−µθt rt+1 < δmin

− 1
be

(
bebθt
be+bθt

)2
exp

− a
bθt +2

(
(δmin − be) exp

δmin
be +be

)
bθt

be+bθt
exp

− a
bθt +2

(
1− exp

δmin
be

)

+

2µθt

(
1−exp

δmin
be

)
+

bθt
be+bθt

exp
− a
bθt

[
γt−δ0+

bθt
be+bθt

(2be+bθt)

]
2
(

1−exp
δmin
be

)
+

bθt
be+bθt

exp
− a
bθt

−µθt

rt+1 = 0

rt+1 − δmin rt+1 > 0

Proof of Corollary 2

Corollary 2 follows directly from the manager’s equilibrium reporting strategy specified
in Equation 3.5.

Proof of Corollary 3

For part (i) of the corollary to hold, we need to show that the change in beliefs about past
earnings is negative for all rt+1 < δmin. By definition of the second case, γt− δ0−µθt ≥ 0.
Lemma 5 specifies the update of beliefs as

E
[ t∑
i=1

ei | γt, rt+1

]
− E

[ t∑
i=1

ei | γt
]

=

2µθt−(δmin+γt−δ0−rt+1+bθt) exp
−
δmin+γt−δ0−rt+1−µθt

bθt

2−exp
−
δmin+γt−δ0−rt+1−µθt

bθt

− µθt .
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It remains to verify that the term is negative for all values of γt and µθt. Let a := (δmin+
γt−δ0−µθt−rt+1)/bθt. The inequality simplifies to

2µθt−(δmin+γt−δ0−rt+1+bθt) exp−a

2−exp−a
− µθt < 0 ∀rt+1 ≤ δmin,

or equivalently
exp−a

2− exp−a
(µθt − δmin − γt + δ0 − bθt + rt+1) < 0.

By definition of the exponential function, the numerator exp−a is strictly positive. We
conjecture that the term in brackets is strictly negative and prove that the inequality

rt+1 < γt − δ0 − µθt + δmin + bθt

holds. Recall that γt−δ0−µθt ≥ 0. The scaling parameter of the prior Laplace distribution
bθt is per definition positive. Since we consider the case rt+1 < δmin, the inequality of
form rt+1 < δmin + c2 is thus always satisfied. It remains to verify that the denominator
2− exp(−a) is strictly positive. After substitution of a, the inequality

2− exp
−
δmin+γt−δ0−µθt−rt+1

bθt > 0

can be rewritten as
rt+1 < bθt ln 2 + γt − δ0 − µθt + δmin.

Both elements of the first summand on the right-hand side of the inequality are positive.
We further note that γt− δ0− µθt is positive. Once again, we obtain an equation of form
rt+1 < δmin + c2 which is satisfied for all rt+1 < δmin. Two out of the three expressions in
our main inequality are positive, one expression is negative. We thus proved our initial
claim. �

Part (ii) of the corollary conjectures that the magnitude of the downward update of
beliefs strictly increases in rt+1. In other words, negative reports closer to the bench-
mark are penalized more severely, as they provide a lower upper bound on firm savings.
Mathematically speaking, we need to show that

∂

∂rt+1

2µθt−(δmin+γt−δ0−rt+1+bθt) exp
−
δmin+γt−δ0−rt+1−µθt

bθt

2−exp
−
δmin+γt−δ0−rt+1−µθt

bθt

− µθt

 < 0 ∀rt+1 ≤ δmin.

The inequality evaluates to(
2−exp

−
δmin+γt−δ0−µθt−rt+1

bθt

)−2 [
exp

−
δmin+γt−δ0−µθt−rt+1

bθt

(
1− 1

bθt
(δmin+γt−δ0+bθt−rt+1)

)
(

2−exp
−
δmin+γt−δ0−µθt−rt+1

bθt

)
+

1

bθt
exp

−
δmin+γt−δ0−µθt−rt+1

bθt (2µθt−(δmin+γt−δ0+bθt−rt+1)

exp
−
δmin+γt−δ0−µθt−rt+1

bθt )

]
< 0.
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Let a := (δmin+γt−δ0−µθt−rt+1)/bθt. Some analysis yields

expa

bθt
(2(µθt − δmin − γt + δ0 + rt+1)− bθt expa)

(
2− exp

−
δmin+γt−δ0−µθt−rt+1

bθt

)−2
< 0.

The fact that exp(a) and bθt are strictly positive implies that the fraction is strictly positive.
The squared term in brackets is positive. For our initial claim to hold, it remains to show
that the remaining term in brackets is negative, i.e.,

2(µθt − δmin − γt + δ0 + rt+1)− bθt expa < 0 ∀ rt+1 ≤ δmin.

Some analysis and substitution of a provides

rt+1 −
bθt
2

exp
−
δmin+γt−δ0−µθt

bθt exp
rt+1
bθt < −µθt + δmin + γt − δ0.

Let b := bθt/2 exp(−(δmin + γt − δ0 − µθt)/bθt) and c := −µθt + δmin + γt − δ0. We note
that b > 0. Our final claim follows as

rt+1 − b exp
rt+1
bθt < c.

We prove the inequality in two steps. We first show that the left hand side of the in-
equality is monotonically increasing for all rt+1 < δmin. We then establish our claim by
showing that the inequality holds for rt+1 = δmin. To establish monotonicity of the left
hand side, we first derive

∂

∂rt+1

(
rt+1 − b exp

rt+1
bθt

)
= 1− b

bθt
exp

rt+1
bθt > 0.

Rearranging the inequality and taking the natural logarithm on both sides yields

rt+1 < bθt ln 2 + γt − δ0 − µθt + δmin.

The inequality of form rt+1 < δmin + c2 holds for all rt+1 < δmin. We therefore established
monotonicity. It remains to show that the inequality holds for rt+1 = δmin where the left
hand side takes its largest value. We substitute δmin for rt+1 and obtain

δmin − b exp
δmin
bθt < c.

After substitution of b and c, the inequality reads as

γt − δ0 − µθt +
bθt
2

exp−
γt−δ0−µθt

2 > 0.

Recall that γt−δ0−µθt ≥ 0. Since, in addition, the exponential function is strictly greater
than zero for all real numbers, this concludes our proof. �
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Proof of Corollary 4

For part (i) of Corollary 4 to hold, we need to show that the change in beliefs about
past earnings is negative for all values of γt and µθt. Let a := 2 (1− exp(δmin/be)) and
let b := bθt/(be + bθt) exp(−(γt − δ0 − µθt)/bθt). We note that b > 0 and since δmin < 0, it
follows that exp(δmin/be) < 1 and consequently a > 0. We need to prove that

µθta+
(
γt − δ0 +

bθt
be+bθt

(2be+bθt)
)
b

a+ b
− µθt < 0.

The fact that b > 0 and a+ b > 0 simplifies the inequality and we obtain

µθt < γt − δ0 +
bθt

be + bθt
(2be+bθt)

which is equivalent to

γt − δ0 − µθt > −
2be + bθt
be + bθt

bθt .

By definition of the sub-domain, the left hand side is greater than zero while the right
hand side is smaller than zero for all values of be and bθt. This concludes our proof for
the first part of Corollary 4. �

For part (ii) of the corollary, we derive the conditions for which the magnitude of
the positive update increases in investors’ belief about firm savings. We use µθt − γt as a
measure for investors’ belief about firm savings. Instead of using a change of variables,
we calculate the partial derivatives for both µθt and γt and derive the conditions for the
former to be positive and the latter to be negative for all values of µθt and γt.

(a) We differentiate the update with respect to µθt and solve for the range for which
the magnitude of the update increases. We solve

∂

∂µθt

µθta+ b(µθt)
(
γt − δ0 +

2be+bθt
be+bθt

bθt

)
a+ b(µθt)

− µθt

 > 0

where a and b are defined in the first part of this proof. Let b′(µθt) denote the first partial
derivative with respect to µθt. The derivative evaluates to(
a+b

′
(µθt)

(
γt−δ0+

2be+bθt
be+bθt

bθt

))
(a+b(µθt))−

(
µθta+b(µθt)

(
γt−δ0+

2be+bθt
be+bθt

bθt

))
b
′
(µθt)

(a+ b(µθt))
2

> 1

which, after some analysis, gives the inequality

a
γt − δ0 − µθt

bθt
+ a

be
be + bθt

− b(µθt) > 0.

Let x := (γt − δ0 − µθt)/bθt be our measure for investors’ belief about firm savings. Sub-
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stituting b(µθt) yields

ax+ a
be

be + bθt
− bθt
be + bθt

exp−x > 0,

or equivalently

x− c exp−x > − be
be + bθt

where c := (1/a)bθt/(be + bθt) and c > 0. The left-hand side is monotonically increasing
for all values of x which follows from

∂

∂x

(
x− c exp−x

)
= 1 + c exp−x > 0.

For an increase of the magnitude to hold for all (µθt , γt), we thus require

x− c exp−x
∣∣∣∣
x=0

> − be
be + bθt

since the definition of the case we consider implies x ≥ 0. The condition follows as

bθt < 2be

(
1− exp

δmin
be

)
.

(b) We differentiate the update with respect to γt and solve for the range for which
the magnitude of the update decreases. We solve

∂

∂γt

µθta+ b(γt)
(
γt − δ0 +

2be+bθt
be+bθt

bθt

)
a+ b(γt)

− µθt

 < 0

which evaluates to(
b
′
(µθt)

(
γt−δ0+

2be+bθt
be+bθt

bθt

)
+b(γt)

)
(a+b(γt))−

(
µθta+b(γt)

(
γt−δ0+

2be+bθt
be+bθt

bθt

))
b
′
(γt)

(a+ b(γt))2
< 0.

Since (a+b(γt))
2 > 0, the numerator must be negative. In addition, b′(γt) = −(1/bθt)b(γt)

which we can use to derive

−ab(γt)
γt − δ0 − µθt

bθt
+ ab(γt)

(
1− 2be + bθt

be + bθt

)
+ b(γt)

2 < 0.

Using the same abbreviations x and c, we get

x− c exp−x > 1− 2be + bθt
be + bθt

which is redundant, given the inequality in (a). We derived the condition required for
our conjectured effect to occur for all values of x > 0, or equivalently for all beliefs about
firm savings µθt − γt. The monotonicity of the function x− c exp−x implies the existence
of an additional case. Consider the case where the first condition is not satisfied. More
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specifically, suppose
bθt > 2be

(
1− exp

δmin
be

)
.

It follows that the magnitude of the update strictly increases in µθt − γt for all (µθt , γt)
that satisfy µθt − γt > µ∗θt − γ

∗
t where (µ∗θt , γ

∗
t ) satisfies

γ∗t − δ0 − µ∗θt
bθt

− bθt
be + bθt

1

2
(

1− exp
δmin
be

) exp
−
γ∗t −δ0−µ

∗
θt

bθt = − be
be + bθt

.
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