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Abstract

By using the Dow Jones Adverse Media Entity dataset that covers 2012 to 2019, this thesis

finds that environmental, social, and governance(ESG) risks generate negative short-run

stock returns with a negative cumulative abnormal return of -0.32% for a 21-day event

window. This discovery demonstrates that the market fails to fully incorporate value-

relevant ESG information into stock prices in the short-run, and thus implies potentially

profitable investment strategies. An underperformance of controversial firms in long-run

with a monthly alpha of -4.37% is also reported. This result is robust to outliers and

different risk model specifications, but not to industry or certain combinations of firm

characteristics. This shows that the underperformance may stem from underperforming

industries and common characteristics of controversial firms rather than ESG incidents.

This thesis also examines the financial performance of several ESG investment strategies,

including negative and relative screening. The results show that while a equal-weighted

portfolio of worst ESG-performing stocks underperform the best ones by 0.54% and a

value-weighted portfolio overperforms S&P 500 portfolio by 0.2%, negatively screened

portfolios do not systematically overperform or underperform the benchmarks.
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Chapter 1

Introduction

Socially responsible investing(SRI) is broadly defined as an investment process that in-

volves identifying companies based on their corporate social responsibility profiles(CSR).

ESG investing belongs to the class of SRI and specifically considers integrating environ-

mental, social, and governance factors into investment decisions(Renneboog, Horst, and

Zhang 2008). It reflects investors’ wish of ‘doing well by doing good.’ In other words, in

addition to the financial utilities, ESG investors also strive for non-financial utilities by

holding portfolios that are consistent with social norms and values.

In modern era, SRI became more formalized with the growth of mutual fund industry. As

the fund management industry grew, activists started to take SRI as an opportunity for

shareholders to influence corporate behaviours. For instance, between the 1970s and 90s,

pressures on fund managers to avoid investing in South African companies contributed to

the ending of Apartheid, an institutionalized race segregation in South Africa. In the 1980s

and beyond, the awareness of climate change and global warming, along with industrial

disasters such as Bhopal gas leak and Exxon Valdez oil spill, have brought up concerns

regarding environmental issues and drives investors away from these controversial firms.

Nowadays, SRI has grown into a major force in the global market. As revealed in The

Global Sustainable Investment Review(GSIR) released by Global Sustainable Investment

Alliance, SRI assets in five major markets(Europe, the United States, Japan, Canada,

Australia, and New Zealand) approximated $30 trillions at the beginning of 2018, featuring

a 34% growth in two years. They constituted more than 50% of total professionally

managed assets in Canada, Austria, and New Zealand, almost half in Europe, 26% in the

United States, and 18% in Japan.

Common ESG strategies used by individuals or institutional investors include negative

screening, besting in-class-screening, active ownership, ESG integration, and themed in-

1



2 Introduction

vesting. Negative screening, which entails excluding certain companies or sectors from a

fund or portfolio based on ESG criteria, is by far the most widely used strategy. It is also

unarguably the most extensively studied strategy in the field of finance.

As reported by Global Sustainable Investment Alliance, there are two main motivations

for fund managers to apply ESG investing. The first one is to “achieve social and environ-

mental benefit or to fulfill their firms’ missions.” The second one is to “minimize risk and

improve financial performance over time.” While the non-financial utility of ESG investing

is unquestionable, its financial performance remains unclear. Therefore, the conversations

about ESG investing has shifted from the social responsibility issues to questions about

the impact of ESG incidents on stock price and the methods for integrating non-financial

information into investment theories.

In past decades, many empirical studies have been conducted in ESG investing, but they

show inconclusive and mixed results regarding its financial performance. While many

studies find a zero-effect(Bauer, Koedijk, and Otten 2005) or a negative effect(Renneboog

et al. 2008; Hong and Kacperczyk 2009), some studies find evidence that SRI improves in-

vestment performance(Edmans 2011). The source of controversial results could come from

many aspects, such as the exact subject of study, sample period, country, and methodolo-

gies used.

One important source of uncertainty is the lack of clear definitions and metrics for ESG

responsibility, which forms an obstacle to assess the value of the investment. To be more

specific, a traditional way of defining low ESG responsibility stocks is by the notion of ’sin

stocks’. Sin stocks is defined by the industrial sector of the firm and often includes alcohol,

tobacco, gambling, sex-related industries and weapon manufacturers(Hong and Kacper-

czyk 2009). However, this methods defines ESG responsibility broadly on an industry-level

and ignore characteristics of individual firms. Furthermore, it does not allow for researchers

to study the changes in stock prices around ESG shocks.

Alternatively, many recent studies start to use ESG ratings as a measure for ESG per-

formance(Glosner 2017), with the emergence of specialized ESG rating agencies. Several

examples include RepRisk, Sustainalytics, and MSCI(formerly named KID). Typically, in-

formation sources on the predefined ESG issues are screened and then used to calculate the

ESG score on a monthly basis. A decrease in the rating of certain amount is usually seen

as a negative shock in the ESG issues. However, as the rating is reported on a monthly

basis, it introduces time latencies in event reporting.

Different from these two approaches, this thesis takes an event study approach by utiliz-

ing a large dataset on negative ESG-related news curated by Dow Jones for professional

use. Our event study approach allows us to identify ESG shocks directly and to separate
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controversial stocks from well-behaving ones by using the occurrences of negative news as

a proxy of bad behavior. Compared with the broad industry classification, we check the

ESG issues at an individual firm level, and thus making it easier to measure the impact

of negative news in a more direct manner. In contrast to the ESG rating approach, our

data allows us to study the short-term effect in a timely manner.

This thesis is consisted of four parts. In the first part, we introduce some theoretical

foundations related to returns of ESG investing and review related literature. In the

second part, we briefly explain the datasets used throughout the thesis and also provide

some basic descriptive analysis of the data. In the third part, we investigate the relation-

ship between companies’ ESG performance and stock returns in both the short and long

run, using methodologies of event study, Jensen’s alpha, and cross-sectionally time-series

regression. In the last part, we compare the ESG-based investment strategies, specifi-

cally negative screening and relative screening, with passive investment in order to study

whether investors can profit from ESG-investing.

The thesis contributes to the literature on ESG investing in the following ways. First of

all, by utilizing a large dataset on ESG related news, we perform a comprehensive analysis

of the impact of ESG related news on stock returns. As would be detailed in the next

section, our ESG related news dataset categorizes news events into 17 categories. These

categories enable us to measure the impact as well as confidence intervals of the impact

of ESG related news on stock returns. Secondly, we perform an in-depth analysis of the

impact of ESG related news events on stock returns paying particular attention to the

robustness of the results. We show that negative impact of ESG related news event seems

to be robust to long-run impact, outliers, different risk model specification, but not to

industry classification and firm characteristics. Thirdly, we also examine the financial

performance of several ESG investment strategies, including both negative and relative

screening.
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Chapter 2

Background

In this section, we briefly summarize the theoretical considerations to ESG investing and

provide a review of related empirical literature.

2.1 Theoretical Considerations of ESG investings

Current research on ESG investing shows both evidence of overperformance and under-

performance of stocks with high ESG profiles. In the following, we summarize their main

arguments.

Some studies show that ESG investing can improve investment performance relative to

passive investing(Edmans 2011). A theoretical explanation is that the stock market un-

dervalues ESG risks. In other words, the value effects of ESG events is not fully captured

by the stock market. To further explain, while negative ESG events can almost always

destroy shareholder value, as the firms have to pay severe penalties and bear the damages

to their intangibles such as reputations, positive events can increase the shareholder value

in the opposite way. However, investors may ignore ESG information because they are

either obsessed with the short-term financial metric and too myopic and to incorporate

long-term fundamentals(Porter 1992), or they fail to recognize the importance of ESG.

Moreover, the impact on intangible assets is often underestimated by the market and is

only reflected when manifested in some tangible outcomes. Evidence of underreaction to

intangibles includes R & D costs, patent citations, advertising, and software development

costs.

A second reason for the outperformance of high ESG stocks is that ESG investing has

become more popular over time. Therefore, a growing demand for high ESG stocks can

push up their prices, and a decreasing demand for low ESG stocks can result in lower stock

5
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prices.

Demand effect is also one reason that some researchers argue that high ESG stocks un-

derperforms relative to low ESG stocks(Hong and Kacperczyk 2009) or the market. To

be more specific, when ESG investors ignore certain controversial firms, their stock prices

can become undervalued. While these firms have low initial returns, they may yield high

subsequent returns relative to high ESG stocks. Another reason is that firms in industries

shunned by ESG investors, such as alcohol and tobacco, have incentives for conservative

accounting because of more scrutiny from regulators. This will lead to underreaction and

thus high subsequent returns.

Other studies show that there is no underperformance or overperformance of high ESG

stocks because of the perfectly elastic demand curve(Bauer et al. 2005). To further explain,

ESG investing might not be sufficiently widespread to affect prices. Moreover, arbitrageurs

can offset any effect of ESG investors by trading in the opposite direction.

2.2 Literature Review

A vast body of literature is devoted to studying the financial impact of ESG investing. The

literature can be split into different categories according to the source of information they

used. A traditional way of screening ESG stocks is to avoid the so-called “sin stocks”. This

screening method is rooted in Islamic religious principles and has thousands of years of

history. However, in modern times, with the formalization of financial reporting procedures

and the era of big data, ESG researchers are accessible to more information sources.

Rather than sin stocks screening, modern literature approaches can be split into three

main categories: i) information voluntarily disclosed by the company, ii) information from

a rating agency, and iii) news information.

Compared with (i) and (ii), (iii) is a more neutral and reliable approach. On one hand,

(i) can be cooked, which is evident in the Enron Scandal. Enron had fooled regulators

for long with fake holding and off-the-books accounting, until the problem was discovered

and investigated and the company collapsed. On the other hand, (ii) can be influenced by

a conflict of interest. Efing and Hau (2013) study 6500 structured debt ratings produced

by Standard and Poor’s, Moody’s, and Fitch, and found that ratings by agencies are

“biased in favor of issuer clients that provide the agencies with more rating business.”

This phenomenon is evident in the subprime crisis.

Hvidkjaer (2017) provides a nice overview of ESG literature.
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2.2.1 Sin Stocks

Hong and Kacperczyk (2009) is one of the most cited articles addressing the return effects

of investing in sins stocks. They found that a classical Triumvirate of sin stocks(consisted

of tobacco, alcohol, and gambling companies) of 156 US stocks outperform their industrial

comparable stocks during 1965-2006. To be more specific, the result shows that applying

Carhart four-factor model to the portfolio of returns of sin stocks net of their industry

comparables yields a monthly alpha of 26 bps at 5% significance level. Moreover, a cross-

sectional returns model finds a monthly excess performance of 30 bps at 5% significance

level.

Rather than defining sin stocks according to the broad industry classification, Trinks and

Scholtens (2017) selects stocks at individual level based on fourteen potentially contro-

versial issues. They show that sin stocks exhibit high returns during 1991-2012 in 94

international markets. Specifically, they show that the value-weighted TotalSin portfolio,

which is consisted of over 1,600 stocks, outperforms the global Fama-French four-factor

benchmark by 91-104 bps per month, which is significant at 1% level. Also, note that they

apply a median regression to address the non-normality of excess returns.

Similar to the idea of sin stocks, Edmans (2011) conducts social screens by selecting firms

with high employee satisfaction, which is defined as being on the list of “100 best compa-

nies to work for in America”. He shows that firms with high employee satisfaction exhibit

high future stock returns. As the paper noted, a value-weighted portfolio of the listed

firms earned an annual alpha of 3.5% from 1984 to 2009 and it is 2.1% above industrial

benchmarks. The results are robust to controls for firm characteristics, different weighted

methodologies, and removal of outliers. In addition to the industry-matched returns men-

tioned in Hong and Kacperczyk (2009), Edmans also uses characteristic-adjusted returns.

This controls for interaction effects, which may potentially cause the model to misprice

certain stocks. Moreover, Fama-Macbeth cross-sectional regressions confirm the results of

the factor regressions.

2.2.2 Information Voluntarily Disclosed by the Company

Jacobs, Singhal, and Subramanian (2010) apply event study methodology to study the

stock market response to the announcement of various types of corporate environmen-

tal initiatives, such as environmental business strategies, eco-friendly products, renewable

energy, and recycling. The announcements include both Corporate Environmental Initia-

tives(CEI), which is the self-reported corporate endeavors to avoid environmental impacts,

and Environmental Awards and Certifications (EACs), which is about recognition granted
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by a third party. The sample includes 780 announcements between 2004 and 2006. They

find mostly insignificant results, except for significantly negative returns for voluntary

emission reduction and positive returns for environmental philanthropy and ISO14001

certification.

Fisher-Vanden and Thorburn (2011) use the same methodology to study the abnormal

returns around announcements that firms have joined two environmental programs, namely

the U.S. Environmental Protection Agency’s Climate Leaders program and Ceres. The

analysis is based on a sample of 117 announcements by large U.S. firms during the period

1993 to 2008. The results show that the market values decrease by around 1% when firms

join the Climate Leaders program, which is statistically significant. By contrast, abnormal

returns are insignificant when firms join Ceres.

2.2.3 Information from Rating Agencies

Kempf and Osthof (2007) use KLD rating data to construct value-weighted portfolios for

the period 1992-2004 based on three strategies, namely negative, positive, and best-in-

class screenings. Their first finding is that high ESG-rated portfolio performs better than

low-rated portfolio for certain qualitative criteria. Specifically, a long-short strategy yields

a positive alpha of up to 8.4% per year using Carhart four-factor model. Furthermore, the

maximum alpha is obtained by the best-in-class screening, choosing stocks with extreme

ratings and applying several screenings at the same time. However, negative screening

alone does not lead to any significant performance effect. Statman and Glushkov (2009)

generally confirm the results of Kempf and Osthof (2007) based on 1992-2007 KLD rating

data. Both of the studies also show that portfolios formed on community and employee re-

lations criteria result in high excess returns, while those formed on diversity, environment,

products and human rights do not have significant results.

Humphrey and Tan (2014) use KLD data to construct portfolios using positive and neg-

ative screening strategies, during the sample period 1996-2010. They show that the ESG

portfolio returns are lower than, but not significantly different from the benchmarks. They

also compare the Sharpe ratios and found that none of the difference is significant.

Kruger (2015) uses event study methodology to study the stock market response to both

positive and negative corporate ESG events, identified by KLD data around seven ESG

issues. He finds a significantly negative response to negative ESG events and a slightly

negative reaction to positive ESG events. To be more specific, the mean 21-day cumulative

abnormal return is approximately -111 bps for negative events and -47 bps for positive

events.
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Halbritter and Dorfleitner (2015) shows that the outperformance of ESG portfolio dis-

appears after the initial sample period in Kempf and Osthof (2007). Moreover, they

investigate the returns to ESG ratings of two other agencies, namely ASSET4, which cov-

ers a sample period from 2003 to 2012, and Bloomberg, which covers 2006 to 2012. Alphas

are generally also insignificant, confirming the KLD results. However, the Fama-Macbeth

cross-sectional regression shows a different result: while the excess returns to KLD rat-

ings remain insignificant, those obtained from ASSET4 and Bloomberg are statistically

significant.

2.2.4 News Information

Flammer (2013) identifies eco-harmful and eco-friendly events based on word search of

the Wall Street Journal(WSJ) articles obtained from Factiva, which is one of the major

newspaper databases. The search provides 117 eco-friendly and 156 eco-harmful events,

ranging from 1980 to 1999. By applying event study methodology, Flammer (2013) finds

a negative market reaction to eco-harmful events and a positive reaction to eco-friendly

events. She also examines the trend of market reaction over decades and shows that the

reward for eco-friendly initiatives has decreased over time while the penalty for eco-harmful

events has increased.



10 Background



Chapter 3

Data Description

The primary dataset we used in this data is purchased from Dow Jones. The dataset is

called Dow Jones Adverse Media Entity List, and it is said to be created by curating news

from about 10,000 sources all over the world in the Factiva dataset. The data covers the

negative ESG-related events from January 2012 to January 2019. There are 2,967 firms

and 16,380 events involved during this period.

For the robustness study, we collected additional data of company industry, market capac-

ity, dividend yield, and book-to-market ratio for all controversial firms from the Thomson

Reuters database. In order to compare the controversial firms with other firms, we also

obtained these data for all US public stocks traded on NASDAQ, NYSE, and AMEX,

which include around 6,900 stocks, as well as S&P 500 firms. To convert stock symbols

from ticker format to RIC format for queries on Thomson Reuter, we applied the inher-

ent function of Eikon. we compared the matched company names and manually checked

entries where names differ in order to ensure that the matching is correct. dis

In our dataset, the negative ESG-related news are divided into four main categories and

more subcategories, namely competitive/financial(information, anti-competitive, owner-

ship, management, financial, association), environmental/production(service, supply, en-

vironmental), social/labour(discrimination, workplace, workforce, human), and regulatory

(regulatory, fraud, corruption, sanctions). The distribution of number of negative news

per category is as figure 3.1. The most frequent subcategories appeared are product/ser-

vice, regulatory, and information, and they altogether account for 55% of the incidents.

Few observations lie in the subcategory of association, sanction, corruption, human, and

financial.

11
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Figure 3.1: Distribution of number of ESG incidents per subcategory

subcategories

competitive
/financial

info anti-competitive ownership mgmt financial assoc
843 508 594 395 83 3

social/labor
discrim workplace workforce human
625 414 402 42

regulatory
regulatory fraud corruption sanction
1279 508 98 13

environmental
/production

service supply envir
3060 300 412

Table 3.1: Number of ESG events per event subcategory

A visualization of the stock returns around event date can help us better understand the

impact of ESG incidents. Figure 3.2 shows the stock prices of Celsion, a biopharmaceutical

company. The failure of its experimental liver cancer treatment ThermoBox in the Phase

3 heat trial in January 2013 causes a plunge of 80% in its stock price.
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Figure 3.2: Stock prices of Celsion

An inspection of the yearly trend shows that the number of incidents nearly doubles, from

1,225 events in the year 2012 to 2,420 events in 2018. This partly reflects an expanding

coverage universe of the dataset and an increasing attention to ESG incidents, and partly

indicates that companies become more negligent in their ESG obligations.
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Figure 3.3: Trend of ESG incidents per year from 2012 to 2018
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year 2012 2013 2014 2015 2016 2017 2018

total number of incidents 1255 2210 2648 2561 2802 2372 2420

median market capitalization(bn $) 1.85 2.27 2.74 2.63 2.28 2.73 3.12

Table 3.2: Number of total ESG incidents and median market capitalization by year from
2012 to 2018

The distribution of number of negative news per company is shown in figure 3.4. Around

57% of the companies have recurring negative news, up to February 2019. The median

time interval between two events is 52 days. Figure 3.5 reveals that as the number of

previous incidents for a company increases, the time interval between incidents decreases.

It shows that negative events are persistent, which is another reason why investors should

pay attention to ESG incidents.
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Figure 3.4: Distribution of number of ESG incidents per company

mean std min 25% 50% 75% max

number of events per company 5.56 14.65 1.00 1.00 2.00 4.00 297.00

number of days between incidents 15.20 23.88 0.00 5.00 9.00 17.00 271.50

Table 3.3: Summary statistics of number of ESG incidents per company and number of
days between ESG incidents
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Figure 3.5: Distribution of number of days between ESG incidents

The median market capitalization for controversial companies in our dataset increases

from $1.8 billion as of the year 2012 to $3.1 billion in 2018. Most of our controversial
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firms are small to medium cap. This is a contrast to RepRisk data, which shows a median

market cap of around $49 billion for controversial firms.
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Figure 3.6: Median market capitalization per year from 2012 to 2018

Figure 3.7 is the industry distribution for companies that experiences ESG incidents,

compared with the universe of all public US-traded stocks. The controversial firms are

mostly concentrated in capital goods, pharmaceutical, and banking industries. Their

industry compositions are mostly similar to that of all firms, but more concentrated in

retailing, utilities, and material industries, while less concentrated in pharmaceutical and

banking industries.



17

Fo
od

 &
 S

ta
pl

es
 R

et
ai

lin
g

Ho
us

eh
ol

d 
Pr

od
uc

ts
Au

to
m

ob
ile

s
Co

ns
um

er
 D

ur
ab

le
s

Te
le

co
m

m
un

ica
tio

n
Tr

an
sp

or
ta

tio
n

Fo
od

, B
ev

er
ag

e,
 T

ob
ac

co
In

su
ra

nc
e

Se
m

ico
nd

uc
to

rs
Re

al
 E

st
at

e
Co

m
m

er
cia

l S
er

vi
ce

s
Co

ns
um

er
 S

er
vi

ce
s

En
te

rta
in

m
en

t
Ut

ilit
ie

s
Te

ch
no

lo
gy

 E
qu

ip
m

en
t

Di
ve

rs
ifi

ed
 F

in
an

cia
ls

Re
ta

ilin
g

M
at

er
ia

ls
So

ftw
ar

e,
 S

er
vi

ce
s

He
al

th
ca

re
En

er
gy

Ba
nk

s
Ph

ar
m

ac
eu

tic
al

s
Ca

pi
ta

l G
oo

ds

industry

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

fre
q

ESG-related stocks
US public stocks

Figure 3.7: Distribution of industries of controversial firms, compared with the universe
of all US public traded stocks



18 Data Description

controversial firms all US traded firms

Food, Staples Retailing 0.011 0.006

Household Products 0.012 0.006

Automobiles 0.016 0.008

Consumer Durables 0.019 0.023

Telecommunication 0.022 0.009

Transportation 0.027 0.019

Food, Beverage, Tobacco 0.027 0.019

Insurance 0.031 0.022

Semiconductors 0.031 0.029

Real Estate 0.033 0.026

Commercial Services 0.035 0.026

Consumer Services 0.037 0.023

Entertainment 0.038 0.040

Utilities 0.038 0.010

Technology Equipment 0.048 0.052

Diversified Financials 0.049 0.060

Retailing 0.051 0.032

Materials 0.056 0.028

Software and Services 0.057 0.068

Healthcare 0.061 0.071

Energy 0.067 0.037

Banks 0.072 0.134

Pharmaceuticals 0.080 0.198

Capital Goods 0.081 0.048

Table 3.4: Industry composition of controversial firms and all US public traded stocks
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Event Study

4.1 Methodology

Event study is a statistical method for examining the impact of an event on the value of a

firm. It is widely used to investigate the stock market responses to macroeconomic events

such as market shock, as well as to corporate events, such as earning announcement,

merge and acquisition, and dividend announcement. In this study, we use event study

methodology to study the stock market response to ESG-related news in the short-run.

This addresses the problem as to how the stock market perceives the value of an ESG

shock.

Figure 4.1: Timeline of event study

4.1.1 Expected Return Models

We proceed with an event study framework following Mackinlay (1997). For every event,

we use a pre-event window to estimate the expected stock returns.

Rit = E[Rit|Xt] + eit (4.1.1.1)

19
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, where Rit is the return for stock i at time t, Xt is the conditioning information, and eit

is the abnormal return.

There are a variety of expected return models, such as market model, capital asset pricing

model(Treynor 1961, Treynor 1962, Sharpe 1964, Lintner 1965, Mossin 1966), Fama-French

three factor model(Fama and R.French 1992), and Carhart four factor model(Carhart

1997). We introduce each of them below. These asset pricing models are also used in the

portfolio regressions in the next section.

These estimated coefficients are used to compute the expected returns during the event

window as follows.

E[Rit|Xt] = αi + βiRit (4.1.1.2)

Market Model

Market model is also called single index model. It is a common specification that models

the return of individual security or portfolio on the market portfolio. It is written as:

Rit = αit + β1iRMKTt + εt (4.1.1.3)

, where RMKT is the return of market portfolio. As it is impossible to collect returns of

all the stocks, it is a common practice to use S&P 500 index as the market return.

Capital Asset Pricing Model(CAPM)

CAPM was introduced by Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin

(1966). It builds on the earlier work of Markowitz (1952) on diversification and modern

portfolio theory. It assumes that the expected return of a security is based on risk-free-rate

plus a risk premium of the market return over the risk-free-rate. The risk-free-rate usually

used is the one-month treasury bill rate.

Rit −Rft = αit + β1i(RMKTt −Rft) + εt (4.1.1.4)

, where the additional parameter Rft is the risk-free-rate.
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Fama-French Three-factor Model

Fama and French(Fama and R.French 1992) three-factor model expands on CAPM by

adding size and value risk factors. This model considers the fact that value stocks ourper-

form growth stocks and that small cap stocks outperform big cap stocks on a regular

basis. By including these two additional factors, the model adjusts for this outperforming

tendency.

Rit −Rft = αit + β1i(RMKTt −Rft) + β2iSMBt + β3iHMLt + εt (4.1.1.5)

, where SMB is the size premium, measured by the average return on three small portfolios

minus three big portfolios, formed in terms of market capacity. HML is the value premium,

computed as the average return on two value portfolio minus two growth portfolios formed

according to book-to-value ratio.

Carhart Four-factor model

Carhart four-factor model(Carhart 1997) extends Fama and French three-factor model by

adding momentum as an additional risk factor, which is defined as a tendency for the stock

price to continue rising if it is in an upward trend and to continue declining if it is in a

downward trend.

Rt −Rft = α+ β1MKTt + β2HMLt + β3SMBt + β4MOMt + εt (4.1.1.6)

, where MOM is the momentum premium, calculated by subtracting the average return

on lowest-performing firms to highest-performing firms lagged one month.

4.1.2 Abnormal Return and Cumulative Abnormal Return

The abnormal return(AR) is defined as the difference between the actual and expected

return during the event window. If AR is systematically different from 0, this suggests

that the market misprices the ESG incidents and implies a profitable trading rule. The

cumulative abnormal return(CAR) is a computed as time-series aggregation of AR.

ARit = Rit − E[Rit|Xt] (4.1.2.1)
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CAR(t1, t2) =
t2∑
t=t1

ARt (4.1.2.2)

The cross-sectional mean abnormal return(AAR) and cumulative abnormal return(CAAR)

for any is defined as follows:

AARt =
1

n
ARt (4.1.2.3)

CAAR(t1, t2) =
t2∑
t=t1

ARt (4.1.2.4)

A t-test can be used for testing the following null hypothesis. The null hypothesis of a

zero cumulative abnormal return(CAR) is tested against the alternative hypothesis of a

nonzero CAR.

H0 : CARit = 0 (4.1.2.5)

H1 : CARi 6= 0 (4.1.2.6)

The test statistic is computed as follows:

s2ARi
=

1

Mi − 2

t1∑
t=t0

e2i,t (4.1.2.7)

s2CARi
= LS2

ARi
(4.1.2.8)

t(CAR) =
CARi
SCAR

(4.1.2.9)

, where M is the estimation window and L is the event window.

4.1.3 Pros and Cons of Event Study

A strength of event study is that the volatility of returns over a short time window is low,

and hence the test power would be high and it would be easier to establish the statistical
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relationship. Another advantage is that the expected return component is typically neg-

ligible. Therefore, it rules out much of the probability that the abnormal return can be

caused by some latent variable.

Shedding light to the criticisms of event study, some people argue that t-test might be

misspecified. To further explain, the assumptions for t-test are that the abnormal re-

turns are normally distributed, the variances of abnormal returns are equal across firms,

and there is no cross-correlation in abnormal returns. If abnormal returns exhibit either

heteroskedasticity or cross-sectional dependence, t-test can be inappropriate. However,

J.Brown and B.Warner (1985) rebutted this criticism and conclude from their specifica-

tion test that “although daily excess returns are so highly non-normal, there is evidence

that the mean excess return in a cross-section of securities converges to normality as the

number of sample securities increases. Standard parametric test are well specified.”

Another criticism of event study is that other events may occur within the event window,

which could confound the result. For example, a positive ESG event could have been a

response to some negative news about the firm. In that case, even if the ESG event is

value-creating, the stock market may respond negatively because of the previous negative

news. Evidence supporting this theory is found in Kruger (2015): Kruger finds that the

stock market has a larger response to a positive ESG event if KLD has registered an ESG

concern for the company within the last year.

4.2 Results

We applied a pre-event window ranging from 200 to 20 trading days prior to the event,

and an event window covering 20 trading days before and after the event.

We chose a simple market model to compute the expected stock return. The first reason

is that small error in risk adjustment does not make much difference in a short window.

Empirically, J.Brown and B.Warner (1985) test the market model in an event study sim-

ulation and find out that it incurs very small type one error. Another reason is that

Fama-French and Carhart models are often used to compute monthly abnormal over the

long-run. Even though they can be adapted to daily data and short-run windows, their

statistical properties as an underlying model for short-term event studies has not been

confirmed.

The resulting cross-sectional mean for the CAR is -0.32%. Given that the median market

capitalization for stocks in our dataset in around $ 2.6 billion, the loss caused by a single

ESG incident is approximated at $8 million. Applying a two-tailed t-test for CAR, we
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conclude a nonzero CAR at 1% significance level. This roughly aligns with the result of

Glosner (2017) which finds a CAR of 0.4%.

Figure 4.1 reveals an increase in the cumulative abnormal return in the controversial stock,

even though most of it happens prior to the reporting date of negative news. The possible

reasons could be the following: (i) the incident is reflected in other aspects of the company

and the price is partly adjusted beforehand, (ii) lag between the date on which ESG

incident occurred and the news reported, (iii) investors react before the news released

based on their speculations, (iv) insider trading, (v) confounding event.
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Figure 4.2: Cumulative abnormal return(CAR) within the 21-day event window

The CAR plots by incident subcategory is shown in figure 4.2 and 4.3. The plot shows that

many of the event categories have a negative CAR and is significant at 90% confidence

level, including product/service, workforce, environmental, and financial. Event categories

such as association and corruption have a large increase in the magnitude in CAR, but a

conclusion cannot be drawn because of the insufficient amount of data in these categories.

4.3 Longevity Study

In addition to the magnitude of abnormal returns, the longevity is also an interesting

subject. If excess returns result from mispricing of ESG incidents rather than risk, we

would expect the drift to decline over time for two reasons. First, ESG incidents are

persistent but not permanent. Put differently, the value of the intangible asset ignored by

market is lower overtime, so there should be less mispricing. Secondly, even for firms that

persist, the mispricing may be corrected over time as the market slowly learns about their
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day CAR

-10 0.000268
-9 -0.000045
-8 -0.000339
-7 -0.000246
-6 -0.000519
-5 -0.000841
-4 -0.000979
-3 -0.001410
-2 -0.001414
-1 -0.001960
0 -0.002695
1 -0.002693
2 -0.003080
3 -0.002884
4 -0.002804
5 -0.003094
6 -0.002636
7 -0.002638
8 -0.002867
9 -0.003029
10 -0.003186

Table 4.1: Values of cumulative abnormal return(CAR) within the 21-day event window

value.

We proceed longevity study similar to Edmans (2011). The longevity of underperformance

can be calculated with the cumulative abnormal return(CAR) up to time t. The result

shows that the magnitude of CARs continue to grow through around day 777, but starts

to decline after that. This suggests that it takes around 26 months for the abnormal return

to decline. The result is consistent with our hypothesis and implies that the reduction in

drift could occur because the market gradually learns how to price intangibles. Note that

our event window is around 4 years, so we are only focusing events before the beginning

of 2015.
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Figure 4.3: Cumulative abnormal return(CAR) for each event subcategory within the
21-day event window
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Figure 4.4: Cumulative abnormal return(CAR) and confidence interval for each event
subcategory at day 21. The confidence interval is constructed at 90% confidence level.
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Figure 4.5: Cumulative abnormal return(CAR) plot used for longevity study
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We also study the longevity of events by category. The result shows that while drift for

categories social/label, environmental/prodcution, competitive/financial start to decrease

between month 21 to 26, the cumulative abnormal return continues to grow for regulatory.

This implies that regulatory incidents persist longer or it takes longer for the market to

learn to price regulatory incidents.

Edmans (2011) continue to confirm this hyptoehsis by showing that the abnormal return

die down even in firms for which the event is permanent. Because of the scope of study,

we will not further explore it in this paper.
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Figure 4.6: Cumulative abnormal return(CAR) plot for each event category, used for
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Chapter 5

Jensen’s Alpha Approach

5.1 Methodology

It is possible that the short-term event study returns substantially underestimate the

relationship, as the market fails to fully incorporate intangible price in the short-term.

Therefore, we extend the previous study and investigate the impact of ESG incidents on

the stock returns in the long run.

For the long-term study, the event study method introduced in the previous section is

no longer appropriate. One reason is that the long-horizontal error in risk adjustment

accumulates, and thus cannot be neglected anymore as in the short-run. Another reason

is that it is unclear which expected return model is correct, so estimates of abnormal

returns over long horizons are very sensitive to model choice. Instead, Jensen’s alpha

approach is often an alternative choice for event study in the long-run.

5.2 Introduction to Jensen’s Alpha Approach

Jensen’s alpha approach, also called calendar-time portfolios abnormal returns, can be

summarized with two steps. The first step involves constructing a portfolio that consists

of all firms experiencing the event of interest. The second step is to compute the abnormal

return of the portfolio. This is done by a time-series regression of actual monthly returns

net of the risk-free-rate(or the benchmark return) against some predefined risk factors

that explains the systematic risk. Fama-French three-factor model and Carhart four-factor

model are often used in this case.

The intercept, also called alpha, provides the estimated average monthly abnormal return

of the portfolio of controversial firms over the market. An alpha significantly different
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from zero implies that the risk factors fail to fully capture the excess return. R-squared

is a statistical measure that represents the percentage of a fund or portfolio’s movement

that is explained by the factors in the regression. It can be used to assess how specific

ESG investments correlated with the movements of the broader market.

In our study, we investigate the stock performance over 1 year following the ESG incident.

Given that the sample period starts in January 2012, we create the portfolio for the first

time in January 2013. We reform the portfolio every month and all companies experiencing

the event within previous 12 months are added to the portfolio. This procedure results in

a time-series of monthly portfolio returns from January 2013 to January 2019. The risk

model that we choose is the Carhart four-factor model. The factors are obtained from

Fama French’s homepage.

5.3 Improvements and Limitations

The time-series of portfolios returns often suffers autocorrelation and heteroskedasticity in

error terms. To address the problem, we estimated the standard error using Newey-West

method, the detail of which is further explained in the appendix.

There are several limitations to Jensen’s Alpha approach. First, it can only be computed at

a portfolio rather than individual firm level, and therefore they do not produce separate

measures of abnormal return for each event. As we want to measure it for each event

category, we need to group firms into several portfolios according to the event category

and then measure a separate alpha for each portfolio. Moreover, there is no consensus on

the appropriate kind and number of risk factors.

Another criticism is that Jensen’s alpha suffers from a low statistical power(Loughran and

Ritter 2000), which implies a high Type 2 error. To further explain, it will more likely

to find insignificant results that are consistent with market efficiency. The rationale is

that corporate executives exploit mispricing by timing corporate events to coincide with

the misvaluation, but the Jensen’s alpha approach underweights the timing decisions.

As is mentioned in Loughran and Ritter (2000), “if there are time-varying misvaluations

that firms capitalize on by taking some action, there will be more events involving larger

misvaluations in some periods than in others...... In general, tests that weight firms equally

should have more power than tests that weight each time period equally.” Since Jensen’s

alpha approach weights each time period equally, it has lower power to detect abnormal

returns if managers time corporate events. To address this problem, a commonly used

technique is the weighted least square(WLS) regression, which provides greater weight to

months with more firms in portfolio. As a common practice, the weighted vector is the
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square root of the number of controversial firms in the relevant month. Since we use news

data rather than self-reported corporate events, it is less likely that the events will be

subject to behavioral timing considerations. Therefore, we will not further explore this

method in this thesis. Kothari and Warner (2004) provides a nice overview of the pros

and cons of Jensen’s alpha approach.

5.4 Results

Our portfolio contains 341 firms on average. The resulting equal-weighted monthly alpha is

-4.32% and it is statistically significant at level 1%, which implies an abnormal performance

of stock price in the long-term. A value-weighted portfolio return is also computed. It

results in a monthly alpha of -4.37% and is also statistically significant. These results

provide evidence that an US portfolio of controversial firms underperforms the market by

about 4% per month.

equal-weighted value-weighted

SMB
0.0014
(0.002)

-0.0001
(0.002)

HML
0.0071 *
(0.004)

0.0060
(0.004)

MKT
0.0119 ***
(0.002)

0.0026
(0.003)

MOM
0.0029
(0.004)

0.0038
(0.004)

CONST
-0.0432 *
(0.022)

-0.0437 *
(0.023)

R2 0.322 0.052

Table 5.1: Coefficients for portfolio regression, where four factor-model is used

We also examine events by categories and subcategories. The alphas are significant at 10%

significance level for all of the event categories, except for those with too few observations

that are excluded from our study.

5.5 Robustness Checks

This section is intended to provide further evidence that controversial firms are associated

with negative risk-adjusted stock returns. We run several robustness tests, aiming to

rule out the possibility that the negative alpha stems from outliers, industries, or firm

characteristics.
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coeff p-value

Product/Service -0.044 0.050
Regulatory -0.044 0.0548
Information -0.042 0.060
Discrimination/Workforce -0.042 0.073
Anti-Competitive -0.044 0.048
Fraud -0.044 0.046
Ownership -0.040 0.084
Workplace -0.044 0.051

Table 5.2: Alpha and p-value for each event subcategory

alpha p-value

Environment/Production -0.044 0.046
Competitive/Financial -0.043 0.053
Regulatory -0.043 0.051
Social/Labour -0.044 0.055

Table 5.3: Alpha and p-value for each event category

5.5.1 Outliers

Our first concern is that outliers drive the results. We test this by winsorizing the stock

returns of the controversial firms at 1% and 5% before creating the portfolio. The resulting

alphas are still statistically significant.

1% 5%

SMB
-0.0004
(0.002)

-0.0027 *
(0.002)

HML
0.0065
(0.004)

0.0041
(0.005)

MKT
0.0107 ***
(0.002)

0.008 ***
(0.003)

MOM
0.0036
(0.004)

0.0043
(0.004)

CONST
-0.0424 *
(0.023)

-0.0409 *
(0.023)

R2 0.256 0.140

Table 5.4: Coefficients for portfolio regression, after removing outliers

5.5.2 Misspecified Risk Factors

When estimating abnormal returns, one important concern is a misspecified factor model.

We address this problem by additionally estimating the three-factor and five-factor(Fama

and R.French 2015) model. The specification for the Fama-French five-factor model is as
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follows:

Rit−Rft = αit + β1i(RMKTt −Rft) + β2iSMBt + β3iHMLt + β4iRMWt + β5iCMAt + εt

(5.5.2.1)

, where RMW is the return spread of the most profitable firms minus the least profitable,

and CMA is the return spread of firms that invest conservatively minus aggressively.

These two models both result in statistically significant negative alpha.

three-factor model

SMB
0.0013
(0.002)

HML
0.0051**
(0.003)

MKT-RF
0.0116***
(0.002)

CONST
-0.0421*
(0.022)

R2 0.326

Table 5.5: Coefficients for portfolio regression with three-factor model

five-factor model

SMB
0.002
(0.002)

HML
0.0057
(0.005)

MKT-RF
0.0114***
(0.002)

RMW
0.0029
(0.004)

CMA
-0.0023
(0.007)

CONST
-0.0423*
(0.022)

R2 0.329

Table 5.6: Coefficients for portfolio regression with five-factor model

5.5.3 Industry

It is possible that the portfolio of controversial firms has a negative alpha because they

come from some underperforming industries. We investigate this problem by creating
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an industry-matched portfolio, using the 12-industry portfolios from Kenneth French’s

website.

According to Fama and R.French (1997), each NYSE, AMEX, and NASDAQ stocks are

assigned to one of the 12 industries based on the last four digits of company Compustat SIC

codes. 12 industrial portfolios are constructed according to this industrial classificiation

and value-weighted returns are computed. As we do not have the access to the SIC data,

we retrieve the Global Industry Classification Standard(GICS) industrial groups data for

each company and map companies from the 24 industry groups to the 12 industries of the

Fama-French industrial portfolio.

For each stock in the portfolio, We subtract the value-weighted returns of the corresponding

industry portfolio from the stocks’ raw returns. Then we calculate the risk-adjusted stock

returns of the industry-matched portfolio.

industry-matched

SMB
-0.0004 ***
(0.000)

HML
-0.0002
(0.000)

MKT
-0.0001
(0.000)

MOM
0.0002
(0.000)

CONST
-0.0002
(0.000)

R2 0.102

Table 5.7: Coefficients for portfolio regression on industry-matched returns

The result shows that an alpha of -0.0002 with p-value of 0.534. which is not statistically

significant. In other words, the controversial stocks do not significantly underperform their

industry comparable. This suggests that the underperformance of controversial stocks

which was discovered previously may stem from the fact that these companies come from

underperforming industries. Recall from chapter 2 that we found the controversial firms

are more concentrated in energy, utility, materials, telecommunications, automobiles, while

they are less concentrated on healthcare, pharmaceutical, banks, and software industries.

This coincides with the fact that the former industries underperform the latter ones within

the recent 10 years, shown in the figure below. One objection of this conclusion is that

many companies fail because of firm-specific events instead of widespread industry features.

For example, recall from Chapter 2 that the stock price of Celsion drops sharply because of

its unsuccessful drug test, while the average return in pharmaceutical industry is positive

at the time. Our explanation is that such firm-specific cases with extreme stock returns
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are so rare that they do not make statistically significant impact.

Figure 5.1: Monthly performance of several industries from 2010 to 2019(Fidelity Invest-
ment 2019)

We proceed to investigate the excess return for each industry by running seprate industrial

portfolio regressions, where the industry benchmark return is subtracted from the raw

stock return. The result shown below indicates that the alphas for many industries are

statistically significant, including money, non-durables, health, shops, energy, and others.

industry alpha p-value

Money -0.004630 0.000064
Other 0.003169 0.024338
BusEq 0.000186 0.938074
Manuf 0.000441 0.819017
Hlth 0.007502 0.006547
Shops 0.004938 0.051794
NoDur -0.002271 0.086337
Enrgy 0.013829 0.001568
Utils -0.001846 0.195401
Telcm -0.005850 0.123074
Chems 0.001402 0.730204
Durbl -0.006831 0.149209

Table 5.8: Alphas and p-values of portfolio regressions for each industry

5.5.4 Firm Characteristics

To rule out the possibility that the negative alpha stems from firm characterisitics, We

took the approach from Wermers (2003), which matches each stock to a portfolio of stocks

with similar market capitalization, book-to-market ratio, and momentum.
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Market capitalization is the firm’s market value, computed as the outstanding shares by

the price of a single share. It is one of the basic determinants of various characteristics

including risk. The smaller the market capitalization, the higher the investment risk.

Book-to-market ratio is defined as the dividend of a firm’s book value to market value.

Book value can be calculated by subtracting total liabilities, preferred shares, and intangi-

ble assets from the total assets of the company. It represents how much a company would

have left in assets if it went out of business. If a firm’s book-to-market ratio is large, it

means that its market value is trading higher than its book value per share and that the

company is overvalued.

Momentum here is defined as the sum of 12-months past returns of the stock. It considers

the trend that the stock price is likely to continue to rise if it has a high past-year return.

Considering the characteristics-matched portfolio, specifically we first rank all stocks

traded on NYSE, NASDAQ, and AMEX stocks by their market capitalization at the end

of each June. Quintile portfolios are formed according to the rank, and each quintile port-

folio is further divided into book-to-market ratio quintiles, based on their most recently

available data. Finally, each of the resulting 25-group portfolios is further divided into

quintiles based on the 12-month past returns of stocks. This three-way ranking procedure

results in 125-group portfolios, each having different combinations of size, book-to-market

ratio, and momentum. The portfolio is turned over every year. Each controversial firm

is mapped to one of these portfolios based on their characteristics and the equal-weighted

portfolio return is subtracted from the company’s raw stock return.

Figure 5.2: Illustration of the procedures to form 125-fractile portfolios

We are left with 42 stocks in each fractile. The result shows an alpha that is not statistically
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significant. This suggests firm characteristics, specifically size, book-to-market-ratio, and

momentum, is another source for the underperformance of controversial firms.

We proceed to examine which characteristics specifically changes the result and leads to a

statistically insignificant alpha. We achieve this by removing one factor from our portfolio-

forming procedure at a time. This results in three 25-group portfolios, formed on i) book-

to-market ratio and yearly return, ii) market capitalization and yearly return, iii) market

capitalization and book-to-market ratio. The result shows that the alpha for portfolio

specification ii) remains insignificant, while for i) and iii) are negative and statistically

significant. This implies that that the excess return is not robust to the characteristics

combination of market capitalization and book-to-market ratio.

mc, bv, yr bm, yr mc, yr mc, bm

SMB
-0.0004 ***
(0.001)

-0.0046 ***
(0.001)

-0.0032 ***
(0.000)

-0.0033 ***
(0.000)

HML
4.374e-05
(0.001)

-0.0003
(0.000)

0.0004
(0.000)

-0.0003
(0.00)

MKT
0.0025 *
(0.001)

0.0007
(0.000)

0.0003
(0.000)

0.0002
(0.00)

MOM
-0.0027 ***
(0.0001)

-0.0003
(0.000)

-0.0012 ***
(0.000)

-0.0013 ***
(0.000)

CONST
0.0023
(0.005)

-0.0037 **
(0.002)

-0.0024 *
(0.001)

-0.0016
(0.001)

R2 0.063 0.532 0.556 0.536

Table 5.9: Coefficients for portfolio regressions with characteristics-matched portfolio re-
turns
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Chapter 6

Cross-sectional Time-Series

Regression

6.1 Methodology

6.1.1 Model Specification

A concern with the previous approaches is that the underperformance of controversial firms

stems from unknown omitted variables rather than the unexplained abnormal return. The

characteristics-matched approach is aimed to solve the problem, but as the number of

variables increase, the number of stocks in each group decreases, and thus the method

does not work anymore. In order to address this problem, in this section we apply the

cross-sectional time-series regression to control for a wide range of firm characteristics.

The regression model is specified as follows:

Ri,t = α0 + β1Xi,t−k + β2Zi,t−k + εi,t (6.1.1.1)

, where Rit is the return of stock i, Xi,t−k are the factors that control for firm character-

istics, and Zi,t−k is an indicator for ESG incident. We tried three specifications for the

indicator: i) a dummy variable, which equals to 1 if there are at least 1 ESG incidents in

month i for stock t, and equals to 0 otherwise, ii) a count of number of ESG incidents in

month i, and iii) separate counts of number of ESG incidents for each event subcategory.

The indicator is lagged 1 month.

Following Brennan, Chordia, and Subrahmanyam (1998) and Edmans (2011), we use firm-

characteristics-related factors as control variables, which include the following: “Variable
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size” is the logarithms of market capitalization in terms of billions of US dollars. “Variable

bm” is the logarithm of book-to-market ratio. “Variable div” is the ratio of dividends

paid over the market value. “Variables ret23”, “ret46”, and “ret712” are the logarithms of

compounded returns returns over previous months t-2 through t-3, t-4 through t-6, and

t-7 through t-12. “Variable prc” is the logarithm of the reciprocal of the stock price. These

risk factors are all lagged 1 month.

6.1.2 Fama-MacBeth Regression

We apply the Fama-Macbeth model(Fama and MacBeth 1973) to estimate the betas and

risk premia for the risk factors.

To obtain the Fama-MacBeth estimator, we perform T regressions, one for each sample

period using all of the entity data. The model is given by:

yit = β′xit + εit (6.1.2.1)

Denote the estimated model parameters as β̂t. The reported estimator is then:

β̂ = T−1
T∑
t=1

β̂t (6.1.2.2)

σ(β̂) =
σ(β̂t)√
M

(6.1.2.3)

One criticism of the Fama-MacBeth regression is that it is robust only against time but

not against firm effects. Alternatively, we can apply a pooled-OLS panel regression and

double-cluster the standard error to account for cross-sectional and serial correlations. The

detail of it is explained in appendix A.

6.2 Results
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mc prc bm div ret23 ret46 ret712 ret

mean 1.915 -1.301 -0.829 2.372 0.002 0.005 0.009 0.010

std 1.476 0.198 0.660 1.595 0.020 0.028 0.045 0.070

min -2.978 -1.819 -3.217 0.018 -0.132 -0.198 -0.329 -0.3090

25% 0.872 -1.441 -1.268 1.263 -0.008 -0.009 -0.014 -0.031

50% 1.951 -1.322 -0.789 2.038 0.003 0.006 0.011 0.011

75% 3.044 -1.184 -0.350 3.050 0.013 0.020 0.035 0.051

max 5.307 -0.312 1.049 13.553 0.136 0.188 0.246 0.408

Table 6.1: Summary statistics of control variables

fama-macbeth double-clustered

count
0.000800
(0.000755)

0.0006
(0.0009)

mc
-0.000859
(0.000609)

-0.0009
(0.0006)

prc
0.005494 **
(0.002230)

0.0108 **
(0.0043)

bm
-0.000775
(0.000686)

8.532e-05
(0.0007)

div
-0.000753 **
(0.000352)

-.0004
(0.0004)

ret23
0.008944
(0.034099)

0.0360
(0.0916)

ret46
-0.011331
(0.027928)

0.0621
(0.0531)

ret712
0.015977
(0.016967)

0.0436
(0.0340)

const
0.019381 ***
(0.004796)

0.0257 ***
(0.0070)

Table 6.2: Results of cross-sectional time-series regression, where the event indicator is a
count of the number of events
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double-clustered Fama-Macbeth

dummy
5.233e-05
(0.0016)

0.0001
(0.0013)

mc
-0.0009
(0.0007)

-0.0008
(0.0007)

prc
0.0151 ***
(0.0057)

0.0073 ***
(0.0025)

bm
0.0019
(0.0010)

0.0004
(0.0009)

div
-0.0002
(0.0006)

-0.0007
(0.0005)

ret23
0.0569
(0.1161)

0.0076
(0.0411)

ret46
0.0721
(0.070)

-0.0170
(0.0339)

ret712
0.0480
(0.0455)

0.0029
(0.0217)

const
0.0322 ***
(0.0089)

0.0227 ***
(0.0057)

Table 6.3: Results of cross-sectional time-series regression, where the event indicator is a
dummy variable

Both results from Fama-MacBeth regression and pooled-OLS with double-clustered stan-

dard error show that neither a dummy indicator nor a count of the number of events has

a significant effect on the stock return. This result is consistent with our finding from the

characteristic-matched portfolio that the excess returns from ESG incidents are not robust

to firm characteristics.
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double-clustered Fama-Macbeth

Association
0.0655
(0.0515)

0.0018
(0.0013)

Sanctions
0.0398 *
(0.0220)

0.0016
(0.0013)

Financial
-0.0072
(0.0135)

0.0016
(0.0015)

Corruption
-0.0067
(0.0093)

0.0003
(0.0030)

Information
0.0009
(0.0051)

-0.0076 *
(0.0040)

Human
-0.0174
(0.0194)

0.0002
(0.0020)

Workplace
0.0008
(0.0044)

-0.0090 **
(0.0042)

Production/Supply
0.0013
(0.0077)

-0.0022
(0.0052)

Environmental
0.0008
(0.0060)

0.0040
(0.0049)

Management
0.0066
(0.0061)

0.0055
(0.0047)

Workforce
-0.0078
(0.0061)

-0.0112 *
(0.0059)

Regulatory
0.0008
(0.0033)

0.0048
(0.0040)

Fraud
-0.0007
(0.0041)

-0.0051
(0.0043)

Anti-Competitive
-0.0102
(0.0063)

-0.0017
(0.0045)

Ownership
0.0054
(0.0052)

-0.0009
(0.004780)

Product/Service
-0.0016
(0.0019)

-0.0016
(0.0019)

Discrimination/Workforce
0.0015
(0.0039)

0.0036
(0.0040)

mc
-0.0008
(0.0007)

-0.0007
(0.0007)

prc
0.0154 ***
(0.0058)

0.0077 ***
(0.0025)

bm
0.0018 *
(0.0010)

0.0003
(0.0009)

div
-0.0002
(0.0006)

-0.0008
(0.0005)

ret23
0.0571
(0.1167)

0.0003
(0.0412)

ret46
0.0720
(0.0706)

-0.0144
(0.0340)

ret712
0.0471
(0.0455)

0.0014
(0.0218)

const
0.0326 ***
(0.0090)

0.0232 ***
(0.0057)

Table 6.4: Results of cross-sectional time-series regression, where the number of events is
counted for each subcategory
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We proceed to run the regression with our third specification of event indicator, which sep-

arately counts the number of events for each subcategory. The pooled OLS result shows

that while for most of the categories the coefficients remain insignificant, the coefficients

for management, human, and information are statistically significant at 5%, 10%, and 5%

level. To be more specific, while other variables remain the same, companies with one

additional management incident have 1.12% lower stock returns, companies with one ad-

ditional human incident have 0.9% lower stock return, and companies with one additional

information incident have 0.76% lower stock return for the month.



Chapter 7

Portfolio Construction

In order to evaluate whether portfolios with low ESG-profile underperform typical passive

benchmarks, we compare and construct a series of portfolios, based on several ESG invest-

ing strategies. According to the GSIA by Global Sustainable Investment Alliance (2018),

ESG investing strategies are divided into the following main categories:

• Negative screening: the exclusion of certain companies or sectors from the port-

folio based on ESG criteria.

• Relative/Best-in-class screening: investment in companies or sectors based on

ESG criteria relative to their industry peers.

• Norm-based screening: screening of portfolios against some minimum standards

of business practice according to international norms, such as those issued by OECD

and UN.

• ESG inclusion: systematic and explicit incorporation of ESG factors into financial

analysis

• Themed investing: investment in themes specifically related to ESG considerations

• Impact investing: targeted investments aimed at solving ESG problems

• Corporate engagement: utilization of shareholder power to influence corporate

behaviors, including direct corporate engagement, filing or co-filing shareholder pro-

posals, and proxy voting that is consistent with ESG guidlines.

While investors using themed investing, impact investing, and norm-based screening strate-

gies are more concerned with social responsibility than financial returns, corporate en-

gagement and ESG inclusion are rarely used by individual investors and hard to evaluate.

Therefore, in this section we only focus on examining the financial implication of negative
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and positive screenings.

7.1 Methodoloy

Firstly, we construct portfolios based on negative and positive screenings. Then we model

the difference between monthly portfolio returns and benchmark returns using four-factor

model, which is the same as Jensen’s Alpha approach. Finally, we do hypothesis testing

to check if the alpha is statistically significantly different from 0. If not, this implies that

ESG portfolios do not significantly underperform or overperform the benchmarks.

A critique of applying Jensen’s Alpha method to investigate the excess returns of positive

or negative screening strategy is that this method is primarily concerned with the exposure

of market risk and is thus only appropriate for well-diversified portfolios. However, ESG

screenings restrict the investment universe. In addition, there is no consensus on the

appropriate kind and number of risk factors. Instead, Ledoit and Wolf (2008) suggested

comparing the two portfolios by hypothesis testing of Sharpe ratio. Sharpe ratio is defined

as the expected return in excess of risk-free-rate per unit of volatility and is widely used to

understand the risk-adjusted return potentials for portfolios. We also applied this method

and provide the results from both methods below. Details of the hypothesis testing of

Sharpe ratio is explained in Appendix B.

7.2 Relative Screening

Relative screening refers to the investment in companies selected based on the criteria of

ESG performance relative to industry peers.

In our case, for each month we rank the companies by the number of previous ESG

incidents as an approximation for ESG score. Based on this ranking, we select the 30

worst stocks with the most number of previous ESG incidents and form an equal-weighted

portfolio. This gives a monthly time-series return from April 2012 to February 2019.

Similarly, we also construct a portfolio with the 30 best stocks for companies with the

least number of previous ESG incidents, which is used as a benchmark. The other two

benchmark portfolios are S&P 500 stocks and all publicly traded US stocks on NASDAQ,

NYSE, and AMEX.
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all US stocks S&P 500 best 30 stocks

MKT
-0.0003
(0.000)

-0.0010 **
(0.000)

-0.0007
(0.001)

HML
-0.0010
(0.001)

-0.0014 *
(0.001)

-0.0022 ***
(0.001)

SMB
-0.0107 ***
(0.001)

-0.0046 ***
(0.001)

-0.0078 ***
(0.001)

MOM
-0.0025 ***
(0.001)

-0.0028 ***
(0.001)

-0.0002
(0.001)

const
9.422e-07
(0.002)

-0.0009
(0.002)

-0.0054 **
(0.003)

R2 0.677 0.345 0.414

Table 7.1: Coefficients for equal-weighted portfolio consisted of worst 30 stocks, compared
with all US stocks, SP500 stocks, and best 30 stocks

worst 30 stocks best 30 stocks S&P500 stocks all US stocks

Sharpe Ratio 0.2342239 0.3217523 0.3264605 0.2260067
P value 0.3133373 0.2337532 0.9346131

Table 7.2: Results for Sharpe Ratio test, where the worst 30 stocks are compared with
best 30, SP500, and all US stocks

Figure 7.1: Profit and loss graph for equal-weighted portfolio of worst 30 stocks, compared
with SP500, all US, and best 30 stocks

The result shows that a equal-weighted portfolio of the worst ESG-performing stocks un-

derperforms the best ones with a negative alpha of -0.54% and it is statistically significant

at 5% significance level. However, it does not systematically underperform S&P 500 or all

US stocks. Moreover, Sharpe ratio test does not show any statistical significance for any
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benchmark strategies.

Value-weighted returns are also computed. A value-weighted portfolio of the worst ESG-

performing stocks overperforms S&P 500 stocks by 0.29% at 1% significance level, but not

systematically overperform all US stocks or underperform best stocks.

all US stocks S&P 500 best 30 stocks

MKT
0.0020***
(0.000)

0.0020 ***
(0.000)

0.0025 *
(0.001)

HML
-0.0012
(0.001)

-0.0043 ***
(0.001)

-2.127e-05
(0.001)

SMB
-0.0018 **
(0.001)

-0.0008
(0.001)

-0.0048 *
(0.002)

MOM
0.0007
(0.001)

0.0006
(0.001)

0.0006
(0.002)

const
0.0003
(0.002)

0.0029 **
(0.001)

-0.0052
(0.003)

R2 0.175 0.344 0.072

Table 7.3: Coefficients for value-weighted portfolio consisted of worst 30 stocks, compared
with all US stocks, SP500 stocks, and best 30 stocks

worst 30 stocks best 30 stocks SP500 stocks all US stocks

Sharpe Ratio 0.4181311 0.3886057 0.3915104 0.4394484
P value 0.7280544 0.3757508 0.6802639

Table 7.4: Results for Sharpe Ratio test, where the a portfolio of value-weighted worst 30
stocks are compared with best 30, SP500, and all US stocks

Figure 7.2: profit and loss graph for value-weighted portfolio of worst 30 stocks, compared
with SP500, all US, and best 30 stocks
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7.3 Negative Screening

Negative screening entails the exclusion of certain companies from the portfolio based

on some ESG criterion. The benchmark portfolios are constructed using both the S&P

500 stocks and all public traded US stocks on NYSE, NASDAQ, and AMEX. In our

dataset, approximately 69% of S&P 500 stocks and 19% of all public traded US stocks are

controviersial firms. For every month, we remove the stocks with historical ESG-related

news in the past to construct our comparable ESG portfolio.

all US stocks S&P500

MKT
-0.0002 ***
(5.59e-05)

-0.0004 ***
(0.000)

HML
-3.809e-05
(0.000)

-0.0002
(0.000)

SMB
-7.069e-05
(5.49e-05)

-0.0002
(0.000)

MOM
-7.324e-05
(9.81e-05)

-9.124e-05
(0.000)

CONST
-0.0003
(0.000)

9.811e-05
(0.000)

R2 0.173 0.164

Table 7.5: Coefficients for equal-weighted negatively screened portfolio, compared with
benchmarks

all public US stocks negative screened SP500 stocks negative screened

Sharpe Ratio 0.2447 0.2333 0.3467 0.3463

P value 0.0856 0.9650

Table 7.6: Results for Sharpe Ratio test, where equal-weighted portfolios are compared

all US stocks S&P500

MKT
-0.0007 ***
(0.000)

-0.0002
(0.000)

HML
0.0002
(0.000)

-4.873e-05
(0.000)

SMB
-0.0003
(0.000)

-0.0004 **
(0.000)

MOM
-0.0007
(0.000)

-0.0003
(0.000)

CONST
-0.0005
(0.001)

-0.0003
(0.000)

R2 0.217 0.089

Table 7.7: Coefficients for value-weighted negatively screened portfolio, compared with
benchmarks
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all public US stocks negative screened SP500 stocks negative screened

Sharpe Ratio 0.4619 0.4335 0.4145 0.3956

P value 0.2623 0.3651

Table 7.8: Results for Sharpe Ratio test, where value-weighted portfolios are compared

Figure 7.3: Profit and loss graph for equal-weighted negative screened portfolio on all US
stocks

Figure 7.4: Profit and loss graph for equal-weighted negative screened portfolio on S&P
500 stocks

The portfolio regression results show that negatively screened portfolios slightly underper-
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Figure 7.5: Profit and loss graph for value-weighted negative screened portfolio on all US
stocks

Figure 7.6: Profit and loss graph for value-weighted negative screened portfolio on S&P
500 stocks

form the benchmarks, but none of them is statiatically significant. In other words, both

equal-weighted and value-weighted negatively screened portfolios do not systematically

underperform or overperform S&P 500 portfolio or all US stocks portfolio. Hypothesis

testing of Sharpe ratio gives slightly different results: while the equal-weighted portfo-

lio obtained from negative screening all public US stocks underperform the unscreened
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portfolio at 10% significance level, the rests remain insignificant.

The statistically insignificant results might stem from the fact that the dataset used here

does not have any severity index for each ESG-related news event. This makes it impossible

for us to distinguish the major probles from the minor ones, and thus, ESG screening

becomes less effective.



Chapter 8

Conclusion and Future Work

There is a long-running debate on the financial implications of ESG investing. It indicates

whether investors have to sacrifice financial performance by investing socially responsible.

ESG investors can apply different screening strategies to construct a socially responsible

portfolio. In this thesis, we analyze two strategies, namely negative and positive screening.

After implementing these strategies using controversial firms obtained from Dow Jones

Adverse Media Entity dataset that covers 2012 to 2019, we get the following main results:

i) ESG risks generate negative excess stocks returns in the short-run. Specifically, it gener-

ates a cumulative abnormal return of -0.32% for a 21-day event window. It demonstrates

that the market fails to fully incorporate ESG information in the short-run.

ii) In the long-run, a monthly excess return of -4.37% for portfolios of controversial firms is

reported. The result is robust to the removal of outliers and different model specifications.

However, it is not robust to industry-matched returns, which implies that the underperfor-

mance of controversial stocks can stem from underperforming industries. Within industry

information, management, and human, the negative alphas remain statistically significant.

Moreover, the negative alpha is not robust to several combinations of firm characteristics,

including size, book-to-market ratio, and momentum.

iii) ESG portfolios with negative screening strategy do not significantly overperform or

underperform passive investing portfolios, including S&P stocks and all US stocks pub-

licly traded on NASDAQ, NYSE, and AMEX. This implies that for socially responsible

investors, negative screening ESG stocks does not harm the financial performance of their

portfolios, but neither does it brings extra financial profits.

iv) An equal-weighted portfolio with relative screening strategy, which selects worst ESG-

performing stocks, underperform the best-performing ones by -0.54%, while a value-

weighted portfolio overperforms S&P 500 portfolio by 0.29%. This suggests shorting or

55



56 Conclusion and Future Work

longing controversial firms with extreme numbers of ESG incidents could bring excess

returns.

One major concern of our study is the short sample period, which only covers seven

years from 2012 to 2019. The sample size for some event subcategories, such as sanctions

and association, is especially small during this sample period. This forms an obstacle

for precise inference for two main reasons. Firstly, the asset pricing tests have relatively

low statistical power, which implies a lower probability of detecting abnormal returns.

Secondly, the results are sensitive to particular developments during the period. For

instance, the economy in the US has been in an expansionary stage for most of the sample

period and statistical techniques may not be able to fully explain such realizations of

underlying factors. To provide evidence that the findings from the portfolio regressions

in these seven years are not spurious, we could further run out-of-sample tests with, for

instance, European stock data. A second concern is the lack of severity index in our

dataset, which is mentioned in chapter 7. This impedes us from distinguishing major

events from minor ones, and thus potentially introduce noises with minor events. Taking

the significance of each news events by mining the raw text data of each news into account

might overcome this issue, and this is left for future work.

A further improvement we could make is to apply buy-and-hold abnormal return(BHAR)

method in addition to Jensen’s alpha approach. This involves calculating a stock’s un-

adjusted return by geometrically compounding its monthly returns and subtracting the

benchmark returns. Conrad and Kaul argue that BHAR is a better methodology than

Jensen’s alpha for some statistical reasons.

One interesting subject for further study is the earnings surprises. Our hypothesis is

that the intangible consequences of ESG incidents, such as reputational loss, are not

immediately capitalized by the market. Instead, it only affects the stock price when it

subsequently manifests in tangible outcomes, thus generating lower profits overtime. To

confirm the hypothesis, we could firstly examine whether controversial firms have lower

operating performance, such as return on equity(ROE) and return on assets(ROA). As

weaker operating performance only results in abnormal returns if it is unexpected by the

stock market, we could proceed with investigating the earning surprise, which is calculated

as the actual earnings per share less the analysts’ forecast. Another interesting topic would

be studying the values of positive ESG events and the financial implication of the positive

screening strategy. This entails a dataset of positive news and is left for future study.
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Appendix A

Heteroskedasticity and

Autocorrelation Consistent

Standard Errors

A.1 Ordinary Least Square(OLS)

Linear Regression assumes the following form:

Y = βX + ε (A.1.0.1)

It is normally assumed that εi, ..., εj are i.i.d. with E[εi] = 0, V ar(εi) = σ2

The ordinary least square(OLS) estimator β̂ is defined as:

β̂ = argmin||Y −Xβ||2 (A.1.0.2)

This gives the solution:

β̂ = (XTX)−1XTY

= (XTX)−1XT (Xβ + ε)

= β + (XTX)−1XT ε

(A.1.0.3)

For the OLS estimators to be unbiased and efficient, the following assumptions need to
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hold:

• The errors have mean 0. E[ε] = 0.

• The variance of error is constant(homoskedasticity). V AR(εi) = σ2 for all i.

• The errors are uncorrelated. COV (εi, εj) = 0∀i 6= j.

• The regression model is linear in parameters.

• X is independent of e.

• No multi-collinearity.

• The errors are jointly normally distributed(optional).

If assumptions 1-3 holds, Gauss-Markov theorem suggests that OLS is the best linear

unbiased estimator(BLUE). Put differently, OLS estimator will have the lowest variance,

compared with other unbiased linear estimators.

However, the error terms of time series data are oftentimes serial-correlated(autocorrelated)

and heteroskedastic. In such cases, the point estimators are still unbiased, but the esti-

mation for standard errors become inaccurate, and thus the statistical inference and tests

provide unreliable results. Plus, OLS is no longer BLUE anymore.

E[β̂] = E[β + (XTX)−1XT ε]

= β + (XTX)−1XTE[ε]

= β

(A.1.0.4)

COV [β̂] = E[(β − β̂)(β − β̂)T ]

= E[(XTX)−1XT ε[(XTX)−1XT ε]T ]

= E[(XTX)−1XT εεTX(XTX)−1]

= (XTX)−1XTE[εεT ]X(XTX)−1

(A.1.0.5)

If the assumptions are met,

E[εεT ] = COV [ε]

= Ω

= σ2I

(A.1.0.6)
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COV [β̂] = (XTX)−1XTE[εεT ]X(XTX)−1

= σ2(XTX)−1
(A.1.0.7)

A.2 Heteroskedasticity and Serial-Correlation

If the homoskedasticity and non-serial-correlation properties are violated, Ω 6= σ2I and

thus the above formula for estimating the covariance matrix will be inaccurate. If succes-

sive errors are positively correlated, we are underestimating the standard error of param-

eters and t-statistic will be much too high, and vice versa.

A.2.1 Correlogram and Residual Plots

Correlogram and residual plot can provide a first inspection on these issues.

Correlogram

Correlogram is the standard means of visualization for autocorrelation function, which is

calculated by:

ρ(k) = Cor (Xt+k, Xt) =
Cov (Xt+k, Xt)√

Var (Xt+k) Var (Xt)
(A.2.1.1)

A plug-in estimation is then:

ρ̂(k) =

∑n−k
t=1 (xs+k − x) (xs − x)∑n

t=1 (xt − x)2
, for k = 1, . . . , n− 1 (A.2.1.2)

Confidence band is also shown in the correlogram. It is computed based on the asymptotic

assumption that ˆρ(k) follows a N(0, 1n) distribution for long i.i.d. time series. Sample

autocorrelation coefficients ˆρ(k) that fall within the confidence band of±1.96√
n

are considered

to be different from 0 only by chance, whereas those outside are considered to be truly

different from 0.

I plotted the correlogram for the time-series of excess returns of the portfolio that is

consisted of all controversial stocks over the risk-free-rate. This series is used in chapter

4. A rough inspection of the correlogram shows that the autocorrelation exceeds the

confidence bound for lags up to 7.
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Figure A.1: Correlogram of time-series of portfolio return consisted of controversial firms
over the risk-free-rate

Residual Plot

The residual plot is used to identify heteroskedasticity. In this case, the variance appears

to increase with increased value of fitted excess return. Therefore, there is some slight

deviation from the constant variance assumption.

Figure A.2: Residual plot of portfolio return consisted of controversial firms over the
risk-free-rate
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A.2.2 Tests for Heteroskedasticity and Serial-Correlation

White Test for Heteroskedasticity

White Test is a formal test for constant variance. The null hypothesis is H0 : σ2i = σ2 and

the alternative hypothesis is H1 : σ2i 6= σ2. The squared residual from the original OLS is

regressed against the original regressors along with their squares and cross-products. The

lagrange multiplier(LM) is then calculated as the product of sample size and the R2 value:

LM = nR2 (A.2.2.1)

The LM statistics should follow a χ2 distribution, with degree of freedom P-1, where P is

the number of regressors in the auxiliary regression.

Durbin-Watson Test for Serial-Correlation

Assume that the regressors are strictly exogenous, which rule out the lagged dependent

variables. Also assume the AR(1) case, where the error follows a first order Markov error

process as follows:

ut = ρut−1 + et, |ρ| < 1, e i.i.dN(0, c) (A.2.2.2)

The null hypothesis is H0 : ρ = 0 and the alternative hypothesis is H1 : ρ 6= 0. The

Durbin-Watson test statistics is computed as:

DW =

∑n
t=2 (vt − vt−1)2∑n

t=1 v
2
t

(A.2.2.3)

, where v is the residual.

Simple algebra shows that DW statistic is closely related to the estimated ρ from the large

sample test:

DW ' 2(1− ρ̂) (A.2.2.4)

d = 2 indicates no autocorrelation.
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Breusch-Godfrey Test for Serial-Correlation

In presence of more lagged variables, the Breusch-Godfrey test is typically used. It con-

siders the null hypotehesis of non-autocorrelated errors against an alternative that they

are AR(P). The equation for AR(P) is as follows:

ut = ρ1ut−1 + ρ2ut−2 + · · ·+ ρput−p + εt (A.2.2.5)

The simple regression model is first fitted by OLS to obtain a residuals ût. Then an

auxiliary regression model is fitted as follows:

ût = α0 + α1Xt,1 + α2Xt,2 + ρ1ût−1 + ρ2ût−2 + · · ·+ ρpût−p + εt (A.2.2.6)

The test statistics is computed as follows and it should follow a chi-square distribution:

nR2 ∼ χ2
p (A.2.2.7)

, where R2 is obtained from the auxiliary regression.

A.2.3 Estimators Addressing Heteroskedasticity and Autocorrelation

White Estimator

In case of heteroskedasticity, the covariance matrix of the OLS takes the form:

COV [β̂] = σ2(XTX)−1XTΩX(XTX)−1 (A.2.3.1)

, which can be used for inference once the estimator is available. Based on this consider-

ation, White (1980) proposes the following unbiased estimator:
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û21 0 0 . . 0

0 û22 0 . . 0

. . . . . .

. . . . . .

0 . . 0 ˆu2T−1 0

0 . . 0 0 û2T


(A.2.3.2)

The choice for Ω̂ leads to the following covariance variance estimator:

ut = ρ1ut−1 + ρ2ut−2 + · · ·+ ρput−p + εtΣ
W
β =

T

T − k
(
X′X

)−1( T∑
t=1

û2tXtX
′
t

)(
X′X

)−1
(A.2.3.3)

Newey-West Estimator

Newey and West (1987) proposed a more general covariance estimator that is robust to het-

eroskedasticity and autocorrelation of the residuals of unknown form. This heteroskedasticity-

and-autocorrelation consistent(HAC) is given by:

ΣNW
β =

(
X′X

)−1
T Ω̂

(
X′X

)−1
(A.2.3.4)

where Ω̂ is the long-run covariance estimators.

Ω̂ = Γ̂(0) +
p∑
j=1

[
1− j

p+ 1

]
[Γ̂(j) + Γ̂(−j)] (A.2.3.5)

Γ̂(j) =

(
T∑
t=1

ûtût−jXtX
′
t−j

)
1

T
(A.2.3.6)

In absence of serial-correlation, Ω̂ = Γ̂(0) and it goes back to the White estimator. Note

that Newey-West estimator must be calculated conditional on a maximum lag. Normally

a lag exceeding the periodicity of the data is sufficient. For example, for monthly data a

lag of 12 is often chosen.
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A.3 Cluster-robust Inference

In this section, we present the fundamentals of cluster-robust inference. For these basic

results, we first assume that the following: i) the model does not include cluster-specific

fixed effects, ii) it is clear how to form the clusters, and iii) there are many clusters.

Clustered errors have two main consequences: they reduce the precision of parameter

estimation and the standard estimator for the variance of parameters is biased downward

from the true variance.

yg = Xgβ + ug, g = 1, . . . , G (A.3.0.1)

A.3.1 One-way Clustering

The key assumption for the clustered-covariance is that errors are uncorrelated across

clusters, while they can be correlated within clusters.

E
[
uigujg′ |xig,xjg′

]
= 0forg 6= g′ (A.3.1.1)

The OLS estimator is:

β̂ =
(
X ′X

)−1
X ′y =

 G∑
g=1

X ′gXg

−1 G∑
g=1

X ′gyg (A.3.1.2)

The estimated covariance matrix is:

V[β̂] =
(
X ′X

)−1
B
(
X ′X

)−1
(A.3.1.3)

with

B = X ′V[u|X]X (A.3.1.4)

Given that the error is independent across clusters, V[u|X] has a block-diagonal structure,

and thus the previous equation simplifies to:

Bclu =
G∑
g=1

X ′gE
[
ugu

′
g|Xg

]
Xg (A.3.1.5)
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The cluster-robust estimate of covariance matrix can be written as:

∇̂clu[β̂] =
(
X ′X

)−1
B̂clu

(
X ′X

)−1
(A.3.1.6)

, where

B̂clu =
G∑
g=1

X ′gûgû
′
gXg (A.3.1.7)

A.3.2 Multi-way Clustering

For multi-way clustering, the key assumption becomes:

E
[
uigujg′ |xig,xjg′

]
= 0unless i and j share any cluster dimension (A.3.2.1)

Then the formula for covariance estimation becomes:

B̂ =
N∑
i=1

N∑
j=1

xix
′
j ûiûi1[i, j share any cluster ] (A.3.2.2)

It can be easily shown that the two-way cluster-robust covariance estimation can be rewrit-

ten as:

V̂2way[β̂] = V̂1[β̂] + V̂2[β̂]− V̂1∩2[β̂] (A.3.2.3)
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Appendix B

Hypothesis Testing with Sharpe

Ratio Test

Assume that we have two portfolios: portfolio i with a series of excess returns ri1, ..., rit

and portfolio n with excess returns rn1, ..., rnt]. Their mean vector µ and covariance matrix

Σ is defined as follows:

µ =

µi
µn

Σ =

σ2i σin

σni σ2n


The difference between two Sharpe ratios is given by:

δ = si − sn

=
µi
σi
− µn
σn

=
µi√
γi − µ2i

− µn√
γn − µ2n

= f(µi, γi, µn, γn)

= f(v)

(B.0.0.1)

, where γi = E[r2i ] and v = [µi, γi, µn, γn].

It is assumed that
√
T (v̂ − v) → N(0,Ψ), where Ψ is an unknown symmetric positive

semi-definite matrix. Then this implies that:

√
T (∆̂−∆)

d→ N
(
0;∇′f(v)Ψ∇f(v)

)
(B.0.0.2)
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Now given a consistent estimator Ψ̂, the standard error of the estimated difference can be

computed as:

s(∆̂) =

√
∇′f(v̂)Ψ̂∇f(v̂)

T
(B.0.0.3)

Given the standard error, the p-value can be estimated as:

p̂ = 2Φ

(
− |∆̂|
s(∆̂)

)
(B.0.0.4)

Bootstrap leads to higher inference accuracy than standard inference procedures under the

assumption of asymptotic normal distribution. Therefore, Ledoit and Wolf (2008) propose

to test the null hypothesis by constructing a time-series bootstrap confidence interval with

nominal level α. If zero is not included in the confidence interval, the null hypothesis of

equal Sharpe ratios is rejected. The distribution function of the studentized difference is

approximated by a distribution from the bootstrap samples.

L
(
|∆̂−∆||
s(∆̂)

)
≈ L


∣∣∣∆̂∗ − ∆̂

∣∣∣
s
(
∆̂∗
)
 (B.0.0.5)

The bootstrap data is generated using the circular block bootstrap method of Politis and

Romano (1992), resampling blocks of pairs of excess returns from the observed values

with replacement. The estimator Ψ is obtained from HAC kernel inference, specifically, a

prewhitened quadratic spectral kernel estimation of Andrews and Monahan (1992). The

standard error and p-value are calculated using the same formulas above.

To conduct this bootstrap, we can either follow Ledoit and Wolf (2008) and use the

calibration procedure for selecting the required fixed block size, or follow Behr, Guettler,

and Truebenbach (2012) that selects the size manually to preserve the autocorrelation

structure in the data. We follow the latter one and set the block size to 5. For the

number of bookstraps, we set the number to 5000, as this is sufficient for reliable inference

suggested by ?Ledoit2008). As to the standard error, we calculated it based on HAC

kernel estimation.
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Code

C.1 Event Study

1 import pandas as pd

2 import numpy as np

3 from datetime import datetime

4 import matplotlib.pyplot as plt

5 import warnings

6 import datetime as dt

7 from scipy import stats

8 import math

9 import operator

10

11 ’’’ read data ’’’

12 data_ret = pd.read_pickle(’data_ret_new.pkl ’)

13 df_negative = pd.read_pickle(’df_negative_new_1.pkl ’)

14 df_negative = df_negative[df_negative.date > dt.datetime (2012 ,1 ,3)

]

15 data_ret = data_ret[data_ret.date > dt.datetime (2012 ,1 ,3)]

16 data_ret.index= data_ret[’date ’]

17 data_ret = data_ret.drop(columns = [’date ’])

18 data_ret= data_ret.iloc[:,( data_ret.values < 1).all(axis =0) & (

data_ret.values > -1).all(axis =0)]

19

20 stocks = data_ret.columns.unique ().tolist ()

21 stocks.remove(’^GSPC ’)

22

23 ’’’ parameter initialization ’’’

24 window = 10

25 estimation_period = 200

26 windows_indexes = range(-window , window + 1)

27 estimation_indexes = range(-estimation_period - window , - window)

28

29 dr_equities_window = pd.DataFrame(index=windows_indexes)

30 dr_equities_estimation = pd.DataFrame(index=estimation_indexes)

31 dr_market_window = pd.DataFrame(index=windows_indexes)

32 dr_market_estimation = pd.DataFrame(index=estimation_indexes)
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33

34 ’’’ for each stock , compute daily stock and market return during

the window period ’’’

35 for symbol in stocks:

36 ’’’ get the date on which negative event happens ’’’

37 neg_event_dates = df_negative[df_negative.ticker == symbol ].

date.tolist ()

38 for neg_event in neg_event_dates:

39 evt_idx = data_ret.index.get_loc(neg_event)

40 col_name = symbol + ’ ’ + neg_event.strftime(’%Y-%m-%d’)

41

42 ’’’ starting and ending index for the estimation period

’’’

43 start_idx = evt_idx - window - estimation_period

44 end_idx = evt_idx - window

45

46 if start_idx < 0 or evt_idx + window >= data_ret.shape [0]:

47 continue

48

49 ’’’ compute daily stock and market return during the pre -

event window ’’’

50 new_dr_equities_estimation = data_ret[symbol ][ start_idx:

end_idx]

51 new_dr_equities_estimation.index = estimation_indexes

52 dr_equities_estimation[col_name] =

new_dr_equities_estimation

53

54 new_dr_market_estimation = data_ret[’^GSPC ’][ start_idx:

end_idx]

55 new_dr_market_estimation.index = estimation_indexes

56 dr_market_estimation[col_name] = new_dr_market_estimation

57

58 ’’’ starting and ending index for the window period ’’’

59 start_idx = evt_idx - window

60 end_idx = evt_idx + window + 1

61

62 ’’’ compute daily stock and market return during the

window period ’’’

63 new_dr_equities_window = data_ret[symbol ][ start_idx:

end_idx]

64 new_dr_equities_window.index = windows_indexes

65 dr_equities_window[col_name] = new_dr_equities_window

66

67 new_dr_market_window = data_ret[’^GSPC ’][ start_idx:end_idx

]

68 new_dr_market_window.index = windows_indexes

69 dr_market_window[col_name] = new_dr_market_window

70

71 ’’’ initalize regression_estimation and expected_return datasets

’’’

72 reg_estimation = pd.DataFrame(index=dr_market_estimation.columns ,

columns=[’intercept ’, ’beta ’, ’rse ’])

73 er = pd.DataFrame(index=dr_market_window.index ,columns=

dr_market_window.columns)

74
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75 ’’’ compute the expected return of each date using the regression

’’’

76 for col in dr_market_estimation.columns:

77 x = dr_market_estimation[col]

78 y = dr_equities_estimation[col]

79 slope , intercept , _, _, _ = stats.linregress(x, y)

80 reg_estimation[’beta ’][col] = slope

81 reg_estimation[’intercept ’][col] = intercept

82 reg_estimation[’rse ’][col] = sum((y - slope * x - intercept)

**2)/(len(x) -2)

83 er[col] = intercept + dr_market_window[col] * slope

84

85 er.columns.name = ’Expected return ’

86 ’’’ calculate abnormal return ’’’

87 ar = dr_equities_window - er

88 ar.columns.name = ’Abnormal return ’

89

90 ’’’ remove AR with NA or all values as 0 ’’’

91 ar = ar.dropna(axis = 1, how = ’any ’)

92 ar = ar.loc[:, (ar != 0).any(axis =0)]

93

94 ’’’ calculate cumulative abnormal return ’’’

95 car = ar.apply(np.cumsum)

96 car.columns.name = ’Cum Abnormal Return ’

97

98 ’’’ calcualte mean for CAR and AR ’’’

99 mean_car = car.mean(axis =1)

100 mean_car.name = ’CAR ’

101

102 mean_ar = ar.mean(axis =1)

103 mean_ar.name = ’AR’

104

105 ’’’ compute mean and variance for CAAR ’’’

106 cols = car.columns.tolist ()

107 rse = reg_estimation.loc[reg_estimation[’rse ’]. index.isin(cols),’

rse ’]

108 var_car = (window *2+1) * rse

109 mean_val = mean_car[window]

110 print(’mean = %.5f’%( mean_val))

111

112 N = len(cols)

113 var_caar = sum(var_car)/(N*N)

114 t_car = mean_val/math.sqrt(var_caar)

115

116 pval = stats.t.sf(np.abs(t_car), N-1)*2

117 print(’t-statistic = %6.3f, pvalue = %6.4f’%(t_car , pval))

118

119 ’’’ plot CAR ’’’

120 x = mean_car.index.values

121 y = mean_car.values

122 z = mean_ar.values

123 fig , ax = plt.subplots(figsize =(8,5))

124 label = mean_car.name

125 ax.plot(x, y, label=label)

126 ax.set_xlabel(’window ’)
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127 ax.set_ylabel(’CAR ’)

128 plt.title(’cumulative abnormal return(CAR) within the event window

’)

129 plt.legend ()

130

131

132 ’’’ compute CAR by label ’’’

133 def car_by_label(label):

134 ’’’ select ticker and date for negative event in this label

category ’’’

135 negative_by_label = df_negative[df_negative.label2 == label

][[’ticker ’, ’date ’]]

136 negative_by_label[’date_str ’] = negative_by_label[’date ’].

apply(lambda x: x.strftime(’%Y-%m-%d’))

137 negative_by_label[’col_names ’] = negative_by_label[’ticker ’] +

’ ’ + negative_by_label[’date_str ’]

138 ’’’ select these events from CAR ’’’

139 col_names = negative_by_label[’col_names ’]. values.tolist ()

140 col_names = [col_name for col_name in col_names if col_name in

car.columns.tolist ()]

141 car_sub = car[col_names]

142

143 ’’’ calcualte mean CAR for these events ’’’

144 mean_car = car_sub.mean(axis =1)

145 ’’’ calculate variance CAR for all events in this category ’’’

146 cols = car_sub.columns.tolist ()

147 N = len(cols)

148 rse = reg_estimation.loc[reg_estimation[’rse ’]. index.isin(cols

),’rse ’]

149 var_car_i = (window *2+1) * rse

150 std_car = math.sqrt(sum(var_car_i)/N**2)

151 t_car = mean_car[window ]/ std_car

152 pval = stats.t.sf(np.abs(t_car), N-1)*2

153

154 return mean_car , std_car , pval

155

156 mean_dic = {}

157 pval_dic = {}

158 std_dic = {}

159 mean_cum_val = {}

160 label2 = df_negative[’label2 ’]. unique ().tolist ()

161 for label in label2:

162 print(label)

163 mean_car , std_car , pval = car_by_label(label)

164 print(mean_car)

165 mean_dic[label] = mean_car

166 mean_cum_val[label] = mean_car[window]

167 pval_dic[label] = round(pval ,5)

168 std_dic[label] = std_car

169

170 ’’’ plot CAR for each event subcategory during the event window ’’’

171 fig , axs = plt.subplots (6,3, figsize =(10, 8), constrained_layout=

True)

172 axs = axs.ravel()

173 for i,var in enumerate(mean_dic):
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174 x = mean_dic[var].index.values

175 y = mean_dic[var]. values

176 yerr = std_dic[var]

177 ymin = y - 1.65* yerr

178 ymax = y + 1.65* yerr

179 axs[i].plot(x, y)

180 axs[i]. set_title(var)

181 plt.show()

182

183 ’’’ plot CAR and confidence interval at the end of event window ’’’

184 yerror =[ std_dic[i]*1.65 for i in std_dic]

185 mean_window_end = {k: mean_dic[k][ window] for k in mean_dic}

186 plt.figure(figsize =(9 ,5))

187 plt.xticks(rotation =90)

188 x = range(len(mean_window_end))

189 y = list(mean_window_end.values ())

190 plt.axhline(color=’black ’)

191 plt.errorbar(x, y, yerr=yerror , fmt=’o’,lolims=True , uplims=True)

192 plt.xticks(x, list(mean_window_end.keys()))

193 plt.title(’CARs at the end of window period(day 20) by event

category ’)

194 plt.xlabel(’event category ’)

195 plt.ylabel(’CAR ’)

196 plt.show()

C.2 Jensen’s Alpha

1 import pandas as pd

2 import numpy as np

3 from datetime import datetime

4 import matplotlib.pyplot as plt

5 import matplotlib.dates as mdates

6 import warnings

7 import datetime as dt

8 from scipy import stats

9 import math

10 import operator

11 from statsmodels.graphics.tsaplots import plot_acf

12

13 ’’’ read and preprocess data ’’’

14 factors = pd.read_pickle(’factors_monthly.pkl ’)

15 factors = factors [( factors.index >= ’2013-1-1’) & (factors.index <

’2019-2-1’)]

16

17 factors_5 = pd.read_csv(’fama_french_5_factor.csv ’)

18 factors_5 = factors_5.iloc [12: -5]

19 factors_5 = factors_5[[’Mkt -RF’, ’SMB ’, ’HML ’, ’RMW ’, ’CMA ’, ’RF

’]]

20 factors_5[’const ’] = 1

21

22 data_ret = pd.read_csv(’monthly_return.csv ’, header =1)

23 data_ret = data_ret.iloc [1:,:]

24 data_ret.index = data_ret.ticker

25 data_ret = data_ret.iloc [:,1:]
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26 data_ret /= 100

27 data_ret[’date ’] = data_ret.index

28 data_ret.index = data_ret.date.apply(lambda x: datetime.strptime(x

,’%Y-%m-%d’))

29 data_ret = data_ret.drop(’date ’, axis =1)

30 data_ret = data_ret.dropna(axis =1)

31 data_ret_1 = data_ret.dropna(axis =1)

32 data_ret= data_ret.iloc[:,( data_ret.values < np.percentile(

data_ret_1 ,99)).all(axis =0) & (data_ret.values > np.percentile

(data_ret_1 ,1)).all(axis =0)]

33

34 df_negative = pd.read_pickle(’df_negative_new_1.pkl ’)

35 stock_tickers = data_ret.columns.tolist ()

36

37 ’’’ equal -weighted portfolio ’’’

38 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

39 monthly_rets = []

40 num_firms = []

41 while event_starting_date < pd.Timestamp(year =2018, month=2,day=1)

:

42 event_ending_date = relativedelta(months =12) +

event_starting_date

43 portfolio_starting_date = event_ending_date

44 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

45

46 ’’’ find stocks with negative news within the last 12 months

’’’

47 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

48 tickers = df.ticker.unique ().tolist ()

49 new_tickers = list(set(tickers) & set(stock_tickers))

50 num_firms.append(len(new_tickers))

51

52 ’’’ compute monthly return for every stock ’’’

53 rets = data_ret[new_tickers ][ portfolio_starting_date:

portfolio_ending_date]

54 monthly_ret = np.mean(rets , axis =1).values [0]

55 monthly_rets.append(monthly_ret)

56 event_starting_date += relativedelta(months =1)

57

58 ’’’Fama -French five -factor model ’’’

59 factors_5[’R’] = monthly_rets

60 factors_5[’R-RF ’] = factors_5[’R’] - factors_5[’RF ’]

61 mod = sm.OLS(factors_5[’R-RF ’], factors_5[[’SMB ’, ’HML ’, ’Mkt -RF

’,’RMW ’, ’CMA ’, ’const ’]])

62 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

63 res.summary ()

64

65 ’’’Carhart four -factor model ’’’

66 factors[’R’] = monthly_rets

67 factors[’R-RF ’] = factors[’R’] -factors[’RF ’]

68 factors[’const ’] = 1

69 factors.columns = [’Mkt -RF’, ’SMB ’, ’HML ’, ’RF’, ’MKT ’, ’Mom ’, ’R

’, ’R-RF’, ’const ’]
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70 mod = sm.OLS(factors[’R-RF ’], factors[[’SMB ’, ’HML ’, ’MKT ’,’Mom ’,

’const ’]])

71 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

72 res.summary ()

73

74 ’’’Fama -French three -factor model ’’’

75 mod = sm.OLS(factors[’R-RF ’], factors[[’SMB ’, ’HML ’, ’Mkt -RF’, ’

const ’]])

76 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

77 res.summary ()

78

79 ’’’residual and ACF plot ’’’

80 resids = res.resid.values.tolist ()

81 y_fitted = res.fittedvalues

82 plot_acf(resids , lags =20)

83

84 fig , ax = plt.subplots(figsize =(6,3))

85 _ = ax.scatter(y_fitted , resids)

86 plt.xlabel(’fitted values ’)

87 plt.ylabel(’residual ’)

88 plt.title(’residual vs. fitted value ’)

89

90 ’’’ run the regression by event category ’’’

91 labels = df_negative.label2.unique ().tolist ()

92 alphas = []

93 pvals = []

94 num_firms_list = []

95

96 for label in labels:

97 df_sub = df_negative[df_negative.label2 == label]

98 print (’==== currently running regression for label: {}’. format

(label))

99

100 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

101 monthly_rets = []

102 num_firms = []

103

104 while event_starting_date < pd.Timestamp(year =2018, month=2,

day=1):

105 event_ending_date = relativedelta(months =12) +

event_starting_date

106 portfolio_starting_date = event_ending_date

107 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

108

109 df = df_sub [( df_sub.date < event_ending_date)&( df_sub.date

>= event_starting_date)]

110 tickers = df.ticker.unique ().tolist ()

111 new_tickers = list(set(tickers) & set(stock_tickers))

112 num_firms.append(len(new_tickers))

113

114 rets = data_ret[new_tickers ][ portfolio_starting_date:

portfolio_ending_date]

115 monthly_ret = np.mean(rets , axis =1).values [0]

116 monthly_rets.append(monthly_ret)
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117 event_starting_date += relativedelta(months =1)

118 factors[’R’] = monthly_rets

119 factors[’R-RF ’] = factors[’R’] -factors[’RF ’]

120 mod = sm.OLS(factors[’R-RF ’], factors[[’SMB ’, ’HML ’, ’MKT ’, ’

Mom ’, ’const ’]])

121 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

122

123 alphas.append(res.params [-1])

124 pvals.append(res.pvalues [-1])

125 num_firms_list.append(np.mean(num_firms))

126

127 d = {’label ’: labels , ’alpha ’: alphas , ’p-value ’: pvals , ’

num_firms ’: num_firms_list}

128 res = pd.DataFrame(d)

129 res.index = res.label

130 res = res.drop(columns = ’label ’)

131 res[’num_firms ’] = res[’num_firms ’]. astype(int)

132 res = res.sort_values(’num_firms ’, ascending=False)

133 res = res[[’alpha ’, ’p-value ’, ’num_firms ’]]

134 res

135

136 ’’’value -weighted portfolios ’’’

137 market_cap = pd.read_csv(’market_cap.csv ’, header =1)

138 market_cap = market_cap.iloc [1:,:]

139 market_cap.index = market_cap.ticker.apply(lambda x: datetime.

strptime(x, ’%Y-%m-%d’))

140 market_cap = market_cap.drop(’ticker ’, axis =1)

141 market_cap_1 = market_cap.dropna(axis =1)

142 mc_max_cut = np.percentile(market_cap_1 ,99)

143 mc_min_cut = np.percentile(market_cap_1 ,1)

144 market_cap_1 = market_cap.iloc[:,( market_cap.values < mc_max_cut).

all(axis =0) & (market_cap.values > mc_min_cut).all(axis =0)]

145 market_cap = market_cap_1

146

147 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

148 monthly_rets = []

149 num_firms = []

150 while event_starting_date < pd.Timestamp(year =2018, month=2,day=1)

:

151 event_ending_date = relativedelta(months =12) +

event_starting_date

152 portfolio_starting_date = event_ending_date

153 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

154

155 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

156 tickers = df.ticker.unique ().tolist ()

157 new_tickers = list(set(tickers) & set(stock_tickers) & set(

market_cap.columns))

158 num_firms.append(len(new_tickers))

159 rets = data_ret[new_tickers ][ portfolio_starting_date:

portfolio_ending_date]

160 mc = market_cap[new_tickers ][ portfolio_starting_date:

portfolio_ending_date]
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161 rets = rets[sorted(rets.columns)]

162 mc = rets[sorted(mc.columns)]

163 if (sorted(mc.columns) != sorted(rets.columns)) or (len(mc.

columns) != len(rets.columns)):

164 print(’False!’)

165 value_weighted_rets = mc*rets/np.sum(mc, axis =1).values [0]

166 monthly_ret = np.mean(value_weighted_rets , axis =1).values [0]

167

168 monthly_rets.append(monthly_ret)

169 event_starting_date += relativedelta(months =1)

170

171 ’’’value -weighted four -factor model ’’’

172 factors[’R’] = monthly_rets

173 factors[’R-RF ’] = factors[’R’] -factors[’RF ’]

174 mod = sm.OLS(factors[’R-RF ’], factors[[’SMB ’, ’HML ’, ’MKT ’,’Mom ’,

’const ’]])

175 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

176 res.summary ()

177

178 ’’’winsorize stock returns ’’’

179 q95 = np.percentile(data_ret.values ,95)

180 q5 = np.percentile(data_ret.values ,5)

181 data_ret_1 = data_ret.iloc[:,( data_ret.values < q95).all(axis =0) &

(data_ret.values > q5).all(axis =0)]

182

183 stock_tickers = data_ret_1.columns.tolist ()

184 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

185 monthly_rets = []

186 num_firms = []

187 while event_starting_date < pd.Timestamp(year =2018, month=2,day=1)

:

188 event_ending_date = relativedelta(months =12) +

event_starting_date

189 portfolio_starting_date = event_ending_date

190 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

191

192 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

193 tickers = df.ticker.unique ().tolist ()

194 new_tickers = list(set(tickers) & set(stock_tickers))

195 num_firms.append(len(new_tickers))

196

197 rets = data_ret_1[new_tickers ][ portfolio_starting_date:

portfolio_ending_date]

198 monthly_ret = np.mean(rets , axis =1).values [0]

199 monthly_rets.append(monthly_ret)

200 event_starting_date += relativedelta(months =1)

201

202 factors[’R’] = monthly_rets

203 factors[’R-RF ’] = factors[’R’] -factors[’RF ’]

204 factors[’const ’] = 1

205 factors.columns = [’Mkt -RF’, ’SMB ’, ’HML ’, ’RF’, ’MKT ’, ’Mom ’, ’R

’, ’R-RF’, ’const ’]

206 mod = sm.OLS(factors[’R-RF ’], factors[[’SMB ’, ’HML ’, ’MKT ’,’Mom ’,
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’const ’]])

207 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

208 res.summary ()

209

210 ’’’industry -matched portfolio ’’’

211

212 industry = pd.read_csv(’industry.csv ’)

213 industry = industry[[’ticker ’, ’industry ’, ’industry_sub ’]]

214 industry.columns = [’tiker ’, ’industry1 ’, ’industry2 ’]

215 industry.loc[( industry.industry1 == ’Food , Beverage & Tobacco ’) |

216 (industry.industry1 == ’Household & Personal Products

’) |

217 (industry.industry2 == ’Textiles , Apparel & Luxury

Goods ’)

218 , ’industry ’] = ’NoDur ’

219

220 industry.loc[( industry.industry2 == ’Household Durables ’) |

221 (industry.industry2 == ’Leisure Products ’)

222 , ’industry ’] = ’Durbl ’

223

224 industry.loc[( industry.industry1 == ’Automobiles & Components ’) |

225 (industry.industry1 == ’Capital Goods ’) |

226 (industry.industry2 == ’Paper & Forest Products ’)

227 , ’industry ’] = ’Manuf ’

228

229 industry.loc[( industry.industry1 == ’Software & Services ’) |

230 (industry.industry1 == ’Technology Hardware &

Equipment ’) |

231 (industry.industry1 == ’Semiconductors &

Semiconductor Equipment ’)

232 , ’industry ’] = ’BusEq ’

233

234 industry.loc[industry.industry1 == ’Energy ’, ’industry ’] = ’Enrgy ’

235 industry.loc[industry.industry1 == ’Telecommunication Services ’, ’

industry ’] = ’Telcm ’

236 industry.loc[industry.industry1 == ’Utilities ’, ’industry ’] = ’

Utils ’

237 industry.loc[industry.industry2 == ’Chemicals ’, ’industry ’] = ’

Chems ’

238

239 industry.loc[( industry.industry1 == ’Retailing ’) |

240 (industry.industry1 == ’Food & Staples Retailing ’) ,

’industry ’] =’Shops ’

241

242 industry.loc[( industry.industry1 == ’Health Care Equipment &

Services ’) |

243 (industry.industry1 == ’Pharmaceuticals ,

Biotechnology & Life Sciences ’)

244 , ’industry ’] =’Hlth ’

245

246 industry.loc[( industry.industry1 == ’Diversified Financials ’) |

247 (industry.industry1 == ’Insurance ’) |

248 (industry.industry1 == ’Banks ’) |

249 (industry.industry1 == ’Real Estate ’)

250 , ’industry ’] =’Money ’
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251

252 industry.loc[( industry.industry1 == ’Media & Entertainment ’) |

253 (industry.industry1 == ’Consumer Services ’) |

254 (industry.industry1 == ’Commercial & Professional

Services ’) |

255 (industry.industry1 == ’Transportation ’) |

256 (industry.industry2 == ’Metals & Mining ’) |

257 (industry.industry2 == ’Construction Materials ’) |

258 (industry.industry2 == ’Containers & Packaging ’)

259 , ’industry ’] =’Other ’

260

261 industry = industry.dropna(subset = [’industry ’])

262

263 ’’’substract the industry return from the company monthly return

’’’

264 industry = industry.drop(columns = [’Unnamed: 0’])

265 industry_portfolios = pd.read_csv (’12 _portfolio_equal_weighted.csv

’)

266 industry_portfolios[’Unnamed: 0’] = industry_portfolios[’Unnamed:

0’].apply(lambda x: datetime.strptime(str(x),’%Y%m’))

267 industry_portfolios.columns = [’date ’, ’NoDur ’, ’Durbl ’, ’Manuf ’,

’Enrgy ’, ’Chems ’, ’BusEq ’,

268 ’Telcm ’, ’Utils ’, ’Shops ’, ’Hlth ’, ’Money ’, ’Other ’]

269 industry_portfolios.index = industry_portfolios.date

270 industry_portfolios = industry_portfolios.iloc [:,1:]

271 industry_portfolios /=100

272 industry_portfolios[’date ’] = industry_portfolios.index

273 industry_portfolios = industry_portfolios [( industry_portfolios.

date >= datetime.strptime (’2011-11-01’,’%Y-%m-%d’))

274 & (industry_portfolios.

date <= datetime.

strptime

(’2019-01-01’,’%Y-%m

-%d’))]

275 data_ret_1 = data_ret

276 data_ret_1.index = data_ret_1.index - pd.tseries.offsets.MonthEnd

() + timedelta(days =1)

277

278 industry_portfolios.columns = [’NoDur ’, ’Durbl ’, ’Manuf ’, ’Enrgy ’,

’Chems ’, ’BusEq ’, ’Telcm ’, ’Utils ’,

279 ’Shops ’, ’Hlth ’, ’Money ’, ’Other ’, ’date ’]

280

281 for t in data_ret_1.columns:

282 indstr = industry[industry.ticker == t]. industry.values.tolist

()

283 if len(indstr) == 0:

284 data_ret_1.drop(columns = t,inplace=True)

285 else:

286 indstr = indstr [0]

287 data_ret_1[t] -= industry_portfolios[indstr]

288

289 ’’’ construct the industry -matched portfolio ’’’

290 stock_tickers = data_ret_1.columns.tolist ()

291 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

292 monthly_rets = []



84 Code

293 num_firms = []

294 while event_starting_date < pd.Timestamp(year =2018, month=2,day=1)

:

295 event_ending_date = relativedelta(months =12) +

event_starting_date

296 portfolio_starting_date = event_ending_date

297 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

298 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

299 tickers = df.ticker.unique ().tolist ()

300 new_tickers = list(set(tickers) & set(stock_tickers))

301 num_firms.append(len(new_tickers))

302 rets = data_ret_1[new_tickers ][ portfolio_starting_date:

portfolio_ending_date]

303 monthly_ret = np.mean(rets , axis =1).values [0]

304 monthly_rets.append(monthly_ret)

305 event_starting_date += relativedelta(months =1)

306

307 factors[’R’] = monthly_rets

308 factors[’R-RF ’] = factors[’R’] -factors[’RF ’]

309 factors[’const ’] = 1

310 factors.columns = [’Mkt -RF’, ’SMB ’, ’HML ’, ’RF’, ’MKT ’, ’Mom ’, ’R

’, ’R-RF’, ’const ’]

311 mod = sm.OLS(factors[’R’], factors[[’SMB ’, ’HML ’, ’MKT ’,’Mom ’, ’

const ’]])

312 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

313 res.summary ()

314

315 ’’’characteristics matched portfolio ’’’

316 mc_all_stocks = pd.read_csv(’market_cap_all_stocks_1.csv ’)

317 mc_all_stocks.date = mc_all_stocks.date.apply(lambda x: datetime.

strptime(x, ’%Y-%m-%d’))

318 mc_all_stocks.index = mc_all_stocks.date

319 mc_all_stocks = mc_all_stocks.drop(columns= [’date ’])

320

321 bv_all_stocks = pd.read_csv(’bv_all_stocks_1.csv ’)

322 bv_all_stocks.date = bv_all_stocks.date.apply(lambda x: datetime.

strptime(x, ’%Y-%m-%d’))

323 bv_all_stocks.index = bv_all_stocks.date

324 bv_all_stocks = bv_all_stocks.drop(columns= [’date ’])

325

326 yearly_ret_all_stocks = pd.read_csv(’yearly_return_all_stocks_1.

csv ’)

327 yearly_ret_all_stocks.date = yearly_ret_all_stocks.date.apply(

lambda x: datetime.strptime(x, ’%Y-%m-%d’))

328 yearly_ret_all_stocks.index = yearly_ret_all_stocks.date

329 yearly_ret_all_stocks = yearly_ret_all_stocks.drop(columns= [’date

’])

330

331 mc_all_stocks = mc_all_stocks.dropna(axis =1)

332 bv_all_stocks = bv_all_stocks.dropna(axis =1)

333 yearly_ret_all_stocks = yearly_ret_all_stocks.dropna(axis =1)

334

335 mc_esg_stocks = pd.read_csv(’yearly_market_cap_esg_stocks.csv ’,
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header =1)

336 mc_esg_stocks = mc_esg_stocks.iloc [1:,:]

337 mc_esg_stocks.index = mc_esg_stocks.ticker

338 mc_esg_stocks = mc_esg_stocks.iloc [:,1:]

339

340 bv_esg_stocks = pd.read_csv(’bv_esg_stocks.csv ’,header =1)

341 bv_esg_stocks = bv_esg_stocks.iloc [1:,:]

342 bv_esg_stocks.index = bv_esg_stocks.ticker

343 bv_esg_stocks = bv_esg_stocks.iloc [:,1:]

344

345 yearly_ret_esg_stocks = pd.read_csv(’yearly_return_esg_stocks.csv

’,header =1)

346 yearly_ret_esg_stocks = yearly_ret_esg_stocks.iloc [1:,:]

347 yearly_ret_esg_stocks.index = yearly_ret_esg_stocks.ticker

348 yearly_ret_esg_stocks = yearly_ret_esg_stocks.iloc [:,1:]

349

350 mc_esg_stocks.columns =[t.split(’.’, 1)[0]. lower() for t in

mc_esg_stocks.columns.tolist ()]

351 bv_esg_stocks.columns =[t.split(’.’, 1)[0]. lower() for t in

bv_esg_stocks.columns.tolist ()]

352 yearly_ret_esg_stocks.columns =[t.split(’.’, 1)[0]. lower() for t

in yearly_ret_esg_stocks.columns.tolist ()]

353 mc_all_stocks.columns =[t.split(’.’, 1)[0]. lower() for t in

mc_all_stocks.columns.tolist ()]

354 bv_all_stocks.columns =[t.split(’.’, 1)[0]. lower() for t in

bv_all_stocks.columns.tolist ()]

355 yearly_ret_all_stocks.columns = [t.split(’.’, 1)[0]. lower() for t

in yearly_ret_all_stocks.columns.tolist ()]

356

357 monthly_ret_all_stocks = pd.read_csv(’monthly_ret_all_stocks_1.csv

’)

358 monthly_ret_all_stocks.date = monthly_ret_all_stocks.date.apply(

lambda x: datetime.strptime(x, ’%Y-%m-%d’))

359 monthly_ret_all_stocks.index = monthly_ret_all_stocks[’date ’]

360 monthly_ret_all_stocks = monthly_ret_all_stocks.iloc [: ,1:]

361 monthly_ret_all_stocks /= 100

362 monthly_ret_all_stocks.columns = [t.split(’.’, 1)[0]. lower() for t

in monthly_ret_all_stocks.columns.tolist ()]

363 d = [mc_all_stocks.columns , bv_all_stocks.columns ,

yearly_ret_all_stocks.columns , monthly_ret_all_stocks.columns]

364 tickers = list(set.intersection (*map(set ,d)))

365 tickers = [t for t in tickers if t not in df_negative.ticker.

unique ().tolist ()]

366

367 mc_all_stocks = mc_all_stocks[tickers]

368 bv_all_stocks = bv_all_stocks[tickers]

369 yearly_ret_all_stocks = yearly_ret_all_stocks[tickers]

370 monthly_ret_all_stocks = monthly_ret_all_stocks[tickers]

371

372 data_ret_1 = data_ret

373 data_ret_1 = data_ret_1 [( data_ret_1.index >= ’2012-01-01’) & (

data_ret_1.index <= ’2018-12-31’)]

374

375 i, m = 0, 0

376 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)
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377 monthly_rets = []

378

379 while event_starting_date < pd.Timestamp(year =2018, month=1,day=1)

:

380

381 event_ending_date = relativedelta(months =12) +

event_starting_date

382 portfolio_starting_date = event_ending_date

383 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

384

385 ’’’ divide the stocks into 125 portfolios , based on market

capitalization , price to market ratio , and past year

return ’’’

386

387 if m % 12 == 0:

388 q1, cutoff1 = pd.qcut(mc_all_stocks.iloc[i], 5, labels=

False , retbins=True)

389 q1 = pd.DataFrame(q1)

390 q1.columns = [’group ’]

391 cutoff1_1 = cutoff1.tolist ()

392

393 ’’’ first level ’’’

394 q1_1 = q1.groupby(’group ’).groups

395 q1_1_values = list(q1_1.values ())

396

397 q1_2_values = []

398 cutoff1_2 = []

399

400 for t in q1_1_values:

401 t = t.tolist ()

402 bv_stocks = bv_all_stocks[t]

403 ’’’ second level ’’’

404 q1_2 , cutoff_2 = pd.qcut(bv_stocks.iloc[i], 5, labels=

False , retbins=True)

405 cutoff1_2.append(cutoff_2.tolist ())

406 q1_2 = pd.DataFrame(q1_2)

407 q1_2.columns = [’group ’]

408 q1_2 = q1_2.groupby(’group ’).groups

409 q1_2_values.append(list(q1_2.values ()))

410

411 q1_2_values = sum(q1_2_values , [])

412

413 cutoff1_3 = []

414 q1_3_values = []

415

416 for t in q1_2_values:

417 t = t.tolist ()

418 yr_stocks = yearly_ret_all_stocks[t]

419 ’’’ third level ’’’

420 q1_3 , cutoff_3 = pd.qcut(yr_stocks.iloc[i], 5, labels=

False , retbins=True)

421 cutoff1_3.append(cutoff_3.tolist ())

422 q1_3 = pd.DataFrame(q1_3)

423 q1_3.columns = [’group ’]
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424 q1_3 = q1_3.groupby(’group ’).groups

425 q1_3_values.append(list(q1_3.values ()))

426

427 q1_3_values = sum(q1_3_values , [])

428 q1_3_values = [q1_3_values[i]. tolist () for i in range (125)

]

429

430

431 ’’’compute the equal -weighted monthly return for each of the

125 portfolios ’’’

432

433 monthly_returns_all_groups = []

434

435 for t in q1_3_values:

436 df = monthly_ret_all_stocks[t]

437 df = df[(df.index < portfolio_starting_date+pd.offsets

.DateOffset(years =1))

438 & (df.index > portfolio_starting_date)]

439 ret = np.mean(df, axis =1).values.tolist ()

440 #print(len(ret))

441 monthly_returns_all_groups.append(ret)

442

443 i += 1

444

445 ’’’ find the stocks with negative ESG news within the previous

12 months ’’’

446

447 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

448 tickers = df.ticker.unique ().tolist ()

449 new_tickers = list(set(tickers) & set(mc_esg_stocks.columns) &

450 set(bv_esg_stocks.columns) & set(

yearly_ret_esg_stocks.columns) & set(

data_ret_1.columns))

451

452

453 ’’’ assign them to each of the 125 portolios based on the

precomputed cutoff ’’’

454

455 mc_esg = pd.DataFrame(mc_esg_stocks.iloc [0][ new_tickers ])

456 mc_esg.columns = [’mc ’]

457 bv_esg = pd.DataFrame(bv_esg_stocks.iloc [0][ new_tickers ])

458 bv_esg.columns = [’bv ’]

459 yr_esg = pd.DataFrame(yearly_ret_esg_stocks.iloc [0][

new_tickers ])

460 yr_esg.columns = [’yr ’]

461 c_esg = mc_esg.join(bv_esg).join(yr_esg)

462

463 c_esg[’mc_group ’] = pd.cut(c_esg[’mc ’], bins=cutoff1_1 , labels

=False , include_lowest=True)

464

465 for i, c in enumerate(cutoff1_2):

466 c_esg.loc[c_esg.mc_group == i,’bv_group ’] = \

467 pd.cut(c_esg[c_esg.mc_group == i][’bv ’], bins=c, labels=

False , include_lowest=True)
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468

469 for i in range (5):

470 for j in range (5):

471 c_esg.loc[(c_esg.mc_group == i) & (c_esg.bv_group == j

), ’yr_group ’] = \

472 pd.cut(c_esg[(c_esg.mc_group == i) &(c_esg.bv_group ==

j)][’yr ’], bins = cutoff1_3[i*5+j],

473 labels=False , include_lowest=True)

474

475 c_esg[’group ’] = c_esg[’mc_group ’] * 25 + c_esg[’bv_group ’] *

5 + c_esg[’yr_group ’]

476

477 ’’’ compute the adjusted return for ESG -related stocks ’’’

478 ’’’ compute the equal -weighted monthly return ’’’

479 rets = data_ret_1[new_tickers ][ portfolio_starting_date:

portfolio_ending_date]

480 for t in rets.columns:

481 group = c_esg.loc[c_esg.index == t, ’group ’]. values [0]

482 if np.isnan(group):

483 rets.drop(columns=t, inplace=True)

484 else:

485 group_monthly_ret = monthly_returns_all_groups[int(

group)]

486 rets[t] -= group_monthly_ret [(m % 12)]

487

488 monthly_ret = np.mean(rets , axis =1).values [0]

489 monthly_rets.append(monthly_ret)

490

491 event_starting_date += relativedelta(months =1)

492 m += 1

493

494 factors[’R’] = monthly_rets

495 factors[’const ’] = 1

496 factors.columns = [’Mkt -RF’, ’SMB ’, ’HML ’, ’RF’, ’MKT ’, ’Mom ’, ’R

’,’const ’]

497 mod = sm.OLS(factors[’R’], factors[[’SMB ’, ’HML ’, ’MKT ’,’Mom ’, ’

const ’]])

498 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

499 res.summary ()

C.3 Panel Regression

1 import pandas as pd

2 import numpy as np

3 from datetime import datetime , timedelta

4 from dateutil.relativedelta import relativedelta

5 import matplotlib.pyplot as plt

6 import warnings

7 import datetime as dt

8 from scipy import stats

9 import pandas_datareader.data as web

10 import statsmodels.api as sm

11 import statsmodels.formula.api as smf

12 from datetime import datetime
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13 from linearmodels import PooledOLS

14

15 warnings.filterwarnings (" ignore ")

16 pd.set_option(’display.max_columns ’, None)

17

18 ’’’ preprocess ’’’

19

20 ’’’ dividend yield ’’’

21 div = pd.read_csv(’div_yield.csv ’, header = 1)

22 div = div.iloc [1:,:]

23 div.index = div.ticker

24 div = div.iloc [:,1:]

25

26 ’’’ log of market capitalization , in terms of billion of dollar

’’’

27 mc = pd.read_csv(’market_cap.csv ’, header = 1)

28 mc = mc.iloc [1:,:]

29 mc.index = mc.ticker

30 mc = mc.iloc [:,1:]

31 mc /= 1000000000

32 mc = np.log(mc)

33

34 ’’’ log of book -to-market ratio ’’’

35 bm = pd.read_csv(’book_to_market_ratio.csv ’, header =1)

36 bm = bm.iloc [1:,:]

37 bm.index = bm.ticker

38 bm = bm.iloc [:,1:]

39 bm = np.log(bm)

40

41 ’’’ log of reciprocal of stock price ’’’

42 price = pd.read_csv(’monthly_price.csv ’, header =1)

43 price = price.iloc [1:,:]

44 price.index = price.ticker

45 price = price.iloc [:,1:]

46 price = np.log(price)

47

48 prc = 1/price

49 prc = np.log(prc)

50

51 ’’’ log of cumulative returns ’’’

52 ret23 = np.log(( price.shift (2)/price.shift (3)))

53 ret46 = np.log(( price.shift (4)/price.shift (6)))

54 ret712 = np.log(( price.shift (7)/price.shift (12)))

55

56 div = div.shift (1)

57 mc = mc.shift (1)

58 bm = bm.shift (1)

59 prc = prc.shift (1)

60

61 df_negative = pd.read_pickle(’df_negative_new_1.pkl ’)

62 df_negative = df_negative [[’ticker ’, ’date ’, ’label1 ’, ’label2 ’]]

63 df_negative.date = df_negative.date + pd.offsets.MonthEnd (0)

64 df_negative.index = df_negative.ticker

65 df_negative = df_negative [[’date ’, ’label1 ’, ’label2 ’]]

66 df_negative_1 = df_negative
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67

68 ’’’ create a dummy , which is the count of negative events for the

last month ’’’

69 df_negative = pd.get_dummies(df_negative[’date ’]).groupby(

df_negative.index).sum()

70 df_negative.columns = [i + relativedelta(months =1) + pd.offsets.

MonthEnd (0) for i in df_negative.columns]

71 df_negative[’tickers ’] = df_negative.index

72 df_negative = pd.melt(df_negative ,

73 id_vars= ’tickers ’,

74 value_vars=list(df_negative.columns)[:-1],

75 var_name=’date ’,

76 value_name=’dummy ’)

77 df_negative.date = df_negative.date.apply(lambda x: x.strftime(’%Y

-%m-%d’))

78

79 ’’’ create a set of dummies , which count the negative events for

the last month per event subcategory ’’’

80 labels = df_negative_1.label2.unique ().tolist ()

81 l = labels [0]

82 df_negative = df_negative_1[df_negative_1.label2 == l]

83 df_negative = df_negative [[’date ’]]

84 df_negative = pd.get_dummies(df_negative[’date ’]).groupby(

df_negative.index).sum()

85 df_negative.columns = [i + relativedelta(months =1) + pd.offsets.

MonthEnd (0) for i in df_negative.columns]

86 df_negative[’tickers ’] = df_negative.index

87 df_negative = pd.melt(df_negative ,

88 id_vars= ’tickers ’,

89 value_vars=list(df_negative.columns)[:-1],

90 var_name=’date ’,

91 value_name=’dummy ’)

92 df_negative.date = df_negative.date.apply(lambda x: x.strftime(’%Y

-%m-%d’))

93 df_negative.columns = [’tickers ’, ’date ’, l]

94

95 for l in labels [1:]:

96 df_new = df_negative_1[df_negative_1.label2 == l]

97 df_new = df_new[[’date ’]]

98 df_new = pd.get_dummies(df_new[’date ’]).groupby(df_new.index).

sum()

99 df_new.columns = [i + relativedelta(months =1) + pd.offsets.

MonthEnd (0) for i in df_new.columns]

100 df_new[’tickers ’] = df_new.index

101 df_new = pd.melt(df_new ,

102 id_vars= ’tickers ’,

103 value_vars=list(df_new.columns)[:-1],

104 var_name=’date ’,

105 value_name=’dummy ’)

106 df_new.date = df_new.date.apply(lambda x: x.strftime(’%Y-%m-%d

’))

107 df_new.columns = df_new.columns [:-1]. tolist () + [l]

108 df_negative = df_new.merge(df_negative , on = [’tickers ’, ’date

’], how = ’outer ’)

109 df_negative = df_negative.fillna (0)
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110

111 mc = mc.iloc [2:,:]

112 mc = mc.iloc[:,(mc.values < np.percentile(mc ,99)).all(axis =0) & (

mc.values > np.percentile(mc ,1)).all(axis =0)]

113

114 prc = prc.iloc [2:,:]

115 prc = prc.dropna(axis =1)

116 prc = prc.iloc[:,(prc.values < np.percentile(prc ,99)).all(axis =0)

& (prc.values > np.percentile(prc ,1)).all(axis =0)]

117

118 div = div.iloc [2:,:]

119 div = div.dropna(axis =1)

120 div = div.iloc[:,(div.values < np.percentile(div ,99)).all(axis =0)

& (div.values > np.percentile(div ,1)).all(axis =0)]

121

122 bm = bm.iloc [2:,:]

123 bm = bm.dropna(axis =1)

124 bm = bm.iloc[:,(bm.values < np.percentile(bm ,99)).all(axis =0) & (

bm.values > np.percentile(bm ,1)).all(axis =0)]

125

126 ret23 = ret23.iloc [3:,:]

127 ret23 = ret23.dropna(axis =1)

128 ret23 = ret23.iloc[:,(ret23.values < np.percentile(ret23_1 ,99)).

all(axis =0) & (ret23.values > np.percentile(ret23_1 ,1)).all(

axis =0)]

129

130 ret46 = ret46.iloc [6:,:]

131 ret46 = ret46.dropna(axis =1)

132 ret46 = ret46.iloc[:,(ret46.values < np.percentile(ret46_1 ,99)).

all(axis =0) & (ret46.values > np.percentile(ret46_1 ,1)).all(

axis =0)]

133

134 ret712 = ret712.iloc [12: ,:]

135 ret712 = ret712.dropna(axis =1)

136 ret712 = ret712.iloc[:,( ret712.values < np.percentile(ret712_1 ,99)

).all(axis =0) & (ret712.values > np.percentile(ret712_1 ,1)).

all(axis =0)]

137

138 monthly_return = pd.read_csv(’monthly_return.csv ’,header =1)

139 monthly_return = monthly_return.iloc [1: ,:]

140 monthly_return.index = monthly_return.ticker

141

142 monthly_return= monthly_return.drop(columns = [’ticker ’])

143 monthly_return = monthly_return.dropna(axis =1)

144 mc_max_cut = np.percentile(monthly_return ,99)

145 mc_min_cut = np.percentile(monthly_return ,1)

146 monthly_return = monthly_return.iloc[:,( monthly_return.values <

mc_max_cut).all(axis =0) &

147 (monthly_return.values > mc_min_cut).

all(axis =0)]

148

149 monthly_return[’ticker ’] = monthly_return.index

150 monthly_return = pd.melt(monthly_return ,

151 id_vars= ’ticker ’,

152 value_vars=list(monthly_return.columns)[:-1],
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153 var_name=’tickers ’,

154 value_name=’return ’)

155 monthly_return.columns = [’date ’, ’tickers ’, ’return ’]

156 monthly_return[’return ’] = monthly_return[’return ’]/100

157

158 data = df_negative.merge(mc, how = ’inner ’, on = [’tickers ’, ’date

’])\

159 .merge(prc , how = ’inner ’, on = [’tickers ’, ’date ’])\

160 .merge(bm, how = ’inner ’, on = [’tickers ’, ’date ’]).merge(div , how

= ’inner ’, on = [’tickers ’, ’date ’])\

161 .merge(ret23 , how = ’inner ’, on = [’tickers ’, ’date ’]).merge(ret46

, how = ’inner ’, on = [’tickers ’, ’date ’])\

162 .merge(ret712 , how = ’inner ’, on = [’tickers ’, ’date ’]).merge(

monthly_return , how=’inner ’, on=[’tickers ’,’date ’])

163 data.columns = df_negative.columns.tolist () + [’mc’, ’prc ’, ’bm’,

’div ’, ’ret23 ’, ’ret46 ’,’ret712 ’, ’ret ’]

164

165 data = data.replace ([np.inf , -np.inf], np.nan)

166 data1 = data.dropna ()

167

168 #data1[’dummy ’] = data1[’dummy ’]. clip(0, 1)

169

170 ’’’Fama -Macbeth regression ’’’

171 def ols_coef(x,formula):

172 return smf.ols(formula ,data=x).fit().params

173

174 def fm_summary(p):

175 s = p.describe ().T

176 s[’std_error ’] = s[’std ’]/np.sqrt(s[’count ’])

177 s[’tstat ’] = s[’mean ’]/s[’std_error ’]

178 s[’pval ’] = stats.t.sf(np.abs(s[’tstat ’]), s[’count ’]-1)*2

179 return s[[’mean ’,’std_error ’,’tstat ’, ’pval ’]]

180

181 gamma = data1.groupby(’date ’).apply(ols_coef ,’ret ~ 1 + dummy + mc

+ prc + bm + div + ret23 + ret46 + ret712 ’)

182 res = fm_summary(gamma)

183 res.pval = [round(x,3) for x in res.pval.values.tolist ()]

184

185 gamma = data1.groupby(’date ’).apply(ols_coef ,’ret ~ 1 +Association

+Sanctions+Financial+Corruption+Information+Human+Workplace+

Production_Supply+Environmental+Management+Workforce+

Regulatory+Fraud+Anti_Competitive+Ownership+Product_Service+

Discrimination_Workforce+mc + prc + bm + div + ret23 + ret46 +

ret712 ’)

186 res = fm_summary(gamma)

187 res.pval = [round(x,3) for x in res.pval.values.tolist ()]

188 res

189

190 ’’’pooled OLS with double -clustered standard error ’’’

191 data1.date = data1.date.apply(lambda x: datetime.strptime(x, ’%Y-%

m-%d’))

192 data1 = data1.set_index([’tickers ’,’date ’])

193 data1[’const ’] = 1

194 mod = PooledOLS(data1[’ret ’], data1[[’dummy ’,’mc’,’prc ’,’bm’,’div

’,’ret23 ’,’ret46 ’,’ret712 ’, ’const ’]])
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195 res = mod.fit(cov_type=’clustered ’, cluster_entity=True ,

cluster_time = True)

C.4 Relative Screening

1 import pandas as pd

2 import numpy as np

3 import random

4 from dateutil.relativedelta import relativedelta

5 from datetime import date , datetime

6 import matplotlib.pyplot as plt

7 from scipy import stats

8 import statsmodels.api as sm

9

10 ’’’read data ’’’

11 df_negative = pd.read_pickle(’df_negative_new_1.pkl ’)

12 df_negative = df_negative [[’ticker ’, ’date ’,’label2 ’]]

13 df_negative[’news_count ’] = df_negative.groupby(’ticker ’)[’date ’].

rank(ascending=True)

14 df_negative = df_negative.sort_values ([’ticker ’, ’date ’])

15

16

17 data_ret = pd.read_csv(’monthly_return.csv ’, header = 1)

18 data_ret = data_ret.iloc [1:,]

19 data_ret.ticker = data_ret.ticker.apply(lambda x: datetime.

strptime(x, ’%Y-%m-%d’))

20 data_ret.index = data_ret[’ticker ’]

21 data_ret = data_ret.iloc [:,1:]

22 data_ret /= 100

23 data_ret = data_ret.dropna(axis=’columns ’)

24

25 stock_tickers = list(set(data_ret.columns) & set(df_negative.

ticker.unique ().tolist ()))

26 df_negative = df_negative[df_negative.ticker.isin(stock_tickers)]

27 data_ret = data_ret[stock_tickers]

28

29 monthly_ret_all = pd.read_csv(’monthly_ret_all_stocks_1.csv ’)

30 monthly_ret_all.index = monthly_ret_all[’date ’]

31 monthly_ret_all = monthly_ret_all.iloc [:,1:]

32 monthly_ret_all /= 100

33 monthly_rets_all = monthly_ret_all.mean(axis =1) .values.tolist ()

34

35 monthly_ret_sp500 = pd.read_csv(’monthly_return_sp500.csv ’, header

=1)

36 monthly_ret_sp500 = monthly_ret_sp500.iloc [1:,:]

37 monthly_ret_sp500.ticker = monthly_ret_sp500.ticker.apply(lambda x

: datetime.strptime(x, ’%Y-%m-%d’))

38 monthly_ret_sp500.index = monthly_ret_sp500.ticker

39 monthly_ret_sp500 = monthly_ret_sp500.iloc [:,1:]

40 monthly_ret_sp500 /=100

41

42 all_monthly_rets = monthly_ret_all.mean(axis =1).values.tolist ()

43 sp500_monthly_rets = monthly_ret_sp500.mean(axis =1).values.tolist

()
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44

45 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

46 event_ending_date = relativedelta(months =1) + event_starting_date

47 portfolio_starting_date = event_ending_date

48 portfolio_ending_date = portfolio_starting_date + relativedelta(

months =1)

49 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

50

51 ’’’value -weighted portfolio returns for worst 30 stocks ’’’

52

53 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

54 event_ending_date = pd.Timestamp(year =2012, month=4, day=1)

55 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

56 tickers = [’a’ for i in range (30)]

57 monthly_rets = []

58 turn_overs = []

59

60 while event_ending_date < pd.Timestamp(year =2019, month=1,day=1):

61

62 portfolio_starting_date = event_ending_date

63 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

64

65 df = df_negative [( df_negative.date < event_ending_date)]

66 news_count = pd.DataFrame(df.groupby(’ticker ’)[’news_count ’].

max())

67 prev_tickers = tickers

68 tickers = news_count.sort_values(’news_count ’, ascending=False

)[:30]. index.tolist ()

69 turnover_rate = 1-len(list(set(prev_tickers) & set(tickers)))

/30

70 turn_overs.append(turnover_rate)

71 rets = data_ret[tickers ][ portfolio_starting_date:

portfolio_ending_date ]. values [0]

72 mc = mc_all[tickers ][ portfolio_starting_date:

portfolio_ending_date]

73 mc_sum = np.sum(mc,axis =1).values [0]

74 monthly_ret = np.sum((rets * mc)/ mc_sum ,axis =1).values [0]

75 monthly_rets.append(monthly_ret)

76 event_ending_date += relativedelta(months =1)

77

78 monthly_rets_worst = monthly_rets

79

80 ’’’ value -weighted portfolio returns for best 30 stocks ’’’

81 event_starting_date = pd.Timestamp(year =2012, month=1, day =1)

82 event_ending_date = pd.Timestamp(year =2012, month=4, day=1)

83 df = df_negative [( df_negative.date < event_ending_date)&(

df_negative.date >= event_starting_date)]

84 tickers = [’a’ for i in range (30)]

85 monthly_rets = []

86 turn_overs = []

87

88 while event_ending_date < pd.Timestamp(year =2019, month=1,day=1):
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89

90 portfolio_starting_date = event_ending_date

91 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

92

93 df = df_negative [( df_negative.date < event_ending_date)]

94 news_count = pd.DataFrame(df.groupby(’ticker ’)[’news_count ’].

max())

95 prev_tickers = tickers

96 tickers = news_count.sort_values(’news_count ’, ascending=True)

[:30]. index.tolist ()

97 turnover_rate = 1-len(list(set(prev_tickers) & set(tickers)))

/30

98 turn_overs.append(turnover_rate)

99 rets = data_ret[tickers ][ portfolio_starting_date:

portfolio_ending_date ]. values [0]

100 mc = mc_all[tickers ][ portfolio_starting_date:

portfolio_ending_date]

101 mc_sum = np.sum(mc,axis =1).values [0]

102 monthly_ret = np.sum((rets * mc)/ mc_sum ,axis =1).values [0]

103 monthly_rets.append(monthly_ret)

104 event_ending_date += relativedelta(months =1)

105

106 ’’’value -weighted benchmark returns ’’’

107 mc_sp500 = pd.read_csv(’mc_sp500.csv ’,header = 1)

108 mc_sp500 = mc_sp500.iloc [1:,:]

109 mc_sp500.ticker = mc_sp500.ticker.apply(lambda x: datetime.

strptime(x, ’%Y-%m-%d’))

110 mc_sp500.index = mc_sp500.ticker

111 mc_sp500 = mc_sp500.iloc [:,1:]

112 mc_all = pd.read_csv(’monthly_market_cap_all_stocks_1.csv ’)

113 mc_all.date = mc_all.date.apply(lambda x: datetime.strptime(x, ’%Y

-%m-%d’))

114 mc_all.index = mc_all.date

115 mc_all = mc_all.iloc [:,1:]

116 all_tickers = mc_all.columns

117 all_tickers = [t.split(’.’, 1)[0]. lower () for t in all_tickers]

118 mc_all.columns = all_tickers

119 all_tickers = monthly_ret_all.columns

120 all_tickers = [t.split(’.’, 1)[0]. lower () for t in all_tickers]

121 monthly_ret_all.columns = all_tickers

122 stocks_sp500 = list(set(mc_sp500.columns) & set(monthly_ret_sp500.

columns))

123 mc_sp500 = mc_sp500[stocks_sp500]

124 monthly_ret_sp500 = monthly_ret_sp500[stocks_sp500]

125 stocks_all = list(set(mc_all.columns) & set(monthly_ret_all.

columns))

126 mc_all = mc_all[stocks_all]

127 monthly_ret_all = monthly_ret_all[stocks_all]

128 sp500_weighted_returns = (monthly_ret_sp500 * mc_sp500).div(

mc_sp500.sum(axis =1),axis =0).sum(axis =1).values.tolist ()

129 all_weighted_return = (monthly_ret_all * mc_all).div(mc_all.sum(

axis =1),axis =0).sum(axis =1).values.tolist ()

130 tickers = list(set(df_negative.ticker.unique ()) & set(mc_all.

columns))
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131 df_negative = df_negative[df_negative.ticker.isin(tickers)]

132

133 ’’’compare portfolio returns with the benchmark ’’’

134 cumsum_all_stocks = np.cumsum(all_monthly_rets [5: -1])

135 cumsum_sp500 = np.cumsum(sp500_monthly_rets [5: -1])

136 cumsum_worst = np.cumsum(monthly_rets_worst)

137 cumsum_best = np.cumsum(monthly_rets_best)

138 date = pd.date_range(start =’2012-04-01’, end=’2018-12-31’, freq=’

MS ’)

139 data = pd.DataFrame(data = {’date ’: date ,’sp500 ’: cumsum_sp500 , ’

all public ’: cumsum_all_stocks ,

140 ’best 30’: cumsum_best , ’worst 30’:

cumsum_worst })

141

142 plt.plot(’date ’, ’sp500 ’, data = data)

143 plt.plot(’date ’, ’all public ’, data = data)

144 plt.plot(’date ’, ’best 30’, data = data)

145 plt.plot(’date ’, ’worst 30’, data = data)

146 plt.xlabel(’year ’)

147 plt.ylabel(’cumulative return ’)

148 plt.legend ()

149

150 factors = pd.read_pickle(’factors_monthly.pkl ’)

151 factors = factors [( factors.index >= ’2012-4-1’) & (factors.index <

’2019-1-1’)]

152

153 ’’’ Carhart four -factor model ’’’

154 factors[’R’] = monthly_rets

155 factors[’RF ’] = all_monthly_rets [5:-1]

156 factors[’R-RF ’] = factors[’R’] -factors[’RF ’]

157 factors[’const ’] = 1

158 factors.columns = [’Mkt -RF’, ’SMB ’, ’HML ’, ’RF’, ’MKT ’, ’MOM ’, ’R

’, ’R-RF’, ’const ’]

159 mod = sm.OLS(factors[’R-RF ’], factors[[’MKT ’, ’HML ’, ’SMB ’, ’MOM

’,’const ’]])

160 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

161 res.summary ()

C.5 Negative Screening

1 import pandas as pd

2 import numpy as np

3 import random

4 from dateutil.relativedelta import relativedelta

5 from datetime import date , datetime

6 import matplotlib.pyplot as plt

7 from scipy import stats

8 import statsmodels.api as sm

9

10 ’’’ read data ’’’

11 df_negative = pd.read_pickle(’df_negative_new_1.pkl ’)

12 df_negative = df_negative [[’ticker ’, ’date ’,’label2 ’,’label1 ’]]

13 df_negative[’news_count ’] = df_negative.groupby(’ticker ’)[’date ’].

rank(ascending=True)
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14 df_negative = df_negative.sort_values ([’ticker ’, ’date ’])

15

16 monthly_ret_all = pd.read_csv(’monthly_ret_all_stocks_1.csv ’)

17 monthly_ret_all.date = monthly_ret_all.date.apply(lambda x:

datetime.strptime(x, ’%Y-%m-%d’))

18 monthly_ret_all.index = monthly_ret_all[’date ’]

19 monthly_ret_all = monthly_ret_all.iloc [:,1:]

20 monthly_ret_all /= 100

21

22 all_tickers = monthly_ret_all.columns

23 all_tickers = [t.split(’.’, 1)[0]. lower () for t in all_tickers]

24 monthly_ret_all.columns = all_tickers

25

26 monthly_ret_sp500 = pd.read_csv(’monthly_return_sp500.csv ’, header

=1)

27 monthly_ret_sp500 = monthly_ret_sp500.iloc [1:,:]

28 monthly_ret_sp500.ticker = monthly_ret_sp500.ticker.apply(lambda x

: datetime.strptime(x, ’%Y-%m-%d’))

29 monthly_ret_sp500.index = monthly_ret_sp500.ticker

30 monthly_ret_sp500 = monthly_ret_sp500.iloc [:,1:]

31 monthly_ret_sp500 /=100

32

33 all_monthly_rets = monthly_ret_all.mean(axis =1).values.tolist ()

34 sp500_monthly_rets = monthly_ret_sp500.mean(axis =1).values.tolist

()

35

36 mc_sp500 = pd.read_csv(’mc_sp500.csv ’,header = 1)

37 mc_sp500 = mc_sp500.iloc [1:,:]

38 mc_sp500.ticker = mc_sp500.ticker.apply(lambda x: datetime.

strptime(x, ’%Y-%m-%d’))

39 mc_sp500.index = mc_sp500.ticker

40 mc_sp500 = mc_sp500.iloc [:,1:]

41 mc_all = pd.read_csv(’monthly_market_cap_all_stocks_1.csv ’)

42 mc_all.date = mc_all.date.apply(lambda x: datetime.strptime(x, ’%Y

-%m-%d’))

43 mc_all.index = mc_all.date

44 mc_all = mc_all.iloc [:,1:]

45 all_tickers = mc_all.columns

46 all_tickers = [t.split(’.’, 1)[0]. lower () for t in all_tickers]

47 mc_all.columns = all_tickers

48 stocks_sp500 = list(set(mc_sp500.columns) & set(monthly_ret_sp500.

columns))

49 mc_sp500 = mc_sp500[stocks_sp500]

50 monthly_ret_sp500 = monthly_ret_sp500[stocks_sp500]

51

52 stocks_all = list(set(mc_all.columns) & set(monthly_ret_all.

columns))

53 mc_all = mc_all[stocks_all]

54 monthly_ret_all = monthly_ret_all[stocks_all]

55 sp500_weighted_returns = (monthly_ret_sp500 * mc_sp500).div(

mc_sp500.sum(axis =1),axis =0).sum(axis =1).values.tolist ()

56 all_weighted_return = (monthly_ret_all * mc_all).div(mc_all.sum(

axis =1),axis =0).sum(axis =1).values.tolist ()

57

58



98 Code

59 ’’’value -weighted negatively screening portfolios ’’’

60

61 ’’’perform negative screening on all public traded US stocks ’’’

62 threshold = 0

63 event_ending_date = pd.Timestamp(year =2012, month=2, day=1)

64 monthly_rets_all_public = []

65 num_stocks_list = []

66 stock_tickers = monthly_ret_all.columns.tolist ()

67

68 while event_ending_date < pd.Timestamp(year =2019, month=1,day=1):

69

70 portfolio_starting_date = event_ending_date

71 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

72 df = df_negative [( df_negative.date < event_ending_date)]

73 count = pd.DataFrame(df.groupby(’ticker ’)[’news_count ’].max())

74 negative_tickers = count[count.news_count > threshold ].index.

tolist ()

75 tickers = [x for x in stock_tickers if x not in

negative_tickers]

76 num_stocks = len(tickers)

77 num_stocks_list.append(num_stocks)

78 rets = monthly_ret_all[tickers ][ portfolio_starting_date:

portfolio_ending_date]

79 mc = mc_all[tickers ][ portfolio_starting_date:

portfolio_ending_date]

80 mc_sum = np.sum(mc,axis =1).values [0]

81 monthly_ret = np.sum((rets * mc)/ mc_sum ,axis =1).values [0]

82 monthly_rets_all_public.append(monthly_ret)

83 event_ending_date += relativedelta(months =1)

84

85 factors[’R’] = monthly_rets_all_public

86 factors[’RF ’] = all_weighted_return [3:-1]

87 factors[’R-RF ’] = factors[’R’] - factors[’RF ’]

88 mod = sm.OLS(factors[’R-RF ’], factors[[’SMB ’, ’HML ’, ’MKT ’, ’MOM ’,

’const ’]])

89 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

90 res.summary ()

91

92 ’’’perform negative screening on SP500 stocks ’’’

93

94 threshold = 0

95 event_ending_date = pd.Timestamp(year =2012, month=2, day=1)

96 monthly_rets_sp500 = []

97 num_stocks_list = []

98 stock_tickers = monthly_ret_sp500.columns.tolist ()

99

100 while event_ending_date < pd.Timestamp(year =2019, month=1,day=1):

101 portfolio_starting_date = event_ending_date

102 portfolio_ending_date = portfolio_starting_date +

relativedelta(months =1)

103 df = df_negative [( df_negative.date < event_ending_date)]

104 count = pd.DataFrame(df.groupby(’ticker ’)[’news_count ’].max())

105 negative_tickers = count[count.news_count > threshold ].index.

tolist ()
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106 tickers = [x for x in stock_tickers if x not in

negative_tickers]

107 num_stocks = len(tickers)

108 num_stocks_list.append(num_stocks)

109 rets = monthly_ret_sp500[tickers ][ portfolio_starting_date:

portfolio_ending_date]

110 mc = mc_sp500[tickers ][ portfolio_starting_date:

portfolio_ending_date]

111 mc_sum = np.sum(mc,axis =1).values [0]

112 monthly_ret = np.sum((rets * mc)/ mc_sum ,axis =1).values [0]

113 monthly_rets_sp500.append(monthly_ret)

114 event_ending_date += relativedelta(months =1)

115

116 factors[’R’] = monthly_rets_sp500

117 factors[’RF ’] = sp500_weighted_returns [3:-1]

118 factors[’R-RF ’] = factors[’R’] - factors[’RF ’]

119 mod = sm.OLS(factors[’R-RF ’], factors[[’SMB ’, ’HML ’, ’MKT ’, ’MOM ’,

’const ’]])

120 res = mod.fit(cov_type=’HAC ’, cov_kwds={’maxlags ’: 12})

121 res.summary ()

122

123 ’’’plot cumulative returns ’’’

124

125 date = pd.date_range(start =’2012-02-01’, end=’2018-12-31’, freq=’

MS ’)

126 cumsum_all_stocks = np.cumsum(all_weighted_return [3: -1])

127 cumsum_sp500 = np.cumsum(sp500_weighted_returns [3: -1])

128 cumsum_all_screened = np.cumsum(monthly_rets_all_public)

129 cumsum_sp500_screened = np.cumsum(monthly_rets_sp500)

130 data = pd.DataFrame(data = {’date ’: date ,’sp500 ’: cumsum_sp500 , ’

all public ’: cumsum_all_stocks ,

131 ’all public negative screened ’:

cumsum_all_screened ,

132 ’sp500 negative screened ’:

cumsum_sp500_screened })

133 plt.plot(’date ’, ’sp500 ’, data = data)

134 plt.plot(’date ’, ’sp500 negative screened ’, data = data)

135 plt.xlabel(’year ’)

136 plt.ylabel(’cumulative return ’)

137 plt.legend ()
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