

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Department of Management, Technology and Economics

Chair of Entrepreneurial Risks

Master Thesis

Analysis of real estate price dynamics in Switzerland using a fundamental factor model

Student:	Delong Lu
Tutor:	Prof. Dr. Didier Sornette
Supervisors:	Dr. Dorsa Sanadgol
	Diego Ardila
Date of Submission:	March 8^{th} 2016

(This page left blank.)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor's thesis, Master's thesis and any other degree paper undertaken during the course of studies, including the respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their courses.

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

ANALYSIS OF REAL ESTATE PRILE DYNAMILS IN SWITZERLAND USING A FUNDAMENTAL FACTOR MODEL

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): LU	First name(s): DE LONG
With my signature I confirm that	

- I have committed none of the forms of plagiarism described in the '<u>Citation etiquette</u>' information sheet.
- I have documented all methods, data and processes truthfully.
- I have not manipulated any data.
- I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date

Zunch, 2016/02/00

Signature(s)

For papers written by groups the names of all authors are required. Their signatures collectively guarantee the entire content of the written paper.

Analysis of real estate price dynamics in Switzerland using a fundamental factor model

Student Delong Lu

Tutor Prof. Dr. Didier Sornette

> Supervisors Dr. Dorsa Sanadgol Diego Ardila

Abstract

Real estate markets represent an integral part of today's economy which is inextricably linked to other areas. With recovering and rising real estate prices since the 2008/09 financial crisis, the potential overheating of real estate markets is gaining attention from regulatory bodies, industry and research alike.

To analyze the relationship between real estate prices and economic fundamentals in Switzerland, we apply the inverted demand approach and model apartment prices as a function of population, income, housing stock and interest rates using quarterly panel data. The data includes the cantons of Geneva and Zurich, at the cantonal and district level, and covers the time span 2000q4–20012q4.

We apply three different methods to estimate the models (dynamic fixed effect, mean group, pooled mean group) and test for homogeneity of long run coefficients over different regions. Given the regional discrepancies within Switzerland, this gives an indication whether aggregate models sufficiently capture individual region dynamics.

We find limited evidence for poolability at the district level and continue by reporting individual district level model fits as well as estimating coefficients over varying timeframes as a first approximation of the fundamental relationship over time.

Contents

1	Intr	oduction	1
2	Lite	erature review	3
	2.1	Price to rent model	4
	2.2	Inverted demand approach	7
	2.3	LPPLS for the real estate market	10
3	Met	thod & Model	11
	3.1	Fundamental factor selection	12
	3.2	Model selection	13
		3.2.1 Model Equation	14
	3.3	Fitting the model to the data	15
		3.3.1 Lag length selection	15
		3.3.2 Confirming factor selection	17
	3.4	Testing coefficient homogeneity	17
	3.5	Comparing model estimations over different time frames	19
4	San	pple description	19
	4.1	Available data	19
		4.1.1 Population data	20
		4.1.2 Income level	21
		4.1.3 Interest rate data	22
		4.1.4 Housing stock data	25
		4.1.5 Real estate price data	26
	4.2	Unit root testing for panel data	28
5	Res	ults	31

	5.1	Model	specification	31
		5.1.1	Lag length and confirming factor selection \ldots	31
	5.2	Testing	g for coefficient homogeneity	37
		5.2.1	Testing pooling assumption at the cantonal level	37
		5.2.2	Testing pooling assumption at the district level \ldots	38
	5.3	Estima	ting individual district models	43
	5.4	Coeffic	ient estimates over time	45
6	Dise	cussion	& Limitations	45
	6.1	Limita	tions	45
	6.2	Discus	sion	46
		6.2.1	Comparison of this model vs the LPPLS model	48
7	Con	clusior		<u>4</u> 9
7	Con	clusior	1	49
•		clusior oendix	1	49 54
•		oendix	\mathbf{h} le definitions	-
•	App	bendix Variab		54
•	Арр А.1	bendix Variab Unit ro	le definitions	54 55
•	Арр А.1 А.2	Dendix Variab Unit ro Model	le definitions	5 4 55 56
•	App A.1 A.2 A.3	oendix Variab Unit ro Model Indivio	le definitions	54 55 56 57
•	App A.1 A.2 A.3 A.4	oendix Variab Unit ro Model Indivio	le definitions	54 55 56 57 61
•	App A.1 A.2 A.3 A.4	Variab Variab Unit ro Model Indivio Long F	le definitions	54 55 56 57 61 76 76

List of Figures

1	Swiss GDP contributions by canton 2013	3
2	Population time series for district of Zurich and national level	
	aggregation	24
4	Interest rates time series (3 month CHF Libor) used for all	
	districts	24
3	Population time series for district of Zurich and national level	
	aggregation	25
5	Housing stock time series for district of Zurich and national	
	level aggregation	26
6	Hedonic price index time series for district of Zurich and na-	
	tional level aggregation	27
7	Initial model fit results: Actual vs DFE vs GM estimations	32
8	Reduced lag length model fit as recommended by AICc: Ac-	
	tual vs DFE vs GM estimations (P = 2, Q = 2) $\ldots \ldots$	34
9	Subdivision of Zurich districts into three subregions	41
10	Long Run coefficient estimations over time Canton of Zurich	
	all districts	76
11	Long Run coefficient estimations over time Canton of Zurich	
	subregion I	78
12	Long Run coefficient estimations over time Canton of Zurich	
	subregion I (region specific est)	79
13	Long Run coefficient estimations over time Canton of Zurich	
	subregion II	81
14	Long Run coefficient estimations over time Canton of Zurich	
	subregion II (region specific est)	82

List of Tables

1	Panel data sample for $2012q4$	21
2	Comparison of Canton of Zurich vs Canton of Geneva	22
3	Overview of available variables and their data sets for this study	23
4	ADF Test results	30
5	Model selection criteria for lag lengths	33
6	Model selection criteria for factors	36
7	PMG estimation results for testing cantonal Level aggrega-	
	tions with $P = 2$, $Q = 2$	38
8	PMG estimation results for all districts of Zurich with $P = 2$,	
	$Q = 2 \dots \dots$	39
9	PMG estimation results for Zurich subregions with $P = 2$, Q	
	$= 2 \dots $	42
10	Overview of individual region model long run coefficient esti-	
	mates	44
11	ADF test number of lag terms selected by AIC	56
12	PMG estimation results for testing cantonal Level aggrega-	
	tions with $P = 2$, $Q = 2$	57
13	PMG estimation results for all districts with $\mathbf{P}=2,\mathbf{Q}=2~$	58
14	PMG estimation results for Zurich subregion I with $P = 2$, Q	
	$= 2 \dots $	59
15	PMG estimation results for Zurich subregion II with $P = 2$,	
	$Q = 2 \dots \dots$	60
16	PMG estimation results for Zurich subregion III with $P = 2$,	
	Q = 2	60
17	Individual region model fit: Bezirk Affoltern	61
18	Individual region model fit: Bezirk Bülach	62

19	Individual region model fit:	Bezirk Dielsdorf	63
20	Individual region model fit:	Bezirk Dietikon	64
21	Individual region model fit:	Bezirk Hinwil	65
22	Individual region model fit:	Bezirk Horgen	66
23	Individual region model fit:	Bezirk Meilen	67
24	Individual region model fit:	Bezirk Pfäffikon	68
25	Individual region model fit:	Bezirk Uster	69
26	Individual region model fit:	Bezirk Winterthur	70
27	Individual region model fit:	Bezirk Zürich	71
28	Individual region model fit:	Canton de Genève	72
29	Individual region model fit:	Kanton Zürich	73
30	Individual region model fit:	Schweiz	74

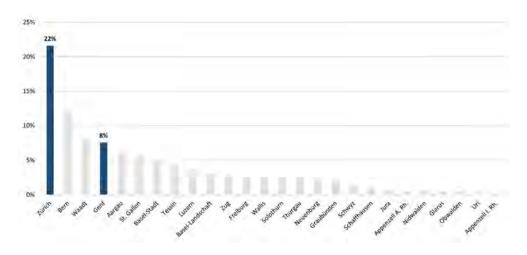
1 Introduction

The housing market is a fundamental component of today's society and economy. Not only does housing fulfill an individual's basic need for shelter, the housing market is also tightly integrated into the economy such that volatility in it can have far reaching consequences, as demonstrated by the preparatory role of the US housing market in 2006/07 [9], and the high rate of foreclosures and price movements thereafter.

Since 2007, real house prices globally and in OECD countries have managed to recover and in some areas even increased considerably [24]. The latter is especially noticeable in big metropolitan areas, which in Switzerland applies to Zurich and Geneva; Zurich for instance boasts the highest real house price levels in its history[23]. This steady increase has brought the possibility of a real estate bubble back into the spotlight for market participants. The potential overheating of the real estate market is also highlighted by the Swiss National Bank (SNB) in its annual Financial Stability Report, where it is designated as one of the key risks which it is monitoring [22].

Research and industry alike have been tackling this potential issue. In addition to the SNB, UBS and Credit Suisse, two of Switzerland's major financial institutions, publish periodic reports on the health of the real estate market. In its most recent publication of the UBS bubble index, the report finds that Zurich has the highest price-to-rent multiple among global cities and Geneva's price-to-rent multiple remains elevated with strained affordability [23]. Overall, the sources indicate that Swiss residential property market is overvalued and at risk, but cannot (yet) be considered as in speculative property price bubble [22, 23]. Research conducted at the Chair of Entrepreneurial Risks includes a biannual report on the Swiss real estate market in cooperation with comparis.ch. The report presents the results of applying a log periodic power law singularity (LPPLS) analysis and, in its most recent volume, shows several districts as potential hotspots for the formation of bubbles(see[5]).

Besides feeling "the pulse of the market", participants are interested in determining factors driving its development. For example, [22, 24] cite various structural characteristics of the market as factors for the high level of imbalances in Switzerland, including the low mortgage rates, high population growth driven by migration, as well as short supply due to spatial planning rigidities, environmental standards, taxations issues and tenancy law,


In line with this interest of analyzing the fundamental drivers of housing prices, this study aims to analyze the relationship of the Swiss apartment prices with fundamental economic variables. Specifically, given the regional disparities in Switzerland, as for example measured by GDP contribution of the different Swiss Cantons (see figure 1), we intend to test whether there is information lost by aggregating the analysis on a cantonal level (using data from the cantons Geneva and Zurich) as opposed to a lower level analysis which looks at each districts separately (using all districts of Zurich). In addition to testing aggregation, we estimate the coefficients over varying timeframes and examine the evolution of said coefficients over time.

In summary, we cannot reject the pooling assumption at the cantonal level. However, this conclusion is questioned as results at the district level reject the pooling assumption within the Canton of Zurich. Given that we reject the pooling assumption for districts, we report individual district model fits. Finally, when looking at the coefficient estimates over different timeframes, initial evidence does not suggest a stable long run relationship.

The following sections are structured as follows: In section 2 we give

Figure 1: Swiss GDP contributions by canton 2013

Total Swiss GDP 2013: CHF 635bn \approx USD 710bn (2013q4)

a brief overview of different approaches to modeling real estate prices in the academic literature. We continue in section 3 with the description of the methodology and model selected for this study. In section 4 and 5 we describe our data sample and their results respectively. Finally, we give a brief discussion in section 6 and conclude in section 7.

2 Review of existing Literature

Numerous studies have been conducted which aim to analyze the relationship of the real estate market with economic fundamentals, applying different methods and pursuing different hypotheses. Two of the most common approaches used in modeling the relationship are the price-to-rent ratio and the inverse demand approach. Additionally, recent work at the Chair of Entrepreneurial Risk at the ETH Zürich has examined the real estate markets using a log periodic power law singularity (LPPLS) model.

In the following subsections we shall give a brief overview of each of these

approaches.

2.1 Existing work using a price to rent approach

The price-to-rent approach, in its most basic form, can be interpreted as an application of the concept of present value (PV) from the fields of Finance and Economics, where the present value of an asset is determined by its future cash flow. The PV is represented as $PV = \frac{C_t}{(1+r)}$, where C_t represent the cash flows in period t and r_t represents the return a similar investment may have earned at the same time (either risk free or of a similar asset), at which C_t is discounted.

Parallel to PV calculations, price-to-rent states that the present value of a real estate asset should be the determined by the sum of its future rents minus certain costs, assuming conditions of an ideal market and under no arbitrage condition.

For example, [10] defined the price to rent model as

$$HP = \frac{\text{RENT}}{r + \delta + t - \Delta \text{hp}^e/\text{hp}},$$

which can be rewritten as

$$\frac{\text{HP}}{\text{RENT}} = \frac{1}{r + \delta + t - \Delta \text{hp}^e/\text{hp}} =: \frac{1}{\text{RUSER}}$$
(1)

and shortened to

$$HPRENT = \frac{1}{RUSER} \Leftrightarrow ln(HPRENT) = -ln(RUSER)$$
(2)

In equation (1), RENT stands for (future) rent payments, HP stands for house price, RUSER stands for real user costs which consists of the real after-tax interest rate r, the depreciation rate δ , the property tax t and the expected rate of house price change $\Delta h p^e / h p$. For convenience, the price-to-rent ratio is represented by HPRENT, which can be further simplified to equation (2) when working with log variables.

In their work [10], the authors investigate the impact of tightening credit constraints on buyers for the United States, which represents a deviation from the ideal market assumption. Specifically, they hypothesize that out of all groups, first time buyers are impacted the most by credit constraints. The authors test their hypothesis by including the variable of first time buyer loan to value ratios (LTV), as a proxy for credit constraints, into their model, which they formulate as an error correction model. Their results indicate that the long run relationship of HPRENT exists as described 1 and that it is further augmented by including the LTV ratio as a factor. In the long run, inclusion of the LTV ratio "show[s] stronger evidence of cointegration [...] than for models without the ratio", while in the short run inclusion of the ratio results in faster error correction adjustment speeds[10].

Earlier work by Mikhed & Zemcik [18], starts with a price to rent framework and links it to the inverted demand approach for the US housing market. Two data-sets are used, one at the national level, the other at the level of U.S. Metropolitan Statistical Areas. The authors look for evidence of a bubble in house prices by testing for unit roots in the relationship using panel data. Theory suggests that, given stationary demand and supply factors, a unit root in the price would decouple the price from the fundamental factors and indicate an unstable bubble process. The study concludes that the evidence does not support a cointegration relationship, implying that "house prices do not reflect movements in fundamental factors" and as such there is a bubble in the observed prices given his data time frame. A different line of inquiry is pursued by Gallin [13]. In addition to estimating the price-to-rent ratios, the essay investigates whether prices follow rents or rents follow prices once there is a deviation from the estimated relationship. First, the author establishes a long run relationship between prices and rents by estimating an error correction relationship based on collected data of the U.S. market between 1970q1 and 2005q4. Subsequently, he uses these estimations to run simulations of hypothesized data generation processes which represent scenarios where either "prices do all the correcting" or "rents do all the correcting". His results reject the case where rents do all the adjusting, and provides evidence in favor of the hypothesis where house prices adjusting back to rent levels.

The price-to-rent ratio approach provides a straightforward pricing mechanism and can be related to similar measures in other fields of work (e.g. Present Value, or even the parallel to P/E ratios).

However, price-to-rent ratio modeling can have its shortcomings. Unlike financial assets, real estate assets are generally not easily substituted due to location and quality. As such, including adjustments based on hedonic factors can prove meaningful. Equation (1) also implies that given an ideal market, an agent should have no preference over owning vs renting a property[11, 18]. Finally, the price-to-rent approach usually does not feature any mechanism to adjust for market structures, such as regulations and preferences. As the authors of [11] note in their review, European markets may have more regulation when compared to the U.S. equivalent, suggesting that the priceto-rent may not be as well suited for the European case. Additionally, the Swiss real estate market may represent a structural exception in international comparison, with only 37.5% of all households owning their home at the end of 2013^1 , compared to 65.2% in the U.S. [7, 8].

2.2 Existing work using the inverted demand approach

An alternate way of modeling housing prices starts with the economic principle of supply and demand. In theory, given a market in equilibrium, prices clear supply and demand. One can therefore invert the equation to back out the prices as a function of supply and demand variables.

A generic form of this approach can be states as follows (similar to [26]): We define demand D_t as

$$D_t = \alpha P_t + \beta' \theta_t + u_{dt}$$

Where P_t represent house prices, θ is a $(k_d \times 1)$ vector of demand shifters (e.g. income, population, etc.), u_{dt} is white noise and $\alpha < 0, \beta$ represent coefficients for each term.

Similarly, we can define supply S_t as

$$S_t = \lambda P_t + \psi' \eta_t + u_{st},$$

where η_t , $(k_s \times 1)$ represent a set of supply shifters, u_{st} also white noise and $\lambda > 0, \psi$ representing coefficients for each term.

In an equilibrium state, $S_t = D_t$ and solving for P_t yields

$$P_t = \frac{\psi'}{\alpha - \lambda} \epsilon_t - \frac{\beta'}{\alpha - \lambda} \theta_t + u_t \tag{3}$$

with $u_t = \frac{1}{\alpha - \lambda} (u_{st} - u_{dt}).$

¹steadily rising tendency, with ownership rates at 28.5% in 1970. Again, there are large regional discrepancies, e.g. Canton of Jura (54.8%) vs. Canton of Geneva (17.9%)

If the detailed supply and demand equation coefficients are not of interest, one might further simplify the equation above by restating (3) as

$$P_t = \gamma_s \epsilon_t - \gamma_d \theta_t + u_t \tag{4}$$

Previous work has used (4) as a generic starting point and further detailed out the model by choosing different sets of fundamentals in ϵ_t , θ_t , by including different dynamics through lag terms, and/or by reformulating the functional form depending on the research hypothesis. Often, research targets the questions whether 1) real estate prices are determined by fundamentals in the long run and, if they are, 2) how that relationship can be quantified.

Cointegration as long run relationship One notable concept which is frequently featured is the concept of cointegration. Engle & Granger originally defined it as follows in [12]: Given x_t a vector of economic variables at time t, then the elements x_t are cointegrated of order d,b if there exists a vector $\alpha \neq 0$ such that $z_t = \alpha' x_t \sim I(d-b), b > 0$, with the vector α called the cointegration vector.²

In practice, the case of d = b = 1 is often applied, in which case $x_t \sim I(1), z_t \sim I(0)$. For example, given two economic variables x_{1t}, x_{2t} , then $z_t = \alpha_1 x_{1t} + \alpha_2 x_{2t}$ is stationary with $E(z_t) = 0$.

Testing for cointegration therefore revolves around testing z_t for stationarity and the work proceeds to list seven possible testing methodologies[12].

Therefore, two variables which are cointegrated have a well-defined long run relationship while in each period, there may be deviations from said relationship with $z_t \neq 0$.

²Recent works have also expanded on the original definition of cointegration, e.g. Zhou introduces a methodology to test for nonlinear cointegration in [26]

Error correction as the representation of long run relationships Given a stable long run relationship as defined by cointegration with possible short run deviations, one modeling approach is the error correction model. In essence if y_t is cointegrated with a linear combination of $X_t = (x_{1t}, x_{2t}, ..., x_{Nt})$, and given certain conditions captured in the Granger Representation theorem (see [12]), the relationship can be modeled as follows:³:

$$\Delta y_t = \mu + \alpha (y_{t-1} - \boldsymbol{\beta} \boldsymbol{X_{t-1}}) + \sum_j \gamma_{dy} \Delta y_{t-j} + \sum_k \boldsymbol{\gamma}_{dX} \Delta \boldsymbol{X_{t-k}}$$
(5)

Where $\Delta X_t = X_t - X_{t-1}$ is the difference operator, and $\alpha(y_{t-1} - \beta X_t)$ is the error correction term. The error correction term captures any difference in observed y compared to its long run relationship βX and causes Δy to adjust by a factor of α , hence α is also called the "speed of adjustment". If a process exhibits a stable long run relationship, we expect $-1 < \alpha < 0$, which causes any deviations in the long run relationship to be corrected over time. Conversely, if $\alpha > 0$, any difference would be amplified over time and cause y and βX to diverge; $\alpha < -1$ would cause Δy to "over adjust".

Examples of applications of the inverted demand approach include [11, 3].

Duca et al. [11] also examine the impact of LTV on first time homebuyers using an inverted demand approach. Similar to [10], this work finds a long run relationship between housing price and fundamentals, which is further augmented by including LTV ratios. Results also suggest that credit constraints, as measured by LTV, represents one of the main factors driving the boom and bust from 2000 to 2007.

 $^{^3\}mathrm{We}$ refer to $[12,\,6,\,16]$ for a detailed discussion of the origin and background theory of error correction models

Recent work by Anundsen & Heboll [3] has also looked at the US housing market using an inverted demand approach using a sample from 1980q1 to 2010q2. In addition to estimating a long run relationship, the authors test whether regions can be pooled when conducting the analysis. This is achieved using a pooled mean group estimator, first defined in [19], which imposes a homogeneous long run relationship while allowing for short term discrepancies individual to each region.

2.3 Application of the LPPLS model in the real estate market

The Chair of Entrepreneurial Risk of ETH Zurich publishes a biannual risk analysis of the real estate market in Switzerland, with the most recent one published in 2015q2 [5].

The purpose of the study is "to provide buyers and sellers in the Swiss real estate market with critical information on price dynamics in every Swiss district". The analysis is based on applying a model which combines the log period power law singularity analysis(LPPLS) with a diffusion index to diagnose the risk of real estate overvaluations in Switzerland, the methodology for which is described in [4, 5].

The analysis is conducted using data collected from comparis.ch and comprises about 1'403'000 residential properties for sale between 2005q1 and 2015q2. The data covers both, houses and apartments and their respective asking price (as opposed to final transaction price).

The most recent diagnostic results in several findings. First, the study identifies the districts with highest median asking price per square meter for apartments and houses between 2007q1 and 2015q2. In this period, the districts Zug and Meilen are consistently ranked among the top three, for both categories apartment and houses. Second, a classification of the districts with respect to their status as diagnosed by the LPPLS model is conducted.

The LPPLS analysis classifies the status of a district regarding its risk of a real estate bubble in descending order as follow: "Critical", "To watch", "To monitor" and "Regime change". The status "Critical" indicates a strong bubble signal with imminent regime change ahead, "To watch" is a less strong signal and "To monitor" occurs only after a "Critical" or "To watch" state has been obtained but not enough data points are present to confirm a change of regime. Lastly, the status "Regime change" occurs only after the status "To monitor" has been obtained and with the confirmation of the latest data points. For the detailed model construction and fitting we refer to the original documents [4, 5].

In summary, the current issue (2015q2) of the LPPLS diagnostics does not identify a bubble signal at the national level, with a of total, 11 districts categorized as either "To watch"(5) or "To monitor"(6). Previous issues' "Critical" classifications for certain districts have since subsided ⁴.

Overall, given the moderate warning of the LPPLS analysis and other important economic factors such as low interest rate, unstable European geopolitics and slow European economy recovery, the report suggests the Swiss real estate market will remain stable with only moderate adjustments.

3 Methodology and Model Description

The aim of this work is to conduct a fundamental analysis of the Swiss housing market. Due to our belief of regional heterogeneity in the housing

⁴previous "Critical" classifications include: District Baden (Aargau, report 2013q2), District Bülach (Canton Zurich, reports 2013q2-q4) and Dielsdorf (Canton of Zurich, report 2013q2)

market, we test the validity of imposing homogeneous model coefficients (aggregating) at different regional levels as part of this analysis. Additionally, we examine the fundamental relationship over different timeframes.

Therefore, our methodology can be structured in five steps which are described in more detail in the following subsections: we begin by selecting the fundamental factors to be considered (3.1), and by choosing an appropriate modeling approach (3.2). With model and input selected, we continue by fitting the model parameters to the available data (3.3). Once the model is properly specified, we test the poolability assumption (3.4) and finish with a look at the evolution of the different model estimates over different timeframes (3.5).

3.1 Fundamental factor selection

Economic theory suggests a relationship between supply & demand variables and house prices. Previous works have used a varying combination of variables and operationalizations, chosen based on economic theory or research hypothesis, including for example: rent, mortgage rate, tax, depreciation and credit constraint (Loan-to-value) [11]; rent, income, population, mortgage volume and rates, housing stock and construction cost [18]; income, mortgage, construction cost [26]; and one specific example for the Swiss market included GDP, wage, population, depreciation and price appreciation, construction costs and interest rates [21] ⁵.

A notable exception to the aforementioned examples is the approach used by Ardila et. al in [4]. The authors select a pool of 90 potential input variables for the US market and 27 variables for the Swiss market. This selec-

⁵The aim of [21] is to examine the relationship of fundamentals and real estate investment behavior, as opposed to price development, using a stock-flow-model;

tion is then narrowed down using sparse partial least squares. The full set of variables can be categorized into variables measuring output & income, employment, housing availability, price levels, money and credit, bond and exchange rates as well as stock market indices.

Our criteria for choosing the fundamental factors, given the colorful palette of variables in the literature are: (i) variables which together represent both demand and supply side, (ii) variables recurring throughout literature, (iii) limiting ourselves to a few number of fundamental variables for which data is available.

Our final selection includes population and income for the demand side, as well as housing stock for the supply side. Additionally, we include interest rates as a high level proxy for mortgage rates and financing cost for construction for the demand and supply side respectively. As an auxiliary variable, CPI data was included to adjust income for inflation.

3.2 Selecting an appropriate model functional form

We believed there was potential regional difference in the behavior of real estate prices at the district level in the Switzerland due to the differences in economic activity across regions. This characteristic is suggested by the difference in GDP contribution per canton (figure 1), where the majority of Swiss GDP can be attributed to less than half a dozen of regions.

Given this suspected regional difference, we settled on the same approach similar to [3], with the goal of estimating a model which allows for short run heterogeneity (say, due to different economic shocks and transient differences) while allowing for a fundamental driven relationship in the long run.

3.2.1 Model Equation

The model we fitted can be described by the following equation [3]:

$$\Delta y_{i,t} = \mu_i + \alpha_i (y_{i,t-1} - \boldsymbol{\beta}_i \boldsymbol{X}_{i,t-1}) + \sum_{s=1}^{p-1} \gamma_{i,s} \Delta y_{i,t-s} + \sum_{s=0}^{q-1} \boldsymbol{\lambda}_{i,s} \Delta \boldsymbol{X}_{i,t-s} \quad (6)$$

Where *i* represent the different regions, *t* represents each time period, μ_i is a region specific, time constant intercept, $y_{i,t-1}$ is the house price of region *i* in time period t - 1, **X** is the matrix of explanatory variables, $\Delta y_{i,t-s}$ and $\Delta \mathbf{X}_{i,t-s}$ represent the first difference of y and X in region i, lagged by s periods. The lag lengths for the dependent and independent variables are specified by *p* and *q* respectively; a p = q = 5 specification corresponds to 4 lag terms (quarters) in the differences of each variable.

The coefficients β_i in equation (6) can be interpreted as long run coefficients of the fundamental factors in \mathbf{X} , α can be interpreted as an adjustment coefficient measuring the speed of adjustment with which prices correct towards (or away form) the long run relationship. If a stable long run relationship exists between y_i and \mathbf{X}_i , we expect $\alpha_i < 0$, which causes Δy to correct towards equilibrium. Alternatively, an $\alpha \geq 0$ amplifies any difference between the relationship of y_i and $\beta_i \mathbf{X}_i$.

The coefficients γ_i , λ_i can be interpreted as the effect of short run fluctuations of the dependent and independent variables respectively.

An alternate representation using

$$\boldsymbol{\theta}_i = -\alpha_i \boldsymbol{\beta}_i$$

will also be used in this work, which would yield for equation (6)

$$\Delta y_{i,t} = \mu_i + \alpha_i y_{i,t-1} + \boldsymbol{\theta}_i \boldsymbol{X}_{i,t-1} + \sum_{s=1}^{p-1} \gamma_{i,s} \Delta y_{i,t-s} + \sum_{s=0}^{q-1} \boldsymbol{\lambda}_{i,s} \Delta \boldsymbol{X}_{i,t-s}$$

3.3 Fitting the model to the data

We start with a base case where we include all four factors (k = 4), and four lags in differences for the dependent and independent variables (P = Q = 5), corresponding to a lag length of one year.

3.3.1 Lag length selection

First we estimate individual region specific models at the least aggregated level (district level) with varying lag lengths with $P, Q \in \{5, 4, 3, 2\}$, and compare the resulting models using log likelihood ratios, the Akaike Information Criterion (AIC), the Bayesian information criterion (BIC) and AIC's small sample corrected version (AICc).

The panel Log Likelihood (pLL) We implemented the panel log likelihood as one of the criteria to compare the models with different lag lengths. At this point, we are solely interested in testing model lag length specification (independent of aggregation assumptions), and therefore treat each region as independent. As such, we fit 6 separately for each region's data and calculate the individual likelihoods. Finally, to measure the fit of the model over all regions, we sum each regions likelihood, which can be formulated as:

$$pLL(\mu_i, \alpha_i, \boldsymbol{\beta_i}, \gamma_i, \boldsymbol{\lambda_i}, \sigma_i^2) = (7)$$
$$-\frac{T}{2} \sum_{i=1}^N \ln 2\pi \sigma_i^2 - \frac{1}{2} \sum_{i=1}^N \frac{1}{\sigma_i^2} (\Delta \boldsymbol{y_i} - \widehat{\Delta \boldsymbol{y_i}})' (\Delta \boldsymbol{y_i} - \widehat{\Delta \boldsymbol{y_i}})$$

where $\widehat{\Delta y_i}$ represents the estimates of Δy from each individual regional fit of equation (6), N is the number of regions and σ^2 is the variance of the estimation error.

The log likelihood ratio used to compare two nested models is then:

$$LLR = 2log(\mathcal{LL}_{ur}) - 2log(\mathcal{LL}_{r})$$
(8)

, where ur, r stand for the unrestricted and restricted model. As by Wilk's theorem [25], the LLR is approximately χ^2 distributed and as such can be used for testing the rejection of the null hypothesis (restricted model).

Information criteria AIC, BIC and AICc The tree information criteria published in [2], [20] and [15], provide three means to evaluate the fit between different nested models. They are defined as

$$AIC = -2log(\mathcal{L}) + 2k \tag{9}$$

$$BIC = -2log(\mathcal{L}) + k \ log(n) \tag{10}$$

$$AICc = -2log(\mathcal{L}) + \frac{2k(k+1)}{n-k-1}$$
(11)

, where \mathcal{L} represents the likelihood of a model fit, k the number of independent linear parameters and n the number of available observations in the sample. The criteria allow for comparison between different models, however they do not provide information on the fit of a model. Selecting the model with the best fit equals minimizing the respective criteria.

As can be seen from their final definitions⁶, they similarly capture the fit of a model based on its likelihood. Where the differ is how they adjust for

 $^{^6 {\}rm for}$ the nuances in their derivation, we refer to the original publications; AIC [2], BIC [20] and AICc [15]

sample size and number of parameters in the second term. While the original AIC adjusts for the number of parameters and disregards sample size, BIC and AICc both also include a terms for the sample size. AICc's extra term $\frac{2k(k+1)}{n-k-1}$ gives the strongest penalty for additional parameters and fewer observations, and as the authors in [15] have shown, it is preferable over AIC and BIC in small sample sizes.

3.3.2 Confirming factor selection

In a second step, we compare models (also at the lowest aggregation level) where factors are removed, one at a time. This was conducted in order to assess whether some of the selected parameters do not contribute additional information. The resulting models were again compared using the same statistics, log likelihood ratio, AIC, BIC and AICc.

After these two steps a final model is selected with appropriate lag length and factor selection.

3.4 Testing for coefficient homogeneity on different aggregation levels

Once the model lag lengths and factors have been selected, we test for long run coefficient homogeneity across different aggregation levels using likelihood ratio tests. Our hypotheses can be stated as:

$$H_0: \boldsymbol{\beta}_i = \boldsymbol{\beta}, \ \forall i$$

$$H_A: \boldsymbol{\beta}_i \neq \boldsymbol{\beta}, \ \forall i$$
(12)

To test the hypothesis, we fit the model (6) separately using three estimators: the dynamic fixed effects (DFE) estimator, the group mean(GM) estimator and the pooled group mean estimator (PMG).⁷.

Out of the three, DFE and GM impose a high degree of homogeneity for the coefficients: with DFE, all coefficients are assumed homogeneous over all regions, with only the intercept μ_i allowed to vary ($\alpha_i = \alpha, \beta_i = \beta, \gamma_i = \gamma, \lambda_i = \lambda$

 $\forall i$). The GM estimator fits (6) for each region separately and calculates the mean of each coefficient over all regions, including the intercept.

Finally, as introduced by Pesaran et al. in [19] and applied in [3], the PMG represents a hybrid case. The PMG estimator imposes homogeneity restrictions on the long run coefficients $\beta_i = \beta$, while the adjustment coefficient α , short run coefficients γ_i, λ_i and intercepts μ_i are allowed to vary over regions. The long run coefficients β and adjustment coefficients α_i are obtained through maximum likelihood estimation of a concentrated (profile) likelihood in which is described below in (13).

The concentrated panel log likelihood For estimating the homogeneous long run coefficients with the PMG estimator, we implemented the concentrated (profile-) likelihood function (13), as introduced in $[19]^8$.

$$cpLL(\boldsymbol{\varphi}) = -\frac{T}{2} \sum_{i=1}^{N} \ln 2\pi \sigma_i^2 -\frac{1}{2} \sum_{i=1}^{N} \frac{1}{\sigma_i^2} (\Delta \boldsymbol{y}_i - \alpha_i \boldsymbol{\xi}_i(\boldsymbol{\beta}))' \boldsymbol{H}_i(\Delta \boldsymbol{y}_i - \alpha_i \boldsymbol{\xi}_i(\boldsymbol{\beta}))$$
(13)

where

$$\xi_i(eta) = y_{i,-1} - X_{i,-1}eta$$

 $^{^7\}mathrm{DFE}$ & GM calculations performed with the plm package version 1.4-0 in R version 3.2.2

⁸Difference to original: for $\boldsymbol{\xi}$ our model uses $X_{i,-1}$ instead of X_i , this lets previous period's discrepancy in the long run relationship determine this period's change in prices

represents the difference in y as predicted by the long run relationship, $H_i = I_T - W_i(W'_iW_i)^{-1}W'_i, \varphi = (\theta', \alpha', \sigma'), \alpha = (\alpha_1, ..., \alpha_N)', \sigma = (\sigma_1^2, ..., \sigma_N^2)'$ and I_T is the $(T \times T)$ identity matrix. Contrary to a full likelihood function, the profile likelihood function takes only the adjustment coefficient α_i and the restricted long run coefficients $\beta_i = beta$ along with the variances σ^2 as input. Overall, this serves the purpose of restricting homogeneity in β while allowing the short run coefficients γ_i, λ_i to vary per region.

Based on the results of the homogeneity test, we estimate models at the most appropriate aggregation level.

3.5 Comparing model estimations over different timeframes

Theory suggests that markets in equilibrium are governed by a set of long run relationships which are stable over time, with possible deviations in the short run due to external shocks and structural rigidities.

We expect a stable long run relationship to be reflected as stable long run coefficient estimates for β , independent of the timeframe used. For this purpose, we examine the evolution of estimated coefficients by varying the endpoint of our timeframe, akin to gaining new data every quarter.

4 Sample description

4.1 Available data

Our dataset comprises macroeconomic time series at the national, cantonal, and district level. Cantonal data covers Geneva and Zurich, whereas municipal data contains time series for the 12 districts within the Canton of Zurich. Variables included are population levels, nominal income level, housing stock, interest rates, CPI and the hedonic price index as described in [14].

The raw data spans different time periods and has mixed frequencies (monthly, quarterly, annually) – for an overview see table 3. In order to conduct a quarterly analysis, cubic spline interpolation was used for time series of lower frequency to interpolate missing the data points. The final date for the beginning and end of the sample were selected in order to ensure a balanced (panel) dataset.

The final working dataset covers the 2000q4-2012q4 period, for a total of 49 observations per region per variable. For reference, the most recent cross section for 2012q4 is shown in table 1.

Following [14, 4], we treat the Canton of Geneva as a canton and as a district. Given Geneva's population and size (see table 2), this is a sensible assumption.

In the following subsections, we describe the available data for each variable in more detail with an example plot.

4.1.1 Population data

Population data is readily available for all regional levels. The national level, aggregated series was available as annual values for the years 1981 to 2013, except for 1983 which was missing.

For the canton of Zurich and its individual districts, the data consists of annual values for the period 1962 to 2014.

Population data for Geneva represented annual levels between the years

Table 1: Panel data sample for 2012q4

In decreasing order of price index

	price_hedo_apt	pop	incr_median	hstock	X3mCHFL
Bezirk Zürich	146.200	379915	428.307	211942	0.012
Bezirk Meilen	144.740	97927	547.641	47854	0.012
Bezirk Bülach	142.740	135709	468.085	63551	0.012
Canton de Genève	140.550	470512	781.721	221880	0.012
Bezirk Affoltern	138.960	49384	493.987	22173	0.012
Bezirk Horgen	137.200	118462	491.212	58006	0.012
Kanton Zürich	133.713	1406083	458.834	693922	0.012
Bezirk Uster	132.290	122694	486.586	57532	0.012
Bezirk Dietikon	131.680	83590	448.659	39845	0.012
Bezirk Winterthur	131.460	158001	438.483	74638	0.012
Schweiz	129.956	8123721	411.656	1670054	0.012
Bezirk Pfäffikon	124.060	57269	462.535	26376	0.012
Bezirk Hinwil	122.480	90616	433.858	41280	0.012
Bezirk Dielsdorf	119.030	82516	470.860	37248	0.012
Variables					
price_hedo_apt	pt Hedonic price index for apartments as given by [14]				
рор	Population numbers				
incr_median	Median real in				
hstock	Housing stock ($\#$ dwellings in districts/canton; $\#$ bldgs.				
	at national level)				0
X3mCHFL					

1989 and 2014.

4.1.2 Income level

The income data used at the national level is the nominal median *annual* nominal income, *categorized into four different employment groups*¹⁰. For this work, the mean value of the four categories was used. The timeframe available spans 1991 to 2014, reported annually.

 $^{^{10}\}mathrm{Categories}$ are: self-employed, employee, family business and apprentice

As of 2014q4	Canton of Zurich	Canton of Geneva
Geographic size $[km^2]$	1728.96	282.49
Population	1'443'436	482'545
Districts	12	_
Municipalities	169	45

Table 2: Comparison of Canton of Zurich vs Canton of Geneva

The income data used within the Canton of Zurich is the taxable median *annual* nominal income. The available time span includes the years 1999 to 2012.

For the Canton of Geneva, the data represents the median *monthly* nominal income. The data was available between 2000 and 2012. All income levels are reported in Swiss Francs

The final values used in modeling are the *real* incomes adjusted for inflation as calculated by dividing each time series by the national level CPI^{11} .

4.1.3 Interest rate data

For interest rates the monthly 3 months CHF Libor rate at the end of each quarter is used *for all regional levels* similar to Anundsen [3].

 $^{^{11}\}mathrm{While}$ cantonal level cpi was available, they showed high correlation to the national level aggregation

Variable	Region	Timeframe	Frequency	Source	Comment
Hedonic Price	e All:	2000q4-2015q2	quarterly	[14]	_
index					
Population	Nat:	1982-2014	annual	FSO	1983 missing
level					
	Zhr:	1962 - 2014	annual	ZSA	_
	Gnv:	1989 - 2014	annual	OCSTAT	_
Income leve	l Nat:	1991 - 2014	annual	FSO	by 4 employ-
(median)					ment categories ⁹
	Zhr:	1999 - 2012	annual	ZSA	annual inc
	Gnv:	2000 - 2012	annual	OCSTAT	monthly inc
CPI	All:	2000.05 - 2015.05	monthly	FSO	indexed to May
					2000
Interest rates	All:	1989.03 - 2015.06	monthly	SNB	*
Housing stock	x Nat:	1990, 2000,	mixed	FSO	_
		2009 - 2013			
	Zhr:	1990 - 2012	annual	ZSA	_
	Gnv:	1998 - 2014	annual	OCSTAT	_
Nat	: National I	level data			
Zhr	: Zurich car	ntonal and district	data		
Gnv	: Geneva ca	antonal data			
FSO : Swiss Federal Statistics Office					
ZSA	ZSA : Statistical Bureau of Canton of Zurich (Statistisches Amt)				
OCSTAT	OCSTAT : Statistical office of Canton of Geneva (Office cantonale de la statistique)				
SNB	: Swiss Nat	ional Bank			
* rates assumed identical across all districts as 3 month CHF LIBOR					F LIBOR

Table 3: Overview of available variables and their data sets for this study

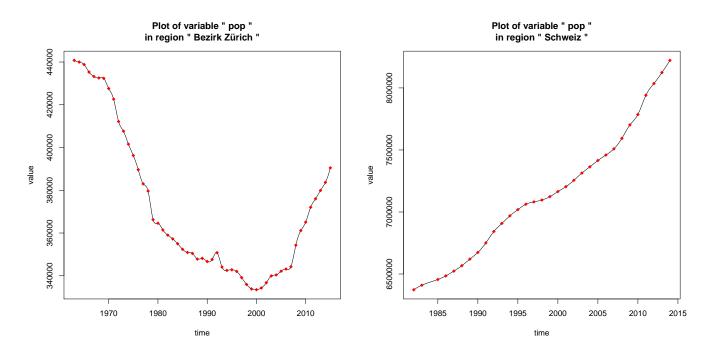
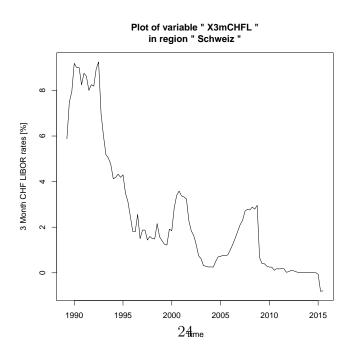



Figure 2: Population time series for district of Zurich and national level aggregation

Red diamond markers indicate original time series data points which were used to interpolate quarterly values; Black line is final quarterly series with interpolated values; regarding year index: 2000q1 = 2000.25, ..., 2000q4 = 2001

Time index: 2000q1 = 2000.25, ..., 2000q4 = 2001

Figure 4: Interest rates time series (3 month CHF Libor) used for all districts

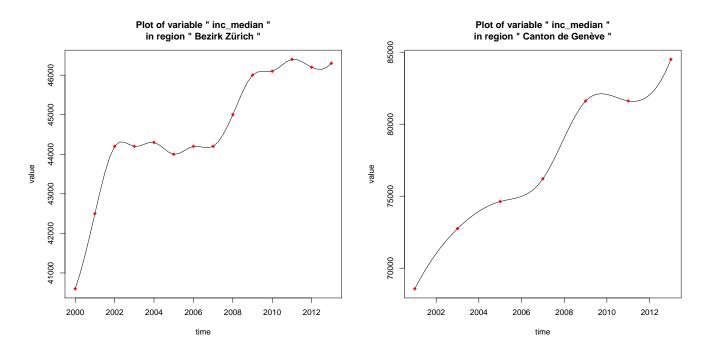
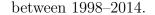


Figure 3: Population time series for district of Zurich and national level aggregation

Red diamond markers indicate original time series data points which were used to interpolate quarterly values; Black line is final quarterly series with interpolated values; regarding year index: 2000q1 = 2000.25, ..., 2000q4 = 2001


4.1.4 Housing stock data

The data points for the national level aggregation are infrequent. They represents the number of *buildings* with residential use¹² at the end of the year, with data points available for the years 1990, 2000, and 2009 to 2013 (7 data points in total); this represents the most sparsely available series.

For Zurich, the data represents the number of *dwellings* from 1990 to 2013, reported annually by the Zurich Cantonal statistics office.

Similar for Geneva, the data also represents the number of *dwellings*,

¹²including different types such as single family homes, apartment buildings, and buildings with partial residential use

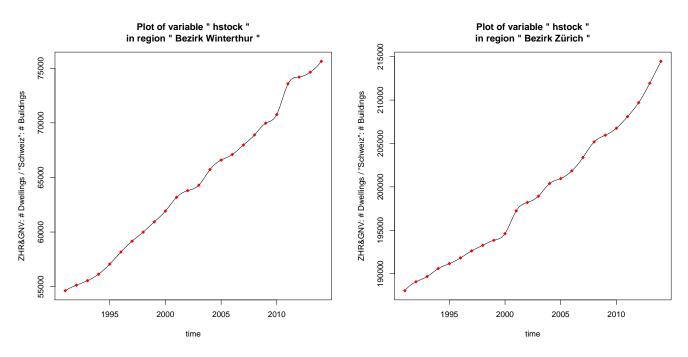


Figure 5: Housing stock time series for district of Zurich and national level aggregation

Red diamond markers indicate original time series data points which were used to interpolate quarterly values; Black line is final quarterly series with interpolated values

4.1.5 Real estate price data

We capture real estate prices for apartments using the hedonic price index as constructed in [14].

The index represents the estimated price of an 'average' apartment in each district as a function of apartment size (m^2) and a number of hedonic variables; hedonic features included are: construction year, surrounding area type (e.g. city center, suburb, rural, etc.), number of bathrooms, number of garages available, neighborhood 'quality' and building quality. An 'average apartment' is constructed from all measured values for the hedonic factors and then its price evolution fitted over time. For more detailed information we refer to the contents of [14].

The final index is reported quarterly between 2000q4 - 2015q2, normalized to 2007q1 and represent the prices for apartments.

They are available for 72 district, including Canton of Geneva as a district, and the national level aggregation represented by a weighted average of all districts.

By using a hedonic index (as compared to a traditional price-only index) we hope to capture some of the qualitative differences of the underlying assets.

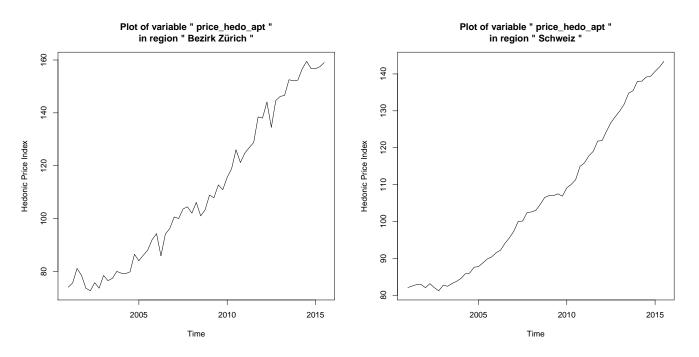


Figure 6: Hedonic price index time series for district of Zurich and national level aggregation

4.2 Unit root testing for panel data

Unit root processes are strongly dependent and highly persistent. As such, inference statistics of any estimated (level) linear model including a unit root process is highly sensitive to violations of the classic linear model assumptions¹³.

We use the Augmented Dickey Fuller test on each time series to test for unit root, using the final time frame 2000q4-2012q4. The test regression is formulated as

$$\Delta y_t = \gamma y_{t-1} + a_0 + \sum_{i=1}^4 a_i \Delta y_{t-i}$$

where y_t represents the time series tested, with the hypotheses formulated as

$$H_0: \gamma = 0$$
 (unit root present)
 $H_A: \gamma < 0$

The tests include a drift a_0 , and a maximum lag length of 4, with the final lag length determined via the AIC criterion. The results, displayed in table 4, do not reject the null of unit root processes in (almost) any of the time series. The only exception is the district of Bülach, which is only marginally rejected at the 0.05 significance level. Surprisingly, we cannot reject a unit root for interest rate in the given time period which is contrary to expectation¹⁴.

We specify a max lag length of 4, in order to allow each unit root regres-

¹³assumptions with u_t denoting estimation errors: no perfect collinearity; zero conditional mean $E(u_t|\mathbf{X}) = 0$, which also implies strict exogeneity for X; homoscedasticity $Var(u_t|\mathbf{X}) = \sigma^2 \ \forall t$; no serial correlation $Cor(u_t, u_s|\mathbf{X}) = 0$, $\forall t \neq s$

¹⁴we note that similar observations have been encountered, such as by Lai in [17], however we postpone an excursion into macroeconomics for later projects

sion to include one non-interpolated data point for the time series which are interpolated.

Given that the data sample in each region is relatively short (49 observations), AIC will allow more parameters than a criteria adjusting for small sample size (say AICc). As such, we give the ADF regression more chances to retain a higher number of lags, and as such, favor the case where at least one non interpolated data point enters the regression.

Table 4: ADF Test results

ADF Test t-statistics: We reject a unit root only for the income time series in Bezirk Bülach at the 5% level

Region	price_hedo_apt	pop	incr_median	hstock	X3mCHFL
Bezirk Affoltern	2.596	0.130	-1.459	0.398	-1.602
Bezirk Bülach	3.080	0.540	-3.035**	-0.633	-1.602
Bezirk Dielsdorf	0.594	0.974	-2.446	0.749	-1.602
Bezirk Hinwil	3.036	0.532	-1.804	1.325	-1.602
Bezirk Horgen	1.824	1.470	-2.605*	1.417	-1.602
Bezirk Meilen	1.697	-0.724	-1.584	-1.171	-1.602
Bezirk Pfäffikon	1.483	1.699	-1.718	0.985	-1.602
Bezirk Uster	2.832	0.240	-2.847*	-0.793	-1.602
Bezirk Winterthur	1.684	1.097	-2.536	0.004	-1.602
Bezirk Dietikon	0.954	0.723	-2.774*	1.095	-1.602
Bezirk Zürich	2.583	0.256	-2.242	1.795	-1.602
Canton de Genève	-0.900	-0.522	0.290	0.607	-1.602
Schweiz	1.317	-0.053	-1.684	-0.791	-1.602

Signif. codes: 0.001 `***' 0.01 `**' 0.05 `*' 0.1 ` ' 1

ADF c	ritical values w	rith drift	and 4	9 observ	vations
	critical level	1%	5%	10%	
	critical value	-3.58	-2.93	-2.60	

Variables	
$price_hedo_apt$	Hedonic price index for apartments as given by $[14]$
рор	Population numbers
$incr_median$	Median real income (nominal income divided by national cpi)
hstock	Housing stock (# dwellings in districts/canton; # bldgs at national level)
X3mCHFL	3 month CHF LIBOR

5 Results

5.1 Model specification

5.1.1 Lag length and confirming factor selection

Starting with the base case (P = Q = 5; all four factors population, income, housing stock, rates), we estimated coefficients using the three methods as described in section 3.3. Resulting individual region model fits show signs of overfitting, with R^2 values as high as 0.90 (for example, see figure 7, p.32). For reference, Abraham and Hendershott in their earlier study of the US housing market [1] find R^2 in the range of 0.5 - 0.6.

This overfit likely results from the large number of parameters relative to the number of observations per region – with (P,Q) = (5,5), we have 31 parameters to be estimated per region while the number of observations per region is limited to 49. The effective number of observations is further reduced to 44, due to the lags and differences in the variables.

Lag length selection When comparing models with shorter lag lengths $(P,Q \in \{5,4,3,2\})$, AIC and BIC suggest keeping the maximum possible lag length of base case, despite the overfit (see table 5, p. 33). In contrast, AICc favors the two cases of (P,Q) = (3,2) and (P,Q) = (2,2), with their respective AICc values being almost identical¹⁵. However, when using likelihood ratios to compare different lag lengths, any restricted model results in a $p \ll 0.001$ and would therefore be rejected.

 $^{^{15}}$ for easy readability we report $\Delta AICc$ which shows the improvement of the restricted model AICc over the unrestricted base case

Figure 7: Initial model fit results: Actual vs DFE vs GM estimations

$$(P = 5, Q = 5)$$

Signs of overfitting at the individual district level; extremely close fit of individual estimation(red) to the actual data(black) for the selected parameters; cause is likely large number of parameters (31) vs effective number of observations per district(44)

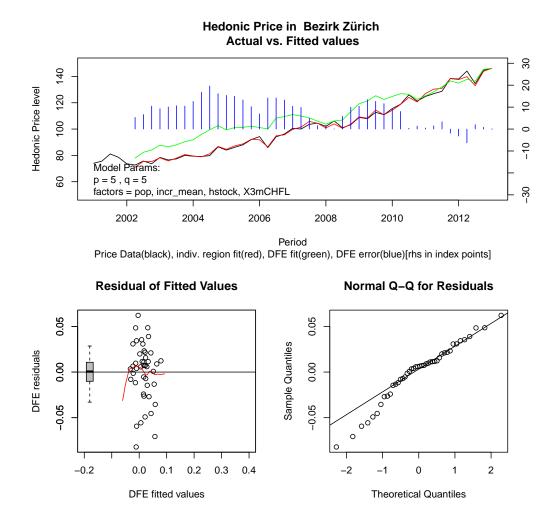
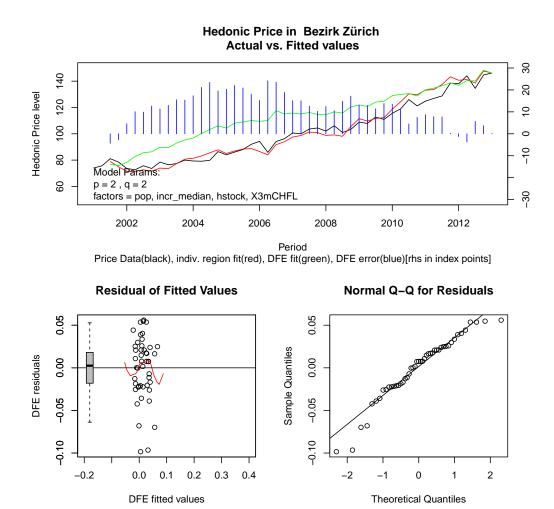


Table 5: Model selection criteria for lag lengths

The unrestricted (ur) model is t P = Q = 5; highlighted value is best fit according to AICc; smaller $\Delta AIC =$ better fit of restricted (r) model vs ur.

	Р	Q		LL.		LL.r	LL.ra	tio chi	sqdf	pval	n.obs
1	5	5	1	1614.	46						484
2	5	4	1	1614.	46 1	466.89	295	.13	44	0.00	484
3	5	3	1	1614.	46 1	405.14	418	.63	88	0.00	484
4	5	2	1	1614.	46 1	343.59	541	.74	132	0.00	484
5	4	5	1	1614.	46 1	582.29	64	.34	11	0.00	484
6	4	4	1	1614.	46 1	429.84	369	.24	55	0.00	495
7	4	3	1	1614.	46 1	378.53	471	.86	99	0.00	495
8	4	2	1	1614.	46 1	315.91	597	.10	143	0.00	495
9	3	5	1	1614.	46 1	551.02	126	.87	22	0.00	484
10	3	4	1	614.	46 1	409.66	409	.59	66	0.00	495
11	3	3	1	614.	46 1	347.58	533	.76	110	0.00	506
12	3	2	1	1614.	46 1	280.99	666	.93	154	0.00	506
13	2	5	1	614.	46 1	527.68	173	.56	33	0.00	484
14	2	4	1	1614.	46 1	387.09	454	.73	77	0.00	495
15	2	3	1	1614.	46 1	328.06	572	.79	121	0.00	506
16	2	2	1	1614.	46 1	250.29	728	.34	165	0.00	517
			Р	Q	k.ur	k.r	dBIC	dAIC		dAICc	
		1	5	5	31						_
		2	5	4	31	27	128.62	207.13		-572.04	
		3	5	3	31	23	85.62	242.63		-968.83	
		4	5	2	31	19	42.23	277.74		192.60	
		5	4	5	31	30	22.71	42.34		-202.48	
		6	4	4	31	26	167.53	259.24		-701.43	
		7	4	3	31	22	102.66	273.86		1038.81	
		8	4	2	31	18	60.41	311.10	-	1218.19	
		9	3	5	31	29	43.61	82.87		-368.66	
	1	0	3	4	31	25	166.01	277.59		-788.45	
	1	1	3	3	31	21	127.77	313.76	-	1081.41	
	1	2	3	2	31	17	92.48	358.93	-	1219.31	
	1	3	2	5	31	28	48.69	107.56		-520.17	
	1	4	2	4	31	24	169.28	300.73		-857.94	
	1	5	2	3	31	20	124.68	330.79	-	1118.28	
	_1	6	2	2	31	16	115.56	398.34	-1	220.86	


pLL : panel log Likelihood

k : number of parameters in model to be estimated

 $\Delta X \mathrm{IC}~$: smaller is better; calculated as $X \mathrm{IG.r}$ - $X \mathrm{IC.ur};$

regions = 11 (ZH excl. And elfingen) Figure 8: Reduced lag length model fit as recommended by AICc: Actual vs DFE vs GM estimations (P = 2, Q = 2)

GM individual region estimation(red) compared to the actual data(black) for the selected parameters still shows extremely close fit, with 22 parameters and 45 effective observations

Given the results described above, we decide for the case of (P,Q) = (2,2). Even though the likelihood ratios reject any model with shortened lag lengths, we note the high overfit at the individual district. As such, we gave precedence to the different information criteria during lag length selection. Within the three information criteria, we followed the recommendation of

AICc, as our sample is relatively small.

Confirming factor selection Testing for the relevancy of the selected factors yielded results summarized in table 6 (p. 36).

For the likelihood ratio tests, the pval of any model $(P, Q \in \{5, 4, 3, 2\})$ with a factor removed is $p \ll 0.001$ and thus the restricted model is always rejected.

Similarly, the AIC values of the unrestricted model are, in all but one case, consistency smaller than the values of any restricted model. Therefore the unrestricted model (factor included) is always preferable. The one exception is interest rates, for which the restricted model is slightly favored by AIC.

BIC and AICc on the other hand yield stronger results. At our selected lag length of (P,Q) = (2,2), BIC and AICc both favor the removal of each factor.

Ultimately, we reason to keep all four factors in the model due to the inconclusiveness of the likelihood ratio test, the relative weak evidence for removing a factor and theory suggesting a relationship with supply and demand.

Table 6: Model selection criteria for factors

The unrestricted (ur) model is the model including all factors at P, Q; the restricted (r) model has the factor in rmfactor entirely removed (long and short run effects)

Note: for spacing, test results for $P,Q = \{3,4\}$ have been omitted; highlighted values represent AICc recommendations given our model; smaller $\Delta AIC =$ better fit of restricted (r) model vs ur; AICc suggests removing single factors (in order of significance) interest rates, income, housing stock and population

	Р	\mathbf{Q}	rmfactor	LL.	ur	LL.r	LL.ratio	chisqdf	pval	n.obs
17	2	2	pop	1250.	29	1197.63	105.32	33	0.00	517
18	2	2	$incr_median$	1250.	29	1204.64	91.29	33	0.00	517
19	2	2	hstock	1250.	29	1203.74	93.08	33	0.00	517
20	2	2	X3mCHFL	1250.	29	1219.99	60.58	33	0.00	517
21	5	5	pop	1614.	46	1407.72	413.47	66	0.00	484
24	2	2	pop	1250.	29	1197.63	105.32	33	0.00	517
25	5	5	$incr_median$	1614.	46	1473.51	281.90	66	0.00	484
28	2	2	$incr_median$	1250.	29	1204.64	91.29	33	0.00	517
29	5	5	hstock	1614.	46	1394.16	440.59	66	0.00	484
32	2	2	hstock	1250.	29	1203.74	93.08	33	0.00	517
33	5	5	X3mCHFL	1614.	46	1451.46	326	66	0.00	484
36	2	2	X3mCHFL	1250.	29	1219.99	60.58	33	0.00	517
	Р	Q	rmfactor		k.r	dBIC	dAIC	dAICc		
17	2	2	pop	16	13	-21.73	39.32	-38.81		
18	2	2	$incr_median$	16	13	-35.77	25.29	-52.85		
19	2	2	hstock	16	13	-33.97	27.08	-51.05		
20	2	2	X3mCHFL	16	13	-66.47	-5.42	-83.55		
21	5	5	pop	31	25	163.71	281.47	-742.75		
24	2	2	pop	16	13	-21.73	39.32	-38.81		
25	5	5	$incr_median$	31	25	32.14	149.90	-874.33		
28	2	2	$incr_median$	16	13	-35.77	25.29	-52.85		
29	5	5	hstock	31	25	190.83	308.59	-715.64		
32	2	2	hstock	16	13	-33.97	27.08	-51.05		
33	5	5	X3mCHFL	31	25	76.24	194	-830.22		
36	2	2	X3mCHFL	16	13	-66.47	-5.42	-83.55		
rmf	acto	or :	factor remove	ed for t	testi	ng				

rmfactor : factor removed for testing

pLL : panel log Likelihood

k : number of parameters in model to be estimated

 ΔXIC : smaller is better; calculated as XIC.r - XIC.ur;

regions = 11 (ZH excl. Andelfingen)

36

5.2 Testing for coefficient homogeneity

5.2.1 Testing pooling assumption at the cantonal level

We start the poolability test with the high level aggregation and test whether the two cantons (Zurich, Geneva) can be pooled for an aggregate model.

To test for homogeneity, we estimate the model with all three estimation methods (DFE, MG, PMG) and compare the results using the likelihood ratio test. The results of the poolability test are reported in table 7.

Out of the three estimation methods, PMG estimation results show the highest concentrated panel likelihood, followed by DFE results and GM results.

When testing the poolability hypothesis $(H_0 : \beta_i = \beta \ \forall i; H_A : \beta_i \neq \beta \ \forall i)$, the resulting p-value = 0.433 indicates that we cannot reject the null hypothesis.

The resulting long run coefficient estimates seem to indicate that population, housing stock and rates have a positive relationship with apartment prices while income has a negative coefficient, inconsistent with the theory. Table 7: PMG estimation results for testing cantonal Level aggregations with P = 2, Q = 2

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	266.487	27.600	-8.997	-21.998	0.137	-0.057
GM	139.364	-0.455	-0.455	9.423	0.032	-0.552
PMG	274.634	0.347	-1.415	16.530	0.039	

	LL ratio	o results		
ur on II	r pmg op I I	II ratio	abjaadf	

	ur.cpLL	r.pmg.cpLL	LL.ratio	chisqdf	pval
1	276.538	274.634	3.807	4	0.433

 cpLL

L concentrated panel log Likelihood

ur.xxx unre

unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$

r.pmg.xxx restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$

PMG estimates have region specific α_i , found in appendix A.3

5.2.2 Testing pooling assumption at the district level

While the evidence supports poolability at the cantonal level, this may mask intra-cantonal heterogeneities at the district level. Hence, we continue our poolability test and apply the same methodology for all districts within the Canton of Zurich¹⁶.

The estimation results for the district level using different estimators are reported in table 8 (p.39), with region specific adjustment coefficients α_i for the PMG estimation available in the appendix A.3 due to spacing.

Coefficient estimates indicate a positive relationship of prices with population, housing stock and rates, and a negative one with income. Similar to the cantonal level pooling, this is inconsistent with theory. However, contrary to the cantonal level poolability test, the PMG estimation (which has

 $^{^{16}\}mathrm{except}$ district Andelfingen, for which the hedonic price index was not available; this leaves us with 11 districts

a higher likelihood ratio than GM and DFE) is rejected when compared to the individual, district specific models, with a likelihood ratio of 178.10 and a p-value << 0.001 (table 8, p.39).

Table 8: PMG estimation results for all districts of Zurich with P = 2, Q = 2

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	1125.069	5.873	-0.612	-1.329	0.009	-0.095
GM	491.215	-1.016	-1.016	1.171	0.012	-1.061
PMG	1170.099	2.632	-0.309	0.110	0.004	

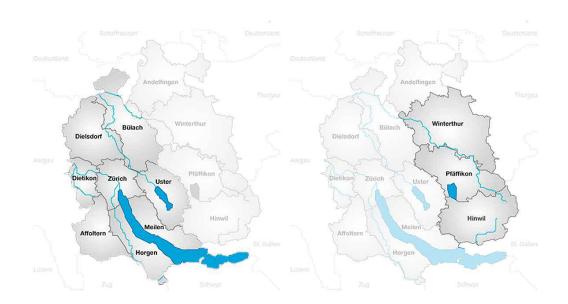
Estimated LR coefficients

LL ratio results

ur.cpLL	r.pmg.cpLL	LL.ratio	chisqdf	pval
1250.285	1170.099	160.373	40	0.000

cpLL concentrated panel log Likelihood

ur.xxx unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$ r.pmg.xxx restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$ PMG estimates have region specific α_i , found in appendix A.3


Further subdivision of the canton of Zurich We continue by further subdividing the pooling regions into three smaller geographical regions. For this, we select districts based on their proximity to Zurich's city center and split into three subsets: Zurich subregion I includes all districts bordering the city of Zurich, while Zurich subregion II consists of all the other districts (see figure 9, p. 41). Subregion III represents the districts bordering the Zurich lake, overall known for its affluent quarters and high end housing, including the district of Meilen, colloquially termed "Gold Coast".

The hypothesis behind this subdivision is that districts with a close proximity to Zurich district will have closer economic ties to the city center (e.g. more desirable for commuters, better transportation links etc.) while the other districts may be linked to other centers of economic activity, e.g. the next bigger city of Winterthur in the district of Winterthur.

We test the pooling assumption based on these smaller geographical regions and find results as shown in table 9 on page 42.

For subregion I & II, similar to the results for all districts, likelihood ratio test rejects the pooling assumption at the 5% level with $pval \approx 0.000$ for subregion I and pval = 0.036 for subregion II, albeit marginally.

Lastly, results indicate that we *cannot* reject the pooling assumption for subregion III at the 5% confidence level with a pval = 0.094. Coefficient estimates for subregion III indicate, again, a positive relationship with population and housing stock, a negative relationship with income and no relationship with interest rates. Adjustment coefficients range between [-0.93, -0.13] (see appendix A.3).

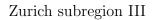


Figure 9: Subdivision of Zurich districts into three subregions Original Image source: Canton of Zurich; http://www.bezirke.zh.ch/

Table 9: PMG estimation results for Zurich subregions with P = 2, Q = 2

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	823.002	7.294	-0.650	-1.921	0.022	-0.070
GM	343.283	-1.007	-1.007	1.291	0.013	-1.061
PMG	855.063	2.950	-0.400	-0.076	0.010	

Zurich Subregion I: Estimated LR coefficients

	ur.cpLL	r.pmg.cpLL	LL.ratio	chisqdf	pval
1	922.391	855.063	134.655	28	0.000

Zurich Subregion I: LL ratio results

Zurich Subregion II: Estimated LR coefficients

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	315.321	1.201	0.555	1.181	0.005	-0.606
GM	142.334	-1.041	-1.041	0.853	0.009	-1.160
PMG	319.648	2.177	0.736	0.469	0.008	

Zurich Subregion II: LL ratio results

	ur.cpLL	r.pmg.cpLL	LL.ratio	chisqdf	pval
1	327.894	319.648	16.492	8	0.036

Zurich Subregion III: Estimated LR coefficients

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	321.129	5.179	-3.436	0.622	-0.008	-0.290
GM	252.573	-2.810	0.251	7.032	0.000	-1.015
PMG	331.420	4.131	-2.993	1.299	0.000	

Zurich Subregion III: LL ratio results

	ur.cpLL	r.pmg.cpLL	LL.ratio	chisqdf	pval
1	338.198	331.420	13.555	8	0.094

cpLL concentrated panel log Likelihood

ur.x unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$

r.pmg.x restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$ PMG estimates have region specific α_i , found in appendix A.3

5.3 Estimating individual district models

Given that the district level pooling assumption is rejected when considering all districts within the Canton of Zurich, we report the individual district level fits of (6). A summary of the estimated long run coefficients can be found in table 10. Other short run parameter estimates can be found in appendix A.4 due to the spacing required to report all values.

As we would expect given the rejection of poolability in the previous sections, there seems to be no particular pattern in the sign, magnitude and significance of the long run coefficients (β_i) across all districts.

Long run population coefficient is $\beta_{pop,i} > 0$ in 10 out of 14 regions considered, though only 4 estimates are significant at the 5% level in total; income is $\beta_{inc,i} > 0$ in 8 out of 14 regions, with 5 significant estimates in total; similarly $\beta_{hstock,i} > 0$ in 8 of 14 regions with 3 out of 14 significant in total¹⁷.

It is interesting to note, all regions' interest estimates are consistently ≈ 0 , albeit generally insignificant. This is consistent with the factor selection process where AICc suggested that the removal of interest rates would result in the least information loss (see table 6, 36).

Additionally, all regions exhibit a significant, negative adjustment coefficient ($\alpha_i < 0$), albeit with differing magnitude. This indicates that there is an error correction process in effect. The speed of adjustment varies, with the district of Meilen exhibiting the slowest correction ($\alpha_{Meilen} = -0.345$) and districts Dietikon, Hinwil and Horgen exhibiting slight "over-correction" ($\alpha_i < -1.100$).

¹⁷however, $\beta_{hstock,Geneva}$ seems unusually high compared to its peers.

Table 10: Overview of individual region model long run coefficient estimates

Expectation: theory suggests positive relationship with population & income; negative relationship with housing stock; error correction back to long run relationship with speed $-1 < \alpha < 0$

	α	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	match expectation
Bezirk Affoltern Estimate SE	-1.06*** 0.24	-2.64 2.95	$0.16 \\ 0.57$	3.80. 2.18	-0.01 0.01	
Bezirk Bülach Estimate SE	-0.99*** 0.23	-0.23 2.26	3.72** 1.27	$3.65 \\ 2.57$	0.04^{*} 0.01	
Bezirk Dielsdorf Estimate SE	-1.06*** 0.25	3.22* 1.30	$0.44 \\ 0.59$	-0.89 1.40	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	\checkmark
Bezirk Dietikon Estimate SE	-1.39*** 0.24	$4.18 \\ 5.17$	-0.72 0.85	-1.48 6.28	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	
Bezirk Hinwil Estimate SE	-1.16*** 0.26	$0.00 \\ 2.30$	$2.29. \\ 1.24$	$1.96 \\ 1.86$	$0.02 \\ 0.01$	
Bezirk Horgen Estimate SE	-1.40*** 0.28	$6.61 \\ 4.77$	-3.63. 1.87	-1.14 3.74	$0.01 \\ 0.02$	
Bezirk Meilen Estimate SE	-0.35* 0.16	-6.78** 2.28	6.95*** 1.79	9.21*** 1.71	$0.02 \\ 0.02$	
Bezirk Pfäffikon Estimate SE	-0.96*** 0.26	$3.18 \\ 3.43$	$-0.45 \\ 1.07$	-0.28 2.39	$0.00 \\ 0.01$	
Bezirk Uster Estimate SE	-0.95*** 0.23	5.22*** 1.39	$-1.30 \\ 0.87$	-2.21. 1.19	0.03^{**} 0.01	
Bezirk Winterthur Estimate SE	-1.01*** 0.26	$1.92 \\ 3.10$	$1.10 \\ 0.95$	$0.87 \\ 3.03$	$\begin{array}{c} 0.01 \\ 0.01 \end{array}$	
Bezirk Zürich Estimate SE	-0.87*** 0.20	4.90*** 1.27	-3.36** 1.06	-0.60 2.65	-0.00 0.01	
Canton de Genève Estimate SE	-0.55* 0.23	0.27 2.12	-1.37* 0.63	16.58** 5.58	0.04*** 0.01	
Kanton Zürich Estimate SE	-0.36 0.26	$1.87. \\ 0.98$	$\begin{array}{c} 0.61 \\ 0.50 \end{array}$	2.27* 1.09	0.03** 0.01	
Schweiz Estimate	-0.89***	4.55**	0.27*	0.09	0.03***	

standard error; for β s: SE and significance represent estimates for $(-1) * \alpha \beta$

SE:

5.4 Coefficient estimates over time - Estimating model fits with varying timeframes

As a rough measure of judging whether the relationship between prices and the fundamental factors over time are stable, we estimate the relationship using varying timeframes, starting at the first observation 2000q4 and ending between 2008q4 and 2012q4. A stable long run relationship should in theory be represented by a constant long-run coefficient estimate, independent of the timeframe.

We estimate the varying timeframes over all districts in the canton of Zurich, including subregion I & II & III, using all methodologies (individual region fit, PMG, MG, DFE).

The results are summarized as sets of graphs displayed in appendix A.5.

In general, we can see that coefficient estimates vary depending on the timeframe used for all districts and estimation methods (none of the estimates are horizontal). If a fundamental relationship is captured by the specified model, we expect the estimations to remain constant over time. Judging by only the plots, we do not see any indication of a stable long run relationship, however, additional analysis quantitative analysis would be in order to draw a robust conclusion.

6 Discussion & Limitations

6.1 Limitations

A number of factors could skew the results obtained in this study. First, the limitation due to the short time series for each panel (T = 49, 47 with lags included). In the introduction of the PMG estimate, [19] explicitly states as a requirement that "T[number of observations per region] must be large enough such that we can estimate the model for each group separately". While we are able to estimate the individual models, we have seen signs of overfitting for the individual models, likely due to short observations relative to the number of parameters.

In addition, this problem may be compounded by the fact that we interpolated quarterly series for three out of four factors (population, income and housing stock) where only annual observations were available, possibly introducing data which does not reflect reality as much as we would like. Finally, the choice of variables and their proxy may be imperfect; e.g. by choosing Zurich and Geneva as two examples, we captured two key housing markets, however given their similarity (socially comparatively wealthy, geographically characterized by lake proximity and with a strong focus on the service and financial industry) they may not be the best study candidates.

6.2 Discussion

Limited evidence in favor of poolability As the numeric results have shown, we do not reject pooling of long run coefficients at the cantonal level (between Zurich and Geneva). However, further analysis at the district level within the Canton of Zurich shows signs of heterogeneity and we are not able to reject pooled long run coefficients. This in turn seems to contradict the pooling assumption at the cantonal level; how can we pool different cantonal representations when there is no evidence in favor of homogeneous coefficients within the canton itself? Potentially, the similarity of Zurich and Geneva come to mind.

The first lesson one can draw is that homogeneity/poolability of long run coefficients should not be assumed as a given when modeling price dynamics.

Instead, given sufficient data availability, a disaggregated analysis should be preferred and poolability should be tested before moving with either continuing at a disaggregated level to analyze regional discrepancies, or with a higher aggregation level if evidence supports this approach.

Mixed factor coefficients at the district level Given that within the scope of this study there was no evidence in favor of pooling at the district level, we continued with estimating district specific models in the canton of Zurich. Here, the coefficients for the four fundamental factors showed mixed behavior.

The most consistent factor was interest rates, consistent with a near zero coefficient estimate, indicating that in our model, the three month CHF Libor rate plays a negligible effect. This contradicts theory, which suggests interest rates play a role both, on the demand as well as supply side by influencing mortgage availability and affordability, as well as investment cost for any housing related projects. This leaves us with the question, why does none of this seem to show up? One potential reason could be that by using a single interest rate variable to try and capture both supply and demand, we may have inadvertently suppressed the nuances of two credit markets, where mortgage rates available to buyers and investment rates available for investment efforts may differ. Potentially, a more targeted approach such as using LTV rations as in [10, 11] may have yielded more significant relationships.

No sign of stable coefficient estimates over time As the plots of section 5.4 have shown, there is no apparent evidence for a stable long run relationship. Not only do some region specific long run coefficients vary in amplitude over time, such as $\beta_{Pop,Dietikon}$, varying between a mag-

nitude around 0.00 (2000q4-2009q4) to 10.00 (2000q4 - 2010q2), oftentimes the coefficients also change signs, such as for the district of Meilen with $\beta_{pop,Meilen} \in [-8.00, 7.50]$. Since the long run coefficient is estimated in log variables, the latter would suggest that a 1% increase in population would have caused a -8% or +7.5% change in prices respectively - a substantial difference in relationship. The question whether this is caused by a missing fundamental relationship in the give time period or due to the model not properly capturing the dynamics needs to be clarified in further detail. Additionally, the methodology for determining long run coefficient stability can be improved, given that we are only examining this relationship by evaluating coefficient evolution using plots of different timeframes. By sequentially shortening the timeframe over which we estimate the coefficients, we are additionally shortening an already short observation time period, thus exacerbating the ill effects of short observation periods.

6.2.1 Comparison of this model vs the LPPLS model

This work looks at 12 districts (when counting the Canton of Geneva) which are also covered in the most recent publication of the biannual Risk Analysis of the Real Estate Market in Switzerland [5]. Of the districts which are covered in both, [5] classifies the district of Bülach as to Watch meaning a bubble signal is being reported by the LPPLS analysis. Additionally, the districts of Pfäffikon, Hinwil, Uster, Horgen, and Dielsdorf are reported as "To Monitor" which indicates either that a post-bubble regime change is underway, or that future periods may continue building a bubble.

In regard to these districts, while our estimated model with the most data available (2000q4 - 20012q4) showed error correction terms as expected for an error correction process ($\alpha < 0$), none of these districts showed stable long run relationships over time. As discussed above, one of the reasons hereof could the lack of a fundamental relationship.

7 Conclusion

We set out to analyze the Swiss real estate price dynamics with a model driven by fundamental factors using quarterly panel data.

After evaluating existing works, we settled on modelling apartment prices as a function of population, income, housing stock and interest rates using the inverted demand approach.

The model we specify, allows for a long run stable (cointegrated) relationship between prices and the fundamentals, while allowing short run dynamics to deviate from the long run relationship. Specifically, the chosen approach (using pooled mean group estimation) allows us to test the hypothesis of homogeneous long run coefficients in different districts.

We gather panel data at the national level, at the cantonal level for Zurich and Geneva, as well as for the 12 districts within the Canton of Zurich.

The results suggest that a regionally pooled model cannot be assumed to capture the price dynamics properly, even for district within a canton, as shown by results in section 5.2.2. Further regional subdivision within the Canton of Zurich is necessary to find areas where the pooling assumption cannot be rejected. For the homogeneity hypothesis we therefore conclude that 1) in general, to obtain a feasible description for regional real estate market dynamics, it may be preferable to disaggregate the analysis to a district level, as coefficient homogeneity does not seem to hold per default at the cantonal level; 2) regional aggregation can be possible, however administrative borders such as cantons may not be a good aggregation criteria. It seems to be up to the investigator to disentangle potential regional relationships.

Following the evidence against poolability, we estimate individual regional models for each district. One conclusion we are able to draw is that interest rates (as captured by the three month CHF Libor) does not seem to contribute towards house price dynamics.

Finally, we look at the evolution of coefficients over time by estimating the model with different data timeframes, starting in 2000q4 and ending between 2008q4 and 2012q4. We find no evidence suggesting stable coefficient estimates over time, with results subject discussions in section 6.

Acknowledgements My gratitude to my supervisors Dorsa Sanadgol, Diego Ardila, and tutor Prof. Didier Sornette, for their continued input, understanding and support.

References

- Jesse M Abraham and Patric H Hendershott. Bubbles in Metropolitan Housing Markets. Journal of Housing Resarch, 7(June):191–207, 1994.
- [2] Hirotugu Akaike. A New Look at the Statistical Model Identification. *Automatic Control, IEEE Transactions on*, 19(6):716–723, 1974.
- [3] Andre K. Anundsen. Regional US house price formation : One model fits all ? 2014.
- [4] Diego Ardila, Dorsa Sanadgol, and Didier Sornette. Identification and critical time forecasting of real estate bubbles in the U.S.A and Switzerland. pages 1–56, 2014.
- [5] Diego Ardila, Dorsa Sanadgol, and Didier Sornette. Risk Analysis of the Real Estate Market in Switzerland (Diagnostic as of 2014-Q4). 1:1–17, 2015.
- [6] A. Banerjee, J. J. Dolado, J. W. Galbraith, and D. F. Hendry. Cointegration, error correction, and the econometric analysis of nonstationary data. page 344, 1993.
- [7] Bundesamt f
 ür Statistik BfS. Bau- und Wohnungswesen Panorama. Technical report, 2016.
- [8] Robert R. Callis and Melissa Kresin. U.S. Census Bureau News: Residential Vacancies and Home Ownership in the Fourth Quarter 2015. 2016.
- [9] James Crotty. Structural causes of the global financial crisis: A critical assessment of the 'new financial architecture'. *Cambridge Journal of Economics*, 33(4 SPEC. ISS.):563–580, 2009.

- [10] John V. Duca, John Muellbauer, and Anthony Murphy. House Prices and Credit Constraints : Making Sense of the U. S. Experience. 121(March):533–551, 2011.
- [11] John V Duca, John Muellbauer, and Anthony Murphy. Shifting Credit Standards and the Boom and Bust in U.S. House Prices. (0076), 2011.
- [12] Robert F Engle and C W J Granger. Co-Integration and Error Correction : Representation , Estimation , and Testing Published by : The Econometric Society Stable URL : http://www.jstor.org/stable/1913236
 . yet drift too far apart . Typically economic theory will propose forces which tend to. *Econometrica*, 55(2):251–276, 1987.
- [13] Joshua Gallin. Real Estate The Long-Run Relationship Between House. pages 635–658, 2008.
- [14] Ioannis Georgiadis. Bubble Analysis of the Swiss Real Estate Market using a hedonic index. 2015.
- [15] Cm M Hurvich and Chih-Ling L Tsai. Regression and time series model selection in small samples. *Biometrika*, 76(2):297–307, 1989.
- [16] Soren Johansen. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. *Econometric Theory*, 14(July 2015):517–524, 1995.
- [17] Kon S. Lai. The puzzling unit root in the real interest rate and its inconsistency with intertemporal consumption behavior. *Journal of International Money and Finance*, 27(1):140–155, 2008.
- [18] Vyacheslav Mikhed and Petr Zemčík. Do house prices reflect fundamentals? Aggregate and panel data evidence. Journal of Housing Economics, 18(2):140–149, 2009.

- [19] M. Hashem Pesaran, Yongcheol Shin, and Ron P. Smith. Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. (September 2015), 1999.
- [20] Gideon Schwarz. Estimating The Dimension Of A Model. 1978.
- [21] Elizabeth Steiner. Swiss National Bank Working Papers. 2010.
- [22] Swiss National Bank. Financial stability report 2015. Financial Stability Report, pages 1–126, 2015.
- [23] UBS. UBS Global Real Estat Bubble Index. 2015.
- [24] Petar Vujanovic. 2015 OECD Economic Survey of Switzerland Policies to Tame the Housing Cycle. (December), 2015.
- [25] S. S. Wilks. The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses. The Annals of Mathematical Statistics, 9(1):60-62, 1938.
- [26] Jian Zhou. Testing for Cointegration between House Prices and Economic Fundamentals. *Real Estate Economics*, 38(4):599–632, 2010.

A Appendix

A.1 Variable definitions

Abbreviation	Variable	Source/Comment			
price_hedo_apt	Hedonic price index for apartments	[14]			
рор	Population level	FSO/ZSA/OCSTAT			
epi	Consumer Price Index as defined	FSO			
	by "Landesindex der Konsumenten-				
	preise"				
ncr_median	Median real income (nominal income	FSO/ZSA/OCSTAT			
	divided by national cpi)				
nstock	Housing stock ($\#$ dwellings in dis-	FSO/ZSA/OCSTAT			
	tricts/canton; $\#$ bldgs at national				
	level)				
X3mCHFL	3 month CHF LIBOR	SNB			
FSO : Sv	viss Federal Statistics Office				
ZSA : Statistical Bureau of Canton of Zurich (Statistisches Amt)					
OCSTAT : Statistical office of Canton of Geneva (Office cantonale de la statistique					

A.2 Unit root test lag lengths selected by AIC

Region	price_hedo_apt	pop	$incr_median$	hstock	X3mCHFL
Bezirk Affoltern	4	4	4	4	1
Bezirk Bülach	3	4	4	3	1
Bezirk Dielsdorf	2	4	4	4	1
Bezirk Hinwil	3	4	4	4	1
Bezirk Horgen	2	4	4	4	1
Bezirk Meilen	1	4	4	4	1
Bezirk Pfäffikon	4	4	4	4	1
Bezirk Uster	3	4	4	3	1
Bezirk Winterthur	3	4	4	4	1
Bezirk Dietikon	3	4	4	4	1
Bezirk Zürich	4	4	4	4	1
Canton de Genève	3	3	4	3	1
Schweiz	3	3	3	4	1

Table 11: ADF test number of lag terms selected by AIC

Variables

price_hedo_apt	Hedonic price index for apartments as given by [14]
pop	Population numbers
incr_median	Median real income (nominal income divided by national cpi)
hstock	Housing stock (# dwellings in districts/canton; # bldgs at national level)
X3mCHFL	3 month CHF LIBOR

A.3 Model estimation results: region specific adjustment coefficients α_i

Table 12: PMG estimation results for testing cantonal Level aggregations with P = 2, Q = 2

	cpLL	β_{pop}	β_{inc}	β_{hstor}	$_{ck}$ β_{rates}	α
DFE	266.487	27.600	-8.997	-21.99	0.137	-0.057
GM	139.364	-0.455	-0.455	9.42	0.032	-0.552
PMG	274.634	0.347	-1.415	16.53	0.039	
	ur.cpLL	r.pmg.cp	LL LL	.ratio	chisqdf	pval
1	276.538	274.6	534	3.807	4	0.433

Estimated LR coefficients

Individual region specific adjustment coefficients

	Canton de Genève	Kanton Zürich
DFE	-0.057	-0.057
GM	-0.552	-0.359
PMG	-0.542	-0.017

cpLL concentrated panel log Likelihood

ur.xxx unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$

r.pmg.xxx

x restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$ PMG estimates have region specific α_i , found in appendix A.3

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	1125.069	5.873	-0.612	-1.329	0.009	-0.095
GM	491.215	-1.016	-1.016	1.171	0.012	-1.061
PMG	1170.099	2.632	-0.309	0.110	0.004	
u	r.cpLL r	.pmg.cpL	L LL.r	atio cl	nisqdf	pval
12	250.285	1170.09	9 160	.373	40	0.000

Table 13: PMG estimation results for all districts with P = 2, Q = 2

Individual	region	specific	adjustment	coefficients
	0	1	J	

	Bezirk Affolte	ern Bezirk	Bülach	Bezirk Die	lsdorf	Bezirk H	inwil
DFE	-0.0)95	-0.095	-	-0.095	-(0.095
GM	-1.0)61	-0.992	-	-1.016		1.016
PMG	-0.8	377	-0.228	-	-0.317	-(0.347
	Bezirk Horg	gen Bezirk I	Meilen	Bezirk Pfäf	ffikon	Bezirk Us	ster
DFE	-0.0	95	-0.095	_	0.095	-0.	095
GM	-1.0	016	-1.016	-	1.016	-1.	016
PMG	-0.0	24	0.022	_	0.952	-0.	650
	Bezirk	Winterthur	Bezirk	. Dietikon	Bezirk	Zürich	
_	DFE	-0.095		-0.095		-0.095	
	GM	-1.016		-1.016		-1.016	
	PMG	-0.605		-1.350		-0.023	

pLL panel log Likelihood

cpLL contentrated panel log Likelihood

ur.x unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$

r.pmg.x restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	823.002	7.294	-0.650	-1.921	0.022	-0.070
GM	343.283	-1.007	-1.007	1.291	0.013	-1.061
PMG	855.063	2.950	-0.400	-0.076	0.010	
u	r.cpLL r	.pmg.cpl	LL LL.	ratio d	chisqdf	pval
1 9	22.391	855.0	63 134	1.655	28	0.000

Table 14: PMG estimation results for Zurich subregion I with P = 2, Q = 2

Individual region specific adjustment coefficients

	Bezirk Affoltern	Bezirk Bülach	Bezirk Dielsdorf	Bezirk Horgen
DFE	-0.070	-0.070	-0.070	-0.070
GM	-1.061	-0.992	-1.007	-1.007
PMG	-0.776	-0.203	-0.296	-0.021
	Bezirk Meilen	Bezirk Uster	Bezirk Dietikon	Bezirk Zürich
DFF	E -0.070	-0.070	-0.070	-0.070
GM	-1.007	-1.007	-1.007	-1.007
PMO	G 0.020	-0.653	-1.389	-0.032

pLL panel log Likelihood

cpLL contentrated panel log Likelihood

ur.x unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$

r.pmg.x restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$ PMG estimates have region specific α_i , found in appendix

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	315.321	1.201	0.555	1.181	0.005	-0.606
GM	142.334	-1.041	-1.041	0.853	0.009	-1.160
PMG	319.648	2.177	0.736	0.469	0.008	
u	r.cpLL r	.pmg.cpI	LL LL.	ratio c	hisqdf	pval
1 3	327.894	319.6	48 16	5.492	8	0.036

Table 15: PMG estimation results for Zurich subregion II with P = 2, Q = 2

Individual region specific adjustment coefficients

	Bezirk Hinwil	Bezirk Pfäffikon	Bezirk Winterthur
DFE	-0.606	-0.606	-0.606
GM	-1.160	-0.956	-1.041
PMG	-0.450	-0.964	-0.999

pLL panel log Likelihood

cpLL contentrated panel log Likelihood

ur.x unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$

r.pmg.x restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$

Table 16: PMG estimation results for Zurich subregion III with P = 2, Q = 2

	cpLL	β_{pop}	β_{inc}	β_{hstock}	β_{rates}	α
DFE	321.129	5.179	-3.436	0.622	-0.008	-0.290
GM	252.573	-2.810	0.251	7.032	0.000	-1.015
PMG	331.420	4.131	-2.993	1.299	0.000	
	ır.cpLL	r.pmg.cp	LL LL.	ratio	chisqdf	pval
1	338.198	331.4	120 13	3.555	8	0.094

Individual region specific adjustment coefficients

	Bezirk Horgen	Bezirk Meilen	Bezirk Zürich
DFE	-0.290	-0.290	-0.290
GM	-1.015	-0.259	-0.781
PMG	-0.930	-0.131	-0.805

pLL panel log Likelihood

cpLL contentrated panel log Likelihood

ur.x unrestricted model, with region specific $\alpha_i, \beta_i, \gamma_i, \lambda_i$

r.pmg.x restricted model with pooled long run coefficient, $\beta_i = \beta \forall i$

Individual region model fits A.4

Table 17: Individual region model fit: Bezirk Affoltern

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]*
(Intercept)	-5.910	10.866	-0.544	0.590	
lpha	-1.061	0.241	-4.413	0.000	***
eta_{pop}	-2.636	2.948	-0.894	0.378	
β_{inc}	0.162	0.575	0.281	0.780	
eta_{hstock}	3.795	2.184	1.738	0.092	
β_{rates}	-0.010	0.010	-1.041	0.306	
$lag(diff(log(price_hedo_apt)), 1)$	-0.136	0.160	-0.847	0.403	
lag(diff(log(pop)), 0)	25.305	19.194	1.318	0.197	
lag(diff(log(pop)), 1)	-11.223	18.763	-0.598	0.554	
$lag(diff(log(incr_median)), 0)$	-1.454	1.105	-1.315	0.198	
$lag(diff(log(incr_median)), 1)$	-1.800	1.119	-1.608	0.118	
lag(diff(log(hstock)), 0)	14.049	8.972	1.566	0.127	
lag(diff(log(hstock)), 1)	-21.535	9.319	-2.311	0.027	*
lag(diff(X3mCHFL), 0)	-0.034	0.021	-1.640	0.111	
lag(diff(X3mCHFL), 1)	-0.037	0.019	-1.959	0.059	
\star for long	run coeffici	ents β ; Std.Err	or, t-value,	$\Pr(), represent$	ıt

Multiple $R^2 {:}~0.687$; Adjusted $R^2 {:}~0.55$

 $\begin{array}{c} \text{estimates for } (-1)*\alpha\beta \\ \text{Signif. codes:} \quad 0 \ `^{***} \ 0.001 \ `^{**} \ 0.01 \ `^* \ 0.05 \ `.' \ 0.1 \ ` \ ' \ 1 \end{array}$

Table 18: Individual region model fit: Bezirk Bülach

	Estimate	[Std. Error]*	[t-value]*	$[\Pr(> t)]\star$	[Signif.]*		
(Intercept)	-55.091	14.026	-3.928	0.000	***		
α	-0.992	0.229	-4.323	0.000	***		
eta_{pop}	-0.230	2.263	-0.102	0.920			
β_{inc}	3.723	1.274	2.922	0.006	**		
eta_{hstock}	3.653	2.568	1.423	0.165			
β_{rates}	0.039	0.014	2.710	0.011	*		
$lag(diff(log(price_hedo_apt)), 1)$	0.083	0.169	0.493	0.625			
lag(diff(log(pop)), 0)	-24.620	32.270	-0.763	0.451			
lag(diff(log(pop)), 1)	0.217	31.211	0.007	0.994			
$lag(diff(log(incr_median)), 0)$	0.203	0.896	0.226	0.822			
$lag(diff(log(incr_median)), 1)$	-1.720	1.056	-1.628	0.113			
lag(diff(log(hstock)), 0)	3.048	11.564	0.264	0.794			
lag(diff(log(hstock)), 1)	1.678	9.642	0.174	0.863			
lag(diff(X3mCHFL), 0)	-0.015	0.015	-1.007	0.321			
lag(diff(X3mCHFL), 1)	-0.013	0.015	-0.820	0.418			
★ for long	\star for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$							
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							

Multiple $R^2{:}$ 0.574 ; Adjusted $R^2{:}$ 0.387

Multiple R^2 :	0.668:	Adjusted	R^2 :	0.523
mumple <i>n</i> .	0.000,	rujusicu	10.	0.020

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★
(Intercept)	-26.227	7.375	-3.556	0.001	**
lpha	-1.055	0.251	-4.210	0.000	***
eta_{pop}	3.215	1.300	2.473	0.019	*
eta_{inc}	0.443	0.587	0.755	0.456	
eta_{hstock}	-0.894	1.136	-0.788	0.437	
β_{rates}	0.012	0.009	1.270	0.213	
$lag(diff(log(price_hedo_apt)), 1)$	-0.117	0.151	-0.775	0.444	
lag(diff(log(pop)), 0)	18.329	13.243	1.384	0.176	
lag(diff(log(pop)), 1)	-30.607	13.886	-2.204	0.035	*
$lag(diff(log(incr_median)), 0)$	-1.426	1.032	-1.382	0.177	
$lag(diff(log(incr_median)), 1)$	-1.424	1.011	-1.409	0.169	
lag(diff(log(hstock)), 0)	-16.565	9.052	-1.830	0.077	•
lag(diff(log(hstock)), 1)	18.774	8.134	2.308	0.028	*
lag(diff(X3mCHFL), 0)	-0.009	0.016	-0.561	0.579	
lag(diff(X3mCHFL), 1)	-0.009	0.017	-0.521	0.606	
* for long run coefficients β ; Std.Error, t-value, Pr(), represent					
estimates for $(-1) * \alpha \beta$					
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1					

Table 20: Individual region model fit: Bezirk Dietikon

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★	
(Intercept)	-31.155	15.650	-1.991	0.055	•	
α	-1.392	0.237	-5.876	0.000	***	
eta_{pop}	4.183	5.175	0.808	0.425		
eta_{inc}	-0.718	0.854	-0.841	0.407		
eta_{hstock}	-1.482	6.283	-0.236	0.815		
β_{rates}	0.010	0.012	0.856	0.398		
$lag(diff(log(price_hedo_apt)), 1)$	0.285	0.159	1.785	0.084		
lag(diff(log(pop)), 0)	52.787	34.705	1.521	0.138		
lag(diff(log(pop)), 1)	-68.795	30.836	-2.231	0.033	*	
$lag(diff(log(incr_median)), 0)$	0.913	1.062	0.860	0.396		
$lag(diff(log(incr_median)), 1)$	1.005	1.172	0.857	0.398		
lag(diff(log(hstock)), 0)	-32.466	29.250	-1.110	0.275		
lag(diff(log(hstock)), 1)	40.045	25.571	1.566	0.127		
lag(diff(X3mCHFL), 0)	0.018	0.018	0.992	0.329		
lag(diff(X3mCHFL), 1)	-0.032	0.019	-1.713	0.096		
\star for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$						
Signif. codes: 0^{***}).001 (*** 0.	01 '*' 0.05 '.' 0	.1 ``1			

Table 21: Individual region model fit: Bezirk Hinwil

Multiple R^2 :	0.645 : Ad	justed R^2 : 0.489	
multiple n.	0.040 , Mu	Justicu II . 0.405	

	Estimate	[Std. Error]*	[t-value]*	$[\Pr(> t)]\star$	[Signif.]★	
(Intercept)	-34.745	10.284	-3.379	0.002	**	
α	-1.160	0.264	-4.391	0.000	***	
eta_{pop}	0.003	2.300	0.001	0.999		
eta_{inc}	2.293	1.237	1.854	0.073		
eta_{hstock}	1.961	1.861	1.054	0.300		
eta_{rates}	0.016	0.012	1.376	0.178		
$lag(diff(log(price_hedo_apt)), 1)$	0.044	0.179	0.244	0.809		
lag(diff(log(pop)), 0)	9.078	20.105	0.452	0.655		
lag(diff(log(pop)), 1)	-21.221	22.567	-0.940	0.354		
$lag(diff(log(incr_median)), 0)$	1.666	0.864	1.929	0.063		
$lag(diff(log(incr_median)), 1)$	1.096	0.934	1.174	0.249		
lag(diff(log(hstock)), 0)	7.808	7.106	1.099	0.280		
lag(diff(log(hstock)), 1)	-6.826	6.678	-1.022	0.314		
lag(diff(X3mCHFL), 0)	0.009	0.016	0.538	0.595		
lag(diff(X3mCHFL), 1)	0.016	0.016	0.983	0.333		
\star for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★		
(Intercept)	-51.997	15.366	-3.384	0.002	**		
α	-1.395	0.279	-5.010	0.000	***		
eta_{pop}	6.613	4.769	1.387	0.175			
eta_{inc}	-3.629	1.868	-1.943	0.061			
eta_{hstock}	-1.145	3.744	-0.306	0.762			
β_{rates}	0.008	0.015	0.533	0.598			
$lag(diff(log(price_hedo_apt)), 1)$	0.106	0.168	0.630	0.533			
lag(diff(log(pop)), 0)	13.895	19.862	0.700	0.489			
lag(diff(log(pop)), 1)	2.551	23.103	0.110	0.913			
$lag(diff(log(incr_median)), 0)$	-1.821	1.111	-1.640	0.111			
$lag(diff(log(incr_median)), 1)$	0.398	1.349	0.295	0.770			
lag(diff(log(hstock)), 0)	3.312	15.547	0.213	0.833			
lag(diff(log(hstock)), 1)	-38.146	14.723	-2.591	0.014	*		
lag(diff(X3mCHFL), 0)	0.002	0.021	0.073	0.942			
lag(diff(X3mCHFL), 1)	-0.007	0.020	-0.361	0.720			
\star for long run coefficients β ; Std.Error, t-value, Pr(), represent							
estimates for $(-1) * \alpha \beta$							
Signif. codes: 0^{***}	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

Table 23: Individual region model fit: Bezirk Meilen

Multiple R^2 :	0.607 ·	Adjusted	$R^2 \cdot 0.430$	6
mumple <i>n</i> .	0.001,	nujusicu	10.40	U

	Estimate	[Std. Error]★	[t-value]*	$[\Pr(> t)]\star$	[Signif.]*	
(Intercept)	-20.728	13.702	-1.513	0.140		
α	-0.345	0.162	-2.128	0.041	*	
eta_{pop}	-6.781	2.284	-2.969	0.006	**	
β_{inc}	6.949	1.791	3.879	0.000	***	
eta_{hstock}	9.211	1.712	5.380	0.000	***	
eta_{rates}	0.025	0.016	1.545	0.132		
$lag(diff(log(price_hedo_apt)), 1)$	-0.436	0.162	-2.687	0.011	*	
lag(diff(log(pop)), 0)	0.758	36.286	0.021	0.983		
lag(diff(log(pop)), 1)	-5.687	39.833	-0.143	0.887		
$lag(diff(log(incr_median)), 0)$	-0.450	1.049	-0.429	0.671		
$lag(diff(log(incr_median)), 1)$	-0.707	1.049	-0.674	0.505		
lag(diff(log(hstock)), 0)	-4.567	15.157	-0.301	0.765		
lag(diff(log(hstock)), 1)	0.920	14.885	0.062	0.951		
lag(diff(X3mCHFL), 0)	0.006	0.018	0.364	0.718		
lag(diff(X3mCHFL), 1)	-0.008	0.016	-0.530	0.600		
* for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

Table 24: Individual region model fit: Bezirk Pfäffikon

Multiple R^2 :	0.493 ·	Adjusted	B^2 .	0.271
mumple <i>n</i> .	0.435,	Aujusteu	10.	0.211

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★	
(Intercept)	-23.405	15.046	-1.556	0.130		
lpha	-0.956	0.260	-3.680	0.001	***	
eta_{pop}	3.178	3.431	0.926	0.361		
eta_{inc}	-0.452	1.071	-0.422	0.676		
eta_{hstock}	-0.276	2.392	-0.116	0.909		
β_{rates}	0.000	0.011	0.004	0.997		
$lag(diff(log(price_hedo_apt)), 1)$	0.062	0.191	0.323	0.749		
lag(diff(log(pop)), 0)	38.460	27.879	1.380	0.177		
lag(diff(log(pop)), 1)	-22.927	28.593	-0.802	0.429		
$lag(diff(log(incr_median)), 0)$	-0.064	1.285	-0.050	0.960		
$lag(diff(log(incr_median)), 1)$	0.723	1.329	0.544	0.590		
lag(diff(log(hstock)), 0)	-14.971	14.108	-1.061	0.297		
lag(diff(log(hstock)), 1)	14.593	12.695	1.150	0.259		
lag(diff(X3mCHFL), 0)	0.005	0.021	0.243	0.810		
lag(diff(X3mCHFL), 1)	0.003	0.019	0.153	0.879		
\star for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$						
Signif. codes: 0^{***}	0.001 (*** 0.	01 '*' 0.05 '.' 0	$.1 \cdot 1$			

Table 25	Individual	region	model fit.	Bezirk Uster
10010 20.	maiviauai	region	model no.	DOZIII OBUCI

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★			
(Intercept)	-22.774	8.834	-2.578	0.015	*			
lpha	-0.950	0.231	-4.108	0.000	***			
eta_{pop}	5.215	1.385	3.765	0.001	***			
eta_{inc}	-1.301	0.872	-1.492	0.145				
eta_{hstock}	-2.209	1.187	-1.862	0.072				
β_{rates}	0.026	0.009	2.806	0.008	**			
$lag(diff(log(price_hedo_apt)), 1)$	0.073	0.165	0.441	0.662				
lag(diff(log(pop)), 0)	-5.890	13.566	-0.434	0.667				
lag(diff(log(pop)), 1)	-15.000	13.500	-1.111	0.275				
$lag(diff(log(incr_median)), 0)$	0.600	0.810	0.741	0.464				
$lag(diff(log(incr_median)), 1)$	1.714	0.666	2.573	0.015	*			
lag(diff(log(hstock)), 0)	0.208	9.342	0.022	0.982				
lag(diff(log(hstock)), 1)	7.703	8.288	0.929	0.360				
lag(diff(X3mCHFL), 0)	0.022	0.011	1.993	0.055				
lag(diff(X3mCHFL), 1)	0.005	0.012	0.401	0.691				
\star for long	\star for long run coefficients β ; Std.Error, t-value, Pr(), represent							
estimates for $(-1) * \alpha \beta$								
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1								

_

Table 26: Individual region model fit: Bezirk Winterthur

	D		[,]]			
	Estimate	[Std. Error] \star	$[t-value] \star$	$[\Pr(> t)]\star$	$[Signif.]\star$	
(Intercept)	-34.718	11.049	-3.142	0.004	**	
lpha	-1.006	0.260	-3.870	0.001	***	
eta_{pop}	1.918	3.105	0.618	0.541		
eta_{inc}	1.102	0.950	1.160	0.255		
eta_{hstock}	0.873	3.032	0.288	0.775		
β_{rates}	0.012	0.013	0.894	0.378		
$lag(diff(log(price_hedo_apt)), 1)$	-0.040	0.178	-0.224	0.824		
lag(diff(log(pop)), 0)	3.487	23.270	0.150	0.882		
lag(diff(log(pop)), 1)	-19.600	22.912	-0.855	0.399		
$lag(diff(log(incr_median)), 0)$	1.094	0.929	1.177	0.248		
$lag(diff(log(incr_median)), 1)$	-0.014	1.117	-0.013	0.990		
lag(diff(log(hstock)), 0)	0.458	11.688	0.039	0.969		
lag(diff(log(hstock)), 1)	1.755	10.492	0.167	0.868		
lag(diff(X3mCHFL), 0)	-0.002	0.021	-0.079	0.938		
lag(diff(X3mCHFL), 1)	-0.000	0.021	-0.023	0.982		
\star for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						

Multiple $R^2{:}$ 0.566 ; Adjusted $R^2{:}$ 0.376

Table 27: Individual region model fit: Bezirk Zürich

Multiple R^2 :	0.579 ; Adjusted R^2 : 0).395
munpic re.	0.010, 110 $Jubicu 10.00$	

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★			
(Intercept)	-26.207	28.050	-0.934	0.357				
lpha	-0.865	0.200	-4.322	0.000	***			
eta_{pop}	4.901	1.266	3.872	0.001	***			
eta_{inc}	-3.363	1.058	-3.178	0.003	**			
eta_{hstock}	-0.604	2.648	-0.228	0.821				
eta_{rates}	-0.004	0.012	-0.319	0.752				
$lag(diff(log(price_hedo_apt)), 1)$	-0.099	0.159	-0.626	0.536				
lag(diff(log(pop)), 0)	24.400	8.641	2.824	0.008	**			
lag(diff(log(pop)), 1)	-25.711	9.003	-2.856	0.007	**			
$lag(diff(log(incr_median)), 0)$	0.230	1.257	0.183	0.856				
$lag(diff(log(incr_median)), 1)$	1.650	1.147	1.438	0.160				
lag(diff(log(hstock)), 0)	22.676	24.160	0.939	0.355				
lag(diff(log(hstock)), 1)	-1.820	26.523	-0.069	0.946				
lag(diff(X3mCHFL), 0)	0.006	0.023	0.263	0.794				
lag(diff(X3mCHFL), 1)	0.012	0.019	0.621	0.539				
\star for long	\star for long run coefficients β ; Std.Error, t-value, Pr(), represent							
estimates for $(-1) * \alpha \beta$								
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1								

Table 28: Individual region model fit: Canton de Genève

	Estimate	[Std. Error]★	[t-value]*	$[\Pr(> t)]\star$	[Signif.]*		
(Intercept)	-106.686	48.168	-2.215	0.034	*		
lpha	-0.552	0.227	-2.431	0.021	*		
eta_{pop}	0.272	2.116	0.129	0.899			
β_{inc}	-1.367	0.631	-2.167	0.038	*		
eta_{hstock}	16.579	5.577	2.973	0.006	**		
β_{rates}	0.038	0.009	4.051	0.000	***		
$lag(diff(log(price_hedo_apt)), 1)$	-0.417	0.160	-2.599	0.014	*		
lag(diff(log(pop)), 0)	1.743	14.595	0.119	0.906			
lag(diff(log(pop)), 1)	2.349	14.315	0.164	0.871			
$lag(diff(log(incr_median)), 0)$	-1.304	0.861	-1.515	0.140			
$lag(diff(log(incr_median)), 1)$	-1.194	0.822	-1.453	0.156			
lag(diff(log(hstock)), 0)	53.961	29.257	1.844	0.074			
lag(diff(log(hstock)), 1)	-80.843	33.285	-2.429	0.021	*		
lag(diff(X3mCHFL), 0)	0.019	0.014	1.352	0.186			
lag(diff(X3mCHFL), 1)	-0.002	0.015	-0.131	0.897			
\star for long	\star for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$							
Signif. codes: 0 '***' 0.001 '**' 0.01 '.*' 0.05 '.' 0.1 ' ' 1							

Multiple $R^2{:}$ 0.676 ; Adjusted $R^2{:}$ 0.534

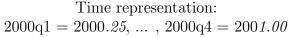
Table 29: Individual region model fit: Kanton Zürich

Multiple R^2 :	0.501	: Adjusted	R^2 :	0.283
mumple <i>n</i> .	0.001	, nujusicu	10.	0.200

	Estimate	[Std. Error] \star	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★	
(Intercept)	-19.987	14.226	-1.405	0.170		
lpha	-0.359	0.259	-1.384	0.176		
eta_{pop}	1.868	0.985	1.897	0.067		
eta_{inc}	0.612	0.498	1.228	0.228		
eta_{hstock}	2.267	1.088	2.084	0.045	*	
β_{rates}	0.026	0.009	2.842	0.008	**	
$lag(diff(log(price_hedo_apt)), 1)$	-0.371	0.206	-1.800	0.081		
lag(diff(log(pop)), 0)	4.240	8.765	0.484	0.632		
lag(diff(log(pop)), 1)	-12.028	9.674	-1.243	0.223		
$lag(diff(log(incr_median)), 0)$	-0.339	0.524	-0.646	0.523		
$lag(diff(log(incr_median)), 1)$	-0.353	0.475	-0.744	0.463		
lag(diff(log(hstock)), 0)	-2.677	6.224	-0.430	0.670		
lag(diff(log(hstock)), 1)	5.422	5.251	1.032	0.310		
lag(diff(X3mCHFL), 0)	-0.004	0.009	-0.488	0.629		
lag(diff(X3mCHFL), 1)	-0.007	0.008	-0.919	0.365		
* for long run coefficients β ; Std.Error, t-value, Pr(), represent						
estimates for $(-1) * \alpha \beta$						
Signif. codes: 0^{***}	0.001 (*** 0.	01 '*' $0.05 $ '.' 0	$.1 \cdot 1$			

Table 30:	Individual	region	model	fit:	Schweiz
		0	0 00 0 0		

Multiple R^2 :	0.650 ·	Adjusted	P^2 .	0.51
Multiple R^{-} :	0.059;	Adjusted	R^{-} :	0.51


	Estimate	[Std. Error]★	$[t-value]\star$	$[\Pr(> t)]\star$	[Signif.]★		
(Intercept)	-62.920	15.670	-4.015	0.000	***		
lpha	-0.893	0.204	-4.370	0.000	***		
eta_{pop}	4.552	1.367	3.330	0.002	**		
eta_{inc}	0.268	0.106	2.518	0.017	*		
eta_{hstock}	0.088	0.620	0.142	0.888			
β_{rates}	0.027	0.006	4.527	0.000	***		
$lag(diff(log(price_hedo_apt)), 1)$	-0.047	0.150	-0.312	0.757			
lag(diff(log(pop)), 0)	-7.241	6.144	-1.179	0.247			
lag(diff(log(pop)), 1)	3.918	7.220	0.543	0.591			
$lag(diff(log(incr_median)), 0)$	0.164	0.132	1.243	0.223			
$lag(diff(log(incr_median)), 1)$	0.105	0.144	0.728	0.472			
lag(diff(log(hstock)), 0)	39.792	36.106	1.102	0.279			
lag(diff(log(hstock)), 1)	-17.056	33.268	-0.513	0.612			
lag(diff(X3mCHFL), 0)	0.011	0.004	2.522	0.017	*		
lag(diff(X3mCHFL), 1)	-0.004	0.005	-0.823	0.417			
\star for long run coefficients β ; Std.Error, t-value, Pr(), represent							
estimates for $(-1) * \alpha \beta$							
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							

A.5 Long Run coefficient estimations over time

A.5.1 Canton of Zurich all districts

Figure 10: Long Run coefficient estimations over time Canton of Zurich all districts

Population LR coefficient estimates w/ varying timeframes Region(s): All ZHR districts Income LR coefficient estimates w/ varying timeframes Region(s): All ZHR districts 10.0 -7.5 Coefficient estimate Coefficient estimate Coefficient estimators Coefficient estimators -0.5 - DFE - DFE - GM 🔶 GM 5.0 - PMG 2.5 -1.5 2001-2009.75-2001-2010.25-2001-2011.25-2001-2011.75-2001-2009.25-2001-2009.75-2001-2011.25-2001-2011.75-2001-2009.25-2001-2009.5 -2001-2010.75-2001-2012.25-2001-2012.75-2001-2010.25-2001-2010.75 2001-2012.25 2001-2012.75 2001-2010.5 2001-2011.5 2001-2009.5 2001-2010.5 2001-2011.5 2001-2012.5 2001-2012.5 2001-2009 2001-2012 2001-2009 2001-2010 2001-2011 2001-2012 2001-2010 2001-2011 2001-2013 2001-2013 Timeperiod Timeneriod Housing stock LR coefficient estimates w/ varying timeframes Region(s): All ZHR districts Rates LR coefficient estimates w/ varying timeframes Region(s): All ZHR districts 2.5 -0.04 0.03 Coefficient estimate Coefficient estimate Coefficient estimators Coefficient estimators - GM - GM 0.02 -2.5 0.01 0.00 2001-2009.5 -2001-2009.75 -2001-2010.25 -2001-2011.25 -2001-2009.25 -2001-2009.5 -2001-2009.75 -2001-2010.25 -**⊒** 2001–2010.75 -0 2001–2011.25 -2001-2011.75 -2001-2009.25 -2001-2010.5 -2001-2010.75 -2001-2011 -2001-2011.75 -2001-2012.25 -2001-2012.75 -2001-2012 2001-2012.25 -2001-2012.75 2001-2010 2001-2011.5 2001-2010.5 2001-2011.5 2001-2012.5 2001-2009 2001-2010 2001-2011 2001-2013 2001-2009 2001-2012 2001-2012.5 2001-2013

A.5.2 Canton of Zurich Subregion I

Figure 11: Long Run coefficient estimations over time Canton of Zurich subregion I

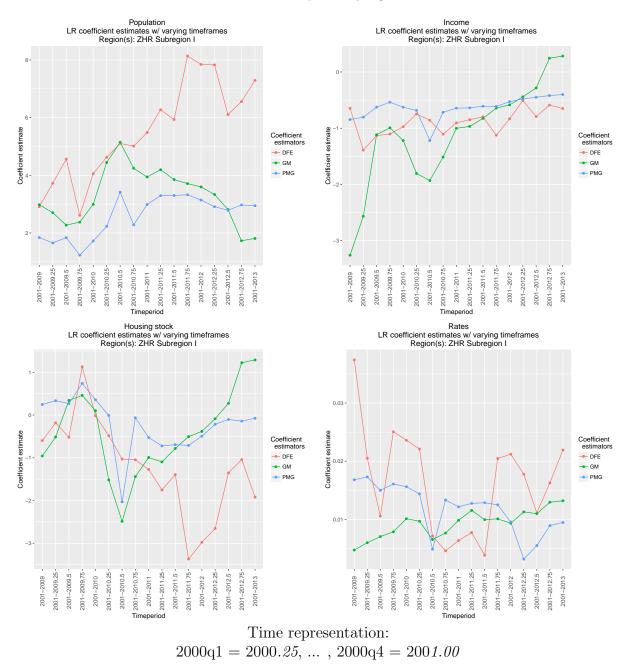
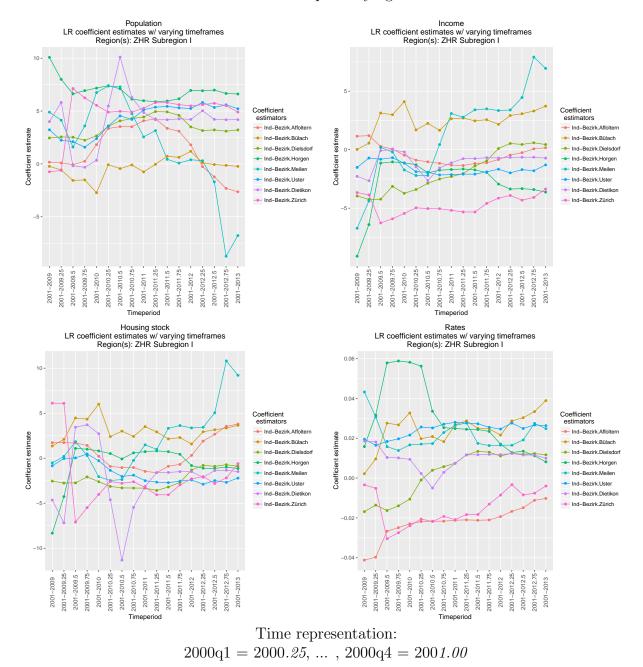
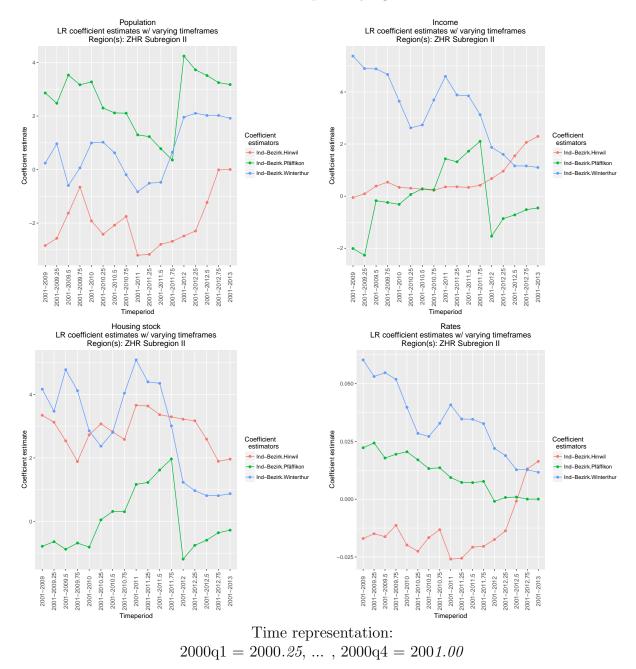



Figure 12: Long Run coefficient estimations over time Canton of Zurich subregion I (region specific est)


79

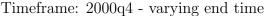

A.5.3 Canton of Zurich Subregion II

Figure 13: Long Run coefficient estimations over time Canton of Zurich subregion II

Population LR coefficient estimates w/ varying timeframes Region(s): ZHR Subregion II Income LR coefficient estimates w/ varying timeframes Region(s): ZHR Subregion II Coefficient estimate Coefficient estimate Coefficient estimators Coefficient estimators ← DFE ← GM ← PMG - DFE - GM 2001-2010.75 -2001-2011 -2001-2009.25 -2001-2009.75 -2001-2009.75 -Z001-2010.75-2001-2011.5 -2001-2010.25 -2001-2011.25 -2001-2011.75 -2001-2011.25 -2001-2011.75-2001-2009.5 -2001-2012.25 -2001-2009.25 2001-2010.25 2001-2012.25 2001-2009 2001-2010.5 2001-2011 2001-2011.5 2001-2012.75 2001-2012.75 2001-2010 2001-2012 2001-2012.5 2001-2013 2001-2009.5 2001-2010 2001-2010.5 2001-2012 2001-2012.5 2001-2009 2001-2013 iod Housing stock LR coefficient estimates w/ varying timeframes Region(s): ZHR Subregion II Rates LR coefficient estimates w/ varying timeframes Region(s): ZHR Subregion II 0.02 0.01 Coefficient estimate Coefficient estimate Coefficient estimators Coefficient estimators DFE
 GM
 PMG - DFE - GM 0.00 - PMG -0.01 2001-2009 -2001-2010.75 -2001-2011 -2001-2011.25 -2001–2012.25 -2001–2012.5 -2001-2011.25 -2001-2011.75 -2001-2012.5 -2001-2009.25 -2001-2009.5 -2001-2009.75 -2001-2010 -2001-2010.75 -2001-2011 -2001-2011.75 -2001-2009.25 -2001-2009.5 2001-2009.75 -2001-2011.5 2001-2012.25 -2001-2012.75 -2001-2010.25 -2001-2010.5 2001-2011.5 2001-2012.75 2001-2010.25 2001-2010.5 2001-2012 2001-2010 2001-2013 2001-2012 2001-2009 2001-2013 Timeperiod Time representation: $2000q1 = 2000.25, \dots, 2000q4 = 2001.00$

Figure 14: Long Run coefficient estimations over time Canton of Zurich subregion II (region specific est)

