
Scenario analysis and stress-testing with

expert, predictive and risk-correcting views.

Abdelaziz Belqadhi

Under the supervision of

Prof. Didier Sornette and Dr. Peter Cauwels

MASTER THESIS - 2014

Spec. MSc. Quantitative Finance



2



Abstract

The goal of this master thesis is to implement scenario analysis tools addressing various
distributional properties of �nancial risk factors with a powerful and �exible framework
that works with a limited set of assumptions. A few applications, which we cover through-
out this thesis, come to mind: integrate multiple con�icting outlooks in a sound way,
stress-test statistical measures, correct risk assessments with quantitative models or em-
bed predictive trends with data mining. Indeed, we improved value-at-risk estimations at
several levels with views from di�erent models. In another case study, we implemented
and assessed a data mining algorithm for crash forecasts in order to modify the risk
model's features with that information. We explore Attilio Meucci's perspective that
formulates the general problem of embedding statistical views as a linearly constrained
convex program. We detail the precise modus operandi on how we act on speci�c views,
which allows us to write the form that the constraints take. We especially document and
test, for risk drivers in equity markets, the numerical procedure that modi�es a model's
statistics or risk measures. For these quantities, con�dence intervals are computed in
order to take into account the estimation risk and increase robustness, crucial in asset al-
location. We describe, in a logical order, a coherent process to perform scenario analysis.
Indeed, we work our way from a univariate speci�cation and bene�t from its foundations
to deal with the multivariate case. As an application in the multivariate case, we per-
formed a robust portfolio optimization with views on expectation vector, correlation and
we showed that returns are less volatile and more consistent. We then discuss the interac-
tions between both settings and the construction variety of multivariate representations
with the use of copula separation and combination algorithms. In fact, we developed an
algorithm that allows us to process univariate views when we start with a multivariate
speci�cation, and we also found that Student copulas have the best goodness of �t for
equity returns, even when we put them up against canonical vine copulas. Finally, we
implemented Meucci's liquidity-integrated extension that includes trading e�ects. It en-
ables us to consider scenarios with additional features such as various execution horizons,
liquidation policies, and we numerically computed the liquidity score as a measure of
liquidity risk.
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Introduction

Scenario analysis is a technique that quanti�es the e�ects of diverse economic events or
risk factor states on a �nancial portfolio. Its counterpart, stress-testing, exposes the port-
folio to adverse market movements and has a stronger focus on the downside and what
can go wrong. These activities trace their origins back to the RiskMetrics methodology
and value at risk (VaR) models used since 1993 with historical price movements to sim-
ulate loss amounts on a portfolio level. However, qualitative event analyses to mitigate
risks and prepare contingencies were already in place since decades, this approach was
pioneered by the oil company Shell for corporate scenario planning and then spilled over
to �nancial institutions. Scenario analysis is used in portfolio management to embed
subjective views arising from an analyst's research or a portfolio manager's outlook on
speci�c asset developments. Stress-testing is used in risk management to identify portfo-
lio weaknesses and determine if the capital is su�cient to withstand losses. Traditionally,
scenario analysis has been used with the very popular Black-Litterman model, which
considers a normal market in equilibrium described by returns, and where views are on
the expectations. However, the market is not necessarily normal or in equilibrium, and
we would like to incorporate views on risk factors more generally and not only returns.
Moreover, views on expectations are very restrictive, since risk factors are often repre-
sented by a simulated distribution, and we therefore want to incorporate views on every
feature of the distribution. Regarding valuation, if an asset is priced by a non-linear func-
tion of the risk factors, we want to easily explore the impact on an asset or a portfolio
when we distort the risk factors and subject them to speci�c scenarios. The framework
we adopt here is a method introduced by Meucci and inspired by well-known concepts
from information theory. We detail how we will process views on common statistics and
implement them for equities on Matlab. We also explore a spectrum of applications in
risk estimation, stress-testing and asset allocation. The main idea of this scenario analy-
sis method is that, starting from a representation with realizations of the risk factors and
associated prior probabilities, our views can be incorporated as optimization constraints
that keep the realizations untouched but modify the probability masses.

We start with the univariate case where the simulated realizations are given by a
vector and we process views on a risk factor's: expectation, variance, quantiles for which
the Value-At-Risk is a special case, and expected shortfall. We validate the model by
adjusting our simulation procedure with a step including the generation of a robust,
deterministic grid to guarantee a match between the analytical solution and the numerical
one. Once this is done, any subjective view on these features can be given by the analyst
or the asset manager. We do not make any assumption on the prior risk model and do
not need it to be in equilibrium, so we can have views on prices or complex derivatives
for example. After taking care of expert views, we move on to risk-correcting views
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with a case study on Value-At-Risk assessment and improvement. Views can come from
human beings in a manual way, but they can also come from various models in order to
combine their strengths in di�erent areas. We backtest the value-at-risk and select the
view given by the model who performed the best regarding the VaR estimation for each
con�dence level. The last type of view we cover in the univariate case is the predictive
kind, where a model's properties can be enhanced by other models or data mining outputs.
The detection of a crash zone would lead to a view that alters the expected returns of
an index for example and provide an early-warning signal. We develop a data mining
method for crash detection that uses the Johansen-Ledoit-Sornette �tted parameters as
inputs, along with other features, and discuss the results.

We then move on to the multivariate case, where the joint realizations are now rep-
resented by a matrix, and the dependence structure comes into play. Views can apply to
the linear dependence, as evidenced by the covariance or correlation, but also a nonlinear
dependence structure, represented by the copula. However, we use another algorithm to
incorporate views on a copula, and it will allow us to combine any copula to individual
risk factor dynamics but also separate the copula from the marginals if we already have
a prior multivariate speci�cation. We looked at the tails of the distribution in the uni-
variate case, now we will also explore the tail-dependence, i.e joint extreme realizations.
We visualize, evaluate and stress-test bivariate tail-dependences for various dependence
structures. Model selection criterias will help us classify the dependence structure and
choose the best ones. We also revisit predictive views with an application to asset al-
location, where our prior views are sample-based. Sample estimates are often known to
be unstable and yield a high volatility, we can get very large positive but also negative
returns. We implement a robust procedure to update the sample estimates of expected
returns and covariance, which are then used as views on the model's prior expectation and
covariance. We compute the ex-ante and realized returns of the portfolio in both cases.
Finally, we integrate the market model for equities with a liquidity adjustment, enabling
a better scenario description since we take into account the trading impact. Since the
liquidity integration retains the scenario-probability representation, we can hence lever-
age all the previous tools and moreover study the e�ect of di�erent execution horizons,
liquidity diversi�cations or liquidity schedule on the portfolio. We conclude the master
thesis with an overview of our results and what the next steps are.
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Chapter 1

Univariate scenario analysis

We present in this chapter the tools needed to perform scenario analysis in a one-
dimensional setting, if we consider a stock for example. Considering each risk factor
of a system or a portfolio individually is the starting point of a structured framework
for scenario analysis or stress-testing. We use a simulation-based setting and combine
several innovations and perspectives in a more complete, coherent and powerful manner
to perform risk analysis. This process can be done in a subjective manner, with a human
intervention determining what statistical speci�cations the scenarios should have. This is
useful for example if an analyst researched a company and wants to change the risk model
for its stock price according to his �nancial analysis. In stress-testing, a risk manager
can determine himself the stress values and stress types. We will also discuss how to
incorporate views that arise from di�erent models, and this will be useful in correcting
risk model weaknesses and enhance their accuracy. We can combine models in di�erent
areas of the distribution, as we will see with tail measures for example. A model can
also be predictive and in this case we want to incorporate the output as a model view
that doesn't correct the risk model but that gives an investment value. Data mining is a
tool that allows to do this, and we will therefore develop and assess a machine learning
technique for crash and rebound detection.

1.1 Fully �exible views

Fully �exible probabilities, named by Meucci in [Meu08], are a way to represent a distri-
bution with scenarios and probabilities attached to them, and fully �exible views are the
alteration of the statistical properties of this representation. Statistical properties can be
the standard deviation or the quantiles for example, and we will write down how we can
constrain them to take a certain value, which requires solving an optimization problem.
We need to correct and validate this framework with the gaussian distribution in which
we know the analytical solution of the posterior. With such a representation, we can
generate con�dence intervals for each rich statistic, and specify the con�dence we have
in each view.
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1.1.1 Entropy pooling

Before presenting the entropy pooling, we have to discuss how we are going to obtain
the market density at the investment horizon. The steps to model and manage the
P&L distribution are taken from [Meu11b]. The �rst step is the quest of invariance, we
are looking for patterns that are independent and identically distributed over time, we
extract these invariants from the risk drivers that we identify. The set of risk drivers
totally determines the price of the securities at any time t. For stocks, the suitable risk
driver is Yt ≡ ln(St) where St is the stock price. We takeX as the distribution of the pro�t
and loss of the stock St. Observe that Yt is not independent and identically distributed,
however if we take εt→t+1 = Yt+1 − Yt, we can detect with two simple graphical tests if
they are good candidates. We look at the time series of xt+1 ≡ εt→t+1, and split it in two
time series, denoting by t̃ the starting time and

[
.
]
the integer part:

xt , t = t̃, t̃+ τ ,... t̃+

[
t− t̃
2t̃

]
(1.1.1)

xt , t =

([
t− t̃
2t̃

]
+ 1

)
τ ,... t.

We examine the respective histograms and they should look very similar if we have the
same distribution. Then we examine the scatter-plot of the time series until the current
time against its lagged values, and independance tells us we should have symmetry with
respect to both axes while identical distribution means the scatter plot must bear the
form of a circular cloud.

The second step is the estimation of the invariant distribution. Sometimes we have
more than one invariant for a risk driver or many risk drivers with associated invari-
ants, and these invariants are correlated among each other, so we need to estimate the
multivariate joint distribution, and we will use the copula-marginal algorithm, presented
afterwards for the risk driver distributions at the investment horizon, after a univariate
estimation for the sake of calculability. Estimation risk has to be addressed because we do
not know the true distribution, or as Donald Rumsfeld puts it, "the unknown unknowns",
so we compute con�dence intervals for each risk statistic.

The third step is the projection of the risk drivers distribution to the investment hori-
zon, for that we need to go back to the connection and dynamics between the invariants
and the risk drivers. We thus obtain the distribution of the risk driver Yt+τ , and then use
the pricing function, along with the information it at time, to �nally obtain the price at
the investment horizon:

Pt+τ = p
(
Yt+τ , it

)
. (1.1.2)

The distribution of the pro�t and loss is X ≡ Pt+τ − Pt. We usually perform entropy
pooling for the risk invariants, such as the stock log-returns, or the P&L distribution.
For the stock, since Yt ≡ ln(St), the pricing function is p(y) = ey.

The P&L approximation of order 1 of the stock reads:

Πt→t+τ ≈ St
(

ln(St+τ )− ln(St)
)

(1.1.3)
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We present here the entropy pooling method, �rst introduced in [Meu08], but slightly
di�erently by taking a univariate context instead of a multivariate one. The reason,
as we'll see later, is because the processing of extreme views is applied to univariate
distributions and we have fast and accurate algorithms to generate the scenarios in this
case; moreover, it allows more combination possibilities to glue �exible copulas to the
univariate risk factors in order to obtain a joint distribution.

Suppose that we have an arbitrary market model, also called base-case distribution
or "prior" in our setting: it can be stationary or not, parametric or nonparametric, fat-
tailed or Gaussian. This market model can therefore be returns of any asset type, security
prices, pro�t and losses, but in general it represents risk factors. We would like to stress-
test the market model or incorporate subjective views to measure the consequences of
these views on the distribution and hence on the pricing of assets or portfolios dependent
on these risk factors. The output is the updated or stressed distribution which we also
call "posterior", it incorporates the views by imposing the least distortion on the original
distribution.

Let us suppose we have a random variable for one risk factor X, It represents the
information at time t and τ the time length to the investment horizon. X is actually the
market distribution at the investment horizon, so at time t + τ , and we represent it by
its probability density function X ∼ fX .

The entropy pooling method generalizes the Black-Litterman model which assumes
that the market applies to normal returns in equilibrium, that views are portfolios ap-
plying on expectations only and that the optimization framework is mean-variance. This
method removes all these barriers.

We will consider nonlinear functions of the market, which we call V ≡ g(X) ∼ fV ,
and g is a K-dimensional random variable. This means that as a special case we can
express statements on prices. If X represents the stock log-returns of IBM for example,
then we can express views on a nonlinear function of X that represents the pricing
function. Views that users will de�ne will contradict in some way g and thus we will have
V ∼ f̃V 6= fV . We can express views on expectations, medians, volatilities, quantiles by
solving the same mathematical problem, but for views on conditional value-at-risk we
solve a slightly di�erent, recursive problem.

To compute the posterior distribution, let us de�ne the relative entropy between two
distributions f and g, also called Kullback-Leibler divergence:

E(f, g) =

∫
f(x)

[
ln f(x)− ln g(x)

]
dx. (1.1.4)

The relative entropy is zero if f = g, and increases the more di�erent they are. We will
thus minimize the relative entropy to get the updated distribution:

f̃X = argmin
f∈V

E(f, fX) (1.1.5)

where V is the set of all view-consistent distributions.
Finally, we present multiple opinions. Suppose we have M collaborators who specify

their views with each collaborator having a con�dence level cm ∈
[
0, 1
]
. We take the
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average weighted by the di�erent con�dence levels for each collaborator to get the pooled
posterior distribution:

f̃cX =
M∑
m=1

cmf
(m)
X (1.1.6)

where f (m)
X are the posterior distributions for the m-th collaborator.

The computational cost of the algorithm is low because the convex program to be
solved has a number of variables equal to the number of views, and we don't need to
reprice since the scenarios are the same but only the probabilities have changed.

We have 1 risk factor, and we will generate J scenarios, where J is very large. The
market model X is thus represented by an J × 1 vector X of simulations. The di�erent
columns will display the scenario probabilities for each risk factor, so the n-th column is
a J × 1 vector. The scenario probabilities are also of dimension J × 1. The K views are
thus a J ×K matrix, with the k-th view of the j-th scenario being:

νj,k = gk
(
Xj

)
. (1.1.7)

Now we don't simulate new scenarios but we use the same J scenarios with di�erent
probability masses p̃. General views can be written as linear constraints on the updated
probabilities:

a ≤ Ap̃ ≤ a (1.1.8)

where A, a and a are expressions of X . The relative entropy is discretized according
to the number of scenarios:

E(p̃,p) =
J∑
j=1

p̃j
[

ln(p̃j)− ln(pj)
]

(1.1.9)

The posterior distribution can be rewritten as:

p̃ = argmin
a≤Af≤a

E(f,p) (1.1.10)

We solve the entropy minimization problem by taking the Lagrangian, setting it equal
to 0 to get the dual Lagrangian which we prefer to maximize because the optimization
acts on the number of views, and then we obtain p̃ by a suitable transformation. If
we de�ne the pairs (L, l) and (H, h) to respectively contain the inequality and equality
constraints, the problem reads:

p̃ = argmin
s. t.Lf≤l

Hf=h

{
J∑
j=1

f̃j
[

ln(fj)− ln(pj)
]}

(1.1.11)
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The Lagrangian is:

L
(
f, λ, ν

)
= f

′
(

ln(f)− ln(p)

)
+ λ

′
(
Lf− l

)
+ ν

′
(
Hf− h

)
. (1.1.12)

The solution for the �rst order condition is:

f(λ, ν) = eln(p)−1−L′
λ−H′

ν . (1.1.13)

Taking the Lagrange dual function G
(
λ, ν

)
= L

(
f(λ, ν), λ, ν

)
and maximizing it yields

(
λ∗, ν∗) = argmax

λ≥0, ν
G
(
λ, ν

)
. (1.1.14)

The posterior probability vector is �nally:

p̃ = f
(
λ∗, ν∗). (1.1.15)

We have seen earlier that the type of views will determine the form of the matrix A,
and we will specify the form of this matrix every time we encounter a new view. The
entropy pooling function was written in Matlab with the help of the fmincon function,
since we have a constrained convex optimization problem. Obviously the parameters
are the matrix A, the value of the view represented in a vector b, and �nally the prior
probability vector p. We have validated the results and improved our program with
Meucci's code, especially since he sped up the code by providing the gradient and the
hessian as options. All of Meucci's codes can be found in the Matlab Central �le exchange
under "Attilio Meucci", so all further references to his codes are located there.

1.1.2 Expectation and variance stress-testing : model validation

We now write the method for processing views on the expectation and the variance of
any distribution represented by the scenarios X and a prior distribution p. We have gone
further than Meucci and programmed a function which determines the matrix form A in
this case and asks the user for his views on expectation and variance. This is actually
the case for all types of views we will encounter, Meucci provided the general code but
the speci�c constraints were absent, and this was an extension we developed in Matlab.

Expectation and variance views

• Recognize that the expectation in the scenario-probability representation is written
as:

J∑
j=1

pjXj = m̂
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• The variance in the scenario-probability representation is written as:

J∑
j=1

pj

(
Xj − m̂

)2

= σ̂2

• A view on expectation m̃ and variance σ̃ amounts to choosing a new set of proba-
bility masses p̃j such as:

J∑
j=1

p̃jXj = m̃,

J∑
j=1

p̃j

(
Xj − m̂

)2

= σ̃2.

• We can write the views as linear equality system on the posterior probability masses
p̃j

Ap̃ = b

where

A =

 X1 X2 · · · XJ(
X1 − m̂

)2 (
X2 − m̂

)2

· · ·
(
XJ − m̂

)2


and

b =

(
m̃
σ̃2

)
• We solve the relative entropy minimization problem:

p̃ = argmin
Ap̃=b

J∑
j=1

p̃j
[

ln(p̃j)− ln(pj)
]

• We keep the same scenarios X and replace p with p̃, the expectation and variance
views are now satis�ed.

We start here with the simplest example by �tting a gaussian distributions to the
log-returns of the S&P 500 index. Although the normal distribution has its �aws, it is
important, for validation purposes, to test our model against analytical solutions that
can be derived in this case. We also have to consider that many funds are still using
the normal distribution in their investment activities, so it will be interesting to see the
di�erence it produces. We start with the S&P 500 index and determine the parameters
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µ and σ of the �tted normal distribution for the log-returns. We then generate J = 105

Monte-Carlo scenarios and apply two kinds of stress-tests to the expectation and stan-
dard deviation (or equivalently the variance) of the log-returns distribution, a mild one
and an extreme one. By mild we mean that the views we force are relatively near to
the prior whereas for the extreme case we take views that will modify the distribution
consequently. We summarize the stress-types and stress values in Table 1:

Scenarios
Base-case scenario Mild stress-test Extreme stress-test

Stress type
Expectation 0.043 -0.2 -0.8
Variance 0.6563 1 2

Table 1: Stress-test

For a prior normal distribution

X ∼ N(µ, σ2) (1.1.16)

if we consider views on the expectation and the variance only, it can be proven analyti-
cally that the Kullback-Leibler divergence minimization produces a posterior distribution
belonging to the class of normal distributions. If we write the views as:

V :

{
Ẽ
[
X
]

= µ̃
˜V ar(X) = σ̃2 (1.1.17)

then the posterior reads

X ∼ N(µ̃, σ̃2). (1.1.18)

Since we have 2 views, we therefore have a J × 2 matrix composed of νj,1 and νj,2,
where νj,k has been de�ned earlier and is a function of the j−th scenario.

The numerical constraint for the expectation view can be written as:

J∑
i=1

p̃iXi = µ̃, (1.1.19)

where the view is on νj,1 = Xj, and Xi are the scenarios simulated from the normal
distribution. The expectation value µ̃ is de�ned exogenously and p̃i is the updated prob-
ability vector.

The numerical constraint for the variance view can be written as:

J∑
i=1

p̃i

(
Xi − µ

)2

= σ̃2, (1.1.20)

12



Figure 2: Mild stress-test

where the view is on νj,2 =

(
Xj − µ

)2

, and its value σ̃2 is de�ned exogenously.

We therefore have a benchmark for our numerical results. We observe in Fig. 2 that
for a mild stress-test, the numerical and the analytical posterior match. However, for an
extreme stress-test, the tails are not covered correctly and some probabilities even blow
up as shown in Fig. 3, demonstrating a signi�cant departure between the numerical and
analytical solution. We would need a very large number of Monte-Carlo scenarios to get
the right numerical solution. We address the problem of computing a correct posterior
distribution, even when we have an extreme stress-test, by using a stable grid proposed
in [MAK12].

We will not start with Monte-Carlo methods to generate the grid probabilities pair
xj, pj because we either don't have enough scenarios to cover the tails of the distribution,
or we need a very large number of simulations. We will take an approach which retains
the �exibility and the scope of the views speci�cation, specifying a deterministic grid and
setting pj ≡

∫
Ij
f(x)dx where

Ij ≡
[
xj −

xj − xj−1

2
, xj +

xj+1 − xj
2

]
(1.1.21)

and f is the density function. To dispose of a grid that covers the tails, we �nd the lower
and upper extremes x and x such that the probability that the risk factor is smaller than
the lower extreme (or larger than the upper extreme) is taken to be ε ≈ 10−9. The grid

points are the roots of the Hermite polynomial of order J HJ(x) = (−1)Je
−x2
2

dJe
−x2
2

dxJ
,
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Figure 3: Extreme stress-test

that we translate and dilate to cover the lower and upper extremes. Now that the grid is
de�ned, we apply the algorithms in the numerical optimization section and the adjustment
needed for an extreme view in the previous section, to obtain the updated probabilities
p̃. We can generate afterwards good quality Monte Carlo scenarios by �rst computing
the posterior cumulative distribution function at the grid points:

F̃ (xj) ≡
j∑
s=1

p̃s. (1.1.22)

We then simulate uniform distributions and use an interpolation operator on the uniforms
that approximates the inverse distribution function, providing us the posterior, adjusted
Monte Carlo scenarios.

We come back to our extreme stress-test example, where the standard fully �exi-
ble views framework fails because the Monte-Carlo method breaks down numerically.
Instead, we follow the fully �exible extreme views framework introduced in [MAK12].
Meucci provided the Gauss-Hermite grid and the function computing the robust prior
probabilities on the intervals Ij, the views on expectation and variance in this framework
have however been programmed by us. We take a Gauss-Hermite grid with only J = 103

scenarios compared to J = 105 Monte-Carlo scenarios in the basic method. The result in
Fig. 4 is compelling and demonstrates the power of using this grid.

As we have stated earlier, we can use this Gauss-Hermite grid to generate high-quality
Monte-Carlo scenarios. We choose the number of scenarios J = 105. We generate J
uniform random numbers, and then use an interpolation function which takes as inputs:
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Figure 4: Extreme stress-test revisited

the J uniforms, the posterior cumulative distribution and the 103 deterministic grid
scenarios. The outputs are the J posterior Monte-Carlo scenarios, which are equally
weighted. We plot the numerical posterior with the Gauss-Hermite grid-adjusted Monte-
Carlo scenarios in Fig. 5. The analytical and the numerical solution match, so we will
always use a Gauss-Hermite grid in the future to process the tails before generating
Monte-Carlo scenarios.

In the �rst Fig. 6, we suppose that we have one user who expresses his views but is
not fully sure about them, meaning that he assigns a con�dence level to his statement,
which will temper the posterior probability and bring it closer to the prior distribution.
Hence, the lower the con�dence level, the closer the posterior will be to the prior. Let's
plot the impact of the con�dence level on the posterior probability for a stress-test. We
take 5 di�erent con�dence levels, from 0.2 to 1 with increments of 0.2

In the second Fig. 8, we suppose we have 3 users who are assigned di�erent con�dence
levels, which can correspond to their track-record, their level of seniority, it amounts to
the level of faith we put in their views basically. The Table 7 displays the stakeholders
with their views. We naturally expect that the user with the highest con�dence level will
bring the opinion-pooled posterior distribution closest to his posterior.
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Figure 5: Gauss-Hermite adjusted Monte-Carlo scenarios

Figure 6: Con�dence powers in a view
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User con�dence levels
Junior analyst = 0.1 Asset manager = 0.3 Director = 0.6

Stress type
Expectation 0.3 -0.3 - 1
Variance 0.35 0.7 0.2

Table 7: Opinion pooling: expert views

Figure 8: Opinion pooling visualized

To conclude this section, we computed stable Monte-Carlo scenarios and enabled mild
and extreme stress-tests on the expectation and the variance of any risk factor speci�ed
by the fully �exible probabilities. We allowed collaboration with multiple views and
users and computed the ensuing distribution that takes into account their outlooks. The
general entropy pooling framework can naturally digest much more than only dispersion
and location views, and we will now turn to risk measures used by regulators and banks
to assess their potential losses and present how the fully �exible views can apply to them.

1.2 Extreme views and tail risk measures

We present two popular risk measures used by �nancial institutions to quantify the risks
on their books, and explain how we can stress-test these quantities. Risk quanti�es the
uncertainty of the future outcome of a current decision or situation, and the possible
outcomes are often described by a probability distribution. Banks however often express
risk with one number. Volatility is a common measure of risk but it is only useful when
returns are normally distributed. When this is not the case, we introduce other types
of risk metrics. To measure extreme risks, the value-at-risk and the expected shortfall
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are appropriate. These two measures are also often used for capital allocation, some-
times across several business lines, where the goal is not to provide �nance but to absorb
the risks undertaken, and are a precondition to optimize shareholder value. Introducing
views on these risk metrics is more complicated than other statistical features. We give an
important application of model views on value at risk at di�erent con�dence levels, and
show how we can combine di�erent models to produce better estimates of value-at-risk.

1.2.1 Value-at-risk and expected shortfall views

Value-at-risk and expected shortfall are two risk measures that attempt to quantify the
market risk of an asset or a portfolio in a bank or pension fund. The former is the maxi-
mum loss over a time window with a high con�dence level, whereas the latter measures
the severity of the losses when the former amount is exceeded. These risk measures are
often computed by models or historical simulation, which means they are only as good
as the assumptions or the data behind it. Stress-testing these quantities and therefore
covering unusual scenarios is therefore crucial in order for the bank to evaluate its capac-
ity to absorb large losses as well as identify steps to reduce risks and preserve its capital.
Before presenting these two measures in more detail, we give the de�nition of a coherent
risk measure is, as theoreticized by Artzner et al. in [ADEH99]. A coherent risk measure
displays the following properties:

1. Scalable, twice the risk should give a twice bigger measure,

2. Ranks risk correctly, bigger risks get bigger measures,

3. Allows for diversi�cation, aggregated risks should have a lower measure,

4. Translation invariance with respect to riskless cash �ows,

5. Relevance, non-zero risks get non-zero risk measures.

The value-at-risk is the maximum loss from adverse market movements for a given
con�dence level α (95 %, 99 %) over a given time horizon T (1, 10 days), so it's the
level of loss that can occur over the time horizon that is not exceeded in α% of cases.
Mathematically, if we de�ne L as the random variable expressing the loss of a portfolio,
then V aRα(L) is the α-quantile

V aRα(L) = inf

{
l ∈ R : P(L > l) ≤ 1− α

}
= inf

{
l ∈ R : FL(l) ≥ α

}
The value-at-risk is not a coherent measure of risk, it is relevant, scalable, ranks risks

correctly and translation invariant but does not allow for diversi�cation. We now show
how we can express a view on the value-at-risk. We remind that νj,k are the elements of
a J ×K matrix representing a function, possibly non-linear, of the J scenarios X , and K
is the number of views. Let k be the column where we express the view on the value-at-
risk (let's take it at a 99 % level and with a 1-day horizon). Without loss of generality,
let's take K = 1. Since we have a scenarios-probabilities representation, we �rst sort the
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scenarios from X , in ascending order, i.e Xi ≤ Xj if the scenario index satis�es i < j. If
we have a log-returns distribution, then the value-at-risk is the maximal log-return such
that the probability that log-return outcomes are smaller than this value is lower than 1
%. For the next value, the probability exceeds 1 %. This corresponds to the left-tail of
the distribution. For the log-return distribution, we thus �nd the index I such that

I∑
i=1

pi ≤ 1% (1.2.1)

I+1∑
i=1

pi > 1% (1.2.2)

and XI is the value-at-risk. A view on VaR amounts to choosing another XIview as
the new value-at-risk and hence an index Iview implying that the linear constraint, whose
coe�cients in front of the probabilities will go into the matrix A, will now be written as:

Iview∑
i=1

p̃i ≤ 1% (1.2.3)

Iview+1∑
i=1

p̃i > 1%⇒
Iview+1∑
i=1

−p̃i < −1% (1.2.4)

We resume the view on value-at-risk below, which we have programmed entirely.

Value-at-risk views at the α-% level

• Sort the scenarios X in increasing order.

• Recognize that the value-at-risk at the α-% level in the scenario-probability repre-
sentation is written as:

I∑
i=1

pi ≤ α%,

I+1∑
i=1

−pi < −α%,

V aRα(X) = XI .

• A view on value-at-risk Ṽ aRα(X) amounts to choosing a new set of probability
masses p̃j such as:

Ĩ∑
i=1

p̃i ≤ α%,

Ĩ+1∑
i=1

−p̃i < −α%,

Ṽ aRα(X) = XĨ .

19



• We can write the view as a linear inequality system on the posterior probability
masses p̃j

Ap̃ < b

where

A =

( 1 2 · · · I I + 1 I + 2 · · · J

1 1 · · · 1 0 0 · · · 0
−1 −1 · · · −1 −1 0 · · · 0

)
has dimension 2× J , the row above the �rst row of A lists the column indices, and

b =

(
α%
−α%

)
• We solve the relative entropy minimization problem:

p̃ = argmin
Ap̃<b

J∑
j=1

p̃j
[

ln(p̃j)− ln(pj)
]

• We keep the same scenarios X and replace p with p̃, the view on the value-at-risk
is now satis�ed.

We have in our example with the log-returns distribution of the S&P 500 a value-
at-risk of -1.8339 and we set a view on the VaR of -2.1059, which should make the tail
fatter. This gives us the following prior and posterior distributions in Fig. 9. We notice
that the prior and posterior di�er only in the region of the left tail, where obviously a
lower value-at-risk view will imply that the probability masses of the posterior should be
higher in that region to maintain the 1 % level.
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Figure 9: View on VaR: prior and posterior

The second risk measure we introduce is the expected shortfall or CVaR, which enjoys
the bene�ts of diversi�cation thanks to its sub-additivity property contrary to the value-
at-risk and is therefore a coherent measure of risk. For a loss variable L, the CVaR is
the average loss beyond the value-at-risk and therefore computes the expected loss in a
worst-case scenario. The expected shortfall stress-tests have been addressed in the fully
�exible extreme views framework in [MAK12] and we follow its implementation. Suppose
we have a view on the CVaR:

Ẽ
[
X
∣∣X ≤ ˜quγ

]
≡ ˜cvγ (1.2.5)

˜cvγ is the target 1 − γ conditional value-at-risk and ˜quγ the posterior γ-quantile. If
we want to add a view on conditional value-at-risk, the problem is that we do not know
value-at-risk beforehand and thus cannot transform the view into a linear constraint on
the posterior. So we have to �nd the VaR. Sorting the scenarios in increasing order as
we did for the value-at-risk. For s ∈ {1,... J}, we de�ne:

p(s) = argmin
q∈Cs

E(q, p) (1.2.6)

Cs :

{
x1q1 + · · ·+ xsqs ≡ ˜cvγ
q1 + · · ·+ qs ≡ γ.

(1.2.7)

The constraints are linear, and we can solve the problem by switching to the dual. The
solution satis�es the CVaR constraint while being as close as possible to the reference
distribution, but the posterior satisfying the CVaR view is the probability vector with
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the least distortion among all the p(s) for s ∈ {1,... J}, hence: p̃ = p(s̃) where s̃ =
argmins∈{1,... J} E(p(s), p). We use the Newton-Raphson method to solve the problem
since the computation is really costly, by observing that the relative entropy is a concave
function of s and de�ning DE(p(s), p) = E(p(s+1), p)−E(p(s), p). We initialize with a value
s ∈ {1,... J} and apply the numerical scheme:

s = int
(
s− DE(p(s), p)

D2E(p(s), p)

)
(1.2.8)

s = s (1.2.9)

where int is the closest integer and D2 is the second empirical derivative with respect to
s.

We write below our algorithm for conditional value-at-risk views. For the program-
ming part, we have taken inspiration from Meucci's code example but rewrote it into a
function to avoid duplication and make it reusable.

Expected shortfall views at the α-% level

• Sort the scenarios X in increasing order.

• Recognize that the expected shortfall at the α-% level in the scenario-probability
representation is written as:

s∑
i=1

piXi = esα,

s∑
i=1

pi < α%,

s+1∑
i=1

−pi < −α%,

CV aRα(X) = esα.

• A view on expected shortfall C̃V aRα(X) amounts to choosing a new set of proba-
bility masses p̃j such as:

s̃∑
i=1

p̃iXi = ẽsα,

s̃∑
i=1

p̃i < α%,

s̃+1∑
i=1

−p̃i < −α%,

C̃V aRα(X) = ẽsα.
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• Solve a �rst optimization problem for all s ∈ {1,... J}

p(s) = argmin
Ap̂(s)=b

J∑
j=1

p̂
(s)
j

[
ln(p̂

(s)
j )− ln(pj)

]
where

A =

( 1 2 · · · s s+ 1 · · · J

X1 X2 · · · Xs 0 · · · 0
1 1 · · · 1 0 · · · 0

)
has dimension 2× J , the row above the �rst row of A lists the column indices, and

b =

(
ẽsα
α%

)
• Report the result

J∑
j=1

p̃
(s)
j

[
ln(p̃

(s)
j )− ln(pj)

]
for all s ∈ {1,... J} and choose

s̃ = argmin
s∈{1,... J}

J∑
j=1

p
(s)
j

[
ln(p

(s)
j )− ln(pj)

]
.

• The posterior probability mass p̃ is obtained by setting:

p̃ = p(s̃).

• We keep the same scenarios X and replace p with p̃, the view on the expected
shortfall is now satis�ed.

Fig. 10 and Fig. 11 show us the value of the Kullback-Leibler divergence, which
is minimized, at each iteration and the posterior distributions for each iteration. We
notice that the �rst two iterations produce very similar posteriors. We set to 0.01 and
stop our algorithm when the change in the Kullback-Leibler divergence is smaller than
this tolerance. At the third iteration, this condition is met and we thus obtain the red
posterior which is clearly very di�erent from the two �rst ones. In Fig. 12 we see the
di�erence between prior and posterior but also the location of both expected shortfalls
labeled by the blue and red triangles. We can observe that it wasn't just a shift to the
left but a complete rearrangement of the probability masses.
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Figure 10: Intermediate computations of CVaR view

Figure 11: Value of the Kullback-Leibler divergence
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Figure 12: View on CVaR: prior and posterior

1.2.2 Con�dence intervals for risk statistics

We know how to compute as well as process views on the expectation, variance, value-at-
risk and expected shortfall when we represent the risk factors with a scenario-probability
pair. We obtain one number for each statistic, but we have to be aware that there is
an estimation risk associated to the computation of that risk number. To increase the
robustness of the estimation exercise, we build con�dence intervals in this fully �exible
probabilities framework. The general applicability of this method to any risk model,
however complicated it may be, makes it powerful because we do not need to know the
speci�cations or the parameters characterizing the model but only its scenario-probability
speci�cation. Moreover, the methodology is the same for any risk measure, which makes
it even simpler. This method is called the e�ective number of scenarios and de�ned by
Meucci in [Meu12a]. We see how we can construct these con�dence bands for the risk
numbers in our framework, for a prior distribution as well as for a posterior distribution.
The e�ective number of scenarios Ĵ is de�ned as the exponential of the entropy of the
probability weights pj:

Ĵ ≡ e−
∑J
j=1 pj ln pj . (1.2.10)

The entropy measures the concentration of probability mass in the pj's. The e�ective
number of scenarios counts the scenarios where the probabilities are strictly positive, this
number ranges from 1 to J . The maximum is equal to J when all probabilities are equal
(pj = 1

J
), and the minimum is equal to 1 when we emphasize one scenario only, i.e there

exists an index j such that pj = 1. It is a measure of the statistical power of a stress-test,
the higher the e�ective number of scenarios, the more powerful the test. If we denote by σ
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the true risk number that could be the standard deviation, the skewness, kurtosis, value-
at-risk, expected shortfall, of the unknown distribution and σ̂ the risk number computed
in our framework. Statistical consistency ensures that the approximated risk number
converges to the true risk number as the number of scenarios grows:

lim
J→∞

Ĵ =∞⇒ lim
J→∞

σ̂ = σ. (1.2.11)

For a con�dence band [
σ, σ

]
(1.2.12)

around σ, here is the procedure to follow that we have programmed from scratch.

Con�dence intervals for any risk statistic σ

• we compute the empirical scenario-probability distribution,

• we compute the e�ective number of scenarios Ĵ and round it to the nearest integer,

• we repeat the following step S ≈ 1000 times for s = 1, . . . , S: drawing Ĵ indepen-
dant and equally-weighted scenarios from the empirical distribution and computing
σ̂(s),

• compute the lower and upper quantiles σ and σ from the distribution of the risk
number {σ̂(s)}s=1,...,S.

Distribution
Prior Posterior

E�ective number scenarios 10000 9177
Expectation 0.043 [ 0.034 0.052 ] -0.19999 [ -0.2 -0.19997 ]

Standard deviation 0.80967 [ 0.80294 0.81622 ] 0.98078 [ 0.98036 0.98122 ]
VaR -1.8452 [ -1.8797 -1.8122 ] -2.5178 [ -2.6475 -2.3913 ]
CVaR -2.117 [ -2.1601 -2.0753 ] -2.7099[ -2.8678 -2.5602]

Table 13: 75% con�dence level for prior and posterior risk statistics

Distribution
Prior Posterior

E�ective number scenarios 10000 9177
Expectation 0.043 [ 0.0266 0.058 ] -0.19999 [ -0.2 -0.19995 ]

Standard deviation 0.80967 [ 0.79832 0.82222 ] 0.98078 [ 0.98017 0.98155 ]
VaR -1.8452 [ -1.9033 -1.787 ] -2.5178 [-2.7938 -2.325 ]
CVaR -2.117 [ -2.1935 -2.0465 ] -2.7099[ -3.0193 -2.4747]

Table 14: 95% con�dence level for prior and posterior risk statistics
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This procedure applies to all types of distributions that are given by the scenario-
probability speci�cation and all kinds of risk statistics. We take the mild stress-test
example from Table 1 and compute the following statistics as well as their con�dence
intervals for con�dence levels of 75% and 95%: the e�ective number of scenarios, the ex-
pectation, the standard deviation, the value-at-risk and the conditional value-at-risk. We
also compute for each risk number its expected value by giving an equal weight to all S
resamplings. The results are shown in Table 13 and Table 14. For the prior distribution,
we generated J = 105 equally-weighted Monte-Carlo scenarios, which explains why the
e�ective number of scenarios is equal to 10000. However, the mild stress-test changes
the probabilities of the prior distribution and therefore lowers the e�ective number of
scenarios, now equal to 9177. As expected, the con�dence bands in brackets are narrower
in Table 13 than Table 14. These con�dence intervals can serve multiple purposes: they
can be used for robust asset allocation and incorporate the estimation uncertainty of the
risk measures (such as the mean and CVaR) directly in the optimization process, or for
stress-testing by taking the lower or upper end of the brackets instead of the expected
value.

1.2.3 Risk-correcting views with backtests

We know how to process views on value-at-risk, albeit in an exogenous way, and this
would count as an expert view. However, it is also possible to set a view that doesn't
come from a human being, but from a model. You may say that we are already using a
model, and if it is not doing a good job at estimating the VaR, then we should change
it by another one. This is however simplistic, and our model may be good for example
for predicting expected returns and correlations, but bad for downside risks. Our prior
model could also be good for value-at-risk estimation at some con�dence levels and bad
at other thresholds. We want to keep using our prior model for the things it is good for,
and re�ne it by mixing other models that will bring a more accurate view of the VaR
with risk-correcting views. This case study was programmed by using �tting procedures
available in the statistics toolbox of Matlab, but the backtesting methodology and the
con�dence interval generation were programmed by hand.

We use a case study with IBM daily log-returns, and we �t a simple Gaussian distri-
bution. We then produce a high-number of simulations with the estimated parameters
and compute the Monte-Carlo Value-At-Risk at the 1%, 2.5%, 5% and 10% con�dence
levels for a 1-day horizon. The results are in Table 15.

VaR for �tted Gaussian distribution

Con�dence levels

1% -3.9873 %
2.5% -3.3331 %
5% -2.8379 %
10% -2.2153 %

Table 15: Value-at-risk at several con�dence levels

The question we can ask ourselves is how �awed the risk estimation is. We use the
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Anderson-Darling hypothesis test in order to accept or reject the hypothesis that the
sample is coming from a normal distribution. The p−value is computed and compared to
the signi�cance level for the decision to be made. The principle of the test is to measure
a weighted distance between the hypothesized normal distribution and the empirical
cumulative distribution, where the weight function is putting the emphasis on the tails
and is therefore better at detecting departures from normality. The p−value returned at
the 5% level is extremely small, which favors a strong rejection of the normal distribution
hypothesis. Now we know that our previous risk estimates are not correct. We could
choose totally di�erent models and compute the value-at-risk, or we could keep our normal
distribution but use more accurate models for VaR speci�cations. We will explain our
choice afterwards.

We start �tting 4 distributions to the IBM log-returns:

• A Student distribution,

• a non-parametric distribution with normal kernel,

• a non-parametric distribution with Epanechnikov kernel,

• a semi-parametric distribution with an empirical cumulative distribution in the
center and Pareto in the tails.

We also perform the Anderson-Darling test on these four distributions, this test is not
only meant for Gaussian distributions. We report the p-values at the 5% level and the
decision in Table 16.

Hypothesis testing
p−value Test decision

Distributions

Student distribution 0.83542 Accept
Nonparametric normal kernel 0.84465 Accept

Nonparametric Epanechnikov kernel 0.84465 Accept
Semi-parametric 0.854632 Accept

Table 16: Anderson-Darling tests for various distributions

They all pass the Anderson-Darling test. Does it mean that we can use any of these
models to process views on the value-at-risk instead of the gaussian value-at-risk ? No it
does not, and as a matter of fact we are going to introduce more stringent ways to perform
the model validation through out-of-sample forecasts. The backtesting methodology is
taken from [Ale09] and we implemented it for our case study. If the backtest fails, it
means the estimation error is too large or the model has been misspeci�ed. We choose
an estimation period of 1000 days which de�nes the number of days used to estimate the
VaR model parameters. We then then roll over the estimation sample 2425 times while
keeping the estimation period constant. The testing sample starts after the last day of
the estimation sample. Also, since we estimate a daily VaR, the estimation from day k to
day k + 1000 produces a VaR from the k + 1000-th to the k + 1001-th day. The realized
return from the k + 1000-th to the k + 1001-th day is also recorded. We roll the window
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forward 1 day and repeat the estimation of the VaR until the end of the entire sample. We
therefore have two time series which are going to form the backbone of the backtest: the
daily VaR at a speci�ed con�dence level, and the realized returns. By comparing these
two time series, we can count the number of times the realized returns is lower than the
estimated VaR, and we call it a VaR violation or exceedance. For example, if we estimate
a 1% VaR and have 2000 observations in the time series, we would expect the VaR to be
exceeded 20 times. We can make a statistical test with the number of exceedances. Our
backtest assumption is an i.i.d Bernoulli process generation of the daily returns, where
success means a VaR violation and is labelled 1. More formally, we de�ne Xt+1 as the
realized return from t to t + 1, V aRα,t the α% value-at-risk estimated at time t for the
following day, and Iα,t as

Iα,t =

{
1, if Xt+1 < V aRα,t

0, otherwise.
(1.2.13)

If the model produces a good V aR assessment, then the probability of success is

P
(
Iα,t = 1 at any time t

)
= α. (1.2.14)

The expected number of successes in a sample with n observations is therefore n
times the previous probability if the indicator is independent and identically distributed.
Calling Yn,α the number of successes, it is a binomial distribution with parameters n and
α, thus:

E
[
Yn,α

]
= nα, (1.2.15)

V

(
Yn,α

)
= nα(1− α). (1.2.16)

When the number of observations n is big enough, the binomial distribution converges
to a normal distribution, so we can write a con�dence interval C for Yn,α under the null
hypothesis that the VaR model is correct:

C =

(
nα− 1.96n

√
α(1− α), nα + 1.96n

√
α(1− α)

)
. (1.2.17)

If the observed number of exceedances lies outside this con�dence interval, this leads to
a rejection of the null hypothesis and therefore hints at a misspeci�cation of the VaR
model.

We will do a backtest with our four distributions and for the 1%, 2.5%, 5% and
10% con�dence levels. We report the con�dence intervals, the observed number of ex-
ceedances for each distribution and con�dence level on one hand, and the rejection results.

The Student distribution is rejected at the 1%, 2.5% and 10% levels but accepted at
the 5% level. All other distributions are accepted at the 1%, 2.5% and 5% but all rejected

29



Con�dence interval C = (14, 33)
1% level Test decision

Number exceedances

Student distribution 35 Reject
Normal kernel 27 Accept

Epanechnikov kernel 27 Accept
Semi-parametric 30 Accept

Table 17: Backtesting VaR at the 1% level

Con�dence interval C = (45, 75)
2.5% level Test decision

Number exceedances

Student distribution 76 Reject
Normal kernel 65 Accept

Epanechnikov kernel 68 Accept
Semi-parametric 68 Accept

Table 18: Backtesting VaR at the 2.5% level

at the 10%. If we take the value-at-risk view with the gaussian distribution at the 10%
level, it lies inside the con�dence interval and is thus accepted. When more than one lies
inside the con�dence interval, we choose the one which is closest to the expected value of
the binomial distribution. Based on this case study alone, we can process the views on
value-at-risk as following:

• Gaussian VaR at the 10% level,

• Student VaR at the 5% level,

• non-parametric distribution with normal kernel VaR at the 2.5% level,

• non-parametric distribution with Epanechnikov kernel VaR at the 1% level.

We have demonstrated that by combining di�erent risk models, we can improve the
risk estimation of the value-at-risk at di�erent con�dence levels. The prior risk model is
altered with views on the quantiles coming from di�erent models who perform best at the
required con�dence levels using a backtesting methodology as a performance indicator.
This makes the posterior risk model more accurate by construction.

After discussing risk estimation enhancement, we will now move on to predictive sce-
nario analysis. Our prior risk model may be blind to certain future developments, and this
is why we want to embed analyst outlooks or other quantitative models, bringing other
information to light, in the same way we did with risk-correcting views. The posterior
risk model then re�ects that new information and should provide a better forward-looking
perspective. In the next section, we study a predictive model based on the �ndings of
Johansen, Ledoit and Sornette in [JLS71], who gives us warnings about crashes or more
generally change of regimes, so we can update our prior model in order to re�ect this
valuable information.
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Con�dence interval C = (100, 142)
5% level Test decision

Number exceedances

Student distribution 119 Accept
Normal kernel 111 Accept

Epanechnikov kernel 111 Accept
Semi-parametric 113 Accept

Table 19: Backtesting VaR at the 5% level

Con�dence interval C = (213, 271)
10% level Test decision

Number exceedances

Student distribution 199 Reject
Normal kernel 190 Reject

Epanechnikov kernel 198 Reject
Semi-parametric 203 Reject

Table 20: Backtesting VaR at the 10% level

1.3 Predictive scenario analysis: crashes, rebounds

We saw earlier that views could come from experts or analysts who want to incorporate
their assessments, and not leave everything to the risk model which is by de�nition
calibrated with historical data, i.e backward-looking. Views can alternatively originate
from risk-correcting models, and are usually used to enhance the prior model's statistical
properties, for example by improving value-at-risk or expected shortfall estimates. A
last type of view we are going to present here are predictive views, i.e views that foresee
where statistical quantities or risk factors are moving, and we will use machine learning
to generate these predictions in conjunction with the Johansen-Ledoit-Sornette bubble
model in [JLS71]. We then assess its performance. If the predictive power of the data
mining method is proven, we can then embed the prediction with the prior risk model,
acting on one or more of its features by using Meucci's fully �exible views.

1.3.1 The Johansen-Ledoit-Sornette model

Intuition and theory

We will �rst explain the intuition of the model before delving in the equations, and we
refer to [Sor09] for more detailed discussions. The traditional Johansen-Ledoit-Sornette
model assumes that the price satis�es a jump-di�usion stochastic di�erential equation.
The jump component quanti�es the loss amplitude if a crash has occurred, if not there
is none. Jumps are driven by the crash hazard rate. The crash hazard rate on a time
interval is the conditional probability that the crash occurs on this time interval knowing
that the crash hasn't happened yet. The structure of the �nancial system is represented
as a hierarchical system, the magnitude of the di�erent agents vary and form structures,
from the small retail investor to sovereign wealth funds, and this system determines the
functional form of the crash hazard rate. In a simple structure, the crash hazard rate
will increase in a power law fashion towards a point in time that we call the critical time.
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The structure chosen by Johansen-Ledoit-Sornette in [Sor09], called diamond lattice,
displays accelerating log-periodic oscillations on top of the power law, with a divergence
at the critical point. The herding behavior among the agents should illustrate the �ght
between order and disorder. This �ght can also be exempli�ed by fundamental versus
noise traders and quanti�ed by the log-periodic power law. The log-periodicity shows
the changing balance of power between both trader types and the power law reveals the
rising strength of the noise traders who herd. The crash hazard rate, once determined,
is connected by a simple relation to the log-price or the log-returns, allowing us to write
the equation for these observable quantities and perform statistical analysis.

We now present the traditional JLS model formally, following the exposition in [JLS71].
Introducing an exogenous probability of crash modeled by a jump process j which is 0 if
the crash has not occurred, and 1 right after the crash. We denote by Q(t) and q(t) the
cumulative distribution function of the crash time and its density, with the crash hazard
rate de�ned as:

h(t) =
q(t)

1−Q(t)
≈ P

(
"Crash time" in

[
t, t+ dt

]∣∣∣∣"Crash time" > t

)
(1.3.1)

When a crash occurs, the price drops by κ. The stochastic di�erential equation governing
the asset price p(t) is:

dp(t) = µ(t)p(t)dt+ σ(t)p(t)dWt − κp(t)dj (1.3.2)

where the drift is constrained to satisfy the rational expectation condition

E
[
dp(t)|Ft

]
= µ(t)p(t)dt+ σp(t)E

[
dWt|Ft

]
− κp(t)E

[
dj|Ft

]
= µ(t)p(t)dt+ 0− κp(t)

(
1× h(t)dt+ 0× (1− h(t)dt)

)
= µ(t)p(t)dt− κp(t)h(t)dt = 0,

which gives the condition µ(t) = κh(t), and by integration, yields:

lnE
[
p(t)

]
= lnE

[
p(t0)

]
+

∫ t

t0

κh(t′)dt′, (1.3.3)

The power law and the log-periodic accelerating oscillations backed-up from the suscep-
tibility in the hierarchical diamond lattice structure, determine the crash hazard rate's
form

h(t) = B′(tc − t)m + C ′(tc − t)m cos(ω ln(tc − t)− ψ) (1.3.4)

where tc is the critical time, and integrating it with the previous condition gives us:

lnE
[
p(t)

]
= A+B(tc − t)m + C(tc − t)m cos(ω ln(tc − t)− φ) (1.3.5)
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where

B =
−κB′

m
,

C =
−κC ′√
m2 + ω2

.

These dynamics are only valid up to the critical time, and new dynamics take place
afterwards.

An e�cient numerical implementation

The bubble model presented previously is described by 3 linear parameters (A,B,C) and
4 nonlinear parameters (m, tc, ω, φ). We will show here the results obtained by Filimonov
and Sornette in [FS99] to transform the problem into a �tting procedure with 4 linear
and 3 nonlinear parameters to decrease the computational cost signi�cantly and improve
the stability with a cost function that displays one minimum only instead of multiple
candidates. Moreover, the growth rate exponent m and the log-frequency ω are slaved
to the critical time tc, which decreases the complexity of the numerical implementation
even stronger.

First we rewrite lnE
[
p(t)

]
as:

lnE
[
p(t)

]
= A+B(tc − t)m + C(tc − t)m cos(ω ln(tc − t)) cosφ (1.3.6)

+ C(tc − t)m sin(ω ln(tc − t)) sinφ

= A+B(tc − t)m + C1(tc − t)m cos(ω ln(tc − t))
+ C2(tc − t)m sin(ω ln(tc − t))

where C1 = C cosφ and C2 = C sinφ. A least-squares method with the following cost
function is applied

F (tc,m, ω,A,B,C1, C2) =
N∑
i=1

[
ln p(τi)− A−B(tc − τi)m (1.3.7)

− C1(tc − τi)m cos(ω ln(tc − τi))

− C2(tc − τi)m sin(ω ln(tc − τi))
]2

.

We then slave the 4 linear parameters (A,B,C1, C2) to the 3 nonlinear parameters
(tc,m, ω) to get the nonlinear optimization

(
t̂c, m̂, ω̂

)
= argmin

tc,m,ω
F1(tc,m, ω), (1.3.8)

F1(tc,m, ω) = argmin
A,B,C1,C2

F (tc,m, ω,A,B,C1, C2). (1.3.9)

The solution of (
Â, B̂, Ĉ1, Ĉ2

)
= argmin

A,B,C1,C2

F (tc,m, ω,A,B,C1, C2) (1.3.10)
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is obtained by solving
N

∑
fi

∑
gi

∑
hi∑

fi
∑
f 2
i

∑
figi

∑
fihi∑

gi
∑
figi

∑
g2
i

∑
gihi∑

hi
∑
fihi

∑
gihi

∑
h2
i



Â

B̂

Ĉ1

Ĉ2

 =


∑
yi∑
yifi∑
yigi∑
yihi


where

yi = ln p(τi),

fi = (tc − τi)m,
gi = (tc − τi)m cos(ω ln(tc − τi)),
hi = (tc − τi)m sin(ω ln(tc − τi)),

The second step is to slave the critical exponent and the log-frequency to the critical time
to get an optimization problem where we generally have one minimum but no more than
three, so we replace (

t̂c, m̂, ω̂

)
= argmin

tc,m,ω
F1(tc,m, ω), (1.3.11)

(1.3.12)

by

t̂c = argmin
tc

F̃2(tc), (1.3.13)

F2(tc) = min
ω,m

F1(tc,m, ω), (1.3.14)(
m̃(tc), ω̃(tc)

)
= argmin

ω,m
F1(tc,m, ω). (1.3.15)

Filimonov and Sornette recommend to launch at most 20 searches with the Leverberg-
Marquardt nonlinear least squares algorithm or the Nelder-Mead simplex within

0.1 ≤ m0 ≤ 0.9

6 ≤ ω0 ≤ 13.

For F2(tc), we start from di�erent initial points tc0 and use the local search algorithms
stated previously. The advantage gained here is not so much the complexity reduction
than the dependance of the critical exponent and the log-frequency on the critical time
tc.

The S&P 500: the stock bubble (2004 - 2007)

Professor Sornette and Dr. Peter Cauwels were very kind to provide the Filimonov-
Sornette code in Matlab in order to �t the log-periodic-power law to the log-prices. We
�t the S&P 500 index with the JLS model and visualize the impact on the �t and the
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critical time forecast when we vary the time window but keeping the ending point of the
window �xed. The goal here is to show the lack of robustness if we use just one time
window, or if we don't use any goodness of �t or �ltering criteria. This motivates the use
of a machine learning technique that automatically �lters away the wrong �ts.

Indeed, if we do it naively and without any goodness of �t, we will get many �ts and
critical times that can be months away from each other. We have two crashes in this
period, one that occurs on July 20th, 2007 and correctly identi�ed by two �ts which give
us July 19th and 20th for the critical time. The other crash happens on October 10th,
2007 and we have 3 �ts that are close to this date, with an error of a week. In Fig. 21 we
can observe the sensitivity of the �ts to the chosen time window. The colored triangles
represent the critical times and the solid blue line is chosen as the actual date or ending
point of the time window we use to �t the model.

Figure 21: Log-periodic power law �ts with no �ltering

There are clearly some bad �ts, and a �lter that is described in [SWYZ71] to remedy
this situation and that we can use for bubbles is:

b := −Bm− |C|
√
m2 + ω2 ≥ 0. (1.3.16)

All the �ts which do not satisfy this condition are eliminated. This �lter however
applies to the original implementation of the Johansen-Ledoit-Sornette model, we do not
have the parameter C anymore in the Filimonov-Sornette approach but C1 and C2. There
is a simple relation between them by exploiting cos2 u+ sin2 u = 1 for all u:

C2
1 + C2

2 = C2.
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Hence we can rewrite the �lter as:

b := −Bm−
√

(C2
1 + C2

2)(m2 + ω2) ≥ 0. (1.3.17)

The question however remains how we can eliminate in a more systematic fashion bad
�ts and keep only the critical times close to a crash, because we are not sure that these
two �ltering conditions are enough. The next section attempts to answer this question
by using the previous �ltering condition 1.3.17, but also other indicators that should help
us in the �ltering task.

1.3.2 Data mining for critical time classi�cation

Problem and goal

Our goal here is to answer the following question: can we tell if a modeled critical time is
indeed close to a crash or not ? If it is, then we call this critical time an admissible critical
time. We hope that this will help us separate the admissible critical times from the others
by performing a classi�cation task and thus sharpening our con�dence interval bounds.
We will de�ne mathematically the terminology and the setting of our classi�cation method
afterwards: a crash, what close means, the number of time windows, the learning and
testing set, etc. We just introduce the general idea here.

Obviously we need many candidates to get good con�dence intervals for crash forecasts
so the �rst task is to have many time windows. The second one is going to use a data
mining algorithm on a known dataset, where crash times are known and thus the modeled
critical times can be labeled as either close or not close to a crash. Although we have
taken some inspiration from [YRWS12], in our problem the �nal goal is not to build a
crash alarm index for each day but to classify all the critical times on the testing set
as close or not close to a crash. We choose a date that separates the learning and the
training sets, and we use a machine learning method for the classi�cation task. We can
pinpoint the misclassi�ed critical times, either those who were indeed close to a crash
and were labeled not close or those in reality not close to a crash and labeled close. This
will allow us to assess the predictive accuracy of the algorithm. Once the algorithm has
produced the right learner, we evaluate it on a testing set, for which we do not know the
critical time labels. Of course we can compute ex-post the classi�cation error, since the
testing set is a historical dataset.

Ensemble learning: Random Forests

Ensemble learning is described in [Zho12]. We need a matrix data X, where each column
represents the features or predictive variables. Then we prepare the response data Y
or prediction outcome, in our case it's categorical data ("close", "not close" for crash
detection). The learner is a model generated by an algorithm on the data. To operate
our binary classi�cation of critical times, we are going to use an ensemble method, which
consists in training multiple learners to solve a same task and combine them. The reason
we use an ensemble method is because their generalization ability is much higher than our
base learners. Weak learners are thus combined to form a strong learner with a higher
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predictive accuracy. Ensemble learning techniques almost always win machine learn-
ing competitions, as evidenced by the KDD-cup or the Net�ix competition. "Random
Forests" is an ensemble learning method introduced by Breiman in [Bre01]. Basically,
"Random Forests" uses trees for decision-making and randomizes the tree splits as well
as the training sets used. Bootstrap samples are new training sets created by randomly
sampling many number of times the original training set. Trees are added until the error
no longer decreases, and we call N the number of trees. For each of the N iterations,
we select a bootstrap sample and grow a tree on this bootstrap. We then save the tree
and move to the next iteration. The output is the average response for regression and
the majority vote for classi�cation from all individually trained trees. The percentage of
misclassi�ed observations is called the classi�cation error.

We can also use the JLS model to identify anti-bubbles and thus detect rebounds. We
then want to classify the critical times as being close to crashes or rebounds or neither.
The method works in the same way as for determining whether the critical time is close
or not to a crash, and we will include it as an extension while focusing our e�orts on the
crash detection.

Random Forest application to crash and rebound detection

We will now detail the data mining algorithm for binary classi�cation of critical time
proximity to crashes and rebounds hereafter, combining the Random Forests in [Bre01]
and the JLS model in [JLS71] and [FS99]. We have programmed this algorithm in Mat-
lab, using the TreeBagger class who creates the ensemble of decision trees, its associated
methods, and the code provided by Professor Sornette for �tting the log-periodic power
law.

Crash detection

1. Creating the time windows for the log-prices

(a) Choose w = 90 window widths, from 110 to 1000 days with an increment
dw = 10 days between each successive window.

(b) The 1000 �rst days of the dataset will be used to build w time windows for
the �rst training date t1, which is constrained to be the last date or endpoint
of all these windows and we will say in this case that it's a generator for these
time windows.

(c) De�ne an increment parameter dt = 10 and the number of training dates N
to obtain the subsequent training dates ti+1 = ti+dt for i = 0, ..., N −1, each
of them generating a new set of w time windows.

(d) Repeat the procedure until we arrive at the actual analysis date tN+1 = tactual,
which means that we do not know prices after this date and this also implies
that training dates close to tactual will produce unlabeled critical times because
they extend in a territory where we can't say whether a crash has occurred or
not.

2. Fitting the log-prices with the Johansen-Ledoit-Sornette model
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(a) De�ne the range RANGE of investigation for the critical times.

(b) We apply the Filimonov-Sornette procedure for all dates ti (training and ac-
tual) and all generated windows, with critical time candidates ranging from
ti + 1 to ti +RANGE.

(c) We obtain the parameters A, B, C1, C2, m, ω, the residual of the �t q and the
bubble �lter b.

(d) We choose other parameters who will characterize, along with the 8 factors
arising from the JLS �ts, each window: the endpoint date as the distance in
days from the �rst date in the dataset d1, the distance of the critical time
from the endpoint d2, the size of the window s, the number of crashes in the
time window nc, the realized return over the time window r, the average daily
return dr and the daily volatility of returns dvol.

3. Crashes and critical time labels

(a) De�ne ds = 50 and the vector CRASH = {d | Pd = maxPx, ∀x ∈
[
d−ds, d+

ds
]
} of all crashes before tactual and CLOSE = 20.

(b) For all critical times tc before tactual, we label them C or NC, with C meaning
close to a crash if there exists an index i such that |tc−CRASH(i)| ≤ CLOSE.

(c) For all critical times after tactual, we don't know their label so they are the
ones we would like to predict.

4. Critical time classi�cation with Random Forests

(a) Build the data matrix X where each row contains one observation and there
are 15 columns corresponding to our 15 predictor variables.

(b) Build the vector of responses Y where the size is the number of observations,
and each element corresponds to the category C or NC.

(c) Turn on the out-of-bag OOBPred feature and use the TreeBagger class to
create an ensemble of M trees.

(d) Monitor the out-of-bag classi�cation error with oobError and the mean clas-
si�cation margin with oobMeanMargin.

(e) Choose the number of trees M such that the classi�cation error does not
decrease anymore.

(f) Find the fraction of out-of-bag observations per number of grown trees.

(g) Make an out-of-bag prediction with OOBPred and use perfcurv to plot a per-
formance curve showing the true positive rate versus the false positive rate.

(h) Use OOBPermutedVarDeltaErrorChoose and choose a cuto� value to �nd the
indices of the important features.

(i) Grow trees on a reduced but most important set of features and verify that
the performance is similar to the one with the full set of features.
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(j) Perform the category prediction and compute the classi�cation error on the
testing set by using the data matrix Xtesting, for which all observations corre-
spond to the unlabeled critical times after tactual, and the TreeBagger object
previously trained.

5. Con�dence interval for critical times

(a) Keep only the critical times predicted as C and build con�dence interval.

(b) Build a con�dence interval with all critical times irrespective of their labels.

(c) Compare both con�dence intervals and assess improvement in the bounds.

Rebound detection method

1. Classi�cation method to account for rebounds

(a) De�ne the vector REBOUND = {d | Pd = minPx, ∀x ∈
[
d− dt, d+ dt

]
} of

all rebounds before tactual and CLOSE = 30.

(b) For all critical times tc before tactual, we label them C or R or O, with C
meaning close to a crash if there exists an index i such that |tc−CRASH(i)| ≤
CLOSE, R meaning close to a rebound if there exists an index i such that
|tc − REBOUND(i)| ≤ CLOSE, and O meaning other (a change of regime,
bubble de�ation for example).

(c) We can use Random Forests for the multiple classi�cation in the same way we
did for the binary classi�cation.

Setting and discussion

We work with the daily time series of the S&P500 index spanning 20 years of data and
starting in the 80's. We consider here the simple crash method, described in the previous
subsection, and follow step by step the algorithm. We have 400 endpoint dates separated
by 10 days each and 90 window widths separated by 10 days each. For each time window,
our scanning range for critical times when we �t is one third of the window size in the
future. We parallelized the code on the ETH Brutus cluster with parallel for loops in
Matlab using the parfor instruction, since the �ts can be computed independently, i.e we
don't need the result of a previous iteration for the next one. We also the machine learning
toolbox in Matlab, where our datasets can be given as arguments to the TreeBagger class
(an implementation of "Random Forests"). An adequate number of cores should be used,
considering factors such as the speedup, the loss in e�ciency when increasing the number
of cores and the walltime. In our case, using 128 cores was appropriate. Random Forests
can also bene�t from parallelization, which makes the classi�cation faster.

We �rst test the robustness of the classi�cation scheme with respect to the crash
de�nition and what we consider as close critical times to a crash. The two parameters
we vary are thus ds and CLOSE, which we respectively set to 50, 100 and 10, 30. ds
represents the size of the time window we scan to pick our maximum stock price, whereas
CLOSE represents all points in time within a radius of CLOSE days from the selected
crash time. Fig. 22 shows the results for ds = 50 and CLOSE = 10. The more trees
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we grow, the lower the classi�cation error becomes, which is what one would expect.
There is a convergence of the classi�cation error after 100 trees. The classi�cation error
indeed is 34% at the start of the algorithm and decreases to 23%. The point where the
classi�cation error doesn't decrease anymore will always be the number of trees we choose
to make predictions. We inspect whether the results stay robust with respect to changes
in ds and CLOSE.

Fig. 23 shows the results for ds = 100 and CLOSE = 30. The classi�cation error is
27% and decreases to 19%. The results do not stay robust with respect to changes in ds
and CLOSE. Playing a little more with ds and CLOSE, we notice that when CLOSE
is higher, the classi�cation error worsens; when ds is higher, it improves. We will justify
this lack of robustness later on.

We now want to assess the feature relevance by launching the data mining method
with only the Johansen-Ledoit-Sornette parameters and two measures that derive from
them. Fig. 24 and Fig. 25 with the reduced features show an increase in the classi�cation
error from start to convergence compared to the previous Fig. 22 and Fig. 23. Indeed,
we start with a 38% classi�cation error and converge to a 25% error in Fig. 24 while it
starts at 34% and converges to 23% in Fig. 22. This illustrates the added value of the
price-related features.

We have assumed in these techniques that the classi�cation cost is the same for both
classes C and NC. We can actually enhance the performance of the method by assigning
an unequal misclassi�cation cost to the cost matrix. This situation typically arises when
we care about a class more than another, when we want to penalize a wrong classi�cation
of a label type. The classi�cation error curve with unequal classi�cation cost in Fig.
26 and Fig. 27 is lower than the one with equal classi�cation cost. For ds = 50 and
CLOSE = 10, the classi�cation error is 30% at the �rst tree and decreases to 14%
compared to 34% decreasing to to 23%. The robustness issue with respect to the crash
and crash proximity raises some doubts however.

We examine the critical times with more detail. To that purpose, we display a his-
togram of all critical times, i.e before the classi�cation, piling up in our testing set as
well as crashes and rebounds in respectively red and green. We get a very noisy signal
in Fig. 28 which our data mining method should �lter. The histogram of critical times
labeled as close in Fig. 29 is still noisy. It does not look like a 14% classi�cation error
at all because this classi�cation error is the overall classi�cation error, so to investigate
this further we must look at individual classi�cation errors. We perform an operation
on the confusion matrix to determine the individual classi�cation errors. We get an 86%
accuracy for NC label predictions and an 11% accuracy for C predictions. It makes very
good predictions for the NC class and very bad ones for the C class.

The discrepancy in classi�cation error between C and NC is explained by looking at
the number of occurences of each class in the sample. The frequency of each class is 90%
for NC and 10% for C. By increasing ds, we actually have less crashes displayed, so the C
proportion becomes lower, and we thus achieve a better classi�cation error. By increasing
CLOSE, we collect more C labels so our classi�cation error increases. The classi�cation
errors now also make sense, because if we have the NC occuring 9 times out of 10, then
it also makes sense that we are going to correctly predict the NC 86% of the time if
we guess randomly. On the contrary, if we the C class occurs 1 time out of 10, then by
guessing randomly we could get an error of 14%. The somewhat low overall classi�cation
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error actually hides the bad results for the individual classi�cation of critical times close
to a crash, because of the class imbalance. We therefore have an absence of predictive
power. We formalize this by looking at the receiver operating characteristic curve (ROC)
and plotting the true positive rate against the false positive rate. The further the curve is
from the 45 degree line, the more predictive power the data mining method has. Random
guesses are therefore on the 45 degree line, which is what our method accomplishes here,
as seen in Fig. 30.

Figure 22: Evolution of the classi�cation error with number of trees grown
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Figure 23: Evolution of the classi�cation error with number of trees grown

Figure 24: Evolution of the classi�cation error with number of trees grown
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Figure 25: Evolution of the classi�cation error with number of trees grown

Figure 26: Evolution of the classi�cation error with number of trees grown
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Figure 27: Evolution of the classi�cation error with number of trees grown

Figure 28: All critical times in the testing set
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Figure 29: Critical times predicted as close to a crash

Figure 30: Receiver operating characteristic
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We end this section by discussing whether the issue lies with the problem we are
solving or the method we are using. First of all, we cannot distinguish between a critical
time close to a crash and one that is not. Let's take an extreme example: if we look at the
frontier between the C and NC class, there are no distinguishing features between critical
times inside the crash proximity perimeter and those who are excluded. Even far from
the crash proximity perimeter, many �ts produced by the JLS model are actually good,
and only the de�nition of the proximity excludes them from being close to the crash. Our
scanning range for critical times is limited, we only go one third of the window size in the
future, and if we are far from a crash timewise, then we will not hit the crash proximity
perimeter. Moreover, the JLS model is valuable to diagnose endogenous bubbles, so an
exogenous crash can in no way be forecast by this theory. However, the way we de�ne our
crashes include exogenous crashes as well as endogenous crashes, because we have de�ned
crashes in an objective and quantitative way by taking the maximum over a time period.
Taking exogenous crashes in the learning set spoils the prediction, they should therefore
be removed. It is easy to get the big and loud endogenous crashes, but we do not know
how to detect endogenous crashes on much smaller time scales. The ds parameter also
in�uences how many crashes we actually have, so it will have an e�ect on how critical
times are labeled. The absence of classi�cation predictability is an interesting result per
se and helped us identify many of the issues we should be dealing with. The next step
is to exploit the whole machinery to perform a more meaningful and predictable task
that the data mining method will be able to provide an answer for, at least better than
random. We can use for example unsupervised learning methods to �nd patterns if we
don't know how to label the data. Once reliable crash or rebound forecasts are produced,
they can be used as predictive views for our existing risk model or to stress-test the risk
model by taking the crash forecast as the investment horizon.
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Chapter 2

Multivariate scenario analysis

In this second chapter, we extend the scenario analysis tools to a multidimensional set-
ting, which is necessary when we work with portfolios of assets or multiple risk factors.
Instead of single realizations represented by a scenario vector, we now work with joint
realizations described by a scenario matrix. We can still stress risk factor speci�cations
separately with the joint realization perspective, and we show two ways to achieve that:
a tedious one constraining all other risk factor statistics, and an easy one using copulas.
The novelty here is that the dependence structure can now be stressed: linear depen-
dence such as correlation, or the nonlinear one such as copulas. Dependences can be
modi�ed while keeping the individual behaviour of the risk factors unchanged. Views on
extreme co-movements are described, and we point out various multidimensional copu-
las that exhibit di�erent lower and upper tail behaviours. In asset management, more
precisely mean-variance optimization, the inputs are estimates of expected returns for
each security and the covariance matrix, and views on these quantities are possible in
multidimensional scenario analysis. We can therefore replace the risk model's expected
return vector and covariance matrix by enhanced estimates and compare performances
of the resulting trading strategies. Finally, liquidity risk can also be integrated to market
risk in a portfolio, and we visualize the impact of liquidity factors on the P&L of several
portfolios. We compute a risk measure associated to liquidity risk, the liquidity score,
and discuss the changes of that risk measure in our experiments.

2.1 Fully �exible views on joint scenarios

2.1.1 Multivariate entropy pooling

Theory and general implementation

We represent, as in the univariate case, the joint distribution with scenarios and prob-
abilities, the di�erence being that the scenarios are represented by a matrix and not a
vector anymore, each row will be a joint realization of the underlying risk factors, each
column will represent all realizations for a speci�c risk factor. Again, we invoke the en-
tropy pooling method described in [Meu08], but now in a multivariate setting, to update
the probabilities associated with the joint scenarios, and this time we can also process
views on prices, portfolio returns or P&Ls, since we have the joint distribution of the risk
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drivers.
Our views for the multivariate joint distribution X are expressed as

V ≡ g(X) (2.1.1)

where g is a K−dimensional random variable, meaning we have K views and every
component of g is generally a non-linear function of the market.

We now deal with N risk factor, and we will generate J scenarios, where J is very
large. The market model X is thus represented by an J × N vector X of simulations.
The di�erent columns will display the scenario probabilities for each risk factor, so the
n-th column is a J × 1 vector. The rows represent the joint scenarios. The scenario
probabilities are also of dimension J × 1. The K views are thus a J × K matrix, with
the k-th view of the j-th scenario being:

νj,k = gk
(
Xj,1, Xj,2,... Xj,N

)
. (2.1.2)

As for the univariate case, we don't simulate new scenarios but we use the same J
scenarios with di�erent probability masses p̃. General views can be written as linear
constraints on the updated probabilities:

a ≤ Ap̃ ≤ a (2.1.3)

where A, a and a are expressions of X .

Generalized empirical distribution

We consider the (N + 1)−tuplet {x̄1,j . . . x̄N,j; p̄j} = {x̄j; p̄j} where the probabilities are
given by f̄X and the scenarios do not necessarily occur with the same probabilities. We
will use a convenient representation of the risk drivers distribution, which is called the
generalized empirical distribution, as presented in [Meu10]:

f̄X(x) =
J∑
j=1

p̄jδ
x̄j(x) (2.1.4)

For z ∈ RN , δz is the Dirac function centered in the point z and verifying:

∫
δz(x)g(x)dx = g(z). (2.1.5)

If we de�ne an arbitrary function of the risk drivers Y ≡ y(X), there is a remarkable
property of the generalized empirical distribution function, which is to compute trivially
the distribution of Y :
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f̄Y (y) =
J∑
j=1

p̄jδ
ȳj(y) (2.1.6)

where ȳj ≡ y(x̄j). We can actually compute any statistics of any transformation of the
risk drivers distribution such as the pro�t and loss for example.

The expected value of Y is:

µY ≡ E
[
y(X)

]
≡

∫
yf̄Y (y)dy (2.1.7)

=
J∑
j=1

p̄j

∫
yδȳj(y)dy =

J∑
j=1

p̄jȳj

The covariance between Y and Z is:

ΣY,Z ≡ Cov

(
y(X), z(X)

)
=

J∑
j=1

p̄jȳjz̄j − µY µZ (2.1.8)

The Value-At-Risk with con�dence level c of Y , i.e P(Y ≤ V aRY ) = 1 − c, is easily
computed as:

V aRY = max{yt} such that
∑

yt≤V aRY

p̄j ≤ 1− c. (2.1.9)

Finally, the conditional Value-At-Risk CVaR with con�dence level c, applied to the gen-
eralized empirical distribution, gives:

CV aRY =

∑J
j=1 p̄jȳj∑J
j=1 p̄j

such that ȳj ≤ V aRY . (2.1.10)

Marginal views

In this multivariate setting, we can still process views on a marginal, univariate distribu-
tion, by isolating the column of interest and applying the algorithms implemented in the
previous chapter. The other risk factors also appear in the constraints because the prob-
ability representation applies to a joint realization, we therefore need to ensure that the
statistical properties of the other risk factors remain unaltered. We detail the procedure
below, this is the �rst way to do it:

Views on the marginal distribution of the d-th risk factor
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• Sort the scenarios Xd in

X =


X1,1 · · · Xk,1 · · · XJ,1
X1,2 · · · Xk,2 · · · XJ,2
...

...
...

...
...

X1,N · · · Xk,N · · · XJ,N


in increasing order.

• The expectations of the individual risk factors Xi in the scenario-probability repre-
sentation are written as:

J∑
j=1

pjXj,1 = m̂1,

J∑
j=1

pjXj,2 = m̂2,

...
J∑
j=1

pjXj,d = m̂d,

...
J∑
j=1

pjXj,N = m̂N .

• The variances of the individual risk factors Xi in the scenario-probability represen-
tation are written as:

J∑
j=1

pj

(
Xj,1 − m̂1

)2

= σ̂1
2,

J∑
j=1

pj

(
Xj,2 − m̂2

)2

= σ̂2
2,

...
J∑
j=1

pj

(
Xj,d − m̂d

)2

= σ̂d
2,

...
J∑
j=1

pj

(
Xj,N − m̂N

)2

= σ̂N
2
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• The value-at-risk of the individual risk factors Xi at the α% level in the scenario-
probability representation are written as:

I∑
i=1

pi ≤ α%,

I+1∑
i=1

−pi < −α%,

V aRα(X1) = X1,I ,

V aRα(X2) = X2,I ,
...

V aRα(Xd) = Xd,I ,
...

V aRα(XN) = XN,I .

• The expected shortfalls of the individual risk factors Xi at the α% level in the
scenario-probability representation are written as:

s∑
i=1

pi < α%,

s+1∑
i=1

−pi < −α%,

s∑
i=1

piX1,i = esα,1,

s∑
i=1

piX2,i = esα,2,

...
s∑
i=1

piXd,i = esα,d,

...
s∑
i=1

piXN,i = esα,N ,

CV aRα(X1) = esα,1,

CV aRα(X2) = esα,2,
...

CV aRα(Xd) = esα,d,
...

CV aRα(XN) = esα,N .
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• Processing views on expectation m̃d and variance σ̃d2 amounts to choosing a new
set of probability masses p̃j such as:

J∑
j=1

p̃jXj,1 = m̂1,

J∑
j=1

p̃j

(
Xj,1 − m̂1

)2

= σ̂1
2,

J∑
j=1

p̃jXj,2 = m̂2,

J∑
j=1

p̃j

(
Xj,2 − m̂2

)2

= σ̂2
2,

...
J∑
j=1

p̃jXj,d = m̃d,

J∑
j=1

p̃j

(
Xj,d − m̂d

)2

= σ̃d
2,

...
J∑
j=1

p̃jXj,N = m̂N

J∑
j=1

p̃j

(
Xj,N − m̂N

)2

= σ̂N
2

• Processing a view on value-at-risk Ṽ aRα(Xd) amounts to choosing a new set of
probability masses p̃j such as:

Ĩ∑
i=1

p̃i ≤ α%,

Ĩ+1∑
i=1

−p̃i < −α%,

Ṽ aRα(X1) = X1,I ,

Ṽ aRα(X2) = X2,I ,
...

Ṽ aRα(Xd) = Xd,Ĩ ,
...

Ṽ aRα(XN) = XN,I .
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• Processing a view on expected shortfall C̃V aRα(X) amounts to choosing a new set
of probability masses p̃j such as:

s̃∑
i=1

p̃i < α%,

s̃+1∑
i=1

−p̃i < −α%,

C̃V aRα(X1) = esα,1,

C̃V aRα(X2) = esα,2,
...

C̃V aRα(Xd) = ẽsα,d,
...

C̃V aRα(XN) = esα,N .

• We keep the same scenarios X and replace p with p̃, the views on the d-th risk
factor scenarios Xd are now satis�ed.

As you can see, processing views on a statistical feature of a single risk factor is not
complicated but we have to �x the statistic value for the other risk factors. If we do not
require that, their values will change as well since we have a multivariate speci�cation
of the scenarios. Actually, in order to obtain an accurate solution, all the moments and
quantiles of the other risk factors should be �xed and this is impossible to do in practice.
A simpler and more elegant way to process views on marginal distributions is presented
in the copula section and it will reveal the power of that framework.

2.1.2 Location and dispersion views: portfolio management

In the univariate case, we processed views on expectation and variance. In the multivari-
ate case, we will consider views on an expectation vector and a covariance or correlation
matrix, since the co-movements between the di�erent risk factors have to be taken into
account and can be altered, either manually by a qualitative judgment or quantitatively
with a model output. We can also stress-test the location and the co-movements. We
present the optimization problem we need to solve in order to process these views. As an
application, we perform a statistical procedure from [LR10] yielding robust estimates of
expected returns and covariance matrix in order to build optimal portfolios. We compute
and compare the performance of a trading strategy using the posterior estimates with a
trading strategy built upon the sample estimates. This is another example where views
are delivered by a model, in this case the robust procedure. We can, in all generality,
modify the distribution's location and dispersion features with better predictive estimates
instead of those that have been estimated beforehand.
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Expectation and correlation

Suppose we have a multivariate market model X represented by an J × N matrix X of
simulations, where N are the number of risk factors and J the number of scenarios. We
want to process views on all expectations and the correlation matrix between the risk
factors. As in the �rst chapter, we have programmed a Matlab function incorporating
the matrix form for the expectation and the correlation.

Expectation and correlation views

• Recognize that the expectations in the scenario-probability representation are writ-
ten as:

J∑
j=1

pjXj,1 = m̂1,

J∑
j=1

pjXj,2 = m̂2,

...
J∑
j=1

pjXj,N = m̂N .

• The correlation in the scenario-probability representation is written as:∑J
j=1 pjXj,kXj,l − m̂km̂l

σ̂kσ̂l
= Ĉk,l for all k, l = 1,...N

• Processing views on expectations m̃ and corelations σ̃ amounts to choosing a new
set of probability masses p̃j such as:

J∑
j=1

p̃jXj,k = m̃k for all k = 1,...N,

∑J
j=1 p̃jXj,kXj,l − m̂km̂l

σ̂kσ̂l
= C̃k,l for all k, l = 1,...N.

• We can write the views as a linear equality system on the posterior probability
masses p̃j

Ap̃ = b

where

A =


X1,1 X2,1 · · · XJ,1
X1,2 X2,2 · · · XJ,2
...

...
...

...
X1,N X2,N · · · XJ,N
X1,kX1,l X2,kX2,l · · · XJ,kXJ,l


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for all k, l = 1,...N , and

b =


m̃1

m̃2
...
m̃N

m̂km̂l + σ̂kσ̂lC̃k,l


for all k, l = 1,...N .

• We solve the relative entropy minimization problem:

p̃ = argmin
Ap̃=b

J∑
j=1

p̃j
[

ln(p̃j)− ln(pj)
]

• We keep the same scenarios X and replace p with p̃, the expectation and correlation
views are now satis�ed.

Application to robust asset allocation

A legitimate question is why we would like to have views on expectations and correla-
tion. In the �rst chapter, where we performed univariate scenario analysis on expectation
and variance, the goal was to stress-test and validate the numerical model with analyt-
ical expressions. In the multivariate setting, there is another application that comes to
mind: robust asset allocation. Expected returns and covariance must be forecasted in a
Markowitz framework, and it is often the case that models produce estimates that are
unstable with respect to errors in the data. There are several robust methods for esti-
mating expected returns and covariance, so once we determine our method of choice, we
would like to replace the prior unreliable estimates by new ones. We therefore start with
sample estimates of expected returns and covariance, and implement a modi�cation of the
Levy-Roll procedure described in [MAK11], that uses relative entropy as an optimization
function instead of the weighted Euclidean norm in the original paper [LR10]. The basic
idea of the Levy-Roll procedure is to take a reverse approach to what we usually do:
instead of checking if variations of return parameters are market e�cient, Levy and Roll
take the reverse approach and constrain the market e�ciency of return parameters and
then search for the nearest sample parameters. Since we are in a probabilistic framework,
it makes sense to use a measure of distance between distributions. We are not going to
take the relative entropy between any distribution, but we are going to speci�cally con-
sider the distance between two normal distributions. The two parameters describing the
normal distribution are: µ, a N × 1 vector of expectations; and Σ, a N × N symmetric
and positive de�nite covariance matrix. We take a rescaled and shifted version of the
relative entropy between two normal distributions as the optimization function, without
altering the end result. This function can be written as:

E
(
µ,Σ|µ,Σ2

)
= Tr(ΣΣ−1)− ln |σ2Σ−1|+ (µ− µ)′Σ−1(µ− µ) (2.1.11)
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In large dimensional markets, we impose a structure on the covariance matrix with a
factor analysis model from [LM62]:

Σ ≡ bb′ + δ2 (2.1.12)

where b is a N × K matrix, K << N and δ is a N × N diagonal matrix. We have a
new parametrization θ = (µ, b, δ) which ranges in the full space Θ = RN ×RN×K ×RN

as prescribed in [MAK11], and should improve the statistical e�ciency of the estimates.
The posterior estimates of the new parametrization are obtained by solving

(µ, b, δ) ≡ argmin
µ,b,δ∈Υ

E
(
µ, bb′ + δ2|µ,Σ

)
(2.1.13)

The Matlab program for the following algorithm was realized without o�-the-shelf
code. The posterior estimates for the mean and the covariance can be obtained as follows:

Entropy-based Levy-Roll procedure

• Compute the empirical prior parameter µ as the sample mean.

• Compute the empirical prior parameter Σ as the sample covariance.

• Decompose the sample covariance Σ with the parametrization

Σ ≡ bb′ + δ2.

• Compute the market price of risk γ

γ =
RM − rf
σ2
M

whereRM is the market return, σ2
M the market squared volatility and rf the monthly

risk-free rate for the considered period. Also called Sharpe Ratio, see [Sha98], γ is
the return on top of the risk-free rate that the market demands as a compensation
for taking risk, represented here by the volatility.

• Find the posterior estimates µ, b and δ

(µ, b, δ) ≡ argmin
µ,b,δ∈Υ

E
(
µ, bb′ + δ2|µ,Σ

)
Υ : µ− γ(bb′ + δ2)wMC ≡ 0

and wMC is the market capitalization vector.
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• The robust estimates µ and Σ are �nally used as views for our prior risk model X :

J∑
j=1

p̃jXj,k = µk for all k = 1,...N,

∑J
j=1 p̃jXj,kXj,l − m̂km̂l

σ̂kσ̂l
= Σk,l for all k, l = 1,...N.

• Update the risk model probabilities by solving again a relative entropy minimization
problem with the previous views: replace p with p̃.

We will do a portfolio optimization with 12 diverse stocks, small and large caps:
American Express Company, AT&T, Coca Cola, General Electric, Johnson and Johnson,
JP Morgan, Microsoft, Boeing, Consolidated Edison, Exxon Mobil, Honeywell Interna-
tional and Forest Laboratories. We consider a period from 1977 to 2007, and compute the
monthly log-returns of each stock. The data was taken from Yahoo Finance and exported
into csv �les. The �rst �ve years of the sample are used to estimate the sample mean and
the sample covariance with a 3-factor decomposition. We use the entropy-based Levy-Roll
procedure to get the adjusted parameters. We proceed as in [NMSW14] to build ex-ante
portfolios and ex-post portfolios. We dynamically rollover the estimation and portfolio
allocation, plot their returns and compare the portfolios produced by the sample-based
and the adjusted parameters. The following portfolios come from Markowitz's work in
[Mar52]. We �rst consider the minimum standard deviation portfolio MVP, which is the
portfolio on the e�cient frontier that minimizes the standard deviation without specifying
any target return, i.e solving the optimization problem

−→
WMV P = min

w
wTΣw (2.1.14)

subject to

wT1 = 1. (2.1.15)

Second, we consider the tangent portfolio TGT. In this case, the investor chooses
between a risk-free asset and risky assets, and this yields the capital market line, which
is obtained by solving

−→
WCML = min

w
wTΣw (2.1.16)

subject to

µ0 = wTµ+

(
1− wT1

)
(2.1.17)

The tangential portfolio corresponds to the weights
−→
W TGT =

−→
WCML such that

−→
W T

CML×
1 = 1, since we only hold risky assets. The asset weights W and ex-ante monthly returns
R, and the weights

−→
WMV P ,

−→
W TGT are given by:
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−→
WMV P =

Σ−1−→1
−→
1 TΣ−1

−→
1
, (2.1.18)

−→
W TGT =

Σ−1(µ− rf
−→
1 )

−→
1 TΣ−1(µ− rf

−→
1 )
, (2.1.19)

RMV P (T ) =
−→
WMV P (T − 1)

−→
R (T ), (2.1.20)

RTGT (T ) =
−→
W TGT (T − 1)

−→
R (T ), (2.1.21)

where
−→
R (T ) are the realized monthly returns at the end of month T ,

−→
W (T − 1) the asset

weights computed at the end of month T − 1. As in [NMSW14], if the return in that
period is smaller than the risk-free rate that month, we invest our capital in the risk-free
rate.

Figure 31: Forecasted portfolio returns with sample-based and enhanced estimates

Figure 32: Realized portfolios returns with sample-based and enhanced estimates
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Return forecasts
Sample MVP Enhanced MVP Sample TGT Enhanced TGT

Min(%) -13.69 -13.69 -Â�30.98 -14.10
Max(%) 10.66 10.59 25.98 9.44
Std (%) 3.62 3.62 8.31 3.89

Table 33: Ex-ante returns

Return forecasts
Sample MVP Enhanced MVP Sample TGT Enhanced TGT

Min (%) -7.91 -7.89 -28.21 -14.07
Max (%) 9.98 9.98 -43.73 38.97
Std. (%) 3.2 -0.8 8.03 3.89

Table 34: Ex-post returns

We can see from Table 33 and Table 34 that the behaviour of the asset allocation
with sample parameters is less stable since the range is much higher and the returns
exhibit a higher volatility, whereas the asset allocation with the adjusted parameters
shows an allocation with more consistent returns, as shown in Fig. 31 and Fig. 32. The
tangential portfolio with sample-based parameters indeed displays a higher frequency of
large, positive returns, though the negative returns are also more extreme than with the
adjusted parameters and can threaten the asset manager's solvency. On a risk-adjusted
basis, the enhanced estimates deliver a better performance.

2.2 Nonlinear dependence and extreme co-movements

Portfolio risk measures the uncertainty in the returns distribution of the portfolio or the
P&L uncertainty over a time window. In the previous section, we have considered views
on correlation or covariance, which are very commonly used but make the assumption
that the returns are i.i.d and come from elliptical distributions. Since this is not satis�ed
in most cases, we need to work with the entire joint distribution. We do not have that
much �exibility and choices with multivariate distributions, we will thus use copulas,
a mathematical construct that allows us to form a joint distribution by speci�ying the
marginals and bind them with a dependence structure that varies from a copula to an-
other. We can choose di�erent marginals for each asset and di�erent copulas. We present
the theory of how we can extract the marginals and the copula from a joint distribu-
tion, but also how to combine the marginals and the copula into a joint distribution.
We then review the algorithm which performs these separation and combination tasks
very e�ciently, the Copula-Marginal-Algorithm in [Meu11a]. We have plenty of copulas:
the multivariate gaussian or Student copula, or the Archimedean family, which exhibit
the dependence characteristics that have been observed in �nancial time series, such as
lower tail dependence in equity markets for Clayton copulas. We are going to explain
how we simulate them, but the problem with them is that they don't allow for di�erent
dependency models between pairs of variables. One parameter is de�nitely not enough
to model the dependence of a high-dimension portfolio distribution, so we will study and
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simulate vine copulas in [ACFB09]. Vine copulas allow us to decompose a multivariate
distribution with a cascade of pair-copulae. Finally, we will introduce tail-dependence
views and alter extreme co-movement probabilities at di�erent threshold levels.

2.2.1 Copulas: separation and combination

Theoretical separation and combination

We review here the results for copula theory, following [Meu11a] and completing the
derivations with [EFM05]. We start with a random variable X described by its proba-
bility density function fX or equivalently its cumulative distribution function FX . If we
compose the random variable X with its own cumulative distribution function, we obtain
a transformed random variable which is called the grade of X:

U ≡ FX(X). (2.2.1)

The grade is uniformly distributed on the unit interval regardless of what the distribution
of X is, as we prove here:

FU(u) ≡ P(U ≤ u) = P(FX(X) ≤ u)

= P
(
X ≤ F−1

X (u)

)
= FX

(
F−1
X (u)

)
= u.

Reciprocally, if we compose a uniform random variable U with the inverse cumulative dis-
tribution F−1

X , we obtain a random variable X ≡ F−1
X (U) with density fX . So if we start

with an arbitrary target distribution and a uniformly distributed random variable, we can
transform the uniform into a new random variable with the desired target distribution.

In the multivariate case, if we have an N -dimensional random X, we can compute
the N marginal distributions Xn ≡ fXn as follows:

fXn(xn) =

∫
RN−1

fX(x1, ..., xN)dx1 . . . dxn−1dxn+1 . . . dxN . (2.2.2)

We then compute the grades of each marginal distribution function:

Un ≡ FXn(xn) ∼ U[
0, 1
]. (2.2.3)

Collecting all these uniforms in a vector U ≡ (U1, ..., UN)
′
, the marginals are uniforms

but the joint distribution is not uniform on the N−dimensional cube, and we call this
joint distribution fU the copula of the distribution fX .

We will show now that to get the joint distribution fX , we need the copula and the
marginals.
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FU (u) ≡ P
(
U1 ≤ u1, ..., UN ≤ uN

)
= P

(
FX1(X1) ≤ u1, ..., FXN (XN) ≤ uN

)
= P

(
X1 ≤ F−1

X1
(u1), ..., XN ≤ F−1

XN
(uN)

)
= FX

(
F−1
X1

(u1), ..., F−1
XN

(uN)

)
(2.2.4)

Di�erentiating the expression, we get:

fU (u1, ..., uN) = ∂u1 . . . uN
NFU (u1, ..., uN) = ∂u1 . . . uN

NFX

(
F−1
X1

(u1), ..., F−1
XN

(uN)

)
= ∂x1 . . . xN

NFX

(
F−1
X1

(u1), ..., F−1
XN

(uN)

)
du1F

−1
X1

(u1) . . . duNF
−1
XN

(uN)

=

∂x1 . . . xN
NFX

(
F−1
X1

(u1), ..., F−1
XN

(uN)

)
dx1FX1

(
F−1
X1

(u1)

)
. . . dxNFXN

(
F−1
XN

(uN)

)

=

fX

(
F−1
X1

(u1), ..., F−1
XN

(uN)

)
fX1

(
F−1
X1

(u1)

)
. . . fXN

(
F−1
XN

(uN)

) (2.2.5)

We call this result Sklar's theorem, see [Skl59], and it links the joint distribution fX , the
copula fU and the marginals fXn :

fX

(
F−1
X1

(u1), ..., F−1
XN

(uN)

)
= fU (u1, ..., uN)× fX1

(
F−1
X1

(u1)

)
. . . fXN

(
F−1
XN

(uN)

)
There are two distinct processes in a copula-marginal decomposition: separation and
combination. The separation process S transforms an arbitrary distribution fX into its
marginals fXN and its copula fU , where Un are the grades:

S :
(
X1 . . . XN

)
∼ fX 7→

{
fX1 , ..., fXN(
U1 . . . UN

)
∼ fU

(2.2.6)

The separation process can be reverted by composing each grade Un with the respective in-
verse cumulative distribution function F−1

Xn
, we obtain a random vectorX ≡

(
X1 . . . XN

)
whose joint distribution is exactly the original one fX . But we don't actually need to
revert to the original distribution, but can glue copulas with any arbitrary marginal
distributions, so if we start with with an arbitrary copula f̄U (grades Ui uniformly dis-
tributed and joint distribution structure) and arbitrary marginal distributions f̄Xn , we
can compute the marginal cumulative distributions and their inverses, which we can then
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compose with the respective grades to get an N−dimensional random vector X with
copula f̄U and marginals f̄Xn .

The combination process C sticks arbitrary marginals f̄Xn and an arbitrary copula f̄U
into a new joint distribution f̄X :

C :
fX1 , ..., fXN(
U1 . . . UN

)
∼ fU

}
7→
(
X1 . . . XN

)
∼ f̄X , Xn ≡ F̄−1

Xn
(Un) (2.2.7)

To conclude this section, we have to note that practical applications all rely on numeri-
cal techniques, using Monte Carlo scenarios for instance. The separation and combination
processes can be computationally challenging because we have to compute an inverse, per-
form univariate and multivariate integrations. Reliance on parametric copulas such as
the Archimedean family to avoid such hurdles have been proposed, but even for large
dimensions, it becomes tough to compute grade scenarios.

Numerical algorithm for copula separation and combination

Meucci proposes an algorithm to circumvent the previous issues. This scenario-based
algorithm is called the Copula-Marginal Algorithm and presented in [Meu11a]. The sce-
nario representation allows this algorithm to broaden the scope previously limited to a
small set of parametric copulas. It is �exible because it does not force us to deliver the
quantile function, potentially di�cult to compute. Finally, Meucci claims it is compu-
tationally e�cient in large dimensions compared to intensive parametric copula calibra-
tions. The Copula-Marginal-Algorithm, in its full generality, displays the separation and
combination processes. We can start with individual risk factors, described by marginal
distributions and then glue a copula representing their tail behaviour to get a multivariate
distribution: this is the combination part. We could also start with a historical multi-
variate distribution working with historical simulation only, and extract the dependence
and the marginals: this is the separation part. This historical dependence could then
be used along with other marginal models to be glued into a new multivariate distribu-
tion. We can therefore assemble and disassemble these bricks together, and reassemble
disassembled bricks with a new glue.

Let us start with the separation S, where we have a multivariate joint distribution
FX represented by scenario-probability vectors {x1,j . . . xN,j; pj} for j = 1, . . . , J . We
compute the grade scenarios un,j as the probability-weighted empirical grades

un,j ≡
J∑
i=1

pi1xn,i≤xn,j n = 1, . . . , N ; j = 1, . . . , J. (2.2.8)

We can now separate the copula and the marginals from the joint distribution FX .
The copula FU is given by the joint distribution of the grades, so we represent it by
{u1,j . . . uN,j; pj} for j = 1, . . . , J . For each scenario pair {xn,j, un,j}, we can inter or ex-
trapolate those values with a function I{xn,j, un,j}, which will be the marginal distribution
of the n-th variable

FXn(x) ≡ I{xn,j, un,j}(x), n = 1, . . . , N ; (2.2.9)
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To resume the separation with a mapping:

SCMA : {x1,j . . . xN,j; pj} ∼ FX 7→
{
I{x1,j, u1,j}, ..., I{xN,j, uN,j}
{u1,j . . . uN,j; pj} ∼ FU

(2.2.10)

For the combination step, we start with any copula obtained with the separation step
given by the speci�cation {ū1,j . . . ūN,j; p̄j} and marginal distributions F̄Xn . For each n
we build the following grid {x̃n,k, ũn,k}k=1,...,Kn where ũn,k ≡ F̄Xn(x̃n,k). We then map
each grade scenario ūn,j to the scenarios x̄n,j by interpolating the copula scenarios on the
grid. The interpolating function I avoids the computation of the quantile function F̄−1

Xn
.

x̄n,j ≡ I{x̃n,k, ũn,k}(ūn,j), n = 1, . . . , N ; j = 1, . . . , J. (2.2.11)

To resume the combination with a mapping:

C :
F̄X1 , ..., F̄XN
{ū1,j . . . ūN,j; p̄j} ∼ F̄U

}
7→ {x̄1,j . . . x̄N,j; p̄j} ∼ F̄X . (2.2.12)

In our structured setting, our input are the univariate distributions Xn of the risk
drivers, and we use the combination step C with a suitable copula to obtain the joint
distribution of the risk drivers.

Marginal views revisited

Previously, we had an encumbering algorithm to process views on a univariate distribu-
tion of a risk factor when we start with a joint scenario representation. We show here a
simpler way to do it with the separation and combination algorithms:

Views on the marginal distribution of the d-th risk factor

• Sort the scenarios Xd in

X =


X1,1 · · · Xk,1 · · · XJ,1
X1,2 · · · Xk,2 · · · XJ,2
...

...
...

...
...

X1,N · · · Xk,N · · · XJ,N


in increasing order.

• Apply the separation process from the Copula-Marginal Algorithm to extract the
copula and the marginal distributions for each risk factor.

• From now on, we only work with the scenarios extracted from the marginal distri-
bution of the d-th risk factor.
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• Processing views on expectation m̃d and variance σ̃d2 amounts to choosing a new
set of probability masses p̃j such as:

J∑
j=1

p̃jXj,d = m̃d,

J∑
j=1

p̃j

(
Xj,d − m̂d

)2

= σ̃d
2.

• Processing a view on value-at-risk Ṽ aRα(Xd) amounts to choosing a new set of
probability masses p̃j such as:

Ĩ∑
i=1

p̃i ≤ α%,

Ĩ+1∑
i=1

−p̃i < −α%,

Ṽ aRα(Xd) = Xd,Ĩ .

• Processing a view on expected shortfall C̃V aRα(X) amounts to choosing a new set
of probability masses p̃j such as:

s̃∑
i=1

p̃i < α%,

s̃+1∑
i=1

−p̃i < −α%,

C̃V aRα(Xd) = ẽsα,d.

• We changed the speci�cation of the marginal distribution of the d-th risk factor, so
we keep the same scenarios and replace p with p̃, the marginal views on the d-th
risk factor scenarios Xd are now satis�ed.

• Use the combination process from the Copula-Marginal Algorithm to glue the cop-
ula and all marginal distributions for each risk factor. All the marginals except the
d-th one are the same as previously.

• We obtain a multivariate representation that satis�es the views on the d-th risk
factor.

If we compare the �rst algorithm in the marginal views subsection and this algorithm,
the latter solution is more elegant and straightforward and doesn't require ad-hoc ma-
nipulations on the other risk factors. Moreover, it �xes the issue we had with the former
algorithm, i.e constraining all the statistics of the other risk factor dynamics. Only the
code for the Copula-Marginal algorithm was provided by Meucci, the rest of the procedure
was programmed by the author of this report.
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2.2.2 Multidimensional copula simulations

Since we can generate as many scenarios as we like from the copula and the margins, we
will now turn to some speci�c copulas and especially how we can simulate them, since
simulated values will serve as inputs to Meucci's Copula-Marginal algorithm. We �rst
present the standard procedures to simulate the following multivariate copulas: the gaus-
sian, the Student and the Clayton copula, see [EFM05] for their de�nition and properties.

Gaussian copula simulation

1. SimulateN scenarios x coming from the multivariate normal distributionNN
(

0,R

)
.

2. Set u = Φ(x) where Φ is the standard normal cumulative distribution function.

3. u are N realizations of the gaussian copula with linear correlation parameter R.

Student copula simulation

1. SimulateN scenarios x coming from the multivariate Student distribution tN

(
0,R, ν

)
.

2. Set u = tν(x) where Φ is the standard normal cumulative distribution function.

3. u are N realizations of the Student copula with linear correlation parameter R and
degrees of freedom ν.

Clayton copula simulation

1. Simulate a Gamma realization x ∼ Ga

(
1
δ
, 1

)
.

2. Simulate N independent and identically distributed scenarios v coming from the

uniform distribution U
(

0, 1

)
.

3. Set u =

(
(1− log(vi)

x
)
−1
δ

)
for i = 1, ...N .

4. u are N realizations of the Clayton copula with parameter δ.

However, these standard multivariate copulas have one parameter governing the de-
pendence. If we consider all di�erent pairs of variables, we have the same dependency
model. However, this is not necessarily so, and even more when we have di�erent asset
classes. This is why we consider a class of copula models using a pair-copula construction,
they are called vine copulas and have been developed by Aas et al. in [ACFB09]. The very
basic idea idea of vine copulas is that we factorize the whole multivariate distribution (for
example a portfolio of thousand assets) with pairs of assets, we then specify a base copula,
it can be Gaussian, Clayton, Gumbel, etc, and �nally obtain the model parameters for
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each pair of assets (which are going to be di�erent for each pair) with statistical estima-
tion. Since we always have some sort of tail-dependence, we are only going to simulate
vine copulas that take bivariate Student and bivariate Clayton copulas as building blocks.

Canonical vine copula, see [ACFB09]

We follow Aas' exposition but we only bring up the main points we need in order to
simulate canonical vine copulas, and give more details than the paper when needed. Aas
starts factorising the joint density f(x1, x2, ...xN) as

f(x1, x2, ...xN) = f(xN) · f(xN−1|xN) · f(xN−2|xN−1, xN)... · f(x1|x2,... xN) (2.2.13)

We remind that the copula density c12...N is linked to the joint density by:

f(x1, x2, ...xN) = c12...N

(
F1(x1), ...FN(xN)

)
· f1(x1) · ...fN(xN). (2.2.14)

Let's work with N = 3. We have:

f(x1, x2, x3) = c123

(
F1(x1), F2(x2), F3(x3)

)
· f1(x1) · f2(x2) · f3(x3)

= f(x3) · f(x2|x3) · f(x1|x2, x3). (2.2.15)

We can decompose f(x2|x3), by writing the expression for f(x2, x3), into

f(x2|x3) = c23

(
F2(x2), F3(x3)

)
· f2(x2). (2.2.16)

In the same way, we can decompose f(x1|x2, x3) into

f(x1|x2, x3) = c12|3

(
F1|3(x1|x3), F2|3(x2|x3)

)
· f(x1|x3) (2.2.17)

= c12|3

(
F1|3(x1|x3), F2|3(x2|x3)

)
· c13

(
F1(x1), F3(x3)

)
· f1(x1)

which yields:

f(x1, x2, x3) = f3(x3) · c23

(
F2(x2), F3(x3)

)
· f2(x2) · c12|3

(
F1|3(x1|x3), F2|3(x2|x3)

)
· c13

(
F1(x1), F3(x3)

)
· f1(x1) (2.2.18)

= f1(x1) · f2(x2) · f3(x3) · c13

(
F1(x1), F3(x3)

)
· c23

(
F2(x2), F3(x3)

)
· c12|3

(
F1|3(x1|x3), F2|3(x2|x3)

)
.
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The general formula for the conditional densities is:

f(x|v) = cxvj |v−j

(
F (x|v−j), F (vj|v−j)

)
· f(x|v−j). (2.2.19)

where v is a d−dimensional vector and v−j is the vector v excluding the component vj.
We use the conditional distribution F (x|v) = h(x, v, Θ) where Θ represent the copula
parameters for the joint distribution of x and v.

There are di�erent factorisations with the pair-copula construction, and we are going
to choose the canonical vine representation in [ACFB09], where we have one variable
leading the interaction in the data set. Even with this representation, the number of
factorisations grows with the number of variables. There is a tree structure induced by
this representation, if we have N variables, we have N − 1 trees. A unique node joins
N − j edge for the tree Tj, and since there are N − 1 trees, we have an arithmetic sum
that gives us N(N−1)

2
parameters to estimate.

We can generalize the canonical vine decomposition to N variables, we only state the
result:

f(x1, x2,... xN) =
N∏
j=1

N−j∏
i=1

cj, j+i|1,...j−1v−j

(
F (xj|x1,... xj−1), F (xj+i|x1,... xj−1)

)

·
N∏
k=1

f(xk). (2.2.20)

We observe intuitively that we multiply the N marginal densities, we form a product
over the N−1 trees and for each tree, we have a product of N−j vine copula parameters
that arise from the N − j edges.

We have used the dynamic copula toolbox in Matlab to �t the canonical vines. We
want to simulate canonical vines and we implement the sampling procedure described in
[ACFB09] and where the h-function in the algorithm is dependent on the base copula
model chosen. However, the toolbox does not allow simulation of the vine copulas and
we therefore implemented the sampling procedure in Matlab.

The h-function can be computed for every copula and it is proven in [Joe96] by
computing the derivative with respect to the second variable of the copula distribution
function.

h− function for the Gaussian copula

h(u1, u2, ρ12) = Φ

(
Φ−1(u1)− ρ12Φ−1(u2)√

1− ρ2
12

)
(2.2.21)

h− function for the Student copula

h(u1, u2, ρ12, ν12) = tν12+1

(
t−1
ν12

(u1)− ρ12t
−1
ν12

(u2)(
ν12+
(
t−1
ν12

(u2)
)2)
·
(

1−ρ212
)

ν12+1

)
(2.2.22)
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Algorithm 2.1 Simulate M samples x1, x2,...xN from a canonical vine
for m← 1, 2...M do
Sample N independent standard uniforms wi.
x1 = v1, 1 = w1

for i← 2, 3...N do
vi, 1 = wi
for k ← i− 1, i− 2...1 do
vi, 1 = h−1(vi, 1, vk, k, Θk, i−k)

end for
xi = vi, 1

if i == N then
Stop

end if
for j ← 1, 2...i− 1 do
vi, j+1 = h(vi, j, vj, j, Θj, i−j)

end for
end for

end for

h− function for the Clayton copula

h(u1, u2, δ12, ν12) = u−δ12−1
2

(
u−δ121 + u−δ122 − 1

)−1− 1
δ12

(2.2.23)

The purpose of this section was to simulate Gaussian, Student, Clayton and canon-
ical Clayton vines. We want to compare and stress their di�erent tail behaviours with
identical marginal distributions, and to that intent, we require simulated copulas and
the simulated scenarios from the marginals because they form the inputs to the Copula-
Marginal algorithm. The following section illustrates how we visualize, compute and
stress the tail-dependence.

2.2.3 Tail-dependence views

If we consider a bivariate distribution, the tail-dependence at a certain level is intuitively
the proportion that one margin exceeds a level conditioned on the event that the other
margin exceeds it as well. Upper-tail, lower-tail dependence and tail independence are
de�ned in [EFM05] and reveal the clustering properties of the multivariate distribution
in the extremes. The previous copulas we have simulated have di�erent tail properties.
The Gaussian copula is lower and upper tail-independent, the Student copula is both
upper and lower tail-dependent whereas the Clayton copula is only lower tail-dependent.
Empirically speaking, equity returns show more dependence in bear markets than in bull
markets, so we want our returns to have both lower and upper tail-dependence to some
extent, though preferably not in a symmetric manner. In light of these characteristics,
we expect the Student copula to perform best when �tted to bivariate equity log-returns,
and we will validate this assumption with statistical criterias.
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In order to get an intuition about tail-dependence structures for these copulas, we �t
gaussian, Student and Clayton copulas to the joint log-returns of IBM and JP Morgan,
prices for these stocks are taken from Yahoo Finance and processed. We then create
the resulting bivariate scenarios by using the combination process in the copula-marginal
algorithm and visualize the empirical tail-dependence with a 2-dimensional scatter plot
of historical log-returns using the Matlab function scatterhist.

Figure 35: Scatterplot of bivariate normal scenarios
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Figure 36: Scatterplot of bivariate Student scenarios

Figure 37: Scatterplot of bivariate Clayton scenarios
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Figure 38: Scatterplot of bivariate empirical scenarios

Fig. 35 doesn't display any signi�cant clustering, the simulated values are evenly
distributed on the scatter plot. This hints at a lack of tail dependence, both in the upper
and lower tails. Fig. 36, while not apparent, has a higher concentration in both the
negative and positive joint returns, pointing to an upper and lower tail-dependence. Fig.
37 clearly has a clustering in the lower tail while it remains even in the upper tail, so
we retrieve the lower tail-dependence and the upper-tail independence. The empirical
scenarios in Fig. 38 show a much higher concentration of negative co-movements than
positive ones, which suggests a lower tail-dependence structure but also an upper-tail
dependence, although the latter is much weaker. The range of values is however quite
di�erent if we compare the simulated scenarios arising from copulas and the empirical
scenarios. The empirical scenarios in Fig. 38 show extreme values for both IBM and JP
Morgan that are not spanned by the copula scenarios. The most negative log-return for
IBM is lower than−15%, while it doesn't get lower than−8% with the copula simulations.
The lowest for JP Morgan is lower than −30%, and this observation is also coupled with
a −6% log-return for IBM, whereas it only reaches −15% with the simulation approach.
There is clearly a higher clustering of negative joint returns than positive joint returns.

We �t a 4-dimensional, canonical Clayton vine copula to the log-returns of IBM, JP
Morgan, Quiksilver and Exxon Mobil, prices are again imported from Yahoo Finance. It
requires writing the density for N = 4 in the previous section and the estimation of 6
copula parameters by maximum likelihood estimation. We then represent some scatter
plots of the resulting pair dependences between: IBM and JPM, IBM and KWK, IBM
and XOM, JPM and KWK, JPM and XOM. In all of them, the lower tail-dependence is
observed while the number of parameters in the canonical vine decomposition allows a
di�erent representation of each coupled dependence.
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Figure 39: Scatterplot of bivariate Clayton vine scenarios: JP Morgan and IBM

Figure 40: Scatterplot of bivariate Clayton vine scenarios: JP Morgan and IBM
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Figure 41: Scatterplot of bivariate Clayton vine scenarios: Exxon Mobil and IBM

Figure 42: Scatterplot of bivariate Clayton vine scenarios: JP Morgan and Quiksilver
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Figure 43: Scatterplot of bivariate Clayton vine scenarios: JP Morgan and Exxon Mobil

We can simulate scenarios of joint log-returns with di�erent copulas and visualize
their tail behaviours. Our previous work has made the multivariate scenario-probability
representation available for tail-dependence stress-testing. We can now show, in the fol-
lowing algorithm taking advantage of Meucci's fully �exible probabilities framework and
that we implemented in Matlab, how we compute joint exceedance probabilities for risk
factor scenarios at thresholds u, and how to alter the tail-dependence exogenously.

Tail-dependence views

• Build a matrix R that assigns to the elements of each column of X a ranking in
ascending order.

• Extract the empirical copula by setting: Uj,k =
Rj,k
J

, where J is the number of
simulations.

• If pj are the prior probability masses attached to the scenarios νj, k or Xj, k, the
tail-dependence at threshold u is de�ned as:

P
(
Uj ≤ uj ∀j = 1,...N

)
=
∑
j∈Iu

pj

where
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Iu =

{
i | Ui,k ≤ uk ∀k = 1,...N

}
• A view on tail dependence amounts to choosing the posterior probability mass p̃j
such that

∑
j∈Iu

p̃j = C̃

where C̃ is set exogenously or comes from another model.

• We can write the view as a linear equality system on the posterior probability
masses p̃j

Ap̃ = b

where

A =
( 1 ∈ Iu 2 6∈ Iu · · · M 6∈∈ Iu M + 1 ∈ Iu · · · J ∈ Iu

1 0 · · · 0 1 · · · 1
)

has dimension 1× J , and

b =
(
C̃
)

• We solve the relative entropy minimization problem:

p̃ = argmin∑
j∈Iu p̃j=C̃

J∑
j=1

p̃j
[

ln(p̃j)− ln(pj)
]

Iu =

{
i | Ui,k ≤ uk ∀k = 1,...N

}
• We keep the same scenarios ν or X and replace p with p̃, the tail-dependence view
is now satis�ed.

The algorithm for computing and stress-testing the tail-dependence is applied here
for joint return losses of IBM and JP Morgan. We take a closer look at lower tail depen-
dences for the Gaussian, the Student, the canonical Clayton vine, the empirical copula,
and compute, for various threshold levels ranging from 10−3 to 10−1, the associated prob-
abilities for log-return values below each threshold. Fig. 44 shows the tail-dependences
for a continuum of tail levels. We have looped over a part of the instructions described
in the previous algorithm, computing therefore the tail-dependence at the speci�ed tail
levels and excluding only the views. The Gaussian copula is, as expected, displaying
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thinner tails than the Student copula for all tail levels, whereas it is surprising that the
canonical Clayton vine copula has lower probabilities than the Gaussian copula. How-
ever, when we zoom on the extreme tail levels in Fig. 45, we see that the tail-dependence
curve for the canonical Clayton vine copula becomes greater and one should remember
that the lower-tail dependence property means that asymptotically the probability does
not go to 0, whereas it is the case for the Gaussian copula. Returning to Fig. 44, we
see that the Student copula and the empirical copula are closely matched, which would
indicate that the Student copula is suitable. The empirical copula can however wildly
depend on the number of observations we consider, and what we typically see is that
at very low thresholds, the empirical copula tail-dependence goes to 0 at a tail level of
4 ∗ 10−3, as shown in the black line of Fig. 45. If we take the tail level at 10−3 in Fig. 45,
the Student copula indicates this is an event happening a little more than once every ten
thousand days, which is once every 27 years. In any case this probability shouldn't be 0
because big joint losses are very frequent in a �nancial crash. The empirical copula has a
0 probability associated to that tail level in Fig. 45, which is not only unmet in practice
but also renders empirical copula stress-testing unrealistic in Meucci's framework since
only the scenarios with positive probability can be stress-tested.

If we decide to stress-test the canonical Clayton vine copula, we can either do it
exogenously or with a model. By model we mean that we could assign, for a given tail
level, the tail dependence view forecasted by the Student copula for example, or any
other copula, to our Clayton vine copula. We did it exogenously here, by specifying a
stress-test intensity parameter. This parameter is multiplied by the prior tail-dependence
probability and this product constitutes the view. We chose 5 for the stress-test intensity
and a 10−2 level. We show the standard and the stressed Clayton vine copulas, along
with the others, in Fig. 46. Obviously the tail-dependence curve for the stressed copula
is shifted above because we have forced the probabilities to be 5 times higher, and we
believe the stressed copula will actually produce a better goodness-of-�t than the prior
one and the Gaussian copula because it follows the empirical copula's behaviour more
closely.

We need to formally investigate which copula produces the best dependence structure
with two model selection criterions, and we also add the canonical Student copula in
the mix to see how it performs relative to the canonical Clayton vine and the Student
copula. The model selection measures we use are the the Akaike Information Criterion
and the Bayesian Information Criterion, and there are functions in Matlab to compute
these quantities.

AIC = 2k − 2 log(L), (2.2.24)

BIC = k log(n)− log(L). (2.2.25)

where k is the number of parameters, L the maximized value for the likelihood function
and n the number of obversations. AIC and BIC are computed for each copula, and the
model chosen is the one which has the smallest value. Table 47 shows that the model
with the smallest AIC and BIC values is the Student copula (−3274.7 and −3262.4),
followed by the canonical Student vine copula (−2636.6988 and −2599.8674), with the
canonical Clayton vine copula (−2018.8613 and −1982.0299) �nishing last.

76



Figure 44: Joint exceedance probabilities for lower thresholds

Figure 45: Joint exceedance probabilities for very low thresholds
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Figure 46: Tail-dependence views algorithm applied to original curves

Model selection criterion
AIC BIC

Dependence structure

Gaussian copula -2605.5 -2599.3
Student copula -3274.7 -3262.4

Clayton vine copula -2018.8613 -1982.0299
Student vine copula -2636.6988 -2599.8674

Table 47: Model selection with various dependence structures

We conclude our section on copulas. Going further than the correlation which is
suitable for elliptic distributions, copulas helped us capture the nonlinearity in the de-
pendence structure and were especially useful to process marginal views by isolating
the marginals from the dependence, hence providing an additional layer of �exibility.
Meucci's Copula-Marginal algorithm extracts the copula from multivariate distributions
and combines marginal distributions with the copula. These both tasks are achieved in
a scenario-based framework, which makes for boundless possibilities since we can work
with parametric copulas but also nonparametric copulas of our own creation, as long as
we are able to simulate. Furthermore, the scenario generation of the joint distribution
with the Copula-Marginal algorithm, along with the reuse of the fully �exible probabil-
ities machinery, permits a straightforward quanti�cation and stress-testing of extreme
co-movement occurrences, where the stress-testing view comes from a user or another
model. We visualized and compared the tail-dependence curves when we stressed exoge-
nously joint losses. Finally, we assessed the goodness of �t of various copula models, in
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order to select a suitable model. We could even go further and search for views that
improve on the model selection criteria. Having suitable tools at our disposition for
stress-testing market risk in large portfolios, we will at last explore liquidity risk and its
e�ects on risk assessments according to various trading scenarios.

2.3 Liquidity scenarios

2.3.1 Integrated risk model and liquidity score

We �nally exploit a new framework in [Meu12b] blending liquidity, funding and market
risk, where a liquidity distribution is associated to each future market-risk scenario, and
the liquidity uncertainty is scenario-dependent on the liquidation or funding policy. We
obtain a liquidity-adjusted P&L distribution, and decompose the total risk according to
the market or liquidity contributions as well as compute a monetary measure of portfolio
liquidity. There are many advantages to this framework advertised by Meucci:

• full-impact modelling of the amount liquidated at the future horizon or liquidation
schedule, the impact uncertainty, correlations and speed of trading impact,

• adverse developments in the market lead to worse liquidation schedules,

• exogenous and endogenous liquidity risk modelling,

• novel decomposition into a market and liquidity component and de�nition of the
liquidity score,

• fast distributional stress-testing.

We will �rst talk about pricing and aggregation. If we have N securities with mark-
to-market P&Ls Π̄n and D risk drivers X ≡ (X1, . . . , XD)

′
, the pro�t and loss for each

security is a deterministic function πn of the risk drivers:

Π̄n = πn(X) n = 1, . . . , N. (2.3.1)

We now de�ne the holdings of a portfolio, i.e the number of units of the securities,
represented by the vector h ≡ (h1, . . . , hN)

′
. The mark-to-market P&L of the portfolio

is thus:

Π̄ =
N∑
n=1

hnπn(X). (2.3.2)

Previously, we modeled the joint distribution of the risk drivers with a scenario-based
approach, so we have the following representation:

X ∼ {xj; pj}j=1,...,J (2.3.3)
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The conservation law of money allows us to compute the portfolio P&L scenario-by-
scenario, with the probabilities remaining untouched:

Π̄ ∼ {π̄j; pj}j=1,...,J (2.3.4)

where

π̄j =
N∑
n=1

hnπn(xj). (2.3.5)

A realization of the risk drivers is always surrounded by a liquidity-related uncertainty,
noted ∆Πn, in the n−th security's P&L. Three factors a�ect ∆Πn, which are:

• the liquidity schedule ∆h ≡ (∆h1, . . . ,∆hN)
′
, causing a price impact decomposed

in a linear, permanent component and a temporary component negatively impacting
the portfolio on average,

• the execution horizons τ ≡ (τ1, . . . , τN)
′
for the liquidations, with longer executions

causing less impact but a bigger uncertainty, and conversely for shorter executions.

We suppose, even though we can generalize it to elliptical distributions, that the
liquidity uncertainty is modeled by a normal random variable:

∆Πn ∼ N(µn, σ
2
n). (2.3.6)

The mean µn and the volatility σn of the liquidity uncertainty, derived from the volume-
weighted-average-price execution in the appendix of [MAK12], are:

µn = −αnen|∆hn| − βnenσ̄n
|∆hn|

3
2

√
vn

, (2.3.7)

σn = δn
√
vnen|∆hn|. (2.3.8)

Let's detail what all these terms mean. αn estimates the commissions added to half the
bid-ask spread, and this is given as a fraction of the exposure en of one unit of security
n. In our case, to simplify things, we only take half the bid-ask spread. The bid-ask
spread for each security is computed from the high and low prices in the Yahoo Finance
exported csv �les, using the estimator for the spread in [CS12]. Meucci assumed in his
code that all bid-ask spreads are 1% (again in fraction of the exposure en), which we
believe is a simplistic assumption. βn is very similar for securities of the same asset class,
and δn is a constant coe�cient as well, both are provided by Meucci in his Matlab code
and we therefore take his values δn = 0.5 and βn = 105. We wrote a Matlab function
in order to specify the trading horizon and the liquidation amount in a proper way. σ̄n
gives a best estimate of the average annualized P&L volatility, also given as a percentage
similarly to αn. vn is the approximate number of units of security n traded by the whole
market over the execution horizon τn. When the execution horizon τn is longer, it means
that there are more shares of security n traded on the market, so as we can observe from
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their relation to vn, the average impact is lower while the impact volatility is higher. The
more we liquidate, the more negative the average impact and the higher the volatility
impact become. If we have two positions with liquidity uncertainties ∆Πn and ∆Πm, their
correlations ρn,m are higher than the respective market correlations ρ̂n,m, liquidity risk
lacking diversi�cation potential, so we shrink the market correlations with a parameter
γ close to 1, in our examples we took γ = 0.9:

ρn,m = γ + (1− γ)ρ̂n,m. (2.3.9)

We aggregate the parameters αn, βn, δn and γ to get the liquidity distribution for the
whole portfolio:

∆Π =
N∑
n=1

∆Πn, (2.3.10)

∆Π ∼ N(µ, σ2), (2.3.11)

µ =
N∑
n=1

µn and σ2 =
N∑

n,m=1

σnσmρn,m. (2.3.12)

To arrive at the total portfolio P&L, we just sum-up the mark-to-market P&L Π̄ and
the liquidity-adjusted P&L ∆Π. We compute the form of the portfolio density of the
P&L Π = Π̄ + ∆Π, the proof adding to the comprehension and so we include it here. If
we take the conditional distribution of the liquidity adjustment

∆Π|x ∼ N

(
µ(x, σ2(x)

)
(2.3.13)

where the liquidation policy is dependent on the market scenario. Writing this distribu-
tion as a linear combination of a standard normal variable, we can retrieve the conditional
probability density function:

f∆Π|x =
1

σ(x)
ϕ

(
y − µ(x)

σ(x)

)
. (2.3.14)

To get the unconditional distribution of the total P&L, we use:

fΠ(y) =

∫
fΠ|x(y)fX(x)dx

=

∫
fΠ̄+∆Π|x(y)fX(x)dx

=

∫
f∆Π|x

(
y −

N∑
n=1

hnπn(x)
)
fX(x)dx. (2.3.15)

Since we have a generalized empirical distribution representation of the risk drivers from
earlier, we can write:

fX(x) =
J∑
j=1

pjδ
xj(x). (2.3.16)
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Thus:

fΠ(y) =

∫
f∆Π|x

(
y −

N∑
n=1

hnπn(x)
) J∑
j=1

pjδ
xj(x)dx

=
J∑
j=1

pjf∆Π|xj
(
y − π̄j

)
(2.3.17)

where π̄j is the pure market P&L in the j−th scenario. By substituting the formula for
the conditional density, we get the portfolio P&L density:

fΠ(y) =
J∑
j=1

pj
σ(j)

ϕ

(
y − π̄j − µ(j)

σ(j)

)
. (2.3.18)

where µ(j) and σ(j) are the liquidity-adjusted parameters in the j−th scenario. Making
the liquidation schedule and the execution horizons depend on the scenarios can be easily
done, allowing us to stress test funding risk.

Since the total P&L Π = Π̄ + ∆Π is a sum, we can decompose all standard measures
of risk into their marginal contributions. With the conditional value-at-risk, we have:

CV aR(Π) = ∂Π̄CV aR(Π) + ∂∆ΠCV aR(Π). (2.3.19)

where, for any statistic σ, we de�ned the operator:

∂Xσ(X + Y ) ≡ dσ(uX + Y )

du

∣∣∣∣
u=1

(2.3.20)

Here again, the proof of the marginal CV aR computations is helpful for the general
comprehension and we will present it. The above decomposition follows from the Euler
principle. We can compute the cumulative distribution function for the P&L from the
density and get:

FΠ(y) =
J∑
j=1

pj
σ(j)

φ

(
y − π̄j − µ(j)

σ(j)

)
. (2.3.21)

As we explained for the copula-marginal algorithm, we can recover the inverse cumulative
distribution function F−1

Π by linear interpolation, and particularly the α−quantile

z ≡ F−1
Π (α). (2.3.22)

We also compute the CV aR:

CV aR(Π) =
1

α

∫ α

0

F−1
Π (u)du. (2.3.23)
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We now derive the marginal contribution of the liquidity:

∂∆ΠCV aR(Π) = E
[
∆Π|Π̄ + ∆Π ≤ z

]
= E

[
∆Π|∆Π ≤ z − Π̄

]
=

∫
E
[
∆Π|Π̄ = y,∆Π ≤ z − y

]
fΠ̄(y)dy

=
J∑
j=1

pj E
[
∆Π|Π̄ = π̄j,∆Π ≤ z − π̄j

]
(2.3.24)

For normal random variables X, the expected shortfall is:

E
[
X|X ≤ z

]
= µ− σ

ϕ

(
(z−µ
σ

)
φ

(
(z−µ
σ

) . (2.3.25)

Since

∆Π|Π̄ = π̄j ∼ N(µ(j), σ
2
(j)), (2.3.26)

then

∂∆ΠCV aR(Π) =
J∑
j=1

pj

(
µ(j) − σ(j)

ϕ

(
(z−π̄j−µ(j)

σ(j)

)
φ

(
(z−π̄j−µ(j)

σ(j)

)) (2.3.27)

To get the marginal market contribution ∂Π̄CV aR(Π), we subtract the total condi-
tional value-at-risk and the liquidity contribution:

∂Π̄CV aR(Π) = CV aR(Π)− ∂∆ΠCV aR(Π) (2.3.28)

=
1

α

∫ α

0

F−1
Π (u)du−

J∑
j=1

pj

(
µ(j) − σ(j)

ϕ

(
(z−π̄j−µ(j)

σ(j)

)
φ

(
(z−π̄j−µ(j)

σ(j)

)).
Finally, we de�ne the liquidity score LS for the portfolio. We developed a Matlab program
for computing the liqudity score, since it was not provided by Meucci. When the liquidity
adjustment barely a�ects the total portfolio Π, it means the portfolio is liquid and thus
the liquidity score should be high. The liquidity adjustment reduces the P&L, so the
liquidity score will measured as a high-con�dence level (90%) di�erence in the expected
shortfalls in the left tail between the pure market risk and the total risk:

0 ≤ LS =
CV aR(Π̄)

CV aR(Π)
≤ 1. (2.3.29)
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2.3.2 Liquidity adjustments for equity portfolios

We consider equity portfolios from the S&P 500 index, and we vary the number of stocks
in each portfolio. We form a portfolio of 1, 4 and 20 stocks. The same capital is allocated
to each portfolio, and the stocks are equally weighted. Our initial capital Cap is 1 billion
dollars. We then compute the holdings with:

h =
Cap

N ∗ en
; (2.3.30)

In the portfolio of 20 stocks, each stock will thus have a capital 20 times smaller than
the capital for a portfolio with only one stock. We compute the pure market risk P&L
of the portfolios but also integrate the liquidity risk to the pure market component, and
look at the impact when we vary the liquidation schedule and the execution horizon.
We also chose a di�erent number of stocks for each portfolio to investigate and compare
the diversi�cation e�ects between pure market risk P&L and liquidity-adjusted P&L. We
want to ensure that what happens with the expected impact and the impact uncertainty
is consistent with the formulas and also makes sense from an intuitive point of view.
Finally we compute the liquidity score in each case and explain these changes.

In the 1-stock portfolio in Fig. 48, the liquidity score is 38%, it increases to 44%
for the portfolio of 4 stocks in Fig. 49 and even further to 48% for the portfolio of 20
stocks in Fig. 51. The market risk diversi�cation, as can be observed with the histogram
widths and the scales on the x-axis in the three previous plots, is signi�cant as we move
from 1 to 4 to 20 stocks. The liquidity risk diversi�cation however, measured by the
liquidity scores, is much smaller. The expected impact, visualized by the shift towards
the negative realizations, is much more pronounced for highly concentrated portfolios.
Obviously the bid-ask spread is much higher when we liquidate one stock compared to
twenty stocks, assuming a same capital, so the expected impact is also more negative.
The impact uncertainty is also higher the less stocks we have, as we can see we go from
a scale of dozen million dollars to less than 10 million dollars.

For the 4-stock portfolio, we can compare the liquidity score of a full liquidation in
Fig. 49 and a partial (20%) liquidation in Fig. 50. The liquidity score for the partial
liquidation is 88%, which is signi�cantly higher than for a full liquidation. The expected
impact is a lot lower in a partial liquidation, since it is an increasing function of the
liquidation schedule, i.e the fraction of the holdings we liquidate.

Finally, we want to vary the execution horizon of the liquidation, and for that we
compare the 1-month full liquidation in Fig. 52 to the 1-day full liquidation in Fig. 48
of the 1-stock portfolio. The liquidity score for the execution horizon of one month is
79%, which is what we expected since the impact should be a lot lower than a 1-day
liquidation yielding a score of 38%. The impact uncertainty is however much higher for
a 1-month liquidation than for a 1-day liquidation. The expected impact is much lower
since the number of shares traded in one month is much higher, and the formula suggests
that the expectation is a decreasing function of the volume generated by this execution
horizon. For the impact uncertainty, it is an increasing function of the volume, so it is
clearly higher for one month than for one day. The trend is the same if we look at Fig.
54 and Fig. 51.
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Figure 48: P&L adjustment with a full, one day asset liquidation

Figure 49: P&L adjustment with a full, one day liquidation of a 4-stocks portfolio
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Figure 50: P&L adjustment with a 20%, one day liquidation of a 4-stocks portfolio

Figure 51: P&L adjustment with a full, one day liquidation of a 20-stocks portfolio
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Figure 52: P&L adjustment with a full, monthly, asset liquidation

Figure 53: P&L adjustment with a full, one day liquidation of a 4-stocks portfolio
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Figure 54: P&L adjustment with a full, monthly liquidation of a 20-stocks portfolio

We �nally sum up this section on liquidity. Starting with a portfolio embedding
market risk only, an adjustment was made by convoluting the pure market distribution
with another distribution representing the liquidity risk component. The liquidity risk
component is generally an elliptic distribution, whose components depend on bid-ask
spreads, asset prices and volatility, the holding proportions we wish to liquidate as well as
the horizon with which this liquidation takes place. A convolution is most easily computed
in a scenario-based framework, and this is indeed ideal since all our previous work can be
leveraged. Once we have computed the liquidity-adjusted pro�t and loss distribution for
the portfolio, we quanti�ed the impact of diversi�cation, di�erent liquidation amounts
and horizons, by computing a risk statistic measuring the portfolio's illiquidity expressed
as a ratio of expected shortfalls in the left tail. Hence, we can not only stress-test all
the previous features such as location, dispersion, tail-dependence, VaR and expected
shortfall, but also various liquidation policies. The result is that basically diversifying
the portfolio reduces the liquidity component versus the market component. Shorter
trading horizons have a higher expected impact but a smaller impact uncertainty, and
a partial liquidation has a lower expected impact. In a further direction that we did
not explore here, we could condition the liquidity adjustment parameters on the market
state, such as a decrease in liquidity when the VIX rises, or consider the Morgan Stanley
Liquidity Factor.
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Conclusion

We can, at the end of our journey, fully stress-test a risk factor or a portfolio's distri-
butional properties and select the stress type but also the stress value, both of which
determine the view. As we have seen before, we have three types of views: expert views
arising from a qualitative research or a manager's opinion about future developments;
risk-correcting views, usually given by other risk models for a speci�c purpose of provid-
ing a more accurate estimation of risk measures; predictive views coming from statistical
models to choose robust portfolios, better quantify investment opportunities or exploit
arbitrage opportunities, in short to give a forward-looking perspective to the prior risk
factor speci�cation. The power of this framework is to combine these three types of views
to provide a uni�ed picture of investment upsides and downsides with more accurate risk
estimates and external perspectives re�ecting personal or data mining insights. Instead
of adding more variables and making a model very complex, we use multiple models who
add value for speci�c problems.

We have showed that risk and asset management can be merged by incorporating
views from both areas in the representation of the risk factors or the portfolio prices or
P&Ls. This gives a more holistic view of risks, where the word "risks" encompasses the
threats as much as the opportunities. This ultimately leads to better decision-making
and a simpler grasp on the whole information, seized with only two data structures: the
scenario-probability representation. We can extend this framework to a dynamic one, we
could have time-varying volatilities for example with a GARCH model, or mean-reverting
stochastic processes, for which we can write the distribution at each timestep. This would
require simulating the process over time and concatenating its realizations in a matrix
where each column in the matrix would represent a date and there would be a probability
vector indexed by time as well. The choice of the Kullback-Leibler distance should be
discussed, and other measures could be considered. In a future work, we would focus a lot
more on evaluating the bene�ts brought by the views by comparing prior and posterior
models with performance measures, test statistics, out-of-sample backtests or portfolio
strategies under each model. An interesting question is why we focus on the whole
distribution and not only some select features of it such as the two �rst moments; the
reason is that for multi-asset class investing or when we have derivatives in the portfolio,
stylized facts become important and having only some statistics is not su�cient. Re�ning
the distribution as much as possible, we can perform a fairly recent method called full-
scale portfolio optimization in [AK07], which takes the simulated distribution as input
and can process all kinds of utility function. Full scale optimization has been shown to
achieve signi�cantly better results than mean-variance optimization, see [AK07], when
the investors do not have quadratic utility, for example when the utility is kinked or
S-shaped.
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