ETHEREUM ANALYTICS

Master Thesis
Athina Voulgari, Matriculation Nr.: 15-945-868
ETH Advisors: Prof. Dr. D. Sornette
UBS Advisors: Dr. V. Lange
ETH Ziirich, Management Technology and Economics Department
Chair of Entrepreneurial Risks

05.06.2019

IT

Abstract

Ethereum is the second most valuable cryptocurrency, after bitcoin, with a market capital-
ization of $27 billion. Ethereum has attracted the interest of many cryptocurrencies fans,
as well as investors, because it is not only a blockchain solution for the digital store of
transactions’ records, but also offers the possibility of creating and executing smart con-
tracts.

Ethereum, and cryptocurrencies in general, have been in the center of criticism regarding
their volatility and the speculation in their prices. In this thesis, in-depth analyses are
performed regarding the Ethereum usability. The main focus is on understanding what the
number of transactions in the Ethereum network represents and what the volume of ether
in circulation between the different addresses is. For that purpose, the Google Big Query
Ethereum database is used in order to extract all the available data and answer questions.

The number of transactions and the value of ether transferred are two good indicators to
understand how the network behaves. Comparing these two, it is illustrated that they have
not followed the same path and that they have not shown the same fluctuations during the
last four years. The number of transactions has had an exponential growth, while the value
of transferred ether has fluctuated a lot, on a daily basis. Moreover, the distribution of
the number of transactions, as well as of the ether holdings among the different addresses,
follow the 80%-20% pareto rule. More explicitly, 80% of the transactions are addressed to
only 3.44% of the addresses and 80% of the transactions are sent from only 7.34% of the
addresses, respectively. Regarding the ether holdings, 80% of the total ether is held by only
0.024% of the addresses. All these findings help us understand the speculatory nature of
the Ethereum price. Finally, what’s also exciting is the similarity of the smart contracts,
as only 1.34% of the total contracts are completely unique.

Keywords: Ethereum, Blockchain, Smart Contracts, Ether Balance, Number of transac-
tions, Contracts’ similarity

III

Acknowledgements

First and foremost, I would like to thank my professor Didier Sornette, who accepted me
in his team and gave me the freedom to explore a research topic that I wanted to focus on,
without adding barriers. I appreciate all his contribution and time he spent for my thesis.

Moreover, I would like to thank UBS AG, and especially my two supervisors, Dr Veronica
Lange and Mani Mohanathas who, from their side, gave me the ground and time to ex-
plore a topic, not tightly related to the everyday business of UBS, and were open to discuss
anytime.

When I started my master studies at ETH, it was an honour to receive a scholarship from
Hellenic Petroleum SA. I owe a big thank you for this opportunity and for believing in me.

Furthermore, I really appreciated the time that some individuals spent with me, discussing
about Blockchain concepts and adding one more piece in my knowledge and understand-
ing path. A big thank you to Adrian Schmidmeister, Twan Sevriens, Ian Cusden, Evgeny
Medvedev, and Sharat Koya.

A special thank you to Athanasios Stefanidis who was motivating me every day to continue,
was the audience for all the concerns I had during this knowledge path and supported me,
especially during finalizing the thesis.

Lastly, I would like to thank my family, my parents and my sister, for the unconditional
love and trust they have shown to me during my whole educational path. They raised me
with the value of trying hard to achieve whatever I would like to. I had them always in my
mind during the hard times when I had to overpass difficulties and go forward.

Contents

List of Figures

List of Tables

I Main Text

1 Introduction

1.1 Motivation
1.2 Distributed Ledger Technology (DLT)
1.3 Blockchain Technologies
1.3.1 Miningo
1.3.2 Digital keys, cryptocurrency addresses and digital signatures
1.3.3 Conclusion
1.4 Comparison of some featured Blockchain platforms
1.4.1 Ethereum
1.4.2 Hyperledger Fabric
1.4.3 R3Corda
2 The Ethereum Model
2.1 Accounts
2.1.1 External Owned Accounts (EOAs)
2.1.2 Smart Contracts
2.2 Transactions
2.3 Ethereum Virtual Machine,
24 FEtherand Gas.
25 Blocks . . .
26 Mining
2.7 Data structuring and formato
2.8 Highlights of Ethereum roadmap

3 Data Analysis Setup
3.1 Data acquisition

B CONTENTS

3.2 Data structuring in Google Bigquery Ethereum 29

4 Data Analytics 36
4.1 Methodology 36
4.2 Generic Analytics on Ethereum L. 36
4.2.1 Number of transactions (traffic) 38

4.2.2 Volume of transactions00 38

423 Gasused 39

424 Gasprice 40

4.2.5 Address growth o 40

4.2.6 Contracts e 43

4.2.7 Allocation of addresses L. 44

4.2.8 ETH price and market cap 44

4.3 Analytics focusing on traffic (number of transactions) 47
4.4 Analytics focusing on volume (value of Ether) 49
4.5 Analytics focusing on the accounts 50
4.6 Analysis of smart contracts. 59

5 Smart contracts and finance industry 61
6 Conclusion 63
6.1 Main findings 63
6.2 Related work 65
6.3 Future exploratory paths L 65
Bibliography 67

IT Appendix 73

List of Figures

1.1 Centralized Ledger [Natarajan et al., 2017] 5
1.2 Distributed Ledger (permissionless) [Natarajan et al., 2017] 6
1.3 Distributed Ledger (permissioned) [Natarajan et al., 2017] 7
1.4 Distributed Ledger Taxonomy 8
2.1 Example of Merkle Tree [K. Kim, 2018] 22
2.2 Example of Patricia Trie [K. Kim, 2018] 23
2.3 The four tries in an Ethereum block [T. McCallum, 2018] 24
3.1 Ethereumraw datao 28
4.1 Daily number of transactions in the Ethereum network. The peak was 1’349’890
transactions on the 4 of January 2018. 37
4.2 Daily number of transactions in the Ethereum network (logarithmic scale) 37
4.3 Daily transferred ether value (value measured in ether, the respective cur-
rency of the Ethereum network 38
4.4 Ether supply growth. The supply consists of the initial ether supply in the
system when it was created and the ether generated as a reward for any
mining activity. Lo 39
4.5 Daily gas consumption in the Ethereum network. It represents the sum of
ether spent each day. The y axis is in logarithmic scale. 40
4.6 Daily average price of gas, measured in wei. The ratio of eei- ether is 1 ether
per 1’018 wei. The representation in ether would be a line close to zero.
Therefore the fluctuations are better visualized in the wei scale. 41
4.7 Cumulative number of unique addresses in the network with a balance
greater than zero. As the balance of the addresses is taken into consider-
ation, some contracts are not calculated here. 41
4.8 Cumulative number of unique addresses in the network. The increase of the
number of addresses is obvious, as well as the strange behaviour. 42
4.9 Cumulative creation of smart contracts 43
4.10 Daily creation of contract addresses (logarithmic scale) 44
4.11 Daily allocation of total number of addresses 45

C

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

LIST OF FIGURES

Daily price of ether in USD. The higher price was approximately at $1’400/ETH
when the whole cryptocurrency market was evaluated relatively high in Jan-

uary 2018, . . Lo 46
Allocation of the three different types of transactions (contract calls, ether
transfer, and contract creation)o 47
Comparison of the daily number of ether transfer transactions and contract
calls . . oL 48

Comparison of the daily number of ether transfer transactions and contract
calls (logarithmic scale). A dramatic increase in contract calls can easily be
observed. L 49
Daily volume of ether transferred in the ether transfer transactions and in
the contract calls. In both of them, the value of each type of transaction is
measured (logarithmic scale) L 0oL 50
Ether distribution among the total number of addresses with an ether bal-
ance larger than zero. There is no reason to take into consideration the whole
universe of addresses as only the ether balance distribution is analyzed. Both

axes are in logarithmic scale. oL 51
Transactions distribution among the total number of addresses that have
executed at least one transaction. Both axes are in logarithmic scale. . . . 51
Transactions distribution among the total number of addresses that have
received at least one transaction. Both axes are in logarithmic scale. 52

Balance and transaction involvement of the top 1’000 addresses. The size
of the bubble shows the volume in ether balance. The x axis represents
the number of transactions in which the account was the sender and the
y axis represents the number of the transactions in which the account was
the recipient. These three dimensions represent the activity and the hold-
ings of each address and they are the most valuable data. Both axes are in
logarithmic scale. o 52
Cumulative number of contracts created by users and of contracts created
by other contracts (logarithmic scale) 59

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

4.4
4.5

4.6

4.7

Token transfers table
Tokens table
Contracts table
Blocks table
Transactions table
Traces table
Logs table

All the high in gas price transactions of 19.02.2019
Number of addresses, per type of address
Top 20 addresses, measured by ether balance (complete addresses can be
found in Appendix)
Top 10 addresses, measured by ether balance
Top 20 addresses, measured by number of transactions they have sent (com-
plete addresses can be found in Appendix)
Top 20 addresses, measured by number of transactions they have received
(complete addresses can be found in Appendix)
Different types of contracts L

Part 1

Main Text

Chapter 1

Introduction

1.1 Motivation

Our era is changing continuously. New disruptive technologies are being born constantly
and totally change the way markets work. 2009 has been the year when Nakamoto in-
troduced Bitcoin, a digital currency for peer to peer transactions, to the world. What he
mainly achieved was not only to introduce the first digital currency but to open the doors
for the whole cryptocurrency world. Crypto is not, anymore, a topic concerning only geeks
and tech enthusiasts. As there is a total market capitalization of 333.86B as of 4" of July
2019 [CoinMarketCap], any forward- thinking company and institution is not allowed to ig-
nore the potential of blockchain market. Many other crypto initializations followed Bitcoin,
but one has attracted the interest of many companies; that is Ethereum. Given the market
cap ration of Bitcoin to Ethereum, it has been claimed that Ethereum has become more
valuable than Bitcoin [D. Hao, 2018]. Whereas Bitcoin is a currency that operates only as
a currency, Ethereum has a multifunctional character allowing users to create smart con-
tracts that can interact and be executed. It does not serve only the transactional currency
model. As a result, Ethereum offers the vision of a decentralized future, where third-parties
are eliminated and users have direct access to the markets. Understanding how Ethereum
works helps us identify what will be the blockchain use of tomorrow, how and when it
makes sense to use it. Blockchain is not a panacea for all the innovation issues companies
face. Despite its current trend, it cannot be the solution to everything and companies and
institutions around the globe should first try to understand how the new technology can be
effectively utilized before implementing a solution that can cost millions. The motivation
of this thesis is to closely analyse the five-year route of Ethereum and explore some of its
real use cases that generate added value.

1.2 Distributed Ledger Technology (DLT)

Distributed Ledger Technology (DLT') refers to a novel approach to recording and sharing
data across multiple data stores (ledgers), which store the exact same data and are main-

2

1.2. DISTRIBUTED LEDGER TECHNOLOGY (DLT) 3

tained and controlled by a distributed network of computer servers, which are called nodes
[Natarajan et al., 2017]. The innovative feature is that the ledger is not maintained by a
central authority.

Each node, independently, builds and records the updates in the ledger. After that, these
updates must be accepted by most of the network. In order to overcome the challenge of
ensuring that all the nodes agree upon the validity of the ledger updates, there have been
different mechanisms that define the way of agreeing on this; this agreement is called con-
sensus. Once the consensus has been reached, the distributed ledger updates itself and the
latest, agreed-upon version of the ledger, is saved in each node separately [S. Ray, 2018a).

Regarding the consensus mechanisms, there are different ways of validating the agree-
ment given the set-up of the distributed ledger. Consensus algorithms define the steps and
the order of the steps that need to be done in order to produce an output. They constitute
a fundamental component of distributed networks and are crucial for their functionality.

e Proof of Work (PoW)

PoW existed before cryptocurrencies, but it became famous as it is used in Bitcoin
and Ethereum. It would be very easy for someone to hack a trustless and distributed
system where everyone can participate and verify transactions. However, PoW pre-
vents an entity from gaining power over the whole network. For someone to verify a
transaction in the network working with PoW, computational power is required. This
transaction verification process is called mining. The purpose of mining is to verify
the legitimacy of a transaction, avoiding any double spending. A group of transac-
tions are first bundled into a memory pool. Miners verify each transaction separately
by solving a complex mathematical puzzle. The first miner solving the puzzle receives
as a reward coins of the respective network (bitcoins in Bitcoin, Wei in Ethereum,
etc.). The new verified pool of transactions constitutes from now on a block and is
attached to the blockchain as the latest block.

Regarding the mathematical puzzle that the miners must solve, it is asymmetric
making it difficult for miners to solve it but easy to be verified by the network [T.
Schumann, 2018]. It does not require any mathematical skills, just computational
power.

This fact makes the PoW consensus expensive. It is estimated that the current en-
ergy power consumed for mining in Bitcoin equals the total energy need of Ireland.
If Bitcoin transactions were to replace all the current transactions e.g. with Visa
or Mastercard, the required electricity would exceed the current global consumption
[Natarajan et al., 2017]. However, making block creation computationally ”hard”
prevents attackers from recreating the entire blockchain in their favour [V. Buterin].
Programming an attack to a PoW network is very expensive, and someone would need
more money than he can be able to steal. After the production of several blocks, the
mining algorithm dynamically adjusts its difficulty according to the hashrate ! of the

!Measured in hashes per second.

4 CHAPTER 1. INTRODUCTION

whole network [Mingxiao et al., 2017].

e Proof of Stake (PoS)

Proof of Stake is another way to achieve the agreement of transactions in the network.
It is quite close to the PoW but the process is different. It was first introduced on
a bitcointalk forum in 2011 [Blockgeeks, a]. In this consensus, the creator of a new
block is selected in a deterministic way, depending on his wealth, also defined as
stake. Miners need to put up some cryptocurrency as a collateral. This means that the
validator must have assets in the respective currency. The more the stake, the greater
the opportunity to mine a block successfully. It takes away the need for computational
energy but brings the so-called nothing-at-stake problem [G. Konstantopoulos, 2017].
As the PoS consensus is not connected in the physical world, additional measures of
security are required [Blockgeeks, a]. In case of a fork 2, validators could claim twice
the amount of transactions and achieve double spending, as they will not have to
split the computational power.

e Delegated Proof of Stake (DPoS)

DPoS is an attempt to overpass the inefficiencies that both PoW and PoS deal with.
Delegated proof of stake uses real-time voting combined with a social system of
reputation to achieve consensus.

In the network, there are delegates who are voted by token holders in order to mine
the blocks [Shuwar and Vashchuk, 2018]. The number of based tokens an account is
holding defines the voting weight (power) of each holder. It is very important that the
delegates are selected in a rational way as they are responsible for the efficient and
smooth operation of the network [Lisk.io]. In some networks, a similar-to-the-PoS
concept of collateral is implemented in order to avoid misbehaviours.

e Practical Byzantine Fault Tolerance (PBFT)

Practical Byzantine Fault Tolerance (PBFT) was initially introduced by Miguel Cas-
tro and Barbara Liskov in 1999. The algorithm has been designed in a way to detect
malicious nodes in the network and defend against them. The consensus is reached
by the fair nodes in the network. One node is named the primary one and all the rest
constitute the backup nodes. All of them communicate and try to reach an agreement.
The nodes need to prove that the message came from a specific source, as well as,
that there have not been changes in its recording during its transmission [B. Curran,
2018]. Some of the advantages are the significant less energy usage and the ability
of execute a transaction without the need of confirmation. However, this consensus
can work only in consortium of participants and especially in a small-sized network.
Moreover, it is vulnerable to attacks where a single validator can manipulate sev-
eral nodes. It is mainly used in Hyperledger Fabric, which is extensively described in
section 1.4.2.

2A fork is said to take place when a blockchain splits into two branches. Depending on the impact of
the software change, it can be a hard or a soft fork.

1.2. DISTRIBUTED LEDGER TECHNOLOGY (DLT))

Regarding the participation of users in a distributed network, there are two kinds of par-
ticipation: permissionless and permissioned [M. Beedham, 2018]. As the name suggests, a
permissionless DLT defines a network where no permission is required for the participation
and the contribution to the network. Since anyone can join a permissionless DLT, these
networks tend to be far more decentralized than the permissioned ones. The decentralized
nature of the DLT means that the network does not rely on a central point in order to
operate and be controlled. The lack of a single authority makes the system more transpar-
ent and secure. One example of a permissionless network, which can also be graphically
illustrated in fig. 1.2, is the Ethereum.

Figure 1.1: Centralized Ledger [Natarajan et al., 2017]

On the other hand, if more control and privacy are required, permissioned DLT is a poten-
tial solution. The reason it is called permissioned is because access to the network requires
permission. The owner of a permissioned DLT is responsible for managing who can par-
ticipate and how a participant contributes to the network. Moreover, the owner of the
network is responsible for any decision that needs to be taken into the network. In short,
the owner or owners give or restrict access to the participants. Examples of a permissioned
DLT, which is graphically illustrated in fig. 1.3, are Fabric and Corda.

Another distinction between the DLT's is the idea of a private or public DLT. It is important
not to confuse the public/ private DLT distinction with the permissionless/ permissioned

6 CHAPTER 1. INTRODUCTION

Figure 1.2: Distributed Ledger (permissionless) [Natarajan et al., 2017]

DLT distinction. The concept is that the public/private distinction has to do with the
user authentication, while the permissioned/permissionless one refers the user authoriza-
tion [Blocktonite, 2017]. The former checks who the user is and if the user has access to
the network. The latter controls what kind of transactions the user is allowed to do in the
network, and mainly refers to the right of validating transactions. The above is explained
with a diagramm in fig. 1.4.

One basic difference between permissionless and permissioned DLTs is the speed of the
network. Permissionless DLTs are often slower than the permissioned alternatives [M.
Beedham, 2018], as they require each peer to execute each transaction and run consen-
sus at the same time. As a result, this kind of consensus makes the network not scalable.
Moreover, there are not confidential transactions as they can be verified by any participant
in the network. However, permissioned DLTs reduce the ability to operate without the
coordination of any single entity. Finally, the mode of participation (permissionless or per-
missioned) has a profound impact on the way consensus is reached [Valenta and Sandner,
2017].

As both network types serve different needs in the real world, there cannot be a binary cate-
gorization, but the precise features vary from platform to platform. There are many hybrid

1.2. DISTRIBUTED LEDGER TECHNOLOGY (DLT) 7

Figure 1.3: Distributed Ledger (permissioned) [Natarajan et al., 2017]

approaches trying to meet companies’ needs for a permissioned network built on public
blockchain infrastructure. An example is Enterprise Ethereum Alliance (EEA), where they
try to build a private version of Ethereum’s blockchain (see section 1.4.1) for its members
to address their specific business needs.

DLT is the foundation of blockchain. According to H. Natarajan et. al., A ’blockchain’
15 a particular type of data structure used in some distributed ledgers which stores and
transmits data in packages called “blocks” that are connected to each other in a digital
‘chain’ [Natarajan et al., 2017] (see section 1.3). However, blockchain is not the only DLT.
Although blockchain is a chain of blocks, distributed ledgers do not necessarily require such
a chain [O. Belin|. Alternatively, there are ingenious developments, such as Hashgraph and
Directed Acyclic Graph (DAG).

e Hashgraph achieves transaction success solely via consensus through a gossip about
gossip technique and a virtual voting technique. Interestingly, these techniques do
not require proof of work to validate transactions [H. Anwar, 2018]. As a result,
Hashgraph offers thousands of transactions per second while blockchain platforms,
such as Bitcoin and Ethereum (see section 1.2), allow for approximately 5 transactions
per second and 15 transactions per second, respectively [S. Ray, 2018b].

8 CHAPTER 1. INTRODUCTION

-

[Traditional ledger
maintained by a

central party

How many ledger | One
copies are there?

Many
= . Only a trusted group of
network participants P
Access Who can acces.? and , Pe'rm|55|oned,
use these copies? private ledger
Anyone
- Only a set of trusted network
. . N nly a set or trusted networ
Who maintains the Ve - .
X X participants, by validation Permissioned,
integrity of the > .
public ledger
Roles ledger?
Anyone,
without need for trust,
by consensus mechanism ’
Permissionless,
public ledger

Figure 1.4: Distributed Ledger Taxonomy

e DAG is a type of distributed ledger technology that relies on consensus algorithms.
These consensus algorithms operate in a way that transactions that prevail simply
require majority support within the network. In such a network, there is much more
cooperation and teamwork and nodes have equal rights [H. Anwar, 2018]. An example
of a DAG DLT is IOTA’s Tangle. According to M. Thake, before a new transaction
can be validated in IOTA, it must first validate at least two previous transactions
[M. Thake, 2018a]. These two transactions are being randomly selected by an IOTA
algorithm, restraining the members of the network from choosing their own transac-
tions.

1.3 Blockchain Technologies

Blockchain was the first fully functional Distributed Ledger Technology and the only one
people have been knowing for many years [M. Thake, 2018b]. As a result, there is even
today a confusion between DLT and blockchain, serving as a good example for a service
or product that overtakes “the umbrella” it is part of and ends up becoming its name-
sake. However, blockchain is nothing more than a DLT with a specific set of features that
distinguish blockchain from all the previously referred DLT technologies [BBVA, 2018].
Blockchain is a database, shared by means of blocks, which are connected with each other
in the form of a chain.

Blockchain was mainly mentioned in the Bitcoin white paper from Satoshi Nakamoto,
published in 2008, as the underlying technology of Bitcoin. However, blockchain was not
built from scratch in order to serve the Bitcoin concept. The technologies that are utilised

1.3. BLOCKCHAIN TECHNOLOGIES 9

are not new. What is new and disruptive is the combination of these technologies to cre-
ate the world’s first ever digital currency. Some of these technologies are the peer-to-peer
network, cryptography, digital signatures, nodes, hashing, consensus protocols, and mining.

Blockchain offers the main functionalities of DLTs. The three main properties that de-
termine the Blockchain technology are decentralization, transparency, and immutability.
The term of transparency comes in contradiction to the concept of privacy that is claimed
to be a feature of blockchain. A person’s identity is represented by a public address which
is cryptographed. It is not the name of the sender that is referred to in a transaction,
but the hash representation 3, such as “1Mftz7sFLkBfjh9vpFYEmvwT2Tb6Ct7TNZJ”. As
a result, the physical identity of a user is secure, while the digital identity is monitored and
recorded, so that transparency is secure as well. Furthermore, blockchain ensures that no
recorded transaction can be altered or removed. Even the slightest change in a block will
completely change the hash address of the block (how adjacent blocks are interconnected
will be analyzed further in this thesis). This immutability feature makes blockchain fully
reliable.

Finally and as described earlier, in a decentralized system, the information is not stored
in a single entity. On the contrary, a basic component of a blockchain is its peer to peer
(P2P) network. Each user, which is considered to be a single node, can use the network
and provide resources at the same time. A node can be any active electronic device that is
connected to the Internet and provides an IP address. Although all nodes are equal, they
can serve the network in different ways. A special reference needs to be made to these nodes
that are called "full nodes” or else miners [Lisk.io]. The purpose of a full node is to copy
the latest blockchain to a single device, while the device is connected to the network. As a
result, this information is stored in all full nodes of the network and can only be altered if
all these nodes are destroyed, which makes the system less vulnerable.

1.3.1 Mining

Previously, a reference was made to these nodes that are called miners. Mining empowers
the decentralized blockchain. Mining is the process where miner nodes use computational
power in order to verify transactions and add them in the public ledger. Each miner ensures
to maintain the latest version of the ledger which contains all the blocks. Each node com-
petes against another in order to solve a mathematical problem, which is called nonce. The
node which manages to solve first the puzzle updates the blockchain by adding the latest
block. This is the reason, as well, that a lot of computational power is required. In order
to incentivize miners to do their job, a reward of the respective currency of the network
is given to the miners. This approach of validation follows the proof of work consensus to
which we have refered earlier (Ethereum and Bitcoin have different kinds of reward).

3Hashing is the process of taking an input of any length and turning it into a cryptographic fixed output
through a mathematical algorithm (Bitcoin uses SHA-256, for example) [Lisk.io]

10 CHAPTER 1. INTRODUCTION

1.3.2 Digital keys, cryptocurrency addresses and digital signa-
tures

Having talked about the hash representation of users and about the transparency, com-
bined with privacy, it is important to mention the way users are represented in the network
and explain how they are capable to participate in transactions privately. Cryptography is
a basic component. Although diving deep into cryptography is not a desired outcome of
this thesis, some basic elements, which make use of cryptography, in a blockchain, such as
digital keys, cryptocurrency addresses and digital signatures need to be explained.

Digital keys are used from users in order to perform transactions. They are generated
in pairs; for every public key there is a also private one. The public key is the identity of
an account to the network and is visible to anyone, while the private key is the ”password”
of a user account and is only known to the user in order to unlock the respective account.
Both keys and the account are not stored directly in the network, but in wallets which exist
independently from the network. The hashed address is the representation of the public
key in the network and is called cryptocurrency address [B. Asolo, 2019]. On the other
side, the private key is used to sign transactions and is referred to as the digital signature,
meaning that it gives a user access and control over the funds.

1.3.3 Conclusion

Blockchains have the potential to build a new generation of transactional applications that
establish trust, accountability, and transparency at their core while streamlining business
processes and legal constraints [Blockgeeks, b]. They also enable the maintenance of a
historical record of all transactions, as well as the means to add and administer new entries.

1.4 Comparison of some featured Blockchain platforms

1.4.1 Ethereum

Ethereum was introduced in Vitalik Buterin’s paper and its innovation is that it supports
all types of computations. It is an open-source, blockchain-based platform, based on re-
wards, which eliminate the need for trusted intermediaries. According to Dr. Gavin Wood,
co-founder of Ethereum organization, Ethereum, taken as a whole, can be viewed as a
transaction-based state machine: we begin with a genesis state and incrementally execute
transactions to morph it into some final state. It is this final state which we accept as the
canonical “version” of the world of Ethereum [G. Wood]. It allows everyone to set their
own rules in transactions and state transition functions. This is done by involving smart
contracts, a set of cryptographic rules that are executed under the conditions that the
creator of the contract has set up.

Ethereum is a novel cryptocurrency that uses a blockchain not only to store a record

1.4. COMPARISON OF SOME FEATURED BLOCKCHAIN PLATFORMS 11

of transactions, but also to store user-generated programs called smart contracts and a
history of calls made to those contracts. A blockchain with a built-in Turing-complete
programming language, allowing anyone to write smart contracts and decentralized appli-
cations where they can create their own arbitrary rules for ownership, transaction formats
and state transition functions [V. Buterin]. Instead of using the computer system of a big
company like Google (a centralized system), Ethereum lets software applications run on a
network of many private computers (a decentralized system) [Upfolio].

Ethereum allows developers to program their own smart contracts, or “autonomous agents”,
as the Ethereum white paper calls them. The language is “Turing-complete”, which means
that it supports a broader set of computational instructions. In a nutschell, smart contracts
can:

e Function as “multi-signature” accounts, so that funds are spent only when a required
percentage of people agree

e Manage agreements between users, e.g. if one purchases an insurance product from
another

e Provide utility to other contracts (similar to how a software library works)

e Store information about an application, such as domain registration information or
membership records

One trade-off of Ethereum is related to its consensus mechanism (Proof of Work). It is
the most popular algorithm for verifying the correctness of a transaction happening in the
network. On the one hand, it requires a lot of computational power in order to verify any
transaction and at the end to build a block and validate it. On the other hand, the fact
that it requires so much computational power makes it difficult to replicate and change
the whole chain and as a result, reduces the risk of a 51% attack. At the same time, each
individual solution is easy for the community to verify, which makes it easy to check all
transactions for trustworthiness. The fact that it doesn’t rely on a single third-party entity
makes it a “trustless” and transparent network. PoW also sets a limit on how many new
blocks of data can be generated. For example, miners can only create an Ethereum block
every 10-20 seconds.

1.4.2 Hyperledger Fabric

Hyperledger is an open source community of communities that benefit from an ecosystem
of Hyperledger based solution providers and users, focusing on blockchain-related use cases
that work across a variety of industrial sectors.

12 CHAPTER 1. INTRODUCTION

Fabric is one of the projects of Hyperledger, under the auspices of the Linux Foundation.
Fabric is used in many prototypes, proofs-of-concept, and in production distributed ledger
systems, across different industries and use cases. It is about a consortium blockchain
network in which organizations can participate as “members” given that they have the
permission to participate. Each member is responsible for setting up the peers that are
required in order to participate in the network. Moreover, it can create its own network
which results in a scale up to more than 1000 transactions per second [Blockgeeks, b].

Fabric has no native currency and as a result, the definition of what can be transferred is
wide and can be defined as asset. An asset can be anything with monetary value. Assets
are represented as a collection of key/value pairs, with state changes being recorded as
transactions on the ledger. Members can interact with the ledger by using the chaincode
which defines the rules, the state and the business logic of an asset. This chaincode gives
the possibility to build a private channel for asset transactions. The chaincode needed to
read and alter the state of an asset will only be installed on peers involved in this certain
business case, which means that Fabric’s blockchains allow the users to participate in pri-
vate interactions [M. Beedham, 2018].

As a result of the permissioned nature of Fabric, there is a membership identity service
that manages IDs, authenticates participants, and provides additional layers of permission.
Only parties directly affiliated with the deal are updated on the ledger and notified. This
helps maintain privacy and confidentiality.

The consensus with which Fabric works is Practical Byzantine Fault Tolerance (PBFT),
which checks how much time a transaction has resided on a machine. The main program-
ming languages are Golang and Java. There are two kind of nodes: Peer nodes that execute
and validate transactions and Ordering nodes that order and propagate transactions. It
constitutes of two main parts: Blockchain logs that store the immutable sequenced record of
transactions in blocks and the State database that maintains the blockchain’s current state.

Summarizing the main functionalities of Fabric:

1. Users can define asset types and the consensus protocol

2. Users can set permissions on who can join the network

3. There are 2 distinct roles: users and validators

4. Tt consists of a log of transactions and a database of the current state

5. Assets are added, updated, and transferred by chaincode

Fabric does not focus on cryptocurrencies and monetary assets as most of the blockchains
do, but in industrial applications of the blockchain technology. It provides a more fine-

1.4. COMPARISON OF SOME FEATURED BLOCKCHAIN PLATFORMS 13

grained access control to records and thus enhances privacy. Furthermore, a gain in per-
formance is achieved as only parties taking part in a transaction must reach consensus
[Valenta and Sandner, 2017].

1.4.3 R3 Corda

Corda is an initiative of R3, a company which builds distributed ledger technology and was
founded in 2014 by David Rutter in New York City. It started as a consortium with nine
financial companies: Barclays, BBVA, Commonwealth Bank of Australia, Credit Suisse,
Goldman Sachs, J.P. Morgan, Royal Bank of Scotland, State Street, and UBS [J. Kelly,
2015]. Later, more financial companies started joining the consortium. As a result, Corda
focuses on providing distributed solutions mainly in the finance industry.

According to the respective white paper, Corda is a distributed ledger platform for record-
ing and processing financial agreements [R. G. Brown and J. Carlyle and I. Grigg and M.
Hearn]. It is mostly designed as DLT for financial services because of the highly regulated
environment it takes into consideration. That doesn’t mean, however, that it is limited in
blockchain concepts in other industries.

Corda is a permissioned, private network where all participants have been permissioned
to participate, and their identity is verified. This permission is obtained in the form of a
certificate which is received from the network operator who defines the rules for participa-
tion. Unlike other DLTs, Corda does not use the blockchain logic to record transactions.
The reason is that Corda wants to offer the appropriate privacy to its participants. As a
result, the parties who are involved in a transaction are the only ones who are informed
about the transaction. This concept differs from the blockchain ledger sharing approach
that Ethereum and Fabric use. In the common blockchain concept, networks broadcast all
the transactions which are distributed to all the nodes of the network.

In the permissionless networks, where there is not trust among the participants, consensus
needs to be reached by computational effort. In permissioned networks, the agreements
are reached thanks to the participants’ trust to each other. Corda goes a step further and
instead of communicating the message to all the trusted participants, uses direct commu-
nication only to the involved parties, which makes the process much quicker and creates a
veil of privacy, a key element in the financial industry. Hence, there is no single central store
of data and each node maintains a separate database of known facts. In other words, each
participant can only see a part of the ledger, the part in which he is involved [corda.net].

Furthermore, the basic component of Corda is the state. It is an immutable object repre-
senting a specific agreement or contract and it may contain any kind of information. The
difference with the contracts that we meet in other blockchains is that the state is specific
for a pair of participants and not an element used by the entire ledger. A state cannot be
modified and in order to update it, a new version of the state is created.

14 CHAPTER 1. INTRODUCTION

Another important element of Corda are its transactions or flows. They represent the
intention to update the ledger. A transaction can be accepted only if it does not contain
double spending, is valid, and is signed by the involved parties [corda.net]. Transactions
represent a link among the different states.

Finally, there is the notary which provides the definiteness in the system. It is the en-
tity that provides transaction ordering and timestamp services [N. Avramov, 2019].

Overall, it can be claimed that Corda, although it is commonly considered as a blockchain,
is not an actual blockchain, since it is not organised into blocks. However, it is a game
player in the future of blockchain technologies and generally of distributed ledgers.

Chapter 2

The Ethereum Model

2.1 Accounts

Accounts play an important role in Ethereum. There are two kinds of accounts: Externally
Owned Accounts (EOAs) and contact accounts, known as smart contracts as well. All the
accounts in blockchain are characterized by four core elements:

e The nonce, a counter that is used to ensure that each transaction can only be pro-
cessed once representing the number of transactions successfully sent from this ac-
count (if it is an EOA), or the number of contracts created by it (if it is a contract
account).

e The account’s current ether balance (the number of wei owned by an account).
e The account’s code (only for contract accounts).

e The account’s storage (permanent data stored, only for contract accounts) [V. Bu-
terin].

2.1.1 External Owned Accounts (EOAs)

EOAs are crucial for users in order to interact with the Ethereum blockchain by using
transactions and they represent the identities of external entities. An EOA is controlled
by the pair of keys that are mentioned earlier in this thesis, the private key and the public
key. Accounts are indexed by their address, which is the last 20 bytes of the public key.
The private key, which is a 20-byte address as well, is always encrypted with the password
the user selects when the accounts is created. The public and the private key are stored in
a keyfile.

For the time being, it is very important for any user to carefully store the keyfile. If

the password for the keyfile is lost, there is no way to retrieve it, which means that any
amount of ether in the account would become inaccessible and “lost” in the network. In

15

16 CHAPTER 2. THE ETHEREUM MODEL

order for a user to create such an account, the non-coding way, is to use the official Mist
Ethereum wallet, which is developed under the Ethereum Foundation.

External accounts can initiate transactions either by transferring ether or by triggering
some contract code. Moreover, as seen earlier, an external account might have a balance,
but they maintain neither bytecode nor storage, in contrast to the smart contracts. This
difference will help the upcoming analysis, where the two types of contracts will be com-
pared. Finally, transactions in the Ethereum network can only be initialized from EOAs.

2.1.2 Smart Contracts

A smart contract, or contract account, is another core element of the Ethereum network
and the key differentiator of Ethereum from other altcoins!. Smart contracts constitute
one of the most successful applications of the blockchain technology. The reason is that
Ethereum supports the feature, called Turing-completeness, that allows the creation of
customized smart contracts.

Contracts exist in the network as independent entities that execute a part of their stored
code when they are getting triggered by either transactions or messages. This stored code is
called bytecode. The bytecode stores all the rules of an agreement between different parties,
validates and executes the agreed terms automatically, without relying on third parties. It
consists of different functions. These functions define the business logic, which is executed
once the contract has been deployed. In order to save space and keep the database clean,
Ethereum allows contracts to be self-destroyed when they do not add value anymore. To
incentivize the developers to create contracts with this functionality, Ethereum refunds the
amount of ether that has been spent to create the contract.

A smart contract is represented by its 20-byte address, similar to an EOA address, such
as 'Oxdlceeeeee83f8hcf3bedad437202b6154e915405°, and it can be developed in high-level
languages, such as Solidity?. When the contract is deployed on the network, the solidity
code is compiled as bytecode.

The smart contract functionality is the key element that makes Ethereum so flexible for
different applications. Ethereum allows developers to program any smart contract or dif-
ferently ”autonomous agent”, according to the white paper [V. Buterin]. As a result, smart
contracts need to have the following three characteristics:

e Deterministic: Given the same inputs in different computers, the output will always
remain the same.

L“Altcoin” is a combination of two words: “alt” and “coin”; alt signifying alternative and coin signi-
fying (in essence) cryptocurrency. Most of these altcoins are built up on Blockchain. However, they differ
themselves with a variety of different attributes, such as different consensus and functionalities

2Solidity is an object-oriented, high-level language for implementing smart contracts [Solidity, 2019]

2.1. ACCOUNTS 17

e Terminable: A contract has to be able to terminate after a given time limit. In order
to achieve this, contracts use steps counter or timer and terminate when the execution
exceeds the defined limit.

e Isolated: The contracts are kept isolated in a sandbox. As a result, it is secured that
the entire network is not under risk.

However, the flexibility to create any contract can sometimes be seen as a drawback and
together with the complexity of Solidity, these are the main reasons why there are many
contracts in Ethereum that are vulnerable to attacks, as they have not been designed tak-
ing into consideration all the risks.

Lifecycle of a smart contract

The initial phase of a smart contract is the creation. This phase includes the definition of
the contract objective and the contract rules (what the contract is supposed to deliver)
and the coding implementation. After transforming the contract requirements into con-
tract code, the coded version of the contract is submitted to Ethereum. After the code
of the smart contract is created, it cannot be modified. If anything has to change, a new
contract is required to be created. There is a difference between the code used when a user
creates a contract in the Ethereum platform and the code of the contract itself. In order
to create a contract, a transaction needs to be executed towards a special “0x0...” address
and an initiation code needs to be added as data in the respective field. This initiation
code in not the same as the code of the new contract. The initiation code, called contract
deployment code, is used by the EVM in order to initiate the contract, while the output
of this execution is stored as the code of the contract [Sillaber and Waltl, 2017].

When a contract is submitted to the blockchain, it is getting exposed to miner nodes
in order to confirm its validation. In order to validate the new contract, a fee (gas) has to
be paid to the miners as they spend an amount of computational power. From this point
on, the smart contact is public and accessible by all users in the network.

In order for users to use a contract, they need to send some input for execution. When
the contract receives this input, the respective functions are executed. As a result, this
execution creates a set of new transactions and a new state of the contract. All these new
elements are submitted to the Ethereum ledger and are validated through the consensus
mechanism [Sillaber and Waltl, 2017].

Finally, the respective committed digital assets are transferred to the appropriate party
and the contact has been fulfilled.

There is an infinite amount of contracts that can be created in the network. However,
there are some “templates” that are commonly used, as they provide some main function-
alities for contracts that want to achieve similar behaviours. These are token standards

18 CHAPTER 2. THE ETHEREUM MODEL

that define a common list of rules and are called ERC (Ethereum Request for Comments).
Some of these are described below.

ERC20: This standard is a simple interface for creating tokens and can be reused from
any application. It is the most commonly used standard in Ethereum. It consists of 6 main
functions and 2 events. These functions are:

e Total Supply: defines the initial total supply of tokens
e Balance: monitors the balance of the contract every time
e Transfer to: sends tokens to specific accounts (wallets)

e Transfer from: enables token holders to exchange tokens after the initial distribution
of the tokens

e Approve: approves other accounts to withdraw tokens from the account calling the
function

e Allowance: after the approval of withdrawing tokens, it is used to see the amount of
tokens that is withdrawn from the account

ERC20 is used from wallets in decentralized exchange platforms. Moreover, it is the main
standard used for ICO contracts [V. Lai, 2018].

ERC223: If ERC20 tokens are sent to a smart contract that it is not built on an ERC20
standard, these tokens are not accessible anymore. For this reason, ERC223 supports an
additional functionality that ensures that tokens are only sent to contracts with the right
standard.

ERC721: This is a standard developed for non-fungible® tokens. These tokens are com-
pletely unique. This feature of the standard makes it suitable for representation of assets
that cannot be duplicated. A good example is the ownership over assets, such as houses,
art pieces, or digital collectibles.

As mentioned earlier, smart contracts are simply some lines of code that define a set
of rules and are executed when the smart contract code is activated. In order to execute a
contract, a user uses a Decentralized Application (DAPP). DAPPs are software appli-
cations that are connected and operate in the Blockchain through smart contracts. This is
the way that users can interact with smart contracts. They can be seen as an interface of
a smart contract running on the Ethereum network.

3A fungible token is a token that can be replaced by something identical and it is interchangeable such
as an ETH token. A non- fungible token contains unique information that make the token irreplaceable.

2.2. TRANSACTIONS 19

2.2 Transactions

As seen earlier, Ethereum is an account-based model, as our known banking system. The
state of Ethereum changes every time a transaction of value or information is executed
between two accounts. So, the state* consists of these account addresses.

There are three kinds of transactions:

e Ether transfer: An external account can transfer Ether to another external account
or a contract. This kind of transaction is very similar to a Bitcoin transfer.

e Contract creation: An external account can create a contract by transferring ether
to a zero recipient’s account. Then a new contract is created. The transaction should
contain a code defining what the new contract will do. The execution of the transac-
tion will create the bytecode of the new contract.

e Contract call: After a contract is deployed, an external account can call a contract
when an account intends to implement one or more functions of a contract. The input
data contain all the instructions related the execution of the contract.

In order to execute all the different transactions, it is very important to set correctly all
the different parameters, which will be analyzed up to a broader extent later.

Smart contracts cannot initiate transactions. However, a contract can send an internal
transaction to a another contract account. This internal transaction is called a message
call that is part of the initial contract account’s code and is indirectly fired from a trans-
action that is originally initialized by an external account. Thus, the message calls can be
seen as an extra type of transaction that takes place between contract accounts. In case
of such a message call, this message contains the functions that should be activated in the
called contract.

2.3 Ethereum Virtual Machine

Ethereum Virtual Machine (EVM) is the computation engine of the Ethereum network and
handles smart contracts deployment and execution. EVM is required in order to update
the Ethereum state. An ether transfer from an account to another does not require an
update of the state and as a result, EVM is not involved. However, it is used for any other
action in the network.

Specifically, EVM is responsible for all of the following executions in the network:

4Tt is part of Ethereum’s base layer protocol. According to Ethereum yellow paper [G. Wood], Ethereum
is a transaction-based “state” machine; a technology on which all transaction-based state machine concepts
may be built.

20 CHAPTER 2. THE ETHEREUM MODEL

e EVM confirms the validity of a transaction. This means that it checks the correct
number of values, the validity of the signature and the match of the nonce with
the nonce of the particular transaction account. If anything of these elements is not
correct, an error will return back [Katalyse.io, 2018].

e EVM checks if the gas is enough in order to execute the transaction. In case gas is
not enough, the transaction fails. However, the transaction fee in such a case would
not be refunded and would be paid to the miner.

e EVM transfers the value of Ether to the recipient’s address.

e EVM calculates the total gas used and the transaction fee, in order to initialize the
gas payment to the miner.

2.4 Ether and Gas

Ether is the currency of Ethereum. It has intrinsic value as any currency. There is a mis-
understanding between ether and gas. Gas is a commodity, like crude oil. It is the fuel
for operating Ethereum. Every time a transaction or a contract is executed, users spend
tokens which are translated to gas to run the computations. A user has to pay for the com-
putational power spent, regardless of whether the transaction was successful or not. Gas
is therefore an implicit incentive for developers to produce contracts that are of low-cost
execution and for miners to validate transactions. Like this, the community avoids a waste
of resources and eliminates the motivation for denial-of-service attacks.

Ether derives its value from different factors. First, as mentioned earlier, it is used to
pay transaction fees in Ethereum. Furthermore, it can be accepted as payment currency
from some retailers, such as the largest online Swiss retailer Digitec Galaxus AG. It can
also be lent or borrowed. Finally, it is used as a medium of exchange to purchase Ethereum-
based tokens. One example of the latter is an Initial Coin Offering (ICO), which will be
analyzed later [A. Sassano, 2019).

Hence, ether serves all the three conditions in order to be considered as money within
an economy.

e It works as a store of value, where investors purchase it and hold it for investment
purposes given its predictable supply growth and congenital utility.

e [t serves as a medium of exchange within the Ethereum network, and not only.

e It is used as a unit of account by various parties (including companies that have
raised Ether via ICOs) [A. Sassano, 2019].

The smallest denomination of Ether’s metric system is Wei, where 1 Ether = 1e!® Wei.

2.5. BLOCKS 21

2.5 Blocks

Even by the name of the technology, it can be easily derived that blocks are a fundamental
component of Ethereum. All the information is stored in blocks. Each block consists of a
block header and a set of transactions mined in the block. The chain is created by hashing
some of the information of the previous block and including it in the new one [ETH events,
2018]. The hash IDs and timestamp associated with each block are the virtual glue that
connects the blocks and forms the blockchain. Any alteration of the ledger or an individual
block will make the code unworkable and, as a result, would be detectable. Until now, no
blockchain has been breached or hacked, although several cryptocurrency platforms have
suffered breaches, reinforcing the importance of robust password security and protocols
[Appelbaum and Smith, 2018].

The Ethereum blockchain begins its life with its own genesis block. After the zero-block
initiation, all other activities, such as mining, transactions, and contracts change every
time the state.

In Ethereum, the time between blocks is around 14 seconds, which means that Ethereum
updates its state every 14 seconds. Each block is a pool of transactions that are stored
together with the hash of the previous block and the proof-of-work of the current block [F.
Gadaleta, 2018]. As a result, the proof-of-work and the content of the block constitute the
hash of the new block. Currently the maximum block size in Ethereum (or else the block
with the most computational power needed) is around 1’500°000 Gas.

2.6 Mining

Mining is the process of validating new transactions and creating new blocks. As a result,
miner nodes will collect transactions from the transaction pool, will execute them in the
EVM, solve the nonce and create the new block that fits to the chain. In Ethereum, the
miner of a block receives rewards from 3 different sources:

e Three Ether for every block that the miner adds in the chain.

e All the gas the miner spends in order to validate the transaction of the block. This
is in fact the compensation for the computational power spent.

e An extra reward for including Uncles® as part of the block, in the form of an extra
1/32 per Uncle included.

However, the whole way of validating and receiving rewards would change in a proof of
stake consensus and would reform the way mining is done in the Ethereum blockchain.

®Uncle blocks are the ones which are created form miners but they are not included in the chain as the
latest one as they were not the first one produced.

22 CHAPTER 2. THE ETHEREUM MODEL

2.7 Data structuring and format

Ethereum has a very special way of handling data and processing transactions. The core
data structure in Ethereum consists of Merkle Patricia trees (tries), a combination of
Merkle and Patricia trees. A simple Merkle tree is a tree of hashes. Parent nodes contain
the signature of the data of the child nodes as a hashed value of the sum of their childrens’
hashes [K. Kim, 2018] (see fig. 2.1). On the other side, a Patricia tree is a data structure
which is also called Prefix tree, radix tree or trie. A trie uses a key as a path, so that the
nodes that share the same prefix can also share the same path [K. Kim, 2018] (see fig. 2.2).
The Merkle tree guarantees the efficient and secure verification of the data through this
hashing process, while the Patricia tree allows an easy search through the nodes.

Top Hash

hashi "=

Hak 1

o

Hash Hash
o] 1
hash{ =127) hash{ =17)

7N N

Hash Hash Hash Hash
0-0 0-1 1-0 1-1
hash({L1) hash(L2) hash(L3) hash(L4)
' 1T | Data
L1 L2 L3 L4 Blocks

Figure 2.1: Example of Merkle Tree [K. Kim, 2018§]

A Merkle Patricia tree is, therefore, the combination of both in order to increase the per-
formance and the efficiency, providing a persistent data structure to map data. Similarly
to the Merkle tree, every node has a hash value again, which is the key identifier of the
node. The Patricia structure comes to add a node path where nodes that share the same
prefix can also share the same path. This structure is fastest at finding common prefixes,
simple to implement, and imposes small memory requirements [K. Kim, 2018|.

Ethereum uses this data structure for each of the four data tries it maintains: receipt

2.7. DATA STRUCTURING AND FORMAT 23

0 e 1\n
a/n /5

3 I4

Figure 2.2: Example of Patricia Trie [K. Kim, 2018]

trie, state trie, storage trie, and transaction trie. Receipt, state and transactions tries
constitute the block header of each separate block. In detail, only the root node hashes of
the transaction trie, state trie and receipts trie are stored directly in the blockchain. The
storage trie’s root is part of the state trie at the very end. This is illustrated in fig. 2.3.
The way the tries are working is out of the scope of this thesis. However, it is important
to understand that these four tries (state, transactions, receipts, and storage) contain all
the data of a block.

e State trie provides a mapping between addresses and account states and maintains
the global state. It is unique in the Ethereum network and is constantly updated. It
consists of the nonce, balance, storage root, and the codehash [D. Brickwood, 2018].

CHAPTER 2. THE ETHEREUM MODEL

Ethereum blockchain
Transaction Trie
Transactions
Root
State Trie Storage Trie
gt:g: storage Root
Recelpts Trie
Reciepts
Root

o

Figure 2.3: The four tries in an Ethereum block [T. McCallum, 2018]

Transaction trie ensures the integrity of all the transactions in a block. Every block
has its own transaction trie. It consists of the account nonce, gas price, gas limit,

recipient, transfer value, transaction signature values, and account initialization [D.
Brickwood, 2018].

Receipts trie contains the information of each transaction separately and is a pool of
four items: the cumulative gas used, the set of logs, the Bloom filter and the status

code of the transaction.

Storage trie is separate for each account and contains contract information.

2.8. HIGHLIGHTS OF ETHEREUM ROADMAP 25

Some of this data will be analyzed later.

2.8 Highlights of Ethereum roadmap

January 2014: Ethereum project is introduced at the North American Bitcoin con-
ference by Vitalik Buterin.

July 2014: An Ethereum ICO was organized and attracted a lot of funding. A total
of 60’102'216 ETH are sold for 31’591 BTC, which was worth $18°439°086 at that
time [Easy Ethereum|. Out of these funds, Ethereum Switzerland GmbH was funded
and developed the Ethereum project.

May 2015: Ethereum launches Ethereum Olympic, a testing release where coins are
not compatible with “real” ETH [A. Lewis, 2016].

July 2015: Ethereum launches Ethereum frontier, a release broader to people who
can mine ETH and build contracts.

August 2015: Kraken becomes the first digital currency exchange platform to trade
ether.

March 2016: Homestead is the first “stable” Ethereum release and is classified as safe
to participate.

May/June 2016: DAO® raised $150 million using ICO. However, due to a gap in
the smart contract coding that allowed the withdrawal of twice as much ether as
invested, the Ethereum network implemented a hard fork. As a result, $50 million
of Ether was stolen and the Ethereum blockchain split into Ethereum (ETH) and
Ethereum Classic (ETC). This fork caused Ethereum to lose its immutability. After
the fork, Ethereum attracted more users and it was mainly established as the common
Ethereum [J. P. Buntinx, 2017].

October 2016: Tangerine Whistle: another hard fork for Ethereum in the block
2°463°000 on 18 of October 2016. This fork occurred in order to increase the gas
prices and make them reflect the real computational complexity of some operations.
As a result, any attack attempt is getting automatically more expensive and more
difficult [Coinmamal.

February 2017: Enterprise Ethereum Alliance is established by a group of companies
in order to make Ethereum suitable for big businesses. As a result, the concept of
permissioned Ethereum is introduced.

SDAO (Decentralized Autonomous Organization) was the venture capital fund with no management
structure that aimed to raise the money for Ethereum Dapps that were promising, by their own belief.
The investments were distributed via DAO tokens [D. Vujicic and D. Jagodic and S. Randic, 2018].

26

CHAPTER 2. THE ETHEREUM MODEL

e October 2017: Metropolis: Byzantium hard fork is the first half of Metropolis up-
date. It occurred in the block 4’370’000 on October, 16-th 2017. It included changes
to reduce the complexity of EVM and provide more flexibility to smart contract
developers.

e February 2019: Metropolis: Constantinople hard fork is the second half of Metropolis
update. It occurred in the block 7’280°000 on February, 28-th 2019.

e May 2019: Serenity is the last scheduled step of Ethereum and brings a big change
in the consensus mechanism. Until then, the only acceptable consensus mechanism
was proof of work. In this release, a hybrid mechanism (Casper) of proof of work and
proof of stake will be in place. More details regarding this change can be found in
the final chapter.

Chapter 3

Data Analysis Setup

3.1 Data acquisition

According to BitInfoCharts, the Ethereum database size is 212.17 GB. There is no central
administrative system where the data can be downloaded from. One feature of Ethereum
is that all data is public and available. The nodes, which share data among each other,
store a copy of the data, while the network executes the Ethereum protocol, which defines
the rules of interaction of nodes with each other and/or smart contracts over that network

[A. Sokolowska, 2018].

A blockchain is an immutable, append-only distributed database [ETH events, 2018]. In
order to analyze it and extract some useful information, it is important, not only to grasp
the unique characteristics of this technology, such as decentralization, transparency and
immutability, but also to understand what data is stored in the blockchain, how it looks
like and how it is structured. Syncing an Ethereum node is a pain point for someone who
wants to access Ethereum data. By downloading all the blocks, the whole chain is taken.
However, as no transaction is executed, no account state is available and as a result no
balances, nonces, smart contract code and other data are obtained. In order to acquire
these, the state trie is needed, which requires a lot of time and processing memory. The
schema of the Ethereum raw data is illustrated in fig. 3.1.

In August 2018, Google Big Query managed to download all the blocks” data in an SQL
database, in real time. The first phase relies on Ethereum ETL - an open-source tool they
developed in order to export the Ethereum blockchain into CSV or JSON files. It connects
to an Ethereum node via its JSON RPC interface. The exported files are then moved to
Google Cloud Storage, loaded into BigQuery, and finally verified. Then, the user can query
the data in the BigQuery console or via API [E. Medvedev and A. Day, 2018]. Since all
the data is available there and is updated every day, this source of data will be used as the
main one for the analysis of the Ethereum data.

27

CHAPTER 3. DATA ANALYSIS SETUP

scala> ds.printSchemal)
root
|-— etheresumBlockHeader: struct (nullable = true)
[parentHash: binary (nullable = true)
[uncleHash: binary (nullable = true)
[coinBase: binary (nullable = truas)
[stateRoot: binary (nullable = true)
| txTrieRoot: binary (nullable = true)
| receiptTrieRoot: bimary (nullable = true)
[logsBloom: binary (nullable = true)
[difficulty: binary (nullable = true)
[timestamp: long (nullable = false)
[number: decimal(38,8) (nullable = true)
[numberRaw: binary (nullable = true)
| gasLimit: decimal(38,8) (nullable = true)
| gasLimitRaw: bimary (nullable = true)
| gasUsed: decimal(38,8) (nullable = true)
[gasUsedRaw: binary (nullable = true)
| mixHash: binary (nullable = true)
| extraData: binary (nullable = true)
[nonce: binary (nullable = true)
|— ethereumTransactions: array (nullable = true)
| |— element: struct (containsNull = true)
[[|— nonce: binary (nullable = true)
| | value: decimal(38,@) (nullable = true)
| | valueRaw: binary (nullable = true)
[[receiveAddress: binary (nullable = true)
| [gasPrice: decimal(38,@8) (nullable = true)
[[gasPriceRaw: bimary (nullable = true)
| | gasLimit: decimal(38,8) (nullable = true)
| | gaslLimitRaw: binary (nullable = true)
| | data: binary (nullable = true)
| | sig_v: binary (nullable true)
| | sig_r: binary (nullable true)
| | sig_s: binary (nullable true)
|-— uncleHeaders: array (nullable = true)
| |- element: struct (containsNull = true)
| | |- parentHash: binary (nullable = true)
| | uncleHash: binary (nullable = true)
| | coinBase: binary (nullable = true)
| | stateRoot: binary (nullable = true)
| | txTrieRoot: bimary (nullable = true)
| | receiptTrieRoot: binary (nullable = true)
| | logsBloom: binary (nullable = true)
| | difficulty: binary (nullable = true)
| | timestamp: long (nullable = false)
| | number: decimal(38,0) (nullable = true)
| | numberRaw: binary (nullable = true)
| | gasLimit: decimal(38,8) (nullable = true)
| | gasLimitRaw: binary (nullable = true)
| | gasUsed: decimal(38,8) (nullable = true)
| | gasUsedRaw: binary (nullable = true)
| | mixHash: binary (nullable = true)
| | extraData: binary (nullable = true)
| | nonce: binary (nullable = true)

Figure 3.1: Ethereum raw data

3.2. DATA STRUCTURING IN GOOGLE BIGQUERY ETHEREUM 29

3.2 Data structuring in Google Bigquery Ethereum

Google Bigquery separates the Ethereum data in 7 tables: blocks, contracts, logs, to-
ken_transfers, tokens, traces, and transactions. In tables 3.1 to 3.7, all the available data
fields, together with their data types are presented. There are some data field overlaps in
the tables, such as the block number and the block timestamp. The tables are structured
this way in order to be easy for analysis.

Table 3.1: Token transfers table

Fields Data type Mandatory Description
token_address string + ERC20 token address
from_address string Address of the sender

to_address string Address of the receiver
value string Amount of tokens transferred

(ERC20) / id of the token
transferred (ERC721)

transaction_hash string + Transaction hash
log_index integer + Log index in the transaction
receipt
block_timestamp timestamp + Timestamp of the block where

this transfer was in

block_number integer + Block number where this
transfer was in

block_hash string + Hash of the block where this
transfer was in

Although the tables consists of all these data fields, only some of those will be used for the
main analysis. Here is a broader explanation of the data that will be mostly analyzed in
chapter 4:

to_address: The recipient address of an Ethereum transaction. This could be either an
external owned account or a contract account. It is represented with a 160-bit address,
unless it is null, which would mean that the transaction represents a contract creation. It
is the result of a hash function.

from_address: The initiator address of an Ethereum transaction. It can only be an exter-

30

CHAPTER 3. DATA ANALYSIS SETUP

Table 3.2: Tokens table

Fields Data type Mandatory Description

address string + The address of the ERC20
token

symbol string The symbol of the ERC20
token

name string The name of the ERC20 token
decimals string The number of decimals the
token uses
total _supply string The total token supply

Table 3.3: Contracts table

Fields Data type Mandatory Description
address string + Address of the contract
bytecode string Bytecode of the contract
function_signhashes array of 4-byte function signature
string hashes
is_erc20 boolean True when the contract is an
ERC20 contract
1s_erc721 boolean True when the contract is an
ERC721 contract
block_timestamp timestamp + Timestamp of the block where
this contract was created
block_number integer + Block number where this
contract was created
block_hash string + Hash of the block where this

contract was created

nal owned account, as EOA are the only ones who can initiate transactions.
miner: The address of the beneficiary of the reward for any block validation. These are
miner addresses and will help us identify the activity of miners and separate them from

the other external addresses.

value: A scalar value equal to the amount of Wei that the sender transfers to the recipient.
input: The data sent during a transaction, which is also called “message”. When an ex-

3.2. DATA STRUCTURING IN GOOGLE BIGQUERY ETHEREUM 31

ternal account executes a transaction to another external account, the input could be a
message which the sender wants to send to the repicient. Otherwise, the input data is
usually empty. Another type of message is the one that is sent to a contact. The input
there is the code that should be executed to the called contract.

gas_limit: The maximum number of computational steps or the maximum amount of gas
the transaction can spend. If a transaction needs more gas in order to be executed, it will
fail with an “out of Gas” status. This is an important element for a transaction to be
executed properly. The gas limit protects smart contracts from infinite loops. Lowering the
gas limit does not mean that less gas will be spent.

gas_used: Despite the gas limit, a transaction will use a specific amount of gas to be
executed. This is the actual amount of Gas spent. For example, a simple Ether transfer
requires a minimum of 21,000 gas units. Any other operation costs more than 21,000 gas
units [H. Kenneth, 2018]. One can find relative costs of abstract operations in the Ethereum
yellow paper [G. Wood]. In case the gas used is less than the gas limit, the remaining gas
will not be deducted from the account, but will be returned to the owner.

gas_price: The Gas price, in ETH, that the sender defines at transaction creation and
is willing to pay for each computational step [L. Zuchowski, 2017]. The higher it is, the
bigger the incentive for miners to prioritize the transaction. However, some recommended
gas prices can be found in the ETH gas station [ETH Gas Station|. For example, a normal
price is 4.8 Gwei for a fast execution of less than two minutes. A safe slow-time execution
gas price is 1 Gwei.

output: The final bytecode of the contracts created. It constitutes the rules of how a spe-
cific contract works. It will be used to identify the identical contracts.

call_type: The indicator of what type of call one address does to another. It will be used
to identify the nature of the different transactions.

trace_address: This is null for top level traces, i.e. those corresponding to transactions.
Thus, they are created by external accounts. On the other side, it is not null when it is a
message call between two contracts. It will be used in the categorization of contracts into
two categories: the user-created ones and the contract-created ones.

status: This defines if the transaction was successful (status 1) or failed (status 0).

32

CHAPTER 3. DATA ANALYSIS SETUP

Table 3.4: Blocks table

Fields Data type Mandatory Description
timestamp timestamp + The timestamp for when the
block was collated
number integer + The block number
hash string + Hash of the block
parent_hash string Hash of the parent block
nonce string + Hash of the generated
proof-of-work
sha3_uncles string SHA3 of the uncles data in
the block
logs_bloom string The bloom filter for the logs
of the block
transactions_root string The root of the transaction
trie of the block
state_root string The root of the final state trie
of the block
receipts_root string The root of the receipts trie of
the block
miner string The address of the beneficiary
to whom the mining rewards
were given
difficulty numeric Integer of the difficulty for
this block
total _difficullty numeric Integer of the total difficulty
of the chain until this block
size integer The size of this block in bytes
extra_data string The extra data field of this
block
gas_limit integer The maximum gas allowed in
this block
gas_used integer The total used gas by all
transactions in this block
transaction_count integer The number of transactions in

the block

3.2. DATA STRUCTURING IN GOOGLE BIGQUERY ETHEREUM 33

Table 3.5: Transactions table

Fields Data type Mandatory Description
hash string + Hash of the transaction
nonce integer + The number of transactions
made by the sender prior to
this one
transaction_index integer + Integer of the transactions
index position in the block
from_address string + Address of the sender
to_address string Address of the receiver. Null
when it’s a contract creation
transaction
value numeric Value transferred in Wei
gas integer Gas provided by the sender
gas_price integer Gas price provided by the
sender in Wei
input string The data sent along with the

transaction

receipt_cumulative_gas_used integer

The total amount of gas used
when this transaction was
executed in the block

receipt_gas_used integer The amount of gas used by
this specific transaction alone
receipt_contract_address string The contract address created,
if the transaction was a
contract creation, otherwise
null
receipt_root string 32 bytes of post-transaction
stateroot (pre Byzantium)
recelpt_status integer Either 1 (success) or 0
(failure) (post Byzantium)
block_timestamp timestamp + Timestamp of the block where
this transaction was in
block_number integer + Block number where this
transaction was in
block_hash string + Hash of the block where this

transaction was in

34

Fields

Data type Mandatory

CHAPTER 3. DATA ANALYSIS SETUP

Table 3.6: Traces table

Description

transaction_hash

string Transaction hash where this
trace was in

transaction_index

integer Integer of the transactions
index position in the block

from_address string Sender’s address, null when
trace_type is genesis or reward
to_address string See footnotel
value numeric Value transferred in Wei
input string The data sent along with the
message call
output string The output of the message
call, bytecode of contract
when trace_type is create
trace_type string + One of call, create, suicide,
reward, genesis, daofork
call_type string One of call, callcode,
delegatecall, staticcall
reward_type string One of block, uncle
gas integer Gas provided with the
message call
gas_used integer Gas used by the message call
subtraces integer Number of subtraces
trace_address string Comma separated list of trace
address in call tree
error string Error if message call failed (no
top-level trace errors)
status integer Either 1 (success) or 0
(failure)
block_timestamp timestamp + Timestamp of the block where
this trace was in
block_number integer + Block number where this
trace was in
block_hash string + Hash of the block where this

trace was in

1 Address of the receiver if trace_type is call, address of new contract or null if
trace_type is create, beneficiary address if trace_type is suicide, miner address if
trace_type is reward, shareholder address if trace_type is genesis, WithdrawDAO
address if trace_type is daofork

3.2. DATA STRUCTURING IN GOOGLE BIGQUERY ETHEREUM 35

Fields

Table 3.7: Logs table

Data type Mandatory Description

log_index

integer + Integer of the log index
position in the block

transaction_hash string + Hash of the transactions this
log was created from
transaction_index integer + Integer of the transactions
index position log was created
from
address string Address from which this log
originated
data string Contains one or more 32
Bytes non-indexed arguments
of the log
topics array of Indexed log arguments (0 to 4
string 32-byte hex strings)?
block_timestamp timestamp + Timestamp of the block where
this log was in
block number integer + The block number where this
log was in
block_hash string + Hash of the block where this

log was in

Chapter 4

Data Analytics

4.1 Methodology

In chapters 1 to 3, the distributed ledger technology and the blockchain technology were an-
alyzed as concepts and the focus was put mostly on the Ethereum structure. The Ethereum
blockchain contains a lot of data, not only for the pure currency transactions, but also for
the smart contracts that operate in the network and change the state of Ethereum.

In the main analysis, the focus will be initially given to a comparison of how the Ethereum
is being used in general over time and to its “demographics” as of today. Then, in the
second phase, the number of transactions and the total value of Ether will be used as
common denominator in order to compare the different external accounts, the different
contracts, and the different tokens. Moreover, the top external accounts, contracts and
tokens will be identified and compared with each other, in an attempt to define the reason
why these accounts present a large number of transactions or value of Ether. Finally, a
closer look will be taken at the contracts analysis, and more particularly, their lifecycle
and how they are used. Depending on these comparison results, clusters may be built.

The queries on the SQL Google Bigquery Ethereum database that are used for this anal-
ysis are provided in part IT. Moreover, [Etherscan.io], a Block Explorer, Search, API and
Analytics Platform for Ethereum, will be used for identifying specific details for different
addresses. This platform provides some analytics as well, concentrating on the “demograph-
ics” data and not on the analysis of the usage and comparison of the different addresses.

4.2 Generic Analytics on Ethereum

Having described in detail how the Ethereum blockchain works and what types of data
are available for analysis, we will first try to analyze the “demographics” of Ethereum and
provide a snapshot of its blockchain as of 20" of May, 2019.

36

4.2. GENERIC ANALYTICS ON ETHEREUM 37

—— number_of_transactions

1.25M
™

750K

500K

number_of_transactions

250K

A P

0
7Aug2015 4Jan2016 2Jun2016 300ct2016 29 Mar2017 26 Aug 2017 23.Jan2018 22Jun2018 19 Nov2018 18 Apr2019
date

Figure 4.1: Daily number of transactions in the Ethereum network. The peak was 1'349’890
transactions on the 4 of January 2018.

—— number_of_transactions

[42]
=

3]
8_.
= =

jy
[=]
[=]
-

—y
o
s

number_of_transactions
o
o
=

w
=

0
7Aug 2015 4Jan2016 2Jun2016 300ct2016 29 Mar2017 26 Aug 2017 23 Jan 2018 22 Jun 2018 19 Nov 2018 18 Apr2019

date

Figure 4.2: Daily number of transactions in the Ethereum network (logarithmic scale)

38 CHAPTER 4. DATA ANALYTICS

—— ether_value
100M
50M

T0M
5M

™
500K

ether_value

100K

0
7Aug 2015 4Jan2016 2Jun2016 300ct2016 29 Mar2017 26 Aug 2017 23 Jan 2018 22 Jun2018 19 Nov2018 18 Apr2019
date

Figure 4.3: Daily transferred ether value (value measured in ether, the respective currency
of the Ethereum network

4.2.1 Number of transactions (traffic)

The Ethereum network has processed in total more than 450°528°110 transactions as of 20"
of May. In fig. 4.1, the time series of the number of transactions per day are illustrated.
The daily record for the maximum number of transactions on a single day can be found
on 4" of January 2018, which is 1’349’890 transactions. The longest continuous increase
of transactions 195%, found between November 2017 and January 2018. However, there is
a sharp decrease after January 2018 (134% decrease) and a final stabilization at around
750’000 daily transactions, on average. This is still more than the total average number of
daily transaction since the genesis of the blockchain, which is roughly 326’383, because of
the long tail of small number of transactions for the first 2 years of Ethereum. Although the
future of Ethereum has been doubted during the last months, it seems that it attracts the
interest of users since February 2019, while the number of daily transactions has increased
to around 900’000 in May 2019. This number has not been reached since May 2018.

4.2.2 Volume of transactions

Apart from the number of transactions, it is very interesting to see what the total value of
ether is in these transactions. There may be a lot of transactions, but of small ether value,
or the other way around, meaning only a few transactions where a large amount of ether
is transferred. The total value of transactions is 6’628’592’258 E'TH.

The daily total value of Ether can be found in fig. 4.3. This is the recorded ether value
in all the transactions. Between March 2017 and January 2018, there is an average of
15’000°000 ETH, transferred per day. There is a peak of approximately 45’000°000 ETH in
11t of August 2017. Before March 2017 and after January 2018, the daily total value of

4.2. GENERIC ANALYTICS ON ETHEREUM 39

—— supply
110M

100M

supply
(Le]
(=)
=

80M

70M
30Jul 2015 27 Dec2015 25May 2016 220ct2016 21 Mar2017 18 Aug2017 15Jan 2018 14 Jun2018 11 Nov 2018 10 Apr 2019
date

Figure 4.4: Ether supply growth. The supply consists of the initial ether supply in the
system when it was created and the ether generated as a reward for any mining activity.

the transactions is moving around 2’500°000 ETH, with only a few exceptions.

Figure 4.4 shows the ether supply and its growth rate. The supply consists of the initial
ether supply in the system when it was created and the ether generated as reward for
mining activity. When Ethereum first launched, it “pre mined” 72°000°000 ether. Since
then, 34’000°000 more ether have been generated, as rewards for main block and uncle
block miners. As a result, the ether supply increases around 7.3% per year. On 16" of
October 2017, the ether supply growth rate started decreasing. This is associated with the
block reward reduction from 5 ether to 3 ether when the Byzantium hard fork was applied.
A second reduction in the mining rewards, from 3 ether to 2 ether, occurred on 16" of
January 2019 during the Ethereum hard fork, called Constantinople, at block 7080000
[H. Kenneth, 2018]. This reduction delivers the purpose of reducing the inflation.

4.2.3 Gas used

Another important characteristic is the gas used in these transactions. As mentioned earlier,
what distinguishes Ethereum from other cryptocurrencies is the ability to create DAPPs
and smart contracts. The more complex a transaction is, e.g. the ones that address to smart
contracts and DAPPs, the more gas is consumed. As seen earlier, the minimum amount of
gas used is 21’000 gas for a simple ether transfer. However, the average gas used is 3'217°249
gas. Figure 4.5 shows how the daily gas used in transactions is continuously increasing.
Taking into consideration the reduction in the number of transactions that occurred after
January 2018, one can conclude that the Ethereum network started operating, not only as a
simple ether transfer network, but also as a contract execution network, since the latter type
of transactions costs more in terms of gas. Later, using more data from the network, the

40 CHAPTER 4. DATA ANALYTICS

—— gas_used
100B

10B

10M

30 Juli2015 27 Dec 2015 25 May 2016 22 0ct2016 21 Mar2017 18 Aug 2017 15Jan 2018 14 Jun 2018 11 Nov 2018 10 Apr2019
date

Figure 4.5: Daily gas consumption in the Ethereum network. It represents the sum of ether
spent each day. The y axis is in logarithmic scale.

different contracts that contribute also most to this gas increase will be further analyzed.

4.2.4 Gas price

As explained earlier, the gas price is set by the initiator of a transaction. The higher the
price is, the more probable for the transaction to be prioritized higher against others. In
general, fig. 4.6 shows an average gas price of around 20B Weil. This average takes into
consideration only the different gas prices of the successful transactions. There is no reason
to include gas prices of transactions that were not executed, since this would violate the
real level of gas evaluation.

In February 2019, there is a peak in the daily average gas price, close to 400B wei . Looking
further into the data, there was a transaction with 100’°000’000B wei gas price on that day.
This is the highest gas price ever recorded in the Ethereum network. A deeper check would
let us find out that the value of the transactions and the gas price are identical; that is
100°000’000B wei. The most possible explanation is that the developer confused the two
data fields. As table 4.1 shows, the same address executed more transactions like this where
the gas price and the value of the transaction were identical. Unfortunately, an error like
this is irreversible in the current Ethereum infrastructure.

4.2.5 Address growth

For any network, the users constitute a dominant part of its success. Users in the Ethereum
network are not only individuals, but also contracts. In fig. 4.7, the cumulative address

1Only gas price data after Byzantium is considered (see section 2.8)

4.2. GENERIC ANALYTICS ON ETHEREUM 41

—— average_gas_price
400B

300B

2008

100B

average_gas_price

----L-/\

-100B
16 Oct 2017 4Jan2018 25Mar 2018 13 Jun 2018 1Sep2018 20Nov2018 8Feb 2019 29 Apr 2019

date

Figure 4.6: Daily average price of gas, measured in wei. The ratio of eei- ether is 1 ether
per 1’018 wei. The representation in ether would be a line close to zero. Therefore the
fluctuations are better visualized in the wei scale.

— address_count
30M

25M
20M
15M
10M

5M

SEIO.JuI 2015 10 Jan 2016 22 Jun 2016 3 Dec 2016 16 May 2017 27 0ct 2017 9 Apr 2018 20 Sep 2018 3 Mar 2019

200ct 2015 1 Apr2016 128ep 2016 23 Feb 2017 6 Aug 2017 17 Jan 2018 30Jun 2018 11 Dec 2018
Figure 4.7: Cumulative number of unique addresses in the network with a balance greater
than zero. As the balance of the addresses is taken into consideration, some contracts are
not calculated here.

42 CHAPTER 4. DATA ANALYTICS

Table 4.1: All the high in gas price transactions of 19.02.2019

Row from_address Value gas_price
(wei) (wei)
1 0x587ecf600d304{831201c30ea0845118dd57516e 2x1010 2x1010
2 0x587ecf600d304{831201¢30ea0845118dd57516e 2x1010 4x1010
3 0x587ecf600d304{831201c30ea0845118dd57516e 1x101° 1x101°
4 0x587ecf600d304{831201¢30ea0845118dd57516e 2x1010 2x1010
5 0x587ecf600d304{831201c30ea0845118dd57516e 1x10%7 1x10%7

—— address_count

ED:.‘UI 2015 0Jan2016 22 Jun 2016 3Dec 2016 16 May 2017 27 0ct 2017 9 Apr2018 20 Sep 2018 3 Mar 2019
20 0ct 2015 1 Apr 2016 12 Sep 2016 23 Feb 2017 6 Aug 2017 17 Jan 2018 30Jun 2018 11 Dec 2018
Figure 4.8: Cumulative number of unique addresses in the network. The increase of the

number of addresses is obvious, as well as the strange behaviour.

growth can be found. Since the balance of the addresses is taken into consideration, some
contracts are not considered here. As of 20" of May 2019, there are 25 million addresses
in the Ethereum network with a balance larger than zero. In almost a year, from 2018, the
number of distinct addresses has been doubled.

However, the same graph, considering also addresses with a zero balance, can be a different
story. In fig. 4.8, a sharp increase of the number of addresses by 20 million is observed.
Indeed, on 22" of September 2016, almost 20°000°000 addresses were suddenly created.
That was the result of a DDos attack. A hacker took advantage of an underpriced upcode
and created around 20’000°000 useless Ethereum accounts. This led to the creation of mil-
lions of transaction traces, making data analysis more difficult. At that specific time, the
network was slowing down, making it more time consuming for miners and nodes to process
blocks [Day and Medvedev, 2018]. Thereafter, the Ethereum network underwent a hard
fork at block number 2°463’000. Finally, it can be stated that the total number of addresses
is approximately 60M, given the 80M transactions minus the 20M useless addresses.

4.2. GENERIC ANALYTICS ON ETHEREUM 43

—— cumulative_contract_creation
17.5M

15M
12.5M
10M
| 7.5M

5M

cumulative_contract_creation

2.5M

0
7Aug 2015 4Jan2016 2Jun2016 300ct2016 29 Mar2017 26 Aug 2017 23Jan 2018 22.Jun2018 19 Nov2018 18 Apr2019

date

Figure 4.9: Cumulative creation of smart contracts

The different types of addresses are displayed in table 4.2. The total number of addresses
is calculated for addresses that have a balance, strictly greater than zero, but also for the
whole universe of addresses. The approximate calculation, based on figs. 4.7 to 4.8, can
also be verified in table 4.2. Summing up the total number of contracts and senders, where
balance is greater or equal to zero, gives a total of 60M addresses. The number of miners
is relatively very small to be taken into consideration in the approximate calculation.

Table 4.2: Number of addresses, per type of address

Addresses Where balance > 0 Where balance >= 0
All 25869427 83'930°036
Contracts 497999 15571524
Miners 3’114 4770
Senders 22448669 46'239°'732

4.2.6 Contracts

In total, there are 15'571’524 addresses that represent contracts. The growth of such ad-
dresses is displayed in fig. 4.9. This data is derived from the Google Big Query related table
where all the contract details are stored. Later, the contracts that are directly created from
external users will be separated from the ones that are created indirectly from external
users, i.e. from a contract generating another contract. In April 2016, the first boost of

44 CHAPTER 4. DATA ANALYTICS

—— number_of_contracts
™

100K

10K

number_of_contracts
-
s

7Aug 2015 4Jan2016 2Jun 2016 300ct2016 29 Mar 2017 26 Aug 2017 23 Jan 2018 22 Jun 2018 19 Nov 2018 18 Apr2019
date

Figure 4.10: Daily creation of contract addresses (logarithmic scale)

smart contracts can be found. After January 2018, there are some picks and after May
2018, there is a small decrease.

However, the contact creation does not follow the pattern of transactions of high fluctua-
tions. In the logarithmic scale, which can be found in fig. 4.10, the contract creation seems
to be more constant and it is increasing over time. This means that users have understood
over time the main functionality of Ethereum and its utility.

4.2.7 Allocation of addresses

In figs. 4.7 to 4.8, the Ethereum addresses growth for external users’ addresses is dis-
played as of 20" of May 2019. In fig. 4.11, the daily allocation of these addresses among
the different types of addresses is displayed. What is visible is that the allocation of the
total addresses has changed since the very beginning of Ethereum. Initially most of the
addresses were mainly external users and very few contracts; through time, contracts grad-
ually gained more ground. Miner addresses were always representing a small subset of the
total addresses, which is also getting smaller, as more addresses of the other two categories
are created.

4.2.8 ETH price and market cap

The fluctuation of the ETH price in USD, as reported in [CoinMarketCap]|, is shown in
fig. 4.12. The ETH price follows the same pattern with the number of transactions. After
January 2018, which is when the highest price is recorded, Ethereum lost 93% of its value,
with $84/ETH to be its lowest price. Since February 2019, Ethereum has made a remarkable
return, stabilizing at around $250/ETH, on average. The total market cap of Ethereum as

4.2. GENERIC ANALYTICS ON ETHEREUM

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
7/8/2015

7/8/2016 7/8/2017 7/8/2018

Figure 4.11: Daily allocation of total number of addresses

45

m external_users
M miners

M contracts

46

CHAPTER 4. DATA ANALYTICS

$1.600 -
$1.400 -
$1.200 -
$1.000 -
$800 -
$600 - =——ETH price
$400 -
$200 -
$-...||.|1..A\.......|...|
A ¥ /\O,\Oz',\Q % ?Sf\ 5‘3\ o 0,\02',\?‘2‘,\ o) ka w50 /\OQ,’\Q A 5\3\ LAY /\o‘z’/\Q A

Figure 4.12: Daily price of ether in USD. The higher price was approximately at
$1’400/ETH when the whole cryptocurrency market was evaluated relatively high in Jan-

uary 2018.

4.3. ANALYTICS FOCUSING ON TRAFFIC (NUMBER OF TRANSACTIONS) 47

B 244 .855.133
54%

B 203.934.435
45%

mcontract_calls
B contract_creation

m ether_transactions

B 2.609.558
1%

Figure 4.13: Allocation of the three different types of transactions (contract calls, ether
transfer, and contract creation)

of 20" of May 2019 is $26°736°0467292.

4.3 Analytics focusing on traffic (number of transac-
tions)

The transactions are one of the main sources of answering many questions about the
Ethereum activity. They display all the activity that is happening from external accounts
to other external accounts or contracts. A transaction between two external accounts can
be only transfer of value. On the other side, a transaction from an external account to a
contract account activates the function of the contract performing different actions such
as creating new contracts, writing to internal storage, transfering tokens, performing some
actions, etc. [H. Kenneth, 2018].

From all the transactions in the network, we can have 3 types of transactions:

e Ether transfer: An external account can transfer Ether to another account or a
contract. This kind of transaction is very similar to a Bitcoin transfer. The metadata
of this transaction are the sender’s address, the recipient’s address, the timestamp
and the value of the Ether sent.

48 CHAPTER 4. DATA ANALYTICS

— contract_calls —— ether_transfers

1.2M

™
800K
600K
400K

200K

contract_calls | ether_transfers

-200K
7Aug 2015 4Jan2016 2Jun2016 300ct2016 29 Mar 2017 26 Aug 2017 23 Jan 2018 22 Jun 2018 19 Nov 2018 18 Apr2019

date

Figure 4.14: Comparison of the daily number of ether transfer transactions and contract
calls

e Contract creation: An external account can create a contract by transferring ether
to a zero recipient’s account. Then, a new contract is created. The metadata of this
transaction are the sender’s address, the timestamp and the input.

e Contract call: An external account can call a contract when the account intends
to execute one or more functions of a contract. The input data contains all the
instructions related the execution of the contract. The metadata of this transaction
are the sender’s address, the recipient’s address, the timestamp and the input.

Figure 4.13 shows that 54% of the transactions are Ether transfers. However, almost 45%
of the transactions are calling a contract in order to execute a function of the contract. This
indicates that a significant fraction of the activity in Ethereum uses the smart contract
features and that it is not used only for currency transfers. Regarding the contract creation
calls, it can be observed that only 1% of the transactions are of this type. At this point,
it is important to mention that this number only refers to contracts created by external
users, as transactions can be executed only from external users, and not from contracts.
Later, the allocation of the different sources of contracts creation will be analyzed deeper.

During the last 4 years of Ethereum network usage, the allocation has changed a lot. In
fig. 4.14, the daily number of transactions that are simple ether transactions is compared
to the one of transactions that are contract calls. From the initialization of the Ethereum
network until December 2018, there is a gradual increase for both types of transactions
with a ratio of 2:1 in favour of Ether transactions. The reason is that Ethereum launched
after the successful story of Bitcoin and the generic evolution of digital currencies. Users

4.4. ANALYTICS FOCUSING ON VOLUME (VALUE OF ETHER) 49

—— contract_calls —— ether_transfers
10M
5M

™
500K

nsfers

£ 100K
50K

10K
5K

1K
500

contract_calls | ether.

100

0
7Aug2015 4Jan2016 2Jun2016 300ct2016 29 Mar2017 26 Aug 2017 23 Jan2018 22 Jun 2018 19 Nov 2018 18 Apr 2019
date
Figure 4.15: Comparison of the daily number of ether transfer transactions and contract
calls (logarithmic scale). A dramatic increase in contract calls can easily be observed.

were considering Ethereum another cryptocurrency for peer to peer transactions or a spec-
ulative investment opportunity.

After December 2018, although contract call transactions continue to increase gradually,
there is a sharp increase of Ether transactions that constituted 78% of total transactions
in January 2018. This was the time when all the cryptocurrencies were thriving and were
used as investment opportunities. However, the mid-2018 has seen the number of Ether
transactions decreasing dramatically and reaching the number of contract calls. This was
the time when Ethereum lost 45% of its value in only two weeks. In the same period, the
number of contract calls remained the same with some small fluctuations. After November
2018, most of the transactions are contract calls, which overpassed the number of simple
ether transactions.

4.4 Analytics focusing on volume (value of Ether)

Section 4.2 shows that there is a total of 106M ether supplied in the network, while all the
Ethereum transactions have circulated more than 6.6B ether, as of 20" of May 2019. The
daily aggregated ether value of these transactions, both for simple ether transfers, as well
as for contract calls, can be found in fig. 4.16.

Most of the ether value is circulated in simple ether transfers, from account to account.
For almost a year, from 2017 to 2018, the average volume of ether transfers is around 10M

90 CHAPTER 4. DATA ANALYTICS

—— contract_calls —— ether_transfers
100M

10M

w il
o ,l “lm }W'

10K
1K
100

10

7Aug 2015 4Jan2016 2Jun2016 300ct2016 29 Mar2017 26 Aug 2017 23 Jan 2018 22Jun2018 19 Nov 2018 18 Apr2019
date

Figure 4.16: Daily volume of ether transferred in the ether transfer transactions and in
the contract calls. In both of them, the value of each type of transaction is measured
(logarithmic scale)

ether per day. This has been stabilized to around 5M as of 20" of May 2019. Respectively,
high fluctuations are found in the daily ether value in the contract calls during the first
period. A possible reason is that initially contract creation process was in an experimental
level where developers were trying to understand what type of contracts makes sense to
have and there was a ether transfer in both simple ether transfers and contract calls. Later,
this number is stabilized to approximately 100-300K and reflects the purchase of tokens in
contracts.

4.5 Analytics focusing on the accounts

Furthermore, some observations are made regarding the activity of the separate accounts,
as measured by the ether volume and the number of transactions in the Ethereum network
as of the 20" of May 2019.

In fig. 4.17, the ether balance distribution among the different addresses in Ethereum is
displayed. It is logarithmically scaled in both axes, as ether balances cannot be adequately
illustrated in a linear approach. There are addresses that own just some 0.001 ether and
others that own more than 2M ether. Taking into consideration a total of around 25M
addresses (external accounts and contract accounts with a balance greater than zero), it is
concluded that the top 10 accounts hold 12% of the total ether and 80% of the total ether
is held by the top 6k addresses. This is a strong representation of the pareto general rule of

4.5. ANALYTICS FOCUSING ON THE ACCOUNTS 51

Ether Balance Distribution

2.500.000
12% ether !

2.000.000

33% ether

3
€ 1.500.000
=
a 64% ether |
z :
£ 1.000.000
500.000 ‘
0 :
1 10 100 1.000 10.000 100.000 1.000.000 10.000.000 100.000.000

Addresses

Figure 4.17: Ether distribution among the total number of addresses with an ether bal-
ance larger than zero. There is no reason to take into consideration the whole universe of
addresses as only the ether balance distribution is analyzed. Both axes are in logarithmic
scale.

Ether Transactions Distribution

25.000.000 ;
15,2% | |
transactions | : |
20.000.000 |
1 25,3% 3 *
transactions§
15.000.000 ' :
| 36,3%
transactions
10.000.000

Ether Transactions

5.000.000

1 10 100 1.000 10.000 100.000 1.000.000 10.000.000 100.000.000
Sender Addresses

Figure 4.18: Transactions distribution among the total number of addresses that have
executed at least one transaction. Both axes are in logarithmic scale.

52 CHAPTER 4. DATA ANALYTICS

Ether Transactions Distribution

12.000.000
9% |
transactions

10.000.000

transactions

22%
8.000.000

D 41%

6.000.000 transactions

Ether Transactions

4.000.000

2.000.000

1 10 100 1.000 10.000 100.000 1.000.000 10.000.000 100.000.000
Recipients Addresses

Figure 4.19: Transactions distribution among the total number of addresses that have
received at least one transaction. Both axes are in logarithmic scale.

@ balance

10M

™ e
500K . @

100K b é -9 <

50K

10K ¢ ..

1K ; "
500 — . .

tx_recipient
w
-~
.
.
L]
.
L]
L]

100
50

500 1K 5K 10K 50K 100K 500K 1M 5M 10M
tx_sender

Figure 4.20: Balance and transaction involvement of the top 1’000 addresses. The size
of the bubble shows the volume in ether balance. The x axis represents the number of
transactions in which the account was the sender and the y axis represents the number of
the transactions in which the account was the recipient. These three dimensions represent
the activity and the holdings of each address and they are the most valuable data. Both
axes are in logarithmic scale.

4.5. ANALYTICS FOCUSING ON THE ACCOUNTS 23

80%-20%2, since the 6k addresses are only the 0.025% of the total address population with
a strictly positive balance. This concentration of ether among a small number of addresses
makes these specific addresses even more important for the whole network.

As it was referred earlier, the Ethereum network is defined by both the number of transac-
tions and the volume of ether. So, in fig. 4.18, the distribution of the number of transactions
among the different addresses that have executed transactions as senders is displayed.

It is obvious that the distribution follows once again the pareto rule. The 15,2% of the
total transactions are sent from just 10 addresses, out of the approximate 46M addresses
that have executed at least one transaction, while the 80% of the total transactions are
sent from 7.34% of the addresses.

The distribution of the transactions among the recipients of transactions is a bit different
from the one among the senders of the transactions. As shown in fig. 4.19, the top 10 recip-
ients receive 9% of the transactions, a bit lower than the percentage of transactions that
are sent by the top 10 sender addresses. At the same time, the 41% of the transactions,
almost half of them, are addressed only to 1’000 of the existing addresses in the Ethereum
network.

To sum up, only 1’000 addresses play an important role for the circulation of ether in the
network. By plotting the data of the top 1’000 addresses by balance in fig. 4.20, it can be
analyzed how often these addresses participate in transactions, either as a recipient or as
a sender. The size of the bubbles represent the balance of the addresses. The x axis shows
the number of transactions in which an address has been the sender, while the y axis shows
the number of transactions in which an address has been the recipient.

Hence, each point in fig. 4.20 shows the activity of an account, that is how many transac-
tions a unique address has initiated and in how many transactions the same address has
been the recipient. At the same time, the bubble shows the holdings of the account?.

There are two main conclusions that can be derived out of these plottings:

e First, most of the accounts that hold a valuable amount of ether do not execute so
many transactions, which means that they are not very active. Many of these balance

2 According to the Pareto rule, one would expect that 80% of the ether is held by the 20% of the accounts
3The bigger the bubble, the larger the balance of this address.

o4 CHAPTER 4. DATA ANALYTICS

holders have approximately executed less than 100 transactions and have been the
recipients again in less than 100 transactions.

e Second, focusing on the trend of the graph, there is a small linear analogy between
the sender and recipient activity of an address. It can be assumed that the ones not
following this behaviour represent a specific category. For example, addresses that
send and receive many transactions may represent exchange platforms.

Emphasizing in the top 20 addresses, measured by ether balance, lets us identify in which
category they belong to. There are some basic categories that have been defined in [Ether-
scan.io|, where all the transactions that are executed in Ethereum network are displayed.
The main categories that are used here are exchanges, decentralized exchanges, miners,
token contracts and ICO wallets. All the remaining addresses are assumed to be either
simple contracts executing specific code or still unlabeled or external addresses. [Ether-
scan.io] identifies if an address is a contract address or a simple external address. There
some clear distinctions among the different categories.

o Exchanges: A list of centralized cryptocurrency exchanges which are online plat-
forms that allow customers to buy and sell cryptocurrencies for other assets

e Decentralized exchanges: A decentralized exchange (also known as a DEX) is an
exchange market that does not rely on a 3"¢ party service to hold the client funds,
but, instead, trades occur directly between users (peer to peer) through an automated
process [eth]

e Miners: Accounts that belong to big mining organizations or single individuals

e Token contracts: A Token Contract is a specific type of smart contract that de-
scribes (using the contract code) rules of how the token could be generated and
transferred between addresses, if it is splittable/ fungible, etc. [Rosic, 2017]

Table 4.3 shows the balance and activity of the top 20 addresses, measured by balance.
Given the mentioned categories, the types of these address are assessed. Most of the ad-
dresses with the highest ether balance represent exchanges and external addresses.

In table 4.4, the top 10 addresses with the greatest balance of ether are shown, while it
is also assessed if they are active or not. An address is defined as active if it has been
successfully used during the past 30 days, either sending or receiving a transaction.

All the above ranking of addresses is based on the ether balance. As it was referred earlier,
this is only one angle of understanding which address is important for the Ethereum net-
work. The number of transactions is another important indicator. Transactions are defined
by an address which sends the transaction and an address which receives the transaction.

4.5. ANALYTICS FOCUSING ON THE ACCOUNTS 25

In the case of the sender, this can only be an external account (single user, miner, or ex-
change). A recipient address can be any address (external or contract addresses).

Table 4.3: Top 20 addresses, measured by ether balance (complete addresses can be found
in Appendix)

Address Balance Nr of received Nr of sent Type
transactions transactions
0xc0...cc2 2152081 3627194 - Token contract
Ox4e...ab7 2'074°272 36 201 Exchange
0x74...44e 1’502°074 3’994 362 Exchange
0x53...a3d 1’378'754 14’993 3 Exchange
0x66...054 173007002 8 24 Exchange
Oxab...83e 999’999 429 - Contract
0x61...eea 8957999 152 - Exchange
Oxdc...0d3 850’861 109 31 Exchange
Oxfc...8e4 8177000 5 42 External address
0xe8...919 801’053 72 79 Exchange
0x22...0f6 657334 36 1 External address
Oxde...bae 6427538 519 - Contract
0x13...9¢5 5707981 74411 880 External address
Ox1b...7c2 5607000 97 - External address
0x7e...164 5587164 647224 2257 External address
0x26...dc0 556’489 131 1’116°688 Exchange
0x51...0eb 5307000 101 - External address
0x84...0ed 483’000 23 14 External address
0x6c...a7b 479’393 589’011 677’395 Exchange
0x74...e82 4757000 8 9 External address

In table 4.5, the top 20 addresses, measured by the number of transactions they send,
are presented. Earlier in this chapter, after plotting the transactions distribution in the
different addresses (see fig. 4.18), it was assumed that most of them should be exchanges
given that this is the main operation of the exchanges. Indeed, based on the data, most of

o6 CHAPTER 4. DATA ANALYTICS

Table 4.4: Top 10 addresses, measured by ether balance

Address Name Active
0Oxc02aaa39b223fe8d0alebcdf27ead9083c756cc2 Wrapped Ether +
Ox4e9ce36e442e55ecd9025b9abe0d88485d628a67 Binance 6 +
0x742d35¢c6634c0532925a3b844bcd54e4438f44e Bitfinex 5 +

0x53d284357ec70ce289d6d64134dfac’e511c8a3d Kraken 6 —

0x66£820a414680b5bedabeecabdea238543f42054 Bittrex 3 +
Oxab7c74abc0c4d48d1bdadbdcb26153fc8780{83e NaN +
0Ox61edcdfb5bb737adfte5043706e7c5bblflab6eea Gemini 3 +
0xdc76cd25977e0abael7155770273ad58648900d3 Huobi 6 —
Oxfca70e67b3f93{679992cd36323eeb5a5370c8e4 NaN +

0xe853¢H6864a2ebed576a807d26fdc4aladab1919 Kraken 3 —

the exchanges that represent some of the larger in ether balance accounts are also in the
top 20 senders of transactions. However, miners win this battle by finding themselves in
almost all the 5 top places, even if their balances are not as high. This is totally logical,
given that miners validate all the available transactions in the network and they do not
invest in ether. The balance created is from the rewards they receive during the mining
process.

At the same time, it is important to also identify the top addresses, measured by the num-
ber of transactions they have received. In table 4.6, these addresses are displayed. This is a
more diversified sample of addresses, since one can find exchanges, token contracts, as well
as general contracts. In the 6" place, there is an empty address. Recalling the references
on contract creation, this row represents all the transactions that have been executed in
order to create a new contract. This is the reason that the field “to_address” is empty.

It is impressing that although there are exchanges and token contracts in the list, these
are not the same with the ones in table 4.5. Moreover, there are a lot of contracts that are
recipients of transactions but they do not belong to the token contracts category. There are
two possible explanations: either they are unclassified in [Etherscan.io], which would be a
bit strange given that they belong to the top 20 of the recipients, or they are execution
contracts that execute some orders.

4.5. ANALYTICS FOCUSING ON THE ACCOUNTS

57

Table 4.5: Top 20 addresses, measured by number of transactions they have sent (complete
addresses can be found in Appendix)

Address Nr of sent Balance Name Type
transactions
Oxea...ec8 20’629°170 411 Ethermine Miner
0x52...3b5 125527279 6’604 Nanopool Miner
Oxfb...b98 77761°415 1837525 Bittrex 1 Exchange
0x82...830 7617°805 2’075 F2Pool 2 Miner
0xba...cdc 5617075 4642 Spark Pool Miner
0x2a...226 4’303’185 833 DwarfPool 1 Miner
Oxa7...49e 3'2527972 25 IDEX 2 Decentralized exchange
0x3f...0b3 3139151 42’195 Binance 1 Exchange
Oxce...a32 17908247 - NaN External address
0xb2...347 1’811°672 8’764 MiningPoolHub Miner
Ox6c¢...21f 1’572’127 199 NaN External address
0x2b...258 1471°477 8136 KuCoin 1 Exchange
Oxdb...2ff 1'458°459 6’950 Binance 2 Exchange
0x06...bbf 174327310 7456 Binance 4 Exchange
0x56...ced 1’367'834 5’791 Binance 3 Exchange
0x32...d88 173617217 87’538 Poloniex 1 Exchange
0x0d...2fe 1’157°681 54’716 Gate.io 1 Exchange
0xd3...375 1’150°417 - Genesis Mining Miner
0x26...dcO 1’116°688 5567489 Kraken 4 Exchange
0x61...bd9 9947929 - F2Pool 1 Miner

Moreover, a new category has appeared, which is ENS. According to [Etherscan.io], ENS
(Ethereum Name Service) offers a secure & decentralised way to address resources both on
and off the blockchain using simple, human-readable names.

Again, the accounts that receive most of the transactions in the network just own some
very few ether. This makes sense as most of them are contracts and they are not supposed

o8

CHAPTER 4. DATA ANALYTICS

Table 4.6: Top 20 addresses, measured by number of transactions they have received (com-

plete addresses can be found in Appendix)

Address Nr of received Balance Name Type
transactions
0x8d...819 1079987207 23’657 EtherDelta 2 Decentralized exchange
0x2a...208 6'721°660 45095 IDEX 1 Decentralized exchange
0x3f...0be 5'731°059 42’195 Binance 1 Exchange
0x06...66d 3'790°435 60 CryptoKitties: Token contract
Core
0x86...db0 279597558 - EOS Token contract
- 2'6097558 - NaN Contract creation process
0xf2...2e2 2023290 - Tron Token Token contract
0x70...413 1'954°539 4’461 ShapeShift 3 Exchange
0x20...8ef 1’800’667 - Poloniex 2 Exchange
Oxd1...405 1'639'262 209 Dice2Win Contract
0xe9...ff3 176097053 - Bittrex 2 Exchange
Oxa3...770 1’578°576 - NaN Contract
0xd2...c07 1'573’657 - OmiseGO Token contract
Token
0x60...76b 1’479°089 98 ZB.com Exchange
0xf5...4f3 1’466°737 51’183 Yobit.net Exchange
0x03...b0e 1’4527736 - NaN Contract
Oxfa...0b3 1’44°7°475 - Kraken 1 Exchange
0x60...8ef 17393672 - NaN ENS
0x0e...50f 1’373’336 - NaN Contract
0x17...ab9 1'242°360 - NaN Contract

to hold ether but only to execute a sequence of orders.

Finally, there are three token contracts with a very low ether balance. These are the
cryptokitties, EOS, and TRON tokens. CryptoKitties is one project utilizing ERC-721
tokens, which focuses on gaming where users can collect virtual cats. Each cat is represented

4.6. ANALYSIS OF SMART CONTRACTS 29

—— cumulative_contract_creation_by_contracts =~ —— cumulative_contract_creation_by_users

10M

100K

1K

10

0
13Aug 2015 10Jan2016 8Jun2016 5Nov2016 4Apr2017 1Sep2017 29Jan2018 28 Jun 2018 25Nov 2018 24 Apr2019
date

Figure 4.21: Cumulative number of contracts created by users and of contracts created by
other contracts (logarithmic scale)

by an Ethereum ERC-721 token, which means that they are all one-of-a-kind and can never
be replicated, taken away from the owner, or destroyed [Lai and O’Day, 2018]. EOS and
TRON are older ICOs. The reason they have no balance is because they have been used
as ICO vehicles in order to receive some funding and then the funds were transferred to
the beneficiary account, according to the contract format.

4.6 Analysis of smart contracts

Regarding only the contract addresses, as it is referred in section 4.2.6, there are in total
15’571’524 contracts. For these contracts, the source of creation is analyzed. There are
contracts, which are created directly from an external address and contracts, which are
contract-created. In the former ones, the user has to set recipient address (to_address) to
zero. In the latter ones, an external user calls the “create” function of contract A, which in
turn creates contract B. This is a message call (internal transaction) and it is not counted
in the number of transactions. As a result, only the direct contract creations are considered
transactions and represent only 1% of the total transactions. The indirect contract creations
are reflected in the contract calls.

It is very interesting to see in fig. 4.21 that most of the contracts were initially user-created
contracts. However, as Ethereum is getting some notice and developers start participat-
ing and building more complicated contracts, contract-created contracts dominate the first
ones since mid-2017. In fact, today there are over 13M contact-created contracts, while the
user-created contracts are only over 2M. Looking into the data, most of the user-created
contracts are Ethereum-based currencies that use contract-created contracts for some func-
tionalities. This means that an important fraction of the activity in the Ethereum network

60 CHAPTER 4. DATA ANALYTICS

is using the more complicated features of the contracts, such as the creation of another
contract.

Diving into the contracts, we want to identify who is creating these contracts and how
many of these contracts are 100% identical. In order to identify the identical contracts, the
output of the traces will be compared. The output is the bytecode of the contract when
a new contract is created. The bytecode is the hex representation of what a contract is
created to execute.

Table 4.7: Different types of contracts

Type of contract Nr of Nr of unique Nr of unique
contracts creators bytecodes
User-created contracts 2'609558 105’444 202’516
Contract-created contracts 13’056’526 327142 7288

From the data in table 4.7, it is concluded that a very small number of external users have
directly created contracts. What is even more impressing is that only 32K contracts are
responsible for the creation of 13M contracts.

Comparing the bytecode of the user-created contracts, some of them are identical, as there
are only 200K different bytecodes in the total of 2M contracts. At the same time, comparing
the bytecode of the contract-created contracts, only 7K of unique bytecodes are recycled
in a total of 13M contracts. Summing up the two types of contracts, it is concluded that
only 1.34% of the total contracts are completely unique.

Chapter 5

Smart contracts and finance industry

Blockchain technology and especially smart contracts have been considered a revolutionary
advancement that can shape the finance industry of tomorrow, and specifically the banking
industry. On the other side, banks have been reluctant to use the current permissionless
environments because of the lack of privacy in the current setups.

During the past years, many big banks have been involved in consortiums assessing blockchain
solutions and implementations. On top of that, Societe Generale recently issued a $112 mil-
lion bond, using smart contracts built, not on a private, permissioned blockchain, but on
the public, permissionless ethereum blockchain [Casey, 2019]. This means that the whole
industry is getting more open and does not anymore see blockchain as a risk, but as a
technology revolution that should at least be followed and understood.

Ethereum introduced the idea of smart contracts almost five years ago. Especially in the
banking industry, smart contracts could change the whole landscape in some major areas:

1. Smart contracts can replace the time consuming, as well as complicated legal docu-
mentation processes. All this data will be part of a totally transparent and accessible
system for regulators.

2. One of the best candidate processes that can change dramatically with the use of
smart contracts is the process of clearing and settlement. The entire lifecycle of
a trade — execution, clearing, and settlement can be greatly facilitated, while the
counterparty risk can be lowered.

3. Blockchain technology can make it possible for banks to create a direct communica-
tion link between each other, leading to frictionless cross border transactions. Corda
is working on a case of having two banks sharing the same ledger for transactions
and contracts [Bauerle, 2019].

61

62 CHAPTER 5. SMART CONTRACTS AND FINANCE INDUSTRY

4. In the sharing economy, anything in the future is expected to be investable. Not only
the traditional asset classes, such as equities and bonds, but also physical assets, such
as art and real estate can be offered directly to the clients through smart contracts.

5. The concept of digital identity can enable banks to efficiently store and update client
information.

The technology is already in place. What is the most important part is the construction of
the right contracts that will not leave space for vulnerabilities and mis-implementations.

Chapter 6

Conclusion

6.1 Main findings

Summarizing all the research that has been done in the area of the Ethereum network, the
following conclusions can be made.

1.

The number of transactions and the value of ether transferred are two good indicators
to understand how the network behaves. Comparing these two, we have seen that they
have not followed the same path during the last 4 years. The number of transactions
has an exponential growth, while the value of transferred ether fluctuates a lot, day
to day. However, we have identified, for both of them, a stabilization during the last
year at around 700’000 transactions and 2’000°000 ETH per day, respectively.

. At the same, looking at the ether price over this period, we have concluded that

it follows the pattern of the number of transactions. This fact helped us reach the
conclusion that the number of transactions may affect the price of ether, or vice
versa. We did not dive into this causation relationship. However, we could say that
this could be an explanation of the ether price speculation.

. Although the growth rate of the number of transactions has dropped dramatically in

the middle of 2018, the gas used was continuously increasing, even today. This is the
first indicator that there have been more contracts in the network, taking place and
requiring even more gas than a normal ether transfer.

. We have verified that there are approximately 60M addresses in the Ethereum net-

work as of 20" of May 2019. This number includes the external addresses, miner
addresses and all the contracts that represent almost 37% of the total address pop-
ulation. However, it excludes the random addresses that have been created from
attacks, such as DDOS.

Focusing on the transactions, we have found out that almost 45% of them are contract
calls and 54% of them are simple ether transfers. Only 1% is the contract creation

63

64

10.

CHAPTER 6. CONCLUSION

ones. Looking how these numbers have been formatted during the last year, we have
identified a huge move from ether transfer activity to contract call activity.

. This 1% of the transactions represents the direct action of a user to create a contract.

However, we have seen that most of the existing contracts have been created from
other contracts. More precisely, there are approximately 13M contract-created con-
tracts, out of the universe of 15M contracts. This is another fact that indicates that
the Ethereum network has become more contract-focused than transaction-focused.

Diving into the contracts, there is one true fact: there is a lack of diversity in the
smart contracts ecosystem. There are few creators of the contracts, relatively to their
number, for both types of contracts (user-created and contract-created contracts).
Moreover, this lack of diversity exists even in the bytecode. This means that most of
the contracts in the Ethereum network are identical. More particularly, only 1.34%
of the total contracts are completely unique. It remains to see how this similarity and
dependency may affect the vulnerability of the whole network.

Doing a top down analysis focusing on distinct addresses, we have found out that
12% of the total ether is held by the top 10 addresses, measured by balance, and
80% is held by 6K addresses in total. This outcome shows in practice the 80%-20%
pareto rule and that only few addresses are very important for the whole network.
This could be a second reason for the price speculation. However, any causation is
not tested in this thesis.

A similar behavior exists in the transactions distribution where 41% of the transac-
tions are addressed to only 1’000 addresses and 36.8% of the transactions are sent
from only 1'000 addresses, respectively. For both the recipients and the senders of
transactions, there is a long tail that represents the whole population of almost in-
active addresses.

In the end, we have focused on the analysis of specific addresses, taking into consider-
ation their holdings and the number of transactions (both as senders and recipients).
Most of the accounts that hold a valuable amount of ether do not execute so many
transactions (just few hundreds). Normally, addresses with high ether balance are
either exchanges or external users (individuals). However, this would be a bit strange
for exchanges, since they normally execute a huge number of transactions. This is
something that needs further exploration, or even clustering of the different exchanges
that present a different behavior. On the other side, taking into consideration the top
20 addresses that execute the most transactions, we have seen that exchanges are in
the top of the list, as it was expected. However, miners have a dominant position
in that list, as well. Some unlabeled contracts appear in the list, which means that
they do not belong to a specific category, but they are mostly used as executional
vehicles. The main conclusion out of this is, in any case, that, in most of the cases,
the number of transactions in which an address is involved is inversely proportional
to the ether holdings of this account.

6.2. RELATED WORK 65

6.2 Related work

Because of the exponential growth of the digital currencies after the Bitcoin release and
establishment, there is extensive work done in order to understand the digital currencies
in total, and more particularly Ethereum, as it is the second in market cap after Bitcoin.
However, there are not many textbooks focusing on Ethereum. Some of the information
comes from published papers. However, most of the content comes from blogs, webpages
that focus on digital currencies, github!, and many technology articles. The best source of
truth regarding a digital currency is always the white paper published for each that specific
currency.

Early work in this area has been done in [Int, 2018], analyzing the Ethereum’s contract
topology, and more specifically analyzing how contracts are being used. This research is
more an attempt to cluster contacts, given the similarity of the bytecode. Moreover, M.
De Aliaga in [Aliaga, 2018] tried as well to classify the different addresses that exist in
Ethereum, although covering only a few number of labeled data. Furthermore, R. Norvill
et al. published [R. Norvill and R. State and I. Awan and B. B. F. Pontiveros and A. Cullen,
2017], which goes one step further in the classifying process, using a k-means approach,
and could be considered future work. Finally, N. He et al. has tried in [He et al.] to capture
the vulnerability that may exist in the different contracts because of their similarity.

At the moment, there are also many supportive platforms, such as etherscan, which moni-
tors all the Ethereum activity, and Google Big query, which stores all the data in an SQL
database and is the one used for this research.

6.3 Future exploratory paths

Digital currencies and decentralized networks are the future in many industries. They will
be regarded as the internet of today; accessible to every business to use, providing at the
same time the transparency of data that internet sometimes misses. So, the ground for
future analysis is limitless:

1. In this thesis, the labels of the different addresses have been extracted from [Ether-
scan.io]. More particularly, the top 100 exchanges, decentralized exchanges, miners,
ICO wallets and tokens are extracted. However, there are still many contracts and
external addresses that have not yet be labeled. It would be useful to use a machine
learning algorithm that can label any address according to the behavior of the ad-
dress or the bytecode in case of contract. This could be even an improvement for the

IThe world’s leading development platform where people upload their code or ask related questions

66

CHAPTER 6. CONCLUSION

Ethereum network. Most of the labeling today in the research papers is done either
manually or using the etherscan platform.

. In this thesis, the main analysis is concentrated around addresses that are always mea-

sured by ether value (balance) and number of transactions (traffic). More precisely,
only transactions that have been initialized from external accounts are considered,
as this explicitly occurs in any transaction. As a future work, tt would be interesting
to focus only on the message calls among contracts and to find out what the added
value of having chains of contract calls is to the final output.

. On 18" of May 2019, a new hard fork, Casper, occurred in the Ethereum network.

The fork brought a change to the consensus mechanism from proof of work to Casper.
Casper is a partial consensus mechanism combining the proof of stake and the Byzan-
tine fault tolerant consensus [V. Buterin and V. Griffith]. This combination works
more as a hybrid system, having the two consensus mechanisms working in paral-
lel. However, the goal is to pivot totally in the proof of stake consensus. Some of
the hypothetical outcomes are the reduced electricity usage, less centralization of the
mining process, reduced risk of attack, scalability of transactions execution frequency;,
limitation of issuing as many new coins [Falk, 2019]. All these potential outcomes will
change totally the way Ethereum operates and its evaluation, so an analysis of the
actual outcomes would be interesting.

. On 18" of June 2019, Facebook announced a new digital currency, Libra [Silva, 2019].

Libra has managed to concentrate all the advantages of all other digital currencies
that have been tested for years and learn from all these trials. It will not be Face-
book alone on this huge project, but a consortium of companies, the so called Libra
Association, specializing in a number of related industries, such as the financial, the
e-commerce, the tech and the telecommunications industry. As a result, given some of
the many advantages it has, such as an established user database (almost 2.7 billion
customers in the platform), the support of companies like Visa, the consensus and
the pegging to a basket of sovereign-issued currencies [Reiff, 2019], it would be very
interesting to compare Libra to existing currencies and analyze how it will affect the
future of digital currencies.

Bibliography

Etherscan accounts dex. https://etherscan.io/accounts/label/dex. Accessed: 2019-
07-01.

L. Zuchowski. Ethereum: Everything you want to
know about gas. https://blog.softwaremill.com/
ethereum-everything-you-want-to-know-about-the-gas-b7c8f5c17e7c, 2017.

Accessed: 2019-05-26.

A. Lewis. A gentle introduction to ethereum. https://bitsonblocks.net/2016/10/02/
gentle-introduction-ethereum/, 2016. Accessed: 2019-05-23.

A. Sassano. Why ether is valuable. https://medium. com/ethhub/
why-ether-is-valuable-2b4e39e01eb3, 2019. Accessed: 2019-05-23.

A. Sokolowska. How to interact with the ethereum blockchain and cre-
ate a database with python and sql. https://medium.com/validitylabs/
how-to-interact-with-the-ethereum-blockchain-and-create-a-database-with-python-and
2018. Accessed: 2019-05-23.

M. De Aliaga. Classifying ethereum users using
blockchain data. https://medium.com/tokenanalyst/
classifying-ethereum-users-using-blockchain-data-dd6edb867de3, 2018.

Accessed: 2019-07-02.

D. Appelbaum and S. S. Smith. Blockchain basics and hands-on guidanc. The CPA
Journal, 2018.

B. Asolo. Blockchain public key and private key: A detailed guide. https://www.
mycryptopedia.com/public-key-private-key-explained/, 2019. Accessed: 2019-05-
11.

B. Curran. What is practical byzantine fault tolerance? complete beginner’s guide. https:
//blockonomi.com/practical-byzantine-fault-tolerance/, 2018. Accessed: 2019-
05-11.

67

https://etherscan.io/accounts/label/dex
https://blog.softwaremill.com/ethereum-everything-you-want-to-know-about-the-gas-b7c8f5c17e7c
https://blog.softwaremill.com/ethereum-everything-you-want-to-know-about-the-gas-b7c8f5c17e7c
https://bitsonblocks.net/2016/10/02/gentle-introduction-ethereum/
https://bitsonblocks.net/2016/10/02/gentle-introduction-ethereum/
https://medium.com/ethhub/why-ether-is-valuable-2b4e39e01eb3
https://medium.com/ethhub/why-ether-is-valuable-2b4e39e01eb3
https://medium.com/validitylabs/how-to-interact-with-the-ethereum-blockchain-and-create-a-database-with-python-and-sql-3dcbd579b3c0
https://medium.com/validitylabs/how-to-interact-with-the-ethereum-blockchain-and-create-a-database-with-python-and-sql-3dcbd579b3c0
https://medium.com/tokenanalyst/classifying-ethereum-users-using-blockchain-data-dd6edb867de3
https://medium.com/tokenanalyst/classifying-ethereum-users-using-blockchain-data-dd6edb867de3
https://www.mycryptopedia.com/public-key-private-key-explained/
https://www.mycryptopedia.com/public-key-private-key-explained/
https://blockonomi.com/practical-byzantine-fault-tolerance/
https://blockonomi.com/practical-byzantine-fault-tolerance/

68 BIBLIOGRAPHY

N. Bauerle. How could blockchain technology change finance? https://www.coindesk.
com/information/how-blockchain-technology-change-finance, 2019. Accessed:
2019-07-02.

BBVA. What’s the difference between dlt and blockchain? https://www.bbva.com/en/
difference-dlt-blockchain/, 2018. Accessed: 2019-05-11.

Blockgeeks. Proof of work vs. proof of stake. https://blockgeeks.com/guides/
proof-of-work-vs-proof-of-stake/, a. Accessed: 2019-05-11.

Blockgeeks. What is hyperledger? the most comprehensive guide ever! https://
blockgeeks.com/guides/hyperledger/, b. Accessed: 2019-05-11.

Blocktonite. Private VS. public and permissioned VS.
permission-less. https://blocktonite.com/2017/06/27/
private-vs-public-and-permissioned-vs-permission-less/, 2017. Accessed:
2019-05-11.

M. J. Casey. A glimpse of banking’s future, live on the ethereum blockchain. https://www.
coindesk.com/societe-generales-work-with-public-ethereum-is-a-big-deal,
2019. Accessed: 2019-07-02.

Coinmama. History of ethereum. https://www.coinmama.com/guide/
history-of-ethereum. Accessed: 2019-05-23.

CoinMarketCap. https://coinmarketcap.com/. Accessed: 2019-05-05.

corda.net. The ledger. https://docs.corda.net/key-concepts-ledger.html. Accessed:
2019-05-11.

D. Brickwood. Understanding trie databases in ethereum. https://medium.com/
shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d,
2018. Accessed: 2019-05-23.

D. Hao. Ethereum: What it is, why it’s important, and how
it’s building tomorrow. https://medium.com/the-ledger-group/
ethereum-what-it-is-why-its—-important-and-how-it-s-building-tomorrow-278933c18b4b,
2018. Accessed: 2019-05-05.

D. Vujicic and D. Jagodic and S. Randic. Blockchain technology, bitcoin, and ethereum:
A brief overview. In Blockchain technology, bitcoin, and Ethereum: A brief overview.
IEEE, 2018.

A. Day and E. Medvedev. Ethereum in bigquery: a public dataset for smart
contract analytics. https://cloud.google.com/blog/products/data-analytics/
ethereum-bigquery-public-dataset-smart-contract-analytics, 2018. Accessed:
2019-06-05.

https://www.coindesk.com/information/how-blockchain-technology-change-finance
https://www.coindesk.com/information/how-blockchain-technology-change-finance
https://www.bbva.com/en/difference-dlt-blockchain/
https://www.bbva.com/en/difference-dlt-blockchain/
https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/
https://blockgeeks.com/guides/proof-of-work-vs-proof-of-stake/
https://blockgeeks.com/guides/hyperledger/
https://blockgeeks.com/guides/hyperledger/
https://blocktonite.com/2017/06/27/private-vs-public-and-permissioned-vs-permission-less/
https://blocktonite.com/2017/06/27/private-vs-public-and-permissioned-vs-permission-less/
https://www.coindesk.com/societe-generales-work-with-public-ethereum-is-a-big-deal
https://www.coindesk.com/societe-generales-work-with-public-ethereum-is-a-big-deal
https://www.coinmama.com/guide/history-of-ethereum
https://www.coinmama.com/guide/history-of-ethereum
https://coinmarketcap.com/
https://docs.corda.net/key-concepts-ledger.html
https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d
https://medium.com/shyft-network-media/understanding-trie-databases-in-ethereum-9f03d2c3325d
https://medium.com/the-ledger-group/ethereum-what-it-is-why-its-important-and-how-it-s-building-tomorrow-278933c18b4b
https://medium.com/the-ledger-group/ethereum-what-it-is-why-its-important-and-how-it-s-building-tomorrow-278933c18b4b
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

BIBLIOGRAPHY 69

E. Medvedev and A. Day. Ethereum in bigquery: how we built this
dataset. https://cloud.google.com/blog/products/data-analytics/
ethereum-bigquery-how-we-built-dataset, 2018. Accessed: 2019-05-23.

Easy Ethereum. Key milestones for ethereum. https://www.easyeth.com/
key-milestones-for-ethereum.html. Accessed: 2019-05-23.

ETH events. Why reading data from the ethereum blockchain

is hard and how to speed it up. https://eth.events/news/
why-reading-data-from-the-ethereum-blockchain-is-hard-and-how-to-speed-it-up/,
2018. Accessed: 2019-05-23.

ETH Gas Station. https://ethgasstation.info/. Accessed: 2019-05-26.
Etherscan.io. Etherscan.io. https://etherscan.io/. Accessed: 2019-06-03.

F. Gadaleta. This is how ethereum works. https://medium.com/fitchain/
this-is-how-ethereum-works-60f37abd5ef5, 2018. Accessed: 2019-05-23.

T. Falk. Ethereum’s casper protocol explained in simple terms. https://www.finder.
com/ethereum-casper, 2019. Accessed: 2019-07-02.

G. Konstantopoulos. Proof of work vs. proof of stake. https://medium.com/
loom-network/understanding-blockchain-fundamentals-part-2-proof-of-work-proof-of-s
2017. Accessed: 2019-05-11.

G. Wood. Ethereum yellow paper - ethereum: A secure decentralised generalised transac-
tion ledger. Technical report, ethereum.org.

H. Anwar. The ultimate comparison of different types of distributed ledgers:
Blockchain vs hashgraph vs dag vs holochain. https://101blockchains.com/
blockchain-vs-hashgraph-vs-dag-vs-holochain/, 2018. Accessed: 2019-05-11.

H. Kenneth. Ethereum account. https://medium.com/coinmonks/
ethereum-account-212feb9c4154, 2018. Accessed: 2019-05-26.

N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang. Characterizing code clones in the ethereum
smart contract ecosystem.

Analyzing Ethereum’s Contract Topology, 2018. Internet Measurement Conference.

J. Kelly. Nine of world’s biggest banks join to form blockchain part-
nership. https://www.reuters.com/article/us-banks-blockchain/
nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCNORF24M2015(
2015. Accessed: 2019-05-11.

J. P. Buntinx. The history of ethereum in 500 words. https://themerkle.com/
the-history-of-ethereum-in-500-words/, 2017. Accessed: 2019-05-23.

https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-how-we-built-dataset
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-how-we-built-dataset
https://www.easyeth.com/key-milestones-for-ethereum.html
https://www.easyeth.com/key-milestones-for-ethereum.html
https://eth.events/news/why-reading-data-from-the-ethereum-blockchain-is-hard-and-how-to-speed-it-up/
https://eth.events/news/why-reading-data-from-the-ethereum-blockchain-is-hard-and-how-to-speed-it-up/
https://ethgasstation.info/
https://etherscan.io/
https://medium.com/fitchain/this-is-how-ethereum-works-60f37abd5ef5
https://medium.com/fitchain/this-is-how-ethereum-works-60f37abd5ef5
https://www.finder.com/ethereum-casper
https://www.finder.com/ethereum-casper
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-2-proof-of-work-proof-of-stake-b6ae907c7edb
https://medium.com/loom-network/understanding-blockchain-fundamentals-part-2-proof-of-work-proof-of-stake-b6ae907c7edb
https://101blockchains.com/blockchain-vs-hashgraph-vs-dag-vs-holochain/
https://101blockchains.com/blockchain-vs-hashgraph-vs-dag-vs-holochain/
https://medium.com/coinmonks/ethereum-account-212feb9c4154
https://medium.com/coinmonks/ethereum-account-212feb9c4154
https://www.reuters.com/article/us-banks-blockchain/nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915
https://www.reuters.com/article/us-banks-blockchain/nine-of-worlds-biggest-banks-join-to-form-blockchain-partnership-idUSKCN0RF24M20150915
https://themerkle.com/the-history-of-ethereum-in-500-words/
https://themerkle.com/the-history-of-ethereum-in-500-words/

70 BIBLIOGRAPHY

K. Kim. Modified merkle patricia trie - how ethereum saves a state. https://medium. com/
codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d7555078dd,
2018. Accessed: 2019-05-23.

Katalyse.io. Blockchain basics - what is evm. Thttps://cryptodigestnews.com/
blockchain-basics-what-is-evm-52d83616764, 2018. Accessed: 2019-05-23.

V. Lai and K. O’Day. Ethereum erc token standards. https://crushcrypto.com/
ethereum-erc-token-standards/, 2018. Accessed: 2019-07-01.

Lisk.io. Delegated proof of stake. https://lisk.io/academy/blockchain-basics/
how-does-blockchain-work/delegated-proof-of-stake. Accessed: 2019-05-11.

M. Beedham. Here’s the difference between ‘permissioned’” and ‘permis-
sionless’ blockchains. https://thenextweb.com/hardfork/2018/11/05/
permissioned-permissionless-blockchains/, 2018. Accessed: 2019-05-11.

M. Thake. What is dag distributed ledger technology? https://medium.com/nakamo-to/
what-is-dag-distributed-ledger-technology-8b182a858e19, 2018a. Accessed:
2019-05-11.

M. Thake. What’s the difference between blockchain and dlt? https://medium.com/
nakamo-to/whats-the-difference-between-blockchain-and-dlt-e4b9312c75dd,
2018b. Accessed: 2019-05-11.

D. Mingxiao, M. Xiaofeng, Z. Zhe, W. Xiangwei, and C. Qijun. A review on consensus
algorithm of blockchain. 2017 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2017.

N. Avramov. How 13 corda works. https://medium. com/@nickavramov/
how-r3-corda-works-24d9285059a2, 2019. Accessed: 2019-05-11.

H. Natarajan, S. K. Krause, and H. L. Gradstein. Distributed ledger technology (dlt) and
blockchain. FinTech Note, 1, 2017.

O. Belin. The difference between blockchain and distributed ledger technology. https:
//tradeix.com/distributed-ledger-technology/. Accessed: 2019-05-11.

R. G. Brown and J. Carlyle and I. Grigg and M. Hearn. Corda white paper - corda: An
introduction. Technical report, corda.net.

R. Norvill and R. State and I. Awan and B. B. F. Pontiveros and A. Cullen. Automated la-
beling of unknown contracts in ethereum. In 26th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2017.

https://medium.com/codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d7555078dd
https://medium.com/codechain/modified-merkle-patricia-trie-how-ethereum-saves-a-state-e6d7555078dd
https://cryptodigestnews.com/blockchain-basics-what-is-evm-52d83616764
https://cryptodigestnews.com/blockchain-basics-what-is-evm-52d83616764
https://crushcrypto.com/ethereum-erc-token-standards/
https://crushcrypto.com/ethereum-erc-token-standards/
https://lisk.io/academy/blockchain-basics/how-does-blockchain-work/delegated-proof-of-stake
https://lisk.io/academy/blockchain-basics/how-does-blockchain-work/delegated-proof-of-stake
https://thenextweb.com/hardfork/2018/11/05/permissioned-permissionless-blockchains/
https://thenextweb.com/hardfork/2018/11/05/permissioned-permissionless-blockchains/
https://medium.com/nakamo-to/what-is-dag-distributed-ledger-technology-8b182a858e19
https://medium.com/nakamo-to/what-is-dag-distributed-ledger-technology-8b182a858e19
https://medium.com/nakamo-to/whats-the-difference-between-blockchain-and-dlt-e4b9312c75dd
https://medium.com/nakamo-to/whats-the-difference-between-blockchain-and-dlt-e4b9312c75dd
https://medium.com/@nickavramov/how-r3-corda-works-24d9285059a2
https://medium.com/@nickavramov/how-r3-corda-works-24d9285059a2
https://tradeix.com/distributed-ledger-technology/
https://tradeix.com/distributed-ledger-technology/

BIBLIOGRAPHY 71

N. Reiff. Facebook gathers companies to back cryp-
tocurrency launch. https://www.investopedia.com/
facebook-gathers-companies-to-back-cryptocurrency-launch-4690619, 2019.
Accessed: 2019-07-02.

A. Rosic. What is an ethereum token: The ultimate beginner’s
guide. https://blockgeeks.com/guides/ethereum-token/?fbclid=
IwAR1wZJtMFALnKE6b4b8e5KrEmh1Y41mTo04Kz8r4drzyRIGo3KI2mTI1H6Yc, 2017. Ac-
cessed: 2019-07-01.

S. Ray. The difference between blockchains and dis-
tributed ledger technology. https://towardsdatascience.com/
the-difference-between-blockchains-distributed-ledger-technology-42715a0fa92,
2018a. Accessed: 2019-05-05.

S. Ray. What is a hashgraph? https://hackernoon. com/
what-is-a-hashgraph-a0b4c7c396d2, 2018b. Accessed: 2019-05-11.

R. Shuwar and O. Vashchuk. Pros and cons of consensus algorithm proof of stake. difference
in the network safety in proof of work and proof of stake. FElectronics and information
technologies, 9:106-112, 2018.

C. Sillaber and B. Waltl. Life cycle of smart contracts in blockchain ecosystems. Daten-
schutz und Datensicherheit - DuD, 41:497-500, 2017.

M. De Silva. The winners and losers of facebook’s libra. https://qz.com/1655319/
the-winners-and-losers-of-facebooks-1libra/, 2019. Accessed: 2019-07-02.

Solidity. Solidity. https://solidity.readthedocs.io/en/v0.5.8/, 2019. Accessed:
2019-05-23.

T. McCallum. Diving into ethereum’s world state. https://medium.com/cybermiles/
diving-into-ethereums-world-state-c893102030ed, 2018. Accessed: 2019-05-23.

T. Schumann. Consensus mechanisms explained. https://hackernoon.com/
consensus-mechanisms-explained-pow-vs-pos-89951c66ael0, 2018. Accessed:
2019-05-05.

Upfolio. Ethereum explained. https://www.upfolio.com/ultimate-ethereum-guide.
Accessed: 2019-05-11.

V. Buterin. Ethereum white paper - a next generation smart contract and decentralized
application platform. Technical report, ethereum.org.

V. Buterin and V. Griffith. Casper the friendly finality gadget. Technical report, Ethereum
Foundation.

https://www.investopedia.com/facebook-gathers-companies-to-back-cryptocurrency-launch-4690619
https://www.investopedia.com/facebook-gathers-companies-to-back-cryptocurrency-launch-4690619
https://blockgeeks.com/guides/ethereum-token/?fbclid=IwAR1wZJtMF4LnKE6b4b8e5KrEmhlY4lmToO4Kz8r4rzyRIGo3KI2mTI1H6Yc
https://blockgeeks.com/guides/ethereum-token/?fbclid=IwAR1wZJtMF4LnKE6b4b8e5KrEmhlY4lmToO4Kz8r4rzyRIGo3KI2mTI1H6Yc
https://towardsdatascience.com/the-difference-between-blockchains-distributed-ledger-technology-42715a0fa92
https://towardsdatascience.com/the-difference-between-blockchains-distributed-ledger-technology-42715a0fa92
https://hackernoon.com/what-is-a-hashgraph-a0b4c7c396d2
https://hackernoon.com/what-is-a-hashgraph-a0b4c7c396d2
https://qz.com/1655319/the-winners-and-losers-of-facebooks-libra/
https://qz.com/1655319/the-winners-and-losers-of-facebooks-libra/
https://solidity.readthedocs.io/en/v0.5.8/
https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://hackernoon.com/consensus-mechanisms-explained-pow-vs-pos-89951c66ae10
https://hackernoon.com/consensus-mechanisms-explained-pow-vs-pos-89951c66ae10
https://www.upfolio.com/ultimate-ethereum-guide

72 BIBLIOGRAPHY
V. Lai. Ethereum erc token standards. http://crushcrypto.com/

ethereum-erc-token-standards/, 2018. Accessed: 2019-05-23.

M. Valenta and P. Sandner. Comparison of ethereum, hyperledger fabric and corda. Frank-
furt School Blockchain Center, 2017.

http://crushcrypto.com/ethereum-erc-token-standards/
http://crushcrypto.com/ethereum-erc-token-standards/

Part 11

Appendix

73

74

SQL code for all the different queries used in order to derive the proper in-
formation. Some of them are a mix of others, as the research questions were
every time different

e Number total transactions as of today
select count(transactions.hash)
from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
where block_timestamp < 2019 — 05 — 21’

e Average number of transactions
select count(x) / count(distinct(date(block_timestamp)))
from ‘bigquery—public—data.ethereum _blockchain.transactions® where block_timestamp
< '2019 — 05 — 21’

e Number of transactions per day
select date(block_timestamp) as date, count(x) as number_of_transactions
from ‘bigquery—public—data.ethereum _blockchain.transactions® where block_timestamp
< 2019 — 05 — 21’ group by date order by date

e Total value of ether transferred as of today
select sum(value)/power(10,18)
from ‘bigquery — public — data.ethereum_blockchain.transactions’

e Total value of ether transferred
select date(block_timestamp) as date, sum(value)/power(10,18) as ether_value
from ‘bigquery—public—data.ethereum_blockchain.transactions’ where block_timestamp
< 2019 — 05 — 21’ group by date order by date

e Ether supply growth rate
with a as (select date(block timestamp) as date, sum(value) as value
from ‘bigquery—public—data.ethereum_ blockchain.traces' where trace_type in ('genesis’,
'reward’) group by date(block_timestamp)) select date, sum(value) OVER (ORDER
BY date) / power(10, 18) AS supply from a

e Gas used per day (in blocks)
select date(timestamp) as date, sum(gas_used) as gas_used
from ‘bigquery—public—data.ethereum _blockchain.blocks® where timestamp < '2019—
05 — 21" and timestamp > 2015 — 07 — 19’ group by date order by date

e Average gas price per day (post Byzantium)
select date(block_timestamp) as date, avg(gas_price) as average_gas_price
from ‘bigquery—public—data.ethereum_blockchain.transactions’ where block_timestamp
< '2019 — 05 — 21" and block_timestamp > ‘2015 — 07 — 19" and receipt_status = 1
group by date order by date

5

e Address growth per day
with value_table as (select to_address as address, value as value, block_timestamp
from ‘bigquery — public — data.ethereum_blockchain.traces where to_address is not
null and status = 1 and (call_type not in ('delegatecall’, 'callcode’, 'staticcall’) or
call_type is null) union all select from_address as address, -value as value, block_timestamp
from ‘bigquery — public — data.ethereum_blockchain.traces’ where from_address is
not null and status = 1 and (call_type not in (‘delegatecall’, 'callcode’, 'staticcall’)
or call_type is null) union all select miner as address, sum(cast(receipt_gas_used as
numeric) * cast(gas_price as numeric)) as value, block_timestamp
from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
join ‘bigquery—public—data.ethereum _blockchain.blocks® as blocks on blocks.number
= transactions.block_number group by blocks.miner, block_timestamp union all se-
lect from_address as address, -(cast(receipt_gas_used as numeric) * cast(gas_price as
numeric)) as value, block_timestamp
from ‘bigquery — public — data.ethereum_blockchain.transactions'),
value_table_by_date as (select address, sum(value) as balance_increment, date(block_timestamp)
as date from value_table group by address, date), daily_balances_with_gaps as (select
address, date, sum(balance_increment) over (partition by address order by date) as
balance, lead(date, 1, current_date()) over (partition by address order by date) as
next_date from value_table_by_date), calendar as (
select date from unnest(generate_date_array('2015—07—30', current_date())) as date),
daily_balances as (select address, calendar.date, balance from daily_balances_with_gaps
join calendar on daily_balances_with_gaps.date <= calendar.date
and calendar.date < daily_balances_with_gaps.next_date) select date, count(x) as ad-
dress_count from daily_balances where balance > 0 group by date

e Total number of contracts (all contracts)
select count(distinct(address)) as number_of_contracts

from ‘bigquery—public—data.ethereum_blockchain.contracts’ where block _timestamp
<'2019 — 05 — 21’

e Cumulative number of contracts created
with a as (select date(block_timestamp) as date, count(x) as contracts_creation
from ‘bigquery — public — data.ethereum_blockchain.contracts‘ as contracts where
block_timestamp < '2019—05—21" group by date), b as (select date, sum(contracts_creation)
over (order by date) as ccc , lead(date, 1) over (order by date) as next_date from a or-
der by date), calendar as (select date from unnest(generate_date_array('2015—07—30/,
current_date())) as date), ¢ as (select calendar.date, ccc from b join calendar on
b.date <= calendar.date and calendar.date < b.next_date order by calendar.date)
select date, ccc as cumulative_contract_creation from ¢ order by date

e Number of contracts created by day (all contracts)
select count(distinct(address)) as number_of_contracts, date(block_timestamp) as date

76

from ‘bigquery—public—data.ethereum _blockchain.contracts’ where block _timestamp
< 2019 — 05 — 21’ group by date order by date

Total number of transactions in total as of today (allocation)

with a as (select count(transactions.hash) as contract_calls

from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions
where input | ='02’ and to_address is not null and block_timestamp < '2019—05—21"),
b as (select count(transactions.hash) as contract_creation

from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions
where to_address is null and block_timestamp < 2019 — 05 — 21), ¢ as (select
count(transactions.hash) as ether_transactions

from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions
where input = ‘02" and value is not NULL and block_timestamp < 2019 — 05 — 21')
select contract_calls, contract_creation, ether_transactions from a,b,c

Number of transactions per day (comparison of contract calls and ether transfers)
with a as (select date(block_timestamp) as datel, count(x) as contract_calls

from ‘bigquery — public — data.ethereum_blockchain.transactions' where input ! =
‘02’ and to_address is not null and block _timestamp < 2019 — 05 — 21’ group by
datel), b as (select date(block _timestamp) as date2, count(x) as contract_creation
from ‘bigquery—public—data.ethereum_blockchain.transactions' where to_address is
null and block_timestamp < '2019—05—21" group by date2), c as (select date(block_timestamp)
as date3, count(x) as ether_transfers

from ‘bigquery — public — data.ethereum_blockchain.transactions’ where input =
'02" and value is not NULL and block_timestamp < 2019 — 05 — 21’ group by date3)
select contract_calls, ether_transfers, datel from a join ¢ on datel = date3 order by
datel

Growth of contracts created directly by users

with a as (select date(block_timestamp) as date, count(x) as contracts_creation

from ‘bigquery—public—data.ethereum_blockchain.traces’ as traces where block_timestamp
<2019 — 05 — 21" and trace_type = 'create’ and trace_address is null group by date),

b as (select date, sum(contracts_creation) over (order by date) as ccc , lead(date, 1)

over (order by date) as next_date from a order by date), calendar as (select date from
unnest(generate_date_array('2015—07—30’, current_date())) as date), c as (select cal-
endar.date, ccc from b join calendar on b.date <= calendar.date and calendar.date <
b.next_date order by calendar.date) select date, ccc as cumulative_contract_creation

from c order by date

Growth of contracts created by other contracts

with a as (select date(block _timestamp) as date, count(x) as contracts_creation

from ‘bigquery—public—data.ethereum_blockchain.traces’ as traces where block_timestamp
< 2019 — 05 — 21’ and trace_type = 'create’ and trace_address is not null group

by date), b as (select date, sum(contracts_creation) over (order by date) as ccc

7

lead(date, 1) over (order by date) as next_date from a order by date), calendar
as (select date from unnest(generate_date_array('2015 — 07 — 30/, current_date()))
as date), ¢ as (select calendar.date, ccc from b join calendar on b.date <= calen-
dar.date and calendar.date < b.next_date order by calendar.date) select date, ccc as
cumulative_contract_creation from ¢ order by date

Combination of 15 and 16

with a as (select date(block_timestamp) as date, count(x) as contracts_creation

from ‘bigquery—public—data.ethereum_blockchain.traces® as traces where block_timestamp
<2019 — 05— 21" and trace_type = 'create’ and trace_address is null group by date),

b as (select date, sum(contracts_creation) over (order by date) as ccc , lead(date, 1)

over (order by date) as next_date from a order by date), calendar as (select date from
unnest(generate_date_array('2015 — 07 — 30/, current_date())) as date), c as (select
calendar.date, ccc from b join calendar on b.date <= calendar.date and calendar.date

< b.next_date order by calendar.date), d as (select date(block_timestamp) as datel,
count(x) as contracts_creationl

from ‘bigquery—public—data.ethereum _blockchain.traces as traces where block_timestamp
< 2019 — 05 — 21’ and trace_type = 'create’ and trace_address is not null group by
datel), e as (select datel, sum(contracts_creationl) over (order by datel) as cccl |
lead(datel, 1) over (order by datel) as next_datel from d order by datel), calendarl

as (select datel from unnest(generate_date_array('2015 — 07 — 30’, current_date()))

as datel), f as (select calendarl.datel, cccl from e join calendarl on e.datel <=
calendarl.datel and calendarl.datel < e.next_datel order by calendarl.datel) se-

lect datel, date, f.cccl as cumulative_contract_creation_by_contracts, c.ccc as cumu-
lative_contract_creation_by_users from c join f on f.datel = c.date order by f.datel

Contract creation transactions per day (directly from users)

select date(block_timestamp) as date, count(x) as contract_creation

from ‘bigquery — public — data.ethereum_blockchain.transactions’ where to_address
is null and block_timestamp < 2019 — 05 — 21’ group by date order by date

Daily ether volume for ether transfers and contract calls

with a as (select date(block_timestamp) as date, sum(value)/power(10,18) as con-
tract_calls

from ‘bigquery — public — data.ethereum_blockchain.transactions’ where input ! =
‘02’ and to_address is not null and block_timestamp < ‘2019 — 05 — 21’ group by
date), b as (select date(block_timestamp) as date2, sum(value)/power(10,18) as con-
tract_creation

from ‘bigquery—public—data.ethereum_blockchain.transactions’ where to_address is
null and block_timestamp < '2019—05—21" group by date2), c as (select date(block_timestamp)
as date3, sum(value)/power(10,18) as ether_transfers

from ‘bigquery — public — data.ethereum_blockchain.transactions' where input =
'0z" and value is not NULL and block_timestamp < '2019 — 05 — 21’ group by date3)

select contract_calls, ether_transfers, contract_creation, date from a join ¢ on date =
date3 join b on date = date2 order by date

Top 10 addresses measured by balance (value of ether)

with value_table as (select to_address as address, value as value

from ‘bigquery — public — data.ethereum_blockchain.traces* where to_address is not
null and block_timestamp < 2019 — 05 — 21" and status = 1 and (call_type not in
('delegatecall’,’callcode’, ' staticcall’) or call_type is null) union all select from_address
as address, -value as value

from ‘bigquery — public — data.ethereum_blockchain.traces' where from_address is
not null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not
in ("delegatecall’, 'callcode’, 'staticcall’) or call_type is null) union all select miner
as address, sum(cast(receipt_gas_used as numeric) * cast(gas_price as numeric)) as
value

from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
join ‘bigquery—public—data.ethereum_blockchain.blocks® as blocks on blocks.number
= transactions.block_number where block_timestamp < 2019 — 05 — 21’ group by
blocks.miner union all select from_address as address, -(cast(receipt_gas_used as nu-
meric) * cast(gas_price as numeric)) as value

from ‘bigquery—public—data.ethereum_blockchain.transactions’ where block_timestamp
< '2019 — 05 — 21") select address, floor(sum(value)/power(10,18)) as balance from
value_table group by address order by balance desc limit 10

Top 10 contract addresses

with value_table as (select to_address as address, value as value

from ‘bigquery — public — data.ethereum_blockchain.traces' where to_address is not
null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not in
('delegatecall’,’callcode’, ' staticcall’) or call_type is null) union all select from_address

as address, -value as value

from ‘bigquery — public — data.ethereum_blockchain.traces' where from_address is
not null and block_timestamp < ‘2019 — 05 — 21" and status = 1 and (call_type not

in ("delegatecall’, 'callcode’, 'staticcall’) or call_type is null) union all select miner

as address, sum(cast(receipt_gas_used as numeric) * cast(gas_price as numeric)) as
value

from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions

join ‘bigquery—public—data.ethereum_blockchain.blocks‘ as blocks on blocks.number

= transactions.block_number where block_timestamp < 2019 — 05 — 21’ group by
blocks.miner union all select from_address as address, -(cast(receipt_gas_used as nu-
meric) * cast(gas_price as numeric)) as value

from ‘bigquery—public—data.ethereum_blockchain.transactions’ where block_timestamp
<'2019—05—21") select contracts.address, floor(sum(double_entry_book.value) /power(10,18))
as balance from value_table

join ‘bigquery — public — data.ethereum_blockchain.contracts® as contracts

79

on value_table.address = contracts.address group by address order by balance desc
limit 10

Ether Balance distribution

with value_table as (select to_address as address, value as value

from ‘bigquery — public — data.ethereum_blockchain.traces* where to_address is not
null and block_timestamp < 2019 — 05 — 21" and status = 1 and (call_type not in
('delegatecall’,’callcode’, ' staticcall’) or call_type is null) union all select from_address
as address, -value as value

from ‘bigquery — public — data.ethereum_blockchain.traces' where from_address is
not null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not
in ("delegatecall’, 'callcode’, 'staticcall’) or call_type is null) union all select miner
as address, sum(cast(receipt_gas_used as numeric) * cast(gas_price as numeric)) as
value

from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
join ‘bigquery—public—data.ethereum_blockchain.blocks® as blocks on blocks.number
= transactions.block_number where block_timestamp < 2019 — 05 — 21’ group by
blocks.miner union all select from_address as address, -(cast(receipt_gas_used as nu-
meric) * cast(gas_price as numeric)) as value

from ‘bigquery—public—data.ethereum_blockchain.transactions’ where block_timestamp
<2019 — 05 — 21"), a as (select sum(value)/power(10,18) as balance, address from
value_table group by address) select balance, row_number() over (order by balance
desc) as number_of_addresses from a order by balance desc

Logarithmic ether balance distribution

with value_table as (select to_address as address, value as value

from ‘bigquery — public — data.ethereum_blockchain.traces* where to_address is not
null and block_timestamp < 2019 — 05 — 21" and status = 1 and (call_type not in
('delegatecall’,’callcode’, ' staticcall’) or call_type is null) union all select from_address
as address, -value as value

from ‘bigquery — public — data.ethereum_blockchain.traces' where from_address is
not null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not
in ("delegatecall’, 'callcode’, 'staticcall’) or call_type is null) union all select miner
as address, sum(cast(receipt_gas_used as numeric) * cast(gas_price as numeric)) as
value

from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
join ‘bigquery—public—data.ethereum_blockchain.blocks® as blocks on blocks.number
= transactions.block_number where block_timestamp < 2019 — 05 — 21’ group by
blocks.miner union all select from_address as address, -(cast(receipt_gas_used as nu-
meric) * cast(gas_price as numeric)) as value

from ‘bigquery—public—data.ethereum_blockchain.transactions’ where block_timestamp
< '2019 — 05 — 21"), a as (select sum(value)/power(10,18) as balance, address from
value_table group by address), b as (select balance, row_number() over (order by

balance desc) as address_rank from a where balance > 0), ¢ as (select balance,
floor(log(address_rank) % 100) as log_address_rank, address_rank from b) select avg(balance)
as balance_avg, log_address_rank, count(address_rank) as number_of_addresses from

¢ group by log_address_rank order by balance_avg desc

Logarithmic ether transactions distribution

with value_table as (select to_address as address, count(distinct(transactions.hash))
as tx

from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
where to_address is not null and block_timestamp < 2019 — 05 — 21’ group by ad-
dress union all select from_address as address, count(distinct(transactions.hash)) as
tx

from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
where from_address is not null and block_timestamp < ‘2019 — 05 — 21’ group by
address), a as (select sum(tx) as transactions, address from value_table group by
address), b as (select transactions, row_number() over (order by transactions desc)
as address_rank from a), ¢ as (select transactions, floor(log(address_rank) * 100) as
log_address_rank, address_rank from b) select avg(transactions) as transactions_avg,
log_address_rank, count(address_rank) as number_of_addresses from ¢ group by log_address_rank
order by transactions_avg desc

Logarithmic ether transactions distribution in recipients addresses (similar for sender
addresses)

with a as (select to_address as address, count(distinct(transactions.hash)) as tx
from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions
where to_address is not null and block_timestamp < 2019 — 05 — 21" group by ad-
dress), b as (select tx, row_number() over (order by tx desc) as address_rank from
a), ¢ as (select tx, floor(log(address_rank) * 100) as log_address rank, address rank
from b) select avg(tx) as transactions_avg, log_address rank, count(address_rank) as
number_of_addresses from ¢ group by log_address_rank order by transactions_avg desc

Top 1000 ether holders by transaction activity and balance

with value_table as (select to_address as address, value as value

from ‘bigquery — public — data.ethereum_blockchain.traces* where to_address is not
null and block_timestamp < 2019 — 05 — 21" and status = 1 and (call_type not in
('delegatecall’,’callcode’ |’ staticcall’) or call type is null) union all select from_address
as address, -value as value

from ‘bigquery — public — data.ethereum_blockchain.traces' where from_address is
not null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not
in ("delegatecall’, 'callcode’, 'staticcall’) or call_type is null) union all select miner
as address, sum(cast(receipt_gas_used as numeric) * cast(gas_price as numeric)) as
value

from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions
join ‘bigquery—public—data.ethereum_blockchain.blocks® as blocks on blocks.number

81

= transactions.block_number where block_timestamp < 2019 — 05 — 21’ group by
blocks.miner union all select from_address as address, -(cast(receipt_gas_used as nu-
meric) * cast(gas_price as numeric)) as value

from ‘bigquery—public—data.ethereum _blockchain.transactions' where block_timestamp
<2019 — 05 — 21"), a as (select sum(value)/power(10,18) as balance, address from
value_table group by address order by balance desc),

b as (select to_address, count(transactions.hash) as tx_recipient from ‘bigquery —
public—data.ethereum_blockchain.transactions' as transactions where block_timestamp
<'2019—05—21' group by to_address), c as (select from_address, count(transactions.hash)
as tx_sender

from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions
where block_timestamp < 2019 — 05 — 21’ group by from_address) select * from a
left join b on (a.address = b.to_address) left join ¢ on (a.address = c.from_address)
order by balance desc limit 1000

Top 1000 addresses measured by number of received transactions

with value_table as (select to_address as address, value as value

from ‘bigquery — public — data.ethereum_blockchain.traces' where to_address is not
null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not in
('delegatecall’,’callcode’,’ staticcall’) or call_type is null) union all select from_address

as address, -value as value

from ‘bigquery — public — data.ethereum_blockchain.traces’ where from_address is
not null and block_timestamp < 2019 — 05 — 21" and status = 1 and (call_type not

in ('delegatecall’, 'callcode’, 'staticcall’) or call type is null) union all select miner
as address, sum(cast(receipt_gas_used as numeric) * cast(gas_price as numeric)) as
value

from ‘bigquery — public — data.ethereum_blockchain.transactions* as transactions
join ‘bigquery—public—data.ethereum_blockchain.blocks‘ as blocks on blocks.number

= transactions.block_number where block_timestamp < 2019 — 05 — 21’ group by
blocks.miner union all select from_address as address, -(cast(receipt_gas_used as nu-
meric) * cast(gas_price as numeric)) as value

from ‘bigquery—public—data.ethereum _blockchain.transactions® where block_timestamp
<2019 — 05 — 21"), a as (select sum(value)/power(10,18) as balance, address from
value_table group by address order by balance desc),

b as (select to_address, count(transactions.hash) as tx_ recipient from ‘bigquery —
public—data.ethereum_blockchain.transactions' as transactions where block_timestamp
<'2019—05—21' group by to_address), c as (select from_address, count(transactions.hash)
as tx_sender

from ‘bigquery — public — data.ethereum_blockchain.transactions‘ as transactions
where block_timestamp < 2019 — 05 — 21" group by from_address) select to_address,
tx_recipient, balance from b left join a on (a.address = b.to_address) order by tx_recipient
desc limit 1000

82

e Top 1000 addresses measured by number of sent transactions

with value_table as (select to_address as address, value as value

from ‘bigquery — public — data.ethereum_blockchain.traces where to_address is not
null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not in
('delegatecall’,’callcode’, ' staticcall’) or call_type is null) union all select from_address

as address, -value as value

from ‘bigquery — public — data.ethereum_blockchain.traces’ where from_address is
not null and block_timestamp < 2019 — 05 — 21’ and status = 1 and (call_type not

in ('delegatecall’, 'callcode’, 'staticcall’) or call type is null) union all select miner
as address, sum(cast(receipt_gas_used as numeric) * cast(gas_price as numeric)) as
value

from ‘bigquery — public — data.ethereum_blockchain.transactions* as transactions
join ‘bigquery—public—data.ethereum_blockchain.blocks‘ as blocks on blocks.number

= transactions.block_number where block_timestamp < 2019 — 05 — 21’ group by
blocks.miner union all select from_address as address, -(cast(receipt_gas_used as nu-
meric) * cast(gas_price as numeric)) as value

from ‘bigquery—public—data.ethereum _blockchain.transactions® where block_timestamp
<2019 — 05 — 21"), a as (select sum(value)/power(10,18) as balance, address from
value_table group by address order by balance desc),

b as (select to_address, count(transactions.hash) as tx_ recipient from ‘bigquery —
public—data.ethereum_blockchain.transactions' as transactions where block_timestamp
<'2019—05—21' group by to_address), c as (select from_address, count(transactions.hash)
as tx_sender

from ‘bigquery — public — data.ethereum_blockchain.transactions’ as transactions
where block_timestamp < '2019—05—21" group by from_address) select from_address,
tx_sender, balance from c left join a on (a.address = c.from_address) order by tx_sender
desc limit 1000

Number of unique bytecodes of user-created contracts

select distinct(output) as unique_bytecodes

from ‘bigquery—public—data.ethereum _blockchain.traces® as traces where block_timestamp
< 2019 — 05 — 21" and trace_type = 'create’ and trace_address is null

Number of unique bytecodes of contract-created contracts

select distinct(output) as unique_bytecodes

from ‘bigquery—public—data.ethereum_blockchain.traces as traces where block_timestamp
< 2019 — 05 — 21" and trace_type = ‘create’ and trace_address is not null

Exact addresses that are used in table 4.3

Shortened Address

Address

0xc0.

..cc2

0xc02aaa39b223fe8d0alebcdf27ead9083c756cc2

Ox4e..

.ab7

Ox4e9ce36e442e55ecd9025b9a6e0d88485d628a67

0x74..

A44e

0x742d35cc6634c0532925a3b844bcd54e4438f44e

0x53..

.a3d

0x53d284357ec70ce289d6d64134dfac8e511c8a3d

0x66..

.054

0x66£820a414680b5bcdabeecabdea238543f42054

Oxab..

.83e

Oxab7c74abc0c4d48d1bdadbdeb26153£c8780{83¢e

0x61..

.eea

0x61ledcdfbbb737adfe5043706e7chbblflab6eea

Oxdc..

.0d3

0xdc76cd25977e0ad5ael7155770273ad58648900d3

Oxtc...

Sed

0xfca70e67b3193f679992cd36323eeb5ab370cke4

OxeR..

919

0xe853cH6864a2ebed576a807d26fdc4aladab1919

0x22..

.0f6

0x229b5c097f9b35009cal321ad2034d4b3d5070£6

Oxde..

.bae

0xde0b295669a9fd93d528d9ec85e40f4ch697bace

0x13...

9¢h

0x137ad9c4777e1d36e4b605e745e8{37b2b62e9¢cH

0x1b...

7c2

0x1b3cb81e51011b549d78bf720b0d924ac763a7c2

OxTe...

164

0x7ef35bb398e0416b81b019fea395219b65cH2164

0x26..

.dec0

0x267belc1d684f78cb4f6al176c4911b741e4ftdcO

0x51..

.0eb

0x5119c432a4e59ac86282d6adab4c2eb8919160eb

0x&4..

.0ed

0x847edbf2e5dde85ea2b685edab5{1£348tb140ed

0x6c¢...

a7b

0x6cchf688a31513dc28a7781717a9a798a59fda7b

0x74..

.e82

0x74660414dfae86b196452497a4332bd0e6611e82

33

84

Exact addresses that are used in table 4.5

Shortened Address

Address

Oxea...ec8 Oxea674fdde714fd979de3edf0f562a9716b898ec8
0x52...3b5 0x52bc44d5378309ee2abf1539bf71de1b7d 7be3b5
Oxfb...b98 0xfbb1b73c4f0bdadf67dca266ce6ef42f520fbb98
0x82...830 0x829bd824b016326a401d083b33d092293333a830
0xba...cdc 0x5a0bb4d5dcl7elaadc383d2db43b0a0d3e029c4c
0x2a...226 0x2a65acaddbfchHb5c859090a6¢34d164135398226
Oxa7...49e 0xa7a7899d944fe658c4b0al1803bab2{490bd3849e
0x3f...0b3 0x3f5cebfbfe3e9af3971dd833d26badbbc936f0be
Oxce...a32 Oxceceaa8edc0830c7cecd97e33bb3a3c28dd55a32
0xb2...347 0xb2930b35844a230f00e51431acae96fe543a0347
Ox6c¢...21f Ox6cace0528324a8afc2b157cebadcdd2a27c4e21f
0x2b...258 0x2b5634¢42055806a59e¢9107ed44d43c426e58258
Oxdb...2ff 0xdb51234ae421e3bcha99a0da6d 736074122192fF
0x06...bbf 0x0681d8db095565fe8a346fa0277bffde9dcOedbbf
0x56...ced 0x564286362092d8e7936f0549571a803b203aaced
0x32...d88 0x32be343b94£860124dc4fee278fdchd38¢102d88
0x0d...2fe 0x0d0707963952f2tba59dd06f2b425ace40b492fe
0xd3...375 0xd34da389374caad1a048fbdc4569aae33fd5a375
0x26...dc0 0x267belc1d684{78cb4f6a176c4911b741e4ftdcO
0x61...bd9 0x61c808d82a3ac53231750dadc13¢777b59310bd9

Exact addresses that are used in table 4.6

Shortened Address

Address

0x8d...

819

0x8d12a197cb00d4747alfe03395095ce2abcc6819

0x2a...

208

0x2a0c0dbecc7e4d658f48e01e3fa353f44050c¢208

0x3f..

.0be

0x3t5cebtbfe3e9at3971dd833d26ba9bbc936{0be

0x06..

.66d

0x06012¢8cf97beadbdeae237070f9587{8e7a266d

0x86..

.db0

0x86£a049857e0209aa7d9e616{7eb3b3b78ectdb0

0x12..

.2e2

0xf230b790e05390£c8295{4d 3£60332c93bed42e2

0x70..

413

0x70faa28a6b&8d6829a4b1e649d26ec9a2a39bad13

0x20..

Ref

0x209c4784ab1e8183ctHRcal33ch740efbf3fc18ef

Oxdl..

405

Oxd1ceeeeeel3f8bcef3bedad437202b6154e915405

0xe9..

13

0xe94b04a0fed112£3664e45adb2b8915693dd 53

Oxad...

770

Oxa3cle324calce40db73ed6026¢4a177f099b5770

0xd?2..

.c07

0xd26114cdb6ee289accf82350¢8d8487fedb8a0c07

0x60...

76b

0x60d0cc2ae15859f69bf74dadb8ae3bd58434976b

0xf5..

Af3

0xf5bec430576f1b82e44ddbbalc93f6f9d088413

0x03..

.b0e

0x03df4c372a29376d2c8df33a1b5f001cd8d68b0e

Oxfa..

.0b3

0xfab2274dd61e1643d2205169732f29114bc240b3

0x60..

Ref

0x6090a6e47849629b7245dfalca21d94cd15878ef

0x0e..

50f

0x0e50e6d6bb434938d8fe670a2d 7aldcd128eb50f

0x17..

.ab9

0x174bta6600bf90c885¢7c01c7031389ed1461ab9

85

	List of Figures
	List of Tables
	I Main Text
	Introduction
	Motivation
	Distributed Ledger Technology (DLT)
	Blockchain Technologies
	Mining
	Digital keys, cryptocurrency addresses and digital signatures
	Conclusion

	Comparison of some featured Blockchain platforms
	Ethereum
	Hyperledger Fabric
	R3 Corda

	The Ethereum Model
	Accounts
	External Owned Accounts (EOAs)
	Smart Contracts

	Transactions
	Ethereum Virtual Machine
	Ether and Gas
	Blocks
	Mining
	Data structuring and format
	Highlights of Ethereum roadmap

	Data Analysis Setup
	Data acquisition
	Data structuring in Google Bigquery Ethereum

	Data Analytics
	Methodology
	Generic Analytics on Ethereum
	Number of transactions (traffic)
	Volume of transactions
	Gas used
	Gas price
	Address growth
	Contracts
	Allocation of addresses
	ETH price and market cap

	Analytics focusing on traffic (number of transactions)
	Analytics focusing on volume (value of Ether)
	Analytics focusing on the accounts
	Analysis of smart contracts

	Smart contracts and finance industry
	Conclusion
	Main findings
	Related work
	Future exploratory paths

	Bibliography

	II Appendix

