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Abstract

The paper aims at adding di�erent measures of diversi�cation to the Markowitz portfolio, since

solely focussing on return and risk maximization might lead to a limited portfolio size of only a few

securities. Throughout the paper we discuss the performance of the naive 1
N -rule compared to three

distinct portfolio concepts - namely the Generalized Her�ndahl Index, state-dependent allocation

and the Kelly Criterion - by deploying several relevant performance metrics such as Up / Down

Ratios, Sharpe Ratio-like measures and cumulative returns. The Generalized Her�ndahl Index is

de�ned in an analogous manner to the Her�ndahl Index, which results in a performance similar to

the 1
N -benchmark. In contrast to this observation, the state-dependent allocation strategy, which

switches from the naive 1
N -rule to the minimum variance portfolio depending on the value of the DS

LPPLSTM con�dence indicator, is able to generate consistently superior returns if indicator thresh-

olds below 0.8 are applied. The last strategy deploys the Kelly criterion which results in portfolios

that are not only well diversi�ed but also heavily dependent on the risk-free asset. Understandably,

the Kelly portfolio behaves very di�erently compared to the naive 1
N -rule, but fails to outperform

it. The above-mentioned strategies were tested using three data sets that vary with respect to asset

number and estimation window size. The �rst data set includes nine S&P500 sectors from 2000 to

2009, whereas the second one relies on 39 S&P500 assets from 1990 to 2009 and �nally the third

data set utilizes 50 S&P500 assets from 1974 to 2011.
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1. Introduction

"One should always divide his wealth into three parts: [investing] a third in land, a third in merchandise,

and [keeping] a third ready to hand." - This ancient quote by rabbi Isaac bar Aha dates back to the

4th century and is to be found in the Babylonian Talmud. The rabbi's simplistic guide to diversi�ca-

tion marks the starting point of a longsome quest in which businessmen have been after the optimal

investment strategy. Even Shakespeare's �ctitious venetian merchant Antonio proudly reveals his very

own diversi�cation approach: "My ventures are not in one bottom trusted / Nor to one place, nor is

my whole estate / Upon the fortune of this present year." In fact, diversi�cation has been mentioned

already much earlier in the book of Ecclesiastes (935 BC), where it reads: "But divide your investments

among many places, for you do not know what risks might lie ahead", which to a large extent relates to

today's common proverb "don't put all your eggs into one basket".

Speaking of today: The manifestations of modern portfolio theory were established by Harry Markowitz

in 1952. Over the years various amendments to the Markowitz portfolio have been proposed for the pur-

pose of overcoming several weaknesses that come with some of the assumptions made by Markowitz. For

instance, Fama and French coined a three-factor model, which itself can be interpreted as an advanced

version of the capital asset pricing model (CAPM). The model is based on their observation that stocks

with small market capitalization or small price-to-book ratio have a tendency to outperform the market.

An alternative to the CAPM is presented by the widely-used arbitrage pricing model, which does not

require a market equilibrium, but only an arbitrage-free stock market. It turned out that any of these

developments were helpful inasmuch as they successfully model the market more realistically than the

original Markowitz model in many aspects. In our paper we will extend the Markowitz portfolio theory

to include diversi�cation contraints such as Her�ndahl Index (HHI) and other related means in order to

avoid that our Markowitz portfolio condensates into a few assets only.

In the theory part (Section 2) we will describe the general Markowitz portfolio itself before introducing

the naive 1
N
-rule, which will serve as a performance benchmark throughout the entire work. The bench-

mark will be compared to three distinct investment strategies: At �rst, we will examine the peculiarities

of a generalized version of the Her�ndahl Index, which does not measure the concentration among in-

dividual assets, but whole sectors. As the 1
N
-rule and the Her�ndahl Index are formulated analogically

we expect very similar results. After that, we will present a state-dependent allocation strategy that

switches between the naive 1
N
-rule and a minimum variance portfolio depending on the value of the

LPPLS bubble indicator. Hence, whenever a crisis is imminent and correlations between assets increase,

we primarily depend on risk minimization instead of return maximization. We hope to outperform

the naive 1
N
-portfolio provided that the bubble indicator su�ciently predicts crises. Finally, we will

introduce the Kelly criterion and build a portfolio based on it. The unconstrained implementation of

such a Kelly portfolio leads to an investment into all available assets and is therefore considered well
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diversi�ed.

In the data part (section 3), we will show three data sets that comprise a range of securities over

di�erent observation periods (2000 - 2009, 1990 - 2009 and 1974 - 2011, respectively). Furthermore, we

will disprove Markowitz' assumption of normality by applying a plethora of evaluation and performance

metrics which illustrate that stock returns do not follow a Gaussian distribution. On top of that,

we will justify the choice of the data sets with respect to the phenomenon of regime changing. The

implementation part (section 4) will demonstrate how to carry out each of the three above-mentioned

portfolio concepts, namely Generalized Her�ndahl Index, state-dependent allocation as well as Kelly

criterion. Moreover, we will explain how to deal with a rolling window approach as opposed to a "buy-

and-hold" strategy. In addition, the result part (section 5) will show the respective weight distributions

for any of the strategies by visualizing them in risk-return diagrams. Besides, it will draw an empirical

connection between the Her�ndahl Index and entropy-like diversi�cation.

The Analysis part (section 6) will take the performance evaluation tools de�ned in the data part and

apply them to our three strategies for the sake of comparison with the performance of the naive 1
N
-rule.

It will become clear that the Generalized Her�ndahl Index (GHHI) and the usual Her�ndahl Index work

in a very similar manner so that optimizing them will lead to a portfolio that performs more or less like

the 1
N
-portfolio. On the contrary, the state-dependent allocation strategy is actually able to outperform

the 1
N
-portfolio, if the strategies are switched whenever the bubble indicator surpasses a small threshold.

At last, the Kelly portfolio will be assessed. Since the Kelly portfolio heavily relies on the risk-free asset

it behaves totally di�erent than the previously evaluated strategies as well as the 1
N
-strategy, but just

like the GHHI portfolio it does not consistently outfperform the 1
N
-benchmark.

In the conclusion part (section 8) we will suggest numerous possible improvements to our approach. For

example it is advisable to spend more time on properly selecting the data set, since the results are very

sensitive to the length of the observation window as well as the choice of securities. Aside from this

technical issue, we will propose a scheme on how to combine our three strategies in a meaningful way

based on the results of this paper.
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2. Theory

2.1 Description of the Markowitz Problem

Instead of solely evaluating the risk of individual assets separately, Markowitz Portfolio Theory takes into

account their e�ect on the joint risk of the entire portfolio. In other words, the total risk of a portfolio

is constituted not only by the mere sum of the risks of the single assets, but also by a correlational

contribution that incorporates the dependencies between di�erent assets. Accordingly, the squared risk

of a portfolio X with assets xi is given by the variance:

σ2(X) = var[X] =
n∑

i,j=1

wiΣi,jwj (1)

where:

wi: weight of asset xi

Σij : covariance matrix

The corresponding covariance matrix is de�ned as follows:

Σi,j = Σ(xi, xj) = var(xi, xj) = E [(Xi − E [Xi]) (Xj − E [Xj])] (2)

For n assets the covariance matrix takes the following form:

Σi,j =



var (x1, x1) cov (x2, x1) · · · cov (xn−1, x1) cov (xn, x1)

cov (x1, x2) var (x2, x2)
. . . . . . cov (xn, x2)

...
. . . . . . . . .

...

cov (x1, xn−1)
. . . . . . var (xn−1, xn−1) cov (xn, xn−1)

cov (x1, xn) cov (x2, xn) · · · cov (xn−1, xn) var (xn)


(3)

Taking the square root of the variance leads to the standard deviation σ, which is represented by price

variations of an asset or a portfolio and poses as a measure of risk. The total return of the portfolio is

given by the sum of the expected returns of assets xi:

E [R(X)] =
n∑
i=1

E [R (xi)] =
n∑
i=1

µiwi (4)

where:
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µi: return associated with asset xi

Markowitz assumes that on the one hand investors are fond of large pro�ts, but on the other hand they

perceive price �uctuations as risky. By combining several assets in a certain way it is possible to optimize

the total output of an investment resulting in higher return at the same risk or lower risk at the same

return. It follows that investors consider their portfolio optimal if they are able to maximize the return

of their portfolio at the risk that they are willing to take (or vice versa). To sum up, the optimal size

of wi - the relative contribution of asset xi to the whole portfolio - is determined by three parameters,

namely the future return of xi, the �uctuation range of the pro�t of xi and the development of the

pro�t of xi with respect to the other assets xj (measured by the correlation value ρij). Furthermore,

Markowitz de�ned the pro�t of asset xi as follows:

µt−1,i =
Pt,i
Pt−1,i

− 1 (5)

where:

Pt,i: price of asset xi at time t

Pt−1,i: price of asset xi at time t− 1

Since the above description of the return does not allow a simple addition of the returns we will use loga-

rithmic de�nition of returns throughout this paper which is also known as the continuously compounded

return:

µt−1,i,log = log

(
Pt,i
Pt−1,i

)
(6)

It can be shown that these two de�nitions are equivalent up to quadratic terms. Both de�nitions also

illustrate one of several weaknesses of Markowitz Portfolio Theory, as the estimates of both return and

risk are based on past price �uctuations. In general, this contradicts the weak form of the E�cient-

market Hypothesis, which states that past price developments have no in�uence on future prices. Hence,

technical analysis techniques can not be used to generate persistent excess returns. In addition, we

impose two linear constraints on the Markowitz Problem:

n∑
i=1

wi = 1 (7)

wi ≥ 0 ∀i (8)

The �rst constraint ensures that the investors invest all their money. The second one excludes the

possibility of short selling, which yields more consistent optimization results. Plotting the sum of all

possible portfolios into a return-risk diagram we obtain a feasible set:
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Figure 1: risk-return diagram showing the feasible set of six assets / indices from the LPP2005 data set ("SBI" (swiss

bonds), "SPI" (swiss equities), "SII" (real estate), "LMI" (american bonds), "MPI" (international equities), "ALT"

(alternative investments)) including indication of minimum variance and maximum return portfolios; points A and B

indicate the locations of two single assets within the diagram.

The feasible set represents all possible combinations of assets. The e�cient frontier, which comprises

all portfolios that are pareto-optimal in terms of risk and return, is de�ned by the outer left line

of the feasible set reaching from the maximum return portfolio to the minimum variance portfolio.

Considering only two assets (with: rA < rB and σA < σB) yields a single line that starts at a portfolio

purely consisting of asset A and ends at a portfolio that only contains asset B. While altering the

concentration of asset A and B within our portfolio we �rst move along the ine�cient frontier, then pass

the minimum variance portfolio, before we move along the e�cient frontier and end up at the maximum

return portfolio. E�cient portfolios are those portfolios that lie on the e�cient frontier of the risk-return

diagram. A portfolio dominates a second portfolio if the return of the �rst portfolio is r1 ≥ r2 and its

standard deviation is σ1 ≤ σ2. A particular portfolio is pareto-optimal if it is not dominated by another

portfolio within the feasible set.

2.2 Criticism of Markowitz Approach

Many �nancial scientists have criticized Markowitz Portfolio Theory in di�erent ways. First of all,

Markowitz assumes the market to be e�cient which in general leads to high-risk assets yielding more

return than low-risk assets. But, at the same time Markowitz also neglects the E�cient-market hypoth-

esis. Its weak form states that any information of past price variations o�er no valuable clues to future

price developments. The semi-strong form suggests that it is not possible to deduce abitrage opportuni-

ties from any publicly available information. Finally, the strong form claims that there are no arbitrage

opportunities at all no matter which information we are looking at. This form is backed up by statistics

showing that only very few pension fund managers are able to generate sustainable pro�ts although they
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have access to almost any information. However, Markowitz portfolio theory seems to even disregard

the manifestations of the weakest form by making up a strategy based only on the consideration of risk

and return values that were obtained in the past through technical analysis.

Another school of thought criticizing Markowitz portfolio theory was established by Robert A. Haugen.

He opposed the concept of e�cient markets after having examined the price �uctuations of American

assets over long periods of time. His results showed that more risky assets such as equities do not

yield signi�cantly higher returns than less risky assets such as bonds, which fundamentally contradicts

Markowitz portfolio theory, since Markowitz assumes that high-risk assets need to yield disproportion-

ately large returns in order to be favored over low-risk assets. Haugen's proposal is supported by the

existence of over- or underpriced assets that can easily be identi�ed in any kind of market, which indi-

cates that markets might not be as e�cient as Markowitz suggests. Furthermore, Haugen suspects that

asset prices are not mainly driven by news, but rather by price variations of other assets. This idea

would explain why markets sometimes do not react to relevant events such as the US entry into World

War Two in 1941, but sometimes dramatically depreciate without any observable inducement from the

news.

2.3 Measures of Diversi�cation

Thirdly, Markowitz portfolio theory fails to take into account diversi�cation. For instance, optimizing

with respect to covariance risk and average return might lead to a portfolio that relies on bonds and

equities alone. But it might actually be advantageous to invest in a broader selection of asset classes,

since bonds and equities display some slight correlations which might lead to a complete loss of the

whole portfolio under certain circumstances. Therefore, one might give consideration to investing into

other asset types such as commodities, currencies, real estate or even gold.

De�ning the market portfolio as synonymous to complete diversi�cation the literature seeks to �nd the

portfolio volume required to be adequately diversi�ed. Adequate diversi�cation can be interpreted as

a level of diversi�cation at which the volatility of the portfolio does not deviate considerably from the

market volatility. The number of assets associated with this level of diversi�cation marks a threshold

above which the marginal costs of investing in an additional asset outweigh the diversi�cation gain. Un-

fortunately, most papers only deal with portfolios where investors portion their money equally among

all available securities. Two central pieces of literature on diversi�cation are presented by the works of

Evans & Archer (1968) and Fisher & Lorie (1970). Evans and Archer measure the volatility of evenly

distributed portfolios with di�erent asset numbers and regress the volatility against the number of assets

in the portfolio, while the latter study states that the lion's share of risk mitigation is already achieved

when simply possessing just 8 assets. More recent contributions suggest that more securities are neces-

sary to diversify adequately. Some of the approaches deployed in these papers involve the computation
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of the volatility of the volatility (Upson et. al., 1975) or no-load index funds (Statman, 1987). On the

contrary, adding transaction fees actually reduces the number of assets needed for adequate diversi�ca-

tion (Goldsmith, 1976 / Shanker, 1989). Other works recommend hedging for exchange rate risk (Solnik,

1974), primarily investing in assets from the S&P Stock Guide (Wagner & Lau, 1971) or in low-beta

securities (Martin & Klemkosky, 1975) and incorporating stock classi�cations (Martin & Klemkosky,

1976).

In the following we will shed light on a few di�erent measures of diversi�cation including Her�ndahl-

and entropy-like approaches, which are adopted from the works of of Woerheide & Persson (1993) and

Anand & Ramasubramanian (2015). As opposed to the number of assets which only works for equally

weighted investments, the diversi�cation metrics below can handle any contribution of asset weights.

First of all, the Her�ndahl-Hirschman Index (from now on referred to as Her�ndahl Index) is de�ned

via the weights wi of the respective assets i ∈ [1, N ]:

HHI =

∑N
i=1w

2
i(∑N

i=1wi

)2 (9)

In our case the denominator can be neglected since the sum of all weights wi is always one. Her�ndahl

Index can take values between 1
N
and 1, while the bottom limit corresponds to an equal weights distri-

bution and the upper limit represents the investment in a single asset only. Besides, the inverse of the

Her�ndahl Index corresponds to the e�ective number of securities among which the risk is mitigated

within a portfolio. Secondly, it exists a measure that orders the weights by size and multiplies the

weights with their respective rank, namely the Rosenbluth Index (Woerheide & Persson, 1993):

RI =
1

2
∑N

i=1 i · wi − 1
(10)

Similar to the Her�ndahl Index, values for the Rosenbluth Index range between 1
N

and 1. A third

measure introduced by Christian Marfels in 1971 takes the exponential of the entropy measure, which

is de�ned later on (Woerheide & Persson, 1993):

EI =
N∏
i=1

wwii (11)

Again, the Exponential Index (EI) is as well limited by the values 1
N
and 1. All of the above three metrics

interpret diversi�cation for unevenly weighted investments analogous to how the number of securities

does it for equally distributed portfolios. Hence, the portfolio size is a discretized version of the three

before-named indices. Since the �rst index is the most popular among these diversi�cation measures,
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we will mainly focus on testing the Her�ndahl index and its extensions throughout this paper, although

there is no apparent reason to prefer one of these metrics over another. One such possible extension

is presentend by Anand and Ramasubramanian (2015), namely the Generalized Her�ndahl-Hirschman

Index (GHHI, from now on referred to as Generalized Her�ndahl Index). In contrast to the Her�ndahl

Index, which does not take into account correlations between the di�erent securities, the Generalized

Her�ndahl Index assumes correlations between assets that are part of the same sector. Accordingly,

both indices are equivalent if all assets originate from di�erent sectors. The e�ect of subsectors can

be incoroporated by considering full correlation between assets from the same subsector, �nite, but

smaller correlation between securities from the same main sector, yet di�erent subsectors and �nally

zero correlation between any stocks from di�erent main sectors. In order to derive the Generalized

Her�ndahl Index we �rst have a look at the return variance σ2
p of a Markowitz portfolio for two assets

(Anand & Ramasubramanian, 2015):

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ2%12 (12)

Ignoring the riskiness of the single assets allows to set σ1 = σ2 = σ and divide the return variance by σ:

σ2
p

σ2
= w2

1 + w2
2 + 2w1w2%12 (13)

Assuming zero correlation % = 0 yields the conventional Her�ndahl Index introduced above:

σ2
p

σ2
= w2

1 + w2
2 = HHI =

N=2∑
i=1

w2
i (14)

Taking a third asset into account it becomes obvious that the previously established principle proves

true even if we assume securities from the same sector to be fully correlated (% = 1):

σ2
p = w2

1σ
2
1 + w2

2σ
2
2 + w2

3σ
2
3 + 2 (w1w2σ1σ2%12 + w2w3σ2σ3%23 + w3w1σ3σ1%31) (15)

Subject to the condition that securities W1 and W2 are part of the same sector S1, while W3 belongs to

sector S2, we can ignore the correlation values %23 = %31 = 0 and hence only stay with %12 = 1:

σ2
p

σ2
= w2

1 + w2
2 + w2

3 + 2w1w2 = (w1 + w2)2 + w2
3 = s2

1 + s2
2 (16)

Correspondingly, the Generalized Her�ndahl Index computes as follows:
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GHHI =
N∑
i

w2
i +

N∑
i

∑
i6=j

2wiwj%ij =
σ2
p

σ2
(17)

where:

σ2
p: portfolio risk

σ2: average risk in underlying assets

Obviously, the Generalized Her�ndahl Index rather sums over the squared holdings invested into the

same sector or asset class instead of adding up the squared weights of each single security. Unlike the

�rst three measures the subsequent index does not shift as rapidly from 1 to 1
N
when raising the portfolio

size. The Comprehensive Concentration Index (CCI) attributes extra emphasis on the largest portfolio

weight w1 (Woerheide & Persson, 1993):

CCI = w1 +
N∑
i=2

w2
i [1 + (1− wi)] (18)

As mentioned before the Comprehensive Concentration Index scales more slowly between 0 and 1 than

the other metrics above, which makes it worth to consider in the following. The concept of entropy

concentration presents a diversi�cation measure, which can take values starting from 0 to ln (N), where

ln (N) matches the equal weights portfolio (Woerheide & Persson, 1993):

S = −
N∑
i=1

wi ln (wi) (19)

In the course of our work it will be shown that optimizing a Markowitz portfolio with respect to

Her�ndahl Index or entropy concentration leads to an equal weights portfolio (EWP). Following the

works of deMiguel et. al. (2006) we use the EWP or 1
N
-strategy as a benchmark strategy to evaluate the

performance of three distinct portfolio approaches: One that optimizes with respect to the Generalized

Her�ndahl Index, another one that pursues a state-dependent alocation strategy switching between the

equal weights portfolio and a minimum-variance portfolio depending on the value of a crisis index and a

third one that is based on the so-called Kelly Criterion. In the following we will lose a few words about

the 1
N
-portfolio as well as the bubble indicator that will be applied in the case of the the state-dependent

allocation strategy and �nally also the Kelly Criterion.
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2.4 1
N -Portfolio

In addition to being easier to implement, the 1
N
-strategy does not estimate any parameters like mean

return and covariance risk and consequently is not a�ected by inaccurate data assessment, which poses

a crucial advantage over other portfolio practices. Comparing the out-of-sample performance of optimal

portfolio strategies and the equal weights portfolio provides information about how much the bene�ts

from optimization are mitigated by estimation errors. Followingly, deMiguel et. al. (2006) were not able

to identify an investment strategy that signi�cantly outperforms the 1
N
-Strategy with regard to several

metrics such as Sharpe-ratio, certainty-equivalent return (CEQ) or turnover. Only after having trailed

stock returns for a couple of centuries for the purpose of parameter estimation optimizing portfolios

would actually yield statistically stable surpluses. Suprisingly, even strategies that aim at avoiding

estimation problems could barely scale down the necessary estimation window whose length also largely

depends on the number of securities available. Besides, deMiguel et. al. (2006) concluded that the

error inherent in computing the expected return deteriorates the out-of sample performance to a much

larger extent than the error associated with covariance risk (see also: Merton, 1980). Thus, yet small

mistakes originating from moment parameter estimation can tremendously change the asset distribution,

since return-maximizing models tend to appreciate very quickly to performance imbalances between

di�erent assets (Michaud, 1989 and Best &Grauer, 1991). Constraining the portfolio weights to [0, 1]

and hereby forbidding short-selling and borrowing measurably diminishes the in�uence of parameter

estimation errors. Moreover, deMiguel et. al. (2006) advocate to handle moment assessment much

more circumspectly. Prior to deMiguel et. al. (2006) possible approaches to tackle this issue were

for instance already presented by Jorion (1985) and Philippatos & Wilson (1972), who recommend

deploying shrinkage estimators for expected return valuation and substituting covariance risk by entropy

or expected information, respectively. More recently, Escobar et. al. (2013) suggested using the afore-

mentioned state-dependent switching strategy. They claim that choosing the 1
N
-strategy in case of a

bull market and crossing over to a minimum-variance strategy when the market becomes more volatile

e�ectively yields superior gains compared to solely relying on an equal weights portfolio. One the one

hand, Escobar et. al. (2013) argue for a choice of assets that is as wide as possible in order to pro�t

from the upswing of a �positive� market , while on the other hand when assuming a �negative� market,

they prefer a Markowitz portfolio that minimizes risk, since strong return correlations arise between

any kind of stock during crises. Hence, in times of very volatile markets having to deal with covariance

estimation errors might be the lesser evil, because investing in the whole market and thereby totally

neglecting optimization would expose your portfolio to heavy loss risks. Below we will devote a few

remarks to the crisis indicator deployed.

13



2.5 DS LPPLS Con�denceTM indicator

The crisis indicator used throughout this paper identi�es feedback reactions resulting from the interaction

of value and noise traders as the origin of super-exponential price growth. Deviations from this price

growth appear as oscillations whose periodicity is related to the logarithm of the time to the burst of

the bubble. After having reached a certain threshold the increasing positive feedback forces the price

to move away tremendously from the actual value. At a critical time tc the mispricing associated with

this phenomena either smoothly evolves into a di�erent regime or the bubble bursts. The logarithm of

the observable asset price is given as follows (Johansen et. al., 2000):

d (p)

p
= µ (t) dt+ σ (t) dW − kdj (20)

where:

dW : in�nitesimal increment of a standard Wiener process

dj: represents a discontinuous jump such that j = n before and j = n + 1 after a crash

As mentioned before, we are dealing with two di�erent types of agents: Firstly value investors that

act rationally and secondly noise traders that trigger the mispricing through their collective herding

behavior. The crash hazard rate attempts to mathematically capture the behavior of the latter kind of

traders (Johansen et. al., 2000):

h (t) = α (t− tc)m−1
{

1 + β cos
[
ω ln (t− tc)− φ

′
]}

(21)

where:

α, β, ω, tc: parameters

Accordingly, the crash risk associated with the actions of noise traders is related to the power law

singularity α (t− tc)m−1. The excess return µ(t) is proportional to the above-introduced crash hazard

rate due to the no-arbitrage setting that we are dealing with. If we set the expected value of dp equal

to zero before the crash (ergo dj = 0) we obtain µ = kh (t). Now, integrating results in the expected

trajectory of the price logarithm during a bubbly trajectory provided that the crash has yet to happen

(Johansen et. al., 2000):

E [ln p (t)] = A+Bc | tc − t |m +C | tc − t |m cos (w ln | tc − t | −φ) (22)

where:

B = −kα
m

C = −kαβ√
m2+w2

14



The calibration of the model is conducted using Least Squares. For every point in time t2 the price time

series is �tted to shrinking estimation windows whose lengths vary between 30 and 750 trading days.

Now the DS LPPLS Con�denceTM indicator is de�ned as the fraction of �tting windows that satisfy

the conditions in the following table:

Item Notation Search Space Filtering Condition 1 Filtering Condition 2

3 nonlinear parameters m [0, 2] [0.01, 1.2] [0.01, 0.99]

ω [1, 50] [6, 13] [6, 13]

t [t2 − 0.2dt, t2 + 0.2dt] [t2 − 0.05dt, t2 + 0.1dt] [t2 − 0.05dt, t2 + 0.1dt]

Number of oscillations ω
2 ln

[
tc−t1
t2−t1

]
- [2.5,+∞) [2.5,+∞)

Damping m|B|
ω|C| - [0.8,+∞) [1,+∞)

Relative Error pt−p̂t

p̂t
- [0, 0.05] [0, 0.2]

Table 1: search space and �lter conditions for the quali�cation of valid LPPLS �ts

Correspondingly, a large indicator value strongly hints at a bubble, while a small value indicates a

slight fragility, as the LPPLS pattern is observed only in some windows. Applying di�erent estimation

windows allows us to distinguish between long-, medium- and short-term bubbles. Furthermore, it is

possible to separate positive from negative bubbles. In addition to the above-presented mean-variance

approaches, we will now focus on a concept known as Kelly Criterion, which can be adopted to generate

portfolios that attempt to maximize the exponential growth rate of the investor's capital.

2.6 Kelly Portfolio

As the Markowitz Problem is only applicable to rather unlikely scenarios such as a quadratic utility

function, it was suggested to utilize a criterion proposed by J. L. Kelly in 1956 to create portfolios

that do not rely on utility functions. The Kelly Criterion tries to optimize the investor's capital by

maximizing the expected value of the logarithm of the wealth per each time period. It can therefore be

exempli�ed using the simple model of a gambler that learns about the outcomes of a bet, before the

respective activity of interest is even �nished and the results are published. Being able to bet at the

original publicly available odds the betor seeks to maximize their total capital in the long run. In the

example below we will consider a chance event with two equally probable outcomes. The corresponding

exponential rate of growth is de�ned as follows (Kelly, 1956):

G = lim
N→∞

1

N
log2

(
VN
V0

)
(23)

where:

N: number of bets
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VN , V0: capital after N bets and initial capital, respectively

Provided that the binary channel is noiseless the exponential rate of growth is equal to one, since the

gambler will always be right about the results of the bet. Therefore, the betor pursues the optimal

strategy by investing their entire capital at each round. On the contrary, a noisy binary channel will

cause the transmission of the results to be faulty with a probability p (thus correct with probability

q = 1 − p). Accordingly, the bettor will end up loosing everything if they invest their entire capital at

each instance for an in�nite number of bets. Therefore, the gambler should only invest a fraction l of

their capital leading to the following �nal capital VN (Kelly, 1956):

VN = (1 + l)W (1− l)L (24)

where:

W, L: number of wins and losses, respectively

Subsituting this expression into the exponential rate of growth established before yields the formula

below (Kelly, 1956):

G = lim
N→∞

[
W

N
log2 (1 + l) +

L

N
log2 (1− l)

]
= q log (1 + l) + p log (1− l) (25)

Finally maximizing the exponential rate of growth G with respect to the investment fraction l results in

the following equation (Kelly, 1956):

Gmax = 1 + p log p+ q log q (26)

In order to implement the Kelly Criterion as a portfolio strategy we need to establish an authentic

scenario which �ts the assumptions made by Kelly. We start with lognormally distributed prices pi (t)

that experience an uncorrelated random walk and can thus be written as follows (Laureti et. al., 2009):

pi (t) = pi (t− 1) exp [ηi (t)] (27)

where:

ηi (t): randomly generated Gaussian numbers with homoskedastic mean mi and variance Di

In this respect, we consider the random walk parameters mi and Di to be well known to any portfolio

holder. Additionally, a risk-free asset is introduced, while dividends, transaction costs and taxes are

neglected. The previously established prices result in lognormally returns Ri (t) (Laureti et. al., 2009):
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Ri (t) =
[pi (t)− pi (t− 1)]

pi (t− 1)
= exp [ηi (t)]− 1 (28)

The mean and variances of the returns are de�ned by the formulas below (Laureti et. al., 2009):

µi = E (Ri) = exp

[
mi +

D

2

]
− 1 (29)

σ2
i = E [(Ri − µi)] = [exp (Di)− 1] [exp (2mi +Di)] (30)

The generated portfolio is constituted by the portfolio weights wi, where w0 describes the percentage

invested in cash. As mi and Di are supposed to be �xed in our homoskedastic set-up, the Kelly portfolio

is a discrete optimization scheme. If the initial wealth of the investor is equal to one, the wealth after

one optimizing step is given as (Laureti et. al., 2009):

W1 = 1 +
N∑
i=1

wiRi = 1 +Rp (31)

where:

wi: portfolio weight of asset i

Ri: return of asset i

Rp: portfolio return

Similar to the mean-variance portfolio, it is possible to forbid short-selling and borrowing by imposing

the constraints wi ≥ 0 and
∑N

i=1wi ≤ 1. The example of the noisy binary channel depicted that it is not

advisable to optimize the expected value of the �nal capital, because in the long run the �nal capital can

be heavily a�ected by extreme tail events due to the multiplicative nature of the random walk. Instead

we hope to maximize the the logarithm of the capital after one optimization period by optimizing the

average exponential rate of growth of the wealth:

ν = E (lnW1) (32)

Di�erentiating this quantity with respect to the individual weights wi leads to the following set of

equations (Laureti et. al., 2009):

E

(
Ri

1 +
∑
wiRi

)
= 0 (33)
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Here, the before-mentioned constraints, namely forbidded short-selling and borrowing come into play,

as they ensure that W1 - the capital after one time step - stays positive and hence well de�ned. Not

including these constraints would imply a �nite chance of loosing the whole investment leading to an

almost certain loss of the entire capital for large number of optimization steps.

In the case of one risky asset we screen the random walk parameter m for a starting value, for which it

begins to be reasonable to invest into the respective asset, as well as an end value, for which it makes

sense to put all money into this particular security. With the help of these two values (m± = ±D/2) and

under the assumption of small m and D we receive the weight w allocated to the risky asset (Laureti

et. al., 2009):

w =
1

2
+
m

D
(34)

The remaining capital is thus kept as cash. Since m and D grow linearly as time passes, the weight w

invested into the risky asset is independent of the length of the optimization step. In the case of more

than one risky asset we can introduce a Lagrange multiplier γ which constrains the sum of all weights

wi to one
(∑N

j=1 wi = 1
)
yielding the following weight expression (Laureti et. al., 2009):

w =
1

2
+
m+ γ

D
(35)

Be aware of the fact that the above-established framework only deals with uncorrelated securities. To

this e�ect, it is necessary to utilize the covariance matrix Σi,j leading to a di�erent formulation of the

afore-de�ned expected value (Laureti et. al., 2009):

E [g (η)] = g (m) +
1

2
Tr (Σi,jV ) (36)

where:

g(m): function g (η) = Ri

1+
∑

wiRi
evaluated for η = m

V: matrix of second derivatives of g (η)

If g (η), Σi,j and m are known, it is possible to treat the equation above as in the uncorrelated scenario.

In the �Implementation / Results� section we will create three di�erent Kelly portfolios, while each

originates from a di�erent data set. The corresponding data sets will be presented in the next section

and we will come up with a justi�cation regarding the length of the data windows.

18



3. Data

The following section will elaborate on the data sets used and it will introduce some interesting evaluation

metrics that show that �nancial data is not normally distributed contrary to Markowitz' assumption.

We will use three di�erent data sets which are downloaded from �nance.yahoo.com using the R-package

�fImport�. First of all, we implement nine out of eleven Standard and Poor's 500 sectors, namely

Consumer Staples (XLP), Financials (XLF), Health Care (XLV), Industrials (XLI), Materials (XLB),

Consumer Discretionary (XLY), Energy (XLE), Utilities (XLU) and Technology (XLK). The sectors

Real Estate and Financial Services were omitted because these two sectors were introduced some time

after the perviously mentioned nine sectors and since we also want to include longer observation windows

later on, we decided to leave them out in order to keep the selection of sectors / assets consistent over the

course of our work. In order to examine the Generalized Her�ndahl Index it was necessary to reproduce

approximate copies of these S&P500 sectors by utilizing the return series of the 4-5 largest and most

well-known companies from each sector resulting in a total number of 39 securities. For the nine S&P500

sectors we take an estimation window with daily returns of �ve years (01/01/2000 to 31/12/2004) and

measure the out-of-sample for another �ve years (01/01/2005 to 31/12/2009), while for the 39 S&P500

assets we look at daily returns of a 10-years estimation window (01/01/1990 to 31/12/1999) and an

out-of-sample period of yet 10 years again (01/01/2000 to 31/12/2009). Finally, the third data set

comprises the prices of 50 companies from 1974 to 2011, from which the �rst 26 years are used for

parameter estimation, whereas the remaining twelve years serve as out-of sample window. A table of all

sectors and companies with their respective stock symbols can be found in the appendix (see Table 32

and 33). Plotting the returns of the �rst data set yields the following �gure:
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Figure 2: return plots for nine out of eleven S&P500 sectors (�XLP� (Consumer Staples), �XLF� (Financials), �XLV�

(Health Care), �XLI� (Industrials), �XLB� (Materials), �XLY� (Consumer Discretionary), �XLE� (Energy), �XLU� (Ut-

lities), �XLK� (Technology)) over a period of ten years (01/01/2000 - 31/12/2009); the plots hypothesize two rather

turbulent periods (one approx. from 2000 to 2003 and the other starting in 2008).

Apparently, the di�erent sectors show roughly the same price development meaning that the occurence

of major peaks is well synchronized in time. Still, the di�erent sectors exhibit di�erent statistics such as

mean or standard deviation. In order to better understand the diversity among the sectors we generated

the following box plots:

Figure 3: box plots for nine S&P500 sectors over a period of ten years (2000 - 2009); the skin colored boxes indicate

the upper / lower quartiles, while the black line in the middle of each box represents the median; the black lines above

and below the skin-colored boxes called antennae indicate the area in which 95% of the data points lie, while the points

exceeding the antennae are outliers; expectedly, the �nancial sector exhibits larger �uctuations than the other sectors.

A box plot is a diagram that graphically displays the distribution of data points by showing in which

region the points lie and how they are distributed over a particular area. In this regard, box plots make

use of �ve key statistics, namely median, upper / lower quartile and upper / lower extreme values. They

always consist of a rectangle / box and two lines that prolong the rectangle. The box corresponds to

the area in which 50 percent of the data lies, while the lines represent the values that lie outside the

box. Furthermore, the median is drawn in the middle of the box. We can see that over the course of

ten years the �nancial sector experienced tremendously high �uctuations compared to the other sectors.

Furthermore, the box plot suggests that contrary to Markowitz' assumption the assets are not normally

distributed. If interested in the statistical similarities between the di�erent sectors one might also look

at the following dendrogram:
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Figure 4: dendrogram for nine S&P500 sectors over a period of ten years (2000-2009) illustrating the sameness of the

di�erent sectors; the correpsonding euclidean distance measure values can be found in the appendix (see Table 34); the

�gure suggests two main clusters (one consisting of the sectors �Financials� and �Technology�, the other one comprising

all the other sectors)

A dendrogram is a tree diagram which illustrates the hierarchical decomposition of a data set into

partial data sets. The origin is represented by a single cluster which contains the whole data set O.

The tree branches represent clusters that contain each individual partial data set. The �rst axis of

the dendrogram labels the data objects, while the other one shows the distance / similarity between

the data objects. It is possible to observe that some groups of sectors behave more alike than others.

The Euclidean distance measure values calculated to generate this plot can be found in the appendix

(see Table 34). Interestingly, �Technology� and �Financials� behave more alike than for example �Tech-

nology� and �Industrials�, although one might suspect a natural connection between these two sectors.

Correspondingly, changes in the tech sector are appreciated far more rapidly by the �nancial industry

than by any other branch, which might be the case because banks see more potential for quick returns

in the tech sector than in other sectors and accordingly invest more heavily into tech-related enterprises.

In addition, the dendrogram implies that some sectors come closer to an ordinary normal distribution

than others.

3.1 Performance Measures

In the following we will introduce some important statistics such as performance and drawdown measures

in order to further evaluate the di�erent sectors. Note that these metrics will also be used throught the

Analysis section, where we compare the performance of our three distinctive portfolio strategies with
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the naive 1
N
-rule. The �gure below shows some basic statistics for the nine S&P500 sectors over the

period from 01/01/2000 to 31/12/2009.

Figure 5: asset statistics for nine S&P500 sectors over a period of ten years (2000-2009); the pie plots are generated such

that each color correpsonds to a single metric; the size of each pie piece is related to the largest value from all sectors

for each metric; judging from the values for standard deviation, skewness and kurtosis investments to the �nancial sector

embody the largest risks;

Again, the vast diversity among the sectors is illustrated and the emergence of skewness as well as

kurtosis provide further evidence for non-normality. The most important key statistics from the �gure

above are summarized for each individual sector in the following table. Note that the most favorable

value for each metric is colored green, while the least advantageous value for each metric is colored red.

Sector Cons. Discret. Financials Health Care Industrials Materials Cons. Staples Energy Utlities Technology

Median 0.030 0.000 0.031 0.071 0.074 0.042 0.112 0.094 0.051

Mean 0.004 -0.009 0.006 0.005 0.019 0.014 0.037 0.019 -0.032

St. Dev. 1.646 2.392 1.269 1.504 1.739 1.054 1.975 1.375 1.964

Skewness -0.165 0.385 -0.051 -0.171 -0.065 -0.055 -0.454 0.168 0.350

Kurtosis 4.867 17.650 9.256 5.323 5.380 4.534 8.969 8.189 4.664

Table 2: key statistics for nine S&P500 sectors over a period of ten years (2000-2009); the weakest value for each metric is

colored red, while the strongest value is branded green; it is revealed that investments to the �nancial sector incorporate

higher volatility than for instance holdings in the �Consumer Staples� sector.
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Obviously, investments towards the �nancial sector are a�icted with large risk, whereas the sector

�Consumer Staples� yields the lowest standard deviation and kurtosis which is generally associated with

small tail behavior. To that e�ect, the plotting the quantiles of a normal distribution against the

quantiles of our empirical data reveals that the �nancial sector only o�ers a sorry representation of a

normal distribution, while the sector �Consumer Staples� mimics Gaussian behavior far better. However,

one should be aware of the fact that none of the above introduced return distributions comes close to

a normal distribution, as depicted by the �gure below. The blue line in the center corresponds to the

theoretical quantiles of a normal distribution, while the black dots are associated with the empirical

distributions of the individual sectors. Note that each of the following quantile-quantile plots is scaled

di�erently in order to �t the distinct plots into one �gure:

Figure 6: norm QQPlots for nine S&P500 sectors over a period of ten years (2000-2009); the blue line in the center

of each plot indicates the theoretical quantiles of a normal distribution, whereas the black dots represent the empirical

distribution; each plot is scaled di�erently; some sectors deviated largely from the normal distribution (e.g. �Financials�,

�Energy�, �Technology�), while the sector �Consumer Staples� is much more suitable to such a distribution.

The whole summary of the basic statistics can be found in the appendix (see Table 35). Also the

appendix contains further charts that display the depth and length of the drawdowns of the di�erent

sectors (see Figure 28) and two tables with all important drawdown statistics including explanations for

each metric (see Table 36 and 37). Some key drawdown statistics are given below. Again note that the

most favorable value for each metric is colored green, while the least advantageous value for each metric

is colored red.
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Sector Cons. Discret. Financials Health Care Industrials Materials Cons. Staples Energy Utilities Technology

Avg. Drawdown Depth 26.087 81.262 3.888 12.328 19.074 27.599 181.618 12.237 20.318

Avg. Drawdown Length 73.029 38.453 278.889 249.900 56.023 625.500 19.427 313.625 19.040

Avg. Recovery Length 59.912 3.109 272.889 229.500 49.614 618.750 6.452 294.750 14.397

Cond. Drawdown at Risk 25.783 81.046 6.671 19.407 54.455 74.373 34.108 27.681 37.638

Pain Index 18.120 21.247 16.248 19.313 19.076 14.752 18.624 17.733 7.005

Ulcer Index 23.117 31.789 18.342 24.913 24.232 17.471 25.663 23.363 7.226

Table 3: key drawdown statistics for nine S&P500 sectors over a period of ten years (2000-2009); once again, it becomes

apparent that the �nancial sector is more risky than other sectors.

Clearly, the previously established conjecture that the �nancial sector is extremely unstable is proven

by many drawdown statistics. Looking at some of the tremendous drawdowns revealed above we can

conclude that the di�erent sectors only vaguely follow a Gaussian distribution. The �rst two metrics

describe the average depth and length of all drawdowns within one time series. The third statistic

measures the average time needed to recover from a drawdown. For a con�dence level p the fourth

metric takes the mean of the worst p percent of all drawdowns within one time series (Chekhlov &

Uryasev & Zabarankin, 2003). The last two indices are formulated as follows:

PI =
d∑
i=1

D
′
i

n
(37)

UI =

√√√√ d∑
i=1

D
′2
i

n
(38)

where:

d: number of all drawdowns

D
′

i: ith drawdown since pervious peak in period i

n: number of observations

The Ulcer Index strongly punishes underperformance by squaring the drawdowns since the last peak, so

that a large index value is associated with portfolios that only reluctantly recover from crises. Attention

has to be paid when selecting the frequency at which the return is assessed (hourly, daily, weekly etc.)

since the Ulcer as well as the Pain Index considerably depend on the scale of the input variable. The

Pain Index simply takes the average of all drawdowns over the full observation period. Unlike Ulcer

Index it does not square the depth of the drawdowns and furthermore it has to be distinguished from

the average drawdown depth since it does not divide by the total number of drawdowns but the total

number of observations. As before, the drawdown statistics show that the sectors are very diverse and

some sectors are distributed more Gaussian-like than others, but all sectors exhibit strong tail behavior.
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Finally, we computed a few well-known performance measures and their extensions such as Sharpe Ratio,

Omega-Sharpe Ratio or Sortino Ratio for each of the before-named sectors:

Sector Cons. Discret. Financials Health Care Industrials Materials Cons. Staples Energy Utitlities Technology

Sharpe Ratio 0.0022 -0.0039 0.0045 0.0034 0.0109 0.0130 0.0186 0.0138 -0.0163

Adjusted SR -0.0949 -0.2265 -0.0297 -0.0657 0.0354 0.1231 0.1375 0.1106 -0.3680

Omega SR 0.0063 -0.0132 0.0131 0.0098 0.0313 0.0373 0.0541 0.0408 -0.0458

Sortino Ratio 0.0031 -0.0056 0.0062 0.0047 0.0154 0.0183 0.0255 0.0193 -0.0230

Upside Potential Ratio 0.4910 0.4202 0.4835 0.4832 0.5064 0.5095 0.4963 0.4928 0.4784

Table 4: key performance measures for nine S&P500 sectors over a period of ten years (2000-2009); in contrast to the

�Technology� sector, the �Energy� sector consistently outperforms the other sectors over the given observation period.

These and further downside performance measures including explanations can also be found in the

appendix (see Table 38 and 39). Evidently, the �Energy� sector outperforms the remaining sectors over

the estimation period, while the �Technology� sector performs poorly in terms of the below-de�ned

performance measures. Sharpe Ratio is computed as mean return minus the risk free rate divided by

standard deviation. Note that the risk free rate is chosen to be zero in our case for simplicity reasons.

SR =
rp − rf
σp

(39)

The Adjusted Sharpe Ratio also takes skewness and kurtosis into account (Bacon, 2008):

ASR = SR

[
1 +

(
S

6

)
SR−

(
K − 3

24

)
SR2

]
(40)

where:

S: Skewness

K: Kurtosis

Starting from the de�nition of the Omega Ratio it was possible to develop a Sharpe-like measure, namely

the Omega-Sharpe Ratio. Therefore we take the di�erence between the portfolio return and a speci�ed

Minimum Acceptable Return (MAR) as numerator and the opposite of the Downside Deviation as

denominator (Bacon, 2008):

OSR =
rp −MAR∑n

i=1
max(MAR−ri,0)

n

(41)

Later on it was proposed to measure the performance of an investment by how much it fails to achieve

a return goal, which yields a revised version of the Sharpe ratio, namely the Sortino Ratio. Sortino
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de�nes this return goal as the before-mentioned Minimum Acceptable Return. The proper choice of this

return is crucial, since extreme values can alter the results signi�cantly. Various papers recommend to

choose the riskfree rate as MAR, which is zero in our case. The authors of this paper are aware of the

fact that choosing the riskfree rate to be zero is not the proper way to incorporate the riskfree asset, but

since this section only aims introducing the performance measures and showing that there is in general

a behavior as well as a performance di�erence between the various sectors, we concluded that selecting

the riskfree rate as such satis�es our needs for the time being. Omega-Sharpe Ratio and Sortino Ratio

can also be computed via the Kappa (Sortino & Price, 1994). The Kappa is de�ned as the di�erence

between mean and MAR over lth root of the sum of the lth lower partial moments (Bacon, 2008):

κ =
rp −MAR

l

√∑n
i=1

max(MAR−ri,0)l

n

(42)

Taking l = 1 results in the Omega-Sharpe Ratio, while l = 2 leads to the Sortino ratio. Further

extending the Sortino Ratio yields the Upside Potential Ratio, which takes returns that exceed the

MAR as numerator and returns that fall short of the MAR as denominator. Unlike Sortino Ratio, the

UPR does not only consider the investment's performance during bull market, but also during bear

markets (Sortino & Price, 1994):

UPR =

∑n
i=1 max (ri −MAR, 0)∑n
i=1 max (MAR− ri, 0)

(43)

The sum of all performance measures again underlines the strong diversity among the sectors. Note that

the above-introduced drawdown and performance measures are also applied to compare the performances

of the di�erent portfolios in the Analysis section down below.

Similar statistics obtained from the second (1990 - 2009) and third data set (1974 - 2011) can be

found in the appendix (see Tables 40 - 48 and 49 - 57). These two data sets need to be considered as

well throughout the paper, since it is possible that a certain strategy might work when evaluating an

individual data set, but not when looking at the other two data sets due to regime changing. To put

it di�erently, the period assessed in particular data set might be dominated by some market behavior

which opresses the bene�ts of the respective strategy. Hence, special emphasis must be attributed to

choosing the size of the data set and to selecting the types of assets utilized in the respective data

set. In our paper the out-of sample period was chosen to be within the �rst ten to twelve years of

this millenium, simply because a plethora of economically interesting events happened during this time.

Furthermore, we made sure to ful�ll the condition that the assessed period is much longer than the

number of securities considered: T � N , where T represents the number of price observations. If

this condition is not met, a phase transition occurs that brings an immense estimation error with it
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due to diverging noise sensitivity. As most optimization attempts deploy 100 to 1000 securities as well

as estimation periods of only a few years, they disregard this consideration and thereby the control

parameter N
T
often exceeds a critical threshold (Ciliberti & Mézard, 2007). The three data sets utilized

in our paper yield ratios of 0.0072, 0.0156 and 0.0077, respectively. In the following we will explain the

implementation and present the results of the three concepts of interest, namely Generalized Her�ndahl

Index, state-dependent allocation and Kelly Criterion.
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4. Implementation

As mentioned before we intend to solve the Markowitz problem by utilizing the statistical program-

ming language R as well as AMPL (�A mathematical programming language�), which enables us to

algebraically formulate optimization problems within the R environment. In addition, imposing the

covariance budget constraint (QP2) or minimizing the the covariance risk (QP1) necessitates the use of

nonlinear solvers such as �CPLEX� or �MINOS�. The R-package �appRmetricsDashboard� allows us to

implement AMPL code into R by generating three speci�c �les, namely the model, the data and the

run �le. The respective code that was used to obtain the results below will be shown in the appendix.

The following section will �rst deal with the general Markowitz problem before adding two di�erent

diversi�cation constraints, which are the Her�ndahl Index and the Generalized Her�ndahl Index. Fi-

nally we also cover the implementation concerning the state-dependent allocation strategy and the Kelly

portfolio.

4.1 QP3 Markowitz Problem

As explained in the theory section on the Markowitz problem we are dealing with an optimization

problem: The QP1 Markowitz problem minimizes the covariance risk when the return is �xed, while the

QP2 Markowitz problem maximizes the return while the covariance risk is �xed. Further generalizing

these problems is done by weighting both objectives (return, risk) with factors λ1 and λ2, respectively.

The ratio of these factors de�nes the investor's willingness to take risks. That is to say, large λ1 would

mean that the investor is rather keen on pro�t maximization than on risk minimization and vice versa.

Each choice of λi yields a di�erent portfolio within the feasible set. Hence, we aim at optimizing the

following objective:

max
w

{
λ1

(
n∑
i=1

µiwi

)}
+ min

w

{
λ2

(
n∑

i,j=1

wiΣi,jwj

)}
(44)

This equation can also be interpreted as max {λ1 · return} + min {λ2 · risk}. We further simplify this

result after having realized that maximizing return is just the same as minimizing negative return, so

that:

min
w

{
−λ1

(
n∑
i=1

µiwi

)}
+ min

w

{
λ2

(
n∑

i,j=1

wiΣi,jwj

)}
(45)

Applying the constraint condition λ1 + λ2 = 1 we eliminate λ1 by setting it equal to 1− λ2:
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min
w

{
(λ2 − 1)

(
n∑
i=1

µiwi

)}
+ min

w

{
λ2

(
n∑

i,j=1

wiΣi,jwj

)}
(46)

In order to make sure we obtain reasonable results, we have to normalize both return data and risk

data. This can be done by dividing by Σmax - the largest diagonal element of the covariance matrix -

and by µmax - the largest return value:

min
w

{
(λ2 − 1)

(∑n
i=1 µiwi
µmax

)}
+ min

w

{
λ2

(∑n
i,j=1wiΣi,jwj

Σmax

)}
(47)

Followingly, both return objective and risk objective can only take values between 0 and 1, which leads

to a more consistent distribution of portfolios along the e�cient frontier, since this kind of normalization

shifts the distribution of portfolios toward the high-risk end of the e�cient frontier. Another approach

is presented by dividing the objective terms by the di�erence between the maximum and the minimum

return / risk values, which yields a normalization with respect to the equal weights portfolio. Neglecting

the shift due to the minimal risk or return value, the previous equation is therefore given as:

min
w

{
(λ2 − 1)

( ∑n
i=1 µiwi

µmax − µmax

)}
+ min

w

{
λ2

(∑n
i,j=1 wiΣi,jwj

Σmax −Σmin

)}
(48)

At this point we will not go into further detail regarding the peculiarities of individual normalization

measures. In order to explain the particular implementation of the QP3 problem into R and AMPL the

corresponding model �le is depicted in the appendix (see Box 1). Including a risk-free asset yields an

objective function whose covariance risk term takes into account only those weights attributed to risky

assets. This is equivalent to considering an asset with no correlation to the other assets resulting in a

correlation matrix that only displays zeros in the row and column associated with the risk-free asset.

Furthermore, the return µ0 of the risk free asset - multiplied with the respective weight w0 - is added to

the return term of the objective function.

4.2 QP3 Markowitz Problem including EWP Diversi�cation

In addition to the optimization with respect to return and risk we can also introduce a third goal, namely

diversi�cation. Diversi�cation can be carried out with regards to di�erent diversi�cation measures.

For example, we could aim at minimizing tail risks or risk budgets. However, the easiest approach

is to diversify with respect to the equal weights portfolio by using the Her�ndahl Index or entropy

concentration. As other diversi�cation optimization strategies build on the same technical structure as
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the EWP approach, it serves as a starting point for later sections of this project. In order to implement

the EWP approach into R we have to introduce a third lambda value λ3 that determines the investor's

demand for diversi�cation. Adopting the new normalization condition λ1 + λ2 + λ3 = 1 yields the

following objective:

min
w
{−λ1 · return+ λ2 · risk + λ3 · diversification} (49)

As before, return and risk are de�ned as
∑n
i=1 µiwi
µmax

and
∑n
i,j=1 wiΣi,jwj

Σmax
, respectively. Analogous to the risk

de�nition, the previously established Her�ndahl Index constitutes the diversi�cation term:

n∑
i,j=1

wiδijwj (50)

where:

δij : Kronecker Delta

Accordingly, the objective function is written as follows:

min
w

{
−λ1

(∑n
i=1 µiwi
µmax

)
+ λ2

(∑n
i,j=1 wiΣi,jwj

Σmax

)
+ λ3

(
n∑

i,j=1

wiδijwj

)}
(51)

Again, the model �le is shown in the appendix (see Box 3) in order to explain the particular implementa-

tion of the QP3 Markowitz Problem including the Her�ndahl Index diversi�cation. Instead of applying

the Her�ndahl Index as diversi�cation measure we can also utilize the concept of entropy concentration,

which yields the objective function below:

min
w

{
−λ1

(∑n
i=1 µiwi
µmax

)
+ λ2

(∑n
i,j=1wiΣi,jwj

Σmax

)
− λ3

(
n∑

i,j=1

wi · lnwi

)}
(52)

The corresponding model �le can be found in the appendix as usual (see Box 4). Both techniques yield

very similar risk-return diagrams and can therefore be exchanged without loss of generality.

4.3 QP3 Markowitz Problem including GHHI Diversi�cation

As opposed to the Her�ndahl Index, the Generalized Her�ndahl Index also takes into account correla-

tions between assets from the same sector and not just between the assets itselves. So, replacing the
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diversi�cation term in the objective function by the de�nition of the Generalized Her�ndahl Index re-

sults in an alternative objective function which incoroporates a matrix that provides information about

the sector a�liation of the individual securities:

min
w

{
−λ1

(∑n
i=1 µiwi
µmax

)
+ λ2

(∑n
i,j=1wiΣi,jwj

Σmax

)
+ λ3

(
n∑

i,j=1

wi%ijwj

)}
(53)

where:

%ij : GHHI correlation matrix

In our case the GHHI correlation matrix is de�ned through the 39 assets that are part of the second

data set which is built up of individual securities from the di�erent S&P500 sectors. The stock symbols

can be looked up in the appendix (see Table 32). Note that each entry on the diagonal of following 9×9

matrix is in fact a matrix full of ones itself:

%ij =



XLY 0 0 0 0 0 0 0 0

0 XLF 0 0 0 0 0 0 0

0 0 XLV 0 0 0 0 0 0

0 0 0 XLI 0 0 0 0 0

0 0 0 0 XLB 0 0 0 0

0 0 0 0 0 XLP 0 0 0

0 0 0 0 0 0 XLE 0 0

0 0 0 0 0 0 0 XLU 0

0 0 0 0 0 0 0 0 XLK


(54)

Depending on how many securities we have chosen for each sector each block full of ones on the diagonal

is a 4× 4 or 5× 5 matrix. The exact sector division can once again be looked up in the appendix. The

model �le is obtained by substituting the identity matrix in the model �le for the EWP diversi�cation

with respect to the Her�ndahl Index by the above-introduced 39× 39 matrix. For the third data set we

are dealing with a 50× 50 matrix. Now we will demonstrate to implement the second strategy, namely

the state-dependent allocation strategy.

4.4 State-Dependent Allocation Strategy

As mentioned before Escobar et. al. (2013) propose a portfolio strategy that switches between the naive
1
N
-strategy and a minimum-variance approach depending on whether the market experiences �normal�

or �turbulent� times. We will test this strategy using all three data sets. Note, that we did not consider

the risk-free asset in this case, because adding such an asset to a minimum-variance approach would
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mean to only invest into this particular asset, since it comes with the lowest risk. The portfolio is

now implemented by using a simple if-statement such that our portfolio assumes the weights of the

minimum variance portfolio whenever the crisis indicator exceeds a certain threshold. The model �le

corresponding to the minimum-variance portfolio can be found in the Appendix (see Box 5).

We estimate the minimum variance portfolio for various estimation periods within each data set aiming

at introducing a rolling window approach. In order to obtain larger rebalancing frequency, we just omit

some periods and substitue their weight distribution by the previous period's distribution. In the case

of the second data set (1990 - 2010) we thereby obtain three di�erent strategies, which rebalance the

min-var weights every six, twelve and sixty months (ergo �buy-and-hold� strategy), respectively. After

having generated time series for the min-var approach and the 1
N
-strategy we decide which portfolio to

choose on a certain day depending on the indicator value given on the previous day. The allocation

decision is conducted applying di�erent indicator thresholds varying between 0.0 and 0.8. Instead of

comparing di�erent thresholds one could also relate the indicator value with a switching probability, so

that whenever the indicator value is larger than a random number that is newly generated each day, the
1
N
-strategy is replaced by the minimum varriance approach. In the next subsection we will explain how

to implement a Kelly portfolio.

4.5 Kelly Portfolio

As explained in the theory, the Kelly Portfolio will optimize the investor's wealth by maximizing its

average exponential rate of growth (Medo et. al., 2009):

G = E

[
ln

(
1 +

N∑
i=1

wiRi

)]
(55)

Di�erentiating with respect to the individual wi yields the following set of equations (Medo et. al.,

2009):

∑
R

P
(−→
R
)
Ri

1 +
∑N

j=1 wjRj

= 0 (56)

where:

P
(−→
R
)
: probability of given vector of returns

−→
R = (R1...RN )

Provided that the portfolio return Rp =
∑N

i=1wiRi is very small we can approximate 1

1+
∑N
j=1 wjRj

as

1−
∑N

j=1wjRj leading to the set of equations below (Medo et. al., 2009):
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< Ri >=
N∑
j=1

wj < RiRj > (57)

Higher order approximations of course imply tedious higher order cross terms, which is why we shall

rely on expanding 1
1+x

as 1 − x for the time being. Note that all negative percentages / weights are

converted to zero due to short-selling contraints.
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5. Results

In the following we will present the results (i.e. risk-return diagrams and weight distributions) for the

general QP3 Markowitz Problem as well as the QP3 Markowitz Problem including the (Generalized)

Her�ndahl Index, before shifting the focus to the state-dependent allocation strategy and �nally the

Kelly Portfolio.

5.1 QP3 Markowitz Problem

Implementing the QP3 Markowitz Problem into R results in a graph of the feasible set, in which the

e�cient frontier is indicated by a red doted line. For the �rst data set we acquire the following risk-return

graph. Note that the risk proxy is the portfolio's standard deviation.

Figure 7: risk-return diagram showing the feasible set including red dots on the e�cient frontier for nine S&P500 sectors

over a period of �ve years (01/01/2000 - 31/12/2004); each red dot represents a single portfolio that is de�ned by the

choice of lambdas which typi�es the investor's fondness for return maximization and risk minimization; the striking outlier

in the in the lower right corner of the �gure is related to the poor performance of the �Technology� sector over the period

of estimation.

Clearly, the red dots accumulate along the e�cient frontier of the feasible set. The eye-catching �spike�

in the far right / bottom corner is actually due to the �Technology� sector, which performed poorly

over the estimation period in terms of mean return and covariance risk. Incorporating the concept of

a risk-free asset into our optimization scheme lets us live outside the feasible set, which means that we

can draw a straight line from any of our red dots to the risk-free rate on the y-axis of the above-shown

risk-return diagram.

The attentive reader might wonder why we did not choose to implement the λ-parameters by minimizing

the objective function
[
λ1

(
−return+ λ2

λ1
· risk

)]
. The simple answer is that omitting the constraint

condition λ1 + λ2 = 1 would fail to adequately project the e�cient frontier, since the variation of red

dots in the following risk-return diagram slightly deviates from the outer left line of the feasible set:
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Figure 8: risk-return diagram showing the feasible set including red dots that slightly deviate from the e�cient frontier for

nine S&P500 sectors over a period of �ve years (01/01/2000 - 31/12/2004); each red dot represents a single portfolio that

is de�ned by the choice of lambdas which typi�es the investor's fondness for return maximization and risk minimization;

the slight deviation proves that the constraint condition λ1 +λ2 = 1 has to be applied in order to obtain reasonable results

The code written to generate the diagram above can be found in the appendix (see Box 2). Risk-return

diagrams for the second and third data set similar to Figure 7 are located in the appendix (Figure 29

and 30). In the next section we are going to extend the previous approach to also include a third goal

named diversi�cation. This will result in a cluster of red dots that is con�ned by the e�cient as well as

the sub-e�cient frontier.

5.2 QP3 Markowitz Problem including EWP Diversi�cation

Below two risk-return diagrams (Figures 9 and 10) are presented that illustrate the optimization com-

petition between the three goals for the �rst data set. For the sake of convenience we will only show

the plots for the Her�ndahl Index. The diagrams once more show the feasible set but now including a

distribution of red dots that ranges from the e�cient frontier to the EWP portfolio in the center:

Figure 9: risk-return diagram showing the feasible set including red dots indicating the optimization competition with

respect to return, risk and Her�ndahl index for nine S&P500 sectors over a period of �ve years (2000-2004); each red dot
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represents a single portfolio that is de�ned by the choice of lambdas which typi�es the investor's fondness for return /

diversi�cation maximization and risk minimization; the variation of red dots ranges from the minimum variance portfolio

to the equal weights portfolio and the maximum return portfolio; taking into account the large size of the feasible set the

equal weights portfolio performes rather well in terms of risk and return optimization.

Surprisingly, adding the diversi�cation objective does not signi�cantly diminish the return and risk goals

considering how large the whole feasible set actually is, as the sub-e�cient frontier lies very close to the

e�cient frontier. One could have guessed that investing into the �Technology� sector would mitigate the

performance in terms of risk and return, which is not the case to a large extent. Apparently, holding

the other sectors makes up for the drawbacks associated with the �Technology� sector. Zooming in

and relating the degree of diversi�cation with the color of the dots yields a more detailed plot, that is

presented below. Note that blue color implies a low level diversi�cation, whereas skin color stands for a

high degree of diversi�cation. It is important to realize that the risk and return proxies are the average

return and the standard deviation of the equal weights portfolio:

Figure 10: risk-return diagram showing the afore-exempli�ed variation of dots indicating the optimization competition

with respect to return, risk and Her�ndahl index for nine S&P500 sectors over a period of �ve years (2000-2004); as

opposed to before, the picture is zoomed in and the level of diversi�cation for each single portfolio is branded by a color

(skin-color: well diversi�ed, blue color: poorly diversi�ed); as expected, well diversi�ed portfolios can be found in the

proximity of the equal weights portfolio, while poorly diversi�ed portfolios are located near the maximum return portfolio.

Interestingly, there is a large area of relatively strong diversi�cation between the EWP portfolio and the

minimum variance portfolio, where the level of diversi�cation changes only slowly. Including the risk-free

asset changes the risk and return terms in the same way as for the general QP3 Markowitz problem, but

in this case one also has to divide the diversi�cation term by (1− w0)2, where w0 is the weight allocated

to the risk-free asset. As before, we can draw a line from any colored dot to the respective risk-free

rate on the y-axis of the above-presented risk-return diagrams and invest along the line. As before, the

risk-return diagrams for the second and third data set are presented in the appendix (Figures 31 - 34).

In order to show that the two concepts of Her�ndahl Index and entropy concentration are empirically

more or less equivalent we computed the optimal weight distributions for the �rst data set for a �xed
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target return of 0.66 percent - the mean return of all sectors - but using di�erent target covariance risk

values. Note that we excluded the risk-free asset in this example, because we wanted to single out the

e�ect of both optimization concepts. In this respect, taking into account a risk-free asset implies an

additional estimation uncertainty, since the allocation decision would also be accompanied by a date

decision, as investing at the wrong point in time implicates an unfavorable risk-free rate:

Target Risk Diversi�cation Measure XLY XLF XLV XLI XLB XLP XLE XLU XLK

1.0
Her�ndahl 0.0447 0.0000 0.1559 0.0552 0.0683 0.2752 0.1390 0.1848 0.0769

Entropy 0.0469 0.0207 0.1376 0.0534 0.0605 0.3093 0.1224 0.1729 0.0764

1.1
Her�ndahl 0.0721 0.0325 0.1354 0.0814 0.0870 0.2067 0.1340 0.1607 0.0903

Entropy 0.0710 0.0476 0.1266 0.0778 0.0816 0.2244 0.1246 0.1557 0.0906

1.2
Her�ndahl 0.0900 0.0686 0.1227 0.0958 0.0983 0.1605 0.1250 0.1386 0.1005

Entropy 0.0896 0.0735 0.1200 0.0945 0.0965 0.1659 0.1219 0.1374 0.1006

1.3
Her�ndahl 0.1056 0.1001 0.1138 0.1073 0.1078 0.1235 0.1150 0.1184 0.1085

Entropy 0.1056 0.1004 0.1137 0.1072 0.1077 0.1238 0.1148 0.1183 0.1085

1.4
Her�ndahl 0.1198 0.1284 0.1072 0.1170 0.1161 0.0923 0.1047 0.0996 0.1150

Entropy 0.1196 0.1293 0.1067 0.1167 0.1157 0.0932 0.1041 0.0996 0.1150

1.5
Her�ndahl 0.1328 0.1542 0.1019 0.1255 0.1235 0.0653 0.0942 0.0820 0.1206

Entropy 0.1315 0.1607 0.0991 0.1231 0.1203 0.0708 0.0912 0.0823 0.1209

Table 5: weight distributions for nine S&P500 sectors at �xed target return and varying target risk resulting from

an estimation window of �ve years (2000-2004); for each target risk value two rows are presented showing the weight

distributions for Her�ndahl and entropy optimization, respectively; by comparing the rows pairwise it turns out that both

optimization approaches are virtually equivalent from a empirical viewpoint.

Obviously, both optimization approaches lead to very similar portfolio weights under the same starting

conditions (i.e. target return / risk). The largest deviations can be observed for the lowest target

covariance risk value (∼2 percent). Finally, we computed the di�erent diversi�cation measures for the

above-introduced weight distributions:
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Target Risk Diversi�cation Measure Her�ndahl Rosenbluth Exp. Entropy CCI Entropy

1.0
Her�ndahl 0.1691 0.1847 0.1480 0.4482 1.9105

Entropy 0.1744 0.1826 0.1433 0.4563 1.9428

1.1
Her�ndahl 0.1334 0.1478 0.1231 0.3768 2.0944

Entropy 0.1344 0.1472 0.1225 0.3825 2.0995

1.2
Her�ndahl 0.1174 0.1281 0.1143 0.3334 2.1690

Entropy 0.1175 0.1279 0.1143 0.3358 2.1694

1.3
Her�ndahl 0.1115 0.1149 0.1113 0.1819 2.1954

Entropy 0.1115 0.1150 0.1113 0.1818 2.1954

1.4
Her�ndahl 0.1121 0.1173 0.1115 0.1807 2.1928

Entropy 0.1121 0.1173 0.1116 0.1802 2.1926

1.5
Her�ndahl 0.1172 0.1279 0.1143 0.1762 2.1688

Entropy 0.1173 0.1280 0.1143 0.1726 2.1691

Table 6: diversi�cation measure for nine S&P500 sectors at �xed target return and varying target risk resulting from an

estimation window of �ve years (2000-2004); as anticipated, the Comprehensive Concentration Index moves more slowly

within the range [0, 1] than the �rst three indices, whereas the entropy is not bound to an upper limit.

As already explained before the �rst three diversi�cation measures, namely the Her�ndahl Index, the

Rosenbluth Index and the exponential of the entropy shift more rapidly from 1 to 1
N

with increasing

degree of diversi�cation than the Comprehensive Concentration Index. Only the last metric - entropy -

is not bound to the range [0, 1]. E�ectively, the �rst three measures become equivalent if the number of

securities exceeds a certain threshold. Also Bouchaud et. al. (1997) assert that the entropy concentration

S becomes equivalent to Y q−1
q−1

in the limit of q going to 1, where Yq is the q-norm of the portfolio weights

(Yq =
∑

i p
q
i ), which is equal to the Her�ndahl Index for q = 2. These theoretical considerations and

the previously presented empirical results show that Her�ndahl Index and entropy diversi�cation are

very closely related. In the following we will extend the previous approach to include the Generalized

Her�ndahl Index.

5.3 QP3 Markowitz Problem including GHHI Diversi�cation

The following subsection contains four risk-return diagrams (Figures 11 - 14) that illustrate the opti-

mization competition between return, risk and the Generalized Her�ndahl Index.

Second Data Set: 1990 - 2009

As the �rst data set only consisted of the distinguished sectors, we introduce two more data sets that

comprise individual assets from the di�erent sectors. The following risk-return diagram is generated by

optimizing the objective function above for di�erent choices of λi:
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Figure 11: risk-return showing the feasible set including red dots indicating the optimization competition with respect to

return, risk and Generalized Her�ndahl index for 39 S&P500 assets over a period of ten years (1990-1999); each red dot

represents a single portfolio that is de�ned by the choice of lambdas which typi�es the investor's fondness for return /

diversi�cation maximization and risk minimization.

Compared to the previous risk-return diagrams, the dot distribution sticks much closer to the e�cient

frontier. As before, we zoom into the picture and relate the color of the dots with the degree of

diversi�cation in order to see more details. Note that the risk proxy is given by the standard deviation

of the equal weights portfolio.

Figure 12: risk-return diagram showing the afore-exempli�ed variation of dots indicating the optimization competition

with respect to return, risk and Generalized Her�ndahl index for for 39 S&P500 assets over a period of ten years (1990-

1999); as opposed to before, the picture is zoomed in and the level of diversi�cation for each single portfolio is branded

by a color (skin-color: well diversi�ed, blue color: poorly diversi�ed).

Apparently, the area of strongest diversi�cation is slightly extended from the equal weights portfolio

towards the maximum return portfolio. As explained before the Generalized Her�ndahl Index tends to

keep the concentration low within a certain sector and therefore a GHHI portfolio usually only invests in

a few assets from each sector provided that these particular assets outperform the remaining securities

from the same sector in terms of expected return and risk.
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Third Data Set: 1974 - 2009

The third data set containing 50 assets from the nine S&P sectors over a period of 26 years (01/01/1974 -

31/12/1999) can be implemented using a 50×50 matrix with blocks of ones whose sizes vary between 3×3

and 9×9. The size of the blocks depends on how many companies could be identi�ed for this particular

period from the respective sectors. Note that the respective companies and their stock symbols can be

found in the appendix (see Table 33). Optimizing the portfolio weights for di�erent speci�c choices of

λi results in the following feasible set:

Figure 13: risk-return showing the feasible set including red dots indicating the optimization competition with respect to

return, risk and Generalized Her�ndahl index for 50 S&P500 assets over a period of 26 years (1974-1999); each red dot

represents a single portfolio that is de�ned by the choice of lambdas which typi�es the investor's fondness for return /

diversi�cation maximization and risk minimization.

Once more it can be observed that the sub-e�cient frontier associated with the GHHI diversi�cation

is located in the proximity of the e�cient frontier, altough the entire feasible set is a lot larger. As

opposed to the equal weights portfolio, the �perfect� GHHI portfolio can be achieved in several ways,

since merely the sums of the weights allocated to each sector have to be the same and not the weights

allocated to each asset. As usual, zooming in to the cluster and giving the dots colors according to

the level of diversi�cation yields a di�erent picture. Again, the standard deviation of the equal weight

portfolio serves as risk proxy.
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Figure 14: risk-return diagram showing the afore-exempli�ed variation of dots indicating the optimization competition

with respect to return, risk and Generalized Her�ndahl index for for 50 S&P500 assets over a period of 26 years (1974-

1999); as opposed to before, the picture is zoomed in and the level of diversi�cation for each single portfolio is branded

by a color (skin-color: well diversi�ed, blue color: poorly diversi�ed).

Like before, those portfolios that are well diversi�ed with respect to the Generalized Her�ndahl Index lie

more or less in the center of the cluster, while the poorly diversi�ed portfolios are closer to the maximum

return portfolio. Again, adding a risk-free asset necessitates altering the risk, return and diversi�cation

terms in the same way as for the previous objective functions. Because of analysis purposes we required

the GHHI portfolio to match the mean and standard deviation of the respective 1
N
-portfolio.

All four plots (Figures 11 - 14) have demonstrated that both indices, namely the Her�ndahl and the

Generalized Her�ndahl Index, work in a similar manner as the courses of the corresponding sub-e�cient

frontiers a very much alike. The exact location of the sub-e�cient frontier depends on the number of

securities selected from each sector. In general, it is advisable to choose larger stock numbers and to

keep the number of assets from each sector the same if possible, since otherwise the GHHI approach

might lead to a condensation of only a few assets. On top of that, some of the assets chosen to be part

of the portfolio might even strongly underperform others in terms of expected risk and return, if some

sectors o�er only a small number of poorly performing assets. In the analysis section we will compare

the performance of some GHHI portfolios to the 1
N
-strategy, but �rst we will have a look at the results

regarding the state-dependent allocation strategy and the Kelly portfolio.

5.3 State-Dependent Allocation Strategy

First Data Set: 2000 - 2009

As before, the �rst data set incorporates nine out of eleven S&P500 sectors. Applying a min-var

strategy in combination with a rolling window approach (period: six months) yields the following weight

distribution:
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Sector XLY XLF XLV XLI XLB XLP XLE XLU XLK Her�ndahl

01/2005 - 06/2005 0 0 0.2184 0 0.0001 0.4431 0.1353 0.2031 0 0.3036

07/2005 - 12/2005 0 0 0.1886 0 0 0.5338 0.0932 0.1844 0 0.3632

01/2006 - 06/2006 0 0 0.1729 0 0 0.5982 0.0648 0.1641 0 0.4189

07/2006 - 12/2006 0 0 0.1278 0 0 0.6752 0.0465 0.1504 0 0.4970

01/2007 - 06/2007 0 0 0.1144 0 0 0.7128 0.0527 0.1201 0 0.5384

07/2007 - 12/2007 0 0 0.1007 0 0 0.7538 0.0439 0.1017 0 0.5906

01/2008 - 06/2008 0 0 0.1828 0 0 0.6579 0.0234 0.1359 0 0.4853

07/2008 - 12/2008 0 0 0.2197 0 0 0.6658 0.0070 0.1075 0 0.5032

01/2009 - 06/2009 0 0 0.1899 0 0 0.8101 0 0 0 0.6923

07/2009 - 12/2009 0 0 0.1960 0 0 0.8040 0 0 0 0.6750

Table 7: weight distribution for a minimum variance portfolio that rebalances every six months using a rolling window

approach over period of �ve years (2005 - 2009); the last column contains the Her�ndahl Index for the respective weight

distribution; accordingly, the state-dependent allocation strategy permantently revolves around e�ective numbers of 9

assets ( 1
N -rule) and 1.5 to 3 assets (min-var portfolio)

Note that we decided to not further increase the rebalancing frequency, since computational e�ort grows

linearly with it and as the analysis section will show later on, there comes little to no bene�t at all with

additional increment. The minimum variance weight distribution changes slightly over the years. While

we invest into �ve assets in the beginning, we end up with only two sectors remaining, namely �Health

Care� and �Consumer Staples�. Interestingly, the percentage invested into �Health Care� �uctuates

within a small range of approximately ten percent, whereas the relative amount placed into �Consumer

Staples� almost continously increases over time from 44 percent to over 80 percent. The last column

containing the Her�ndahl Index values documents how the weight distribution in general changes. As

the inversed Her�ndahl Index indicates the e�ective number of assets among which the portfolio is

diversi�ed, we see that the state-dependent allocation strategy switches between an e�ective number of

9 assets ( 1
N
-strategy) and 1.5 to 3 assets (min-var portfolio). Switching once from the 1

N
-rule to the

min-var portfolio generates a turnover that ranges from 1.1109 to 1.5555 depending on the investment

date. In the following the second and the third data set are utilized to generate two distinct state-

dependent portfolios that once again switch between minimum variance strategy and 1
N
-rule depending

on the value of the crisis indicator.

Second Data Set: 1990 - 2009

In the case of the second data set the portfolio weights are computed based on the asset's performance

from 01/01/1990 to 31/12/1999, while the out-of sample performance is evalauted from 01/01/2000 to

31/12/2009. The respective minimum variance weights for the period 2000 - 2009 are shown in the

tables below:
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Walt Disney McDonalds Goodyear Nike AON Johnson&Johnson

0.0188 0.0250 0.0357 0.0049 0.0728 0.0092

Boeing FedEx Dow Chemical Newmont Mining P�zer Bristol-Myers Suibb

0.0042 0.0076 0.0447 0.0689 0.0025 0.0203

International Paper Colgate Exxon-Mobile Chevron Occidential Petroleum American Electric Power

0.0245 0.0109 0.0563 0.0517 0.0414 0.2092

Duke Energy Southern Company Exelon IBM Apple Her�ndahl

0.1183 0.0663 0.0599 0.0414 0.0055 0.0907

Table 8: weight distribution for a minimum variance portfolio that is hold for ten years (2000 - 2009); the last column

contains the Her�ndahl Index for the respective weight distribution; therefore, the state-dependent allocation strategy

switches between e�ective numbers of 39 assets ( 1
N -rule) and 11 assets (min-var portfolio)

As the table above shows, the main contributors to the minimum variance portfolio are �American

Electric Power� (∼ 20.1 percent) and �Duke Energy� (∼ 11.9 percent). A Her�ndahl Index of 0.0907

corresponds to an e�ective number of 11 assets. A turnover of 0.8545 is created whenever our strategy

switches between the 1
N
rule and the minimum variance portfolio.

Third Data Set: 1974 - 2011

For the third data set the parameters are estimated over a period of 26 years (01/01/1974 - 31/12/1999)

in order to check whether a longer estimation window has positive e�ects on the portfolio performance.

Later on in the Analysis section the performance of this portfolio is matched against the 1
N
-strategy for

another twelve years (01/01/2000 - 31/12/2011). The length of the data window is chosen according

to the maximum period for which the bubble indicator is available. The minimum variance portfolio

weights associated with the period 2000 - 2011 set are presented in the following table:

Footlocker Bank of New York Mellon Merck Eli-Lilly Sparton Alcoa John Deere

0.0018 0.0060 0.0084 0.0059 0.0187 0.0108 0.0059

Eaton Ducommun Procter and Gamble Sysco Exxon-Mobile Chevron American Electric Power

0.0215 0.0244 0.0046 0.0052 0.0375 0.0205 0.0742

Consolidated Edison DTE Energy Entergy PC&E Center Point Energy Allete Empire District Energy

0.0072 0.0817 0.0249 0.0775 0.0362 0.1183 0.2071

SJW IBM 3M United Technologies Her�ndahl

0.1596 0.0189 0.0174 0.0058 0.1068

Table 9: weight distribution for a minimum variance portfolio that is hold for twelve years (2000 - 2011); the last column

contains the Her�ndahl Index for the respective weight distribution; therefore, the state-dependent allocation strategy

switches between e�ective numbers of 50 assets ( 1
N -rule) and 9 - 10 assets (min-var portfolio)
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In this case the largest holdings come with three companies: �Empire District Energy� (∼ 20.7 percent),

�SJW Corporation� (∼ 16.0 percent) and �Allete� (∼ 11.8 percent). Similar to the second data set the

Her�ndahl Index implies an e�ective number of approximately 10 assets. A single re-allocation of our

assets generates a turnover of 1.268. In the Analysis section we will compare the performance of these

three portfolios to the respective 1
N
-benchmark. But �rst, we will present the results regarding the Kelly

portfolio for all three data sets.

5.4 Kelly Portfolio

Applying the Kelly Cirterion to all three data sets leads to the following weight distributions:

Consumer Discretionary Financials Health Care Industrials Energy Utilities Her�ndahl

0.0016 0.0151 0.0066 0.0235 0.0188 0.0075 0.2320

Table 10: weight distribution for a Kelly portfolio that is hold for �ve years (2005 - 2009); the last column contains the

Her�ndahl Index for the respective weight distribution; the percentage hold as cash is not included in the Her�ndahl index

The Kelly portfolio generated from the �rst data contains 7.3 percent stocks and 92.7 percent cash,

which results in a Her�ndahl Index of 0.2320. The implementation of the risk-free rate by investing

into a 5-years treasury bill on the January 1st 2005. The observation that the Kelly portfolios invests a

relatively small amount in stocks remains prevalent in the second data set as well:

McDonalds Ford Nike AON Wells-Fargo

0.0007 0.0011 0.0030 0.0056 0.0063

American-Intl-Corp Johnson&Johnson P�zer General Electrics Southwest Airlines

0.0066 0.0027 0.0119 0.0211 0.0051

E-I-du-Pont-de-Nemours Dow-Chemical Procter-and-Gamble Wal-Mart Colgate

0.0019 0.0008 0.0037 0.0080 0.0162

Exxon-Mobile Chevron Schlumberger Duke-Energy Southern-Company

0.0187 0.0046 0.0002 0.0119 0.0115

Exelon IBM Texas Instruments Intel Her�ndahl

0.0009 0.0012 0.0045 0.0136 0.0740

Table 11: weight distribution for a Kelly portfolio that is hold for ten years (2000 - 2009); the last column contains the

Her�ndahl Index for the respective weight distribution; the percentage hold as cash is not included in the Her�ndahl index

Again, the Kelly portfolio comprises a very small-sized stock portion of approximately only 16.2 per-

cent, while the rest (∼ 83.8 percent) is invested in the risk-free asset leading to a Her�ndahl Index of

0.0740. The risk-free rate is achieved using a 10-years treasury bills. At last, the Kelly portfolio weights

associated with the third data set are presentend below:
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McDonalds Ford Altria-Group Wells-Fargo Bank-of-New-York-Mellon P�zer Merck

0.0008 0.0076 0.0044 0.0031 0.0035 0.0022 0.0054

Bristol-Myers-Squibb General-Electrics Boeing Alcoa Eaton Procter-and-Gamble Wal-Mart

0.0090 0.0074 0.0105 0.0069 0.0081 0.0057 0.0200

Pepsico Sysco Exxon-Mobile Chevron Consilidated-Edison DTE-Energy PC&E

0.0011 0.0074 0.0238 0.0014 0.0104 0.0103 0.0027

Center-Point-Energy Allete Empire-District-Electric SJW-Corp. United-Technologies HP-Inc Her�ndahl

0.0032 0.0047 0.0122 0.0165 0.0125 0.0009 0.0584

Table 12: weight distribution for a Kelly portfolio that is hold for twelve years (2000 - 2011); the last column contains

the Her�ndahl Index for the respective weight distribution; the percentage hold as cash is not included in the Her�ndahl

index

Still, the percentage allocated to stock (∼ 20.2 percent) appears comparatively small, while the lion's

share (∼ 79.8 percent) is kept as cash. The corresponding Her�ndahl Index is 0.0584. In the last part

of the Analysis section we will match the performance of the three before-created portfolios against the
1
N
-benchmark.
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6. Analysis

The following section is devoted to comparing the performances of our three optimizing concepts, namely

the Generalized Her�ndahl Index, the state-dependent allocation and the Kelly Criterion, with the 1
N
-

benchmark. Therefore, we will utilize basic statistics such as mean and standard deviation, performance

measures such as Sharpe Ratio and Sortino Ratio, drawdown metrics such as average recovery time and

Pain Index as well as rather rarely used Up / Down Ratios such as Capture and Percentage Ratio. As

ultimate performance comparison we will �nally consult cumulative returns.

6.1 GHHI Diversi�cation versus 1/N-Strategy

First Data Set: 2000 - 2009

In the following we used the GHHI diversi�cation approach to generate two distinct portfolios and

compare them to the 1
N
-strategy: The �rst portfolio is generated by optimizing with respect to the

Generalized Her�ndahl Index based on risk and return estimates obtained from a 10-years observation

window (01/01/1990 to 31/12/1999) and then holding the respective portfolio for another ten years

(01/01/2000 to 31/12/2009). On the contrary, the second portfolio does not adopt a �buy-and-hold�

strategy, but rebalances the weight distribution every year based on the performance of the last ten

years. Here the size of the rolling estimation window was chosen to be as large as possible whilst staying

constant over the entire process in order to preserve the amount of information used for parameter

estimation. The target risk and return values were set such that they correspond to the covariance

risk and average return values of 1
N
-strategy for each respective year. The table below displays some

key statistics regarding the respective portfolios. Note again that the weakest value per each metric is

colored red, while the strongest branded green. Also be aware of the fact that a 10-years US treasury

bill has been used to mimic the risk-free rate of 6.58 percent:
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Company 1
N -strategy GHHI �buy-and-hold� GHHI �rolling window�

Median 0.0512 0.0568 0.0625

Mean 0.0095 0.0083 0.0125

St. Dev. 1.3600 1.3440 1.3564

Skewness -0.2073 -0.0315 -0.0547

Kurtosis 8.4689 7.7212 7.9830

Pain Index 14.2913 15.5579 14.6864

Ulcer Index 20.4405 20.8043 19.5927

Sharpe Ratio -0.0414 -0.0427 -0.0399

Adjusted SR -0.0002 -0.0112 0.0262

Omega SR -0.1175 -0.1201 -0.1126

Sortino Ratio -0.0556 -0.0579 -0.0541

Upside Potential Ratio 0.4177 0.4242 0.4261

Table 13: key statistics for two distinct GHHI portfolios compared to the naive 1
N -rule; the second column is associated

with a �buy-and-hold� portfolio with an estimation period and an out-of-sample period of each ten years (1990 - 1999 and

2000 - 2009, respectively), whereas the porftolio from the third column rebalances the weight distribution every year using

a rolling window approach; as expected, the rolling window approach outperforms the �buy-and-hold� strategy.

First of all, we have to realize that the Sharpe Ratio as well as the remaining Sharpe Ratio-like measures

are negative if we include the risk-free asset. One possible reason for this problem might be the fact

that we limited the choice of securities to the S&P500 resulting in an �imperfect� 1
N
-portfolio. The

phenomenon of negative Sharpe Ratios will continue throughout the other data sets. A potential remedy

for this issue will be given in the conclusion at the end of this paper.

Anyways, we will continue to compare our optimization strategies with the 1
N
-benchmark. Obviously,

the �rolling window� approach yields more favorable values than the �buy-and-hold� strategy regarding

every statistic apart from standard deviation, skewness and kurtosis. Apart from Pain Index, the �rolling

window� approach o�ers better performance than the 1
N
-strategy, but the di�erences are actually not

signi�cant except for the Adjusted Sharpe Ratio.

Up/Down Ratios open up another way to relative performance assessement. For instance, the Up

(Down) Capture Ratio measures how well the investment performs during up (down) markets. The Up

(Down) Capture Ratio is computed by dividing the returns of the optimizing portfolios by the returns

of the 1
N
-strategy when the benchmark crosses an up (down) market. An Up (Down) Capture Ratio

of 0.9 means that the investment gains (loses) 90 percent of its value, when the value of corresponding

benchmark asset / portfolio increases (decreases) by 100 percent, such that a larger (smaller) value

indicates superior performance (Bacon, 2008). The Up (Down) Number Ratio works similar, but takes

the number of periods when the optimizing portfolio experiences an up (down) swing and divides it by

the number of periods in which the benchmark is going through an up (down) market (Bacon, 2008).
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The Up (Down) Percentage Ratio puts the number of days when the GHHI portfolio outperforms the
1
N
-strategy at times when the 1

N
-strategy was up (down) into the nominator, while taking the number

of periods when the 1
N
-strategy was up (down) as denominator (Bacon, 2008). The following table

demonstrates that the Up/Down Capture Ratios of both GHHI approaches are close to 1 which implies

that they behave approximately like the 1
N
-strategy.

Ratio Up Capture Down Capture Up Number Down Number Up Percent Down Percent

�buy-and-hold� 0.9575 0.9592 0.8989521 0.8989813 0.4438623 0.5551783

�rolling window� 0.9829 0.9809 0.9146707 0.9117148 0.4528443 0.5390492

Table 14: Up/Down Ratios for two distinct GHHI portfolios; the �rst row is associated with a �buy-and-hold� portfolio

with an estimation period and an out-of-sample period of each ten years (1990 - 1999 and 2000 - 2009, respectively),

whereas the porftolio from the second row rebalances the weight distribution every year using a rolling window approach;

again, the �buy-and-hold� strategy provides inferior results compared to the rolling window approach.

Plotting the Up Capture Ratio versus the Down Capture Ratio illustrates whether an investment out-

performs the benchmark strategy. In the plot below the 1
N
-strategy is located in the center where Up

and Down Capture Ratios are both equal to one. The Capture Ratios of both the buy-and-hold strategy

and the rolling window approach are marked by red dots:

Figure 15: diagram showing the ratio of Up Capture Ratio (y-axis) and Down Capture Ratio (x-axis) for two distinct

GHHI portfolios compared to the naive 1
N -rule; the Up (Down) Capture Ratio is computed by dividing the returns of the

optimizing portfolios by the returns of the 1
N -rule when the benchmark experiences an up (down) market; the left panel is

associated with a �buy-and-hold� portfolio with an estimation period and an out-of-sample period of each ten years (1990

- 1999 and 2000 - 2009, respectively), whereas the porftolio in the right panel rebalances the weight distribution every

year using a rolling window approach; obviously, the rolling window portfolio is slightly superior to the �buy-and-hold�

strategy, but both optimizing portfolios fail to consistently outperform the 1
N -rule.

As both red dots lie approximately on the gray linear line intersecting the origin and the center of the

plot, it becomes obvious that none of the approaches performs signi�cantly better than the 1
N
-strategy.
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In fact, the �buy-and-hold� strategy is slightly inferior to the 1
N
-strategy, while the opposite applies

to the �rolling window� approach. Another possibility of performance evaluation is provided by the

Capital Asset Pricing Model. The CAPM is a linear factor equilibrium model that enquires which part

the total risk of a portfolio is diversi�able, which yields further possibilites to value risky investments.

The alpha intersect quanti�es the amount of return that is not related to the benchmark return, while

the beta slope embodies the returns that are directly induced by the benchmark performance. Thus,

it appears that the alpha intersect e�ectively reveals to what extent the portfolio has the ability to

generate superior returns compared to the benchmark investment. As an extension to the CAPM Fama

and French proposed a three-factor model that can be used to assess the loss of diversi�cation. Fama

beta is de�ned as βF = σp
σm

, where σp and σm are the portfolio's standard deviation and the market risk,

respectively. In addition to the before-mentioned CAPM measures the following table comprises the

speci�c, the systematic and the total risk values for both GHHI strategies as well:

Strategy CAPM Alpha CAPM Beta Fama Beta Speci�c Risk Systematic Risk Total Risk

GHHI �buy-and-hold� -0.0008 0.9634 0.9882 4.7462 20.8004 21.3350

GHHI �rolling window� 0.0033 0.9725 0.9973 4.7789 20.9950 21.5320

Table 15: CAPM measures and risk values for two distinct GHHI portfolios; the �rst row is associated with a �buy-

and-hold� portfolio with an estimation period and an out-of-sample period of each ten years (1990 - 1999 and 2000 -

2009, respectively), whereas the porftolio from the second row rebalances the weight distribution every year using a rolling

window approach; as hoped for, the rolling window approach dominates the �buy-and-hold� strategy in terms of the CAPM

Alpha intersect

The CAPM measures con�rm the conjecture that both GHHI approaches actually behave very similar to

the 1
N
-strategy, because the alpha intersect for both optimizing portfolios is close to zero and their beta

slope is almost one. Plotting the GHHI portfolio's return versus the return of the 1
N
-strategy results in an

individual scatterplot for each optimization approach. Laying a LOWESS (locally weighted scatterplot

smoothing) line �t over the return scatterplot points out the relation between the optimizing portfolio

and the 1
N
-strategy:

49



Figure 16: diagram showing a return scatter for two GHHI distinct portfolios (y-axis) compared to the naive 1
N -rule (x-

axis); the left panel is associated with a �buy-and-hold� portfolio with an estimation period and an out-of-sample period of

each ten years (1990 - 1999 and 2000 - 2009, respectively), whereas the porftolio in the right panel rebalances the weight

distribution every year using a rolling window approach; overlaying a LOWESS (locally weighted scatterplot smoothing)

line illustrates the relation between the separate optimizing portfolios and the 1
N -benchmark; evidently, both optimizing

portfolios behave very much like the benchmark, as the scatter points almost lie on a straight line.

Obviously, both plots demonstrate a strong correlation between both optimizing portfolios and the
1
N
-strategy, since the correlation coe�cients for both linear �ts are 0.9505 and 0.9507, respectively.

Therefore, we can negate the null hypothesis, that both strategies are the same, yet, they are very much

alike. Finally, we computed the Modigliani-Modigliani measure (also called Modigliani risk-adjusted

performance), which shifts the portfolio's standard deviation so that it �ts the benchmark's standard

deviation, which we already partly achieved by imposing the target risk and return values from the
1
N
-strategy. The M2-measure is de�ned as follows:

MMp =
E [Rp −Rf ]

σp
= SR · σb + E [Rf ] (58)

where:

σb: standard deviation of the benchmark

The M2-measure is 0.84 and 1.26 percent for both portfolios, respectively. In contrast to the Sharpe

Ratio, which is an abstract dimensionless measure, the M2-measure takes units of percentage return,

which is much more comprehensible. The M2-measure enables us to realize that the rolling window

approach is actually a better investment opportunity, because it yields a risk-adjusted return that is

larger by more than 0.4 percent. The cumulative returns of all three strategies, namely 1
N
-benchmark,
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�buy-and-hold� strategy and rolling window approach are revealed below. Note that the return of the
1
N
-benchmark is associated with black color, while the �buy-and-hold� strategy and the rolling window

approach are colored green and red, respectively. Also be aware that the y-axis shows the development

over time of one money unit invested in the beginning:

Figure 17: cumulative return for two distinct GHHI portfolios compared to the 1
N -benchmark over a period of ten years

(2000-2009); black: 1
N -benchmark, green: �buy-and-hold� strategy, red: rolling window approach; the rolling window

approach often provides a higher cumulative return than the benchmark and only sometimes underperforms it, while the

�buy-and-hold� strategy almost always yields smaller returns than the naive 1
N -rule

As expected, the rolling window approach mostly outperforms the 1
N
-benchmark, while the �buy-and-

hold� strategy leads to consistently lower returns, which brings us to the conclusion that the GHHI

optimization is able to perform better than the naive 1
N
-rule, but only when implemented in combination

with frequently rebalancing the portfolio weights.

Third Data Set: 1974 - 2011

In the following we deployed the third data set to estimate the distribution parameters over 26 years

(01/01/1974 - 31/12/1999) before comparing the out-of sample performance of the resulting �buy-and-

hold� strategy to the 1
N
-strategy for the next twelve years (01/01/2000 - 31/12/2011). Some key statistics

for both portfolios are summarized below. Note again that the weaker of both values is colored red,

while the stronger performance value is colored green:
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Portfolio 1
N -strategy GHHI Portfolio 1

N -strategy GHHI

Median 0.0718 0.0559 Ulcer Index 19.5877 17.3071

Mean 0.0161 0.0148 Sharpe Ratio -0.0468 -0.0492

St. Dev. 1.3093 1.2739 Adjusted SR 0.0880 0.0791

Skewness -0.2539 -0.1721 Omega SR -0.1306 -0.1377

Kurtosis 8.1322 8.3730 Sortino Ratio -0.0622 -0.0659

Pain Index 13.9745 12.3449 Upside Potential Ratio 0.4128 0.4138

Table 16: key statistics for a GHHI portfolio compared to the naive 1
N -rule; the second column is associated with a

�buy-and-hold� portfolio with an estimation period and an out-of-sample period of 26 and twelve years (1974 - 1999 and

2000 - 2011), respectively; expectedly, the �buy-and-hold� strategy does not outperform the 1
N -strategy

The performances of both portfolios match each other in most categories except for median, Pain Index

and Ulcer Index. Apparently, the 1
N
-strategy exhibits a larger mean, while the two drawdown metrics

speak in favor of the GHHI portfolio. Regarding the remaining performance measures only minor

di�erences are observed among both strategies. A closer look at the Up/Down Ratios provides more

information on whether there is a signi�cant performance gap between both portfolios:

Ratio Up Capture Down Capture Up Number Down Number Up Percent Down Percent

GHHI 0.9231 0.9235 0.8953 0.9039 0.4009 0.6105

Table 17: Up/Down Ratios for a GHHI portfolio associated with a �buy-and-hold� portfolio with an estimation period

and an out-of-sample period of 26 and twelve years (1974 - 1999 and 2000 - 2011), respectively; no signi�cant performance

di�erence can be observed between the GHHI portfolio and the 1
N -strategy

The Percentage Ratios show that the GHHI portfolio tends to underperform the 1
N
-portfolio, when the

market experiences an up-swing, but outperforms it when the market is falling. Since the Up Capture

Ratio as well as Up Number Ratio are almost the same as their Down counterparts, the GHHI portfolio

does not outperform the 1
N
-rule. In fact, the �buy and hold� strategy even performs slightly worse, which

is a observation that was already suggested by the results obtained from the second data set above. A

similar picture is drawn by the following the CAPM measures:

CAPM Measure CAPM Alpha CAPM Beta Fama Beta

GHHI -0.0005 0.9427 0.9730

Table 18: CAPM measures and risk values for a GHHI portfolio associated with a �buy-and-hold� portfolio with an

estimation period and an out-of-sample period of 26 and twelve years (1974 - 1999 and 2000 - 2011), respectively; all three

measures suggest that the GHHI portfolio performs very similar to the 1
N -rule; the CAPM Alpha intersect illustrates that

investing into a GHHI portfolio and holding it for the entire period is not a good idea.

As anticipated the CAPM measures provide no evidence for a signi�cant performance deviation. Fur-

thermore the CAPM Alpha intersect demonstrates that an investor deploying a �buy-and-hold� GHHI
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approach exhibits weaker investment skills than investors that put their money into the benchmark

portfolio. Finally, we present the cumulative return of the �buy-and-hold� strategy compared to the

naive 1
N
-rule: Note that the line associated with the 1

N
-benchmark is colored black, whereas the cumu-

lative returns of the GHHI �buy-and-hold� strategy are shown in red. Again, the y-axis indicates the

development of one money unit:

Figure 18: cumulative return for a GHHI portfolio compared to the 1
N -benchmark over a period of twelve years (2000-

2011); black: 1
N -benchmark, red: �buy-and-hold� strategy; the GHHI �buy-and-hold� strategy permanently fails to generate

superior returns

It does not come as a surprise that the GHHI �buy-and-hold� strategy is not a suitable approach, because

its cumulative return is consistently lower than the return of the benchmark.

6.2 State-Dependent Allocation versus 1/N-Strategy

First Data Set: 2000 - 2009

In the following we will examine di�erent characteristics of the state-dependent allocation strategy:

First of all, the e�ect of the rebalancing frequency is evaluated by contrasting two rebalancing portfolios

(every six and twelve months) and the �buy-and-hold� strategy. In order to assure statistical pertinence

we deploy the particular form of the state-dependent allocation strategy that makes use of random

numbers during the decision making process such that the strategy is switched once the indicator value

is larger than a daily generated random number. Taking the average of the key metrics for ten di�erent

sets of random numbers leads to the table below. Note again that the weakest value for each metric is

colored red, whereas the strongest one is branded green:
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Rebalancing Frequency 6 months 12 months �buy-and-hold�

Median 0.0098 0.1028 0.1032

Mean 0.0111 0.0111 0.0108

St. Dev. 1.4259 1.4246 1.4319

Skewness -0.3113 -0.3116 -0.3137

Kurtosis 10.9796 10.9624 10.6952

Pain Index 12.7206 12.7059 12.6574

Ulcer Index 21.0136 20.9911 20.9272

Table 19: key statistics for state-dependent allocation portfolios using di�erent rebalancing frequencies (6 months, 12

months, never) over a period of ten years (2000-2009); note that the strongest (weakest) value per each meatric is colored

green (red); surprisingly, none of the portfolio strategy dominates the others.

Considering the fact that frequently rebalancing the weights does not yield signi�cantly superior returns

compared to the �buy-and-hold� strategy, it appears reasonable to stay with the less computationally in-

tensive method. In fact, the �buy-and-hold� strategy even provides stronger performance regarding some

important measures. This might be due to some potential regime changing. Accordingly, throughout

the rest of the paper we will rely on the �buy-and-hold� strategy only.

Now, the impact of the threshold size on the portfolio performance is evaluated by utilizing di�erent

indicator thresholds between 0.0 and 0.8. Again the key performance metrics are presented in a table.

Note again that the weakest value for each performance measure is colored red, whereas the strongest

performance per each metric is associated with green color.

Threshold 0.0 0.2 0.4 0.6 0.8

Median 0.0984 0.1022 0.1064 0.0944 0.0956

Mean 0.0153 0.0127 0.0129 0.0096 0.0074

St. Dev. 1.4277 1.4280 1.4295 1.4318 1.4340

Skewness -0.3187 -0.3151 -0.3164 -0.3108 -0.3093

Kurtosis 10.8458 10.8343 10.7816 10.6960 10.6178

Pain Index 11.6561 12.0956 12.4830 12.7395 13.4131

Ulcer Index 19.8943 20.3284 20.8030 21.0110 21.7725

Sharpe Ratio -0.0140 -0.0159 -0.0157 -0.0180 -0.0195

Adjusted SR 0.0555 0.0254 0.0281 -0.0086 -0.0341

Omega SR -0.0444 -0.0502 -0.0496 -0.0564 -0.0611

Sortino Ratio -0.0189 -0.0214 -0.0211 -0.0241 -0.0262

Upside Potential Ratio 0.4067 0.4052 0.4053 0.4041 0.4028

Table 20: key statistics for state-dependent allocation portfolios using �ve di�erent bubble indicator thresholds (0.0, 0.2,

0.4, 0.6, 0.8) over a period of �ve years (2005-2009); note that the weakest value for each performance statistic is colored
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red, while the strongest is colored green; it comes into notice that a smaller threshold leads to superior performance in

almost every instance except for skewness and kurtosis (where a bigger threshold is desirable).

It becomes obvious that the portfolio obtained by selecting a zero threshold dominates the other in-

vestments regarding almost every performance measure. Surprisingly, for most metrics the performance

seems to decline with increasing threshold. Apparently, the opposite applies to skewness and kurto-

sis, while no such assumption can be made with respect to the median. Besides, the zero threshold

portfolio also outperforms the corresponding random number portfolio in terms of almost every perfor-

mance parameter except for mean, skewness and kurtosis. For the purpose of verifying afore-mentioned

suppositions we check the 1
N
-strategy as a benchmark against the two portfolios created by applying

thresholds of 0.0 and 0.8. First of all, the Up/Down Ratios are presented below:

Ratio Up Capture Down Capture Up Number Down Number Up Percent Down Percent

0.0 threshold 0.9651 0.9481 0.9803 0.9763 0.0818 0.1639

0.8 threshold 0.9659 0.9664 0.9887 0.9872 0.0465 0.1038

Table 21: Up/Down Ratios for two state-dependent allocation portfolios using two di�erent bubble indicator thresholds

(0.0, 0.8) over a period of �ve years (2005-2009); still, a portfolio resulting from a lower threshold dominates high threshold

portfolios

Similar to the GHHI portfolios, the Capture and Number Ratios are almost one meaning that these

portfolios work very much like the 1
N
-strategy. Plotting the Up/Down Capture Ratios for both optimizing

portfolios yields the subsequent �gure. Note again that the Capture Ratios corresponding to the 1
N
-

strategy are located in the center of the plot, while a red dot indicates the Capture Ratios of the

state-dependent allocation strategy. Also, note that the performance of the zero threshold can be found

in the left half of the plot.

Figure 19: diagram showing the ratio of Up Capture Ratio (y-axis) and Down Capture Ratio (x-axis) for two distinct

portfolios compared to the naive 1
N -rule; the Up (Down) Capture Ratio is computed by dividing the returns of the
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optimizing portfolios by the returns of the 1
N -rule when the benchmark experiences an up (down) market; the left panel

is associated with a portfolio that switches from the 1
N -rule to a minimum variance strategy whenever the crises indicator

gives values above zero, whereas the porftolio in the right panel only replaces the 1
N -rule when the crisis indicator rises

above 0.8; both portfolios deploy a minimum variance strategy that assigns weights according to an estimation period of

�ve years (2000 - 2004) and then holds the respective weight distribution for another �ve years (2005-2009); apparently,

choosing a smaller threshold yields Capture Ratios above the ordinary.

Obviously, the zero threshold portfolio manages to outperform the 1
N
-strategy, since the red dot lies

above the central linear slope. On the contrary, neglecting indicator values less than 0.8 seemingly does

not improve the performance compared to the 1
N
-strategy, as the red dot belonging to the 0.8 threshold

portfolio lies almost exactly on the gray line. This makes sense since a large threshold means that the

investor only rarely enters the market and that there is no room for signi�cant improvement over the
1
N
-strategy provided that the bubble indicator su�ciently predicts crises and is thereby able to generate

superior returns. The plot below further depicts the relative performance of the di�erent strategies

highlighting under- and outperformance. The performance of the 1
N
-strategy is represented by the zero

line, such that under-/outperformance is displayed by deviations from this line. Realizing that the slope

of the deviating line o�ers more valuable clues to the level of under-/outperformance than the actual

value of the deviation is acutely important, since a positive slope is associated with outperformance and

vice versa. Note that the red line corresponds to the portfolio deploying a zero threshold, while the

green line is associated with the 0.8 threshold.

Figure 20: diagram showing the ratio of the cumulative performance (y-axis) of two distinct portfolios compared to the

naive 1
N -rule over time (x-axis); the red line is associated with a portfolio that switches from the 1

N -rule to a minimum

variance strategy whenever the crises indicator gives values above zero, whereas the green line is linked to a portfolio that

only replaces the 1
N -rule when the crisis indicator rises above 0.8; both portfolios deploy a minimum variance strategy

that assigns weights according to an estimation period of �ve years (2000 - 2004) and then holds the respective weight
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distribution for another �ve years (2005-2009); the benchmark performance is represented by the zero line; instead of

examining the absolute size of the deviation from the benchmark performance, one has to look at the slope of the

deviating graph, since a positive (negative) slope is linked with out-/(under-)performance; as the the relative performance

line of the zero threshold portfolio starts in the negative and rises onto the benchmark / zero line after some time, it

mainly undergoes periods of outperformance demonstrated by a positive slope.

This plot con�rms the above-established conjecture that the zero threshold portfolio dominates the 1
N
-

strategy, because it exhibits a relatively long period of nearly constant outperformance (positive slope)

from the beginning of 2005 until late 2006. In opposition to this, the green line only suggests a brief

period of out-/underperformance (i.e. a sharp peak) in early 2007. Again, a summary of the important

CAPM measures and risk values is given below:

Strategy CAPM Alpha CAPM Beta Fama Beta Speci�c Risk Systematic Risk Total Risk

0.0 Threshold 0.0077 0.9716 0.9794 2.8486 22.4847 22.6644

0.8 Threshold -0.0003 0.9787 0.9837 2.2988 22.6480 22.7644

Table 22: CAPMmeasures and risk values for two state-dependent allocation portfolios using two di�erent bubble indicator

thresholds (0.0, 0.8) over a period of �ve years (2005-2009); once again, a lower threshold gives far better returns as proven

by the CAPM Alpha intersect value.

Judging from the alpha intersect value, it appears that somebody who invests in a portfolio that changes

the allocation strategy, whenever the previously introduced crisis indicator is larger than zero, demon-

strates higher investment skills, since the portion of return of their portfolio that is not attrituable to the

benchmark is comparably large. Finally, the return scatter with respect to the 1
N
-strategy is displayed

for both thresholds:
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Figure 21: diagram showing a return scatter for two distinct portfolios (y-axis) compared to the naive 1
N -rule (x-axis); the

left panel is associated with a portfolio that switches from the 1
N -rule to a minimum variance strategy whenever the crises

indicator gives values above zero, whereas the porftolio in the right panel only replaces the 1
N -rule when the crisis indicator

rises above 0.8; both portfolios deploy a minimum variance strategy that assigns weights according to an estimation period

of �ve years (2000 - 2004) and then holds the respective weight distribution for another �ve years (2005-2009); overlaying a

LOWESS (locally weighted scatterplot smoothing) line illustrates the relation between the separate optimizing portfolios

and the 1
N -benchmark; again, both optimizing portfolios behave very much like the benchmark, as the scatter points

almost lie on a straight line.

Clearly, both state-dependent portfolios behave very much like the 1
N
-strategy, as the correlation coef-

�cients are 0.9842 and 0.9898, respectively. The accumulation of red dots in the center is mostly due

to the switching procedure from the 1
N
-strategy to the minimum-variance portfolio. As before, we can

deny the null hypothesis of both strategy being equal. Expectedly, the M2-measure further documents

that the zero threshold portfolio yields superior returns compared to portfolios using higher threshold,

since it results in a risk-adjusted return that is 0.8 percent larger than that associated with a threshold

of 0.8. As last performance comparison we compute the cumulative returns:

Figure 22: cumulative return for two state-dependent portfolios compared to the 1
N -benchmark over a period of �ve years

(2005-2009); black: 1
N -benchmark, red: 0.0 indicator threshold portfolio strategy; green: 0.8 indicator threshold portfolio;

the portfolio associated with a zero threshold consistently outperforms the benchmark, while the portfolio applying a

threshold of 0.8 mostly falls onto the benchmark return and sometimes underperforms it

As anticipated, the portfolio, that switches from an 1
N
-strategy to a minimum variance portfolio whenen-

ver the bubble indicator rises above zero, consistently provides larger cumulative returns than the naive
1
N
-rule, while the other portfolio deploying an indicator threshold of 0.8 tracks the 1

N
-benchmark very

closely, but sometimes underperforms it.
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Second Data Set: 1990 - 2009

In the case of the second data set we calculate the distribution parameters based on the asset's per-

formance from 01/01/1990 to 31/12/1999 to compute the minimum variance portfolio weights before

evaluating the out-of sample performance of the state-dependent allocation strategy in the subsequent

ten years. In this case, instead of comparing rolling window approaches and �buy and hold� strategy,

we only examine the e�ect of various indicator thresholds. In order to verify the conjecture that lower

bubble indicator thresholds provide returns superior to portfolios applying higher thresholds we gen-

erate �ve di�erent portfolios and compare them to the naive 1
N
-rule. The respective key statistics are

presented in the following table. Note that the average drawdown and recovery length is given in days:

Threshold 1
N 0.0 0.2 0.4 0.6 0.8

Median 0.0512 0.0502 0.0500 0.0500 0.0502 0.0500

Mean 0.0095 0.0138 0.0140 0.0128 0.0103 0.0083

St. Dev. 1.3600 1.3712 1.3700 1.3696 1.3685 1.3685

Skewness -0.2073 -0.2036 -0.2017 -0.2013 -0.1992 -0.1975

Kurtosis 8.4689 8.1243 8.1569 8.1705 8.2022 8.2028

Avg. Drawdown Depth 9.6200 17.5239 17.5239 17.5239 17.5239 17.5239

Avg. Drawdown Length 628 628 628 628 628 628

Avg. Recovery Length 625 624 624 624 624 624

Pain Index 14.2912 13.7188 13.4458 13.6839 14.0014 14.4936

Ulcer Index 20.4404 19.6638 19.5368 19.8214 20.1378 20.7086

Sharpe Ratio -0.0414 -0.0379 -0.0378 -0.0387 -0.0406 -0.0420

Adjusted SR -0.0002 0.0475 0.0507 0.0360 0.0071 -0.0159

Omega SR -0.1175 -0.1073 -0.1069 -0.1096 -0.1147 -0.1186

Sortino Ratio -0.0556 -0.0511 -0.0509 -0.0522 -0.0546 -0.0565

Upside Potential Ratio 0.4177 0.4255 0.4256 0.4239 0.4215 0.4200

Table 23: key statistics for state-dependent allocation portfolios using di�erent bubble indicator thresholds (0.0, 0.2,

0.4, 0.6, 0.8) compared to the 1
N -strategy over a period of ten years (2000-2009); note that the weakest value for each

performance statistic is colored red, while the strongest is colored green; obviously, smaller thresholds (0.0, 0.2) outperform

the 1
N -strategy larger thresholds regarding almost every performance metric;

As opposed to the �rst data set, now selecting a threshold of 0.2 yields the best performance instead

of 0.0. Nonetheless, both thresholds (0.0 and 0.2) lead to very similar performance with only slight

disadvantages related with choosing a threshold of 0.0. Still, relying on higher thresholds leads to

considerably weaker performances, which brings us to the conclusion that the minimum variance strategy

works remarkably well for minor crises, but not so well for major crises associated with a high bubble

indicator values. Aiming at further shedding light on the e�ect of thresholds sizes we once again calculate
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a plethora of Up / Down Ratios:

Ratio Up Capture Down Capture Up Number Down Number Up Percent Down Percent

0.0 threshold 0.9996 0.9901 0.9641 0.9686 0.0973 0.0934

0.2 threshold 0.9994 0.9893 0.9648 0.9703 0.0891 0.0857

0.4 threshold 0.9987 0.9915 0.9701 0.9754 0.0793 0.0722

0.6 threshold 0.9965 0.9947 0.9746 0.9796 0.0689 0.0552

0.8 threshold 0.9944 0.9970 0.9760 0.9805 0.0614 0.0458

Table 24: Up/Down Ratios for two state-dependent allocation portfolios using �ve di�erent bubble indicator thresholds

(0.0, 0.2, 0.4, 0.6, 0.8) over a period of ten years (2000-2009); still, a portfolio resulting from a lower threshold dominates

high threshold portfolios

Comparing Up and Down Capture Ratios we immediately realize that utilizing lower thresholds enables

us to outperform the 1
N
-strategy. In fact, only the highest threshold yields a portfolio that performs

worse than the benchmark strategy, which is also illustrated in the �gure below, where we match the

performance of two distinct portfolios (0.2 and 0.8 threshold) against the 1
N
-strategy. Note that in order

to outperform the benchmark the red dot needs to be located above the grey benchmark line:

Figure 23: diagram showing the ratio of Up Capture Ratio (y-axis) and Down Capture Ratio (x-axis) for two distinct

portfolios compared to the naive 1
N -rule; the Up (Down) Capture Ratio is computed by dividing the returns of the

optimizing portfolios by the returns of the 1
N -rule when the benchmark experiences an up (down) market; the left panel

is associated with a portfolio that switches from the 1
N -rule to a minimum variance strategy whenever the crises indicator

gives values above 0.2, whereas the porftolio in the right panel only replaces the 1
N -rule when the crisis indicator rises

above 0.8; both portfolios deploy a minimum variance strategy that assigns weights according to an estimation period of

ten years (1990 - 1999) and then holds the respective weight distribution for another ten years (2000-2009); apparently, a

low threshold ensures larger returns than the 1
N -strategy, whereas portfolios utilizing a very large threshold underperform

the 1
N -strategy

Obviously, the making use of a low threshold results in a signi�cantly better performance, while a
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portfolio applying a very high threshold even slightly underperforms the 1
N
-strategy. The same claim

is brought up by the calculation of the following CAPM and Modigliani measures. Note once again

that the Modigliani measure (also: M2-measure) aims at adapting the covariance risk of the optimizing

portfolio to the one of the benchmark and can thus be used to relatively compare portfolios:

Strategy CAPM Alpha CAPM Beta Fama Beta Modigliani

0.0 Threshold 0.0043 0.9946 1.0082 0.0137

0.2 Threshold 0.0046 0.9949 1.0073 0.0139

0.4 Threshold 0.0033 0.9954 1.0070 0.0127

0.6 Threshold 0.0008 0.9959 1.0062 0.0102

0.8 Threshold -0.0012 0.9968 1.0063 0.0082

Table 25: CAPM measures and Modigliani measure for �ve state-dependent allocation portfolios using di�erent bubble

indicator thresholds over a period of ten years (2000-2009); the CAPM Alpha intersect demonstrates that investors

selecting a lower threshold implies stronger investment skills; the same applies to the Modigliani measure

As expected, portfolios using the two lowest thresholds yield very similar performance, whereas the

highest threshold generates deeply inferior returns. Finally, we will have a look at the cumulative

returns of the portfolios associated with an indicator threshold of 0.2 and 0.8 and compare them to

the 1
N
-strategy. Note that the lower (larger) threshold is associated with red (green) color, whereas the

cumulative 1
N
-benchark is colored black:

Figure 24: cumulative return for two state-dependent portfolios compared to the 1
N -benchmark over a period of ten years

(2000-2009); black: 1
N -benchmark, red: 0.2 indicator threshold portfolio strategy; green: 0.8 indicator threshold portfolio;

the portfolio associated with a 0.2 threshold permanently generates larger cumulative returns than the benchmark, while

the portfolio generated by using a threshold of 0.8 behaves a lot like the 1
N -strategy although sometimes underperforming

it
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Once again, it is demonstrated that switching between 1
N
-rule and minimum variance portfolio at a

lower indicator threshold yields superior returns in most cases. The total turnover of the strategy is

96.5585. Nevertheless, so far no clear proof has been found showing a correlation between the length

of the estimation window and the performance of the optimizing portfolios, since both data sets (2000

- 2009 and 1990 - 2009, respectively) lead to performances that a very much alike, which is the reason

why we consulted a third data set, which leans the maximum period for which the bubble indicator is

available.

Third Data Set: 1974 - 2011

In the following we will compare �ve di�erent state-dependent portfolios using indicator thresholds

varying from 0.0 to 0.8 whose parameters are estimated over a period of 26 years (1974 - 1999). It

follows a summary of the key performance metrics compared to the 1
N
-strategy based on an evaluation

period of twelve years (2000 - 2011):

Threshold 1
N 0.0 0.2 0.4 0.6 0.8

Median 0.0718 0.0728 0.0728 0.0728 0.0728 0.0728

Mean 0.0161 0.0173 0.0173 0.0173 0.0173 0.0173

St. Dev. 1.3092 1.3282 1.3281 1.3282 1.3281 1.3281

Skewness -0.2539 -0.2267 -0.2268 -0.2266 -0.2268 -0.2269

Kurtosis 8.1322 7.6407 7.6416 7.6403 7.6417 7.6426

Avg. Drawdown Depth 21.4762 21.4762 21.4762 21.4762 21.4762 21.4762

Avg. Drawdown Length 3019 3019 3019 3019 3019 3019

Avg. Recovery Length 3015 3015 3015 3015 3015 3015

Pain Index 13.9745 14.4584 14.4584 14.4584 14.4584 14.4583

Ulcer Index 19.5877 20.1384 20.1384 20.1385 20.1384 20.1383

Sharpe Ratio -0.0467 -0.0453 -0.0451 -0.0453 -0.0460 -0.0468

Adjusted SR 0.0880 0.0975 0.1014 0.0982 0.0885 0.0781

Omega SR -0.1306 -0.1257 -0.1252 -0.1260 -0.1278 -0.1298

Sortino Ratio -0.0622 -0.0604 -0.0602 -0.0605 -0.0612 -0.0623

Upside Potential Ratio 0.4138 0.4202 0.4203 0.4197 0.4181 0.4176

Table 26: key statistics for state-dependent allocation portfolios using di�erent bubble indicator thresholds (0.0, 0.2, 0.4,

0.6, 0.8) compared to the 1
N -strategy over a period of twelve years (2000-2011); note that the weakest value for each

performance statistic is colored red, while the strongest is colored green; increasing the indicator threshold mitigates the

performance of the portfolio; also, applying a state-dependet strategy yields better performance

As before, a low threshold yields superior returns compared to high thresholds. Also, the 1
N
-strategy is

consistently outperformed by the low threshold state-dependent portfolios as proven by the table above.
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In order to assure whether the above-established suggestion is true we return to investigating the Up /

Down Ratios for all indicator thresholds:

Ratio Up Capture Down Capture Up Number Down Number Up Percent Down Percent

0.0 threshold 0.9903 0.9873 0.9602 0.9653 0.0967 0.1055

0.2 threshold 0.9929 0.9893 0.9627 0.9689 0.0936 0.0961

0.4 threshold 0.9946 0.9918 0.9718 0.9747 0.0796 0.0759

0.6 threshold 0.9966 0.9956 0.9786 0.9776 0.0618 0.0585

0.8 threshold 0.9952 0.9964 0.9792 0.9798 0.0551 0.0491

Table 27: Up/Down Ratios for �ve state-dependent allocation portfolios using two di�erent bubble indicator thresholds

(0.0, 0.2, 0.4, 0.6, 0.8) over a period of twelve years (2000-2011); still, lower portfolio thresholds provide superior returns

compared to higher portfolio thresholds

As anticipated, the wide choice of Up / Down Ratios a�rms the notion that decreasing the threshold size

has a positive impact on the performance of the state-dependent portfolios. In addition we presented

the following CAPM and Modigliani measures:

Strategy CAPM Alpha CAPM Beta Fama Beta Modigliani

0.0 Threshold 0.0012 0.9941 1.0144 0.0181

0.2 Threshold 0.0015 0.9946 1.0136 0.0184

0.4 Threshold 0.0012 0.9951 1.0126 0.0180

0.6 Threshold 0.0004 0.9971 1.0125 0.0172

0.8 Threshold -0.0005 0.9969 1.0102 0.0162

Table 28: CAPM and Modigliani measures for �ve state-dependent allocation portfolios using di�erent bubble indicator

thresholds over a period of twelve years (2000-2011); again, there is evidence that the indicator threshold has a positive

impact on the portfolio performance

In order to test the before-established conejcture that switching the allocating strategy improves the

performance we will consult the cumulative returns of a portfolio, that alters the composition whenever

the indicator assumes any positive value, and compare them to the 1
N
-benchmark:
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Figure 25: cumulative return for a state-dependent portfolio compared to the 1
N -benchmark over a period of twelve years

(2000-2011); black: 1
N -benchmark, red: 0.0 indicator threshold portfolio strategy; the state-dependent allocation strategy

outperforms the benchmark

As expected, the state-dependent allocation strategy performs better over the whole evaluation period,

which was already suggested by the perviously computed performance measures. The excess return

comes with an increased turnover. Since switching the strategy once will generate a turnover of 1.268,

we will face a total turnover of 185.125, because over the entire investment period the weight distribution

has to be changed 146 times. Incorporating transaction costs will mitigate the return of our state-

dependent strategy, which means we are dealing with a tradeo� in which the competing variables are

presented by switching frequency and transaction costs.

6.3 Kelly Portfolio versus 1/N-Strategy

In the following we will compare the performances of three di�erent Kelly portfolios generated from the

three di�erent data sets with the naive 1
N
-rule. Therefore, we calculated some key statistics for each of

the six portfolios. As the stock portions of alle three portfolios are comparatively small, it is important

to keep in mind that we include a risk-free asset that pays an interest rate based on the performance of

US treasury bills. Note once again that the more favorable value for each metric is colored green, while

the less advantageous value for each metric is colored red.
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Data Set 2005 - 2009 2000 - 2009 2000 - 2011

Strategy 1
N -strategy Kelly 1

N -strategy Kelly 1
N -strategy Kelly

Median 0.0944 0.0055 0.0512 0.0087 0.0718 0.0131

Mean 0.0079 -0.0001 0.0095 0.0001 0.0161 0.0037

St. Dev. 1.4578 0.1131 1.3600 0.2140 1.3093 0.2479

Skewness -0.3034 -0.3699 -0.2073 -0.0720 -0.2539 -0.0670

Kurtosis 9.8454 8.4466 8.4689 7.4714 8.1322 8.5406

Average Drawdown 1.0486 0.1245 9.6197 0.5324 21.4762 0.7015

Average Length 1259 30 628 838 3019 1509

Average Recovery 1258 14 625 111 3015 1238

Pain Index 13.5662 1.2241 14.2912 2.5541 13.9745 2.2529

Ulcer Index 21.8689 2.0262 20.4404 3.5896 19.5877 3.2361

Sharpe Ratio -0.0196 -0.0245 -0.0414 -0.0493 -0.0468 -0.0482

Adjusted SR -0.0321 -0.0273 -0.0002 -0.0125 0.0880 0.2091

Omega SR -0.0604 -0.0758 -0.1175 -0.1367 -0.1306 -0.1312

Sortino Ratio -0.0263 -0.0329 -0.0556 -0.0666 -0.0622 -0.0647

Upside Potential Ratio 0.4084 0.4009 0.4177 0.4207 0.4138 0.4284

Table 29: key statistics for Kelly portfolios generated from di�eren data sets compared to the 1
N -strategy; note that the

weakest value for each performance statistic is colored red, while the strongest is colored green; it becomes obvious, that

the Kelly portfolios do not yield consistently superior returns

Since in general, the Kelly portfolio comes with a much smaller return, but also much smaller risk than

the 1
N
-strategy, especially the last �ve rows containing performance measures are worth to have an eye

on, because they incorporate both return and risk. Obviously, the Kelly portfolios generated from all

three data sets fail to permanently outperform the 1
N
-strategy. At this point it is reasonable to check

another data set for which the Kelly portfolio works better due to some sort of regime change. That is

to say, it is possible that our three data sets cover a certain period over which a certain market behavior

is dominating which makes Kelly portfolios impractical. For the time being we will focus only on the

results from the third data set. First of all, we computed the Up / Down Ratios for the stock portion

of the Kelly portfolio and presented them in the table below:

Ratio Up Capture Down Capture Up Number Down Number Up Percent Down Percent

Kelly Portfolio 0.1876 0.1861 0.9106 0.9220 0.0269 0.9653

Table 30: Up/Down Ratios for a Kelly portfolio compared to the naive 1
N -rule over a period of twelve years (2000-2011);

these performance measures give no clear hint regarding the investment decision between Kelly portfolio and 1
N -strategy

Expectedly, the stock portion of the Kelly portfolio only seldomly provides larger returns than the
1
N
-strategy, when the market experiences an up-swing, but it often works better when the return of
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the benchmark decreases as shown by the Percentage Ratios. The Capture Ratios demonstrate slight

advantages related with the Kelly Portfolio, since its return rises on average by 18.76 percent when the

benchmark return goes up by 100 percent, but only decreases by 18.61 percent when the benchmark goes

down by 100 percent. Nevertheless, the Number Ratios draw a di�erent picture: The Kelly Portfolio

exhibits fewer up periods compared to down periods than the 1
N
-benchmark portfolio. To sum up, these

performance measures only demonstrate evidence for minor gaps di�erences, although both portfolios

work fundamentally di�erent. As before, we will further evaluate the portfolio performance by looking

at the following CAPM measures:

Strategy CAPM Alpha CAPM Beta Fama Beta

Kelly Portfolio 0.0009 0.1819 0.1887

Table 31: CAPM measures for a Kelly Portfolio compared to the naive 1
N -rule over a period of twelve years (2000-2011);

the CAPM Alpha intersect suggest a negligible advantage associated with the Kelly portfolio, while the Beta values

illustrate that the Kelly portfolio follows the benchmark to a much weaker extent than the previous portfolios, since most

of its return can not be attributed to the benchmark performance

Obviously, the return of the stock portion of the Kelly portfolio is attributable to the benchmark to

a only very little extent as proven by the Beta measures. Furthermore, the Kelly Portfolio appears to

have a negligible advantage over the 1
N
-strategy, because the CAPM Alpha intersect is presented by a

small positive value. In what way the return of the Kelly portfolio is related to the benchmark return

will be illustrated by the return scatter below:

Figure 26: diagram showing a return scatter for the stock portion of a Kelly portfolio (y-axis) compared to the naive 1
N -rule

(x-axis); the Kelly portfolio comprises weights based on an estimation period of 26 years (1974 - 2000) and holds this

particular weight distribution for twelve years (2000-2011); overlaying a LOWESS (locally weighted scatterplot smoothing)

line illustrates the relation between Kelly portfolio and the 1
N strategy; as anticipated, the Kelly portfolio follows the

benchmark but to a much weaker extent which becomes apparent when taking a closer look at the scales
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As we can see both portfolios behave in a very similar manner, but the return of the stock portion of

the Kelly portfolio tracks the benchmark return to a weaker extent than the previous portfolios which is

revealed when looking at how x- and y-axes are scaled di�erently meaning that we can negate the null

hypothesis of equalness once again. As last step the cumulative return of the stock portion of the Kelly

portfolio is contrasted with the cumulative return of the 1
N
-benchmark:

Figure 27: cumulative return for the stock portion of a Kelly portfolio compared to the 1
N -benchmark over a period of

twelve years (2000-2011); black: 1
N -benchmark, red: Kelly portfolio; expectedly, the Kelly portfolio exhibits much smaller

�uctuations

The plot above demonstrates that both portfolio approaches work very di�erently, since the Kelly

portfolio exhibits much smaller �uctuations due to the large share attributed to the risk-free asset.

Thus, the Kelly portfolio appears to be the better choice whenever the market experiences an extensive

downswing, but not when market prices rise over a long period. Therefore, the Kelly portfolio might

also serve as a suitable approach for the previously introduced state-dependent allocation strategy.
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7. Summary

To start with, the theory part (Section 2) introduced the general Markowitz problem and reveals several

weaknesses that come with the empirical estimation of portfolio weights. Therefore, three distinct

concepts - namely the Generalized Her�ndahl Index, a state-dependent allocation strategy and the

Kelly portfolio - are presented in an e�ort to overcome these disadvantages by adding diversi�cation

constraints. The data part (Section 3) e�ectively disproves Markowitz' assumption that stock returns

are normally distributed while illustrating how some assets follow a Gaussian distribution more closely

than others. The implementation / results part (Section 4 and 5) exempli�es the technical peculiarities

of the before-mentioned concepts and shows the respective numerical results.

Finally, the analysis part (Section 6) contrasts the performance of the three strategies of interest with the

naive 1
N
-rule, which serves as a benchmark. In this regard, it is demonstrated that a portfolio utilizing the

Generalized Her�ndahl Index is able to slightly outperform the 1
N
-strategy, yet only when combined with

a rolling window approach that rebalances at least every year. Furthermore, increasing the length of data

window for parameter estimation did not improve the performance of the GHHI portfolio signi�cantly.

Secondly, the state-dependent allocation strategy, which switches from 1
N
-strategy to minimum variance

portfolio depending on the value of the DS LPPLSTM Con�dence Indicator, consistently outperforms

the 1
N
-benchmark provided that a threshold of less than 0.8 is applied regardless of the length of the

data window and even without permanently rebalancing the portfolio weights. As opposed to the �rst

two concepts, the Kelly portfolio works quite di�erently than the naive 1
N
-rule due to the not negligible

contribution of the risk-free asset. Hence, applying a su�ciently long estimation window enables us to

adopt the Kelly portfolio as an alternative to common portfolio strategies in the case of an extreme

market downswing.
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8. Conclusion

The paper demonstrated that neither the Kelly portfolio nor the GHHI portfolio are able to consis-

tently outperform the 1
N
-portfolio, whereas the state-dependent allocation strategy based on the DS

LPPLSTM con�dence indicator generates superior returns. Nevertheless, our analysis does not include

transaction costs. Incorporating transaction costs is crucial when comparing investment strategies to the
1
N
-benchmark, because the 1

N
-portfolio represents a �buy-and-hold� strategy that does not cause trans-

action costs, while constantly switching between 1
N
-strategy and minimum variance portfolio might be

very costly. Apart from the previously mentioned imperfect 1
N
-portfolio our approach also su�ers from

a variety of other limitations. First of all, the Markowitz portfolio requires parameter estimation, which

comes with an estimation error. This phenomenon can be tackled by subsitituting sample mean and

sample covariance by more robust return and risk estimators. Furthermore, the correlation matrix used

for the Generalized Her�ndahl Index is only vaguely de�ned so far, since Anand and Ramasubramanian

leave its entries open for discussion. Understandably, di�erent implementations of this matrix yield

deviating results, which is why we advocate a consistent and standardized usage of this particular index.

As promised before the conclusion section will come up with a potential remedy for the issue of an im-

perfect 1
N
-portfolio without increasing the computational e�ort signi�cantly. The imperfect 1

N
-portfolio

poses as a thread to our work, since a stock selection bias might as well lead to a performance bias which

gives some portfolio an edge over others. Instead of solely investing into 50 assets from the S&P500 we

propose to invest into the subsectors de�ned in the Industry Classi�cation Benchmark (ICB), which de-

pends on stock from ten di�eren industries, whilst dividing them into 19 supersectors, which are further

subdivided into 41 sectors and 119 subsectors. A summary of all subsectors can be found in the appendix

(see Tables 58 - 67). By utilizing this kind of segmentation we ensure that our investments strategy cov-

ers the entire market. Accordingly, we obtained positive Sharpe Ratios for the entire observation period.

Moreover, it also allows us to implement the Generalized Her�ndahl Index by imposing for example a

119× 119 GHHI correlation matrix with correlations of 0.75 to 1.0 for subsectors from the same sector,

correlations of 0.5 to 0.75 for subsectors from the same supersector but sectors as well as correlations of

0.25 to 0.5 for subsectors from the same industry but supersectors and �nally no correlations between

subsectors from di�erent industries. Obviously, this results in a much more elaborated matrix than the

one we deployed in our case. Thereby we hope to generate a 1
N
-portfolio that is not outperformed by

simple treasury bills which makes our results more meaningful than before.

In addition, we will suggest a way to incorporate the three above-exempli�ed concepts into a joint

investment strategy. One way to achieve this is to add a couple more optimization approaches to our

state-dependent allocation strategy, since we only tested two at the same time so far, but it might be

possible that neither of these appropriately corresponds to a certain market condition. In the case of a

small bubble indicator value one could for instance focus more on return maximization instead of only
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depending on a minimum variance portfolio, but when the bubble indicator rises we would emphasize

risk minimization and �nally if there is a severe crisis we would rely on the Kelly portfolio as it exhibits

the lowest volatility. The 1
N
-portfolio could be sort of implemented by adapting the λ-value associated

with diversi�cation to the length of the estimation window. Here, de Miguel's analytically calculated

estmiation window length could serve as a benchmark (i.e. if an estimation window of 600 months is

needed to outperform the 1
N
-portfolio and our estimation window is only 60 months, we would impose

a Her�ndahl Index of 0.1 or similar). Of course, we can also substitute the Her�ndahl Index by its

generalized version at this point. Thus, the resulting overall investment decision is not discrete any

more, because the various λ-values can be adjusted smoothly. Accordingly, the focus of future research

regarding this topic has to be put on the question which strategy is most suitable for a certain market

regime, while keeping in mind that the addition of too many strategies will induce disadvantageous

transaction costs.
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10. Appendix

In the appendix several complementary tables and �gures are presented. In addition, one can �nd the

code regarding the optimization models used in this paper at the end.

10.1 Data

The data subsection �rst shows the stock symbols associated with the di�erent data sets and then

demonstrates additional statistics regarding the individual data sets that did not �t into the main part

of the paper.

Stock Symbols

Sector Companies

Consumer Discretionary (XLY)
Walt-Disney (DIS), McDonalds (MCD), Ford (F)

Goodyear (GT), Nike (NKE)

Financials (XLF)
American-Express (AXP), JPMorgan (JPM), AON (AON)

Wells-Fargo (WFC), American-Intl-Corp (AIG)

Health Care (XLV)
Johnson-Johnson (JNJ), P�zer (PFE)

Merck (MRK), Bristol-Myers-Squibb (BMY)

Industrials (XLI)
General-Electrics (GE), Boeing (BA)

FedEx (FDX), Southwest-Airlines (LUV)

Materials (XLB)
E-I-du-Pont-de-Nemours (DD), Dow-Chemical (DOW)

Newmont-Mining (NEM), International-Paper (IP)

Consumer Staples (XLP)
Procter-and-Gamble (PG), Coca-Cola (KO)

Wal-Mart (WMT), Colgate (CL)

Energy (XLE)
Exxon-Mobile (XOM), Halliburton (HAL), Chevron (CVX)

Schlumberger (SLB), Occidential-Petroleum (OXY)

Utilities (XLU)
American-Electric-Power (AEP), Duke-Energy (DUK)

Southern-Company (SO), Exelon (EXC)

Technology (XLK)
IBM (IBM), Texas-Instruments (TXN)

Apple (AAPL), Intel (INTC)

Table 32: nine out of eleven S&P500 sectors (�rst data set, 2000 - 2009) and 39 S&P500 companies (second data set, 1974

- 2011) from the respective sectors plus respective stock symbols

74



Sector Companies

Consumer Discretionary (XLY)
Walt-Disney (DIS), McDonalds (MCD), Ford (F), Goodyear (GT)

Footlocker (FL), Avon-Products (AVP), Altria-Group (MO)

Financials (XLF) American-Express (AXP), Wells-Fargo (WFC), Bank-of-New-York-Mellon (BK)

Health Care (XLV)
Johnson-Johnson (JNJ), P�zer (PFE), Merck (MRK)

Bristol-Myers-Squibb (BMY), Eli-Lilly (LLY)

Industrials (XLI)
General-Electrics (GE), Boeing (BA), Sparton (SPA), Alcoa (AA), Caterpillar (CAT)

John-Deere (DE), Eaton (ETN), Navistar (NAV), Ducommun (DCO)

Materials (XLB) E-I-du-Pont-de-Nemours (DD), Dow-Chemical (DOW), International-Paper (IP)

Consumer Staples (XLP)
Procter-and-Gamble (PG), Coca-Cola (KO)

Wal-Mart (WMT), Pepsico (PEP), Sysco (SYY)

Energy (XLE) Exxon-Mobile (XOM), Halliburton (HAL), Chevron (CVX), Marathon-Oil (MRO)

Utilities (XLU)

American-Electric-Power (AEP), Consilidated-Edison (ED), DTE-Energy (DTE)

Entergy (ETR), PC&E (PCG), Center-Point-Energy (CNP),

Allete (ALE), Empire-District-Electric (EDE), SJW-Corp. (SJW)

Technology (XLK) IBM (IBM), 3M (MMM), Unisys (UIS), United-Technologies (UTX), HP-Inc. (HPQ)

Table 33: nine out of eleven S&P500 sectors (�rst data set, 2000 - 2009) and 50 S&P500 companies (third data set. 1974

- 2011) from the respective sectors plus respective stock symbols

Additional Statistics

First Data Set (2000 - 2009)

Sector XLY XLF XLV XLI XLB XLP XLE XLU

XLF 85.03286

XLV 65.37189 101.18137

XLI 52.98491 86.25566 58.44248

XLB 71.76739 98.60876 77.64861 59.00767

XLP 70.62401 104.36677 61.55139 65.16961 79.41578

XLE 96.28730 114.48271 94.64808 85.10342 81.77816 93.42602

XLU 80.37915 108.30239 69.51226 71.64061 82.27154 65.55001 86.42774

XLK 79.95649 106.38981 80.31624 73.42108 95.69652 96.88011 111.71114 96.62310

Table 34: Euclidean distance measures for nine S&P500 sectors over a period of ten years (01/01/2000 - 31/12/2009)
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Sector XLY XLF XLV XLI XLB XLP XLE XLU XLK

Minimum -12.358 -19.069 -10.295 -9.877 -13.253 -6.213 -15.600 -8.914 -9.051

Quartile 1 -0.787 -0.845 -0.607 -0.715 -0.846 -0.522 -0.943 -0.603 -0.9612

Median 0.030 0.000 0.031 0.071 0.074 0.042 0.112 0.094 0.051

Mean 0.004 -0.009 0.006 0.005 0.019 0.014 0.037 0.019 -0.032

Quartile 3 0.810 0.829 0.655 0.758 0.940 0.560 1.163 0.731 0.868

Maximum 9.327 27.298 11.382 10.170 13.153 6.659 15.250 11.398 14.930

St. Dev. 1.646 2.392 1.269 1.504 1.739 1.054 1.975 1.375 1.964

Skewness -0.165 0.385 -0.051 -0.171 -0.065 -0.055 -0.454 0.168 0.350

Kurtosis 4.867 17.650 9.256 5.323 5.380 4.534 8.969 8.189 4.664

Table 35: key statistics for nine S&P500 sectors over a period of ten years (2000-2009)

Sector XLY XLF XLV XLI XLB XLP XLE XLU XLK

Average Drawdown Depth 26.087 81.262 3.888 12.328 19.074 27.599 181.618 12.237 20.318

Average Drawdown Length 73.029 38.453 278.889 249.900 56.023 625.500 19.427 313.625 19.040

Average Recovery Length 59.912 3.109 272.889 229.500 49.614 618.750 6.452 294.750 14.397

Conditional Drawdown at Risk 25.783 81.046 6.671 19.407 54.455 74.373 34.108 27.681 37.638

Sterling Ratio 0.010 NaN NaN -0.008 157.890 -0.010 NaN NaN 5.1 · 109

Calmar Ratio 0.010 NaN NaN -0.008 157.954 -0.010 NaN NaN 5.1 · 109

Burke ratio 0.068 NaN NaN -0.009 431.673 -0.019 NaN NaN 1.9 · 1010

Pain Index 18.120 21.247 16.248 19.313 19.076 14.752 18.624 17.733 7.005

Ulcer Index 23.117 31.789 18.342 24.913 24.232 17.471 25.663 23.363 7.226

Pain Ratio 0.316 NaN NaN -0.0345 2046.042 -0.068 NaN NaN 2.8 · 1010

Martin Ratio 0.248 NaN NaN -0.027 1610.633 -0.057 NaN NaN 2.7 · 1010

Table 36: drawdown statistics for nine S&P500 sectors over a period of ten years (2000-2009)

Metric Formula Explanation

Conditional Drawdown at Risk
mean of the worst p % drawdowns for some con�ndence level p

reference: Chekhlov & Uryasev & Zabarankin, 2003

Calmar Ratio annualized return over absolute value of max. drawdown of investment

Sterling Ratio Calmar Ratio including excess risk to max. drawdown

Burke Ratio
rp−rr√∑d

i=1D
2
i

rp: investment return rf : risk-free rate

Pain Index
∑d
i=1

D
′
i/n D

′
i : drawdown since the previous peak in period i

Ulcer Index

√∑d
i=1

D
′2
i /n D

′
i : drawdown since the previous peak in period i

Pain Ratio
rp−rr
PI

rp: investment return, rf : risk-free rate, PI: Pain Index

Martin Ratio
rp−rr
UI

rp: investment return, rf : risk-free rate, UI: Ulcer Index

Table 37: descriptions of drawdown metrics used in the previous table
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Figure 28: drawdown charts for nine out of eleven S&P500 sectors over a period of ten years (01/01/2000 - 31/12/2009);

while some sectors experience long and shallow drawdowns, others exhibit short and deep drawdowns.

Sector XLY XLF XLV XLI XLB XLP XLE XLU XLK

Sharpe Ratio 0.0022 -0.0039 0.0045 0.0034 0.0109 0.0130 0.0186 0.0138 -0.0163

Adjusted SR -0.0944 -0.2265 -0.0297 -0.0657 0.0354 0.1231 0.1375 0.1106 -0.3680

Omega SR 0.0063 -0.0132 0.0131 0.0098 0.0313 0.0373 0.0541 0.0408 -0.0458

Sortino Ratio 0.0031 -0.0056 0.0062 0.0047 0.0154 0.0183 0.0255 0.0193 -0.0230

Upside Potential Ratio 0.4910 0.4202 0.4835 0.4832 0.5064 0.5095 0.4963 0.4928 0.4784

Bernardo Ledoit Ratio 1.0063 0.9868 1.0131 1.0097 1.0313 1.0373 1.0541 1.0408 0.9542

D Ratio 0.9551 0.9931 0.9404 0.8825 0.8989 0.8878 0.8409 0.8351 0.9704

Downside Deviation 1.1725 1.6730 0.9087 1.0858 1.2367 0.7465 1.4395 0.9783 1.3915

Downside Frequency 0.4821 0.4885 0.4805 0.4654 0.4749 0.4678 0.4654 0.4574 0.4730

Prospect Ratio -0.6068 -0.5378 -0.5903 -0.5935 -0.5984 -0.5956 -0.5630 -0.5725 -0.6496

Table 38: key performance measures for nine S&P500 sectors over a period of ten years (2000-2009)
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Sector Formula Explanation

Sharpe Ratio
rp−rf
σp

rp: portfolio return rf : riskfree rate

σp: portfolio standard deviation

Adjusted SR SR
[
1 +

(
S
6

)
SR−

(
K−3
24

)
SR2

]
S: Skewness K: Kurtosis

Omega SR
rp−MAR∑n

i=1
max(MAR−ri,0)

n

MAR: Minimum Acceptable Return n : number of observations

Sortino Ratio
rp−MAR√∑n

i=1
max(MAR−ri,0)

2

n

Upside Potential Ratio
∑n

i=1 max(ri−MAR,0)∑n
i=1 max(MAR−ri,0)

Bernardo Ledoit Ratio
∑n

i=1 max(ri,0)∑n
i=1 max(−ri,0)

equivalent to Upside Potential Ratio if MAR = 0

D Ratio
nd

∑n
i=1 max(−ri,0)

nu
∑n

i=1 max(ri,0)
nd: number of observations < 0 nu: number of observations > 0

Downside Deviation

√∑n
i=1

max(ri−MAR,0)2

n

Downside Frequency
∑n

i=1
max(ri−MAR,0)

ri·n

Prospect Ratio

∑n
i=1[max(ri,0)+2.25 min(ri,0)−MAR]

n·σD
Table 39: description of key performance measures used in the previous table

Second Data Set (1990 - 2009)

Company Walt-Disney McDonalds Ford Goodyear Nike

Median 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0279 0.0445 0.0176 -0.0021 0.0608

St. Dev. 2.0354 1.6909 2.6398 2.8502 2.2437

Skewness 0.0417 -0.0347 0.0398 -0.3638 -0.1624

Kurtosis 7.0405 3.9485 14.1919 6.7125 6.6293

Pain Index 35.5819 23.7145 43.1759 52.8361 33.3385

Ulcer Index 43.6121 31.2872 54.4321 64.0482 38.7881

Sharpe Ratio 0.0137 0.0263 0.0067 -0.0007 0.0271

Adjusted SR 0.0567 0.2894 -0.1017 -0.2274 0.2563

Omega SR 0.0396 0.0743 0.0199 -0.0021 0.0809

Sortino Ratio 0.0199 0.0381 0.0096 -0.0010 0.0393

Upside Potential Ratio 0.5215 0.5513 0.4930 0.4686 0.5251

Table 40: key statistics for �Consumer Discrectionary� S&P500 assets over a period of 20 years (1990-2009)
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Company American-Express JPMorgan AON Wells-Fargo American-Intl-Corp

Median 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0374 0.0426 0.0328 0.0562 -0.0332

St. Dev. 2.4289 2.6446 1.9927 2.4536 3.6480

Skewness 0.0590 0.2720 -2.2585 0.7848 -3.6933

Kurtosis 6.9344 10.1608 50.3617 23.3942 133.9169

Pain Index 28.1411 32.5713 33.2662 12.8470 28.6576

Ulcer Index 34.6634 39.8833 42.0232 20.2124 39.8895

Sharpe Ratio 0.0154 0.0161 0.0164 0.0229 -0.0091

Adjusted SR 0.0517 0.0467 0.0919 0.1744 0.0046

Omega SR 0.0461 0.0503 0.0541 0.0781 -0.0386

Sortino Ratio 0.0221 0.0236 0.0222 0.0341 -0.0119

Upside Potential Ratio 0.5023 0.4935 0.4331 0.4708 0.2960

Table 41: key statistics for �Financials� S&P500 assets over a period of 20 years (1990-2009)

Company Johnson-Johnson P�zer Merck Bristol-Myers-Squibb

Median 0.0000 0.0000 0.0000 0.0000

Mean 0.0503 0.0460 0.0328 0.0271

St. Dev. 1.4893 1.8652 1.8874 1.8344

Skewness -0.1566 -0.1684 -1.1078 -0.6846

Kurtosis 6.4850 3.0043 19.4714 12.4711

Pain Index 11.9861 31.5907 32.9829 38.4812

Ulcer Index 15.2067 39.5302 40.7012 48.3462

Sharpe Ratio 0.0338 0.0246 0.0174 0.0148

Adjusted SR 0.4113 0.2480 0.1209 0.0872

Omega SR 0.0983 0.0694 0.0509 0.0434

Sortino Ratio 0.0492 0.0353 0.0239 0.0206

Upside Potential Ratio 0.5494 0.5442 0.4939 0.4947

Table 42: key statistics for �Health Care� S&P500 assets over a period of 20 years (1990-2009)

79



Company General-Electrics Boeing FedEx Southwest-Airlines

Median 0.0000 0.0000 0.0000 0.0000

Mean 0.0304 0.0266 0.0391 0.0478

St. Dev. 1.8811 2.0059 2.1314 2.4875

Skewness 0.0183 -0.3434 0.0532 -0.3209

Kurtosis 8.1902 6.7855 4.1076 6.1245

Pain Index 27.2776 31.0609 24.5289 36.0345

Ulcer Index 37.6887 36.6433 29.5137 42.6001

Sharpe Ratio 0.0162 0.0133 0.0183 0.0192

Adjusted SR 0.1085 0.0504 0.1241 0.1075

Omega SR 0.0489 0.0381 0.0529 0.0542

Sortino Ratio 0.0231 0.0186 0.0269 0.0275

Upside Potential Ratio 0.4948 0.5078 0.5347 0.5340

Table 43: key statistics for �Industrials� S&P500 assets over a period of 20 years (1990-2009)

Company E-I-du-Pont-de-Nemours Dow-Chemical Newmont-Mining International-Paper

Median 0.0000 0.0000 0.0000 0.0000

Mean 0.0227 0.0183 0.0078 0.0095

St. Dev. 1.8578 2.0697 2.6929 2.2107

Skewness -0.0727 -0.1758 0.4210 0.0901

Kurtosis 3.9510 7.7718 5.3099 9.2135

Pain Index 32.7080 25.1157 55.3973 35.1356

Ulcer Index 40.8192 30.6049 61.5255 42.6111

Sharpe Ratio 0.0122 0.0088 0.0029 0.0043

Adjusted SR 0.0462 -0.0249 -0.1580 -0.1050

Omega SR 0.0346 0.0261 0.0082 0.0127

Sortino Ratio 0.0174 0.0125 0.0043 0.0061

Upside Potential Ratio 0.5214 0.4925 0.5263 0.4895

Table 44: key statistics for �Materials� S&P500 assets over a period of 20 years (1990-2009)
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Company Procter-and-Gamble Coca-Cola Wal-Mart Colgate

Median 0.0000 0.0000 0.0000 0.0000

Mean 0.0465 0.0424 0.0472 0.0543

St. Dev. 1.5820 1.5628 1.8362 1.6092

Skewness -2.4623 0.0544 0.0954 -0.0111

Kurtosis 56.4295 5.0771 2.7550 9.3249

Pain Index 16.1451 30.5079 28.4776 14.0752

Ulcer Index 22.3191 38.383 32.5406 17.522

Sharpe Ratio 0.0294 0.0271 0.0257 0.0337

Adjusted SR 0.1987 0.3124 0.2715 0.3983

Omega SR 0.0902 0.0791 0.0732 0.1008

Sortino Ratio 0.0403 0.0394 0.0376 0.0491

Upside Potential Ratio 0.4873 0.5380 0.5511 0.5359

Table 45: key statistics for �Consumer Staples� S&P500 assets over a period of 20 years (1990-2009)

Company Exxon-Mobile Halliburton Chevron Schlumberger Occidential-Petroleum

Median 0.0000 0.0000 0.0137 0.0000 0.0000

Mean 0.0457 0.0288 0.0437 0.0413 0.0491

St. Dev. 1.5571 2.8288 1.6070 2.3017 2.0474

Skewness 0.0579 -1.3667 0.1316 -0.2644 -0.1909

Kurtosis 8.8603 33.1449 9.6885 5.1776 8.6511

Pain Index 9.4422 53.033 12.1079 30.3531 18.7333

Ulcer Index 13.3208 58.7759 16.4493 37.2736 23.7164

Sharpe Ratio 0.0293 0.0102 0.0272 0.0180 0.0240

Adjusted SR 0.3416 -0.0734 0.3057 0.1027 0.2196

Omega SR 0.0856 0.0298 0.0785 0.0507 0.0707

Sortino Ratio 0.0423 0.0141 0.0392 0.0256 0.0341

Upside Potential Ratio 0.5363 0.4875 0.5382 0.5310 0.5169

Table 46: key statistics for �Energy� S&P500 assets over a period of 20 years (1990-2009)
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Company American-Electric-Power Duke-Energy Southern-Company Exelon

Median 0.0000 0.0000 0.0000 0.0000

Mean 0.0243 0.0332 0.0478 0.0458

St. Dev. 1.5192 1.5412 1.2842 1.6486

Skewness -0.4901 -0.2033 0.2375 -0.0689

Kurtosis 28.4567 10.9265 4.5154 8.1267

Pain Index 18.718 23.1093 7.6569 15.3547

Ulcer Index 24.7233 31.0532 10.0358 20.7832

Sharpe Ratio 0.0160 0.0215 0.0372 0.0278

Adjusted SR 0.1306 0.2181 0.4993 0.3106

Omega SR 0.0510 0.0655 0.1090 0.0830

Sortino Ratio 0.0226 0.0302 0.0550 0.0395

Upside Potential Ratio 0.4656 0.4918 0.5591 0.5147

Table 47: key statistics for �Utilities� S&P500 assets over a period of 20 years (1990-2009)

Company IBM Texas-Instruments Apple Intel

Median 0.0000 0.0000 0.0000 0.0285

Mean 0.0401 0.0514 0.0632 0.0604

St. Dev. 1.9112 2.9382 3.2630 2.6848

Skewness 0.0169 0.1156 -2.1362 -0.3816

Kurtosis 6.6011 2.8030 54.5246 5.2788

Pain Index 36.8785 50.1206 64.6656 45.8119

Ulcer Index 41.7821 61.2534 69.2508 57.7302

Sharpe Ratio 0.0210 0.0175 0.0194 0.0225

Adjusted SR 0.1843 0.0454 0.0179 0.1447

Omega SR 0.0619 0.0489 0.0581 0.0642

Sortino Ratio 0.0303 0.0255 0.0268 0.0317

Upside Potential Ratio 0.5202 0.5470 0.4872 0.5256

Table 48: key statistics for �Technology� S&P500 assets over a period of 20 years (1990-2009)
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Third Data Set (1974 - 2011)

Company Walt-Disney McDonalds Ford Goodyear Footlocker Avon-Products Altria-Group

Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0490

Mean 0.0480 0.0476 0.0385 0.0258 0.0387 0.0126 0.0680

St. Dev. 1.9935 1.6648 2.2491 2.4503 2.3641 2.1814 1.6679

Skewness -0.6692 -0.3712 -0.0254 -0.5006 0.0201 -0.9794 -0.5406

Kurtosis 15.6364 8.8854 14.3747 10.6090 10.1625 23.6196 13.5846

Pain Index 33.0799 21.6464 40.8076 47.9325 48.8479 36.6802 13.7074

Ulcer Index 39.5928 28.7562 52.8881 60.0850 59.1216 43.2586 19.5479

Sharpe Ratio 0.0241 0.0286 0.0171 0.0105 0.0164 0.0058 0.0408

Adjusted SR 0.2159 0.3139 0.0932 -0.0296 0.0726 -0.0847 0.4289

Omega SR 0.0719 0.0842 0.0512 0.0318 0.0494 0.0178 0.1259

Sortino Ratio 0.0340 0.0409 0.0247 0.0148 0.0240 0.0080 0.0581

Upside Potential Ratio 0.5077 0.5267 0.5082 0.4787 0.5092 0.4560 0.5196

Table 49: key statistics for �Consumer Discrectionary� S&P500 assets over a period of 38 years (1974-2011)

Company American-Express Wells-Fargo Bank-of-New-York-Mellon

Median 0.0000 0.0000 0.0000

Mean 0.0398 0.0500 0.0401

St. Dev. 2.2186 2.0967 2.2980

Skewness -0.2213 0.5116 0.0672

Kurtosis 9.6135 22.5254 182.8531

Pain Index 34.4683 46.7854 35.1361

Ulcer Index 39.2199 21.8210 43.8171

Sharpe Ratio 0.0180 0.0238 0.0175

Adjusted SR 0.1090 0.2140 0.0786

Omega SR 0.0536 0.0777 0.0604

Sortino Ratio 0.0256 0.0348 0.0253

Upside Potential Ratio 0.5035 0.4833 0.4434

Table 50: key statistics for �Financials� S&P500 assets over a period of 38 years (1974-2011)
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Company Johnson-Johnson P�zer Merck Bristol-Myers-Squibb Eli-Lilly

Median 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0445 0.0455 0.0419 0.0509 0.0400

St. Dev. 1.4569 1.7842 1.6634 1.6873 1.7158

Skewness -0.2920 -0.1751 -0.7822 -0.3726 -1.1125

Kurtosis 8.4285 4.0801 16.8903 10.0362 25.5483

Pain Index 15.4203 31.8440 30.1345 29.2697 34.2485

Ulcer Index 20.0091 38.5866 37.3283 39.4780 40.1908

Sharpe Ratio 0.0305 0.0255 0.0252 0.0302 0.0233

Adjusted SR 0.3576 0.2677 0.2513 0.3329 0.2135

Omega SR 0.0894 0.0739 0.0742 0.0891 0.0688

Sortino Ratio 0.0441 0.0367 0.0355 0.0433 0.0327

Upside Potential Ratio 0.5377 0.5337 0.5142 0.5293 0.5082

Table 51: key statistics for �Health Care� S&P500 assets over a period of 38 years (1974-2011)

Company General-Electrics Boeing Sparton Alcoa Caterpillar John-Deere Eaton Navistar Ducommun

Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0428 0.0651 0.0300 0.0219 0.0311 0.0387 0.0502 -0.0304 0.0176

St. Dev. 1.7052 1.9529 2.8518 2.2195 1.9120 1.9997 1.7553 3.1415 3.0261

Skewness -0.0812 -0.1085 0.1939 -0.2660 -0.3120 -0.1650 -0.2012 -0.0880 0.3377

Kurtosis 8.4587 4.8653 9.2555 9.3090 7.2925 5.1023 15.1043 10.8413 15.7726

Pain Index 29.8695 25.0160 70.4034 34.2689 26.3551 28.5410 16.2192 24.4716 72.6720

Ulcer Index 40.0949 31.4158 77.4103 45.0168 31.1532 33.2139 21.1506 25.6598 78.6463

Sharpe Ratio 0.0251 0.0333 0.0105 0.0098 0.0163 0.0193 0.0286 -0.0097 0.0058

Adjusted SR 0.2647 0.3809 -0.0584 -0.0210 0.1063 0.1500 0.3021 -0.3466 -0.1399

Omega SR 0.0753 0.0970 0.0344 0.0287 0.0473 0.0559 0.0862 -0.0289 0.0195

Sortino Ratio 0.0361 0.0484 0.0154 0.0139 0.0230 0.0276 0.0414 -0.0137 0.0085

Upside Potential Ratio 0.5159 0.5472 0.4624 0.4976 0.5108 0.5225 0.5209 0.4586 0.4433

Table 52: key statistics for �Industrials� S&P500 assets over a period of 38 years (1974-2011)
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Company E-I-du-Pont-de-Nemours Dow-Chemical International-Paper

Median 0.0000 0.0000 0.0000

Mean 0.0352 0.0355 0.0235

St. Dev. 1.7019 1.9652 2.0197

Skewness -0.1873 -0.2659 -0.2849

Kurtosis 5.6442 7.7326 12.9022

Pain Index 30.0267 31.4883 37.8328

Ulcer Index 36.6714 36.9108 44.4617

Sharpe Ratio 0.0207 0.0181 0.0116

Adjusted SR 0.1945 0.1312 0.0229

Omega SR 0.0594 0.0530 0.0341

Sortino Ratio 0.0296 0.0257 0.0165

Upside Potential Ratio 0.5289 0.5101 0.5009

Table 53: key statistics for �Materials� S&P500 assets over a period of 38 years (1974-2011)

Company Procter-and-Gamble Coca-Cola Wal-Mart Pepsico Sysco

Median 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0427 0.0445 0.0772 0.0517 0.0588

St. Dev. 1.4412 1.5553 1.8816 1.5974 1.9221

Skewness -2.2734 -0.4221 0.1176 -0.0023 -0.2535

Kurtosis 65.4774 16.7900 4.5019 6.0962 13.3975

Pain Index 14.7619 28.1859 22.4245 12.7108 16.8999

Ulcer Index 19.3211 34.6209 27.3215 16.3156 21.7804

Sharpe Ratio 0.0296 0.0286 0.0410 0.0323 0.0306

Adjusted SR 0.1812 0.3073 0.5177 0.3889 0.3205

Omega SR 0.0922 0.0860 0.1239 0.0971 0.1059

Sortino Ratio 0.0411 0.0412 0.0608 0.0471 0.0442

Upside Potential Ratio 0.4873 0.5202 0.5512 0.5319 0.4616

Table 54: key statistics for �Consumer Staples� S&P500 assets over a period of 38 years (1974-2011)

85



Company Exxon-Mobile Halliburton Chevron Marathon-Oil

Median 0.0000 0.0000 0.0000 0.0000

Mean 0.0487 0.0229 0.0423 0.0187

St. Dev. 1.4563 2.4814 1.6438 2.1507

Skewness 0.4285 -1.0965 -0.0344 -1.5098

Kurtosis 18.6008 28.8362 7.2127 37.5474

Pain Index 11.4322 58.6558 17.4717 60.1186

Ulcer Index 15.4194 63.3055 23.1092 63.4209

Sharpe Ratio 0.0334 0.0092 0.0257 0.0087

Adjusted SR 0.3576 -0.0566 0.2803 -0.0389

Omega SR 0.0992 0.0268 0.0743 0.0256

Sortino Ratio 0.0479 0.0129 0.0370 0.0120

Upside Potential Ratio 0.5305 0.4925 0.5358 0.4784

Table 55: key statistics for �Energy� S&P500 assets over a period of 38 years (1974-2011)

Company AEP ED DTE ETR PCG CNP ALE EDE SJW

Median 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0359 0.0502 0.0449 0.0362 0.0386 0.0338 0.0280 0.0286 0.0315

St. Dev. 1.3288 1.3408 1.2903 1.5423 1.7227 1.8090 1.4944 1.2914 1.7273

Skewness -0.3423 -2.7434 0.1982 -0.5136 -3.7311 -2.0235 -10.1421 -0.8487 -6.1971

Kurtosis 25.0967 81.6862 8.6710 15.5054 153.2051 158.7629 481.1666 25.6691 246.2382

Pain Index 14.2513 12.2819 10.6405 17.8820 26.3350 33.5565 28.7244 17.6375 37.2476

Ulcer Index 19.9479 18.4010 14.7360 23.7171 35.6507 48.1486 38.6804 21.6983 44.8393

Sharpe Ratio 0.0271 0.0374 0.0348 0.0235 0.0224 0.0187 0.0188 0.0221 0.0183

Adjusted SR 0.2891 -0.0604 0.4413 0.2404 0.1229 0.1187 0.0402 0.2275 0.0907

Omega SR 0.0850 0.1231 0.1059 0.0731 0.0802 0.0648 0.0639 0.0687 0.066

Sortino Ratio 0.0387 0.0517 0.0507 0.0331 0.0305 0.0254 0.0242 0.0310 0.0243

Upside Potential Ratio 0.4935 0.4721 0.5292 0.4858 0.4108 0.4175 0.4034 0.4816 0.393

Table 56: key statistics for �Utilities� S&P500 assets over a period of 38 years (1974-2011)
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Company IBM 3M Unisys United-Technologies HP-Inc.

Median 0.0000 0.0000 0.0000 0.0000 0.0000

Mean 0.0312 0.0383 -0.0310 0.0578 0.0348

St. Dev. 1.6596 1.4663 3.3260 1.6949 2.3010

Skewness -0.3192 -0.3611 -0.3647 -0.5840 -0.2686

Kurtosis 13.0601 9.1373 31.3659 13.4897 7.0451

Pain Index 28.4267 14.7063 32.0496 14.5218 42.3955

Ulcer Index 34.8427 19.0058 39.4861 18.8600 50.6945

Sharpe Ratio 0.0188 0.0261 -0.0093 0.0341 0.0151

Adjusted SR 0.1651 0.2911 -0.3154 0.3665 0.0569

Omega SR 0.0555 0.0768 -0.0305 0.1003 0.0439

Sortino Ratio 0.0269 0.0374 -0.0130 0.0489 0.0214

Upside Potential Ratio 0.5117 0.5241 0.4123 0.5363 0.5093

Table 57: key statistics for �Technology� S&P500 assets over a period of 38 years (1974-2011)

10.2 Results

The results subsection deals with those risk-return diagrams that did not �t into the main part because

we wanted to avoid redundancies. Nevertheless, they are worth too have a look at.

QP3 Markowitz Problem

Second Data Set: 1990 - 2009

The second data set containing 39 S&P500 assets from di�erent sectors gives the graph below:

Figure 29: risk-return diagram showing the feasible set including red dots on the e�cient frontier for 39 S&P500 assets

over a period of ten years (01/01/1990 - 31/12/1999); each red dot represents a single portfolio that is de�ned by the

choice of lambdas which typi�es the investor's fondness for return maximization and risk minimization.
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Again, the red dots gather around the e�cient frontier. Because of the increased number of securities

we receive more �spikes� on the right side of the risk-return diagram.

Third Data Set: 1974 - 2011

Finally, the risk-return diagram for the third data set is presented. The portfolio weights were estimated

over a period of 26 years (01/01/1974 - 31/12/1999):

Figure 30: risk-return diagram showing the feasible set including red dots on the e�cient frontier for 50 S&P500 assets

over a period of 26 years (01/01/1974 - 31/12/1999); each red dot represents a single portfolio that is de�ned by the choice

of lambdas which typi�es the investor's fondness for return maximization and risk minimization.

Expectedly, the e�cient frontier is highlighted by an accumulation of red dots and the once more

increased number of assets leads to more spikes on the right part of the diagram.

QP3 Markowitz Problem including EWP Diversi�cation

Second Data Set: 1990 - 2009

For the second data set the risk-return diagram including EWP diversi�cation looks like this:
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Figure 31: risk-return showing the feasible set including red dots indicating the optimization competition with respect to

return, risk and Her�ndahl index for 39 S&P500 assets over a period of ten years (1990-1999); each red dot represents a

single portfolio that is de�ned by the choice of lambdas which typi�es the investor's fondness for return / diversi�cation

maximization and risk minimization; the variation of red dots ranges from the minimum variance portfolio to the equal

weights portfolio and the maximum return portfolio.

As opposed to the �rst data set, the red dots adapt more closely to the e�cient frontier. Again zooming

in and associating the degree of diversi�cation with the dot color adds more detail to the graph. Note

that the risk and return proxies are given by the average return and the standard deviation of the equal

weights portfolio:

Figure 32: risk-return diagram showing the afore-exempli�ed variation of dots indicating the optimization competition

with respect to return, risk and Her�ndahl index for 39 S&P500 assets over a period of ten years (1990-1999); as opposed

to before, the picture is zoomed in and the level of diversi�cation for each single portfolio is branded by a color (skin-color:

well diversi�ed, blue color: poorly diversi�ed); as expected, well diversi�ed portfolios can be found in the proximity of the

equal weights portfolio, while poorly diversi�ed portfolios are located near the maximum return portfolio.

Again, skin color corresponds to strong diversi�cation with respect to the equal weights portfolio, while

blue color is associated with weak diversi�cation.

Third Data Set: 1974 - 2011

Finally, the risk-return diagram showing the feasible set including (sub-)e�cient frontier for the third

data set is plotted:
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Figure 33: risk-return showing the feasible set including red dots indicating the optimization competition with respect to

return, risk and Her�ndahl index for 50 S&P500 assets over a period of 26 years (1974-1999); each red dot represents a

single portfolio that is de�ned by the choice of lambdas which typi�es the investor's fondness for return / diversi�cation

maximization and risk minimization; the variation of red dots ranges from the minimum variance portfolio to the equal

weights portfolio and the maximum return portfolio.

Exptectedly, the sub-e�cient frontier lies close to the e�cient frontier while the rest of the feasible set

remains untouched. Once more, we zoom in and brand the dots according to the level of diversi�cation:

Figure 34: risk-return diagram showing the afore-exempli�ed variation of dots indicating the optimization competition

with respect to return, risk and Her�ndahl index for 50 S&P500 assets over a period of 26 years (1974-1999); as opposed

to before, the picture is zoomed in and the level of diversi�cation for each single portfolio is branded by a color (skin-color:

well diversi�ed, blue color: poorly diversi�ed); as expected, well diversi�ed portfolios can be found in the proximity of the

equal weights portfolio, while poorly diversi�ed portfolios are located near the maximum return portfolio.

As before, highly diversi�ed portfolios can be found close to the minimum variance and the equal weights

portfolio, whereas close to the maximum return portfolio we only �nd poorly diversi�ed portfolios. With

the help of the risk-return diagrams above we can conclude that the addition of the third goal, namely

diversi�cation with respect to equal weights, adds a cluster of portfolios to our feasible set, which is

con�ned by the e�cient and the sub-e�cient frontier, while the corners of the cluster indicate the min-

var, the EWP and the maximum return portfolio, respectively. Once again, considering a risk-free rate
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allows us to live outside the feasible set by drawing a line from any of our colored portfolios to the

respective risk-free rate on the y-axis of the risk-return diagram.

10.3 Conclusion

In this subsection we are presenting the sectors and their subsectors mentioned in the conclusion section:

Industry Supersector Sector Subsector

Oil & Gas Oil & Gas

Oil & Gas Producers
Exploration & Production

Integrated Oil & Gas

Oil Equipment, Services & Distribution
Oil Equipment & Services

Pipelines

Alternative Energy
Renewable Energy Equipment

Alternative Fuels

Table 58: Oil & Gas subsectors according to the Industrial Classi�cation Benchmark

Industry Supersector Sector Subsector

Basic Materials

Chemicals Chemicals
Commodity Chemicals

Specialty Chemicals

Basic Resources

Forestry & Papers
Forestry

Paper

Industrial Metals & Mining

Aluminum

Nonferrous Metals

Iron & Steel

Mining

Coal

Diamonds & Gemstones

General Mining

Gold Mining

Platinum & Precious Metals

Table 59: Basic Materials subsectors according to the Industrial Classi�cation Benchmark
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Industry Supersector Sector Subsector

Industrials

Construction & Materials Construction & Materials
Building Materials & Fixtures

Heavy Construction

Industrial Goods & Services

Aerospace & Defense
Aerospace

Defense

General Industrials
Containers & Packaging

Diversi�ed Industrials

Electronic & Electrical Equipment
Electrical Components & Equipment

Electronic Equipment

Industrial Engineering
Commercial Vehicles & Trucks

Industrial Machinery

Industrial Transportation

Delivery Services

Marine Transportation

Railroads

Transportation Services

Trucking

Support Services

Business Support Services

Business Training & Employment Agencies

Financial Administration

Industrial Suppliers

Waste & Disposal Services

Table 60: Industrials subsectors according to the Industrial Classi�cation Benchmark
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Industry Supersector Sector Subsector

Consumer Goods

Automobiles & Parts Automobiles & Parts

Automobiles

Auto Parts

Tires

Food & Beverage

Beverages

Brewers

Distillers & Vintners

Soft Drinks

Food Producers
Farming & Fishing

Food Products

Personal & Household Goods

Household Goods & Home Construction

Durable Household Products

Nondurable Household Products

Furnishings

Home Construction

Leisure Goods

Consumer Electronics

Recreational Products

Toys

Personal Goods

Clothing & Accessories

Footwear

Personal Products

Tobacco Tobacco

Table 61: Basic Materials subsectors according to the Industrial Classi�cation Benchmark

Industry Supersector Sector Subsector

Health Care Health Care

Health Care Equipment & Services

Health Care Providers

Medical Equipment

Medical Supplies

Pharmaceuticals & Biotechnology
Biotechnology

Pharmaceuticals

Table 62: Health Care subsectors according to the Industrial Classi�cation Benchmark
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Industry Supersector Sector Subsector

Consumer Services

Retail

Food & Drug Retailers
Drug Retailers

Food Retailers & Wholesalers

General Retailers

Apparel Retailers

Broadline Retailers

Home Improvement Retailers

Specialized Consumer Services

Specialty Retailers

Media Media

Broadcasting & Entertainment

Media Agencies

Publishing

Travel & Leisure Travel & Leisure

Airlines

Gambling

Hotels

Recreational Services

Restaurants & Bars

Travel & Tourism

Table 63: Consumer Services subsectors according to the Industrial Classi�cation Benchmark

Industry Supersector Sector Subsector

Telecommunications Telecommunications
Fixed Line Telecommunications Fixed Line Telecommunications

Mobile Telecommunications Mobile Telecommunications

Table 64: Telecommunications subsectors according to the Industrial Classi�cation Benchmark

Industry Supersector Sector Subsector

Utilities Utilities

Electricity
Conventional Electricity

Alternative Electricity

Gas, Water & Multiutilities

Gas Distribution

Multiutilities

Water

Table 65: Telecommunications subsectors according to the Industrial Classi�cation Benchmark
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Industry Supersector Sector Subsector

Financials

Banks Banks Banks

Insurance
Non Life Insurance

Full Line Insurance

Insurance Brokers

Property & Casualty Insurance

Reinsurance

Life Insurance Life Insurance

Real Estate

Real Estate Investment & Services
Real Estate Holding & Development

Real Estate Services

Real Estate Investment Trusts

Industrial & O�ce REITs

Retail REITs

Residential REITs

Diversi�ed REITs

Specialty REITs

Mortgage REITs

Hotel & Lodging REITs

Financial Services

Financial Services

Asset Managers

Consumer Finance

Specialty Finance

Investment Services

Mortgage Finance

Equity Investment Instruments Equity Investment Instruments

Nonequity Investment Instruments Nonequity Investment Instruments

Table 66: Financials subsectors according to the Industrial Classi�cation Benchmark

Industry Supersector Sector Subsector

Technology Technology

Software & Computer Services

Computer Services

Internet

Software

Technology Hardware & Equipmen

Computer Hardware

Electronic O�ce Equipment

Semiconductors

Telecommunications Equipment

Table 67: Technology subsectors according to the Industrial Classi�cation Benchmark
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10.4 Code

The code subsection presents the code used to generate the risk-return diagrams from the results section

in the main part of the paper.

QP3 Markowitz Problem

modelQP3 <- c( N = "param N ;",

lambda = "param lambda ;",

mu = "param mu{1..N} ;",

Sigma = "param Sigma{1..N,1..N} ;",

mumax = "param mumax ;",

Sigmamax = "param Sigmamax ;",

Var = "var w{1..N} >= 0;",

Objective = "maximize M: lambda * (sum{i in 1..N} mu[i] * w[i])/mumax-

(1-lambda)*(sum{i in 1..N}sum{j in 1..N}w[i]*Sigma[i,j]*w[j])/Sigmamax;",

Budget = "subject to Budget: sum{i in 1..N} w[i] = 1 ;")

amplModelFile(modelQP3, project)

Box 1: model �le for QP3 mean-variance portfolio optimization

modelQP3 <- c( N = "param N ;",

lambda1 = "param lambda1 ;",

lambda2 = "param lambda2 ;",

mu = "param mu{1..N} ;",

Sigma = "param Sigma{1..N,1..N} ;",

mumax = "param mumax ;",

Sigmamax = "param Sigmamax ;",

Var = "var w{1..N} >= 0;",

Objective = "maximize M: lambda1 * ((sum{i in 1..N} mu[i] * w[i])/

mumax- (lambda2/lambda1) * (sum{i in 1..N}

sum{j in 1..N}w[i]*Sigma[i,j] * w[j])/Sigmamax) ;",

Budget = "subject to Budget: sum{i in 1..N} w[i] = 1 ;")

amplModelFile(modelQP3, project)

Box 2: model �le for QP3 mean-variance portfolio optimization using a di�erent λ-implementation
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QP3 Markowitz Problem plus EWP Diversi�cation

modelEWPher�ndahl <- c( N = "param N ;",

lambda1 = "param lambda1 ;",

lambda2 = "param lambda2 ;",

mu = "param mu{1..N} ;",

mumax = "param mumax ;",

Sigmamax = "param Sigmamax ;",

Sigma = "param Sigma{1..N,1..N} ;",

Identity = "param Identity{1..N,1..N} ;",

Var = "var w{1..N} >= 0;",

Objective = "minimize M: - lambda1*(sum{i in 1..N} mu[i] * w[i])/mumax

+ lambda2*(sum{i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j])/Sigmamax

+ (1-lambda1-lambda2)*(sum{i in 1..N} sum{j in 1..N} w[i] * Identity[i,j] * w[j]) ;",

Budget = "subject to Budget: sum{i in 1..N} w[i] = 1 ;")

amplModelFile(modelEWPHer�ndahl, project)

Box 3: model �le for QP3 mean-variance optimization plus EWP diversi�cation using Her�ndahl Index

modelEWPentropy <- c( N = "param N ;",

lambda1 = "param lambda1 ;",

lambda2 = "param lambda2 ;",

mu = "param mu{1..N} ;",

mumax = "param mumax ;",

Sigmamax = "param Sigmamax ;",

Sigma = "param Sigma{1..N,1..N} ;",

Var = "var w{1..N} >= 0;",

Objective = "minimize M: - lambda1*(sum{i in 1..N} mu[i] * w[i])/mumax

+ lambda2*(sum{i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j])/Sigmamax

+ (1-lambda1-lambda2)*(sum{i in 1..N} sum{j in 1..N} -w[i] * ln(w[j])) ;",

Budget = "subject to Budget: sum{i in 1..N} w[i] = 1 ;")

amplModelFile(modelEWPentropy, project)

Box 4: model �le for QP3 mean-variance optimization plus EWP diversi�cation using entropy concentration
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Minimum Variance Portfolio

modelMinVar <- c( N = "param N ;",

mu = "param mu{1..N} ;",

Sigma = "param Sigma{1..N,1..N} ;",

Var = "var w{1..N} >= 0;",

Objective = "minimize risk: (sum{i in 1..N} sum{j in 1..N} w[i]*Sigma[i,j]*w[j]);",

Budget = "subject to Budget: sum{i in 1..N} w[i] = 1 ;")

amplModelFile(modelMinVar, project)

Box 5: model �le for minimum-variance portfolio
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