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Abstract

Since the creation of Bitcoin, the popularity of cryptocurrencies has increased
over the last years. Large and rapid price movements together with frequent
bubble periods have characterized the cryptocurrency market. As a consequence,
studying the behavior of Bitcoin prices aiming to predict the next bubble has
taken on prime importance.

In this semester project, exogenous factors are taken into account to analyze
the dynamics of Bitcoin price. We use the time series of Bitcoin price, YouTube
views and Google trends related to Bitcoin news to study the relaxation response
of a social system after exogenous bursts of activity using the time series of daily
views for nearly 250000 YouTube videos. This analysis is based on the epidemic
model presented in [1].

Furthermore, we validated the necessary stationary conditions for the first
order difference of the time series in order to carry on with the rest of the analysis.
Thus, we focus on the returns of the time series to observe the behavior of their
volatility over different rolling windows and calculate the lag length among all the
time series. Based on the reflexivity theory we verify the one-directional causality
that prices affect news in social media. Additionally, in this project, we go one
step further and explore the possible existence of bidirectional causality. Meaning
that not only price has an effect on the news, but also that public interest could
influence prices.

Keywords: Bubbles, Financial Time Series, Bitcoin, YouTube, Google trends
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Chapter 1

Introduction

1.1 Background: Bitcoin Bubbles

Bitcoin has been the subject of discussion over the last years. One core of these
discussions has been the large price movements and the frequent appearances
of bubbles. A bubble is defined as a period of unsustainable growth, when the
price of an asset increases ever more quickly, in a series of accelerating phases
of corrections and rebounds [2]. Furthermore, during a bubble phase, the price
follows a faster-than-exponential power-law growth process, often accompanied
by log-periodic oscillations. This dynamic ends abruptly in a change of regime
that may be a crash or a substantial correction.

Since Bitcoin was introduced in the market, the cryptocurrency has experi-
enced frequent financial bubbles periods followed by a crash. Notorious examples
are the financial bubble starting mid-2013 finalizing with a significant correction
at the end of November 2013, the bubble in mid-2017 with the crash in December
before Christmas. Those processes have a hyperbolic shape that reflects the steep
rise in the price at the final stage of the bubble [2]. The frequent repetition of
cryptocurrency bubbles in only a decade since they were introduced makes them
very interesting to analyze. Furthermore, cryptocurrencies and especially Bitcoin
have been the scope of discussion in news, videos, and trends, especially during
the bubble periods.

In these discussions, the collective interest of the commons plays a significant
role in determining the value of the financial assets. Hence, the time evolution
of interest of collectives can be beneficial in the prediction of future interest and
prediction of the future price of the assets. Further, the reaction of the inter-
ested people to the incoming information tells us about the impact/importance
of the information. Considering the above facts, we are trying to understand
the dynamics of collective interest growth about the crypto-currency topics on
YouTube and Google over time.

1



1. Introduction 2

Interested people react to the incoming information, and their reaction con-
veys the importance of the information. An example of an external force acting
as incoming information affecting price markets happened on December 13th,
2003 [3]. That morning Bloomberg’s headlines were. "US Treasuries Rise; Hus-
sein Capture May Not Curb Terrorism". Half an hour later, Bloomberg’s alert
headlines changed: "US Treasuries Fall; Hussein Capture Boosts Allure of Risky
Assets". The explanation that prices changed dramatically was that Saddam’s
capture (exogenous force) had caused the price to rise or fall. In this project,
We consider the crypto-currency related videos on YouTube and Google trends
as the incoming sources of information and herding of viewers to view the video
as the collective interest/reaction to the information.

From the previous findings [1], we can consider these videos and trends as ex-
ogenous shocks to the complex network consisting of YouTube views and Google
trends as the response to the shocks. These videos and trends contain infor-
mation, which has importance and relevance only up to a certain time period
from the publication of the information and becomes almost irrelevant after that.
Hence, the total number of views and total watch time per day follow a power-law
decay curve [1].

1.1.1 Reflexivity

George Soros [4] has first proposed reflexivity. His theory differs from the general
equilibrium theory that markets reflect the economic fundamentals after reaching
equilibrium. Reflexivity states that prices influence the fundamentals and change
the expectation. Thus, markets move towards disequilibrium till reaching a point
where the effect is reversed going to the opposite direction. In other words,
financial markets can create inaccurate expectations and then change reality to
accord with them. This is the opposite, which always assume that financial
expectations adapt to reality, not the other way round.

An example of reflexivity is the pro-cyclical method of lending. Meaning that
banks have a willingness to ease lending standards for real estate loans when
prices are rising, then raising standards when real estate prices are falling, rein-
forcing the boom and bust cycle.The interest in reflexivity has increased following
the crash of 2008, with academic journals, economists, and investors like Larry
Summers, Joe Stiglitz, and Paul Volker discussing the theory [5].

From previous studies [6], we know that during the build-up phase of a bubble,
there is a growing interest in the public for the commodity in question. Thus,
bubbles and crashes are times where the consensus is too strong. This discovery
acted as motivation to explore the dynamics of Bitcoin prices taking into account
external factors such as YouTube views and Google trends.
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1.2 Objectives

Find whether there is reflexivity in social data (YouTube views + Google trends)
and the financial data (Bitcoin price). Moreover, our initial hypothesis is that
Bitcoin price Granger causes YouTube views and Google trends. This intuition
is obvious at specific time windows. During the last quarter in 2017 Bitcoin
price was increasing every day. Since those prices were hitting an all-time high,
the news spread quickly, and it became a common conversation among peers.
After the crash in December 2017, the price dropped significantly and maintained
stably for the upcoming months. The same effect occurred to the YouTube views
related to Bitcoin and Google trends. We aim to verify this one directional
Granger causality and further analyze the possibility of a bi-directional causality.

1.3 Outline

The rest of the project is structured as follows. The data used for the analysis
is described in Chapter 2. Different types of data are briefly presented. The
necessary preprocessing steps to analyze the data are described in Section 2.2.

In Section 3, we will discuss the methodology that guided us to do this re-
search. We briefly explain the theory that acted as our basis for our analysis.
First, we present the epidemic model to analyze the dynamics of viewing. Sec-
ondly, we present different techniques to check for stationarity. Thirdly, we define
the rolling window volatility analysis. Finally, a VAR model is presented.

In Chapter 4, different results are presented. Useful information about the
predictability of the financial time series trends might be hidden inside the am-
plitude and the exponents of these decay curves, as the view counts are generated
by the collective human dynamics and signify the evolution of collective interest
over time. The returns of the different data sets are further analyzed. We are
especially interested to see the behavior of the volatility and optimal lag values
over different rolling windows.

In Chapter 5, some significant conclusions drawn from this work are discussed.

Finally, some other interesting results are incorporated in the appendix of
this report.



Chapter 2

Data

In this chapter, it is described the data used in this project. These data are
clustered into three different categories. Section 2.1 outlines these different types
of data. Furthermore, we describe the acquisition method used for each category.

2.1 Types of Data

Throughout this project, we gathered information about Bitcoin’s price, YouTube
statistics and Google trend searches.

2.1.1 Bitcoin Price

CoinMarketCap [7] has the Bitcoin price information starting from mid-2013 till
today. This information includes dates, open, high, low and close price, as well
as volume and market capitalization.

Acquisition

We exported this data to a .csv file in order to later import it to a python data-
frame. Another useful source was CoinCheckup [8] for the financial time series
analysis.

2.1.2 YouTube Data

YouTube videos give a useful hint to know about the popularity of Bitcoin at
specific time frames. With this information, we aim to analyze the price of
Bitcoin with the total daily amount of views of an extensive database of videos
time windows. We gathered approximately 250000 videos related to Bitcoin.

4



2. Data 5

Acquisition

The data acquisition of the YouTube statistics was done by the Chair of En-
trepreneurial Risks previously. In the start of this project I received this data.
The following points describe the necessary steps to acquire the YouTube statis-
tics:

1. Crawling YouTube to get the links of the YouTube channels who publish
contents related to crypto-currencies

2. Making a list of videos which are relevant for our study

3. Crawling individual videos for the information about the daily view statis-
tics

Crawling YouTube for relevant channels A bot was written which navi-
gates through YouTube to find out the relevant channels for our studies. The bot
acts like a typical YouTube user and follows YouTube’s recommendation system
for finding similar channels and navigates through YouTube and collects the links
for the channels which are related to crypto-currencies. This procedure acts like
a Quasi-Monte Carlo sampling method. The bot is written in Python3 and uses
selenium automated web-drivers for the automated browsing of Firefox browser.
The links of the channels are saved in a MongoDB database.

Filtering relevant videos The auto-generated subtitle files were downloaded
for all the videos from the list of channels, obtained from the previous step. We
analyze the contents by processing the subtitle files using "webvtt" python library
(which helps in making the subtitle files to a human-readable text transcript file)
and keyword matching library "difflib" (which helps in the fuzzy matching of
words). As the words in the transcript (generated by the text to speech engines)
might have a different spelling than usual, we make a fuzzy match of all the words
in the transcript to a crypto-vocabulary corpus that is created by us, to find out if
the video/content is related to crypto-currencies. Through this process, we filter
the videos and make a list of videos relevant videos from the channels. We store
the links of the videos the content along with the extracted keywords, publication
date, total views, total likes, total shares of the videos in the MongoDB database.

Crawling for daily view statistics YouTube provides the daily view, daily
watch time, daily share and daily like statistics for each of the videos. It is a
private information for the content creator and usually not shown to the pub-
lic. However, this particular information is always there and hidden inside the
meta data of the video web-pages. We scrape the video pages to find out the
view statistics for the specific videos and store them in our database for further
analysis.



2. Data 6

2.1.3 Google Trends Data

Another interesting source to analyze is the total daily amount of Google searches
related to Bitcoin together with the Bitcoin price.

Acquisition

Google trends data is available at GitHub [9]. This source uses a python script
that traces back the Google searches for Bitcoin starting from mid-2010 till end-
2018. Similar to the acquisition process of Bitcoin price 2.1.1, we imported the
statistics to a .csv file to later incorporate it into our python data-frame.

2.2 Preprocessing of Data

In order to properly analyze the data in our model, it is necessary to prepos-
sess the data and apply some modifications. The following points illustrate the
important steps within the data preprocessing:

1. After wrapping all data statistics from the YouTube videos in a .json format,
it is necessary to build a function that converts it to a python data-frame.

2. The daily amount of views on YouTube videos is hugely noisy. To decrease
this effect, we apply a smoothing function. We use the Savitzky-Golay filter
to smooth the data with a window length of 37 and a polynomial of order
one to fit the samples.

3. Since we are interested in comparing two time series, it is crucial to eval-
uate each series on the same date. After receiving the different data sets
described in Sections 2.1.1, 2.1.2 and 2.1.3, we realize that the dates are
not identical in the whole series. To solve this issue, we sorted the arrays
and appointed every value to the closest date compared to the other time
series.

4. After sorting the time series, we rescaled the values of each time series so
that the values are between [0, 1].

5. Finally, we take the log values of the data that we are interested in order
to have a meaningful financial analysis. Since our initial guess was, that
the log values of price, views, and trends would not be stationary, we also
take the first difference of the log values to achieve stationarity. It is also
more interesting to evaluate the returns of the data.



Chapter 3

Methodology

Several factors lead to viewing a video on YouTube or conduction a Google search
related to Bitcoin. Those causes include triggering from email, linking from
external websites, discussion on blogs, newspapers, and television, from social
influences, through YouTube’s and Google’s intrinsic suggestion mechanism or
sometimes chance. As found out in previous research studies [1], the time evolu-
tion of the number of views or the number of Google searches per day is mostly
dependent on collective interest of the viewers/searches and the quality of the
topic discussed.

3.1 Power-law

In this section, we present the epidemic model that we apply to analyze the
dynamics of viewing behavior. In order to be consistent with the model described
in [1], we reduce the explanation only to YouTube videos. However, a similar
analysis can be conducted to describe the dynamics of searching behavior in
Google.

The first ingredient of this epidemic model is a power law distribution of
waiting times describing the human activity that expresses the potential impact
of these various factors by using a response function, which, from previous work,
we take to be a long-memory process of the form.

φ(t) ≈ 1

t1+θ
;with 0 < θ < 1 (3.1)

By definition, the memory kernel φ(t) describes the distribution of waiting
times between “cause" and “action" for an individual.

The cause can be any of the factors mentioned in Chapter 3. The action is for
the individual to view the video in question after a time t since he was first sub-
jected to the cause without any other influences between 0 and t, corresponding
to a direct (or first-generation) effect.

7



3. Methodology 8

In other words, φ(t) is the “bare" memory kernel or propagator, describing
the direct influence of a factor that triggers the individual to view the video in
question. Here, the exponent θ is the crucial parameter of the theory that is
determined empirically from the data.

The second ingredient is an epidemic branching process that describes the
cascade of influences on the social network. This process captures how previous
attention from one individual can spread to others and become the cause that
triggers their future attention. In a highly connected network of individuals whose
interests make them susceptible to the given video content, a given factor may
trigger action through a cascade of intermediate steps.

Such an epidemic process can be conveniently modeled by the so-called self-
excited Hawkes conditional Poisson process.

This gives the instantaneous rate of views λ(t) as

λ(t) = V (t) +
∑
i,ti<t

µiφ(t− ti) (3.2)

where µi is the number of potential viewers, who will be influenced directly
over all future times after ti by person i who viewed a video at time ti. Thus, the
existence of well-connected individuals can be accounted for with large values of
µi. Lastly, V(t) is the exogenous source, which captures all spontaneous views
that are not triggered by epidemic effects on the network.

3.2 Time Series Analysis

In this Section, we will further explore the relationships between Bitcoin price
with YouTube views and Bitcoin price with Google searches. Conducting a time
series analysis for both cases is convenient.

As a start, we use min-max normalization for re-scaling the total views/day,
searches/day and price time series. The reason for this is to put all time series
into one standard scale. Equation 3.3 represents the min-max re-scaling. Thus,
we constrain the values of the time series between [0,1]. The rest of the analysis
from this point is conducted on the re-scaled time series. Nevertheless, a more
stable approach would be to standardize the time series by removing the mean
and dividing by the standard deviation. In future projects, the latter approach
will be used to prevent biases from the large fluctuations of the min and max.

x′ =
x−min(x)

max(x)−min(x)
(3.3)
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It is necessary that the three time-series fulfill the stationarity conditions.
The results of the three checkups are presented in Subsection 3.2.1.

The intensity of demand and supply sets the Bitcoin price. Since the amount
of Bitcoins is finite (21 million), demand plays a major role in setting the price.
Buyers believe that in the future the demand for Bitcoins will increase. There-
fore, speculators buy Bitcoins in anticipation of that future demand that would
drive the price up. However, speculative buyers tend to be sensitive to current
events and news. As a result, speculative buyers can quickly turn into specu-
lative sellers. This change of speculator buyers into sellers is one main reason
why the price of bitcoin varies so wildly making it so volatile. Since we are in-
terested in the evolution of Bitcoin price and its fluctuations, it comes in handy
to do a volatility analysis over different rolling windows. The volatility model is
presented in Subsection 3.2.2.

In Subsection 3.2.3 we present the VAR model that we use to find the optimal
lag values for each time series. Likewise the volatility analysis, we apply several
rolling windows to the VAR model.

In the last Subsection 3.2.4 of this Chapter, we introduce the Granger-Causality
concept to test whether one time series Granger causes the other time series.

3.2.1 Stationarity

In order to check for stationarity, we use three different methods.

Correlogram

The first method we use to test stationarity is a correlogram plot. The plots
shown in Section 4.3.1 give a visual hint to see whether the time series are sta-
tionary.

Dickey-Fuller test

The second method used is the Dickey-Fuller test. There we test the null hy-
pothesis H0 that a unit root is present in an autoregressive model, which would
violate the stationarity condition. The alternative hypothesis HA holds that the
time series is stationarity. If the p-value is above a critical size, then we cannot
reject that there is a unit root.

We define a simple autoregressive model of order 1 AR(1) as follows:
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yt = cyt−1 + εt (3.4)

where yt is the variable of interest, t is the time index, c is a coefficient, and
εt is the error term. Moreover, a unit root is present if c = 1 for the AR(1).

For the statistic test we take the first difference. Equation 3.5 shows the first
difference of the autoregressive model shown in Equation 3.4.

∆yt = (c− 1)yt−1 + εt = δyt−1 + εt (3.5)

where ∆ denotes the first difference operator. Moreover, for H0 the unit root
is equivalent to testing δ = 0. In other words, δ ≡ c− 1.

Tables including the results of the Dickey-Fuller test are presented in Section
4.3.2.

Johansen test

In the time series of interest, A is the coefficient matrices for each lag. The test
checks for the situation of no cointegration, which occurs when A = 0. The rank
of the matrix A is denoted by r. The Johansen test tests whether r is equal to
zero or equal to one. The H0 of r = 0 means that there is no cointegration. Rank
r > 0 implies a cointegrating relationship between the time series.

While testing for for cointegration for the time series log(price), log(views)
and log(trends), we can conclude whether it is possible that the time series are
stationary.

Tables showing the results of the Johansen test are presented in Section 4.3.3.

3.2.2 Volatility Analysis of Returns

Measuring volatility is a very common method to see the degree of variation of
the different time series. Since we are interested to analyze different time slots
and especially bubble periods, we create rolling window with different lengths
and compute the standard deviation of each rolling window. By computing the
standard deviation, we know directly the volatility over those rolling windows.
These rolling windows go through the whole time series in weekly (7 days) and
monthly intervals (30 days).

In Section 4.4 the results of these volatility rolling windows are shown.
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3.2.3 VAR Analysis of Returns

In order to find the linear interdependencies between the two time series, we
perform Vector autoregression with p lags ( VAR(p) ) on the stationary time
series. The VAR(p) model describes the evolution of a set of variables over a
time period as a linear function of their past values. The variables are stored in
vector yt, where yi,t denotes the i-th element of vector yt at observation time t.
In other words, it is the observation at time t of the i-th variable. Equation 3.6
shows the VAR(p) model.

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + et (3.6)

where c denotes a vector of constants, Ai is a time-invariant coefficient matrix
of the i-th lag of y, and et the error term.

In order to determine the optimum lag value (p) for the VAR analysis, we use
Akaike information criterion (AIC) and Bayesian information criterion (BIC) in
VAR model.

Equations 3.7 and 3.8 define the two model selection criteria.

AIC = 2k − 2 ln(L̂) (3.7)

BIC = ln(n)k − 2 ln(L̂) (3.8)

where k is the number of estimated parameters in the model, n the number
of observations and L̂ is the maximum value of the likelihood function for the
model. For more details see [10].

The results of this analysis are depicted in in Section 4.5 for the VAR analysis
with rolling windows and Section 4.6 for the overall VAR analysis without rolling
windows.

3.2.4 Granger Causality

In order to find the causal dependencies between the two time series, we are
calculating the Granger causality. Granger causality means that past values of
a second time series have a statistically significant effect on the current value of
the first time series, taking past values of the first time series into account as
regressors.

The null hypothesis of the test is that the second time series does not Granger
cause the first time series. We reject the null hypothesis that the second time
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series does not Granger cause the first time series if the p-values are below a
desired size of the test. The null hypothesis for all four tests is that the coefficients
corresponding to past values of the second time series are zero [11].

Overall we perform several tests. In the first one, we check whether the price
is Granger causing YouTube views as well as the opposite. Moreover, for the
second test, we check whether the price is Granger causing Google searches. We
perform these tests over different rolling windows similar to the volatility and
VAR analysis.

The results of these tests are presented in Subsection 4.7.



Chapter 4

Results

4.1 Behaviour of Data

Figure 4.1 depicts the absolute values of Bitcoin price, the total amount of daily
YouTube videos and Google searches related to Bitcoin from 2012 till the present
time. It is clear from Figure 4.1 that the interest of people searching for YouTube
videos and in Google increased especially during the bubble period in late 2017.
Figure 4.2 represents the scaled log values. From this plot, we can recognize that
there was a bubble period in 2012 that finished with a crash in August 18th [12].
Figure 4.3 illustrates the first order difference of the log scaled values. From these
plots, we can see that all plots have similar trajectories.

Figure 4.1: Top plot: Bitcoin price, middle plot: total daily YouTube views
related to Bitcoin, bottom plot: total daily Google trends related to Bitcoin.

13
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Figure 4.2: Scaled log(values). Top plot: Bitcoin (price), middle plot: total daily
YouTube views, bottom plot: total daily Google trends.

Figure 4.3: First order difference scaled log(values). Top plot: Bitcoin (price),
middle plot: total daily YouTube views, bottom plot: total daily Google trends.
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4.2 Fitting the Power-law

For each publication day tc, we have a time series. For each time series, at day
t ≥ tc we aggregate daily views of YouTube videos related to Bitcoin. As a
result, videos that were published on an arbitrary day in 2011 have more data
points than videos that were published in 2018. For each time series, we fit
the exponential decay curve with equation 4.1 using Least-Square fit to find the
regression value of θt and At (amplitude). The coefficient c is arbitrary chosen
to be 0.8.

f(t) =
At

(t− c)θt
(4.1)

Figure 4.4 depicts the values of the θt exponents after fitting Equation 4.1 for
each time series. The range of values of θt is between 0.4 and 1. These values are
compatible with the predictions of the epidemic model previously done in [1].

Figure 4.5 depicts the value of the amplitude At and log(At) after fitting
Equation 4.1 for each time series. We observe that the amplitude has a similar
trajectory as the total aggregated daily views. As time progressed and we reach
closer to the bubbles, we get the super exponential growth of the amplitude
values, and after the burst the amplitude decays accordingly.

Figure 4.6 represents an example of the continuous decay with the power-
law fit for videos published on May 25th, 2013. This and the majority of the
trajectories for the other time series fit well with the power-law function.

Figure 4.7 represents an example for videos published on May 27th, 2013. It
depicts a burst of activity at the end shifting upward the power-law fit towards the
tail, biasing it. In this case, the fit is adequate to represent the data up to t 102

and then the big dragon-king structure is present [13]. Only a minority of the of
the time series display this behaviour, and for the time being we are considering
them within power-law decay domain as the overall behavior is following a power-
law decay pattern. However, more pre-processing would be done in future to get
an estimate of the exact exponent and the amplitude value.

Taking a closer look at some bubble periods we can observe that the YouTube
views and Bitcoin price behave very similar during bubble periods. Figure 4.8
depicts this behavior. That discovery acted as a major motivation to take a
closer look to analyze the volatility and find the lag values over different rolling
windows.
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Figure 4.4: Time evolution of the power-law decay exponents obtained through
the fitting procedure. The red line represents the original data and the black line
represents the filtered data after Savitzky-Golay Smoothing with window length
37, and order of polynomial 1.

Figure 4.5: Time evolution of the power-law decay amplitude obtained through
the fitting procedure. The red line represents the original data and the black line
represents the filtered data after Savitzky-Golay Smoothing with window length
37, and order of polynomial 1. Top panel is log of amplitude and the bottom
panel is amplitude over time.
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Figure 4.6: Least square fit of the total aggregated daily views of YouTube videos
published on May 25th, 2013. The blue dots represents the total number of daily
views. The orange curve depicts the fitted values of the regression of function
4.1. The figure shows a continuous decay. Range of x-axis is 1000 days.

Figure 4.7: Least square fit of the total aggregated daily views of YouTube videos
published on May 27th, 2013. The blue dots represents the total number of daily
views. The orange curve depicts the fitted values of the regression of function
4.1. The figure shows the burst of activity towards the tail. Range of x-axis is
1000 days.
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Figure 4.8: Figure representing the full time series data, along with two long
bubbles [14]. First subplot: Total number of YouTube views per day (in red) and
Bitcoin price (in green)(full length data). (yellow vertical line: starting point of
bubble, black vertical line: bubble peak, blue vertical line: bubble crash). Second
subplot: representing the first bubble (03-07-2013 to 14-01-2015). Third subplot:
representing the second long bubble (15-01-2016 to 25-12-2017)
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4.3 Stationarity

In order to check the stationarity of the time series, we checked the correlogram
(autocorrelation values of the time series) and Dickie-Fuller test.

4.3.1 Correlogram

A correlogram is an autocorrelation plot. Its purpose is to show autocorrelations
versus time lags. From Figure 4.9 we observe long-range dependencies in the first
three autocorrelation subplots. These long dependencies suggest non-stationarity
of the time series. Delta autocorrelation behavior in bottom autocorrelation plots
indicates the stationarity.

Figure 4.9: Correlogram plot for the time series, Left panel: From top to bottom:
Log price over time, Log daily views over time, Log daily trends over time,
∆Log(Price), ∆Log(V iews),∆Log(Trends). Time in epoch format in x-axis.
Right panel: Corresponding correlograms. Auto correlation values in y-axis and
lag values in x-axis.
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4.3.2 Dickey–Fuller test

We performed the Augmented Dickey-Fuller test on the Log(Timeseries).

Tables 4.1, 4.2 and 4.3 show that the time series are not stationary. Therefore,
we compute the first order difference of the time series and do the test once again.
Tables 4.4, 4.5 and 4.6 show that ∆Log(Timeseries) are stationary.

Test statistic P value Test Critical Value Critical Value test statistic
-1.057 0.732

1% -3.433
5% -2.863
10% -2.567

Table 4.1: Augmented Dickey-Fuller test for Log(Price) time series. t-statistics
is greater than the critical values. Thus, time series is non-stationary.

Test statistic P value Test Critical Value Critical Value test statistic
-2.254 0.187

1% -3.433
5% -2.863
10% -2.567

Table 4.2: Augmented Dickey-Fuller test statistics for Log(Views). p-value is
significant, hence, the time series is non stationary.

Test statistic P value Test Critical Value Critical Value test statistic
-2.517 0.111

1% -3.433
5% -2.863
10% -2.567

Table 4.3: Augmented Dickey-Fuller test statistics for Log(Trends). p-value is
significant, hence, the time series is non stationary.
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Test statistic P value Test Critical Value Critical Value test statistic
-12.793 7.028

1% -3.433
5% -2.863
10% -2.567

Table 4.4: Augmented Dickey-Fuller test statistics for ∆Log(Price). t-statistics
is much less than the critical values, hence the time series is stationary.

Test statistic P value Test Critical Value Critical Value test statistic
-29.186 0.0

1% -3.433
5% -2.863
10% -2.567

Table 4.5: Augmented Dickey-Fuller test statistics for ∆Log(V iew). t-statistics
is much less than the critical values, hence the time series is stationary.

Test statistic P value Test Critical Value Critical Value test statistic
-8.461 1.568

1% -3.433
5% -2.863
10% -2.567

Table 4.6: Augmented Dickey-Fuller test statistics for ∆Log(Trend). t-statistics
is much less than the critical values, hence the time series is stationary.
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4.3.3 Johansen Test

For the Johansen test, we use the trace statistics method and 2 as the number
of lagged differences in the model.

The first null hypothesis, r = 0, tests for the presence of cointegration. Table
4.7 depicts the result of the Johansen test for the log values of the YouTube views
and the Bitcoin price. From Table 4.7 we see that the test statistic exceeds the
1% level significantly (105.65 > 23.52). Thus, we have strong evidence to reject
the null hypothesis of no cointegration versus the r > 0 alternative hypothesis.

In the case of Google trends, Table 4.8 depicts the result of the Johansen test
for the log values. The tests statistic exceeds as well the 1% level significantly
(32.01 > 19.93). Thus, we have strong evidence to reject the null hypothesis of
no cointegration versus the r > 0 alternative hypothesis.

Next, when we carry out the r ≤ 1 null hypothesis versus the r > 1 alternative
hypothesis, we conclude from 4.7 that we can not reject that null hypothesis
4.02 <= 11.65. This means is that it may be possible to form a linear combination
to create a stationary time series for the YouTube data.

The same effect happens to the Google trends. From Table 4.8, we conclude
that we can not reject that null hypothesis, since 4.48 <= 6.663. This means is
that it may be possible to form a linear combination to create a stationary time
series for the Google trends data as well.

Null hypothesis test statistics 10% 5% 1%
r = 0 105.65 15.66 17.95 23.52
r ≤ 1 4.02 6.50 8.18 11.65

Table 4.7: Johansen cointegration test statistics for Log(Price) and Log(Views)
time series. Test type: trace statistic, with linear trend. Results show that it is
possible to form a linear combination to create a stationary time series.

Null hypothesis test statistics 10% 5% 1%
r = 0 32.01 13.43 15.49 19.93
r ≤ 1 4.48 2.71 3.84 6.63

Table 4.8: Johansen cointegration test statistics for Log(Price) and Log(Trends)
time series. Test type: trace statistic, with linear trend. Results show that it is
possible to form a linear combination to create a stationary time series.
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4.4 Rolling Window Volatility

In this Section, we conduct a volatility analysis of our YouTube and Google
data with weekly and monthly rolling windows. Figure 4.10 corresponds to the
YouTube views and Figure 4.11 to the Google trends. From both plots we observe
that weekly and monthly volatility behave very similar for the YouTube views and
the Bitcoin price. Furthermore, the highest volatility appears in the 3rd quarter
of 2012 precisely at the bubble period of summer 2012. Other high volatility
changes happened at the end of 2017 when the last bubble was present.

Figure 4.10: Rolling window volatility for YouTube views. Top subplot: 7 days
rolling window. Bottom: 30 days rolling window.
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Figure 4.11: Rolling window volatility for Google trends. Top subplot: 7 days
rolling window. Bottom: 30 days rolling window.
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4.5 Rolling Window VAR Analysis

In this Section, we conduct a VAR analysis of the YouTube and Google data
with rolling windows of 350 samples. First, we calculate the total amount of lag
values (lag length) using AIC criterion which is affecting the other times series
at time t = 0. Figure 4.12 depicts the lag length for YouTube views. Figure
4.14 depicts the lag length for Google trends. During the bubble periods, the lag
length tends to be minimized towards 0 for the YouTube views and towards 1 for
the Google trends. Second, we calculate the optimal lag value of each time series
by taking the minimum p-value over the rolling windows. The smallest p-values
tells us which are the most statistical significant coefficients. Figure 4.13 depicts
the optimal lag values for YouTube views and Bitcoin price. Figure 4.15 depicts
the optimal lag values for Google trends and Bitcoin price.

Figure 4.12: Rolling window VAR analysis for YouTube views. Each window has
350 samples (dates). Red line depicts the lag length at every window. Green curve
depicts the scaled log(price) of Bitcoin. The larger the lag length, the stronger
the correlation with the price, since it has more positive feedback. During the
bubble periods the lag length tends to go towards 0.
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Figure 4.13: Optimal lag value of rolling window VAR analysis for YouTube views
and Bitcoin price. Optimal lag for one variable corresponding to one equation in
y-axis for each subplot. Starting date of rolling window in x-axis. Each window
has 350 samples (dates). Top left subplot depicts optimal lag for ∆Log(Price)
equation with ∆Log(Price) variables. Top right subplot depicts optimal lag for
∆Log(Price) equation with ∆Log(V iews) variables. Bottom left subplot depicts
optimal lag for ∆Log(V iews) equation with ∆Log(Price) variables. Bottom
right subplot depicts optimal lag for ∆Log(V iews) equation with ∆Log(V iews)
variables.
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Figure 4.14: Rolling window VAR analysis for Google. Each window has 350
samples (dates). Red line depicts the lag length at every window. Green curve
depicts the scaled log(price) of Bitcoin. The larger the lag length, the stronger
the correlation with the price, since it has more positive feedback. During the
bubble periods the lag length tends to go towards 1.
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Figure 4.15: Optimal lag value of rolling window VAR analysis for Google trends
and Bitcoin price. Optimal lag for one variable corresponding to one equation in
y-axis. Starting date of rolling window in x-axis. Each window has 350 samples
(dates). Top left subplot depicts optimal lag for ∆Log(Price) equation with
∆Log(Price) variables. Top right subplot depicts optimal lag for ∆Log(Price)
equation with ∆Log(Trends) variables. Bottom left subplot depicts optimal lag
for ∆Log(Trends) equation with ∆Log(Price) variables. Bottom right subplot
depicts optimal lag for ∆Log(Trends) equation with ∆Log(Trends) variables.
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4.6 Overall VAR

In this Section, we conducted a VAR analysis for the YouTube views data with
the Bitcoin price data. Another VAR analysis was conducted for the Google
trends data with the Bitcoin price data. The AIC criterion was used in the VAR
analysis to determine the lag length. We determined the statistically significant
coefficients by looking at the smallest p-values.

The first analysis was conducted for the time series with ∆Log(Price) and
∆Log(V iews) data. In this analysis, the largest coefficients for both equa-
tions (price and views) are located within the first three lags and are negative.
The second analysis was conducted for the time series with ∆Log(Price) and
∆Log(Trends) data. In this analysis, the largest coefficients for both equations
(price and trends) are located within the first four lags and are negative again.
The following Tables show the results obtained in the VAR analysis.

Figure 4.16: VAR results for ∆Log(Price) equation with ∆Log(Price) and
YouTube ∆Log(V iews) variables. The first column corresponds to the different
lag values. The second column represents the coefficients of the lagged values.
The last column corresponds to the p-values. The majority of the coefficients
are significant. Coefficients with the largest absolute value are the 1st for the
∆Log(Price) variable and the 3rd for the ∆Log(V iews) variable.
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Figure 4.17: VAR results for ∆Log(V iews) equation with ∆Log(Price) and
YouTube ∆Log(V iews) variables. The first column corresponds to the different
lag values. The second column represents the coefficients of the lagged values.
The last column corresponds to the p-values. Only two coefficients are signifi-
cant, the 2nd lag for the ∆Log(Price) variable and the 1st lag for ∆Log(V iews)
variable.
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Figure 4.18: VAR results for ∆Log(Price) equation with ∆Log(Price) and
Google ∆Log(Trends) variables. The first column corresponds to the different
lag values. The second column represents the coefficients of the lagged values.
The last column corresponds to the p-values. Close to half of the coefficients
are significant. Coefficients with the largest absolute value are the 2nd for the
∆Log(Price) variable and 4th for the ∆Log(Trends) variable.
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Figure 4.19: VAR results for ∆Log(Trends) equation with ∆Log(Price) and
Google ∆Log(Trends) variables. The first column corresponds to the different
lag values. The second column represents the coefficients of the lagged values.
The last column corresponds to the p-values. More than half of the coefficients
are significant. Coefficients with the largest absolute value are the 2nd for the
∆Log(Price) variable and the 2nd for the ∆Log(Trends) variable.
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4.6.1 Response functions

After conducting the VAR analysis for the time series, we calculate their corre-
sponding impulse response functions. The impulse response functions are the es-
timated responses to a unit impulse in one of the variables. The impulse response
function are computed using the moving-average model MA∞ representation of
the VAR(p) process.

yt = µ+
∞∑
i=0

Φiut−i (4.2)

where yt is the time series of interest. Furthermore, the expectation of yt is
defined as µ = (Ik−A1− ...−Ap)−1c. Having the coefficient c and the coefficient
matrix Ai the same definition as in Equation 3.6. Moreover, ut is zero mean
white noise with non-singular covariance matrix and Φi the parameters of the
model. Figures 4.20 and 4.22 depict the impulse response functions and Figures
4.21 and 4.23 depict the cumulative impulse response functions.

Figure 4.20: Impulse response functions for YouTube views and Bitcoin price,
y-axis expresses standard deviation change that one variable cause to the other.
It is computed using the MA(∞) representation in Equation 4.2.
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Figure 4.21: Cumulative impulse response functions for YouTube views and Bit-
coin price, y-axis expresses standard deviation change that one variable cause to
the other. From the figure it can be observed that the effect of impulse in price is
effecting the number of views more than the impulse in views effecting the price.

Figure 4.22: Impulse response functions for Google trends and Bitcoin price, y-
axis expresses standard deviation change that one variable cause to the other. It
is computed using the MA(∞) representation in Equation 4.2.
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Figure 4.23: Cumulative impulse response functions for Google trends and Bit-
coin price, y-axis expresses standard deviation change that one variable cause to
the other. It can be observed that the effect of impulse in price is effecting similar
the number of trends like the impulse in trends is effecting the price.

Figure 4.24: Autocorrelation of the residuals after VAR analysis of YouTube
views and BTC price. This shows the goodness of fit and in fact the fit is done
correctly (from low autocorrelation values. Dashed line is significance level.)
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Figure 4.25: Autocorrelation of the residuals after VAR analysis of Google trends
and BTC price. This shows the goodness of fit and in fact the fit is done correctly
(from low autocorrelation values. Dashed line is significance level.)

4.7 Granger Causality

We want to find the causal dependencies between two time series. Thus, we cal-
culate the Granger causality. The null hypothesis of the test is that the second
time series does not Granger cause the first time series. We reject the null hy-
pothesis that the second time series does not Granger cause the first time series
if the p-values are below a desired size of the test.

Overall we perform four tests. In the first test, we check whether the Bitcoin
price is Granger causing YouTube views. Figure 4.26 shows that Bitcoin price
might Granger cause YouTube views for the first three lags. For the second test,
we check whether YouTube views is Granger causing Bitcoin price. In the third
test, we check whether Bitcoin price is Granger causing Google trends. Figure
4.28 shows that after the second lag Bitcoin price might Granger cause Google
trends. In the last test, we check whether Google trends is Granger causing
Bitcoin price. Figures 4.27 and 4.29 show that the collective public interest for
YouTube views and Google trends might Granger cause Bitcoin price.
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Figure 4.26: Results of Granger causality test. H0: Bitcoin price does not
Granger cause YouTube views. For the first four lags, the p-value equals zero.
Thus, we reject the null hypothesis that Bitcoin price does not Granger cause
YouTube views for the first three lags. However, upon the 4th lag we accept the
null hypothesis that Bitcoin price does not Granger cause YouTube views.
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Figure 4.27: Results of Granger causality test. H0: YouTube views does not
Granger cause Bitcoin price. All p-values equal zero among the four tests. Thus,
we reject the null hypothesis that YouTube views does not Granger cause Bitcoin
price.
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Figure 4.28: Results of Granger causality test. H0: Bitcoin price does not
Granger cause Google trends. For the first two lags, the the p-value rise above
the significance level among all four tests. Thus, we accept the null hypothesis
that Bitcoin price does not Granger cause Google trends for the first two lags.
After the second lag the p-value equals zero. Thus, we reject the null hypothesis
that Bitcoin price does not Granger cause Google trends after the second lag.
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Figure 4.29: Results of Granger causality test. H0: Google trends does not
Granger cause Bitcoin price. All the p-values equal or are very close to zero.
Thus, we reject the null hypothesis that Google trends does not Granger cause
Bitcoin price.



Chapter 5

Discussion

This project has focused on the understanding of the dynamics of Bitcoin prices
taking into account external news like YouTube videos and Google trends during
bubble periods. Our initial guess was that the price movements are reflected in
social media news. In other words, our initial hypothesis was that the Bitcoin
price acts as a one-directional causality to the news. Thus, the total amount of
daily views and searches are influenced by the Bitcoin price.

After analyzing the aggregated total number of daily YouTube views, we
found out that the public interest of the YouTube videos published at an arbitrary
day follow a power-law behavior introduced in [1]. In other words, videos that
were published on an arbitrary day reach the maximum number of total views on
the publication day then as time goes by the interest of those videos published in
the past decreases which cause the daily aggregated number of views to become
smaller. Moreover, we verified that the returns (first-order difference of the time
series) are stationary. This checkup allowed us to perform a volatility analysis
over different time windows to observe similar behavior among all the time series.
Additionally, we conducted a VAR analysis over different rolling windows on the
returns to obtain the lag length and the optimal lag value between Bitcoin price
with YouTube views, and Bitcoin price with Google trends. The obtained results
from the Granger causality test also showed us that there exists a bidirectional
causality between Bitcoin price and public interest. Meaning that not only price
causes trends and views, but also public interest which is reflected by the trends
and views cause the price changes at specific lag values.

The present analysis could be extended to be more powerful. Co-integration
tests could be implemented instead of taking the first order differences of the time
series, since taking the first order difference might lead to enhancing the noise
in the time series. Moreover, more analysis could be conducted primarily in
the bubble windows. Additionally, more cryptocurrency news and social media
could be incorporated into the analysis. An exciting simulation would be the
implementation of a trading strategy based on the results obtained in this project.
It would be possible and interesting to test whether it is profitable to hedge a
position knowing the optimal lag values.
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Appendix A

Appendix I

A.1 VECM

As the Log(Price) and Log(V iews) were not stationary, we had to perform
VAR(p) on ∆Log(Price) and ∆Log(V iews). Hence, we only got the information
about the short term dependencies and did not get any information about the long
term trends. In order to get the long-range dependencies between the time series,
we are using the Vector Error Correction Model. A VECM has the following form:

∆yt = Πyt−1 + Γ1∆yt−1 + . . .+ Γkar−1∆yt−kar+1 + ut (A.1)

where yt is K-dimensional, Π is a (K ×K) matrix of rank r, 0 < r < K, α
and β are (K × r) with rank r, and ut is K-dimensional white noise with mean
zero. Furthermore, Π = αβ′ as derived in [11].

If the cointegration ranks lays at the one of the boundaries r = 0, ∆yt is
stable and for r = K, yt is stable. We know from the results of the Johansen test
4.3.3 that r = 1.

From Figure A.1, we see that the coefficients for the YouTube data are α =
[−0.0374, 0.0112]> and β = [1, −1.0333]>.

From Figure A.2 we see that the coefficients for the Google data are α =
[−0.0023, 0.0114]> and β = [1, −0.8810]>

A-1
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Figure A.1: Output after the VECM is applied to Log(Price) & Log(Views).

Figure A.2: Output after the VECM is applied to Log(Price) & Log(Trends).
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A.2 Empirical Mode Decomposition

So far we are dependent on the differenced time series to get the information
about the interdependencies between the time series, as the VAR model is only
applicable on stationary time series. Moreover, by only analyzing the differenced
time series, we are not getting any information about the long term/seasonal
dependencies.

In order to get the interdependency information on multiple scales, we are
breaking the original time series into multiple Intrinsic Mode Functions (IMFs)
using the Empirical Mode Decomposition (EMD)[15]. Each of the IMF is a
stationary time series and contains seasonal information/trends. The sum of the
IMFs will give us back the original time series.

Figure A.3: Intrinsic Mode Functions of Log(price) and Log(Views).
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Figure A.4: Intrinsic Mode Functions of Log(Price) and Log(Trends).
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