
Master’s Thesis

Leave-out methods for selecting
the optimal starting point of

financial bubbles
A more flexible statistical model for the LPPLS
model and leave-out methods for selecting the

beginning of bubbles.

Author
S. H. Magnússon

Advisor
Dr. S. Wheatley

Supervisor
Prof. N. Meinshausen

Prof. D. Sornette

August 28, 2018



Abstract

Identifying financial bubbles and predicting the burst of them is of
high theoretical but also practical interest. The Log-Periodic Power Law
Singularity (LPPLS) model is an attempt to model unsustainable growth
in financial markets, namely super-exponential growth, and predict the in-
evitable burst of such bubbles. This thesis aims to improve the statistical
estimation of the LPPLS model by allowing the residuals of the parametric
model to have an auto-regressive part and heteroskedasticity in the inno-
vations. Further, new methods for selecting the optimal starting point
of a bubble are investigated and compared to existing methods. Finally,
the parameters in the LPPLS model need to satisfy specific constraints
to describe a bubble. We extend these constraints partly to probabilistic
boundaries.

The methods for selecting the optimal initial point of a bubble were
tested and compared to results on synthetic and historical data. The pro-
posed improvements on the residual structure are necessary for estimating
the parameters and its confidence intervals. The suggested methods for
selecting the optimal initial point of the bubble are conceptually more
appealing than existing methods but require refinements. We suggest do-
ing further experiments to compare and find the merits and drawbacks of
each selection criteria.
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1 Introduction

Understanding the dynamics of financial instruments has been the topic of re-
search and debate since men started trading goods. With the introduction
of modern currency, people have resolved to ever more sophisticated models
to study and analyze these trends. The complex interaction between investors
and exogenous shocks now coupled with increasingly many financial innovations
makes the task of disentangling the signal from noise ever more challenging. The
price dynamics of financial instruments can often be approximately described
as exponential growth with added noise. The noise structure can be found to be
quite complicated without the use of exogenous information. When this model
holds true, no bubble is present, and we classify these times as regular times for
that particular financial instrument. Occasionally though, we can see in financial
markets that the price of an instrument grows super-exponentially as a function
of time, which we classify as a bubble [7, 14, 19]. Super-exponential time dy-
namics occur during transient regimes when the price growth rate is growing.
Such processes have been found in multiple historical bubbles [10, 11, 14, 21].
Under these circumstances, it is hardly plausible that the fundamental value is
increasing at the same rate. Thus, these unsustainable super-exponential price
dynamics usually lead to a crash or severe corrections, and the process swiftly
changes regime. Ideally estimating the discrepancy between the price trajectory
and the fundamental value would be an essential element in identifying bubbles.
Formally the price of a financial instrument can be defined as

pt = p?t + p′t (1)

where p?t is the fundamental value at time t and p′t is the additional bubble
component at time t. However, the fundamental value is hard to estimate accu-
rately [1, 15], and thus identifying bubbles based on deviations from fundamental
value is tricky in general although perhaps achievable in some cases [23]. The
Log-Periodic Power Law Singularity (LPPLS) model was proposed as a generic
model for capturing bubbles [10, 11, 18] using only endogenous information,
that is only prices of that particular instrument over time.

The LPPLS model is a parametric model which describes a positive feedback
process which results in a finite-time singularity [8, 17, 20] with accelerating
log-periodic oscillations [16]. It describes some financial bubbles in a simple
but effective manner. The LPPLS model cannot explain crashes caused by
exogenous shocks, for example, natural disasters.

1.1 Contributions

The contribution of the thesis starts with improving the statistical estimation
of the parametric LPPLS model. The assumption of independent and identi-
cally distributed residuals is violated on real-world bubbles as shown for several
distinct historical bubbles in the thesis. Thus, a more general model for the
residuals is proposed, namely with auto-regressive residuals and heteroskedas-
ticity. The proposed model yields more robust and efficient parameter estimates
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and more accurate predictions, at least for synthetic data. The complex struc-
ture of the residuals needs to be accounted for to calculate confidence intervals
for the parameter estimates.

Secondly, the thesis proposes partly probabilistic boundaries on the parame-
ter space. In the parametric LPPLS model, we require the parameters to satisfy
certain conditions. We derive probabilistic boundaries on the linear parameters
of the model based on Bayesian regression methods. This model also describes
approximate marginal and joint confidence interval for the full set of the linear
parameters.

The final goal is to identify the beginning of a bubble. The initial time of
bubble is a fuzzy concept and has to be dealt with in order to capture the bubble
structure efficiently and robustly. The proposed model suffers from computa-
tional challenges as for each suggested initial point we need to fit the model.
The likelihood of the model is non-linear and non-convex and thus requires a
time-consuming search through the parameter space. Demos et al. proposed
the Lagrange regularisation approach [4]. It assumes that the residuals have
constant variance through time and no correlation which we show is violated
in historical bubbles. It also depends on the window selected where the bub-
ble is supposed to have started and all their corresponding fits. We suggest
several improvements and compare their empirical performance. The proposed
methods depend solely on prediction and out-of-sample generalization. First,
we begin with simple mean-squared-error, which does not take into account the
inherent heteroskedasticity of financial data. Then we try to correct for the het-
eroskedasticity with a generalized sum of squares and finally Kullback-Leibler
divergence.

2 The LPPLS model

2.1 Theoretical derivation of the LPPLS model

When a bubble occurs, the price of a given asset decouples from its fundamental
value[13, 18]. Under the Johansen-Ledoit-Sornette (JLS) model [10, 11], the
asset price pt follows a diffusive dynamics, with drift µt and discrete jumps
described by the stochastic differential equation

dpt
pt

= µtdt+ σtdBt − κdjt (2)

where κ is the loss amplitude associated with a crash and dBt is the increments of
a Brownian motion with zero mean and variance dt. The volatility σt describes
the level of stochasticity at a certain time. Let tc denote the time of the crash.
Then, the discontinuous jumps are describes with jt = 0 for t < tc and jt = 1 for
t ≥ tc. The dynamics of the jump process follows a hazard rate h(t). Under this
assumption, the conditional probability of a crash in the infinitesimal interval
[t, t + dt] is h(t)dt, given that it has not happened already. Thus we have that
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by the low of total expectation

Et[djt] = Et[djt|tc ∈ [t, t+ dt]] + Et[djt|tc 6∈ [t, t+ dt]] = h(t)dt (3)

where the expected value is with respect to the filtration set at time t. Due to
the no-arbitrage condition the price process is a martingale meaning Et[

dpt
pt

] = 0
ignoring the risk free rate. Taking expected value with respect to time of the
whole stochastic differential equation (2) and knowing that Et[dBt] = 0 thus
leads to µt = κh(t).

The JLS model assumes that noise traders may destabilize the market due
to mutual herding behaviors. According to the model, the cumulative effect of
noise traders can be approximately described by the following dynamics of the
crash hazard rate:

h(t) ≈ B′|tc − t|m−1 + C ′|tc − t|m−1 cos(ω ln |tc − t|+ φ′). (4)

Here, t < tc, tc is the most probable time of the crash. Using the equation
µt = κh(t) and integrating from t < tc to tc the expected value process yields
the average log-price series, the LPPLS model,

E[ln pt] = A+B|tc − t|m + C|tc − t|m cos(ω ln |tc − t|+ φ). (5)

It is important to note that model is totally non-commital about what happens
after tc. Finally, Filiminov and Sornette [5] suggested a more stable representa-
tion of the model in equation (5), transforming the model to 4 linear parameters
and 3 non-linear. Recall the trigonometry law:

cos(u+ v) = cos(u) cos(v)− sin(u) sin(v). (6)

Using the rule, we get

C cos(ω ln |tc−t|+φ) = C cos(ω ln |tc−t|) cos(φ)−C sin(ω ln |tc−t|) sin(φ). (7)

Set C1 = C cosφ and C2 = −C sinφ yields

E[ln pt] = A+B|tc − t|m + C1|tc − t|m cos(ω ln |tc − t|)
+ C2|tc − t|m sin(ω ln |tc − t|).

(8)

Here, A = E[ln ptc ] is the log-price at most probable time tc of the burst of the

bubble, B = −B
′κ
m quantifies the amplitude of the power law acceleration and

C = − C′κ√
m2+ω2

describes the amplitude of the log-periodic oscillations. In the

final calibration, C1 = −C′κ cosφ√
m2+ω2

and C2 = C′κ sinφ√
m2+ω2

. The crucial parameter

m captures the rate of super-exponential growth and describes the acceleration
of the process. ω is the log-periodic angular frequency and φ ∈ [0, 2π) is the
phase correction describing the time scale of the oscillations. In what follows
we set α = (m,ω, tc)

T , the set of non-linear parameters in equation (8), β =
(A,B,C1, C2)T is the set of linear parameters in the same representation and
θ = (α, β) is the full vector of parameters representing the expectation of the
logarithm of prices process.
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2.2 Natural constraints and search space

For a bubble to be present we require some theoretical constraints on our pa-
rameters [5, 9, 12, 22]. For the linear parameters in the model we require the
constraints

A > 0 (9)

B < 0 (10)√
C2

1 + C2
2 ≤ |B|. (11)

Furthermore, van Bothmer and Meister [2] derived a constraint on the variables
of the JLS model from the statement that the crash rate should be non-negative:

−Bm−
√
C2

1 + C2
2

√
m2 + ω2 ≥ 0. (12)

The subspace S ∈ R4 is defined as the set satisfying equations (9)-(12).
Suppose we have a fitting window beginning at time τ1 and ending at t2

with ∆ = t2 − τ1. For the non-linear parameters in the model, the constraints
needed to be satisfied for a bubble are

m ∈ (0, 1) (13)

ω ∈ [ω1, ω2] (14)

tc ∈ [t2 − δ∆, t2 + ξ∆]. (15)

The constraint m > 0 is required due to a non-positive m corresponding
to super-exponential time dynamics resulting in a non-finite price at the crash.
Also, for m ≥ 1, there is no acceleration and the growth is not super-exponential.
The boundaries for ω are such that it is positive and the number of oscillations
are within a certain range. The range sometimes depends on the size of the
fitting window of the potential bubble. Sometimes a narrow filtering condition
such as ω ∈ [6, 13] is used [9, 12, 5, 24]. The region for tc depends upon
application where δ, ξ ∈ [0, 1) are chosen appropriately. For example, ξ = 0.2
and δ = 0.2 ∨ 0. Call the space satisfying equations (14)-(16) R.

In the fitting procedure, we search over a space of the non-linear parameters.
The search space U ∈ R3 must always contain R. In [24] U is defines as the
space satisfying

m ∈ [0, 2] (16)

ω ∈ [1, 50] (17)

tc ∈ [t2 − 0.2∆, t2 + 0.2∆] (18)

but the space is in general defined depending upon usage.
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2.3 Statistical model

The LPPLS model assumes that the log-prices in a bubble phase have the form

lnpt = A+B|tc − t|m + C1|tc − t|m cos(ω ln |tc − t|)
+ C2|tc − t|m sin(ω ln |tc − t|) + εt

(19)

where t ∈ {t1, t1 + 1, ..., tc}, t1 is the unknown true start of the bubble. At
t = tc the limit of the right hand side is simply A. The joint distribution of the
residuals εt is not known and needs to be estimated.

Under standard LPPLS assumptions, the error term is simply modeled as
ηt ∼ N(0, σ2). We refer to this model as the ordinary least squares (OLS)
LPPLS model.

The second model has the same parametric part but models the residuals
with an auto-regressive part and a smoothly changing structure on the standard
deviation in time, namely εt = ρεt−1 +ηt, ηt ∼ N(0, σ2

t ). We refer to this model
as the generalized least squares LPPLS model with auto-regressive part of order
1 and smooth heteroskedasticity (GLSH(1,0)).

The linear parameters β and the non-linear parameters α have to be esti-
mated based on data along with the parameters describing the residuals.

2.4 Matrix formulation

Assume that the bubble has started at some point t1 and that t′1 ≥ t1. Let
Y[t′1:t2] = (ln pt′1 , ln pt′1+1, ..., ln pt2)T for t2 ≤ tc. Then we can write our model
in vector notation as

Y[t′1:t2] = X[t′1:t2](α)β + ε[t′1:t2]. (20)

The design matrix X[t′1:t2](α) is parameterized with parameters α and the sub-
script indicates the sequential rows selected from the matrix. The row vector
for time t in the parameterized design matrix is

X[t:t](m,ω, tc) =
(
1, |tc − t|m, |tc − t|m cos(ω ln |tc − t|)

, |tc − t|m sin(ω ln |tc − t|)
) (21)

and ε[t′1:t2] = (εt′1 , εt′1+1, ..., εt2)T is the vector of residuals corresponding to each
logarithm of price. When the time window of the data is known and also the
non-linear parameters we simply write

Y = Xβ + ε (22)

2.5 Generalized Least Squares (GLS)

Suppose we have the linear model

Y = Xβ + ε (23)
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where
ε ∼ N(0,Σ). (24)

Using the Cholesky factorization, we have that Σ = LLT , where L is a uniquely
determined lower triangular. Covariance matrices are invertible by construction
and we thus have Σ−1 = (LT )−1L−1 and (LT )−1 = (L−1)T . Set

Ỹ := L−1Y (25)

X̃ := L−1X. (26)

Then,
Ỹ = X̃β + ε̃ (27)

where ε̃ ∼ N(0, I) where I is the identity matrix. Thus, knowing the covariance
matrix of a GLS model we can transform it to the simple factorizable indepen-
dent and identically distributed case. Under a fixed known design matrix X the
OLS estimator minimizes the squared Euclidean distance

β̂ = arg min
β
||Ỹ − X̃β||2. (28)

Taking derivative of the objective function yields

−2X̃T (Ỹ − X̃β) = 0. (29)

This is equivalent to the normal equations:

X̃T Ỹ = X̃T X̃β. (30)

Assume full rank of X̃. Then, the OLS estimator in the transformed space is
the GLS estimator for β:

β̂ = (X̃T X̃)−1X̃T Ỹ = (XTΣ−1X)−1XTΣ−1Y. (31)

Under the OLS model, the covariance matrix is a diagonal matrix with fixed
variance and the solution simplifies to

β̂ = (XTX)−1XTY. (32)

2.6 Covariance construction

Suppose t ≥ t1 + 1 and the final time of the window is t2 ≤ tc. Under the OLS
model the covariance matrix is simply a diagonal matrix with fixed variance
and the likelihood factorizes. Under the GLSH(1,0) model, εt = ρεt−1 + ηt,
ηt ∼ N(0, σ2

t ), thus

Var(εt) = Cov(ρεt−1 + ηt, ρεt−1 + ηt) = ρ2Var(εt−1) + σ2
t (33)

since ηt and ηt−1, the innovations, are independent by assumption. Also as the
innovations are independent

Cov(εt, εt+k) = ρkVar(εt) (34)
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for t + k ≤ t2. Equations 33 and 34 fully define our covariance C matrix for
finite data:

Ci,j = Cov(εi, εj) (35)

for i, j ∈ {t1, ..., t2}. Due to the simple parametric form the inverse exists given
that σ2

t > 0 for all t. It is a tridiagonal matrix, where on the diagonal we have

C−1
t2,t2 =

1

σ2
t2

(36)

and

C−1
i,i =

1

σ2
i

+
ρ2

σ2
i+1

(37)

for i ∈ {t1, ..., t2 − 1}. For i− j = 1 we have that

C−1
i,j = C−1

j,i = − ρ

σ2
i

. (38)

The rest of the inverse covariance matix equals zero.
Efficient estimator for ρ can be found by using the principles of maximum

likelihood estimation. Fix wt = 1
σ2
t
. Minimizing the sum of squares of the

weighted regression is the solution of the equation

d

dρ

t2∑
t=t1+1

wt(εt − ρεt−1)2 = 0 (39)

with the solution

ρ̂ =

t2∑
t=t1+1

wtεtεt−1

wtε2t−1

. (40)

Having estimates of σ2
t and using the auto-regressive corrected estimate for

ˆVar(εt1) =
σ̂2
t1

1−ρ̂2 yields an iterative algorithm for estimating the residual covari-

ance matrix Σ which is completely determined by ρ and σ2
t .

2.7 Bayesian OLS model

Under the LPPLS OLS model, the data distribution is

pOLS(y|θ, σ2) =
1

(2π)n/2(σ2)n/2
exp

( 1

2σ2
(y −Xβ)T (y −Xβ)

)
. (41)

The joint posterior distribution of the parameters and the variance under the
OLS assumption is

p(θ, σ2|y) ∝ pOLS(y|θ, σ2)p(θ, σ2). (42)

Recall that the indicator function of a subset U on a set X is defines as

1U (x) =

{
1 if x ∈ U
0 if x ∈ X \ U.

(43)
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Assume that the joint prior for our parameters is p(θ, σ2) ∝ 1UOLS
(α, σ2) where

UOLS describes the search space for the non-linear parameters and the fact that
σ2 > 0.

2.8 Bayesian GLS model

Under the GLSH(1,0) LPPLS model, the data distribution has the density

pGLS(y|θ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(1

2
(y −Xβ)TΣ−1(y −Xβ)

)
. (44)

The joint posterior distribution of the parameters under the GLS assumption is

p(θ,Σ|y) ∝ pGLS(y|θ,Σ)p(θ,Σ). (45)

Assume that the prior for our parameters is p(θ,Σ) ∝ 1UGLS
(α, ρ, σt) where

the set UGLS describes the search space for the non-linear parameters and ρ ∈
(−1, 1) and each σ2

t > 0. The prior is a non-informative and improper prior.
An improper prior density is such that the integral over the parameter space
does not exist. Then, the maximum a posteriori estimation for both models is
simply restricted maximization of the log-likelihood. The common search space
U for the non-linear parameters is

m ∈ [0, 2] (46)

ω ∈ [1, 50] (47)

and the space for tc is wider than the assumed constraints in the LPPLS model.
Probabilistic description of β arises naturally from the Bayesian model. The

conditional posterior distribution of the linear parameters β is

p(β|Σ, y, α) ∝ pGLS(y|θ,Σ)p(β|Σ, α). (48)

Assuming that p(β|Σ, α) ∝ 1 yields

p(β|Σ, y, α) ∝ pGLS(y|θ,Σ). (49)

Filling the square shows that the conditional distribution of β is Gaussian. The
quadratic term inside the exponential reveals that the covariance matrix of the
conditional distribution for β is Σβ = (XTΣ−1X)−1. From the linear term
µβ = (XTΣ−1X)−1XTΣ−1Y which is the usual GLS estimator for β. The
conditional distribution is thus

β|Σ, y, α ∼ N(µb,Σβ). (50)

Using the point estimates for the non-linear parameters and the data yields an
approximate distribution of the linear parameters. Integration over the con-
straints space S in order gives a measure of confidence for the bubble signal.
This can be one of the tools to identify if a true bubble is present or not.
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2.9 Posterior maximization

For the two models, parameter estimation is based on likelihood maximization.
In the case of the OLS model, the likelihood factorizes. The parameters are
selected as

(θ̂OLS , σ̂
2) := arg max

θ,σ2
pOLS(y|θ, σ2)1UOLS

(α, σ2). (51)

The optimization requires some type of search over UOLS and at each candidate
triplet α we use the least squares estimate β̂ = (XTX)−1XTY and estimate
the residual variance. The selection is then based on which parameters jointly
optimize the objective.

For the GLS, the likelihood does not factorize and the selection is found by

(θ̂GLS , Σ̂) := arg max
θ,Σ

pGLS(y|θ,Σ)1UGLS
(α, ρ, σ2

t ). (52)

The optimization requires some type of search over UGLS . At candidate α
the generalized least squares estimator is used β̂ = (XTΣ−1X)−1XTΣ−1Y and
the structured covariance matrix are estimated in a combinatorical fashion to
maximize the objective.

2.10 Algorithmic comparison

For a given t1 and a non-linear triplet (m,ω, tc) the linear model is fitted. Due

Algorithm 1 Fit the OLS LPPLS model for a given set of non-linear parameters

Require: t1
Require: A triplet (m,ω, tc)

1: Compute the design matrix X based on the given triplet (m,ω, tc).
2: Calculate β from equation (32)

to the simple structure of the inverse covariance matrix, namely a tridiagonal
matrix(see equations (36)-(38)), in the LPPLS GLSH(1,0) model the calculation
of β simplifies greatly. The algorithms have the same computational complexity,
given that the while loop has constant time (often 3-6 iterations in practice).
The different LPPLS algorithms only differ by a scaling factor not depending
on the length of the time series in computational time. Hence, the GLSH(1,0)
is reasonable in practice but a initial search over the non-linear space with the
simple OLS solution is recommended for speeding up the computation. An even
cheaper version is to store the M best solutions according to the OLS fits and
fit the GLSH(1,0) model based on these fits.
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Algorithm 2 Fit the GLSH(1,0) LPPLS model for a given set of non-linear
parameters

Require: t1
Require: A triplet (m,ω, tc)

1: Compute the design matrix X based on the given triplet (m,ω, tc).
2: Calculate initial estimate of β from equation (32).
3: Get initial estimate of ρ, the auto-regressive parameter.
4: Fit the filtered residuals with a smooth curve for initial estimate of the

variance structure.
5: Use the estimates of ρ and variance structure to calculate Σ and Σ−1.
6: while not converged in Σ,β do
7: Estimate β with equation (31)
8: Estimate ρ using equation (40)
9: Estimate the variance structure with a smooth curve on the new filtered

residuals.
10: Use the estimates of ρ and variance structure to update estimates of Σ

and Σ−1.
11: end while

3 Model selection based on empirical data

3.1 Goodness of fit measures

A widely used model selection criterion in the context of likelihood literature
is the Akaike information criterion (AIC). Given a fixed set of data, the AIC
statistic estimates the relative quality of statistical models. Under this fixed
set of data, the AIC estimates the goodness of each model relative to each of
the other models. It is derived under the principles of information theory and
estimates the relative information lost by a given model and the selected model
is the one that loses the minimum amount of information [3]. The first order
estimate for the information loss for a given maximum value of the likelihood L̂
and k degrees of freedom for the model is defined:

AIC := 2k − 2 ln L̂. (53)

As we usually deal with reasonably large sample sizes the second order correc-
tions are not needed, known as AIC with a correction for small sample sizes
(AICc).

The relative comparison for the two models is

2
(
− pGLS(y|θ̂GLS , Σ̂) + pOLS(y|θ̂OLS , σ̂2)

+ kGLS − kOLS
) (54)

where kOLS , kGLS are the number of parameters in the corresponding model.
The quantity

Q := exp
(AICGLS −AICOLS

2

)
(55)
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Table 1: For the six empirical bubbles considered we compare the AIC and the BIC
for the LPPLS OLS and LPPLS GLSH(1,0) fit. The parameter n is the number of
data points in each fit and the quantity Q from equation (55) is proportional to the
probability that the OLS model minimizes the estimated information loss. The bubbles
considered are the Argentinian MERVAL index, the Brazilian IBOVESPA index, the
Philippines PSEi index, the Thailand Bangkok SET index, SSEC Shanghai index and
U.S. Sugar prices.

Argentina
1994

Brazil
1997

Philippines
1994

Thailand
1994

Shanghai
2007

Sugar
2005

n 187 328 250 145 449 168
AICOLS -727.7 -1491.5 -1081.9 -648.2 -1404.6 -773.8
AICGLS -1016.8 -1916.1 -1537.0 -865.4 -2465.7 -940.9
Q 1.7∗10−63 6.4∗10−94 1.5∗10−99 6.7∗10−48 3.8∗10−231 5.4∗10−37

BICOLS -705.1 -1464.9 -1057.3 -627.3 -1375.9 -752.0
BICGLS -980.9 -1865.0 -1494.2 -834.4 -2402.1 -907.1

can be interpreted as being proportional to the probability that the OLS model
minimizes the estimated information loss.

A simple alternative to the AIC statistic is the Bayesian Information Crite-
rion

BIC := ln(N)k − 2 ln L̂ (56)

where k is the degrees of freedom in the model and N is the sample size. From an
information theory standpoint the BIC approximates the minimum description
length criterion but with a negative sign. Further, it is independent of the
prior being used. While AIC tries to select the model that most adequately
describes an unknown, high dimensional reality the BIC tries to find the true
model among the set of candidates by assumption.

In summary, when fitting models it is often possible to increase the likelihood
by introducing new parameters. However, doing so may result in overfitting.
Both BIC and AIC try to resolve this problem by introducing a penalty term
for the number of parameters in the model. For sample size N > 7, the penalty
term is larger in BIC than in AIC and thus in general BIC favors simpler models
than AIC.

3.2 Empirical Comparison of the LPPLS OLS and LPPLS
GLSH(1,0)

We consider several known empirical bubbles [10, 11, 14, 21]. The window se-
lected to fit each bubble is such that it is clear that the bubble has started and
the endpoint is the local maximum of the log-price series before a severe correc-
tion. A comparison of the two different approaches can be seen on figures 1-12
and figures 48-107 from the Appendix. As an example we take the Philippines
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index in 1994, the corresponding diagnostics plots and fits for the other bubbles
are shown in the Appendix. The residuals in the GLSH(1,0) model are fitted
with a locally weighted smoothing with ∆−1

60 degrees of freedom where ∆ is the
length of the fitting window. In general, the signal estimates from the LPPLS
OLS model and the LPPLS GLSH(1,0) model are very similar.

The assumptions of the LPPLS OLS model are violated as the raw residu-
als found by subtracting the fitted LPPLS OLS model from the log prices, in
general, have a strong auto-regressive part. This is evident from the autocorrela-
tion(figures 2,49,61,73,85,97) and the partial-autocorrelation(figures 3,50,62,74
,86,98) plots for each bubble. The partial-autocorrelation is found by controlling
for the values of the time series at all shorter lags. The strong auto-regressive
part is evident from the auto-correlation and partial auto-correlation plots while
there is a weak or non-existing moving average part. The auto-correlation func-
tion seems to be declining exponentially fast in general although in some cases
it is close to being linear, an indication of long memory in the residuals. Af-
ter correcting for auto-regressive residuals, the innovations, in general, require
correcting for the heteroskedasticity under the normal assumption, see figures
11,12,58,59,70,71,82,83 ,94,95,106,107. The improvement upon the standard or-
dinary least squares estimates for the empirical bubbles considered in AIC and
BIC is astronomical as seen from Q in table 1 and the relative difference for
both AIC and BIC for all bubbles.

In the time series literature, visual inspection of model assumptions is com-
mon practice. Several standard diagnostics plots are known. For our em-
pirical bubbles, we consider the residuals as a function of the fitted signal,
known as Tukey-Anscombe plot, which should have no structure, see figures
4,9,51,56,63,68,75,80 ,87,92,99,104. Further, we plot the standardized resid-
uals as a function of time, which should look like random noise, see figures
5,10,52,57,64,69,76,81,88,93,100,105. Finally, the quantile-quantile plots are
considered to check if the normal assumption is valid. Some of the quantile-
quantile plots on the fits look reasonable before accounting for heteroskedastic-
ity, but commonly there are outliers which we do not want to bias our parame-
ter estimation. The fitted heteroskedasticity often improves the situation. The
standard diagnostics plots look much more reasonable for the GLSH(1,0) model
than the OLS model as the assumption of no correlation, constant variance,
and normality of the residuals is violated in general for the empirical bubbles
considered.
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Figure 1: The fit of the full bubble in Philippines in 1994(PSEi index, closing prices) for
the OLS LPPLS model in blue and the GLSH(1,0) LPPLS model in red. As usual, the
GLSH(1,0) fit is a bit smoother, but the signals are otherwise similar. The fitted pa-
rameters for the LPPLS signals(t2 = 1994/01/04 corresponds to the end of the fitting
window, the true peak of the bubble) are ÂOLS = 8.6582, B̂OLS = −0.4265, Ĉ1,OLS =

0.0039, Ĉ2,OLS = 0.0120, m̂OLS = 0.2224, ω̂OLS = 7.5459, t̂c,OLS = t2 + 2 and

ÂGLS = 8.4524, B̂GLS = −0.2788, Ĉ1,GLS = 0.0021, Ĉ2,GLS = 0.0080, m̂GLS =
0.2734, ω̂GLS = 7.5459, t̂c,GLS = t2 + 2, ρ̂ = 0.9303.

Figure 2: The autocorrelation function for the LPPLS OLS fit for the full bubble in
Philippines(PSEi Index) in 1994. Strong auto-regressive part is evident. The expo-
nential decay of the coefficients indicates short memory.
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Figure 3: The partial autocorrelation function for the LPPLS OLS fit for the bubble
in Philippines(PSEi Index) in 1994. Strong auto-regressive part is evident of order 1.

Figure 4: Tukey-Anscombe plot for the LPPLS OLS fit of the standardized residuals
for the bubble in Philippines(PSEi Index) in 1994. A structure is evident, and thus
the model assumptions violated.
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Figure 5: The plot shows standardized residuals over time for the LPPLS OLS fit for
the bubble in Philippines(PSEi Index) in 1994. A structure is evident, and thus the
model assumptions violated.

Figure 6: The quantile-quantile normal plot for the LPPLS OLS fit for the bubble in
Philippines(PSEi Index) in 1994. The normality is not violated. However, the strong
auto-regressive structure needs to be corrected for before considering the Q-Q plot.
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Figure 7: The autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Philippines(PSEi Index) in 1994. The transforma-
tion seems to have uncorrelated the residuals for the most part.

Figure 8: The partial autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Philippines(PSEi Index) in 1994. The transformation
seems to have uncorrelated the residuals for the most part.
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Figure 9: Tukey-Anscombe plot for the filtered residuals for the LPPLS GLSH(1,0)
fit of the standardized residuals for the bubble in Philippines(PSEi Index) in 1994.
There is hardly any structure in the residuals.

Figure 10: Standardized residuals over time plot for the LPPLS GLSH(1,0) fit for
the bubble in Philippines(PSEi Index) in 1994. There is hardly any structure in the
residuals.
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Figure 11: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit before
accounting for heteroskedasticity for the bubble in Philippines(PSEi Index) in 1994.
Heavy positive tails of the residuals indicate violation of the normality assumption.

Figure 12: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit after ac-
counting for heteroskedasticity for the bubble in Philippines(PSEi Index) in 1994.
The fitted heteroskedasticity is estimated by using a loess smoother on the empirical
residuals after filtering with ∆/60 degrees of freedom. The normality assumption can
hardly be rejected.
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4 Selection of t1 for the LPPLS model

In the previous chapters, the initial time of a bubble t1 has been assumed to be
known. In practice, however, selecting a reasonable t1 can be quite challenging.
Initial times of bubbles are a fuzzy concept and algorithms for selecting t1 de-
pend on the dataset, namely on the final observed time t2 ≤ tc. The problem of
selecting optimal sub-dataset from a nested sequence is not a standard problem.
An attempt to solve the problem was proposed by Demos and Sornette[4] using
regularisation on size of the fitting windows in order to correct for overfitting
on smaller windows.

4.1 Lagrange regularisation

Set the possible beginning of fitting windows as t′1 ∈ [τ1 : T1]. Set

Ŷ[t′1:t2],OLS = X[t′1:t2](α̂[t′1:t2],OLS)β̂[t′1:t2],OLS (57)

Ŷ[t′1:t2],GLS = X[t′1:t2](α̂[t′1:t2],GLS)β̂[t′1:t2],GLS (58)

where β̂[t′1:t2],OLS and α̂[t′1:t2],OLS are the set of parameters maximizing the

OLS log-likelihood and β̂[t′1:t2],GLS and α̂[t′1:t2],GLS are the set of parameters
maximizing the GLSH(1,0) log-likelihood. Then, with t2 the soonest observation
assumed to be t2 ≤ tc we have the cost function for both the models as

χ2
λ,t′1

=
(Y[t′1:t2] − Ŷ[t′1:t2])

T (Y[t′1:t2] − Ŷ[t′1:t2])

(t2 − t′1)− p
+ λ(t2 − t′1) (59)

where p is the number of parameters in the corresponding models. The param-
eter λ is defined as the slope of the line fitted with intercept through all χ2

λ,t′1
which penalizes smaller windows since the slope is usually negative. The selec-
tion of λ is somewhat arbitrary, depends heavily on the whole set of fits at each
point of the window [τ1 : T1]. The problem with this approach is that the error
metric sum of squares assumes identical variance over the sample which is clearly
not the case in general for empirical bubbles. Thus, periods with lower volatility
are more likely to be selected even though the signal might begin much earlier.
Also, the selection is based on in sample measure and is thus prone to select
t1 based on overfitting instead of generalization performance. Hence, a natural
improvement involves selecting the optimal t1 based on predictive performance,
which we propose.

4.2 Cross-validation for time dependent data

Using the idea of cross-validation for time dependent data the selection of the
optimal t1 is decided by best predictive performance in some metric. In the
econometric literature such methods are known as backtesting.

Backtesting criteria for selecting t1 aim to find the sub-dataset that pro-
vides the most accurate forecasts in some metric. The last part of the time
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series Y[t2−n+1:t2] is known as the validation set. Typically, a cross-validation
procedure for time dependent data given some summable error function E and
assuming tc ≥ t2 can be described by the following steps:

1. For each candidate t′1 ∈ [τ1 : T1] with t2 fixed we select the same n <
t2 − T1 and we fit the model on the data Y[t′1:t2−n]. The best linear unbiased
estimator [6] to predict

y?t2−n+1 = X[t2−n+1:t2−n+1](α̂[t′1:t2−n],GLS)β̂[t′1:t2−n],GLS

+ ρ̂[t′1:t2−n]ε̂t2−n,[t′1:t2−n]

(60)

and calculate the error associated with that prediction

et2−n+1,t′1
= E(yt2−n+1, y

?
t2−n+1). (61)

2. For t ∈ {t2 − n+ 2, ..., t2})(correspondingly, i ∈ 2, ..., n) we fit the model
on Y[t′1:t−1], use the best linear unbiased estimator [6] to predict

y?t2−n+i = X[t:t](α̂[t′1:t−1],GLS)β̂[t′1:t−1],GLS + ρ̂[t′1:t−1]ε̂t−1,[t′1:t−1] (62)

and calculate the error associated with that prediction

et,t′1 = E(yt2−n+i, ŷt2−n+i). (63)

3. Select t?1 = arg mint′1
∑t2
t=t2−n+1 et,t′1 .

4. Fit the model on Y[t?1 :t2] and use that model as our estimation of the
process.

In practice, it is time consuming to fit for every t′1 a new model to all of
{t2 − n, t2 − 1}. Then a computationally cheaper modification simply fits once
on y[t1:t2−n] and then uses the best linear unbiased predictions [6]

y?t = X[t](α̂[t′1:t2−n],GLS)β̂[t′1:t2−n],GLS + ρ̂t−t2+n
[t′1:t2−n]ε̂t2−n,[t′1:t2−n] (64)

for t ∈ {t2 − n+ 1, t2}) and calculates the sum of the error function as before.
The size of the validation set n for a given bubble needs to be selected.

Robust estimate for the error function is called for with low variance but also
accurate parameter estimates. This has to be estimated empirically and a single
global answer is unlikely to exist, since it is unlikely that it is independent of all
of the sample size in the true bubble, the signal to noise ratio and the strength
of the bubble.

Selection of the error function is crucial. The mean square error on predicted
data (MSPE) for n dimensional out of sample Z and prediction Z? can be
defined as

MSPE(Z,Z?) :=
(Z − Z?)T (Z − Z?)

n
. (65)

MSPE and similar summable functions are a simple solution but as the model
does contain heteroskedasticity perhaps a weighted version is more appropriate.
However, that requires modeling the validation set.
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To fit the LPPLS model on the validation set or similar non-parametric
function n has to be large enough to fit the bubble on that as well. The standard
way of correcting for the residual structure under the Gaussian assumption is to
use generalized sum of squares (GSS) where we need to estimate the validation
set covariance matrix, Σq. Formally the GSS is defined as

GSS(Z, µ?) =
(Z − µ?)TΣ−1

q (Z − µ?)
n

(66)

where Σq is the covariance matrix of the validation data Z and µ? is the uncon-
ditional prediction based on the training data. Another solution is to minimize
the Kullback-Leibler divergence between the predictions and the fit on the val-
idation data.

In that case we fit the model on the validation data. This requires n to
be substantially large. Then the Kullback-Leibler divergence (KL) between the
predicted distribution p under normal assumption and equal covariances and
the Gaussian distribution of the validation data q ∼ N(µq,Σq) is

KL(p||q) =
1

2
(µq − µ?)TΣ−1

q (µq − µ?) +K (67)

where K is a fixed constant.
In the testing fit the model on Z = Y[t2−n+1:t2] and estimate

µ̂q = X[t2−n+1:t2](α̂[t2−n+1:t2],GLS)β̂[t2−n+1:t2],GLS (68)

and construct the covariance matrix Σ̂q based on the usual assumption and

the fitted parameters θ̂q, ρ̂ and σ̂t
2. For the predicted means for each t′1 ∈

{τ1, τ1 +1, ..., T1} predict µ?t′1
= X[t](α̂[t′1:t2−n],GLS)β̂[t′1:t2−n],GLS . Then for each

loss function E the optimal initial point is found as

t?1 = arg min
t′1∈{τ1,...,T1}

E(n, t′1). (69)

Non-parametric methods to estimate both µq and Σq are also possible, however
they can not capture estimates of the critical tc.

5 Comparison of the different decision criteria
for selecting t1

5.1 Simulation study

The synthetic dataset are 100 realizations generated from a time series model.
The first 150 data points are generated from a long memory process with a
first order auto-regressive part. At t = 151 there is a regime shift and the
latter 250 data points are generated from a parametric LPPLS signal coupled
with noise structure. The parameters for the simulation study are estimates
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Table 2: Parameter values for the LPPLS signal and variance structure in the simula-
tion model. There is a regime shift at t1 = 151 and each parameter only corresponds
to one of the two regimes.

Parameter Value
Time inter-
val

M 0.2735 t ≥ 151
W 7.5459 t ≥ 151
Tc 402 t ≥ 151
a 8.4524 t ≥ 151
b -0.2788 t ≥ 151
c1 0.0021 t ≥ 151
c2 0.0080 t ≥ 151
σt variable t ≥ 151
s 0.05 ∗ σ151 t ≥ 151
ρ 0.930 t ≥ 151
d 0.4 t < 151
φ 0.875 t < 151
σv σ151 t < 151

for the Philippines 1994 bubble. The noise structure in the bubble phase has a
strong auto-regressive part. In addition, there is random white noise on top of
the signal with the auto-regressive signal in order to make it harder to detect.
Formally, the process, which it is simulated from, is defined as

ln p(t) = a+ b|Tc − t|M + c1|Tc − t|M cos(W ln |Tc − t|)
+ c2|Tc − t|M sin(W ln |Tc − t|) + εt + et

(70)

for t ≥ 151. Here, all the parameters are defined as before and the added white-

noise is et
iid∼ N(0, s2). The heteroskedasticity of the innovations is shown in

figure 13. For the initial 150 points, the log-price series was simulated from an
ARFIMA(1,d,0) model with no drift which was scaled such that a smooth fitting
curve had a comparable residual variance for before and after t1 and shifted
such that the change of regime at t = 151 was reasonably smooth. Formally, a
stochastic process Zt is an ARFIMA(1,d,0) if it follows(

1− φB
)
(1−B)dZt = vt (71)

where vt is white-noise with variance σ2
v and B is the backshift operator. All

the parameter values and which time interval they correspond to are shown in
table 2. For visualization, four different realization of the process are shown in
figure 14.
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Figure 13: The structure of σt for the bubble phase in the simulation study, t ∈
{151, 152, ..., 400}.

Figure 14: 4 different realizations of the simulated data. The black dashed line marks
the beginning of the bubble phase at t = 151.
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5.2 Proposed methods

In the simulation study the following methods are compared:
1. The Lagrange regularisation method as a benchmark.
2. MSPE out of sample minimization for both OLS and GLSH(1,0) for
n ∈ {10, 20, 30, 40, 50}.
3. GSS out of sample minimization for GLSH(1,0) for n ∈ {30, 40, 50}.
4. KL out of sample minimization for GLSH(1,0) for n ∈ {30, 40, 50}.

In the study, we fit both the LPPLS OLS model and LPPLS GLSH(1,0)
model for each t′1 ∈ {1, 6, 11, ..., 321} where the true t1 = 151 and leave out
n ∈ {0, 10, 20, 30, 40, 50}. Then we minimize each of the error functions to
select the optimal t1. The search space in the study is tc ∈ [400, 450], m ∈ [0, 2]
and ω ∈ [4, 25].
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Table 3: Estimated Tc for the fit at the optimally selected t1 for each criteria for
the dataset of 100 synthetic bubbles. Here, the GLS LPPLS type corresponds to the
LPPLS GLSH(1,0) model. True Tc = 402. Empirical summary statistics are presented
in the columns of the table. MSE(T̂c) is the empirical mean squared error.

Selection
criteria

LPPLS
type

n E(T̂c) sd(T̂c) min T̂c max T̂c MSE(T̂c)

Lagrange OLS 0 402.29 2.02 400 409 4.13
MSPE OLS 10 402.51 2.13 400 411 4.77
MSPE GLS 10 402.21 1.04 401 411 1.11
MSPE OLS 20 402.34 1.92 400 410 3.78
MSPE GLS 20 402.15 1.05 401 410 1.11
MSPE OLS 30 402.68 2.44 400 411 6.34
MSPE GLS 30 402.37 1.84 401 414 3.49
MSPE OLS 40 403.17 2.49 400 410 7.49
MSPE GLS 40 402.53 1.70 401 411 3.15
MSPE OLS 50 403.60 5.42 400 450 31.66
MSPE GLS 50 402.65 1.75 401 410 3.45
GSS GLS 30 402.49 2.02 401 414 4.27
GSS GLS 40 402.78 2.00 401 411 4.56
GSS GLS 50 402.80 2.03 401 411 4.72
KL GLS 30 402.36 1.71 401 411 3.04
KL GLS 40 402.78 1.99 401 411 4.54
KL GLS 50 402.73 1.90 401 411 4.09

5.3 Results

Histograms of each selection criteria are shown in figures 15-31. Most methods
for selecting t1 seem to be relatively unbiased, but the variance seems to increase
in general as n, the size of leave-out data, grows. The Lagrange regularisation
method seems to be performing best from the histograms. However, that does
not necessarily indicate that it is optimal for all metrics. Selecting t1 too soon
or too late might still yield a good fit.

In tables 3 and 4 we can see summary statistics for the simulation study.
The crucial parameter Tc seems to be better captured by the GLSH(1,0) model
compared to the OLS fits, evident from the summary statistics. Further n
between 10 and 20 seems to be optimal for the leave-out methods. As the GSS
and KL divergence can only be reliably used for larger n they are outperformed
by MSPE for the GLSH(1,0) model. However, for a comparable n, the KL
method seems to have a similar performance as the MSPE method. The process
which the simulations are sampled from is a process similar to the LPPLS
GLSH(1,0) model but with a non-smooth variance structure and added white-
noise. Hence, it is encouraging to see that it outperforms the LPPLS OLS
model, and its model selecting criteria, in predicting the crucial Tc.
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Table 4: Empirical median of the parameters M , W ,a, b, c1, c2 for the fit at the op-
timally selected t1 for each criteria for the dataset of 100 synthetic bubbles. Here,
the GLS LPPLS type corresponds to the LPPLS GLSH(1,0) model. True values for
the parameters are M = 0.2735, W = 7.5459, a = 8.4524, b = −0.2788, c1 = 0.0021,
c2 = 0.0080. GLS corresponds to the GLSH(1,0) model.

Selection
criteria

LPPLS
type

n Med(M̂) Med(Ŵ ) Med(â) Med(b̂) Med(ĉ1) Med(ĉ2)

Lagrange OLS 0 0.294 7.49 8.40 -0.240 0.0044 0.0032
MSPE OLS 10 0.271 7.53 8.45 -0.278 0.0026 0.0017
MSPE GLS 10 0.273 7.56 8.45 -0.278 0.0016 0.0068
MSPE OLS 20 0.288 7.50 8.41 -0.252 0.0023 0.0006
MSPE GLS 20 0.277 7.56 8.45 -0.273 0.0013 0.0053
MSPE OLS 30 0.272 7.52 8.44 -0.265 0.0004 0.0022
MSPE GLS 30 0.268 7.57 8.47 -0.295 0.0011 0.0065
MSPE OLS 40 0.255 7.72 8.52 -0.328 0.0007 0.0024
MSPE GLS 40 0.263 7.59 8.49 -0.299 0.0003 0.0067
MSPE OLS 50 0.267 7.61 8.46 -0.288 0.0034 0.0003
MSPE GLS 50 0.263 7.64 8.50 -0.307 0.0008 0.0062
GSS GLS 30 0.263 7.58 8.48 -0.299 0.0010 0.0067
GSS GLS 40 0.259 7.65 8.51 -0.322 0.0001 0.0067
GSS GLS 50 0.255 7.66 8.50 -0.318 0.0007 0.0063
KL GLS) 30 0.263 7.57 8.48 -0.297 0.0012 0.0066
KL GLS 40 0.255 7.65 8.51 -0.328 0.0001 0.0064
KL GLS 50 0.259 7.66 8.50 -0.311 0.0003 0.0062
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For the additional parameters, the median of the parameter M seems to be
estimated robustly for most methods and the same applies to W . Still, we note
that the acceleration parameter m is best captured by out of sample methods
with n ≤ 20 and with the GLSH(1,0) fit. The other parameters are less critical,
but both a and b are captured well in the median for our particular model
structure.

Finally, the correlation plot indicates that the value of n, the size of the
leave-out dataset, is crucial and matters more than the particular error function
(see figure 32). The Lagrange regularisation method stands alone with low
correlation with all other methods.

Figure 15: Histogram of the optimally selected t1 for the Lagrange regularisation
method based on the LPPLS OLS fits. The red line indicates the true t1 = 151 and
the green the empirical mean of the selected t1.
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Figure 16: Histogram of the optimally selected t1 for the MSPE prediction with n = 10
leave-out method based on the LPPLS OLS fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 17: Histogram of the optimally selected t1 for the MSPE prediction with n = 20
leave-out method based on the LPPLS OLS fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.
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Figure 18: Histogram of the optimally selected t1 for the MSPE prediction with n = 30
leave-out method based on the LPPLS OLS fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 19: Histogram of the optimally selected t1 for the MSPE prediction with n = 40
leave-out method based on the LPPLS OLS fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

31



Figure 20: Histogram of the optimally selected t1 for the MSPE prediction with n = 50
leave-out method based on the LPPLS OLS fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 21: Histogram of the optimally selected t1 for the MSPE prediction with n = 10
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.
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Figure 22: Histogram of the optimally selected t1 for the MSPE prediction with n = 20
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 23: Histogram of the optimally selected t1 for the MSPE prediction with n = 30
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.
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Figure 24: Histogram of the optimally selected t1 for the MSPE prediction with n = 40
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 25: Histogram of the optimally selected t1 for the MSPE prediction with n = 50
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.
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Figure 26: Histogram of the optimally selected t1 for the GSS prediction with n = 30
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 27: Histogram of the optimally selected t1 for the GSS prediction with n = 40
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.
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Figure 28: Histogram of the optimally selected t1 for the GSS prediction with n = 50
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 29: Histogram of the optimally selected t1 for the KL prediction with n = 30
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.
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Figure 30: Histogram of the optimally selected t1 for the KL prediction with n = 40
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.

Figure 31: Histogram of the optimally selected t1 for the KL prediction with n = 50
leave-out method based on the LPPLS GLSH(1,0) fits. The red line indicates the true
t1 = 151 and the green the empirical mean of the selected t1.
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Figure 32: Correlation plot for the optimally selected t1 for each method over the
whole simulated dataset. The columns/rows of the matrix are reordered according
to the angular order of the two most meaningful eigenvectors. RSSlamOLS stands
for the Lagrange regularisation method, BT stands for back-testing with MSPE, GSS
stands for the generalized sum of squares and KL for the Kullback-Leibler divergence
error function. The size of leave-out data n is also included in the names. From the
plot, we see that clustering is often based on identical n, the size of leave-out data,
at least for n ≥ 30 but not on the particular model selection criterion. The Lagrange
regularisation method is isolated.
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5.4 t1 selection for empirical bubbles

We selected the optimal t1 for each of the historical bubbles using our models,
the LPPLS OLS and the LPPLS GLSH(1,0), and the different loss functions.
The candidate t′1 ∈ {1, 2, ..., t2−80} were considered. The beginning was selected
such that it was early enough to contain the full bubble signal. The parameter t2,
the final value of the data used for fitting, was selected 10 days before the peak
of the corresponding bubble, that is two weeks in trading days. The window
for candidate tc was t′c ∈ [t2, t2 + 50] where the true peak is at t2 + 10. For the
other parameters, m ∈ [0, 2] and ω ∈ [4, 25] is the space searched over.

The results of this study are inconclusive(see table 5). The methods select
quite different initial points in general. However, as in the simulation study,
selection criteria with identical n, the size of leave-out data, perform similarly.
The selected window for each bubble and predicted tc corresponding to the
optimally selected t1 are shown in table 5 and figures 33-47.

For the bubble in Argentina(MERVAL index) in 1994, most methods agree
that the bubble is coming soon. For the other bubbles, predictions vary greatly,
and no method is consistently more accurate than the others.

Figure 33: Optimal OLS LPPLS fits on the Argentina(MERVAL index) 1994 bubble
for each of i) Lagrange regularisation method ii) MSPE with n = 10 iii) MSPE with
n = 20 iv) MSPE with n = 30 v) MSPE with n = 40 vi) MSPE with n = 50. Here
the blue dashed lines indicate the window for each t1 is searched on, the black dashed
line is the t2, end of the data used in the fitting. Ten days later is the grey dashed
line indicating the real peak of the bubble. The colored lines indicate the selected t1
and predicted tc for each fit. Here, the search space for t1 starts at t0 = 1992/12/07,
t2 = 1994/02/02 and the true peak of the bubble at tc = 1994/02/16.
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Table 5: The table shows the optimally selected t1 and the corresponding tc from that
particular fit for each of the empirical bubbles considered in the format (δt?1 , δt̂c) where

δt?1 = t?1 − t0, t0 being the beginning of the search window for t1, and δt̂c = t̂c − tc
is the difference in trading days between the predicted peak and the actual peak of
the corresponding bubble. Here, GLS corresponds to the GLSH(1,0) LPPLS model.
Soonest search date for t1 for the bubbles are at i) Argentina: t0 = 1992/12/07
ii) Brazil: t0 = 1996/01/04 iii) Philippines: t0 = 1992/07/23 iv) Thailand: t0 =
1992/12/18 v) Sugar: t0 = 2005/01/05. The end point of the data used for fitting(t2)
are at i) Argentina: t2 = 1994/02/02 ii) Brazil: t2 = 1997/06/24 iii) Philippines:
t2 = 1993/12/16 iv) Thailand: t2 = 1993/12/16 v) Sugar: t2 = 2006/01/20. True
peak of the bubbles are at i) Argentina: tc = 1994/02/16 ii) Brazil: tc = 1997/07/08
iii) Philippines: tc = 1994/01/04 iv) Thailand: tc = 1993/12/30 v) Sugar: tc =
2006/02/03.

Method n Type
Argentina
1994

Brazil
1997

Philippines
1994

Thailand
1994

Sugar
2005

Lagrange 0 OLS (107,-2) (56,-10) (93,40) (93,-6) (52,9)
MSPE 10 OLS (154,-9) (125,-10) (92,40) (124,32) (108,40)
MSPE 20 OLS (150,-9) (105,-10) (91,40) (148,40) (162,24)
MSPE 30 OLS (185,-10) (251,-7) (198,7) (153,40) (29,7)
MSPE 40 OLS (105,-2) (62,-10) (205,9) (98,-5) (174,20)
MSPE 50 OLS (46,-1) (61,-10) (237,-9) (74,-2) (161,23)
MSPE 10 GLS (154,-8) (25,40) (3,0) (88,-7) (124,40)
MSPE 20 GLS (155,-8) (110,-8) (27,11) (148,35) (162,22)
MSPE 30 GLS (185,-7) (158,-4) (200,8) (153,40) (26,8)
MSPE 40 GLS (106,-4) (259,40) (206,8) (64,5) (40,10)
MSPE 50 GLS (40,-5) (68,-7) (237,11) (138,17) (162,22)
GSS 30 GLS (185,-7) (158,-4) (200,8) (153,40) (26,8)
GSS 40 GLS (106,-4) (259,40) (206,8) (64,5) (42,10)
GSS 50 GLS (39,-5) (68,-7) (237,11) (150,40) (134,34)
KL 30 GLS (185,-7) (158,-4) (200,8) (153,40) (26,8)
KL 40 GLS (106,-4) (259,40) (206,8) (64,5) (81,33)
KL 50 GLS (39,-5) (68,-7) (237,11) (150,40) (162,22)
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Figure 34: Optimal GLSH(1,0) LPPLS fits on the Argentina(MERVAL index) 1994
bubble for each of i) MSPE with n = 10 ii) MSPE with n = 20 iii) MSPE with n = 30
iv) MSPE with n = 40 v) MSPE with n = 50. Here the blue dashed lines indicate the
window for each t1 is searched on, the black dashed line is the t2, end of the data used
in the fitting. Ten days later is the grey dashed line indicating the real peak of the
bubble. The colored lines indicate the selected t1 and predicted tc for each fit. Here,
the search space for t1 starts at t0 = 1992/12/07, t2 = 1994/02/02 and the true peak
of the bubble at tc = 1994/02/16.
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Figure 35: Optimal GLSH(1,0) LPPLS fits on the Argentina(MERVAL index) 1994
bubble for each of i) GSS with n = 30 ii) GSS with n = 40 iii) GSS with n = 50 iv)
KL with n = 30 v) KL with n = 40 iv) KL with n = 50. Here the blue dashed lines
indicate the window for each t1 is searched on, the black dashed line is the t2, end of
the data used in the fitting. Ten days later is the grey dashed line indicating the real
peak of the bubble. The colored lines indicate the selected t1 and predicted tc for each
fit. Note here for each n the KL and GSS selected identical t1. Here, the search space
for t1 starts at t0 = 1992/12/07, t2 = 1994/02/02 and the true peak of the bubble at
tc = 1994/02/16.
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Figure 36: Optimal OLS LPPLS fits on the Brazil(IBOVESPA Index) 1997 bubble
for each of i) Lagrange regularisation method ii) MSPE with n = 10 iii) MSPE with
n = 20 iv) MSPE with n = 30 v) MSPE with n = 40 vi) MSPE with n = 50. Here
the blue dashed lines indicate the window for each t1 is searched on, the black dashed
line is the t2, end of the data used in the fitting. Ten days later is the grey dashed
line indicating the real peak of the bubble. The colored lines indicate the selected t1
and predicted tc for each fit. Here, the search space for t1 starts at t0 = 1996/01/04,
t2 = 1997/06/24 and the true peak of the bubble at tc = 1997/07/08.
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Figure 37: Optimal GLSH(1,0) LPPLS fits on the Brazil(IBOVESPA Index) 1997
bubble for each of i) MSPE with n = 10 ii) MSPE with n = 20 iii) MSPE with n = 30
iv) MSPE with n = 40 v) MSPE with n = 50. Here the blue dashed lines indicate the
window for each t1 is searched on, the black dashed line is the t2, end of the data used
in the fitting. Ten days later is the grey dashed line indicating the real peak of the
bubble. The colored lines indicate the selected t1 and predicted tc for each fit. Here,
the search space for t1 starts at t0 = 1996/01/04, t2 = 1997/06/24 and the true peak
of the bubble at tc = 1997/07/08.
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Figure 38: Optimal GLSH(1,0) LPPLS fits on the Brazil(IBOVESPA Index) 1997
bubble for each of i) GSS with n = 30 ii) GSS with n = 40 iii) GSS with n = 50 iv)
KL with n = 30 v) KL with n = 40 iv) KL with n = 50. Here the blue dashed lines
indicate the window for each t1 is searched on, the black dashed line is the t2, end of
the data used in the fitting. Ten days later is the grey dashed line indicating the real
peak of the bubble. The colored lines indicate the selected t1 and predicted tc for each
fit. Note here for each n the KL and GSS selected identical t1. Here, the search space
for t1 starts at t0 = 1996/01/04, t2 = 1997/06/24 and the true peak of the bubble at
tc = 1997/07/08.
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Figure 39: Optimal OLS LPPLS fits on the Philippines(PSEi Index) 1994 bubble for
each of i) Lagrange regularisation method ii) MSPE with n = 10 iii) MSPE with
n = 20 iv) MSPE with n = 30 v) MSPE with n = 40 vi) MSPE with n = 50. Here
the blue dashed lines indicate the window for each t1 is searched on, the black dashed
line is the t2, end of the data used in the fitting. Ten days later is the grey dashed
line indicating the real peak of the bubble. The colored lines indicate the selected t1
and predicted tc for each fit. Here, the search space for t1 starts at t0 = 1992/07/23,
t2 = 1993/12/16 and the true peak of the bubble at tc = 1994/01/04.
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Figure 40: Optimal GLSH(1,0) LPPLS fits on the Philippines(PSEi Index) 1994 bubble
for each of i) MSPE with n = 10 ii) MSPE with n = 20 iii) MSPE with n = 30 iv)
MSPE with n = 40 v) MSPE with n = 50. Here the blue dashed lines indicate the
window for each t1 is searched on, the black dashed line is the t2, end of the data used
in the fitting. Ten days later is the grey dashed line indicating the real peak of the
bubble. The colored lines indicate the selected t1 and predicted tc for each fit. Here,
the search space for t1 starts at t0 = 1992/07/23, t2 = 1993/12/16 and the true peak
of the bubble at tc = 1994/01/04.
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Figure 41: Optimal GLSH(1,0) LPPLS fits on the Philippines(PSEi Index) 1994 bubble
for each of i) GSS with n = 30 ii) GSS with n = 40 iii) GSS with n = 50 iv) KL with
n = 30 v) KL with n = 40 iv) KL with n = 50. Here the blue dashed lines indicate
the window for each t1 is searched on, the black dashed line is the t2, end of the data
used in the fitting. Ten days later is the grey dashed line indicating the real peak of
the bubble. The colored lines indicate the selected t1 and predicted tc for each fit.
Note here for each n the KL and GSS selected identical t1. Here, the search space
for t1 starts at t0 = 1992/07/23, t2 = 1993/12/16 and the true peak of the bubble at
tc = 1994/01/04.
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Figure 42: Optimal OLS LPPLS fits on the Thailand(Bangkok SET Index) 1994
bubble for each of i) Lagrange regularisation method ii) MSPE with n = 10 iii) MSPE
with n = 20 iv) MSPE with n = 30 v) MSPE with n = 40 vi) MSPE with n = 50. Here
the blue dashed lines indicate the window for each t1 is searched on, the black dashed
line is the t2, end of the data used in the fitting. Ten days later is the grey dashed
line indicating the real peak of the bubble. The colored lines indicate the selected
t1 and predicted tc for each fit. Also, the time series omits data from 1993/12/30 to
1994/01/14. Here, the search space for t1 starts at t0 = 1992/12/18, t2 = 1993/12/16
and the true peak of the bubble at tc = 1993/12/30.

49



Figure 43: Optimal GLSH(1,0) LPPLS fits on the Thailand(Bangkok SET Index) 1994
bubble for each of i) MSPE with n = 10 ii) MSPE with n = 20 iii) MSPE with n = 30
iv) MSPE with n = 40 v) MSPE with n = 50. Here the blue dashed lines indicate the
window for each t1 is searched on, the black dashed line is the t2, end of the data used
in the fitting. Ten days later is the grey dashed line indicating the real peak of the
bubble. The colored lines indicate the selected t1 and predicted tc for each fit. Also,
the time series omits data from 1993/12/30 to 1994/01/14. Here, the search space
for t1 starts at t0 = 1992/12/18, t2 = 1993/12/16 and the true peak of the bubble at
tc = 1993/12/30.
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Figure 44: Optimal GLSH(1,0) LPPLS fits on the Thailand(Bangkok SET Index) 1994
bubble for each of i) GSS with n = 30 ii) GSS with n = 40 iii) GSS with n = 50 iv)
KL with n = 30 v) KL with n = 40 iv) KL with n = 50. Here the blue dashed lines
indicate the window for each t1 is searched on, the black dashed line is the t2, end
of the data used in the fitting. Ten days later is the grey dashed line indicating the
real peak of the bubble. The colored lines indicate the selected t1 and predicted tc
for each fit. Note here for each n the KL and GSS selected identical t1. Also, the
time series omits data from 1993/12/30 to 1994/01/14. Here, the search space for
t1 starts at t0 = 1992/12/18, t2 = 1993/12/16 and the true peak of the bubble at
tc = 1993/12/30.
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Figure 45: Optimal OLS LPPLS fits on the Sugar 2005 bubble for each of i) Lagrange
regularisation method ii) MSPE with n = 10 iii) MSPE with n = 20 iv) MSPE with
n = 30 v) MSPE with n = 40 vi) MSPE with n = 50. Here the blue dashed lines
indicate the window for each t1 is searched on, the black dashed line is the t2, end of
the data used in the fitting. Ten days later is the grey dashed line indicating the real
peak of the bubble. The colored lines indicate the selected t1 and predicted tc for each
fit. Here, the search space for t1 starts at t0 = 2005/01/05, t2 = 2006/01/20 and the
true peak of the bubble at tc = 2006/02/03.
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Figure 46: Optimal GLSH(1,0) LPPLS fits on the Sugar 2005 bubble for each of i)
MSPE with n = 10 ii) MSPE with n = 20 iii) MSPE with n = 30 iv) MSPE with
n = 40 v) MSPE with n = 50. Here the blue dashed lines indicate the window for each
t1 is searched on, the black dashed line is the t2, end of the data used in the fitting.
Ten days later is the grey dashed line indicating the real peak of the bubble. The
colored lines indicate the selected t1 and predicted tc for each fit. Here, the search
space for t1 starts at t0 = 2005/01/05, t2 = 2006/01/20 and the true peak of the
bubble at tc = 2006/02/03.
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Figure 47: Optimal GLSH(1,0) LPPLS fits on the Sugar 2005 bubble for each of i)
GSS with n = 30 ii) GSS with n = 40 iii) GSS with n = 50 iv) KL with n = 30
v) KL with n = 40 iv) KL with n = 50. Here the blue dashed lines indicate the
window for each t1 is searched on, the black dashed line is the t2, end of the data used
in the fitting. Ten days later is the grey dashed line indicating the real peak of the
bubble. The colored lines indicate the selected t1 and predicted tc for each fit. Here,
the search space for t1 starts at t0 = 2005/01/05, t2 = 2006/01/20 and the true peak
of the bubble at tc = 2006/02/03.
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6 Summary

The goal of this thesis was to compare existing estimation methods for the LP-
PLS method to new methods and improve the selection criteria for the beginning
of a bubble. Further, the model was extended such that the linear parameters
have a probabilistic description which can be used, among other methods, to
access the strength of the bubble signal and which corrects appropriately for
different sample sizes and variance structures.

The likelihood for both the LPPLS GLSH(1,0) model and the LPPLS OLS
model were derived in a Bayesian setting and the two models were compared
on several known empirical bubbles. From standard diagnostics plots and stan-
dard model selection criteria, the GLSH(1,0) was a significant improvement on
the LPPLS OLS model although its model assumptions were sometimes vio-
lated. Then, we proceeded to propose selection criteria for the optimal starting
points of bubbles. This was based on predictive performance instead of the
existing methods which depend on in-sample performance. We compared the
two competing models on synthetic data with long memory ARFIMA model
coupled with a LPPLS signal with strong auto-regressive residuals and non-
smooth variance structure of the residuals, with white noise added on top. For
the simulation study, the LPPLS GLSH(1,0) was superior in selecting t1 and
predicting tc, especially when leaving smaller validation set out to access predic-
tive performance. Finally, the competing selection criteria were tested on some
empirical bubbles, but as the sample size is small, the results do not give any
firm conclusions.

In future work it would be interesting to compare the different t1 selection
methods in a much wider range of situations and see the merits and drawbacks of
each of the methods. Further, the computational challenge for fitting the model
needs to be accessed. As we need to fit our model for each proposed t′1 on a
window of length ∆, our algorithm is linear in ∆. Perhaps we could reduce the
search space, for example, reduce the computational complexity by using binary
search, cutting the computational complexity of the fitting window to ln ∆.
The LPPLS GLSH(1,0) model can easily be extended, for example, increase the
number of auto-regressive terms as sometimes indicated by the auto-correlation
plots or a different structure of the variance of the innovations. Finally, in the
Bayesian setting, priors can easily be added and perhaps introduce the random
nature of the design matrix X into our likelihood.
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A Appendix

Figure 48: The fit of the full bubble in Argentina(MERVAL index) in 1994(closing
prices) for the OLS LPPLS model in blue and the GLSH(1,0) LPPLS model in red.
As usual, the GLSH(1,0) fit is a bit smoother, but the signals are otherwise similar.
The fitted parameters for the LPPLS signals(t2 = 1994/02/16 corresponds to the end
of the fitting window, the true peak of the bubble) are ÂOLS = 7.5271, B̂OLS =
−0.6718, Ĉ1,OLS = −0.0201, Ĉ2,OLS = 0.0137, m̂OLS = 0.1551, ω̂OLS =

6.0663, t̂c,OLS = t2 + 6 and ÂGLS = 7.1689, B̂GLS = −0.3754, Ĉ1,GLS =

−0.0177, Ĉ2,GLS = 0.0018, m̂GLS = 0.2163, ω̂GLS = 6.1429, t̂c,GLS = t2 + 6, ρ̂ =
0.9019.
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Figure 49: The autocorrelation function for the LPPLS OLS fit for the full bubble in
Argentina in 1994. Strong auto-regressive part is evident. Here it is not clear if the
decay is exponential or linear, at least the estimated auto-regressive parameter is close
to 1.

Figure 50: The partial autocorrelation function for the LPPLS OLS fit for the bubble
in Argentina in 1994. Strong auto-regressive part is evident of order 1.
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Figure 51: Tukey-Anscombe plot for the LPPLS OLS fit of the standardized residuals
for the bubble in Argentina in 1994. A structure is evident, and thus the model
assumptions violated.

Figure 52: The plot shows standardized residuals over time for the LPPLS OLS fit
for the bubble in Argentina in 1994. A structure is evident, and thus the model
assumptions violated.
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Figure 53: The quantile-quantile normal plot for the LPPLS OLS fit for the bubble in
Argentina in 1994. The normality is not violated. However, the strong auto-regressive
structure needs to be corrected for before considering the Q-Q plot.

Figure 54: The autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Argentina in 1994. The transformation seems to
have uncorrelated the residuals for the most part.
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Figure 55: The partial autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Argentina in 1994. The transformation seems to have
uncorrelated the residuals for the most part.

Figure 56: Tukey-Anscombe plot for the filtered residuals for the LPPLS GLSH(1,0)
fit of the standardized residuals for the bubble in Argentina in 1994. There is hardly
any structure in the residuals.
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Figure 57: Standardized residuals over time plot for the LPPLS GLSH(1,0) fit for the
bubble in Argentina in 1994. There is hardly any structure in the residuals.

Figure 58: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit before
accounting for heteroskedasticity for the bubble in Argentina in 1994. We cannot
reject the assumption of normality.
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Figure 59: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit after ac-
counting for heteroskedasticity for the bubble in Argentina in 1994. The fitted het-
eroskedasticity is estimated by using a loess smoother on the empirical residuals after
filtering with ∆/60 degrees of freedom, where ∆ is the number of trading days in the
fitting window. The normality assumption can hardly be rejected.

Figure 60: The fit of the full bubble in Brazil(IBOVESPA) in 1997 for the OLS LP-
PLS model in blue and the GLSH(1,0) LPPLS model in red. As usual, the GLSH(1,0)
fit is a bit smoother, but the signals are otherwise similar. The fitted parameters
for the LPPLS signals(t2 = 1997/07/08 corresponds to the end of the fitting win-
dow, the true peak of the bubble) are ÂOLS = 9.59104, B̂OLS = −0.0412, Ĉ1,OLS =

0.0035, Ĉ2,OLS = 0.0008, m̂OLS = 0.5714, ω̂OLS = 5.7602, t̂c,OLS = t2 + 1 and

ÂGLS = 9.6215, B̂GLS = −0.0531, Ĉ1,GLS = −0.0005, Ĉ2,GLS = 0.0039, m̂GLS =
0.5286, ω̂GLS = 6.0357, t̂c,GLS = t2 + 2, ρ̂ = 0.8621.
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Figure 61: The autocorrelation function for the LPPLS OLS fit for the full bubble in
Brazil(IBOVESPA) in 1997. Strong auto-regressive part is evident. The exponential
decay indicates short memory residuals.

Figure 62: The partial autocorrelation function for the LPPLS OLS fit for the bubble
in Brazil(IBOVESPA) in 1997. Strong auto-regressive part is evident of order 1.
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Figure 63: Tukey-Anscombe plot for the LPPLS OLS fit of the standardized residuals
for the bubble in Brazil(IBOVESPA) in 1997. A structure is evident, and thus the
model assumptions violated.

Figure 64: The plot shows standardized residuals over time for the LPPLS OLS fit for
the bubble in Brazil(IBOVESPA) in 1997. A structure is evident, and thus the model
assumptions violated.
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Figure 65: The quantile-quantile normal plot for the LPPLS OLS fit for the bubble
in Brazil(IBOVESPA) in 1997. The normality is not violated. However, the strong
auto-regressive structure needs to be corrected for before considering the Q-Q plot.

Figure 66: The autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Brazil(IBOVESPA) in 1997. The transformation
seems to have uncorrelated the residuals for the most part.
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Figure 67: The partial autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Brazil(IBOVESPA) in 1997. The transformation seems
to have uncorrelated the residuals for the most part.

Figure 68: Tukey-Anscombe plot for the filtered residuals for the LPPLS GLSH(1,0)
fit of the standardized residuals for the bubble in Brazil(IBOVESPA) in 1997. There
is hardly any structure in the residuals.
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Figure 69: Standardized residuals over time plot for the LPPLS GLSH(1,0) fit for the
bubble in Brazil in 1997. There is hardly any structure in the residuals.

Figure 70: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit before
accounting for heteroskedasticity for the bubble in Brazil in 1997. We cannot reject
the assumption of normality.
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Figure 71: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit after
accounting for heteroskedasticity for the bubble in Brazil in 1997. The fitted het-
eroskedasticity is estimated by using a loess smoother on the empirical residuals after
filtering with ∆/60 degrees of freedom, where ∆ is the number of trading days in
the fitting window. The normality assumption can hardly be rejected, but our fitted
residual structure seems to make the situation a bit worse.

Figure 72: The fit of the full bubble in Thailand(Bangkok SET Index) in 1994 for the
OLS LPPLS model in blue and the GLSH(1,0) LPPLS model in red. As usual, the
GLSH(1,0) fit is a bit smoother, but the signals are otherwise similar. The fitted pa-
rameters for the LPPLS signals(t2 = 1993/12/30 corresponds to the end of the fitting
window, the true peak of the bubble) are ÂOLS = 7.4347, B̂OLS = −0.0240, Ĉ1,OLS =

−0.0008, Ĉ2,OLS = −0.0029, m̂OLS = 0.7061, ω̂OLS = 4.8112, t̂c,OLS = t2 and

ÂGLS = 7.4975, B̂GLS = −0.0397, Ĉ1,GLS = 0.0033, Ĉ2,GLS = 0.0021, m̂GLS =
0.6143, ω̂GLS = 5.3010, t̂c,GLS = t2 + 2, ρ̂ = 0.8921.

70



Figure 73: The autocorrelation function for the LPPLS OLS fit for the full bubble in
Thailand(Bangkok SET Index) in 1994. Strong auto-regressive part is evident. Here it
is not clear if the decay is exponential or linear, at least the estimated auto-regressive
parameter is close to 1.

Figure 74: The partial autocorrelation function for the LPPLS OLS fit for the bubble
in Thailand(Bangkok SET Index) in 1994. Strong auto-regressive part is evident of
order 1.
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Figure 75: Tukey-Anscombe plot for the LPPLS OLS fit of the standardized residuals
for the bubble in Thailand(Bangkok SET Index) in 1994. A structure is evident, and
thus the model assumptions violated.

Figure 76: The plot shows standardized residuals over time for the LPPLS OLS fit
for the bubble in Thailand(Bangkok SET Index) in 1994. A structure is evident, and
thus the model assumptions violated.
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Figure 77: The quantile-quantile normal plot for the LPPLS OLS fit for the bubble in
Thailand(Bangkok SET Index) in 1994. The normality is not violated. However, the
strong auto-regressive structure needs to be corrected for before considering the Q-Q
plot.

Figure 78: The autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Thailand(Bangkok SET Index) in 1994. The transfor-
mation seems to have uncorrelated the residuals for the most part.
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Figure 79: The partial autocorrelation function of the filtered residuals for the LP-
PLS GLSH(1,0) fit for the bubble in Thailand(Bangkok SET Index) in 1994. The
transformation seems to have uncorrelated the residuals.

Figure 80: Tukey-Anscombe plot for the filtered residuals for the LPPLS GLSH(1,0)
fit of the standardized residuals for the bubble in Thailand(Bangkok SET Index) in
1994. There is hardly any structure in the residuals.
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Figure 81: Standardized residuals over time plot for the LPPLS GLSH(1,0) fit for the
bubble in Thailand(Bangkok SET Index) in 1994. There is hardly any structure in
the residuals.

Figure 82: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit before
accounting for heteroskedasticity for the bubble in Thailand(Bangkok SET Index) in
1994. The residuals seem slightly heavy tailed but the distribution is approximately
symmetric.
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Figure 83: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit after ac-
counting for heteroskedasticity for the bubble in Thailand(Bangkok SET Index) in
1994. The fitted heteroskedasticity is estimated by using a loess smoother on the em-
pirical residuals after filtering with ∆/60 degrees of freedom, where ∆ is the number of
trading days in the fitting window. The normality assumption can hardly be rejected
and the heavy tails have been accounted for.

Figure 84: The fit of the full bubble in Shanghai(SSEC) in 2007 for the OLS LPPLS
model in blue and the GLSH(1,0) LPPLS model in red. As usual, the GLSH(1,0)
fit is a bit smoother, but the signals are otherwise similar. The fitted parameters
for the LPPLS signals(t2 = 2007/10/16 corresponds to the end of the fitting win-
dow, the true peak of the bubble) are ÂOLS = 8.8750, B̂OLS = −0.0080, Ĉ1,OLS =

0.0005, Ĉ2,OLS = −0.0005, m̂OLS = 0.8959, ω̂OLS = 6.0714, t̂c,OLS = t2 + 39 and

ÂGLS = 8.7842, B̂GLS = −0.0072, Ĉ1,GLS = −0.0003, Ĉ2,GLS = 0.0007, m̂GLS =
0.9163, ω̂GLS = 5.5000, t̂c,GLS = t2 + 18, ρ̂ = 0.9400.
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Figure 85: The autocorrelation function for the LPPLS OLS fit for the full bubble in
Shanghai(SSEC) in 2007. Strong auto-regressive part is evident. Here it is not clear
if the decay is exponential or linear, at least the estimated auto-regressive parameter
is close to 1.

Figure 86: The partial autocorrelation function for the LPPLS OLS fit for the bubble
in Shanghai(SSEC) in 2007. Strong auto-regressive part is evident of order 1.
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Figure 87: Tukey-Anscombe plot for the LPPLS OLS fit of the standardized residuals
for the bubble in Shanghai(SSEC) in 2007. A structure is evident, and thus the model
assumptions violated.

Figure 88: The plot shows standardized residuals over time for the LPPLS OLS fit for
the bubble in Shanghai(SSEC) in 2007. A structure is evident, and thus the model
assumptions violated.
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Figure 89: The quantile-quantile normal plot for the LPPLS OLS fit for the bubble
in Shanghai(SSEC) in 2007. The normality is assumption is violated. However, the
strong auto-regressive structure needs to be corrected for before considering the Q-Q
plot.

Figure 90: The autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Shanghai(SSEC) in 2007. The transformation seems
to have uncorrelated the residuals for the most part.

79



Figure 91: The partial autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Shanghai(SSEC) in 2007. The transformation seems
to have uncorrelated the residuals for the most part.

Figure 92: Tukey-Anscombe plot for the filtered residuals for the LPPLS GLSH(1,0)
fit of the standardized residuals for the bubble in Shanghai(SSEC) in 2007. There is
hardly any structure in the residuals.
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Figure 93: Standardized residuals over time plot for the LPPLS GLSH(1,0) fit for the
bubble in Shanghai(SSEC) in 2007. There is hardly any structure in the residuals.

Figure 94: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit before
accounting for heteroskedasticity for the bubble in Shanghai(SSEC) in 2007. The
assumption of normality is violated as there are heavy-tailed negative residuals.
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Figure 95: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit after ac-
counting for heteroskedasticity for the bubble in Shanghai(SSEC) in 2007. The fitted
heteroskedasticity is estimated by using a loess smoother on the empirical residuals
after filtering with ∆/60 degrees of freedom, where ∆ is the number of trading days
in the fitting window. The normality assumption is not satisfied but the fitted het-
eroskedasticity improves the situation.
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Figure 96: The fit of the full bubble in Sugar 2005 for the OLS LPPLS model in
blue and the GLSH(1,0) LPPLS model in red. The fitted signals are very similar.
The fitted parameters for the LPPLS signals(t2 = 2006/02/03 corresponds to the end
of the fitting window, the true peak of the bubble) are ÂOLS = 5.0917, B̂OLS =
−1.5927, Ĉ1,OLS = 0.0135, Ĉ2,OLS = −0.0067, m̂OLS = 0.1163, ω̂OLS =

12.5357, t̂c,OLS = t2 + 12 and ÂGLS = 5.6042, B̂GLS = −2.0351, Ĉ1,GLS =

−0.0130, Ĉ2,GLS = 0.0085, m̂GLS = 0.1000, ω̂GLS = 13.1225, t̂c,GLS = t2 + 14, ρ̂ =
0.7562.

Figure 97: The autocorrelation function for the LPPLS OLS fit for the full bubble in
Sugar 2005. Strong auto-regressive part is evident. Here it is not clear if the decay is
exponential or linear, at least the estimated auto-regressive parameter is close to 1.
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Figure 98: The partial autocorrelation function for the LPPLS OLS fit for the bubble
in Sugar 2005. Strong auto-regressive part is evident of order 1.

Figure 99: Tukey-Anscombe plot for the LPPLS OLS fit of the standardized residuals
for the bubble in Sugar 2005. A structure is evident, and thus the model assumptions
violated.
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Figure 100: The plot shows standardized residuals over time for the LPPLS OLS fit
for the bubble in Sugar 2005. A structure is evident, and thus the model assumptions
violated.

Figure 101: The quantile-quantile normal plot for the LPPLS OLS fit for the bubble in
Sugar 2005. The normality is not clearly violated. However, the strong auto-regressive
structure needs to be corrected for before considering the Q-Q plot.
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Figure 102: The autocorrelation function of the filtered residuals for the LPPLS
GLSH(1,0) fit for the bubble in Sugar 2005. The transformation seems to have uncor-
related the residuals.

Figure 103: The partial autocorrelation function of the filtered residuals for the LP-
PLS GLSH(1,0) fit for the bubble in Sugar 2005. The transformation seems to have
uncorrelated the residuals.
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Figure 104: Tukey-Anscombe plot for the filtered residuals for the LPPLS GLSH(1,0)
fit of the standardized residuals for the bubble in Sugar 2005. There is hardly any
structure in the residuals.

Figure 105: Standardized residuals over time plot for the LPPLS GLSH(1,0) fit for
the bubble in Sugar 2005. There is hardly any structure in the residuals.
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Figure 106: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit before
accounting for heteroskedasticity for the bubble in Sugar 2005. We cannot reject the
assumption of normality but the tails are a bit off.

Figure 107: The quantile-quantile normal plot for the LPPLS GLSH(1,0) fit after ac-
counting for heteroskedasticity for the bubble in Sugar 2005. The fitted heteroskedas-
ticity is estimated by using a loess smoother on the empirical residuals after filtering
with ∆/60 degrees of freedom, where ∆ is the number of trading days in the fitting
window. The normality assumption can hardly be rejected and the fitted heteroskedas-
ticity improves the situation.
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