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Abstract

“The next crash risk is hiding in plain sight-Sometimes the ticking time bomb is in corners of the system

that seem dull and safe”- says Gillian Tett. Sometimes market shocks and bubble occurs because of risky

bets like Long-Term Capital Management (LTCM) fund crisis (1987), Portfolio insurance debacle (2007),

Quant crisis, Lehman brother bankruptcy in 2008 or the recent house bubble. This situation may be further

aggravated in the next decades by the increase in the financialization through Exchange traded funds (ETFs),

speed and automation through algorithm trading, and public debt [1]. The adverse effect of the crisis has

lead to a massive exodus of most of the clients, devaluation of the assets, instability in the market, break

down in pricing mechanism of the stock market and so on so forth. Today, western banks are well capitalized

and regulated by Basel terms. And the economy is flushed with the cash and seems to be calm which reflects

a sense of security. But this calmness will not only lead to the danger of risky bets but also for the pearls of

safe assets too.

Even though ETFs led to the Great Crash, but still they are considered to be safe investments. This

sector has recently exploded in size with more than 4 billion in asset under management (AUM). Passive

and quantitative investors have covered more than 60% of the AUM, which was under 30% a decade ago.

De planta [2] has concluded, “If the majority of us embrace them, index-trackers threaten to sabotage the

entire economic system”. This inclination towards passive investment is due to higher fees charged by the

active managers and they have underperformed in past decades. Therefore, in order to maintain balance in

the economy and outperform the passive investments in the market, active fund managers fight back against

Darwinian cull. Active managers turn to strategies that are difficult to replicate in a passive format.

This motivated us to develop a new model to help active managers to outperform in the market. We

developed a Statistical Agent-Based model (SABM) to solve the problem at hand. The strength of SABM



lies in its capability to shift the regime from microscopic to macroscopic level and thus, resolving the

complex economic problems. The strategy is to benefit from the tail risk which emanates from crowding

which is not adequately priced. In this thesis, we describe the steps for developing a SABM model and

formulate the calibration of the model as an optimization problem. The ease of calibrating a model in case

of SABM provides an advantage over the use of ABMs.

Finally, the model is evaluated using historical S&P 500 index data. We evaluate our model using

random trading strategies and linear regression. Various experiments with different window lengths for

calibration are used. The preliminary results encourage the prediction and, also conclude that the model

provides relevant information. The research findings of this thesis can be used by the active managers in the

industry to scientifically justify their business model. It will also help the agents to view the effect of market

factors globally.
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Chapter 1

Introduction

Passive funds have made a big chunk of overall assets under management in Asian and US equities and a

smaller - but rising - proportion in areas such as US bonds. Over time, active management is seen to be

underperforming across all major geographies, in both developed and emerging. Higher fees and trading

friction in active management, increment costs for investors. As long as corporate governance improves to

developed-market standards, passive investment is likely to grow overseas at a rate similar to US market.

Moreover, the underperformance of active fund managers tends to push institutional investors towards

’passive’ management of their assets. Indeed, the department for communities and local government in the

UK has recently suggested that almost 85 billion of defined benefit pension funds could be moved from

active to passive management [3]. The rationale for the suggestion is that the average returns from active

management may not justify its higher costs [3]. In the US, the majority of people prefer to invest in the

pension funds, which further invest in equity (which is indexed and around 11 trillion USD). In addition,

mechanically investing in an index that is 100% invested in the equity market requires the pensioner to take

on far more risk that he most likely wants.

This suggests that the two massive bear markets over the last decade have made investors lost something

far more valuable than money the time that was needed to reach their retirement goals. From a regulatory

perspective, it is therefore interesting to understand how the trend towards indexation will impact the social

welfare [4].

A crowded trade generally grows around what started as a good idea such as portfolio insurance, which
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CHAPTER 1. INTRODUCTION

most of the pension funds used. Due to herding effect, copycats learn to enter into space and capital flows

into the strategy. This leads to even more success for those already there, until, at one point, the pendulum

swings and the music stops. Indexing imposes a non-linearity that drives the most overpriced stocks to

become even more overpriced. That is precisely why the lofty valuations on the FAANGs just keep getting

loftier. The first hint of trouble causes cash inflows to dry up and buying to stop. The redemption by

drawdown-sensitive (active) investors cause instantaneous selling and leads to the bubble in the market.

Moreover, passive indices have both concentration risk and unwelcome biases and therefore, leading

to the systemic risk. The main concern is that the ascent of the passive investments will make the market

more chaotic, unpredictable and brittle. Many investors claim that the shift from active to passive is mostly

in Exchange Traded Funds (ETFs). The increased ownership of ETFs is detracting from the stock market

efficiency. Some fund managers and analysts can detect the warning sign of bubbles in passive investment.

A bubble is defined as the period of the unsustainable growth when the price of an asset follows a faster-

than the exponential power law growth i.e hyperbolic growth. This growth is often accompanied by the

log-periodic oscillations over and above passive tide.

Renaud de Planta [2], an active investment manager, the chairman of Pictet Asset Management, states

that - “A cure-all. This is what passive investing represents to its growing band of proponents. Equity tracker

funds, were told, will rid the financial market of toxic elements and restore it to full health. At first glance,

its a persuasive argument. Poorly performing and expensive active managers have lingered in the system

for too long, eroding returns for investors. Yet on deeper reflection, index-tracking products are no miracle

remedy. They are more like antibiotics: valuable when deployed in moderation, but likely to do more harm

than good, should their use become widespread.”

He claims that passive investing erodes competitive forces because companies in the same sector end up

with the same investor base, which is probably where he is on the strongest ground. But he also argues that

if passive funds monopolized investment flows, pricing mechanisms in the stock market would break down.

He suggested that the price of a stock would no longer reflect a company’s actual performance because their

shares would be bought simply as a result of their inclusion in an index.

In order to understand the complexity in finance and economy, one should step back from the traditional

approaches such as - expected utility maximization or maintain equilibrium in the market and should try an

2



CHAPTER 1. INTRODUCTION

innovative approach to avoid the bubble in the financial market. As Sherlock Holmes solves mysteries, we

should look the financial market from the alternative viewpoint [5]. i.e. “Once you eliminate the impossible,

whatever remains, no matter how improbable, must be the truth.”

In order to mitigate this risk, active management should efficiently allocate the capital within the market.

The active managers are turning away from the traditional strategy of comparing their own performance

relative to the equity benchmark, instead, they focus on providing the absolute results to the investor in

any market condition. Another defensive strategy opted is by taking more aggressive bets on the active

shares and increasing its weight in the portfolio and providing alpha. Instead of using standard accounting

data, they can use quantitative strategies based on new data and apply the significant computational ability

to outperform the passive funds. In this research paper, a strategy has been formulated to enable active

managers to benefit from the tail risk, emanating from crowding which is not adequately priced and can

help them to outperform.

1.1 Our Approach

In order to solve the problem statement, at first, we try to develop a model which simulates the trading

behavior of the individuals in the market. To model the behavior, we can make use of various computational

models like Compartmental models, Agent-based models (ABM), Decision-Analytic models etc. Although,

these methods are very efficient but for our research which is focused more on the behavior of the system

over time, Agent-based models look to be more relevant.

ABM is used to study the large-scale phenomena arising from micro-interaction [6]. The model consid-

ers the heterogeneity of the agents by doing the parameterization using two variables, which are different for

each agent. In today’s world, the artificial market can help us to understand the impact of market rules on

the behavior of the market makers and traders. It simulates the behavior of the system over time. It uses the

bottom-up or individual level approach i.e. how the behavior of individuals can affect the overall behavior

of the system. It shows how the virtual person might behave in the simulated community. Moreover, these

models are low cost, flexible and provide the natural description. The agents in these models make trading

decisions based on the history of changing directions in prices. In general, the model has limited memory

of length (m), which is the same for all agents. Each agent is provided with the same number of trading
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CHAPTER 1. INTRODUCTION

strategies (s), but in general, different agents may have different trading strategies. The decisions are made

by learning from the historical performance of their trading strategies. They analyze the performance of

trading strategies and choose the best strategy to make future decisions.

Although, ABM has a lot of advantages but due to its non-linear structure and stochasticity in the indi-

vidual behavior, it has complex interactive networks. Moreover, these models have certain limitations. The

results obtained using these models are uncertain. The results depend heavily on the input values and the

internal structure of the model. In addition, it is difficult to correlate the output with the input ingredients

[7]. It follows the parallel world universe and does not fit in solving the micro-macro problems. Moreover,

due to its complex dynamics and non-linear chaotic behavior, it is quite difficult to calibrate and validate the

model [8]. Other researchers also tried to apply maximum likelihood estimation to do the calibration, but

ABMs have the issue of dimensionality and ill-conditioning i.e. small error gets accumulated into a large

error while using the calibration methods.

This diagnostic has given the opportunity to others to come up with various options to remove these

drawbacks. Windrum et al. [9] review the calibration and validation problem of ABM in economics and

classify the calibration approach into three categories:- (i) the indirect calibration approach, (ii) the Werker-

Brenner approach, and (iii) the history-friendly.

Instead of using above methods, we decided to develop a new model, the Statistical Agent-based model

(SABM) to overcome drawbacks of ABM. SABM is a new way to add things up. It is a shift from micro

to macroscopic level to resolve the complex problem and understand the various players in the market. The

model is built on the concept of multiple layering i.e we add the two groups, fundamentalists, and chartists,

which have different statistics and distribution curve. This is called inner layering. This layer provides

the performance and decision of both agents. The next layer predicts the macroscopic variable by doing

calibration and re-calibration of the model. This enables us to reverse engineer and analyze the problem in

the real universe. Further, SABM provides a reason for stylized facts in financial time series, such as excess

volatility, temporary bubbles and trend following, sudden crashes and fat tails in the returns distribution [8].

4



CHAPTER 1. INTRODUCTION

1.2 Thesis Organization

In chapter 2, implementation and use of SABM model is well explained. Next, using historical data and

back-testing, we calculate decisions (to hold or not to hold) and compute performance i.e. annual return

and volatility, for the model created. Using these computations, we try to calibrate our model to mimic the

market behavior. The details of methods used for calibration are explained in chapter 3. After calibration,

we are able to predict the expected returns and volatility for the future dates. In chapter 4, we analyze the

future data to identify the possibility of a crash or financial bubbles in the market. The results obtained are

shown in chapter 5. The thesis ends with the chapter 6 containing conclusion and discussion.

5



Chapter 2

Model for the Market

This chapter gives the detailed information about how we developed the model. The aim is to develop a

model to simulate the behavioral impact of individual agents in the market. In order to build our model, we

use the concept of computer modeling. It is the process by which a computer is used to develop a mathe-

matical model of a complex system or process. Nowadays computer modeling has proven to be an efficient

way to measure the effect of different factors and also to simplify complex real-world processes. Models

can be designed to better explain or understand historical data, to predict future behavior or perform virtual

experiments, or to make decisions about courses of action based on the likelihood of expected outcomes[12].

In the following sections, we describe our model, SABM and the steps to implement it.

2.1 Statistical Agent-Based Models (SABM)

SABM is an efficient way to take into account different factors, calibrate and finally, optimize it to generate

the results which can be useful for the real-time problems. It is designed to understand the historical data

and predict the future behavior or performance of the market. In general, it is relatively easier to reproduce

some stylised facts of asset returns in stock markets, such as fat-tail distributed returns, the absence of

autocorrelation in returns, volatility clustering, and so on, but it is considered difficult to reproduce/calibrate

bubbles, crashes and the change of regimes. We propose a Statistical agent based Models (SABM), which

could overcome these difficulties and also relatively straightforward and easy to calibrate. Further, in this

section, we describe the agents/strategies used in our model and also the founding rules of our model. In our
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CHAPTER 2. MODEL FOR THE MARKET

model, we consider two classes of agents in the SABM, as all other ABMs do:

1. Fundamentalists:- These agents buy and hold a stock when it is cheap and will sell it and hold cash

when the stock is expensive. They use the P/E ratio to determine if the stock is under-valued or

over-valued.

2. Chartists:- These agents use a comparison of fast moving average (MA) and a slow moving average

of prices to identify trends. If the fast MA is higher than the slow MA they will buy and hold;

otherwise, they will close positions and hold cash. All agents use stop-loss to manage risks.

2.1.1 Foundation of our SABM

Although the SABM looks to be simple, it can still generate rich dynamics. In a random-walk market phase

when the P/E ratio is moderate, the market is in equilibrium: fundamentalists will buy and sell with the same

probability and the price trend is not obvious so the chartists will also buy and sell with the same probability.

The random-walk phase will continue.

When some stochastic positive price jumps occur, a trend will emerge in the market. A positive feedback

loop will make more and more chartists enter the market, as long as the P/E ratio is not extremely high and

the trend is not totally destroyed by the fundamentalists selling their shares. Hence, a bull market is formed

and continues.

When the bull market continues, the P/E ratio will increase until it reaches a critical point: some fun-

damentalists will start to sell and cause some price drops. There could be some oscillations because of the

oscillations of the P/E ratio. If there is a big random price drop, both fundamentalists and chartists will

sell out their stocks to stop loss and they will create a positive feedback loop to cause a crash before a bear

market.

When the bear market goes on until the P/E ratio is low enough, the fundamentalists will enter to buy

and hold shares to stop the bear market.

2.1.2 Steps for Model Creation

In order to work with this model we use following notation and strategy:

7
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1. Let S be the total number of shares outstanding of the stock.

2. Let the total number of fundamentalists be Nf , and that of the chartists be Nc. Both of them will

100% in the market or 100% out.

3. If one decides to enter, her capacity of buying and holding shares is ni, related to her wealth and

knowledge and so on. We assume it is stationary, distributed with some mean µ and variance �

4. Agents learn from the history with a window length wi1 (in-sample window 1) to find the best trading

strategy to use. Of course, the fundamentalists and the chartists have different styles of strategies

that we use in our model. At any time, the fundamentalists try to find a good P/E ratio denoted by x

to enter or exit, and a good stop-loss ratio, h to manage their risks. The chartists use a fast moving

average, denoted by MAf , and a slow moving average, denoted by MAs to enter or exit, and they

need also a good stop-loss ratio, h to manage risks. So the fundamentalists look at the pairs such as

(x,h), while chartists look at triplets such as (MAf , MAs, h) to make decisions.

5. With any pair (x,h) or triplet (MAf , MAs, h) one can get back-test results in wi1 . We assume

the agents pick trading strategies with mean-variance preferences. Let rk(t) and vk(t) be the average

return and the standard deviation of returns of the back-test with parameter pair k (for fundamentalists)

or triplet k (for chartists), at time t.

6. The risk aversion of agents is denoted by �. The expected utility gained by the trading strategy k at

time t will be a function of rk(t)� �vk(t).

7. For convenience, we assume the probability of choosing the trading strategy k is proportional to,

exp

rk(t)� �vk(t)

T
, (2.1)

where T is a temperature determining how sophisticated the traders are and how intensively the traders

are coupled.

8. We assume the risk aversion � is exponentially distributed with a parameter ⌧ .

9. We can get the probability of any trading strategy being picked, which is denoted by

8



CHAPTER 2. MODEL FOR THE MARKET

P (k, t) = P (rk(t), vk(t), T, ⌧) (2.2)

where rk(t) and vk(t) can be extracted from historic data and T and ⌧ are model parameters.

10. At any time t, a trading strategy will tell agents to hold or not to hold the stock. Let Y (k, t) be the

output of trading strategy at time t according to the price context at t, which can be 0 (not to hold) or

1 (to hold).

11. Df denotes the demand of fundamentalists. We thus have

E(Df ) = Nfµ
X

k

P (k, t) Y (k, t), and (2.3)

V AR(Df ) = Nf�
2
⇣X

k

P (k, t) Y 2
(k, t)�

�X

k

P (k, t) Y (k, t)
�2⌘ (2.4)

12. Similarly, the demand of chartists, Dc, can be calculates as

E(Dc) = Ncµ
X

k

P (k, t) Y (k, t), and (2.5)

V AR(Dc) = Nc�
2
⇣X

k

P (k, t) Y 2
(k, t)�

�X

k

P (k, t) Y (k, t)
�2⌘ (2.6)

Note: fundamentalists and chartists have different values for P (k, t) and Y (k, t).

13. Demand of agent, D, is calculated as:

D = Df +Dc (2.7)

Therefore,

E(D) = Nfµ
X

k

P (k, t) Y (k, t) +Ncµ
X

k0

P 0
(k0, t) Y 0

(k0, t), (2.8)

9



CHAPTER 2. MODEL FOR THE MARKET

and,

V AR(D) = Nf�
2
⇣X

k

P (k, t) Y 2
(k, t)�

�X

k

P (k, t) Y (k, t)
�2⌘

+Nc�
2
⇣X

k0

P 0
(k0, t) Y 02

(k0, t)�
�X

k

P 0
(k0, t) Y 0

(k0, t)
�2⌘

.

(2.9)

14. If we denote the stock price at t by X(t), price discovery process is calculated as:

D X(t) = S X(t+ 1) (2.10)

The return of the stock at time t+ 1 is

rt+1 =
D

S
� 1, (2.11)

Therefore, expected value and variance of return can be calculated as:

E(rt+1) =
Nfµ

S

X

k

P (k, t) Y (k, t) +
Ncµ

S

X

k0

P 0
(k0, t) Y 0

(k0, t)� 1 (2.12)

V AR(rt+1) =
Nf�

2

S2

⇣X

k

P (k, t) Y 2
(k, t)�

�X

k

P (k, t) Y (k, t)
�2⌘

+

Nc�
2

S2

⇣X

k0

P 0
(k0, t) Y 02

(k0, t)�
�X

k

P 0
(k0, t) Y 0

(k0, t)
�2⌘

(2.13)

where magnitudes of Nf and Nc are big enough. Now, following these steps, we can compute ex-

pected value and variance of the future returns.

2.1.3 Computation of P (k, t) and Y (k, t)

The computation of P (k, t) and Y (k, t) is required for prediction of returns for different trading strategies.

As explained earlier, we make use of two strategies for agents: Chartists and Fundamentalists. Using these
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CHAPTER 2. MODEL FOR THE MARKET

different strategies, we use back-testing to compute expected annual return (rk(t)) and standard deviation

(vk(t)) using historic data. In addition, we also compute holding decisions (Y (k, t)) for both strategies.

Now, from equation 2.2, we know that P (k, t) is dependent on rk(t), vk(t), T and ⌧ . The probality of using

a particular strategy, k, at time t is calculated as:

P (k, t) = exp(rk(t)/T ) ⇤ ⌧/(⌧ + vk(t)/T ) (2.14)

11



Chapter 3

Calibration of Model

Once the strategies described in the previous chapter are used to compute the performance, probabilities,

and decisions for both the fundamentalists and chartists, the next step is to use these intermediate results for

calibration of the model. The SABM model can calculate and predict mean and volatility for the returns

using historical data. In this calculation, the model makes use of market parameters as described in equation

2.2, 2.12 and 2.13. These parameters define the blueprint for the models. These parameters are unknown

apriori and need to be estimated. The parameters are estimated in order to calibrate the model to follow the

behavior of the market. The task is to choose a specific set of values for the market parameters to statistically

match the predicted values with the real values for the historical data. The market parameters to be calibrated

in the SABM model are T , ⌧ , Nfµ
S , Ncµ

S , and Nf�
2

S . For ease of notification in the rest of thesis, we call Nfµ
S

as f ratio, Ncµ
S as c ratio and Nf�

2

S as f var ratio.

In theory, there exist different ways to estimate the parameters. However, some methods are preferred

over the others, because they result in estimators that have good statistical properties. To calibrate our model,

we make some statistically justified assumptions on predicted daily returns. According to the Central Limit

Theorem, rt+1 (equation 2.12) is approximately normally distributed, when the outstanding shares (S) have

the same real returns within an in-sample window, whose length is wi2. The calibration of this SABM is

much more efficient than the Genetic algorithm approach because we need to analyze with P/E ratio based

trading strategies and trend following trading strategies just once. After storing the P (k, t) and Y (k, t)

for whole in-sample length, the calibration is nothing but a normal numerical optimization or estimation

12



CHAPTER 3. CALIBRATION OF MODEL

problem. In order to do calibration there exist two popular methods: Maximum likelihood estimation and

Least square method. As the least square method is used mostly for the linear models, maximum likelihood

estimation method suits the best to estimate market parameters.

3.1 Maximum likelihood estimation

Maximum likelihood estimation is a method that determines values for the parameters of a model such that

they maximise the likelihood that the process described by the model produced the data that were actually

observed [11]. The likelihood is probability of observed data given a specific model i.e. P (data|model).

Let M be the hyperspace for market parameters and m be one set of , the maximum likelihood estimate

(MLE), m⇤ is computed as given below:

m⇤
= arg max

m2M
P (data|model(m)) ,

where data corresponds the actual returns (rt) calculated for historic data and model corresponds to ex-

pected return (µ) and volatility (�) predicted using SABM. The predicted values for return and volatility

depends on market parameters, m and are different for each day of the in-sample period. Therefore, in order

to calculate the likelihood, joint probability for all days is computed. Assuming returns for each day(i) to

be statistically independent distributed, the joint probability of the daily returns becomes the product of all

returns individually as shown below:

P (data|model(m)) =

Y

i

P (rti|µi(m),�i(m))

The MLE estimate computation modifies to:

m⇤
= arg max

m2M

Y

i

P (rti|µi(m),�i(m)) .

The returns are approximately normally disributed which stated likelihood for each day to be:

P (rti|µi(m),�i(m)) =

1p
2⇡�i(m)

2
exp

⇣�(rti � µi(m))

2

�2
i (m)

⌘

13



CHAPTER 3. CALIBRATION OF MODEL

The joint likelihood stated above is difficult to calculate with full precision and thats why it is usual

approach to take the natural logarithm (log) of the expression. The motive of using log is that it converts

product into summation. Also, log is monotonically increasing function and thus, does not effect the maxi-

mization fo likelihood. Taking log and replacing likelihood with normal distribution, the MLE (m⇤) can be

computed as follows:

m⇤
= arg max

m2M

X

i

�0.5 log 2⇡ � log �i(m)�
⇣
(rti � µi(m))

2

�2
i (m)

⌘
. (3.1)

The equation 3.1 computes the log-likelihood function for the given values of actual return and predicted

values of expected return and volatility. Now, the estimation of calibration parameters is nothing but a

normal numerical optimization problem.

Let us assume that we calibrate the model using real returns and performance for days in a time period

between t1 and t2, then we can make the prediction for days in the time period of t2 + 1 to t2 + x. The

next step is to verify the predictability of the model in [t2 + 1, t2 + x]. For this we recalibrate the model

to make predictions in [t2 + x + 1, t2 + x + x] i.e. we do the MLE again but now with data in [t1 + x,

t2 + x]. Here x refers to the time period for which we make predictions using same calibration parameters.

By re-calibrating the model for each time period of x, we get the predicted returns and variances from t2 to

the end of the time of our data.

14



Chapter 4

Statistical Analysis

In the previous chapter, we explained the method to calibrate the model and also, the method to obtain the

market parameters using maximum log-likelihood estimate (MLE). Once the model is calibrated, we can

predict the returns and variances using the same model. The next step is to do statistical analysis on the

predictions to measure the performance of our model.

4.1 Trading strategy

Once we have predicted daily returns and standard deviation for the time period under observation, we can

design a trading strategy based on these predictions. For example, the strategy can be as follows:

Using historical data from 1990-01-01 to 1999-12-31, we can predict expected values for 2000-01-01.

Let the expected return on 2000-01-01 be 0.3%. The trading strategy can be to buy, if the return is higher

than a threshold, to short, if the predicted return is lower than negative of threshold and otherwise, do noth-

ing. If threshold chosen is 0.1% in this strategy, we will buy on 2000-01-01. We can generate the decision

signal for all required days.

For analysis, we can try different thresholds or even different strategies. Another option is to check with

predicted return divided by standard deviation value, else we just buy without short, or do short without

buy. Using the trading strategy, the daily returns for the whole period of observation can be obtained. We

observe the daily return for the trading strategy and simultaneously count the number of trading days (NT ),

15



CHAPTER 4. STATISTICAL ANALYSIS

number of buy days (NB) and number of short days (NS) in the observation period. Let rreal(t) be daily

real returns, then the daily return of my trading strategy, r(t), can be calculated as follow:

r(t) =

8
>>>>>><

>>>>>>:

rreal(t), for buy days

�rreal(t), for short days

0, else

(4.1)

4.2 Evaluation of trading strategy

After recording the returns for our trading strategy, the next step is to evaluate the performance of the returns.

We did the following tests on our returns:

1. Comparison with random strategies

2. Linear Regression

4.2.1 Comparison with Random strategies

This test is used to confirm whether the developed model and the trading strategy designed are able to add

information while predicting. This is done by recording daily returns for randomly generated strategies.

There can be many different ways to generate random signals. One of the common approaches is to

select a time period (T ) randomly within the observed period. Within the selected time period, we count the

number of the buy days (NB) and the short days (NS). We calculate the total number of trading days (NT )

as the sum of the buy and short days. The next step is to randomly select NT days from the time period,

T . From these NT trading days, NB days are selected randomly and labeled as buy days, while remaining

NT�NB days are labeled as short days. This can be seen as generating a random signal with the constraint

of having the same number of buy and short days as in our trading strategy. Finally, we use this random

signal with buy and short days to generate returns using equation 4.1. The next step is to compare these daily

returns against returns obtained from the trading strategy from our model. We compare the performance on

the following indicators:
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• Compound annual growth rate(CAGR): the mean annual growth rate of an investment over a specified

period of time longer than one year [14].

• Sharpe ratio: It is the excess return divided by the volatility.

• Maximum drawdown: It is calculated as the difference between the peak and trough divided by the

peak.

The returns are generated for a huge number of random signals and the performances are compared. We

expect the performance of our strategy to be better than at least 90% of the performances obtained from

random strategies. If this condition is satisfied, it means that our trading strategy works not by chance, and

it provides some information in the model.

4.2.2 Linear Regression

Once random strategy test is done, we used another method to validate the performance of the model. Using

the recorded returns, r(t), we run a linear regression model with FAMA-FRENCH 3 factors model. The

linear regression model is formulated as:

r(t) = ↵+ �HML HML(t) + �SMB SMB(t) , (4.2)

where ↵, �HML and �SMB are coefficients, HML(t) is high-minus-low (HML) factor and SMB(t) is

small-minus-big (SMB) factor. HML is the factor representing the effect of value of company, while SMB

is the factor referred as the ”size effect”.

If the regression model gives a significant intercept (↵), it means that something in the r(t) cannot be

explained by the 3 factors. If that is the case, it means there is some information in the model. In order to

run the linear regression, we made use of the statsmodel package in python.

17



Chapter 5

Experiments and Results

This chapter describes the choice of various parameters for example in-sample length, wi1 and shows the

results obtained at different steps of our model implementation. The whole model was implemented using

Python 3. Python was chosen due to the availability of various modules for statistical analysis and also,

easy wrapper modules for interfacing with different databases. In order to validate the SABM model, S&P

500 index data is used. The values of closing price and P/E ratio were used for the in-sample period from

1990-01-01 to 2016-12-31 while out-of-sample analysis was done for the time from 2017-01-01 onwards.

In following sections, the implementation details and results for back-testing, calibration, and final analysis

are shown.

5.1 Back-testing

As explained in section 2.1.2 of Chapter 2, the agents use historical data of window length (wi1) and generate

strategy performances (rk(t) and vk(t)) using back-testing. In general, it is preferred to choose window

length to be large enough to get statistically good results. In our implementation, the window length for

back-test was chosen to be 10 years or approximately 2610 days. We shift the back-test window and

generate performances at each shift. The size of the shift was chosen as 22 days and 252 days. Using this

approach, we generated two sets of results for the period of 2000 to 2017: one for the shift of 22 days and

other for 252 days.

After choosing the window length and size of shift, we select different set of parameters for both strate-
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gies and generate performance for all parameters sets. The strategy parameters used by fundamentalists are

entry threshold and exit threshold and are selected from the following paramter space:

entry threshold : 0, 1, 2, 3, 4, .... 37, 38, 39, 40, 41, 42,..... 76, 77, 78, 79]

exit threshold : 0, 1, 2, 3, 4, .... 37, 38, 39, 40, 41, 42,..... 76, 77, 78, 79]
The strategy performances are computed for all valid combinations of entry threshold and exit threshold

from the space. All combinations with entry threshold less than exit threshold are considered.

Similarly, the parameters used in case of chartists strategy are slow window length, fast window length,

entry threshold, exit threshold and stop loss. For chartists, the performances are computed for all valid

combinations of parameters from the given below parameter space. All combinations, for which fast window

length are less than slow window length, are considered. The parameter space for chartists is as follow:

fast window length : 5, 10, 15, 20, 25, 40, 60, 90, 120, 160, 200, 250

slow window length : 10, 15, 20, 25, 40, 60, 90, 120, 160, 200, 250, 300, 400, 500, 750

entry threshold : 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.5, 1.75, 2.0, 2.5

exit threshold : 1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.5, 0.25

exit threshold : 0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 1.0, 2.0
We can observe that the parameter space selected for both strategies is significantly large. This was

done to fulfill the requirement of huge Nf and Nc, stated in steps for model creating model. An example of

performance computed for chartists and fundamentalists can be seen in the table 5.1 and 5.2 respectively. It

can be observed that we obtain different values of annual return and volatility for a different set of strategy

parameters in case of both fundamentalist and chartist strategies.

set idx fast wl slow wl entry th exit th stop loss annual return volatility maximum drawdown
1 5 10 1 0.25 0 0.147496 0.133579 0.23971
2 5 10 1 0.25 0.025 -0.0794673 0.106909 3.60955
3 5 10 1 0.25 0.05 -0.181331 0.0589035 5.67591
4 5 10 1 0.25 0.075 -0.181331 0.0589035 5.67591
5 5 10 1 0.25 0.7 -0.181331 0.0589035 5.67591
6 5 10 1 0.25 1 -0.181331 0.0589035 5.67591
7 5 10 1 0.25 2 -0.181331 0.0589035 5.67591
8 5 10 1.05 1 0 0 0 0
9 5 10 1.05 1 0.025 0 0 0

10 5 10 1.05 1 0.05 0 0 0

Table 5.1: Chartist yearly performance for year 2000 for 10 different parameter sets.
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set idx entry th exit th annual return volatility maximum drawdown
1 12 66 0 0 0
2 12 67 0 0 0
3 12 68 0 0 0
4 12 69 0 0 0
5 13 14 0.00328976 0.0253829 0.0668449
6 13 15 0.0126925 0.0337733 0.0668449
7 13 16 0.017939 0.0367784 0.0668449
8 13 17 0.0224414 0.0402471 0.0668449
9 13 18 0.0236538 0.0486145 0.0668449
10 13 19 0.0258713 0.052253 0.0668449

Table 5.2: Fundamentalist yearly performance for year 2000 for 10 different parameter sets.

5.2 Calibration results

The performances computed for period 2000-01-01 to 2016-12-31 can be used to compute probability of

particular strategy being used (P (k, t)) as described in equation 2.14. As explained in Chapter 3, the model

is calibrated using MLE to get optimal values of market parameters. The market parameters are optmized

over the following ranges:

Temperature (T) : 0.01 to 1000

⌧ : 0.01 to 500

f ratio : 0.01 to 100

c ratio : 0.01 to 100

f var ratio : 0.01 to 200
The parameters are obtained by solving the optimization problem in equation 3.1. The optimization

problem is formulated as a minimization problem and solved using Scipy python package.

In order to calibrate, we choose an appropriate in-sample window length and estimated the optimal

market parameters. The window length was selected to be 10 years and 5 years. To get better predictions,

we re-calibrate our model at the step of 22 days. The reason for doing recalibration is that there is less

chance for the model with single calibration to give the predictions which can reflect the real financial

time-series. It will be an imperfect representation similar to a local tangent projective approximation of the

complex unknown generating process [10]. Such local tangent projective representation requires a periodic

re-calibration of the model, in the same way that the tangent to a nonlinear curve evolves with the position
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on the curve.

Using these parameters, we try to predict the returns for the out-of-sample window size of 22 days. It

is important to complement the optimization step in the in-sample window to predict the returns in the out-

of-sample window. This is done to check the prediction power of the model using market parameters and to

provide the insurance that it provides some real value or insight, else it is just fitting exercise to get the good

results. An example of the market parameters obtained using window from 2000-01-01 to 2009-12-31 are

as follows:

T = 10.395, ⌧ = 0.0919, c ratio = 1.503, f ratio = 0.438, f var ratio = 0.0103

The main aim of the whole calibration process of our SABM is to predict the returns in the out-of-

sample windows. Hence, we perform different experiments using various case to ascertain the value of this

procedure. The cases are explained in following sections.

5.2.1 Case I

In this case, the performance is computed using a shift of 252 days and the back-test window length of 10

years. The in-sample window of 10 years (starting from 2000-2009) with the step of 22 days is used for

calibration and the returns are predicted from 2010 to 2017 sequentially. The predicted returns calculated

for period 2010-01-01 to 2017-12-31 are shown in figure 5.1.

In figure 5.1, we can observe that the predicted returns are strictly positive from 2010 to 2016. This can

be due to the continuous increment of prices in the market. Although, the trend of the returns is decreasing

except for peaks in 2011 and 2014.

5.2.2 Case II

In this case, the performance is computed using a shift of 22 days and the back-test window length of 10

years. The in-sample window of 10 years (starting from 2000-2009) with the step of 22 days is used for

calibration and the returns are predicted from 2010 to 2017 sequentially. The predicted returns calculated

for period 2010-01-01 to 2017-12-31 are shown in figure 5.2.

In figure 5.2, we can observe that the predicted returns are mostly positive from 2010 to 2016 and follow

a decreasing trend. The same behavior is observed for returns for in figure 5.1. Apart from the similarities,
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Figure 5.1: Predicted returns for Case I

Figure 5.2: Predicted returns for Case II

a drawdown in returns can be seen for 2012.

5.2.3 Case III

In this case, the performance is computed using a shift of 22 days and the back-test window length of 10

years. The in-sample window of 5 years (starting from 2000-2004) with the step of 22 days is used for
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calibration and the returns are predicted from 2005 to 2017 sequentially. The predicted returns calculated

for period 2005-01-01 to 2017-12-31 are shown in figure 5.3.

Figure 5.3: Predicted returns for Case III

In figure 5.3, we can observe that the predicted returns are mostly positive from 2005-2015. We also

observe negative returns for period 2008-2009 which seems to be relevant due to the occurrence of the

financial crisis in 2008-2009.

5.3 Statistical analysis results

As explained in section 4.1, the next step is to generate a trading signal from predicted returns and volatilities

using various trading strategies. We generated signal using two different trading strategies. The first strategy

to generate the trading signal (s(t)) is given below:

s(t) =

8
>>>>>><

>>>>>>:

Buy (+1), if r(t) > 0.01

Short (�1), if r(t) < �0.01

Idle (0), else

(5.1)
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The other strategy used is as follow:

s(t) =

8
>>>>>><

>>>>>>:

Buy (+1), if r(t) > 1 ⇤ �(t)

Short (�1), if r(t) < �1 ⇤ �(t)

Idle (0), else

(5.2)

We use these strategies to generate a trading signal for predicted returns obtained for all 3 cases. The

trading signals and corresponding trading returns calculated using equation 4.1 for first strategy (equation

5.1) are shown in figure 5.4, 5.5 and 5.6. Similarly, we generate the trading signal and returns for the strategy

explained in equation 5.2.

(a) (b)

Figure 5.4: Results for Case I : (a) trading signal, (b) trading returns

(a) (b)

Figure 5.5: Results for Case II : (a) trading signal, (b) trading returns
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Figure 5.6: Results for Case III : (a) trading signal, (b) trading returns

5.3.1 Comparison with Random strategies

The model can now be evaluated by comparing SABM trading returns obtained from first trading strategy

against returns from randomly generated strategies, as explained in section 4.2.1. We generated 10,000

random strategies with the constraint of the same number of buy and short days for all the 3 cases. The

performance of SABM for first strategy in terms of daily Profit and Loss (P&L) for all the three cases are

shown in figure 5.7, 5.8 and 5.9. Since the P&Ls results for the second strategy were not comparable to

results from the first strategy, so, further analysis is done using the first strategy only.

Figure 5.7: Daily Profit and Loss for Case I: SABM in red, Random strategies in blue

In the P&L graphs for all 3 cases, the P&L for Case III is better than the other two cases. In order to
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Figure 5.8: Daily Profit and Loss for Case II: SABM in red, Random strategies in blue

Figure 5.9: Daily Profit and Loss for Case III: SABM in red, Random strategies in blue

validate, we calculate the value of three performance indicators explained in 4.2.1. These indicators are

shown in the table 5.3.

The table 5.3 shows the performance of our model in terms of Sharpe ratio, maximum drawdown, and

CAGR for all 3 cases. The performance of our strategy is compared with the performance of random

strategies. In case of Sharpe ratio and CAGR, we count the number of random strategies for which the value
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Sharpe ratio Maximum drawdown CAGR
SABM Better than(%) SABM Better than(%) SABM Better than(%)

Case I 0.451 21.42 0.31 21.33 0.041 21.77
Case II 0.24 37.73 0.64 64.21 0.1 44.47
Case III 0.393 83.3 0.457 91.8 0.072 86.31

Table 5.3: Results for different performance indicators

Dep. Variable: exp ret R-squared: 0.114
Model: OLS Adj. R-squared: 0.113
Method: Least Squares F-statistic: 128.7
Log-Likelihood: 6775.5 Prob (F-statistic): 2.47e-53
No. Observations: 2013 AIC: -1.355e+04
Df Residuals: 2010 BIC: -1.353e+04
Df Model: 2

coef std err t P>|t| [0.025 0.975]
Intercept 0.0002 0.000 0.947 0.344 -0.000 0.001
SMB 0.0046 0.000 12.882 0.000 0.004 0.005
HML 0.0039 0.000 10.062 0.000 0.003 0.005

Omnibus: 224.686 Durbin-Watson: 2.035
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1629.264
Skew: -0.242 Prob(JB): 0.00
Kurtosis: 7.381 Cond. No. 2.09

Table 5.4: Regression Results for Case I

is less than the value of SABM. This number is shown as a percentage of total strategies in column “Better

than (%)”. Similarly, for maximum drawdown, the number of random strategies for which the drawdown is

more than the drawdown of our SABM, is calculated. We can observe the improvement in percentage for

all three indicators for Case III.

5.4 Linear regression

The other method to evaluate our model is to run linear regression using FAMA-FRENCH 3 factors model,

as explained in section 4.2.2. We use the trading returns as a dependent variable. The regression was run for

all 3 cases. The regression was run using ols functionality from statsmodels python package. The results for

Case I, II and III are shown in figure 5.4, 5.5 and 5.6 respectively.
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Dep. Variable: exp ret R-squared: 0.137
Model: OLS Adj. R-squared: 0.136
Method: Least Squares F-statistic: 159.1
Log-Likelihood: 6768.9 Prob (F-statistic): 7.34e-65
No. Observations: 2013 AIC: -1.353e+04
Df Residuals: 2010 BIC: -1.351e+04
Df Model: 2

coef std err t P>|t| [0.025 0.975]
Intercept 0.0004 0.000 1.975 0.048 2.55e-06 0.001
SMB 0.0051 0.000 14.116 0.000 0.004 0.006
HML 0.0045 0.000 11.446 0.000 0.004 0.005

Omnibus: 226.654 Durbin-Watson: 2.020
Prob(Omnibus): 0.000 Jarque-Bera (JB): 1579.960
Skew: -0.271 Prob(JB): 0.00
Kurtosis: 7.306 Cond. No. 2.09

Table 5.5: Regression Results for Case II

The table 5.4 shows the value of alpha (excess return) to be 0.02%, which is positive and insignificant.

Also, the coefficients of the two factors, SMB and HML, are positive and statistically significant at 1% level.

The value of R2 is 11.4%.

The table 5.5 shows the value of alpha to be 0.04%, which is positive and significant at 5%. Also, the

coefficients of the two factors, SMB and HML, are positive and statistically significant at 1% level. The

value of R2 is 13.7%.

The table 5.6 shows the value of alpha (excess return) to be 0.03%, which is positive and significant at

10%. Also, the coefficients of the two factors, SMB and HML, are positive and statistically significant at

1% level. The value of R2 is 7.4%, which is significantly low.
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Dep. Variable: exp ret R-squared: 0.074
Model: OLS Adj. R-squared: 0.074
Method: Least Squares F-statistic: 131.1
Log-Likelihood: 10373. Prob (F-statistic): 1.64e-55
No. Observations: 3272 AIC: -2.074e+04
Df Residuals: 3269 BIC: -2.072e+04
Df Model: 2

coef std err t P>|t| [0.025 0.975]
Intercept 0.0003 0.000 1.647 0.100 -5.57e-05 0.001
SMB 0.0042 0.000 13.358 0.000 0.004 0.005
HML 0.0028 0.000 10.217 0.000 0.002 0.003

Omnibus: 903.068 Durbin-Watson: 2.167
Prob(Omnibus): 0.000 Jarque-Bera (JB): 78120.161
Skew: 0.243 Prob(JB): 0.00
Kurtosis: 26.933 Cond. No. 1.78

Table 5.6: Regression Results for Case III
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Conclusion

We have constructed a Statistical Agent-based model which can be populated by artificial agents i.e. funda-

mentalists and chartists. This model is developed to understand the complexity of the financial market. It is

a new way of solving the macro-level economic problems. Moreover, it tries to overcome the drawback of

Agent-based models. The ABMs are considered to be complex and have non-linear chaotic behavior. Also,

they only take micro-level factors into consideration and is quite difficult to calibrate for high dimensional

problems.

This thesis shows that SABM is an efficient way to deal with multiple factors due to its layering structure.

The layering structure allows us to add multiple agents in the first layer and thus, does not add any com-

plexity to the calibration. The calibration is done in next layer using the real returns for a given in-sample

window. The calibration is formulated as an optimization problem using Maximum Likelihood Estimation,

which provides the optimal values of the five market parameters. In this thesis, we also observe the advan-

tage of re-calibrating the model to obtain best future predictions. These market parameters are further used

for predicting the returns in each out-of-sample window. We generate a trading signal using the predicted

returns. This is done by using two different trading strategies. Further, these signals are used to compute

trading returns from real returns.

In order to validate our model, we compare the performance of our model with random strategies on var-

ious indicators. We computed various results using different window lengths in which Case III outperforms

the random strategies in terms of P&L, Sharpe ratio, Maximum drawdown, and CAGR. Also, the results of
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linear regression for Case III are better than other cases. It shows a positive ↵ and significant coefficients

for market factors. For Case II and III, the ↵ is statistically significant at 10%-level which means that the

r(t) cannot be explained by the 3 factors only. Thus, it can be concluded that there is some information in

the model.

From these results, we can conclude that the preliminary results are encouraging the prediction. The

results can be further improved by performing more experiments. In these experiments, we can select

different window lengths, step sizes, and the trading strategies, and do a detailed statistical analysis on the

performance of our model.
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