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Abstract

Real estate markets represent an integral part of today’s economy

which is inextricably linked to other areas. With recovering and ris-

ing real estate prices since the 2008/09 financial crisis, the potential

overheating of real estate markets is gaining attention from regulatory

bodies, industry and research alike.

To analyze the relationship between real estate prices and eco-

nomic fundamentals in Switzerland, we apply the inverted demand

approach and model apartment prices as a function of population,

income, housing stock and interest rates using quarterly panel data.

The data includes the cantons of Geneva and Zurich, at the cantonal

and district level, and covers the time span 2000q4–20012q4.

We apply three different methods to estimate the models (dynamic

fixed effect, mean group, pooled mean group) and test for homogene-

ity of long run coefficients over different regions. Given the regional

discrepancies within Switzerland, this gives an indication whether ag-

gregate models sufficiently capture individual region dynamics.

We find limited evidence for poolability at the district level and

continue by reporting individual district level model fits as well as es-

timating coefficients over varying timeframes as a first approximation

of the fundamental relationship over time.
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1 INTRODUCTION

1 Introduction

The housing market is a fundamental component of today’s society and econ-

omy. Not only does housing fulfill an individual’s basic need for shelter, the

housing market is also tightly integrated into the economy such that volatility

in it can have far reaching consequences, as demonstrated by the preparatory

role of the US housing market in 2006/07 [9], and the high rate of foreclosures

and price movements thereafter.

Since 2007, real house prices globally and in OECD countries have man-

aged to recover and in some areas even increased considerably [24]. The latter

is especially noticeable in big metropolitan areas, which in Switzerland ap-

plies to Zurich and Geneva; Zurich for instance boasts the highest real house

price levels in its history[23]. This steady increase has brought the possibil-

ity of a real estate bubble back into the spotlight for market participants.

The potential overheating of the real estate market is also highlighted by the

Swiss National Bank (SNB) in its annual Financial Stability Report, where

it is designated as one of the key risks which it is monitoring [22].

Research and industry alike have been tackling this potential issue. In

addition to the SNB, UBS and Credit Suisse, two of Switzerland’s major

financial institutions, publish periodic reports on the health of the real es-

tate market. In its most recent publication of the UBS bubble index, the

report finds that Zurich has the highest price-to-rent multiple among global

cities and Geneva’s price-to-rent multiple remains elevated with strained af-

fordability [23]. Overall, the sources indicate that Swiss residential property

market is overvalued and at risk, but cannot (yet) be considered as in spec-

ulative property price bubble [22, 23]. Research conducted at the Chair of

Entrepreneurial Risks includes a biannual report on the Swiss real estate

market in cooperation with comparis.ch. The report presents the results of

1



1 INTRODUCTION

applying a log periodic power law singularity (LPPLS) analysis and, in its

most recent volume, shows several districts as potential hotspots for the for-

mation of bubbles(see[5]).

Besides feeling ”the pulse of the market”, participants are interested in

determining factors driving its development. For example, [22, 24] cite var-

ious structural characteristics of the market as factors for the high level of

imbalances in Switzerland, including the low mortgage rates, high population

growth driven by migration, as well as short supply due to spatial planning

rigidities, environmental standards, taxations issues and tenancy law,

In line with this interest of analyzing the fundamental drivers of housing

prices, this study aims to analyze the relationship of the Swiss apartment

prices with fundamental economic variables. Specifically, given the regional

disparities in Switzerland, as for example measured by GDP contribution of

the different Swiss Cantons (see figure 1), we intend to test whether there is

information lost by aggregating the analysis on a cantonal level (using data

from the cantons Geneva and Zurich) as opposed to a lower level analysis

which looks at each districts separately (using all districts of Zurich). In

addition to testing aggregation, we estimate the coefficients over varying

timeframes and examine the evolution of said coefficients over time.

In summary, we cannot reject the pooling assumption at the cantonal

level. However, this conclusion is questioned as results at the district level

reject the pooling assumption within the Canton of Zurich. Given that we re-

ject the pooling assumption for districts, we report individual district model

fits. Finally, when looking at the coefficient estimates over different time-

frames, initial evidence does not suggest a stable long run relationship.

The following sections are structured as follows: In section 2 we give

2



2 LITERATURE REVIEW

Figure 1: Swiss GDP contributions by canton 2013

Total Swiss GDP 2013:
CHF 635bn ≈ USD 710bn (2013q4)

a brief overview of different approaches to modeling real estate prices in

the academic literature. We continue in section 3 with the description of

the methodology and model selected for this study. In section 4 and 5 we

describe our data sample and their results respectively. Finally, we give a

brief discussion in section 6 and conclude in section 7.

2 Review of existing Literature

Numerous studies have been conducted which aim to analyze the relation-

ship of the real estate market with economic fundamentals, applying different

methods and pursuing different hypotheses. Two of the most common ap-

proaches used in modeling the relationship are the price-to-rent ratio and

the inverse demand approach. Additionally, recent work at the Chair of En-

trepreneurial Risk at the ETH Zürich has examined the real estate markets

using a log periodic power law singularity (LPPLS) model.

In the following subsections we shall give a brief overview of each of these

3



2.1 Price to rent model 2 LITERATURE REVIEW

approaches.

2.1 Existing work using a price to rent approach

The price-to-rent approach, in its most basic form, can be interpreted as an

application of the concept of present value (PV) from the fields of Finance

and Economics, where the present value of an asset is determined by its future

cash flow. The PV is represented as PV =
Ct

(1 + r)
, where Ct represent the

cash flows in period t and rt represents the return a similar investment may

have earned at the same time (either risk free or of a similar asset), at which

Ct is discounted.

Parallel to PV calculations, price-to-rent states that the present value of

a real estate asset should be the determined by the sum of its future rents

minus certain costs, assuming conditions of an ideal market and under no

arbitrage condition.

For example, [10] defined the price to rent model as

HP =
RENT

r + δ + t−∆hpe/hp
,

which can be rewritten as

HP

RENT
=

1

r + δ + t−∆hpe/hp
=:

1

RUSER
(1)

and shortened to

HPRENT =
1

RUSER
⇔ ln(HPRENT) = −ln(RUSER) (2)

In equation (1), RENT stands for (future) rent payments, HP stands for

house price, RUSER stands for real user costs which consists of the real

4



2.1 Price to rent model 2 LITERATURE REVIEW

after-tax interest rate r, the depreciation rate δ, the property tax t and the

expected rate of house price change ∆hpe/hp. For convenience, the price-

to-rent ratio is represented by HPRENT, which can be further simplified to

equation (2) when working with log variables.

In their work [10], the authors investigate the impact of tightening credit

constraints on buyers for the United States, which represents a deviation

from the ideal market assumption. Specifically, they hypothesize that out

of all groups, first time buyers are impacted the most by credit constraints.

The authors test their hypothesis by including the variable of first time buyer

loan to value ratios (LTV), as a proxy for credit constraints, into their model,

which they formulate as an error correction model. Their results indicate

that the long run relationship of HPRENT exists as described 1 and that

it is further augmented by including the LTV ratio as a factor. In the long

run, inclusion of the LTV ratio ”show[s] stronger evidence of cointegration

[...] than for models without the ratio”, while in the short run inclusion of

the ratio results in faster error correction adjustment speeds[10].

Earlier work by Mikhed & Zemcik [18], starts with a price to rent frame-

work and links it to the inverted demand approach for the US housing market.

Two data-sets are used, one at the national level, the other at the level of U.S.

Metropolitan Statistical Areas. The authors look for evidence of a bubble in

house prices by testing for unit roots in the relationship using panel data.

Theory suggests that, given stationary demand and supply factors, a unit

root in the price would decouple the price from the fundamental factors and

indicate an unstable bubble process. The study concludes that the evidence

does not support a cointegration relationship, implying that ”house prices do

not reflect movements in fundamental factors” and as such there is a bubble

in the observed prices given his data time frame.

5
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A different line of inquiry is pursued by Gallin [13]. In addition to esti-

mating the price-to-rent ratios, the essay investigates whether prices follow

rents or rents follow prices once there is a deviation from the estimated rela-

tionship. First, the author establishes a long run relationship between prices

and rents by estimating an error correction relationship based on collected

data of the U.S. market between 1970q1 and 2005q4. Subsequently, he uses

these estimations to run simulations of hypothesized data generation pro-

cesses which represent scenarios where either “prices do all the correcting”

or “rents do all the correcting”. His results reject the case where rents do all

the adjusting, and provides evidence in favor of the hypothesis where house

prices adjusting back to rent levels.

The price-to-rent ratio approach provides a straightforward pricing mech-

anism and can be related to similar measures in other fields of work (e.g.

Present Value, or even the parallel to P/E ratios).

However, price-to-rent ratio modeling can have its shortcomings. Unlike

financial assets, real estate assets are generally not easily substituted due to

location and quality. As such, including adjustments based on hedonic factors

can prove meaningful. Equation (1) also implies that given an ideal market,

an agent should have no preference over owning vs renting a property[11, 18].

Finally, the price-to-rent approach usually does not feature any mechanism

to adjust for market structures, such as regulations and preferences. As

the authors of [11] note in their review, European markets may have more

regulation when compared to the U.S. equivalent, suggesting that the price-

to-rent may not be as well suited for the European case. Additionally, the

Swiss real estate market may represent a structural exception in international

comparison, with only 37.5% of all households owning their home at the end

6



2.2 Inverted demand approach 2 LITERATURE REVIEW

of 20131, compared to 65.2% in the U.S. [7, 8].

2.2 Existing work using the inverted demand approach

An alternate way of modeling housing prices starts with the economic prin-

ciple of supply and demand. In theory, given a market in equilibrium, prices

clear supply and demand. One can therefore invert the equation to back out

the prices as a function of supply and demand variables.

A generic form of this approach can be states as follows (similar to [26]):

We define demand Dt as

Dt = αPt + β′θt + udt,

Where Pt represent house prices, θ is a (kd × 1) vector of demand shifters

(e.g. income, population, etc.), udt is white noise and α < 0, β represent

coefficients for each term.

Similarly, we can define supply St as

St = λPt + ψ′ηt + ust,

where ηt, (ks × 1) represent a set of supply shifters, ust also white noise and

λ > 0, ψ representing coefficients for each term.

In an equilibrium state, St = Dt and solving for Pt yields

Pt =
ψ′

α− λ
εt −

β′

α− λ
θt + ut (3)

with ut =
1

α− λ
(ust − udt).

1steadily rising tendency, with ownership rates at 28.5% in 1970. Again, there are large
regional discrepancies, e.g. Canton of Jura (54.8%) vs. Canton of Geneva (17.9%

7
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If the detailed supply and demand equation coefficients are not of interest,

one might further simplify the equation above by restating (3) as

Pt = γsεt − γdθt + ut (4)

Previous work has used (4) as a generic starting point and further detailed

out the model by choosing different sets of fundamentals in εt, θt, by including

different dynamics through lag terms, and/or by reformulating the functional

form depending on the research hypothesis. Often, research targets the ques-

tions whether 1) real estate prices are determined by fundamentals in the long

run and, if they are, 2) how that relationship can be quantified.

Cointegration as long run relationship One notable concept which is

frequently featured is the concept of cointegration. Engle & Granger orig-

inally defined it as follows in [12]: Given xt a vector of economic variables

at time t, then the elements xt are cointegrated of order d,b if there exists a

vector α(6= 0) such that zt = α′xt ∼ I(d− b), b > 0, with the vector α called

the cointegration vector.2

In practice, the case of d = b = 1 is often applied, in which case xt ∼

I(1), zt ∼ I(0). For example, given two economic variables x1t, x2t, then

zt = α1x1t + α2x2t is stationary with E(zt) = 0.

Testing for cointegration therefore revolves around testing zt for station-

arity and the work proceeds to list seven possible testing methodologies[12].

Therefore, two variables which are cointegrated have a well-defined long

run relationship while in each period, there may be deviations from said

relationship with zt 6= 0.

2Recent works have also expanded on the original definition of cointegration, e.g. Zhou
introduces a methodology to test for nonlinear cointegration in [26]

8
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Error correction as the representation of long run relationships

Given a stable long run relationship as defined by cointegration with pos-

sible short run deviations, one modeling approach is the error correction

model. In essence if yt is cointegrated with a linear combination of Xt =

(x1t, x2t, ..., xNt), and given certain conditions captured in the Granger Rep-

resentation theorem (see [12]), the relationship can be modeled as follows:3:

∆yt = µ+ α(yt−1 − βXt−1) +
∑
j

γdy∆yt−j +
∑
k

γdX∆Xt−k (5)

Where ∆Xt = Xt −Xt−1 is the difference operator, and α(yt−1 − βXt) is

the error correction term. The error correction term captures any difference

in observed y compared to its long run relationship βX and causes ∆y to

adjust by a factor of α, hence α is also called the “speed of adjustment”. If a

process exhibits a stable long run relationship, we expect −1 < α < 0, which

causes any deviations in the long run relationship to be corrected over time.

Conversely, if α > 0, any difference would be amplified over time and cause

y and βX to diverge; α < −1 would cause ∆y to “over adjust”.

Examples of applications of the inverted demand approach include [11, 3].

Duca et al. [11] also examine the impact of LTV on first time home-

buyers using an inverted demand approach. Similar to [10], this work finds

a long run relationship between housing price and fundamentals, which is

further augmented by including LTV ratios. Results also suggest that credit

constraints, as measured by LTV, represents one of the main factors driving

the boom and bust from 2000 to 2007.

3We refer to [12, 6, 16] for a detailed discussion of the origin and background theory of
error correction models

9
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Recent work by Anundsen & Heboll [3] has also looked at the US hous-

ing market using an inverted demand approach using a sample from 1980q1

to 2010q2. In addition to estimating a long run relationship, the authors

test whether regions can be pooled when conducting the analysis. This is

achieved using a pooled mean group estimator, first defined in [19], which

imposes a homogeneous long run relationship while allowing for short term

discrepancies individual to each region.

2.3 Application of the LPPLS model in the real estate

market

The Chair of Entrepreneurial Risk of ETH Zurich publishes a biannual risk

analysis of the real estate market in Switzerland, with the most recent one

published in 2015q2 [5].

The purpose of the study is ”to provide buyers and sellers in the Swiss

real estate market with critical information on price dynamics in every Swiss

district”. The analysis is based on applying a model which combines the log

period power law singularity analysis(LPPLS) with a diffusion index to di-

agnose the risk of real estate overvaluations in Switzerland, the methodology

for which is described in [4, 5].

The analysis is conducted using data collected from comparis.ch and com-

prises about 1’403’000 residential properties for sale between 2005q1 and

2015q2. The data covers both, houses and apartments and their respective

asking price (as opposed to final transaction price).

The most recent diagnostic results in several findings. First, the study

identifies the districts with highest median asking price per square meter

for apartments and houses between 2007q1 and 2015q2. In this period, the

districts Zug and Meilen are consistently ranked among the top three, for

10



3 METHOD & MODEL

both categories apartment and houses. Second, a classification of the districts

with respect to their status as diagnosed by the LPPLS model is conducted.

The LPPLS analysis classifies the status of a district regarding its risk of

a real estate bubble in descending order as follow: “Critical”, “To watch”,

“To monitor” and “Regime change”. The status “Critical” indicates a strong

bubble signal with imminent regime change ahead, “To watch” is a less strong

signal and “To monitor” occurs only after a “Critical” or “To watch” state

has been obtained but not enough data points are present to confirm a change

of regime. Lastly, the status “Regime change” occurs only after the status

“To monitor” has been obtained and with the confirmation of the latest

data points. For the detailed model construction and fitting we refer to the

original documents [4, 5].

In summary, the current issue (2015q2) of the LPPLS diagnostics does

not identify a bubble signal at the national level, with a of total, 11 districts

categorized as either “To watch”(5) or “To monitor”(6). Previous issues’

“Critical” classifications for certain districts have since subsided 4.

Overall, given the moderate warning of the LPPLS analysis and other

important economic factors such as low interest rate, unstable European

geopolitics and slow European economy recovery, the report suggests the

Swiss real estate market will remain stable with only moderate adjustments.

3 Methodology and Model Description

The aim of this work is to conduct a fundamental analysis of the Swiss

housing market. Due to our belief of regional heterogeneity in the housing

4previous “Critical” classifications include: District Baden (Aargau, report 2013q2),
District Bülach (Canton Zurich, reports 2013q2-q4) and Dielsdorf (Canton of Zurich, re-
port 2013q2)

11



3.1 Fundamental factor selection 3 METHOD & MODEL

market, we test the validity of imposing homogeneous model coefficients (ag-

gregating) at different regional levels as part of this analysis. Additionally,

we examine the fundamental relationship over different timeframes.

Therefore, our methodology can be structured in five steps which are de-

scribed in more detail in the following subsections: we begin by selecting the

fundamental factors to be considered (3.1), and by choosing an appropriate

modeling approach (3.2). With model and input selected, we continue by

fitting the model parameters to the available data (3.3). Once the model is

properly specified, we test the poolability assumption (3.4) and finish with

a look at the evolution of the different model estimates over different time-

frames (3.5).

3.1 Fundamental factor selection

Economic theory suggests a relationship between supply & demand variables

and house prices. Previous works have used a varying combination of vari-

ables and operationalizations, chosen based on economic theory or research

hypothesis, including for example: rent, mortgage rate, tax, depreciation and

credit constraint (Loan-to-value) [11]; rent, income, population, mortgage

volume and rates, housing stock and construction cost [18]; income, mort-

gage, construction cost [26]; and one specific example for the Swiss market

included GDP, wage, population, depreciation and price appreciation, con-

struction costs and interest rates [21] 5.

A notable exception to the aforementioned examples is the approach used

by Ardila et. al in [4]. The authors select a pool of 90 potential input vari-

ables for the US market and 27 variables for the Swiss market. This selec-

5The aim of [21] is to examine the relationship of fundamentals and real estate invest-
ment behavior, as opposed to price development, using a stock-flow-model;
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3.2 Model selection 3 METHOD & MODEL

tion is then narrowed down using sparse partial least squares. The full set

of variables can be categorized into variables measuring output & income,

employment, housing availability, price levels, money and credit, bond and

exchange rates as well as stock market indices.

Our criteria for choosing the fundamental factors, given the colorful palette

of variables in the literature are: (i) variables which together represent both

demand and supply side, (ii) variables recurring throughout literature, (iii)

limiting ourselves to a few number of fundamental variables for which data

is available.

Our final selection includes population and income for the demand side,

as well as housing stock for the supply side. Additionally, we include interest

rates as a high level proxy for mortgage rates and financing cost for construc-

tion for the demand and supply side respectively. As an auxiliary variable,

CPI data was included to adjust income for inflation.

3.2 Selecting an appropriate model functional form

We believed there was potential regional difference in the behavior of real

estate prices at the district level in the Switzerland due to the differences

in economic activity across regions. This characteristic is suggested by the

difference in GDP contribution per canton (figure 1), where the majority of

Swiss GDP can be attributed to less than half a dozen of regions.

Given this suspected regional difference, we settled on the same approach

similar to [3], with the goal of estimating a model which allows for short run

heterogeneity (say, due to different economic shocks and transient differences)

while allowing for a fundamental driven relationship in the long run.

13



3.2 Model selection 3 METHOD & MODEL

3.2.1 Model Equation

The model we fitted can be described by the following equation [3]:

∆yi,t = µi + αi(yi,t−1 − βiXi,t−1) +

p−1∑
s=1

γi,s∆yi,t−s +

q−1∑
s=0

λi,s∆Xi,t−s (6)

Where i represent the different regions, t represents each time period, µi

is a region specific, time constant intercept, yi,t−1 is the house price of region

i in time period t − 1, X is the matrix of explanatory variables, ∆yi,t−s

and ∆Xi,t−s represent the first difference of y and X in region i, lagged by

s periods. The lag lengths for the dependent and independent variables are

specified by p and q respectively; a p = q = 5 specification corresponds to 4

lag terms (quarters) in the differences of each variable.

The coefficients βi in equation (6) can be interpreted as long run coef-

ficients of the fundamental factors in X, α can be interpreted as an adjust-

ment coefficient measuring the speed of adjustment with which prices correct

towards (or away form) the long run relationship. If a stable long run rela-

tionship exists between yi and Xi, we expect αi < 0, which causes ∆y to

correct towards equilibrium. Alternatively, an α ≥ 0 amplifies any difference

between the relationship of yi and βiXi.

The coefficients γi,λi can be interpreted as the effect of short run fluctu-

ations of the dependent and independent variables respectively.

An alternate representation using

θi = −αiβi
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will also be used in this work, which would yield for equation (6)

∆yi,t = µi + αiyi,t−1 + θiXi,t−1 +

p−1∑
s=1

γi,s∆yi,t−s +

q−1∑
s=0

λi,s∆Xi,t−s

3.3 Fitting the model to the data

We start with a base case where we include all four factors (k = 4), and four

lags in differences for the dependent and independent variables (P = Q = 5),

corresponding to a lag length of one year.

3.3.1 Lag length selection

First we estimate individual region specific models at the least aggregated

level (district level) with varying lag lengths with P,Q ∈ {5, 4, 3, 2}, and

compare the resulting models using log likelihood ratios, the Akaike Infor-

mation Criterion (AIC), the Bayesian information criterion (BIC) and AIC’s

small sample corrected version (AICc).

The panel Log Likelihood (pLL) We implemented the panel log likeli-

hood as one of the criteria to compare the models with different lag lengths.

At this point, we are solely interested in testing model lag length specification

(independent of aggregation assumptions), and therefore treat each region as

independent. As such, we fit 6 separately for each region’s data and calculate

the individual likelihoods. Finally, to measure the fit of the model over all

regions, we sum each regions likelihood, which can be formulated as:

pLL(µi, αi,βi,γi,λi, σ
2
i ) = (7)

− T

2

N∑
i=1

ln 2πσ2
i −

1

2

N∑
i=1

1

σ2
i

(∆yi − ∆̂yi)
′(∆yi − ∆̂yi)
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where ∆̂yi represents the estimates of ∆y from each individual regional fit

of equation (6), N is the number of regions and σ2 is the variance of the

estimation error.

The log likelihood ratio used to compare two nested models is then:

LLR = 2log(√LL
ur

)− 2log(√LL
r

) (8)

, where ur, r stand for the unrestricted and restricted model. As by Wilk’s

theorem [25], the LLR is approximately χ2 distributed and as such can be

used for testing the rejection of the null hypothesis (restricted model).

Information criteria AIC, BIC and AICc The tree information criteria

published in [2], [20] and [15], provide three means to evaluate the fit between

different nested models. They are defined as

AIC = −2log(L) + 2k (9)

BIC = −2log(L) + k log(n) (10)

AICc = −2log(L) +
2k(k + 1)

n− k − 1
(11)

, where L represents the likelihood of a model fit, k the number of inde-

pendent linear parameters and n the number of available observations in the

sample. The criteria allow for comparison between different models, however

they do not provide information on the fit of a model. Selecting the model

with the best fit equals minimizing the respective criteria.

As can be seen from their final definitions6, they similarly capture the fit

of a model based on its likelihood. Where the differ is how they adjust for

6for the nuances in their derivation, we refer to the original publications; AIC [2], BIC
[20] and AICc [15]
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sample size and number of parameters in the second term. While the original

AIC adjusts for the number of parameters and disregards sample size, BIC

and AICc both also include a terms for the sample size. AICc’s extra term
2k(k + 1)

n− k − 1
gives the strongest penalty for additional parameters and fewer

observations, and as the authors in [15] have shown, it is preferable over AIC

and BIC in small sample sizes.

3.3.2 Confirming factor selection

In a second step, we compare models (also at the lowest aggregation level)

where factors are removed, one at a time. This was conducted in order to

assess whether some of the selected parameters do not contribute additional

information. The resulting models were again compared using the same

statistics, log likelihood ratio, AIC, BIC and AICc.

After these two steps a final model is selected with appropriate lag length

and factor selection.

3.4 Testing for coefficient homogeneity on different ag-

gregation levels

Once the model lag lengths and factors have been selected, we test for long

run coefficient homogeneity across different aggregation levels using likeli-

hood ratio tests. Our hypotheses can be stated as:

H0 : βi = β, ∀i

HA : βi 6= β, ∀i
(12)

To test the hypothesis, we fit the model (6) separately using three esti-

mators: the dynamic fixed effects (DFE) estimator, the group mean(GM)
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estimator and the pooled group mean estimator(PMG).7.

Out of the three, DFE and GM impose a high degree of homogeneity for

the coefficients: with DFE, all coefficients are assumed homogeneous over

all regions, with only the intercept µi allowed to vary (αi = α,βi = β, γi =

γ,λi = λ

∀i). The GM estimator fits (6) for each region separately and calculates the

mean of each coefficient over all regions, including the intercept.

Finally, as introduced by Pesaran et al. in [19] and applied in [3], the

PMG represents a hybrid case. The PMG estimator imposes homogeneity

restrictions on the long run coefficients βi = β, while the adjustment coef-

ficient α, short run coefficients γi, λi and intercepts µi are allowed to vary

over regions. The long run coefficients β and adjustment coefficients αi are

obtained through maximum likelihood estimation of a concentrated (profile)

likelihood in which is described below in (13).

The concentrated panel log likelihood For estimating the homoge-

neous long run coefficients with the PMG estimator, we implemented the

concentrated (profile-) likelihood function (13), as introduced in [19]8.

cpLL(ϕ) =− T

2

N∑
i=1

ln 2πσ2
i

− 1

2

N∑
i=1

1

σ2
i

(∆yi − αiξi(β))′Hi(∆yi − αiξi(β)) (13)

where

ξi(β) = yi,−1 −Xi,−1β

7DFE & GM calculations performed with the plm package version 1.4-0 in R version
3.2.2

8Difference to original: for ξ our model uses Xi,−1 instead of Xi, this lets previous
period’s discrepancy in the long run relationship determine this period’s change in prices
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represents the difference in y as predicted by the long run relationship,

Hi = IT −Wi(W
′
iWi)

−1W ′
i , ϕ = (θ′, α′, σ′), α = (α1, ..., αN)′, σ =

(σ2
1, ..., σ

2
N)′ and IT is the (T × T ) identity matrix. Contrary to a full like-

lihood function, the profile likelihood function takes only the adjustment

coefficient αi and the restricted long run coefficients βi = beta along with

the variances σ2 as input. Overall, this serves the purpose of restricting ho-

mogeneity in β while allowing the short run coefficients γi,λi to vary per

region.

Based on the results of the homogeneity test, we estimate models at the

most appropriate aggregation level.

3.5 Comparing model estimations over different time-

frames

Theory suggests that markets in equilibrium are governed by a set of long

run relationships which are stable over time, with possible deviations in the

short run due to external shocks and structural rigidities.

We expect a stable long run relationship to be reflected as stable long

run coefficient estimates for β, independent of the timeframe used. For this

purpose, we examine the evolution of estimated coefficients by varying the

endpoint of our timeframe, akin to gaining new data every quarter.

4 Sample description

4.1 Available data

Our dataset comprises macroeconomic time series at the national, cantonal,

and district level. Cantonal data covers Geneva and Zurich, whereas mu-
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nicipal data contains time series for the 12 districts within the Canton of

Zurich. Variables included are population levels, nominal income level, hous-

ing stock, interest rates, CPI and the hedonic price index as described in [14].

The raw data spans different time periods and has mixed frequencies

(monthly, quarterly, annually) – for an overview see table 3. In order to

conduct a quarterly analysis, cubic spline interpolation was used for time

series of lower frequency to interpolate missing the data points. The final

date for the beginning and end of the sample were selected in order to ensure

a balanced (panel) dataset.

The final working dataset covers the 2000q4-2012q4 period, for a total of

49 observations per region per variable. For reference, the most recent cross

section for 2012q4 is shown in table 1.

Following [14, 4], we treat the Canton of Geneva as a canton and as a

district. Given Geneva’s population and size (see table 2), this is a sensible

assumption.

In the following subsections, we describe the available data for each vari-

able in more detail with an example plot.

4.1.1 Population data

Population data is readily available for all regional levels. The national level,

aggregated series was available as annual values for the years 1981 to 2013,

except for 1983 which was missing.

For the canton of Zurich and its individual districts, the data consists of

annual values for the period 1962 to 2014.

Population data for Geneva represented annual levels between the years
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Table 1: Panel data sample for 2012q4

In decreasing order of price index

price hedo apt pop incr median hstock X3mCHFL
Bezirk Zürich 146.200 379915 428.307 211942 0.012
Bezirk Meilen 144.740 97927 547.641 47854 0.012
Bezirk Bülach 142.740 135709 468.085 63551 0.012
Canton de Genève 140.550 470512 781.721 221880 0.012
Bezirk Affoltern 138.960 49384 493.987 22173 0.012
Bezirk Horgen 137.200 118462 491.212 58006 0.012
Kanton Zürich 133.713 1406083 458.834 693922 0.012
Bezirk Uster 132.290 122694 486.586 57532 0.012
Bezirk Dietikon 131.680 83590 448.659 39845 0.012
Bezirk Winterthur 131.460 158001 438.483 74638 0.012
Schweiz 129.956 8123721 411.656 1670054 0.012
Bezirk Pfäffikon 124.060 57269 462.535 26376 0.012
Bezirk Hinwil 122.480 90616 433.858 41280 0.012
Bezirk Dielsdorf 119.030 82516 470.860 37248 0.012

Variables
price hedo apt Hedonic price index for apartments as given by [14]
pop Population numbers
incr median Median real income
hstock Housing stock (# dwellings in districts/canton; # bldgs.

at national level)
X3mCHFL 3 month CHF LIBOR

1989 and 2014.

4.1.2 Income level

The income data used at the national level is the nominal median annual

nominal income, categorized into four different employment groups10. For

this work, the mean value of the four categories was used. The timeframe

available spans 1991 to 2014, reported annually.

10Categories are: self-employed, employee, family business and apprentice
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Table 2: Comparison of Canton of Zurich vs Canton of Geneva

As of 2014q4 Canton of Zurich Canton of Geneva

Geographic size [km2] 1728.96 282.49
Population 1’443’436 482’545
Districts 12 –
Municipalities 169 45

The income data used within the Canton of Zurich is the taxable median

annual nominal income. The available time span includes the years 1999 to

2012.

For the Canton of Geneva, the data represents the median monthly nom-

inal income. The data was available between 2000 and 2012. All income

levels are reported in Swiss Francs

The final values used in modeling are the real incomes adjusted for infla-

tion as calculated by dividing each time series by the national level CPI11.

4.1.3 Interest rate data

For interest rates the monthly 3 months CHF Libor rate at the end of each

quarter is used for all regional levels similar to Anundsen [3].

11While cantonal level cpi was available, they showed high correlation to the national
level aggregation
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Table 3: Overview of available variables and their data sets for this study

Variable Region Timeframe Frequency Source Comment
Hedonic Price
index

All: 2000q4–2015q2 quarterly [14] –

Population
level

Nat: 1982–2014 annual FSO 1983 missing

Zhr: 1962–2014 annual ZSA –
Gnv: 1989–2014 annual OCSTAT –

Income level
(median)

Nat: 1991–2014 annual FSO by 4 employ-
ment categories9

Zhr: 1999–2012 annual ZSA annual inc
Gnv: 2000–2012 annual OCSTAT monthly inc

CPI All: 2000.05–2015.05 monthly FSO indexed to May
2000

Interest rates All: 1989.03–2015.06 monthly SNB *
Housing stock Nat: 1990, 2000,

2009–2013
mixed FSO –

Zhr: 1990–2012 annual ZSA –
Gnv: 1998–2014 annual OCSTAT –

Nat : National level data
Zhr : Zurich cantonal and district data
Gnv : Geneva cantonal data
FSO : Swiss Federal Statistics Office
ZSA : Statistical Bureau of Canton of Zurich (Statistisches Amt)
OCSTAT : Statistical office of Canton of Geneva (Office cantonale de la statistique)
SNB : Swiss National Bank
* rates assumed identical across all districts as 3 month CHF LIBOR
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Figure 2: Population time series for district of Zurich and national level
aggregation

Red diamond markers indicate original time series data points which were
used to interpolate quarterly values; Black line is final quarterly series with
interpolated values; regarding year index: 2000q1 = 2000.25, ..., 2000q4 =
2001
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Figure 4: Interest rates time series (3 month CHF Libor) used for all districts

24



4.1 Available data 4 SAMPLE DESCRIPTION

2000 2002 2004 2006 2008 2010 2012

41
00

0
42

00
0

43
00

0
44

00
0

45
00

0
46

00
0

Plot of variable " inc_median "
in region " Bezirk Zürich "

time

va
lu

e

2002 2004 2006 2008 2010 2012

70
00

0
75

00
0

80
00

0
85

00
0

Plot of variable " inc_median "
in region " Canton de Genève "

time

va
lu

e

Figure 3: Population time series for district of Zurich and national level
aggregation

Red diamond markers indicate original time series data points which were
used to interpolate quarterly values; Black line is final quarterly series with
interpolated values; regarding year index: 2000q1 = 2000.25, ..., 2000q4 =
2001

4.1.4 Housing stock data

The data points for the national level aggregation are infrequent. They

represents the number of buildings with residential use12 at the end of the

year, with data points available for the years 1990, 2000, and 2009 to 2013

(7 data points in total); this represents the most sparsely available series.

For Zurich, the data represents the number of dwellings from 1990 to

2013, reported annually by the Zurich Cantonal statistics office.

Similar for Geneva, the data also represents the number of dwellings,

12including different types such as single family homes, apartment buildings, and build-
ings with partial residential use
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between 1998–2014.
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Figure 5: Housing stock time series for district of Zurich and national level
aggregation

Red diamond markers indicate original time series data points which were
used to interpolate quarterly values; Black line is final quarterly series with
interpolated values

4.1.5 Real estate price data

We capture real estate prices for apartments using the hedonic price index

as constructed in [14].

The index represents the estimated price of an ’average’ apartment in

each district as a function of apartment size (m2) and a number of hedonic

variables; hedonic features included are: construction year, surrounding area

type (e.g. city center, suburb, rural, etc.), number of bathrooms, number of

garages available, neighborhood ’quality’ and building quality. An ’average

apartment’ is constructed from all measured values for the hedonic factors
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and then its price evolution fitted over time. For more detailed information

we refer to the contents of [14].

The final index is reported quarterly between 2000q4 – 2015q2, normal-

ized to 2007q1 and represent the prices for apartments.

They are available for 72 district, including Canton of Geneva as a district,

and the national level aggregation represented by a weighted average of all

districts.

By using a hedonic index (as compared to a traditional price-only index)

we hope to capture some of the qualitative differences of the underlying

assets.
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Figure 6: Hedonic price index time series for district of Zurich and national
level aggregation
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4.2 Unit root testing for panel data

Unit root processes are strongly dependent and highly persistent. As such,

inference statistics of any estimated (level) linear model including a unit root

process is highly sensitive to violations of the classic linear model assump-

tions13.

We use the Augmented Dickey Fuller test on each time series to test for

unit root, using the final time frame 2000q4-2012q4. The test regression is

formulated as

∆yt = γyt−1 + a0 +
4∑

i=1

ai∆yt−i

where yt represents the time series tested, with the hypotheses formulated as

H0 : γ = 0 (unit root present)

HA : γ < 0

The tests include a drift a0, and a maximum lag length of 4, with the

final lag length determined via the AIC criterion. The results, displayed

in table 4, do not reject the null of unit root processes in (almost) any of

the time series. The only exception is the district of Bülach, which is only

marginally rejected at the 0.05 significance level. Surprisingly, we cannot

reject a unit root for interest rate in the given time period which is contrary

to expectation14.

We specify a max lag length of 4, in order to allow each unit root regres-

13assumptions with ut denoting estimation errors: no perfect collinearity; zero condi-
tional mean E(ut|X) = 0, which also implies strict exogeneity for X; homoscedasticity
V ar(ut|X) = σ2 ∀t; no serial correlation Cor(ut, us|X) = 0, ∀t 6= s

14we note that similar observations have been encountered, such as by Lai in [17],
however we postpone an excursion into macroeconomics for later projects
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sion to include one non-interpolated data point for the time series which are

interpolated.

Given that the data sample in each region is relatively short (49 observa-

tions), AIC will allow more parameters than a criteria adjusting for small

sample size (say AICc). As such, we give the ADF regression more chances

to retain a higher number of lags, and as such, favor the case where at least

one non interpolated data point enters the regression.
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Table 4: ADF Test results

ADF Test t-statistics: We reject a unit root only for the income time series in Bezirk
Bülach at the 5% level

Region price hedo apt pop incr median hstock X3mCHFL
Bezirk Affoltern 2.596 0.130 -1.459 0.398 -1.602
Bezirk Bülach 3.080 0.540 -3.035** -0.633 -1.602
Bezirk Dielsdorf 0.594 0.974 -2.446 0.749 -1.602
Bezirk Hinwil 3.036 0.532 -1.804 1.325 -1.602
Bezirk Horgen 1.824 1.470 -2.605* 1.417 -1.602
Bezirk Meilen 1.697 -0.724 -1.584 -1.171 -1.602
Bezirk Pfäffikon 1.483 1.699 -1.718 0.985 -1.602
Bezirk Uster 2.832 0.240 -2.847* -0.793 -1.602
Bezirk Winterthur 1.684 1.097 -2.536 0.004 -1.602
Bezirk Dietikon 0.954 0.723 -2.774* 1.095 -1.602
Bezirk Zürich 2.583 0.256 -2.242 1.795 -1.602
Canton de Genève -0.900 -0.522 0.290 0.607 -1.602
Schweiz 1.317 -0.053 -1.684 -0.791 -1.602

Signif. codes: 0.001 ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1 ‘ ’ 1

ADF critical values with drift and 49 observations
critical level 1% 5% 10%
critical value -3.58 -2.93 -2.60

Variables
price hedo apt Hedonic price index for apartments as given by [14]
pop Population numbers
incr median Median real income (nominal income divided by national cpi)
hstock Housing stock (# dwellings in districts/canton; # bldgs at national level)
X3mCHFL 3 month CHF LIBOR
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5 Results

5.1 Model specification

5.1.1 Lag length and confirming factor selection

Starting with the base case (P = Q = 5; all four factors population, income,

housing stock, rates), we estimated coefficients using the three methods as

described in section 3.3. Resulting individual region model fits show signs of

overfitting, with R2 values as high as 0.90 (for example, see figure 7, p.32).

For reference, Abraham and Hendershott in their earlier study of the US

housing market [1] find R2 in the range of 0.5− 0.6.

This overfit likely results from the large number of parameters relative

to the number of observations per region – with (P,Q) = (5,5), we have

31 parameters to be estimated per region while the number of observations

per region is limited to 49. The effective number of observations is further

reduced to 44, due to the lags and differences in the variables.

Lag length selection When comparing models with shorter lag lengths

(P,Q ∈ {5, 4, 3, 2}), AIC and BIC suggest keeping the maximum possible

lag length of base case, despite the overfit (see table 5, p. 33). In contrast,

AICc favors the two cases of (P,Q) = (3, 2) and (P,Q) = (2, 2), with their

respective AICc values being almost identical15. However, when using likeli-

hood ratios to compare different lag lengths, any restricted model results in

a p << 0.001 and would therefore be rejected.

15for easy readability we report ∆AICc which shows the improvement of the restricted
model AICc over the unrestricted base case
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Figure 7: Initial model fit results: Actual vs DFE vs GM estimations

(P = 5, Q = 5)
Signs of overfitting at the individual district level; extremely close fit of indi-
vidual estimation(red) to the actual data(black) for the selected parameters;
cause is likely large number of parameters (31) vs effective number of obser-
vations per district(44)
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Table 5: Model selection criteria for lag lengths

The unrestricted (ur) model is t P = Q = 5; highlighted value is best fit according to AICc;
smaller ∆AIC = better fit of restricted (r) model vs ur.

P Q LL.ur LL.r LL.ratio chisqdf pval n.obs
1 5 5 1614.46 484
2 5 4 1614.46 1466.89 295.13 44 0.00 484
3 5 3 1614.46 1405.14 418.63 88 0.00 484
4 5 2 1614.46 1343.59 541.74 132 0.00 484
5 4 5 1614.46 1582.29 64.34 11 0.00 484
6 4 4 1614.46 1429.84 369.24 55 0.00 495
7 4 3 1614.46 1378.53 471.86 99 0.00 495
8 4 2 1614.46 1315.91 597.10 143 0.00 495
9 3 5 1614.46 1551.02 126.87 22 0.00 484

10 3 4 1614.46 1409.66 409.59 66 0.00 495
11 3 3 1614.46 1347.58 533.76 110 0.00 506
12 3 2 1614.46 1280.99 666.93 154 0.00 506
13 2 5 1614.46 1527.68 173.56 33 0.00 484
14 2 4 1614.46 1387.09 454.73 77 0.00 495
15 2 3 1614.46 1328.06 572.79 121 0.00 506
16 2 2 1614.46 1250.29 728.34 165 0.00 517

P Q k.ur k.r dBIC dAIC dAICc
1 5 5 31
2 5 4 31 27 128.62 207.13 -572.04
3 5 3 31 23 85.62 242.63 -968.83
4 5 2 31 19 42.23 277.74 -1192.60
5 4 5 31 30 22.71 42.34 -202.48
6 4 4 31 26 167.53 259.24 -701.43
7 4 3 31 22 102.66 273.86 -1038.81
8 4 2 31 18 60.41 311.10 -1218.19
9 3 5 31 29 43.61 82.87 -368.66

10 3 4 31 25 166.01 277.59 -788.45
11 3 3 31 21 127.77 313.76 -1081.41
12 3 2 31 17 92.48 358.93 -1219.31
13 2 5 31 28 48.69 107.56 -520.17
14 2 4 31 24 169.28 300.73 -857.94
15 2 3 31 20 124.68 330.79 -1118.28
16 2 2 31 16 115.56 398.34 -1220.86

pLL : panel log Likelihood
k : number of parameters in model to be estimated

∆X IC : smaller is better; calculated as X IC.r - X IC.ur;
# regions = 11 (ZH excl. Andelfingen)
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Figure 8: Reduced lag length model fit as recommended by AICc: Actual vs
DFE vs GM estimations (P = 2, Q = 2)

GM individual region estimation(red) compared to the actual data(black) for
the selected parameters still shows extremely close fit, with 22 parameters
and 45 effective observations
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Given the results described above, we decide for the case of (P,Q) =

(2, 2). Even though the likelihood ratios reject any model with shortened lag

lengths, we note the high overfit at the individual district. As such, we gave

precedence to the different information criteria during lag length selection.

Within the three information criteria, we followed the recommendation of
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AICc, as our sample is relatively small.

Confirming factor selection Testing for the relevancy of the selected

factors yielded results summarized in table 6 (p. 36).

For the likelihood ratio tests, the pval of any model (P,Q ∈ {5, 4, 3, 2})

with a factor removed is p << 0.001 and thus the restricted model is always

rejected.

Similarly, the AIC values of the unrestricted model are, in all but one case,

consistency smaller than the values of any restricted model. Therefore the

unrestricted model (factor included) is always preferable. The one exception

is interest rates, for which the restricted model is slightly favored by AIC.

BIC and AICc on the other hand yield stronger results. At our selected

lag length of (P,Q) = (2,2), BIC and AICc both favor the removal of each

factor.

Ultimately, we reason to keep all four factors in the model due to the

inconclusiveness of the likelihood ratio test, the relative weak evidence for

removing a factor and theory suggesting a relationship with supply and de-

mand.
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Table 6: Model selection criteria for factors

The unrestricted (ur) model is the model including all factors at P, Q; the
restricted (r) model has the factor in rmfactor entirely removed (long and
short run effects)

Note: for spacing, test results for P,Q = {3,4} have been omitted; highlighted
values represent AICc recommendations given our model; smaller ∆AIC =
better fit of restricted (r) model vs ur; AICc suggests removing single factors
(in order of significance) interest rates, income, housing stock and population

P Q rmfactor LL.ur LL.r LL.ratio chisqdf pval n.obs
17 2 2 pop 1250.29 1197.63 105.32 33 0.00 517
18 2 2 incr median 1250.29 1204.64 91.29 33 0.00 517
19 2 2 hstock 1250.29 1203.74 93.08 33 0.00 517
20 2 2 X3mCHFL 1250.29 1219.99 60.58 33 0.00 517
21 5 5 pop 1614.46 1407.72 413.47 66 0.00 484
24 2 2 pop 1250.29 1197.63 105.32 33 0.00 517
25 5 5 incr median 1614.46 1473.51 281.90 66 0.00 484
28 2 2 incr median 1250.29 1204.64 91.29 33 0.00 517
29 5 5 hstock 1614.46 1394.16 440.59 66 0.00 484
32 2 2 hstock 1250.29 1203.74 93.08 33 0.00 517
33 5 5 X3mCHFL 1614.46 1451.46 326 66 0.00 484
36 2 2 X3mCHFL 1250.29 1219.99 60.58 33 0.00 517

P Q rmfactor k.ur k.r dBIC dAIC dAICc
17 2 2 pop 16 13 -21.73 39.32 -38.81
18 2 2 incr median 16 13 -35.77 25.29 -52.85
19 2 2 hstock 16 13 -33.97 27.08 -51.05
20 2 2 X3mCHFL 16 13 -66.47 -5.42 -83.55
21 5 5 pop 31 25 163.71 281.47 -742.75
24 2 2 pop 16 13 -21.73 39.32 -38.81
25 5 5 incr median 31 25 32.14 149.90 -874.33
28 2 2 incr median 16 13 -35.77 25.29 -52.85
29 5 5 hstock 31 25 190.83 308.59 -715.64
32 2 2 hstock 16 13 -33.97 27.08 -51.05
33 5 5 X3mCHFL 31 25 76.24 194 -830.22
36 2 2 X3mCHFL 16 13 -66.47 -5.42 -83.55

rmfactor : factor removed for testing
pLL : panel log Likelihood

k : number of parameters in model to be estimated
∆X IC : smaller is better; calculated as X IC.r - X IC.ur;

# regions = 11 (ZH excl. Andelfingen) 36
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5.2 Testing for coefficient homogeneity

5.2.1 Testing pooling assumption at the cantonal level

We start the poolability test with the high level aggregation and test whether

the two cantons (Zurich, Geneva) can be pooled for an aggregate model.

To test for homogeneity, we estimate the model with all three estimation

methods (DFE, MG, PMG) and compare the results using the likelihood

ratio test. The results of the poolability test are reported in table 7.

Out of the three estimation methods, PMG estimation results show the

highest concentrated panel likelihood, followed by DFE results and GM re-

sults.

When testing the poolability hypothesis (H0 : βi = β ∀i;HA : βi 6=

β ∀i), the resulting p-value = 0.433 indicates that we cannot reject the null

hypothesis.

The resulting long run coefficient estimates seem to indicate that popu-

lation, housing stock and rates have a positive relationship with apartment

prices while income has a negative coefficient, inconsistent with the theory.
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Table 7: PMG estimation results for testing cantonal Level aggregations with P = 2, Q
= 2

Estimated LR coefficients

cpLL βpop βinc βhstock βrates α
DFE 266.487 27.600 -8.997 -21.998 0.137 -0.057
GM 139.364 -0.455 -0.455 9.423 0.032 -0.552
PMG 274.634 0.347 -1.415 16.530 0.039

LL ratio results

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 276.538 274.634 3.807 4 0.433

cpLL concentrated panel log Likelihood
ur.xxx unrestricted model, with region specific αi, βi, γi, λi

r.pmg.xxx restricted model with pooled long run coefficient, βi = β∀i
PMG estimates have region specific αi, found in appendix A.3

5.2.2 Testing pooling assumption at the district level

While the evidence supports poolability at the cantonal level, this may mask

intra-cantonal heterogeneities at the district level. Hence, we continue our

poolability test and apply the same methodology for all districts within the

Canton of Zurich16.

The estimation results for the district level using different estimators are

reported in table 8 (p.39), with region specific adjustment coefficients αi for

the PMG estimation available in the appendix A.3 due to spacing.

Coefficient estimates indicate a positive relationship of prices with pop-

ulation, housing stock and rates, and a negative one with income. Similar

to the cantonal level pooling, this is inconsistent with theory. However, con-

trary to the cantonal level poolability test, the PMG estimation (which has

16except district Andelfingen, for which the hedonic price index was not available; this
leaves us with 11 districts
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a higher likelihood ratio than GM and DFE) is rejected when compared to

the individual, district specific models, with a likelihood ratio of 178.10 and

a p-value << 0.001 (table 8, p.39).

Table 8: PMG estimation results for all districts of Zurich with P = 2, Q = 2

Estimated LR coefficients

cpLL βpop βinc βhstock βrates α
DFE 1125.069 5.873 -0.612 -1.329 0.009 -0.095
GM 491.215 -1.016 -1.016 1.171 0.012 -1.061
PMG 1170.099 2.632 -0.309 0.110 0.004

LL ratio results

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1250.285 1170.099 160.373 40 0.000

cpLL concentrated panel log Likelihood
ur.xxx unrestricted model, with region specific αi, βi, γi, λi

r.pmg.xxx restricted model with pooled long run coefficient, βi = β∀i
PMG estimates have region specific αi, found in appendix A.3

Further subdivision of the canton of Zurich We continue by further

subdividing the pooling regions into three smaller geographical regions. For

this, we select districts based on their proximity to Zurich’s city center and

split into three subsets: Zurich subregion I includes all districts bordering the

city of Zurich, while Zurich subregion II consists of all the other districts (see

figure 9, p. 41). Subregion III represents the districts bordering the Zurich

lake, overall known for its affluent quarters and high end housing, including

the district of Meilen, colloquially termed “Gold Coast”.

The hypothesis behind this subdivision is that districts with a close prox-

imity to Zurich district will have closer economic ties to the city center (e.g.

more desirable for commuters, better transportation links etc.) while the
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other districts may be linked to other centers of economic activity, e.g. the

next bigger city of Winterthur in the district of Winterthur.

We test the pooling assumption based on these smaller geographical re-

gions and find results as shown in table 9 on page 42.

For subregion I & II, similar to the results for all districts, likelihood

ratio test rejects the pooling assumption at the 5% level with pval ≈ 0.000

for subregion I and pval = 0.036 for subregion II, albeit marginally.

Lastly, results indicate that we cannot reject the pooling assumption

for subregion III at the 5% confidence level with a pval = 0.094. Co-

efficient estimates for subregion III indicate, again, a positive relationship

with population and housing stock, a negative relationship with income and

no relationship with interest rates. Adjustment coefficients range between

[−0.93,−0.13] (see appendix A.3).
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Zurich subregion I Zurich subregion II

Zurich subregion III

Figure 9: Subdivision of Zurich districts into three subregions

Original Image source: Canton of Zurich; http://www.bezirke.zh.ch/
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Table 9: PMG estimation results for Zurich subregions with P = 2, Q = 2

Zurich Subregion I: Estimated LR coefficients

cpLL βpop βinc βhstock βrates α
DFE 823.002 7.294 -0.650 -1.921 0.022 -0.070
GM 343.283 -1.007 -1.007 1.291 0.013 -1.061
PMG 855.063 2.950 -0.400 -0.076 0.010

Zurich Subregion I: LL ratio results

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 922.391 855.063 134.655 28 0.000

Zurich Subregion II: Estimated LR coefficients

cpLL βpop βinc βhstock βrates α
DFE 315.321 1.201 0.555 1.181 0.005 -0.606
GM 142.334 -1.041 -1.041 0.853 0.009 -1.160
PMG 319.648 2.177 0.736 0.469 0.008

Zurich Subregion II: LL ratio results

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 327.894 319.648 16.492 8 0.036

Zurich Subregion III: Estimated LR coefficients

cpLL βpop βinc βhstock βrates α
DFE 321.129 5.179 -3.436 0.622 -0.008 -0.290
GM 252.573 -2.810 0.251 7.032 0.000 -1.015
PMG 331.420 4.131 -2.993 1.299 0.000

Zurich Subregion III: LL ratio results

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 338.198 331.420 13.555 8 0.094

cpLL concentrated panel log Likelihood
ur.x unrestricted model, with region specific αi, βi, γi, λi

r.pmg.x restricted model with pooled long run coefficient, βi = β∀i
PMG estimates have region specific αi, found in appendix A.3
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5.3 Estimating individual district models

Given that the district level pooling assumption is rejected when considering

all districts within the Canton of Zurich, we report the individual district

level fits of (6). A summary of the estimated long run coefficients can be

found in table 10. Other short run parameter estimates can be found in

appendix A.4 due to the spacing required to report all values.

As we would expect given the rejection of poolability in the previous

sections, there seems to be no particular pattern in the sign, magnitude and

significance of the long run coefficients (βi) across all districts.

Long run population coefficient is βpop,i > 0 in 10 out of 14 regions consid-

ered, though only 4 estimates are significant at the 5% level in total; income

is βinc,i > 0 in 8 out of 14 regions, with 5 significant estimates in total;

similarly βhstock,i > 0 in 8 of 14 regions with 3 out of 14 significant in total17.

It is interesting to note, all regions’ interest estimates are consistently

≈ 0, albeit generally insignificant. This is consistent with the factor selection

process where AICc suggested that the removal of interest rates would result

in the least information loss (see table 6, 36).

Additionally, all regions exhibit a significant, negative adjustment coeffi-

cient (αi < 0), albeit with differing magnitude. This indicates that there is

an error correction process in effect. The speed of adjustment varies, with

the district of Meilen exhibiting the slowest correction (αMeilen = −0.345)

and districts Dietikon, Hinwil and Horgen exhibiting slight “over-correction”

(αi < −1.100).

17however, βhstock,Geneva seems unusually high compared to its peers.
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Table 10: Overview of individual region model long run coefficient estimates

Expectation: theory suggests positive relationship with population & income; negative relationship
with housing stock; error correction back to long run relationship with speed −1 < α < 0

α βpop βinc βhstock βrates match
expectation?

Bezirk Affoltern Estimate -1.06*** -2.64 0.16 3.80. -0.01
SE 0.24 2.95 0.57 2.18 0.01

Bezirk Bülach Estimate -0.99*** -0.23 3.72** 3.65 0.04*
SE 0.23 2.26 1.27 2.57 0.01

Bezirk Dielsdorf Estimate -1.06*** 3.22* 0.44 -0.89 0.01 X
SE 0.25 1.30 0.59 1.40 0.01

Bezirk Dietikon Estimate -1.39*** 4.18 -0.72 -1.48 0.01
SE 0.24 5.17 0.85 6.28 0.01

Bezirk Hinwil Estimate -1.16*** 0.00 2.29. 1.96 0.02
SE 0.26 2.30 1.24 1.86 0.01

Bezirk Horgen Estimate -1.40*** 6.61 -3.63. -1.14 0.01
SE 0.28 4.77 1.87 3.74 0.02

Bezirk Meilen Estimate -0.35* -6.78** 6.95*** 9.21*** 0.02
SE 0.16 2.28 1.79 1.71 0.02

Bezirk Pfäffikon Estimate -0.96*** 3.18 -0.45 -0.28 0.00
SE 0.26 3.43 1.07 2.39 0.01

Bezirk Uster Estimate -0.95*** 5.22*** -1.30 -2.21. 0.03**
SE 0.23 1.39 0.87 1.19 0.01

Bezirk Winterthur Estimate -1.01*** 1.92 1.10 0.87 0.01
SE 0.26 3.10 0.95 3.03 0.01

Bezirk Zürich Estimate -0.87*** 4.90*** -3.36** -0.60 -0.00
SE 0.20 1.27 1.06 2.65 0.01

Canton de Genève Estimate -0.55* 0.27 -1.37* 16.58** 0.04***
SE 0.23 2.12 0.63 5.58 0.01

Kanton Zürich Estimate -0.36 1.87. 0.61 2.27* 0.03**
SE 0.26 0.98 0.50 1.09 0.01

Schweiz Estimate -0.89*** 4.55** 0.27* 0.09 0.03***
SE 0.20 1.37 0.11 0.62 0.01

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
SE: standard error; for βs: SE and significance represent estimates

for (−1) ∗ αβ
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5.4 Coefficient estimates over time - Estimating model

fits with varying timeframes

As a rough measure of judging whether the relationship between prices and

the fundamental factors over time are stable, we estimate the relationship

using varying timeframes, starting at the first observation 2000q4 and ending

between 2008q4 and 2012q4. A stable long run relationship should in theory

be represented by a constant long-run coefficient estimate, independent of

the timeframe.

We estimate the varying timeframes over all districts in the canton of

Zurich, including subregion I & II & III, using all methodologies (individual

region fit, PMG, MG, DFE).

The results are summarized as sets of graphs displayed in appendix A.5.

In general, we can see that coefficient estimates vary depending on the

timeframe used for all districts and estimation methods (none of the estimates

are horizontal). If a fundamental relationship is captured by the specified

model, we expect the estimations to remain constant over time. Judging by

only the plots, we do not see any indication of a stable long run relationship,

however, additional analysis quantitative analysis would be in order to draw

a robust conclusion.

6 Discussion & Limitations

6.1 Limitations

A number of factors could skew the results obtained in this study.

First, the limitation due to the short time series for each panel (T = 49, 47

with lags included). In the introduction of the PMG estimate, [19] explicitly
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states as a requirement that ”T [number of observations per region] must be

large enough such that we can estimate the model for each group separately”.

While we are able to estimate the individual models, we have seen signs of

overfitting for the individual models, likely due to short observations relative

to the number of parameters.

In addition, this problem may be compounded by the fact that we interpo-

lated quarterly series for three out of four factors (population, income and

housing stock) where only annual observations were available, possibly intro-

ducing data which does not reflect reality as much as we would like. Finally,

the choice of variables and their proxy may be imperfect; e.g. by choosing

Zurich and Geneva as two examples, we captured two key housing markets,

however given their similarity (socially comparatively wealthy, geographically

characterized by lake proximity and with a strong focus on the service and

financial industry) they may not be the best study candidates.

6.2 Discussion

Limited evidence in favor of poolability As the numeric results have

shown, we do not reject pooling of long run coefficients at the cantonal level

(between Zurich and Geneva). However, further analysis at the district level

within the Canton of Zurich shows signs of heterogeneity and we are not

able to reject pooled long run coefficients. This in turn seems to contra-

dict the pooling assumption at the cantonal level; how can we pool different

cantonal representations when there is no evidence in favor of homogeneous

coefficients within the canton itself? Potentially, the similarity of Zurich and

Geneva come to mind.

The first lesson one can draw is that homogeneity/poolability of long run

coefficients should not be assumed as a given when modeling price dynamics.
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Instead, given sufficient data availability, a disaggregated analysis should be

preferred and poolability should be tested before moving with either con-

tinuing at a disaggregated level to analyze regional discrepancies, or with a

higher aggregation level if evidence supports this approach.

Mixed factor coefficients at the district level Given that within the

scope of this study there was no evidence in favor of pooling at the district

level, we continued with estimating district specific models in the canton of

Zurich. Here, the coefficients for the four fundamental factors showed mixed

behavior.

The most consistent factor was interest rates, consistent with a near zero co-

efficient estimate, indicating that in our model, the three month CHF Libor

rate plays a negligible effect. This contradicts theory, which suggests interest

rates play a role both, on the demand as well as supply side by influencing

mortgage availability and affordability, as well as investment cost for any

housing related projects. This leaves us with the question, why does none

of this seem to show up? One potential reason could be that by using a

single interest rate variable to try and capture both supply and demand, we

may have inadvertently suppressed the nuances of two credit markets, where

mortgage rates available to buyers and investment rates available for invest-

ment efforts may differ. Potentially, a more targeted approach such as using

LTV rations as in [10, 11] may have yielded more significant relationships.

No sign of stable coefficient estimates over time As the plots of

section 5.4 have shown, there is no apparent evidence for a stable long

run relationship. Not only do some region specific long run coefficients

vary in amplitude over time, such as βPop,Dietikon, varying between a mag-
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nitude around 0.00 (2000q4-2009q4) to 10.00 (2000q4 - 2010q2), oftentimes

the coefficients also change signs, such as for the district of Meilen with

βpop,Meilen ∈ [−8.00, 7.50]. Since the long run coefficient is estimated in log

variables, the latter would suggest that a 1% increase in population would

have caused a -8% or +7.5% change in prices respectively - a substantial

difference in relationship. The question whether this is caused by a miss-

ing fundamental relationship in the give time period or due to the model

not properly capturing the dynamics needs to be clarified in further detail.

Additionally, the methodology for determining long run coefficient stabil-

ity can be improved, given that we are only examining this relationship by

evaluating coefficient evolution using plots of different timeframes. By se-

quentially shortening the timeframe over which we estimate the coefficients,

we are additionally shortening an already short observation time period, thus

exacerbating the ill effects of short observation periods.

6.2.1 Comparison of this model vs the LPPLS model

This work looks at 12 districts (when counting the Canton of Geneva) which

are also covered in the most recent publication of the biannual Risk Analysis

of the Real Estate Market in Switzerland [5]. Of the districts which are

covered in both, [5] classifies the district of Bülach as to Watch meaning a

bubble signal is being reported by the LPPLS analysis. Additionally, the

districts of Pfäffikon, Hinwil, Uster, Horgen, and Dielsdorf are reported as

”To Monitor” which indicates either that a post-bubble regime change is

underway, or that future periods may continue building a bubble.

In regard to these districts, while our estimated model with the most data

available (2000q4 - 20012q4) showed error correction terms as expected for

an error correction process (α < 0), none of these districts showed stable long
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run relationships over time. As discussed above, one of the reasons hereof

could the lack of a fundamental relationship.

7 Conclusion

We set out to analyze the Swiss real estate price dynamics with a model

driven by fundamental factors using quarterly panel data.

After evaluating existing works, we settled on modelling apartment prices

as a function of population, income, housing stock and interest rates using

the inverted demand approach.

The model we specify, allows for a long run stable (cointegrated) relation-

ship between prices and the fundamentals, while allowing short run dynamics

to deviate from the long run relationship. Specifically, the chosen approach

(using pooled mean group estimation) allows us to test the hypothesis of

homogeneous long run coefficients in different districts.

We gather panel data at the national level, at the cantonal level for Zurich

and Geneva, as well as for the 12 districts within the Canton of Zurich.

The results suggest that a regionally pooled model cannot be assumed

to capture the price dynamics properly, even for district within a canton, as

shown by results in section 5.2.2. Further regional subdivision within the

Canton of Zurich is necessary to find areas where the pooling assumption

cannot be rejected. For the homogeneity hypothesis we therefore conclude

that 1) in general, to obtain a feasible description for regional real estate

market dynamics, it may be preferable to disaggregate the analysis to a dis-

trict level, as coefficient homogeneity does not seem to hold per default at the

cantonal level; 2) regional aggregation can be possible, however administra-

tive borders such as cantons may not be a good aggregation criteria. It seems
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to be up to the investigator to disentangle potential regional relationships.

Following the evidence against poolability, we estimate individual regional

models for each district. One conclusion we are able to draw is that inter-

est rates (as captured by the three month CHF Libor) does not seem to

contribute towards house price dynamics.

Finally, we look at the evolution of coefficients over time by estimating

the model with different data timeframes, starting in 2000q4 and ending

between 2008q4 and 2012q4. We find no evidence suggesting stable coefficient

estimates over time, with results subject discussions in section 6.
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A.1 Variable definitions

Abbreviation Variable Source/Comment
price hedo apt Hedonic price index for apartments [14]
pop Population level FSO/ZSA/OCSTAT
cpi Consumer Price Index as defined

by ”Landesindex der Konsumenten-
preise”

FSO

incr median Median real income (nominal income
divided by national cpi)

FSO/ZSA/OCSTAT

hstock Housing stock (# dwellings in dis-
tricts/canton; # bldgs at national
level)

FSO/ZSA/OCSTAT

X3mCHFL 3 month CHF LIBOR SNB

FSO : Swiss Federal Statistics Office
ZSA : Statistical Bureau of Canton of Zurich (Statistisches Amt)
OCSTAT : Statistical office of Canton of Geneva (Office cantonale de la statistique)
SNB : Swiss National Bank
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A.2 Unit root test lag lengths selected by AIC

Table 11: ADF test number of lag terms selected by AIC

Region price hedo apt pop incr median hstock X3mCHFL
Bezirk Affoltern 4 4 4 4 1
Bezirk Bülach 3 4 4 3 1
Bezirk Dielsdorf 2 4 4 4 1
Bezirk Hinwil 3 4 4 4 1
Bezirk Horgen 2 4 4 4 1
Bezirk Meilen 1 4 4 4 1
Bezirk Pfäffikon 4 4 4 4 1
Bezirk Uster 3 4 4 3 1
Bezirk Winterthur 3 4 4 4 1
Bezirk Dietikon 3 4 4 4 1
Bezirk Zürich 4 4 4 4 1
Canton de Genève 3 3 4 3 1
Schweiz 3 3 3 4 1

Variables
price hedo apt Hedonic price index for apartments as given by [14]
pop Population numbers
incr median Median real income (nominal income divided by national cpi)
hstock Housing stock (# dwellings in districts/canton; # bldgs at national level)
X3mCHFL 3 month CHF LIBOR
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A.3 Model estimation results: region specific adjust-

ment coefficients αi

Table 12: PMG estimation results for testing cantonal Level aggregations with P = 2,
Q = 2

Estimated LR coefficients

cpLL βpop βinc βhstock βrates α
DFE 266.487 27.600 -8.997 -21.998 0.137 -0.057
GM 139.364 -0.455 -0.455 9.423 0.032 -0.552
PMG 274.634 0.347 -1.415 16.530 0.039

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 276.538 274.634 3.807 4 0.433

Individual region specific adjustment coefficients

Canton de Genève Kanton Zürich
DFE -0.057 -0.057
GM -0.552 -0.359
PMG -0.542 -0.017

cpLL concentrated panel log Likelihood
ur.xxx unrestricted model, with region specific αi, βi, γi, λi

r.pmg.xxx restricted model with pooled long run coefficient, βi = β∀i
PMG estimates have region specific αi, found in appendix A.3
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Table 13: PMG estimation results for all districts with P = 2, Q = 2

cpLL βpop βinc βhstock βrates α
DFE 1125.069 5.873 -0.612 -1.329 0.009 -0.095
GM 491.215 -1.016 -1.016 1.171 0.012 -1.061
PMG 1170.099 2.632 -0.309 0.110 0.004

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1250.285 1170.099 160.373 40 0.000

Individual region specific adjustment coefficients

Bezirk Affoltern Bezirk Bülach Bezirk Dielsdorf Bezirk Hinwil
DFE -0.095 -0.095 -0.095 -0.095
GM -1.061 -0.992 -1.016 -1.016
PMG -0.877 -0.228 -0.317 -0.347

Bezirk Horgen Bezirk Meilen Bezirk Pfäffikon Bezirk Uster
DFE -0.095 -0.095 -0.095 -0.095
GM -1.016 -1.016 -1.016 -1.016
PMG -0.024 0.022 -0.952 -0.650

Bezirk Winterthur Bezirk Dietikon Bezirk Zürich
DFE -0.095 -0.095 -0.095
GM -1.016 -1.016 -1.016
PMG -0.605 -1.350 -0.023

pLL panel log Likelihood
cpLL contentrated panel log Likelihood
ur.x unrestricted model, with region specific αi, βi, γi, λi

r.pmg.x restricted model with pooled long run coefficient, βi = β∀i
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Table 14: PMG estimation results for Zurich subregion I with P = 2, Q = 2

cpLL βpop βinc βhstock βrates α
DFE 823.002 7.294 -0.650 -1.921 0.022 -0.070
GM 343.283 -1.007 -1.007 1.291 0.013 -1.061
PMG 855.063 2.950 -0.400 -0.076 0.010

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 922.391 855.063 134.655 28 0.000

Individual region specific adjustment coefficients

Bezirk Affoltern Bezirk Bülach Bezirk Dielsdorf Bezirk Horgen
DFE -0.070 -0.070 -0.070 -0.070
GM -1.061 -0.992 -1.007 -1.007
PMG -0.776 -0.203 -0.296 -0.021

Bezirk Meilen Bezirk Uster Bezirk Dietikon Bezirk Zürich
DFE -0.070 -0.070 -0.070 -0.070
GM -1.007 -1.007 -1.007 -1.007
PMG 0.020 -0.653 -1.389 -0.032

pLL panel log Likelihood
cpLL contentrated panel log Likelihood
ur.x unrestricted model, with region specific αi, βi, γi, λi

r.pmg.x restricted model with pooled long run coefficient, βi = β∀i
PMG estimates have region specific αi, found in appendix
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Table 15: PMG estimation results for Zurich subregion II with P = 2, Q = 2

cpLL βpop βinc βhstock βrates α
DFE 315.321 1.201 0.555 1.181 0.005 -0.606
GM 142.334 -1.041 -1.041 0.853 0.009 -1.160
PMG 319.648 2.177 0.736 0.469 0.008

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 327.894 319.648 16.492 8 0.036

Individual region specific adjustment coefficients

Bezirk Hinwil Bezirk Pfäffikon Bezirk Winterthur
DFE -0.606 -0.606 -0.606
GM -1.160 -0.956 -1.041
PMG -0.450 -0.964 -0.999

pLL panel log Likelihood
cpLL contentrated panel log Likelihood
ur.x unrestricted model, with region specific αi, βi, γi, λi

r.pmg.x restricted model with pooled long run coefficient, βi = β∀i

Table 16: PMG estimation results for Zurich subregion III with P = 2, Q = 2

cpLL βpop βinc βhstock βrates α
DFE 321.129 5.179 -3.436 0.622 -0.008 -0.290
GM 252.573 -2.810 0.251 7.032 0.000 -1.015
PMG 331.420 4.131 -2.993 1.299 0.000

ur.cpLL r.pmg.cpLL LL.ratio chisqdf pval
1 338.198 331.420 13.555 8 0.094

Individual region specific adjustment coefficients

Bezirk Horgen Bezirk Meilen Bezirk Zürich
DFE -0.290 -0.290 -0.290
GM -1.015 -0.259 -0.781
PMG -0.930 -0.131 -0.805

pLL panel log Likelihood
cpLL contentrated panel log Likelihood
ur.x unrestricted model, with region specific αi, βi, γi, λi

r.pmg.x restricted model with pooled long run coefficient, βi = β∀i
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A.4 Individual region model fits

Table 17: Individual region model fit: Bezirk Affoltern

Multiple R2: 0.687 ; Adjusted R2: 0.55

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -5.910 10.866 -0.544 0.590

α -1.061 0.241 -4.413 0.000 ***
βpop -2.636 2.948 -0.894 0.378
βinc 0.162 0.575 0.281 0.780

βhstock 3.795 2.184 1.738 0.092 .
βrates -0.010 0.010 -1.041 0.306

lag(diff(log(price hedo apt)), 1) -0.136 0.160 -0.847 0.403
lag(diff(log(pop)), 0) 25.305 19.194 1.318 0.197
lag(diff(log(pop)), 1) -11.223 18.763 -0.598 0.554

lag(diff(log(incr median)), 0) -1.454 1.105 -1.315 0.198
lag(diff(log(incr median)), 1) -1.800 1.119 -1.608 0.118

lag(diff(log(hstock)), 0) 14.049 8.972 1.566 0.127
lag(diff(log(hstock)), 1) -21.535 9.319 -2.311 0.027 *
lag(diff(X3mCHFL), 0) -0.034 0.021 -1.640 0.111
lag(diff(X3mCHFL), 1) -0.037 0.019 -1.959 0.059 .

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 18: Individual region model fit: Bezirk Bülach

Multiple R2: 0.574 ; Adjusted R2: 0.387

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -55.091 14.026 -3.928 0.000 ***

α -0.992 0.229 -4.323 0.000 ***
βpop -0.230 2.263 -0.102 0.920
βinc 3.723 1.274 2.922 0.006 **

βhstock 3.653 2.568 1.423 0.165
βrates 0.039 0.014 2.710 0.011 *

lag(diff(log(price hedo apt)), 1) 0.083 0.169 0.493 0.625
lag(diff(log(pop)), 0) -24.620 32.270 -0.763 0.451
lag(diff(log(pop)), 1) 0.217 31.211 0.007 0.994

lag(diff(log(incr median)), 0) 0.203 0.896 0.226 0.822
lag(diff(log(incr median)), 1) -1.720 1.056 -1.628 0.113

lag(diff(log(hstock)), 0) 3.048 11.564 0.264 0.794
lag(diff(log(hstock)), 1) 1.678 9.642 0.174 0.863
lag(diff(X3mCHFL), 0) -0.015 0.015 -1.007 0.321
lag(diff(X3mCHFL), 1) -0.013 0.015 -0.820 0.418

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 19: Individual region model fit: Bezirk Dielsdorf

Multiple R2: 0.668 ; Adjusted R2: 0.523

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -26.227 7.375 -3.556 0.001 **

α -1.055 0.251 -4.210 0.000 ***
βpop 3.215 1.300 2.473 0.019 *
βinc 0.443 0.587 0.755 0.456

βhstock -0.894 1.136 -0.788 0.437
βrates 0.012 0.009 1.270 0.213

lag(diff(log(price hedo apt)), 1) -0.117 0.151 -0.775 0.444
lag(diff(log(pop)), 0) 18.329 13.243 1.384 0.176
lag(diff(log(pop)), 1) -30.607 13.886 -2.204 0.035 *

lag(diff(log(incr median)), 0) -1.426 1.032 -1.382 0.177
lag(diff(log(incr median)), 1) -1.424 1.011 -1.409 0.169

lag(diff(log(hstock)), 0) -16.565 9.052 -1.830 0.077 .
lag(diff(log(hstock)), 1) 18.774 8.134 2.308 0.028 *
lag(diff(X3mCHFL), 0) -0.009 0.016 -0.561 0.579
lag(diff(X3mCHFL), 1) -0.009 0.017 -0.521 0.606

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 20: Individual region model fit: Bezirk Dietikon

Multiple R2: 0.663 ; Adjusted R2: 0.516

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -31.155 15.650 -1.991 0.055 .

α -1.392 0.237 -5.876 0.000 ***
βpop 4.183 5.175 0.808 0.425
βinc -0.718 0.854 -0.841 0.407

βhstock -1.482 6.283 -0.236 0.815
βrates 0.010 0.012 0.856 0.398

lag(diff(log(price hedo apt)), 1) 0.285 0.159 1.785 0.084 .
lag(diff(log(pop)), 0) 52.787 34.705 1.521 0.138
lag(diff(log(pop)), 1) -68.795 30.836 -2.231 0.033 *

lag(diff(log(incr median)), 0) 0.913 1.062 0.860 0.396
lag(diff(log(incr median)), 1) 1.005 1.172 0.857 0.398

lag(diff(log(hstock)), 0) -32.466 29.250 -1.110 0.275
lag(diff(log(hstock)), 1) 40.045 25.571 1.566 0.127
lag(diff(X3mCHFL), 0) 0.018 0.018 0.992 0.329
lag(diff(X3mCHFL), 1) -0.032 0.019 -1.713 0.096 .

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 21: Individual region model fit: Bezirk Hinwil

Multiple R2: 0.645 ; Adjusted R2: 0.489

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -34.745 10.284 -3.379 0.002 **

α -1.160 0.264 -4.391 0.000 ***
βpop 0.003 2.300 0.001 0.999
βinc 2.293 1.237 1.854 0.073 .

βhstock 1.961 1.861 1.054 0.300
βrates 0.016 0.012 1.376 0.178

lag(diff(log(price hedo apt)), 1) 0.044 0.179 0.244 0.809
lag(diff(log(pop)), 0) 9.078 20.105 0.452 0.655
lag(diff(log(pop)), 1) -21.221 22.567 -0.940 0.354

lag(diff(log(incr median)), 0) 1.666 0.864 1.929 0.063 .
lag(diff(log(incr median)), 1) 1.096 0.934 1.174 0.249

lag(diff(log(hstock)), 0) 7.808 7.106 1.099 0.280
lag(diff(log(hstock)), 1) -6.826 6.678 -1.022 0.314
lag(diff(X3mCHFL), 0) 0.009 0.016 0.538 0.595
lag(diff(X3mCHFL), 1) 0.016 0.016 0.983 0.333

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 22: Individual region model fit: Bezirk Horgen

Multiple R2: 0.682 ; Adjusted R2: 0.544

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -51.997 15.366 -3.384 0.002 **

α -1.395 0.279 -5.010 0.000 ***
βpop 6.613 4.769 1.387 0.175
βinc -3.629 1.868 -1.943 0.061 .

βhstock -1.145 3.744 -0.306 0.762
βrates 0.008 0.015 0.533 0.598

lag(diff(log(price hedo apt)), 1) 0.106 0.168 0.630 0.533
lag(diff(log(pop)), 0) 13.895 19.862 0.700 0.489
lag(diff(log(pop)), 1) 2.551 23.103 0.110 0.913

lag(diff(log(incr median)), 0) -1.821 1.111 -1.640 0.111
lag(diff(log(incr median)), 1) 0.398 1.349 0.295 0.770

lag(diff(log(hstock)), 0) 3.312 15.547 0.213 0.833
lag(diff(log(hstock)), 1) -38.146 14.723 -2.591 0.014 *
lag(diff(X3mCHFL), 0) 0.002 0.021 0.073 0.942
lag(diff(X3mCHFL), 1) -0.007 0.020 -0.361 0.720

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 23: Individual region model fit: Bezirk Meilen

Multiple R2: 0.607 ; Adjusted R2: 0.436

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -20.728 13.702 -1.513 0.140

α -0.345 0.162 -2.128 0.041 *
βpop -6.781 2.284 -2.969 0.006 **
βinc 6.949 1.791 3.879 0.000 ***

βhstock 9.211 1.712 5.380 0.000 ***
βrates 0.025 0.016 1.545 0.132

lag(diff(log(price hedo apt)), 1) -0.436 0.162 -2.687 0.011 *
lag(diff(log(pop)), 0) 0.758 36.286 0.021 0.983
lag(diff(log(pop)), 1) -5.687 39.833 -0.143 0.887

lag(diff(log(incr median)), 0) -0.450 1.049 -0.429 0.671
lag(diff(log(incr median)), 1) -0.707 1.049 -0.674 0.505

lag(diff(log(hstock)), 0) -4.567 15.157 -0.301 0.765
lag(diff(log(hstock)), 1) 0.920 14.885 0.062 0.951
lag(diff(X3mCHFL), 0) 0.006 0.018 0.364 0.718
lag(diff(X3mCHFL), 1) -0.008 0.016 -0.530 0.600

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 24: Individual region model fit: Bezirk Pfäffikon

Multiple R2: 0.493 ; Adjusted R2: 0.271

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -23.405 15.046 -1.556 0.130

α -0.956 0.260 -3.680 0.001 ***
βpop 3.178 3.431 0.926 0.361
βinc -0.452 1.071 -0.422 0.676

βhstock -0.276 2.392 -0.116 0.909
βrates 0.000 0.011 0.004 0.997

lag(diff(log(price hedo apt)), 1) 0.062 0.191 0.323 0.749
lag(diff(log(pop)), 0) 38.460 27.879 1.380 0.177
lag(diff(log(pop)), 1) -22.927 28.593 -0.802 0.429

lag(diff(log(incr median)), 0) -0.064 1.285 -0.050 0.960
lag(diff(log(incr median)), 1) 0.723 1.329 0.544 0.590

lag(diff(log(hstock)), 0) -14.971 14.108 -1.061 0.297
lag(diff(log(hstock)), 1) 14.593 12.695 1.150 0.259
lag(diff(X3mCHFL), 0) 0.005 0.021 0.243 0.810
lag(diff(X3mCHFL), 1) 0.003 0.019 0.153 0.879

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 25: Individual region model fit: Bezirk Uster

Multiple R2: 0.56 ; Adjusted R2: 0.368

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -22.774 8.834 -2.578 0.015 *

α -0.950 0.231 -4.108 0.000 ***
βpop 5.215 1.385 3.765 0.001 ***
βinc -1.301 0.872 -1.492 0.145

βhstock -2.209 1.187 -1.862 0.072 .
βrates 0.026 0.009 2.806 0.008 **

lag(diff(log(price hedo apt)), 1) 0.073 0.165 0.441 0.662
lag(diff(log(pop)), 0) -5.890 13.566 -0.434 0.667
lag(diff(log(pop)), 1) -15.000 13.500 -1.111 0.275

lag(diff(log(incr median)), 0) 0.600 0.810 0.741 0.464
lag(diff(log(incr median)), 1) 1.714 0.666 2.573 0.015 *

lag(diff(log(hstock)), 0) 0.208 9.342 0.022 0.982
lag(diff(log(hstock)), 1) 7.703 8.288 0.929 0.360
lag(diff(X3mCHFL), 0) 0.022 0.011 1.993 0.055 .
lag(diff(X3mCHFL), 1) 0.005 0.012 0.401 0.691

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 26: Individual region model fit: Bezirk Winterthur

Multiple R2: 0.566 ; Adjusted R2: 0.376

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -34.718 11.049 -3.142 0.004 **

α -1.006 0.260 -3.870 0.001 ***
βpop 1.918 3.105 0.618 0.541
βinc 1.102 0.950 1.160 0.255

βhstock 0.873 3.032 0.288 0.775
βrates 0.012 0.013 0.894 0.378

lag(diff(log(price hedo apt)), 1) -0.040 0.178 -0.224 0.824
lag(diff(log(pop)), 0) 3.487 23.270 0.150 0.882
lag(diff(log(pop)), 1) -19.600 22.912 -0.855 0.399

lag(diff(log(incr median)), 0) 1.094 0.929 1.177 0.248
lag(diff(log(incr median)), 1) -0.014 1.117 -0.013 0.990

lag(diff(log(hstock)), 0) 0.458 11.688 0.039 0.969
lag(diff(log(hstock)), 1) 1.755 10.492 0.167 0.868
lag(diff(X3mCHFL), 0) -0.002 0.021 -0.079 0.938
lag(diff(X3mCHFL), 1) -0.000 0.021 -0.023 0.982

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 27: Individual region model fit: Bezirk Zürich

Multiple R2: 0.579 ; Adjusted R2: 0.395

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -26.207 28.050 -0.934 0.357

α -0.865 0.200 -4.322 0.000 ***
βpop 4.901 1.266 3.872 0.001 ***
βinc -3.363 1.058 -3.178 0.003 **

βhstock -0.604 2.648 -0.228 0.821
βrates -0.004 0.012 -0.319 0.752

lag(diff(log(price hedo apt)), 1) -0.099 0.159 -0.626 0.536
lag(diff(log(pop)), 0) 24.400 8.641 2.824 0.008 **
lag(diff(log(pop)), 1) -25.711 9.003 -2.856 0.007 **

lag(diff(log(incr median)), 0) 0.230 1.257 0.183 0.856
lag(diff(log(incr median)), 1) 1.650 1.147 1.438 0.160

lag(diff(log(hstock)), 0) 22.676 24.160 0.939 0.355
lag(diff(log(hstock)), 1) -1.820 26.523 -0.069 0.946
lag(diff(X3mCHFL), 0) 0.006 0.023 0.263 0.794
lag(diff(X3mCHFL), 1) 0.012 0.019 0.621 0.539

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 28: Individual region model fit: Canton de Genève

Multiple R2: 0.676 ; Adjusted R2: 0.534

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -106.686 48.168 -2.215 0.034 *

α -0.552 0.227 -2.431 0.021 *
βpop 0.272 2.116 0.129 0.899
βinc -1.367 0.631 -2.167 0.038 *

βhstock 16.579 5.577 2.973 0.006 **
βrates 0.038 0.009 4.051 0.000 ***

lag(diff(log(price hedo apt)), 1) -0.417 0.160 -2.599 0.014 *
lag(diff(log(pop)), 0) 1.743 14.595 0.119 0.906
lag(diff(log(pop)), 1) 2.349 14.315 0.164 0.871

lag(diff(log(incr median)), 0) -1.304 0.861 -1.515 0.140
lag(diff(log(incr median)), 1) -1.194 0.822 -1.453 0.156

lag(diff(log(hstock)), 0) 53.961 29.257 1.844 0.074 .
lag(diff(log(hstock)), 1) -80.843 33.285 -2.429 0.021 *
lag(diff(X3mCHFL), 0) 0.019 0.014 1.352 0.186
lag(diff(X3mCHFL), 1) -0.002 0.015 -0.131 0.897

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 29: Individual region model fit: Kanton Zürich

Multiple R2: 0.501 ; Adjusted R2: 0.283

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -19.987 14.226 -1.405 0.170

α -0.359 0.259 -1.384 0.176
βpop 1.868 0.985 1.897 0.067 .
βinc 0.612 0.498 1.228 0.228

βhstock 2.267 1.088 2.084 0.045 *
βrates 0.026 0.009 2.842 0.008 **

lag(diff(log(price hedo apt)), 1) -0.371 0.206 -1.800 0.081 .
lag(diff(log(pop)), 0) 4.240 8.765 0.484 0.632
lag(diff(log(pop)), 1) -12.028 9.674 -1.243 0.223

lag(diff(log(incr median)), 0) -0.339 0.524 -0.646 0.523
lag(diff(log(incr median)), 1) -0.353 0.475 -0.744 0.463

lag(diff(log(hstock)), 0) -2.677 6.224 -0.430 0.670
lag(diff(log(hstock)), 1) 5.422 5.251 1.032 0.310
lag(diff(X3mCHFL), 0) -0.004 0.009 -0.488 0.629
lag(diff(X3mCHFL), 1) -0.007 0.008 -0.919 0.365

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 30: Individual region model fit: Schweiz

Multiple R2: 0.659 ; Adjusted R2: 0.51

Estimate [Std. Error]? [t-value]? [Pr(> |t|)]? [Signif.]?
(Intercept) -62.920 15.670 -4.015 0.000 ***

α -0.893 0.204 -4.370 0.000 ***
βpop 4.552 1.367 3.330 0.002 **
βinc 0.268 0.106 2.518 0.017 *

βhstock 0.088 0.620 0.142 0.888
βrates 0.027 0.006 4.527 0.000 ***

lag(diff(log(price hedo apt)), 1) -0.047 0.150 -0.312 0.757
lag(diff(log(pop)), 0) -7.241 6.144 -1.179 0.247
lag(diff(log(pop)), 1) 3.918 7.220 0.543 0.591

lag(diff(log(incr median)), 0) 0.164 0.132 1.243 0.223
lag(diff(log(incr median)), 1) 0.105 0.144 0.728 0.472

lag(diff(log(hstock)), 0) 39.792 36.106 1.102 0.279
lag(diff(log(hstock)), 1) -17.056 33.268 -0.513 0.612
lag(diff(X3mCHFL), 0) 0.011 0.004 2.522 0.017 *
lag(diff(X3mCHFL), 1) -0.004 0.005 -0.823 0.417

? for long run coefficients β; Std.Error, t-value, Pr(), represent
estimates for (−1) ∗ αβ

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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A.5 Long Run coefficient estimations over time

A.5.1 Canton of Zurich all districts

Figure 10: Long Run coefficient estimations over time
Canton of Zurich all districts

Timeframe: 2000q4 - varying end time
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A.5 Long Run coefficient estimations over time A APPENDIX

A.5.2 Canton of Zurich Subregion I

Figure 11: Long Run coefficient estimations over time
Canton of Zurich subregion I

Timeframe: 2000q4 - varying end time
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Figure 12: Long Run coefficient estimations over time
Canton of Zurich subregion I (region specific est)

Timeframe: 2000q4 - varying end time
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A.5 Long Run coefficient estimations over time A APPENDIX

A.5.3 Canton of Zurich Subregion II

Figure 13: Long Run coefficient estimations over time
Canton of Zurich subregion II

Timeframe: 2000q4 - varying end time
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Figure 14: Long Run coefficient estimations over time
Canton of Zurich subregion II (region specific est)

Timeframe: 2000q4 - varying end time
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