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Abstract

Speculative bubbles are abnormally fast surges in asset prices, followed
by sharp descents, that cause tremendous stress on financial markets.
Prevention of these events can be enforced by monetary authorities
such as central banks. This thesis investigates the effects of asset price
targeting based monetary policies on the transient super exponential
growth of asset prices referred to as price bubbles. To that end, three
strategies are studied in the framework of an agent-based model. This
model, introduced in Kaizoji, Leiss, Saichev, and Sornette (2015), fea-
tures a risk-free asset and a risky asset, as well as two types of traders,
and can reproduce empirical characteristics of price bubbles. In this
context, arbitrageurs using a bubble detection tool based on the expo-
nential moving average of the returns to their own profit are shown
in Westphal and Sornette (2020a) to reduce the occurrence of bubbles.
This same detection tool is used in a model implementing open market
operations, and a model featuring interest rate modification. A com-
parison is drawn among these applications. The agents of regulatory
policy, representing central banks, use so-called lean against the wind
policies to stabilize the price paths. Such price targeting policies are
shown to have hindering effects on positive price bubbles, especially
with early detection. In certain proportions, Sharpe ratio effective ar-
bitrageurs are shown to be more efficient at preventing bubbles than
monetary policies. Additionally, arguments are drawn towards some
moderate positive correlation between optimizing arbitrageurs towards
the highest reduction in the number of bubbles, and optimizing to-
wards the highest Sharpe ratio of the strategy. This indicates that the
agent-based model follows the invisible hand argument of Smith (1761)
to some extent.
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Introduction

Our focus in this Master’s thesis is to evaluate the effect of asset price tar-
geting based monetary policies on financial bubbles, using a simple agent-
based model of a financial market. We will now provide some background
information on asset price bubbles and monetary policy, as well as back-
ground information on the use of agent-based models in finance.
Let us first specify what financial bubbles are. Positive asset price bubbles
occur when the asset prices, as they are traded on the market, are suspected
to be significantly above their intrinsic value. This behavior has been re-
ferred to as “irrational exuberance” by the then Chairman of the Federal
Reserve Alan Greenspan in a 1996 speech, as well as Nobel prize winner
Robert Shiller in Shiller (2000). The reasons behind price bubbles are still
unclear, and much of the research cited below uses agent-based models to
better understand their inception. Historically, bubbles are often identified
by the subsequent crash, i.e. when a particularly sharp and fast collapse in
prices follows a spectacular growth. Note that this spectacular growth has
been theorized as a symptom of a bubble. More specifically, the formation
of super exponential growth of the asset price has been deemed characteris-
tic of empirical market bubbles (as studied in Sornette, Woodard, and Zhou
(2009), Jiang et al. (2010) and Yan, Rebib, Woodard, and Sornette (2012) ).
We will now clarify the notion of monetary policies. Traditionally, real reg-
ulatory financial institutions have used varied degrees of influence over the
market in order to alleviate damage from possible market crashes. We can
first divide the regulatory financial institutions into two categories: mone-
tary authorities like central banks or currency boards, whose tools are a set
of monetary policies they can adopt, or governments who employ fiscal pol-
icy. The effects of fiscal policy, that is to say the manipulations of the level
of taxes leading to modifications of the interest rate, are outside the scope of
this study. Thus, we will now focus on central banks, and the typical goals
and instruments they have when they apply monetary policies.
Central banks are several, and are specific to geographical regions. The
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goals they aim for, and the instruments they employ, vary among them. The
Compendium of monetary policy frameworks and market operations Com-
mittee (2019) (BIS Markets Committee, 2019), lists 15 central banks and their
policies, for regions including Eurosystem, the United States, Switzerland
and China. The Compendium highlights that the philosophy and frequency
of monetary policy decisions can vary slightly among different banks. How-
ever, the line of questioning and scope of the problem of the present study
are general enough to be indifferent to geography. For the purposes of this
introduction and some examples through the report, we will often display
the empirical evidence related to European Central Bank monetary policies,
or the Federal Reserve monetary policies in the United States.
As related in Committee (2019) (BIS Markets Committee, 2019), central banks
aim at price stabilization, which is actualized in terms of inflation. Some cen-
tral banks also include economic growth targets, or employment targets, as
secondary objectives in their policies, but this varies among them. The pol-
icy target of the Governing Council concerning Eurosystem, of instance, is
exclusively based on a price stability policy. More specifically, it is defined
as a maintained 2% (or slightly lower) yearly increase of the Harmonised
Index of Consumer Prices for the euro area. In comparison, the Federal Re-
serve is said to have a “dual mandate” of maximum employment and price
stability.
Let us briefly mention that in economic theory, the relationship between
inflation and interest rate is such that the expected inflation rate π is de-
termined by the difference between the nominal interest rate i and the real
interest rate r: π = i− r. This is the Fisher equation, first introduced in
Fisher (1930). It helps conceptualize inflation. As we will see, central banks
have means to affect the nominal interest rate, and the amount of money in
circulation, and as such, have effects on inflation.
Having established the goals and targets of the central banks, we will now
specify the instruments they have at their disposal to maintain their objec-
tives for the market. Their understanding is useful for us later, in order to
gauge the realism of the regulatory agents in the model we will use.

The instruments employed by central banks can be separated into standard
and non standard tools – also called conventional and unconventional tools.
While conventional monetary policies are routinely used, unconventional
monetary policies are put in place under extraordinary circumstances, such
as a major economic crisis or a risk of deflation, when the usual tools are
insufficient. Note that in Europe, the emergence of unconventional mone-
tary policies is relatively recent. It can be traced back to the financial crisis
in 2009, according to the European Central Bank European Central Bank
(2020).
Let us now specify what conventional monetary instruments the central
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banks use. These typically encompass three types of policies: open mar-
ket operations, reserve requirements, and the discount window, or standing
facilities (as referred to in Europe). Firstly, open market operations consist
in the purchase or sale of financial instruments. Traditionally, this involved
mostly government issued bonds, but this practice has now extended to
company-issued bonds. For instance, buying bonds increases the amount
of circulating cash, and leads to banks reducing the cost of loans - which
decreases the nominal interest rates. Intuitively, such measures encourage
spending and fuels economic growth, while keeping inflation low. The sale
of bonds has the opposite effect, making open market operations a way
to maintain inflation and growth targets. Secondly, reserve requirements
refer to the fact that central banks have jurisdiction over what amount of
reserves of cash the commercial banks should hold. For instance, before
the Covid-19 related crisis in March of 2020, the Federal Reserve set reserve
requirements at 10% of the liabilities, according to the Board of Governors
of the Federal Reserve System (2020b). Lowering the reserve requirements
enables banks to take on comparatively more liabilities, which also encour-
ages them to reduce the cost of loans, and decreases the nominal interest
rates. Thus, manipulation of the reserve requirements also helps the central
banks keep their targets. Thirdly, central banks also use the the discount
window, also called standing facilities, to influence the nominal rate. This
instrument refers to the fact that commercial banks have the possibility to
borrow or lend to and from the central banks, with a rate set by the central
banks themselves, called the discount rate or policy rate. This serves as an
alternative to inter bank overnight lending, that occurs because the banks
who have too little reserves at the end of the day borrow from others who
may deal with excess reserves. The discount rate also influences the nomi-
nal rate, since it influences the cost of overnight lending among commercial
banks. This in turn affects the interest rate at which commercial banks loan
to businesses and individuals.
Mario Draghi, in 2012, famously stated that “the ECB is ready to do what-
ever it takes to save the euro”. Unconventional instruments are extraordi-
nary measures put in place when the state of the market is precarious, and
cannot be controlled through regular monitoring anymore. Such states of
emergency lead to crossing quantitative ceilings as well as the pioneering
the use of new instruments. In our study, the fact that monetary institutions
resort to extreme measures when bubbles crash justifies implementing mon-
etary policies at very high levels of investment compared to the total volume
of the market and studying their effectiveness.
For instance, in the recent Covid-19 related crisis, as of mid March 2020, the
reserve requirement rates set by the Fed have gone from 10% of the liabilities,
to 0%, according to the Board of Governors of the Federal Reserve System
(2020b). However, in this example, the instrument is still conventional in
nature. New instruments were put in place as well, such as Long Term
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Refinancing Operations, which are long term loans allotted to commercial
banks by the central banks. Asset Purchase Programs are also significant
innovations by which central banks no longer only buy loans, but also finan-
cial assets, from either public or even private sector in times of crises. Post
2008 use of unconventional instruments and their implementation in Europe
are further analyzed in Eser, Carmona Amaro, Iacobelli, and Rubens (2012).
This is a foundation for our research, since we will study the effect of reg-
ulatory entities who trade on the market in high amounts, or have direct
influence on the nominal interest rate. Finally, it is important to note that
unconventional monetary policy has been accompanied with unprecedented
increases in amounts injected in the financial system by central banks. Ac-
cording to the Board of Governors of the Federal Reserve System (2020a),
between mid March and mid June of 2020, the amount held in securities by
the Fed has gone from $3.9 trillion to $6.1 trillion. That last figure repre-
sents nearly 30% of the US Gross Domestic Product. Figure 0.1 (presented
in a speech by Cœuré (2019)) shows that the crisis of 2008 and the subse-
quent recession has lead to a pattern of unprecedented investments by the
European Central Bank, especially in public sector securities (in blue). Let

Figure 0.1: Evolution of the Eurosystem’s balance sheet from 2007 to 2019,
as showed in a 2019 speech by Board member of the European Central Bank
Benoı̂t Cœuré Cœuré (2019)

us also note that a common characteristic across central banks is that they
do not systematically target asset prices, contrary to what we attempt in
our study. When there are responses to price bubbles, they are traditionally
rather reactive at the stage of the burst than at the beginning or even at the
tipping point of the bubble. For instance, the then Federal Reserve Chair-
man Alan Greenspan stated in 2004, that “Instead of trying to contain a
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putative bubble by drastic actions with largely unpredictable consequences,
we chose, as we noted in our mid-1999 congressional testimony, to focus on
policies ‘to mitigate the fallout when it occurs and, hopefully, ease the transi-
tion to the next expansion’ ”. This highlights a policy oriented towards only
intervening after a bubble has crashed. Additional arguments in this direc-
tion were held in 2004 by the then Chairman Greenspan, including the risk
of bubble bursting monetary policy being too strong and stifling genuine
economic growth, as related in Roubini (2006). However, Roubini argues in
the same exposé that in 2005, central banks in the United Kingdom, Aus-
tralia and New Zealand had successfully burst their housing bubbles early
on, encountering no such side effects. Furthermore, recent bubbles in China
have been met with pre-emptive measures involving press communications
to slow down a speculative bubble in formation, and not already burst, as
detailed in Gatley (2020). A response to Greenspan’s position has been de-
veloped in favor of central banks adopting asset price targeting, especially
in anticipation of market crashes rather than in reaction to them, in paper
Roubini (2006). In summary, in the analytical literature, asset price targeting
has been put forth as optimal. Notably, theoretical work by B. Bernanke and
Gertler (2000); B. S. Bernanke and Gertler (2001) initially argued that basing
the reaction function of a monetary authority exclusively on asset prices (to
the exclusion of the output gap and inflation measures), in case of exoge-
nous deterministic bubbles, was optimal. This work was refuted to include
output and inflation targeting in the reaction function for an optimal result,
by A. J. Filardo (2001); A. J. Filardo et al. (2000). Still, the general conclusion
is that asset price targeting is complementary to the inflation and growth tar-
geting, and indispensable to help monetary authorities deal optimally with
bubbles. Another important result by A. Filardo (2003); A. J. Filardo et al.
(2000) is that in the case of endogenous bubbles, that is if bubbles can be
affected by monetary policy, then it is optimal for monetary policies to try
and suppress the bubble even as it is forming. We rely on this reasoning to
support our choice to study asset price targeting-based monetary policies.
This leads us to adopt asset price targeting as a main axis of study in the
following report.

Our thesis studies asset pricing based monetary policies in the context of
a general agent-based model, in the hopes of transferring our findings to
reality. We will now highlight the use of agent-based models in the study of
financial markets.
As explained in Axelrod (2006), agent-based models improve and encour-
age interdisciplinary work by addressing problems that are fundamental to
many disciplines. He also argues that agent-based models are useful in sit-
uations where the math is intractable due to the overwhelming interaction
of many agents. This has been widely shown in the context of agent-based
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models in finance. In particular, agent-based models of markets have been
shown to overcome the limitations of experimental market settings based
research in Chan, LeBaron, Lo, and Poggio (1999). In this paper, agent-
based models are shown to replicate the results of experimental research
while alleviating the doubt cast on rationality of human subjects, as well as
simplifying the measure of the effect of the risk aversion and learning abil-
ities of the individual subjects on the experiment results. In our thesis, we
will observe two-agent and three-agent models. As developed in Hommes
(2006), the use of multi-agent models, mostly introduced in the 1980s, al-
lows for more irrationality in the market and more realistic behavior. It
is also explained in Samanidou, Zschischang, Stauffer, and Lux (2007) that
multi agent-based models have been used with increasing levels of success
to replicate otherwise unexplained emergence of bubbles and subsequent
crashes, under rational one-agent models, starting with the market crash
of the 1987 US stock market. Samanidou et al. (2007) provides a detailed
review the advances of these agent-based models which will also be show-
cased in the next paragraph.

Now that we have established the background of the scope of our research,
let us review the existing works in our sector, that is the study of asset price
bubbles using agent-based models, and especially the study of the effect of
regulatory policies in this context.
Agent-based models have the potential to explain macroscopic characteris-
tics of financial markets through the establishment of microscopic rules for
the agents, which makes them valuable in the understanding of the emer-
gence of asset price bubbles and crashes. Notably, an early attempt to model
market crashes was the model of Kim and Markowitz (1989), uses two types
of agents, one that favors a constant proportion of cash in their portfolio, and
the other that favors a minimal level of wealth in the portfolio at all times.
This model does not tackle the stylized facts of financial markets. However,
it already shows the destabilizing effect of some types of investors, in this
case, the ones who favor guaranteeing a minimal level of wealth. Another
approach by Lux and Marchesi (1999, 2000) allows the agents to switch be-
tween a role of rational trader or noise trader, influenced by its peers. This
model reflects characteristics of real stock price patterns, especially volatility
clustering, power-law distributed returns and self similarity in prices.
Our research is based on a variation of the agent-based model of Kaizoji et
al. (2015). In essence, it is an heterogeneous agent model with two assets
(risky and risk-free), and two types of agents: a fundamentalist traders and
a chartist traders (or noise traders). While the fundamentalist traders opti-
mize their portfolio according to a rational process of expected utility max-
imization, the noise traders choose their wealth allocation by following the
market trend (momentum trading) and the behavior of fellow noise traders
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(social imitation). This model is interesting for us because it replicates styl-
ized facts of the market such as volatility clustering and especially accounts
for the formation of the aforementioned super exponential growth of the
risky asset price that has been deemed characteristic of empirical market
bubbles. This gives us a good foundation for bubble control through reg-
ulation. Note that in Xu, Zhang, Xiong, and Zhou (2014), the authors also
developed such a model, mainly differing in the dynamics attributed to the
chartist traders, and improving slightly the accuracy of the fundamentalist’s
estimations in their investment choices, successfully reproducing fat-tailed
return distribution of returns and long-term memory of volatility. Examples
of a similar model with a higher dimension in the risky asset price vector
is also developed in Chiarella, Dieci, and He (2009). However, we keep the
model of Kaizoji et al. (2015) because of its well established ability to gener-
ate asset price bubbles.
Using agent-based models in attempts to design or test regulatory policies
is natural given how tremendous the scope and impact of real-life experi-
ments would be. A review by Mizuta (2016) highlights varied attempts to
use artificial markets, or agent-based models, to discuss the effect of some
financial market regulations., including limits on short selling, limitations
on frequency of trading, or the Basel regulatory framework for instance.
Testing of central bank intervention within agent based models, however, in
terms of interest rate intervention or as an additional trading agent model-
ing open market operations, has been sparse. Note that in Westerhoff (2008),
the author specifically tests the effect of “lean against the wind” central
bank intervention through foreign currency operations, on a different agent-
based market model than that of Kaizoji et al. (2015), that reproduces the
stylized facts of financial markets such as fat tails, volatility clustering, and
the emergence of bubbles and crashes. He finds some efficiency in reducing
bubbles and stabilizing the market in such a strategy. However, the foreign
currency intervention is limited to a “lean against the wind” strategy that is
non specific to bubble detection, contrary to what we will attempt in our the-
sis. Lastly, Westphal and Sornette (2020b) is a foundation for our research.
It is not testing the effect of regulatory policies on the market, but rather
the effect of introducing in Kaizoji et al. (2015) a category of traders, called
Dragon Riders, equipped with methods of bubble detection, on the market.
Dragon Riders are agents who use their ability to predict extreme events to
profit from this information. Another type of agent is Dragon Slayers: they
are agents who use the same ability to detect extreme events in order to
prevent them. The denomination stems from the work of Sornette (2009);
Sornette and Ouillon (2012), who proposed the name “Dragon-King” to de-
scribe statistical outliers of strong significance, such as asset price bubbles
and their subsequent crashes. Kaizoji et al. (2015) find that in certain propor-
tions, such traders reduce the size and frequency of bubbles in the model.
An additional foundation of our work is an internal report of Westphal and
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Sornette (2020a), which studies a similar introduction but with another bub-
ble detection tool, which showed even better control of bubbles. These two
results informed the research in that they hint at possible effectiveness of
both open market operations in this context, and the use of a bubble detec-
tion tool (introduced in Westphal and Sornette (2020a)). We will use the
latter in several experiments, and use the model of Westphal and Sornette
(2020a) as a benchmark to assess the effect of regulatory policies.
In this context, we chose to study possible strategies of central banks on the
two-agent model of Kaizoji et al. (2015) by introducing an agent using open
market operations to reduce the size and amount of bubbles, and later an
agent performing interest rate modification with the same motivation. Both
are compared to the impact of the bubble arbitraging traders of Westphal
and Sornette (2020a). Our objective is to find effective and realistic policy
using open market operations and interest rate regulation in the context of
a simple agent-based model. We also aim to assess the effect these actors
can have on the market and how they compare to the effect of an informed
trading population from Westphal and Sornette (2020a).
While the gist of the specific hypotheses needed in the model are outlined
in chapter 1, we should note that more generally, the findings we have are
related to a discrete market, with two assets (a risky and risk-free one), and
two or three types of traders. The frequency of trading is daily, with no
transaction costs, no borrowing or short selling, and the price calculations
rely on the equilibrium of supply and demand.
In chapter 1, we establish the setup and properties of the two-agent model
which serves as foundation for the rest of the study. We then move on, in
chapter 2, to exploring the effect of the bubble arbitraging traders of West-
phal and Sornette (2020a), or Dragon Riders, on this model, performing
additional grid explorations to optimize them in a self-interested fashion. In
chapter 3, we introduce to the model a central bank incentivized type of
traders, or open market operations performers, called Dragon Slayers. They
use bubble detection tools in order to reduce the size and number of bubbles,
and study their impact. Finally, we test direct interest rate modification, in
another effort to reduce the size and amount of bubbles, in chapter 4.
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Chapter 1

Initial market model: two types of
agents

In this chapter, we will describe the foundation for our work: a slight vari-
ation of the market model with two types of agents described by Kaizoji et
al. (2015), with the same asset dynamics as Westphal and Sornette (2020b).
The motivation is the following: in chapter 2 and chapter 3 of the report, we
will present the workings of a type of intervention to reduce price bubbles
in an agent-based model. These two models are different extensions with
three types of agents, of the model presented in this chapter. This makes
the original market model, with two types of agents, the foundation of our
work.
In the extended models, as we will detail below, we keep the framework
of Kaizoji et al. (2015), with two assets, and two types of standard traders,
while a third type of agent is added: the “Dragon Slayer”. As mentioned in
the introduction, this denomination is intended to describe agents who are
chasing “Dragon King” events, in this case, asset price bubbles, in order to
prevent them. On the one hand, we have two kinds of traders who represent
the “consumer” types of market agents, who are motivated by wealth gain,
and are exhibiting either rational or irrational behavior. This setup alone
is capable of reproducing several stylized facts of financial markets, includ-
ing fat-tail distribution of returns and volatility clustering. In this model,
the risky asset price also exhibits transient faster-than-exponential bubble
growth, as shown in Kaizoji et al. (2015).
On the other hand, in this context, it makes sense to include some regula-
tory entity equipped with some method of bubble detection, as well as some
method of intervention, and measure the effectiveness of its actions. Charac-
teristic dynamics of the two-asset market model will serve as a benchmark
to measure the effect of various interventions.
We will now explain the workings of the market model with two types of
agents, describing the assets, the behavior of the fundamentalist traders and
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1. Initial market model: two types of agents

noise traders, and the price setting via market clearing.

1.1 Market investing setup - assets

This agent-based model allows for discrete time investment. At each point
in time, the traders decide which proportion of their wealth they attribute
to which asset. In this model, the traders can choose between two assets: a
risk-free asset and a risky asset.
The parameters are chosen such that one time step corresponds roughly to
a trading day, therefore each of the returns exemplified below are to be un-
derstood as daily parameters. The convention is that the number of trading
days is 250, therefore we will sometimes have to annualize our data in the
form of (daily return)×250 in order to gain more perspective on the under-
standing of our results.
The risk-free asset represents a risk-free government bond or bank account,
such that the return on this asset is a constant interest rate r f at each step t.
In this setup, the interest rate r f is constant over time, but we will explore
the effects of deliberate modification of r f on market dynamics in chapter 4.
The risky asset represents an index or an investment fund. Its dynamics are
such that the asset price pt follows the market equilibrium of supply and
demand. The asset also pays a dividend dt at each time step. The dividend
itself follows a stochastic growth process as follows:

dt = dt−1(1 + rd
t ) = d0Πt

k=1(1 + rd
k), (1.1)

with a normally distributed growth rate rd
t

rd
t = rd + σdut, (1.2)

where ut are i.i.d. standard Gaussian processes N (0, 1), rd > 0 is the mean
growth rate, and σd is the standard deviation. In practice, σd is chosen small
enough that rd

t > 0 in the test cases. This dividend dynamic differs from
Kaizoji et al. (2015) and replicates that of Westphal and Sornette (2020b).
This means that the value of the asset at time t + 1 is

pt+1 = pt

(
1 + rt+1 +

dt+1

pt

)
, (1.3)

where the capital return of the risky asset is defined as rt+1 = pt+1−pt
pt

.
Finally, we do not allow short selling or borrowing for the traders involved.
This corresponds to constraining the fraction of wealth invested in the risky
asset to [0, 1]. In this simple context, we can now observe the resulting
behavior of two types of investors, as follows.

10



1.2. Fundamentalist traders

1.2 Fundamentalist traders

The first type of trader is the fundamentalist trader, designed to represent
an educated investor with the intention of growing wealth. In the following,
as in Kaizoji et al. (2015), we determine the risky fraction that the fundamen-
talist chooses at a given time t− 1.
Note first that the investor is risk-adverse, as most real-life individual in-
vestors are. In order to understand that notion, consider the lottery L =
(1, 0.5; 0, 0.5), that is, the possibility of receiving 1 of arbitrary currency with
probability 0.5, and 0 otherwise. Then there exists an amount lower than
E[L] = 0.5 that the risk-free agent would prefer receiving with certainty, in-
stead of the lottery.
The preferences of this risk-adverse agent are represented using expected
utility theory. This is due the Von Neumann–Morgenstern utility theorem,
established in Morgenstern and Von Neumann (1953). Indeed, the foun-
dation of expected utility theory is the fact that an agent with “rational”
preferences (defined as a set of axioms in the aforementioned work) can be
equipped with a function u(x) of the outcome of owning a total wealth of
x (in arbitrary monetary units), called utility function. Then, it is possible
to use the expected value of this utility function over the event space as a
representation of the preferred lottery of a decision maker.
In concrete terms, in the following example in a discrete event space Ω =
{ω1, ..., ωn}, for any set of lotteries Li = (l1

i , p1, ..., ln
i , pn), i ∈ {1, ..., m}, the

lotteries can be ranked as an order of preferences in decreasing order of the
value of the expected utility

E[u(Li)] =
n

∑
k=1

pku(li). (1.4)

While empirical evidence shows limits of this theory in some paradox sit-
uations, notably cited in the work of Allais (1953), it is very useful in our
simplified setup, since it allows for a clear representation of the fundamen-
talist’s behavior.
We also make the assumption that the fundamentalist traders all have iden-
tical preferences and information, so that we can aggregate their behavior
into only one representative agent with one utility function, investing a frac-
tion of the total wealth of the fundamentalists. In the following, we only
consider this agent.
The chosen utility function for the fundamentalist trader is CRRA (constant
relative risk aversion). This means, intuitively, that the risk aversion of the
agent is inversely proportional to its wealth level. This is mathematically
represented in the following way, as defined in Arrow (1965):

− x
u′′(x)
u(x)

= γ, (1.5)

11



1. Initial market model: two types of agents

where γ > 0 is a constant (it is positive because the agent is strictly risk
adverse). An example of a function fulfilling property (1.5) is:

u(x) =

{
log(x) if γ = 1
x1−γ

1−γ if γ 6= 1
(1.6)

This agent is now given the ability to choose, at each time step, the fraction
x f

t of its wealth invested in the risky asset. The remainder will be invested in
the risk-free asset. The choice reflects an optimization of the expected utility
for the next time step. This follows Kaizoji et al. (2015) and Westphal and
Sornette (2020a). Now, let us compute the risky fraction that the fundamen-
talist chooses at a given time t− 1.
Firstly, let us look at the expected utility maximization problem. The funda-
mentalist solves for x f

t−1 in the following:

max
x f

t−1
Et−1[u(W

f
t )], (1.7)

where W f
t is the fundamentalist’s wealth at time t. That is, this trader maxi-

mizes the expectation of his utility at time t.
Here, we assume, as in Kaizoji et al. (2015), that the wealth variations
W f

t −W f
t−1 at each time step are small, enabling us to use a Taylor expansion

of order 2 to solve the problem. This implies, as we will see below, that r f , rt

and dt
pt−1

have to be small compared to 1. Problem (1.14) becomes

max
x f

t−1

[
u(W f

t−1) + u′(W f
t−1)Et−1[W

f
t −W f

t−1] +
1
2

u′′(W f
t−1)Et−1[(W

f
t −W f

t−1)
2]

]
(1.8)

Secondly, in order to obtain an explicit formula, we can write the wealth of
the fundamentalist as:

W f
t = ptn

f
t + PtN

f
t , (1.9)

where n f
t and N f

t are the number of risky and risk-free assets held, respec-
tively, and pt and Pt are the prices of the risky an risk-free assets respectively.
In this context, we know that the risky fraction of the fundamentalist is

x f
t =

ptn
f
t

W f
t

, and we also have 1 − x f
t =

Pt N f
t

W f
f

. Therefore we can write the

following wealth variation of the fundamentalist from t− 1 to t. Note that
as the traders choose their wealth allocation n f

t−1 and N f
t−1 at t− 1, before

knowing the state of the market at t.

W f
t −W f

t−1 = (pt − pt−1)n
f
t−1 + dtn

f
t−1 + (Pt − Pt−1)N f

t−1

= W f
t−1

[
x f

t−1

(
pt − pt−1

pt−1
+

dt

pt−1

)
+ (1− x f

t−1)

(
Pt − Pt−1

Pt−1

)]
= W f

t−1

[
x f

t−1

(
rt − r f +

dt

pt−1

)
+ r f

]

12



1.2. Fundamentalist traders

Therefore
W f

t −W f
t−1 = W f

t−1

[
x f

t−1rexcess,t + r f

]
, (1.10)

where the excess return rexcess,t is defined as the difference between the risky
asset return and the risk-free asset return (i.e. the risk-free rate r f ):

rexcess,t = rt +
dt

pt−1
− r f = rt +

dt−1(1 + rd
t )

pt−1
− r f (1.11)

and as previously, rt := pt
pt−1
− 1 is the capital return.

We can now rewrite the simplified expected utility maximization problem
(1.8) as follows:

max
x f

t−1

[
u(W f

t−1) + u′(W f
t−1)W

f
t−1x f

t−1Et−1[rexcess,t] +
1
2

u′′(W f
t−1)(W

f
t−1)

2(x f
t−1)

2Vart−1[rexcess,t]

]
(1.12)

Solving gives us

x f
t−1 = −

u(W f
t−1)

W f
t−1u′′(W f

t−1)

Et−1[rexcess,t]

Vart−1[rexcess,t]

=
1
γ

Et−1[rexcess,t]

Vart−1[rexcess,t]
(1.13)

From (1.11), if we denote Ert := Et−1[rt], we can write

Et−1[rexcess,t] = Ert +
dt−1(1 + rd)

pt−1
− r f (1.14)

Now, using independence of the dividend return rd and the capital return
rt, and denoting σ2 := Vart−1[rt], we can write the variance as follows

Vart−1[rexcess,t] = σ2 +
d2

t−1σ2
d

p2
t−1

(1.15)

Where rt and dt are assumed to be uncorrelated, because the dividend policy
is assumed to be set without consideration for the market price, as in Kaizoji
et al. (2015). This is verified in Modigliani and Miller (1963, 1965) under
symmetric information and bounded rationality. We also assume that the
dividend dt is very small compared to pt and use first order approximation,
therefore

x f
t−1 ≈

Ert +
dt−1(1+rd)

pt−1
− r f

γσ2 (1.16)

This is the equation that the model uses to simulate the behavior of fun-
damentalist traders. Ert and σ are taken to be exogenous variables, as we
assume that fundamentalists are myopic, and do not learn in time but rather
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1. Initial market model: two types of agents

choose their wealth allocation based on their fundamental valuation, derived
from long-term historically computed growth rate and variance. As verified
in Westphal and Sornette (2020b), the long-term growth rate of prices is ap-
proximately equal to rd, the average growth rate of the dividends. Note that
the fundamentalists only use constant σ as a best guess of what the variance
will look like. Note that the long-term expected return of the risky asset Ert

is higher than the interest rate r f . The justification for this assumption is
that the risk premium is supposed to be positive, otherwise the risk-adverse
traders would never buy the risky asset. This is also coherent with real life
behavior: there is always an equity premium, to the point where it cannot al-
ways be explained with risk aversion only, as exposed in Mehra and Prescott
(1985). Therefore, the risky fraction stays positive. In the model, we need
to ensure additionally that the risky fraction stays within [0, 1], to prevent
borrowing and short selling, as mentioned above 1.1.

1.3 Noise traders

In this section, we will describe how the behavior of the second category of
traders is simulated. This type of trader is called a noise trader. They are also
often called chartist traders, due to the fact that they analyze patterns in the
price path. As explained in our introduction, and according to the review
of Samanidou et al. (2007), such momentum trading agents were already
studied in the 1950s, for instance in Baumol (1957), for their destabilizing
effect. However, their use did not become popular at the time, because of
arguments against their existence in real markets. Such agents were some-
times argued to naturally disappear in markets, as can be found in Fried-
man and Friedman (1953). However, momentum trading yields profitable
strategies and as such, this argument was overcome. Thus, these traders
gained traction again in the 1970s and 1980s, for their potential to help repro-
duce the contemporary price bubbles such as the dollar bubble, according
to Samanidou et al. (2007).
Those traders decide how they invest based on the opinion of other noise
traders, and the price behavior. Contrary to the fundamentalist traders,
noise traders do not have the possibility to invest only part of their wealth
in either asset. They invest fully in either the risky asset or the risk-free
asset. Their decision is probabilistic, and each trader’s behavior is indepen-
dent. However, the probability of switching from one asset to another is
dependent on the opinion of the other traders, and the behavior of the price,
represented by the opinion index st and the price momentum Ht respec-
tively.
The opinion index depends on the number of noise traders invested in either
asset. We denote N+

t as the number of noise traders invested in the risky
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1.3. Noise traders

asset, and N−t the number of noise traders invested in the risk-free asset.
Then, we write the opinion index as

st =
N+

t − N−t
N+

t + N−t
(1.17)

st is always in [−1, 1]. Note that N+
t + N−t = N is a constant: the total

number of noise traders doesn’t change over time in our simulations. A
positive value of the index indicates that noise traders are more invested in
the risky asset, i.e. bullish opinion, whereas a negative value of st indicates
that the risk-free asset seems more attractive to the noise traders, i.e. bearish
opinion.
As for the price momentum, it is an exponential moving average of the price

returns rt =
pt

pt−1
− 1, defined as follows

Ht = θHt−1 + (1− θ)rt (1.18)

with θ ∈ [0, 1] a memory parameter. The noise traders keep a frame of mem-
ory of a duration around the order of 1

1−θ . The reason behind this order of
magnitude is that the center of mass of the weights of an exponential moving
average of memory parameter θ falls on the same day as a simple moving

average of the previous n days (of the form
1
n

n−1

∑
i=0

Ht−i), when n =
1

1− θ
.

This means that when θ goes closer to 1, the memory goes to infinity.
The probability of switching from one asset to another changes at each time
step. It is denoted written p+t for the change from risky asset to risk-free
asset, and p−t for the reverse. As stated previously, they depend on the opin-
ion index and the momentum, but their influence is controlled by so-called
herding propensity parameter, κt. This parameter is a time-dependent social
imitation and momentum following strength parameter, so that we obtain
the following formula

p±t =
p±
2
(1∓ κt(st + Ht)). (1.19)

The expression of the transition probabilities is what causes this model to
be analogous to a standard kinetic Ising model. As explained in Harras,
Tessone, and Sornette (2012), the herding propensity Ht is analogous to a
coupling strength in the Ising model, because it represents the influence of
agents among themselves. The momentum parameter st is analogous to an
external magnetic field.
The herding strength parameter is of crucial importance in defining the be-
havior of noise traders. Note first that st and Ht have the same multiplier κt
in (1.19). As discussed in Kaizoji et al. (2015), one could envision two sep-
arate parameters for social imitation and momentum following respectively.
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1. Initial market model: two types of agents

However, they are considered equivalent here for the sake of simplification.
Now, if κt < 0, there would be a tendency from the noise traders to shift
from the risky asset to the risk-free asset when the risky asset growth is high
(Ht high) and the opinion index is high, i.e. when many noise traders are
invested in the risky asset. This contrarian behavior corresponds to agents
going opposite direction from perceived trends, and is not representative of
the herding effect that we want to include in the model.
κt = 0 corresponds to a state where noise trader behavior is not influenced
by the opinion index or the price momentum. In that case, the probabilities
of switching reduce to p±

2 . This means that on average, a noise trader will
remain in the risky asset position ∼ 2

p+ time steps, and in the risk-free asset
position ∼ 2

p− time steps.
In our study, we keep κt > 0, to account for social imitation: the higher
the proportion of noise traders invested in the risky asset, and the higher
the price momentum, the more likely noise traders are to converge to and
remain in the risky asset position, and vice-versa.
In this realm, we must also note that similarly to the Ising model, there is
a critical value κc such that if κt > κc, the model enters a regime of sponta-
neous organization of the individual noise traders, causing phases of excess
volatility and price bubbles. However, if κt < κc, the model is in a disor-
dered state.
Now, the idea behind having a non constant parameter κt is to account for
the realistic financial market characteristic of regime switching. Financial
markets typically exhibit signs of distinct regimes and switches between
them, in such ways that it has been shown that strategies of momentum
following can be very successful for some stretches of time, but in other
periods, i.e. under other regimes, they fall through. This phenomenon is
further developed in Ang and Timmermann (2012). For the purposes of our
work, we will examine the behavior of markets with a non constant param-
eter κt, defined as an Ornstein-Uhlenbeck process

κt = κt−1 + ηκ(µκ − κt−1) + σκvt, (1.20)

where ηκ is the mean reversion strength, µκ is the mean value, the last term
σκvt is one of an i.i.d. set of Gaussian processes with standard deviation

σκ, i.e. such that vt
iid∼ N (0, 1). Ornstein-Uhlenbeck processes are charac-

teristically mean-reverting, here to the mean value µκ, with mean reversion
strength ηκ, such that the deviations from the mean have a characteristic per-
sistence time ∼ 1

ηκ
. Parallels will occasionally be drawn with markets with

constant κ, which do not account for regime switching and do not feature
momentary super exponential growth, in order to gain better understand-
ing of the effect of our strategies on bubbles, specifically, as opposed to a
one-regime (constant κ) market.
This process allows for regime switching in temperament of the noise traders.
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1.4. Market clearing

Said deviations are caused by the fluctuations of the last term.
Ornstein-Uhlenbeck processes have the following expected value

E[κt] = µκ + (κ0 − µκ)e−ηκ t (1.21)

and following variance

Var[κt] =
σ2

κ

2ηκ
(1− e−ηκ t) (1.22)

This implies that the long-term dynamics of an Ornstein-Uhlenbeck process
is that of a normal distribution

κt ∼t→∞ N (µκ,
σ2

κ

2ηκ
) (1.23)

As explained in Westphal and Sornette (2020b), the typical reversion time
from a value κ0 > κc to a value κc > µκ is

1
η

log
(

κ0 − µκ

κc − µκ

)
(1.24)

Since the noise traders all have identical behavior, we aggregate them into
one representative trader with the following risky fraction, in [0, 1].

xn
t =

N+
t

N+
t + N−t

=
1

N+
t + N−t

N+
t−1

∑
i=1

(1− ξi(p+t−1)) +
1

N+
t + N−t

N−t−1

∑
j=1

(1− ξ j(p−t−1)) (1.25)

Note that the random variables ξ(p) follow independent Bernoulli distribu-
tions, that is

ξ(p) =
{

1 with probability p
0 with probability 1− p (1.26)

Finally, we can write the aggregated wealth Wn
t for the noise traders. It has

the same structure as the wealth of the fundamentalist trader:

Wn
t = Wn

t−1

[
1 + r f + xn

t−1

(
rt +

dt

pt−1
− r f

)]
(1.27)

1.4 Market clearing

In order to derive the price dynamics for the model, we use equilibrium of
supply and demand, as in Westphal and Sornette (2020b).
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1. Initial market model: two types of agents

1.4.1 Market clearing conditions

We write the excess demand of the fundamentalist traders (or the represen-
tative fundamentalist trader) for the risky asset as

∆D f
t = nt pt − nt−1 pt. (1.28)

It corresponds the variation of the amount invested in the risky asset by
the representative fundamentalist trader between times t− 1 and t. Further
developing, we obtain

∆D f
t = x f

t W f
t − x f

t−1W f
t−1

pt

pt−1

= W f
t−1

(
x f

t

[
1 + r f + x f

t−1(rt +
dt

pt−1
− r f )

]
− x f

t−1
pt

pt−1

)
. (1.29)

Similarly, we can write the excess demand of the representative noise trader
as

∆Dn
t = Wn

t−1

(
xn

t

[
1 + r f + xn

t−1(rt +
dt

pt−1
− r f )

]
− xn

t−1
pt

pt−1

)
. (1.30)

The structure is identical, due to the identical structures of wealth. The only
difference between the agents is in how the risky fractions are computed
(i.e. in their behavior). Now, the market clearing condition of equilibrium
of supply and demand corresponds to a null sum of excess demands. This
is in accordance to the theory of general equilibrium of Walras (1954). Here,
it is written as the following condition:

∆D f
t + ∆Dn

t = 0. (1.31)

This is the foundation of the following price setting.

1.4.2 Derivation of the price

In the framework we described, following the approaches of Kaizoji et al.
(2015) as well as Westphal and Sornette (2020b), we compute the price of the
risky asset pt at each time step, using the fact that the sum of excess demands
for each time step should be zero, if supply and demand are matched.
It follows that

0 = ∆D f
t + ∆Dn

t

= W f
t−1

(
x f

t

[
1 + r f + x f

t−1(rt +
dt

pt−1
− r f )

]
− x f

t−1
pt

pt−1

)
+Wn

t−1

(
xn

t

[
1 + r f + xn

t−1(rt +
dt

pt−1
− r f )

]
− xn

t−1
pt

pt−1

)
,
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1.4. Market clearing

and using the approximation (1.16):

0 = W f
t−1

Ert+1 +
dt(1+rd)

pt
− r f

γσ2

[
1 + r f + x f

t−1

(
rt +

dt

pt−1
− r f

)]
− x f

t−1
pt

pt−1


+Wn

t−1

(
xn

t

[
1 + r f + xn

t−1(rt +
dt

pt−1
− r f )

]
− xn

t−1
pt

pt−1

)
. (1.32)

Multiplying by pt and developing the return rt =
pt

pt−1
− 1 gives

0 = W f
t−1

(
Ert+1 pt + dt(1 + rd)− r f pt

γσ2

[
1 + r f + x f

t−1(
pt

pt−1
− 1 +

dt

pt−1
− r f )

]
− x f

t−1
p2

t
pt−1

)
+Wn

t−1

(
xn

t pt

[
1 + r f + xn

t−1

(
pt

pt−1
− 1 +

dt

pt−1
− r f

)]
− xn

t−1
p2

t
pt−1

)
.

(1.33)

We can now regroup the terms in powers of pt to obtain a quadratic equa-
tion:

0 =
p2

t
pt−1

(
W f

t−1x f
t−1

(
Ert+1 − r f

γσ2 − 1
)
+ Wn

t−1xn
t−1(xn

t − 1)
)

+pt

(
W f

t−1

(
x f

t−1
dt(1 + rd)

γσ2 pt−1
+

Ert+1 − r f

γσ2

(
1 + r f + x f

t−1

(
dt

pt−1
− r f − 1

)))
+ Wn

t−1xn
t

(
1 + r f + xn

t−1

(
dt

pt−1
− r f − 1

)))
.

We use the following notations from Westphal and Sornette (2020b) to sim-
plify the expressions. A different decomposition will be given in chapter 4
to provide an understanding of the effect of interest rate r f on the price.

v1 :=
Ert+1 − r f

γσ2 , v2 :=
dt

pt−1
− R f − 1, v3 = 1 + r f , v4 :=

dt(1 + rd)

γσ2

This gives us the quadratic equation at p2
t + bt pt + ct = 0, if we define at, bt,

ct as follows

at =
1

pt−1

(
W f

t−1x f
t−1(v1 − 1) + Wn

t−1xn
t−1(xn

t − 1)
)

(1.34)

bt =W f
t−1

(
x f

t−1
v4

pt−1
+ v1(x f

t−1v2 + v3)

)
+ Wn

t−1xn
t (xn

t−1v2 + v3) (1.35)

ct =W f
t−1v4(x f

t−1v2 + v3) (1.36)
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1. Initial market model: two types of agents

If at 6= 0, the solutions to this equation are

p1,2
t =

−bt ±
√

b2
t − 4atct

2at
(1.37)

We seek a positive solution to the equation. In order to assess the sign of
either solution (and what happens in the case of at = 0), we use the fact that
both risky fractions xn

t and x f
t are maintained in [0, 1], i.e. borrowing and

short selling are not allowed, as mentioned in 1.1.
This implies, first, that (xn

t − 1) ≤ 0. Now, considering (v1 − 1), we can

observe that v1 = x f
t −

dt(1 + rd)

pt
< 1 because x f

t ≤ 1. Therefore, since the

other factors in equation (1.34) are either price or wealth, thus necessarily
positive, we always have at ≤ 0.
In order to show that bt and ct are strictly positive, we just have to note that
for all x ∈ [0, 1], xv2 + v3 ≥ (1− x)(1 + r f ) > 0. Since strictly risk adverse
investors buy the risky asset, we also have a strictly positive risk premium,
therefore v1 > 0, and v3, v4 > 0. This leads to bt, ct > 0.
In the case of at = 0, pt = − ct

bt
is not a positive solution. Therefore we only

consider at < 0, and retain the positive solution

pt =
−bt −

√
b2

t − 4atct

2at
(1.38)

1.5 Behavior of the two-asset market model

We will now summarize the main results of the two-asset market model. In
essence, the model with Ornstein-Uhlenbeck herding propensity κ is able
to account for several stylized facts of financial markets, including fat-tail
distribution of returns and volatility clustering. The risky asset price also
exhibits transient faster-than-exponential bubble growth, which is the basis
for the following work on trading strategies and regulatory strategies, de-
signed to hinder such growth.

Parameter choice

In order to present the behavior of the model, let us first state our parame-
ter choices. They are designed to replicate real market behavior, where the
risky asset represents an index or a fund, and the risk-free asset represents
a bank account or a risk-free bond. The parameters are chosen according to
the recommendations of Westphal and Sornette (2020b) and listed in table
1.1.
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1.5. Behavior of the two-asset market model

Notably, the wealth of the two initial traders is identical. Since they corre-
spond to aggregated traders, this means that both trader populations have
the same weight in the market. Another important point is that the fun-
damentalists trade under the belief that Ert = rd, which is the long-term
historical view that they form. We assume that they form it with good accu-
racy, following the line of thought of Lera and Sornette (2017).
Noise traders, as a group, are 1000, and they have a memory parameter θ

corresponding to a window of time of ∼ 1
1− θ

= 20 trading days, that is

around a month. The probabilities p− and p+ are the expected values of the
switching probabilities in the case of zero herding propensity. Their values
set according to Khort (2016). They are both around 0.2, indicating that the
expected duration lasted in either state, in the absence of herding phenom-
ena, is around ∼ 1

0.2 = 5 days.
As for the assets themselves, we can observe that the standard deviation
σd of the growth rate of the dividend is ten times lower than its expected
value rd. Since this is a Gaussian process, this relationship indicates that
the growth rate does not take values very far from rd. This allows the risky
fraction of the fundamentalist to remain steady.
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1. Initial market model: two types of agents

Parameter name Explanation Value
Market
T Length of the simulation 10000
Assets
r f Interest rate (risk-free asset) 0.01/250 = 4× 10−5

d0 Initial dividend of the risky asset 0.04/250 = 1.6× 10−4

rd Expected growth rate of the dividend 0.04/250 = 1.6× 10−4

σd Standard deviation of the dividend
growth rate

1.6× 10−5

p0 Initial price of the risky asset 1
σ Expected standard deviation of the risky

asset price pt

√
0.1/250 = 0.02

N Number of risky assets 1
Noise trader
xn

0 Initial risky fraction of the noise trader 0.5
Wn

0 Initial wealth of the noise traders 109

p+ Basic switching probability from the
risky asset to the risk-free asset

0.199375

p− Basic switching probability from the risk-
free asset to the risky asset

0.200625

θ Memory parameter 0.95
H0 Initial momentum 1.6× 10−4

Nn Number of noise traders 1000
Fundamentalist
trader
x f

0 Initial risky fraction of the fundamental-
ist

0.3

W f
0 Initial wealth of the fundamentalist 109

Ert Expected return of the risky asset 1.6× 10−4

Social coupling
strength
κc Critical social coupling strength 0.199375
κ0 Initial social coupling strength 0.98× 0.199375
µκ Mean of the OU social coupling strength 0.98× 0.199375
ηκ Mean reversion of the OU social coupling

strength
0.11

σκ Standard deviation of the OU social cou-
pling strength

0.001

Table 1.1: Parameters for the simulations. The interest rate, dividend and
standard deviations are defined per time step, i.e. daily values.
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Price behavior and bubbles, wealth

We will now summarize the main qualitative characteristics of this model,
an extension of which is also analyzed in Westphal and Sornette (2020b), for
cases of Ornstein-Uhlenbeck κt as well as constant κ, for reference.
As explained in Westphal and Sornette (2020b), and shown in Harras et
al. (2012) and Kaizoji et al. (2015), under Ornstein-Uhlenbeck κt, the noise
trader dynamics follow generalized standard Ising models. These models
present characteristic shifts between disordered and ordered regimes. Essen-
tially, noise traders go from phases where there is a great disparity among
individuals, with a vanishing average demand, to phases where there is a
dominating collective opinion one way or the other (positive or negative
excess demand). The collectively organized regimes can be causes of super-
exponential bubbles in this context. Transition periods are related to periods
of high volatility.
In order to qualitatively examine the behavior of the market model, we pro-
vide two realizations of the market, illustrated in figures 1.1 and 1.2, under
Ornstein-Uhlenbeck κt and constant κt respectively. These figures are based
on the same random seed. Note that in accordance with the parameter val-
ues of table 1.1, the Ornstein-Uhlenbeck κt used in figure 1.1 has an expected
value equal to the constant κ value used in figure 1.2. However, the standard
deviation of the process is high enough that periods of collective organiza-
tion of the noise traders occur, i.e. there are transient periods of such that
κt > κc. This will be the case in all subsequent experiments as well. We
show 5000 time steps, which corresponds to 20 trading years (in our scheme
where one time step corresponds to a trading day), and they are set after
2000 initial time steps. This is to avoid the transient effects of the initializa-
tion.
The two figures show the path of the price of the risky asset in the top graph,
the evolution of the risky fractions of the noise trader and fundamentalist
trader in the middle graph, and at the bottom trace the evolution of the
wealth of the two types of traders. Note that in figure 1.1, for Ornstein-
Uhlenbeck κt, the experiment visibly creates positive price bubbles, approxi-
mately at times 2500 and 6800. However, in the constant κ case, such bubbles
do not occur. Constant κ still accounts for clusters of high volatility, but no
spontaneous collective organization of noise traders, when the social imita-
tion strength reaches high enough levels. In the Ornstein-Uhlenbeck case,
the bubbles correspond to an approximate doubling of the price at the maxi-
mum, followed with a sharp decrease, the whole process occurring over 100
time steps at the most, corresponding to around 5 months in trading days.
In general, the noise traders have a high propensity to buy the risky asset,
compared to the fundamentalists (for both κ behaviors). Note in the wealth
section of figure 1.1, that this causes the price bubbles and crashes to be
accompanied by especially pronounced wealth peaks and decreases for the
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1. Initial market model: two types of agents

noise traders. The wealth of the fundamentalists is less volatile in both cases,
and while the initial wealth of both is identical, at the end of the frame, the
noise trader wealth is lower.
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Figure 1.1: One realization of the two types of agent, two-asset market,
shown over 5000 time steps (20 years) after 2000 initial time steps, using
parameters of table 1.1, for an Ornstein-Uhlenbeck time-varying κt. The
first line shows the evolution of the price pt of the risky asset, the second
shows the risky fractions of the two types of traders, and the third shows
the evolution of the wealth of both traders.
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Figure 1.2: One realization of the two types of agent, two-asset market,
shown over 5000 time steps (20 years) after 2000 initial time steps, using
parameters of table 1.1, for a constant κ = 0.98× 0.199375, that is 98% of the
critical value. The first line shows the evolution of the price pt of the risky
asset, the second shows the risky fractions of the two types of traders, and
the third shows the evolution of the wealth of both traders.

While these two realizations were chosen representative of the general model
behavior, these considerations are not systematic. In an effort to represent
the performance of the two types of traders, we show in figure 1.3 the dis-
tribution of the Sharpe ratios of both traders’ strategies, accompanied with
the distribution of Sharpe ratio of the risky asset for reference.
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1. Initial market model: two types of agents

Sharpe ratio is calculated as:

µ− r f√
Var(µ− r f )

(1.39)

where r f is the rate of return of the risk-free rate, constant here,

µ =
1

T − 1

T

∑
t=1

Wt −Wt−1

Wt−1
is the empirical average over time of the returns

of the trader strategy, and Var(µ − r f ) is the empirical standard deviation
of the returns of the trader strategy. This measure can be used to compare
strategies for experiments with the same time frame T.
In figure 1.3, the risky asset Sharpe ratio is calculated using the price returns
instead of the wealth returns, thus corresponding to a buy-and-hold strategy
where a trader invests all their wealth in the risky asset and never move it.
The calculation gives an empirical daily Sharpe ratio, with data from times
t = 5000 and t = 17500 to make sure not to incorporate transient effects
at the initialization. The distribution is taken over 1000 different random
seeds.
As expected, the strategy of the fundamentalists have a higher performance
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Figure 1.3: Sharpe ratio distribution, over 1000 experiments, of the strategies
of the fundamentalists, noise traders and a simple buy-and-hold strategy
(labeled risky asset). Sharpe ratios are calculated from daily returns, from
time steps 5000 to 17500. Results are shown for constant κt on the left, and
Ornstein-Uhlenbeck κt on the right.

in terms of the risk-adjusted return than the strategy of the noise traders.
Note that in the constant κ case, the noise traders slightly outperform the
pure risky asset strategy, but in the Ornstein-Uhlenbeck case, the two Sharpe
ratios become almost identical, with only a slightly better performance for
the noise traders. This can be explained by the occurrence of phases of
collective organization of the noise traders, where the dominant opinion is
in favor of the risky asset, thus copying the pure risky asset strategy. The
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1.5. Behavior of the two-asset market model

annualized average Sharpe ratios in the constant κ case are 1.56× 10−2 for
the risky asset, 1.83 × 10−2 for the noise traders, and 3.29 × 10−2 for the
fundamentalists. In the case of an Ornstein-Uhlenbeck κt, they are 1.57×
10−2 for the risky asset, 1.58× 10−2, for the noise traders, and 3.42× 10−2

for the fundamentalists.
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Chapter 2

A three-agent market model: the
Dragon Rider trader

In this chapter, we will study the effect of the introduction of a variation
of the fundamentalist, a trader using a bubble detecting tool in order to
increase its profit. This will help us to understand the influence of our reg-
ulatory policies in the following two chapters, to get an understanding of
what is attainable. It is a study in the same line as the work of Westphal and
Sornette (2020b). In their paper, the two-agent market model we presented
in the previous chapter is also extended with a trader similar to the funda-
mentalist trader – in particular, they both maximize their expected utility
with the same CRRA utility function – but they have the advantage of a
prediction tool determining if the market is in a bubble. The diagnosis is
based on log-periodic power law detection (LPPLs), which has been studied
in Sornette et al. (2009), Jiang et al. (2010) and Yan et al. (2012). They observe
a reduction in the size and amplitude of the bubbles, with a destabilizing
effect when the proportion of Dragon Riders become too great. The trader
is purely motivated by wealth gain, and as such, its parameters may be opti-
mized with performance metrics such as Sharpe ratio of the agent’s strategy.
This is why the new agent is labeled as a “Dragon Rider”: compared to
the fundamentalist trader, it is using its additional knowledge to profit off
expected price soars by investing in them and divesting early when it ex-
pects a crash. It has been observed that such agents also have the positive
externality of reducing size and number of bubbles in the model, but it is
not the original goal, as it would be in the case of open market operations
from a central bank. In that sense, this finding is in line with the “invisible
hand” argument of Smith (1761), where personal interest of the individual
agents, combined with better information, lead to more stable prices and
better returns for all.
The approach in this chapter is based on a different detection tool from West-
phal and Sornette (2020b), established in Westphal and Sornette (2020a). It
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2. A three-agent market model: the Dragon Rider trader

is simpler than the LPPLs detection scheme, and relies on a measure of the
excess return to detect the stage of the bubble, and dictate the agent behav-
ior accordingly. Note that in this chapter, we will see that it is also possible
to optimize the parameters of this agent with the objective of reducing asset
price bubbles. In that case, the agent will using the bubble detection tool as
a Dragon Slayer. Dragon Slayers represent agents who use their knowledge
about price bubble detection to reduce their amount and size, not arbitrage
the information. The Dragon Slayer characteristics of the Dragon Riders de-
scribed in Westphal and Sornette (2020a), that is their positive externality
of reducing the amount and size of bubbles is also what justifies using the
same detection tool to create Dragon Slayers in this chapter, and further in
the following chapters.
In an attempt to assess the effect of this agent on the market, and use this
as a benchmark for the rest of the study, we first will perform a grid explo-
ration to evaluate the impact of various parameter settings. In the Dragon
Rider logic, we will try to find optimal parameters in terms of the Sharpe
ratio of the trader. Even though these optimal parameters reach unrealistic
behavior, they help us get an understanding of the model. Furthermore, we
also evaluate what happens if we optimize the parameters in terms of num-
ber and size of bubbles, that is, in a Dragon Slayer perspective, in order to
understand if regulatory policies or incentives could potentially surpass the
Dragon Slayer characteristics of self-interested Dragon Riders, or if instead,
the more effective the strategy is for the Dragon Rider, the better it is for
reducing bubble occurrence.
We will then use a benchmark parameter set to evaluate the effect to analyze
a more sensitive variation of the Dragon Rider formula.

2.1 Description of the three-agent model

2.1.1 Assets

As in the two-agent model, we keep one risky asset, and one risk-free asset.
The dynamics stay the same, i.e. the risk-free asset has a fixed return r f ,
and the risky asset yields a dividend dt at each time step, such that dt =

dt−1(1 + rd
t ) with rd

t = rd + σdut, where ut
i.i.d.∼ N (0, 1). This is identical to

the market setup of the two-agent model.
In similar fashion to the two-agent model, the price dynamics of the risky
asset are determined by the equilibrium of supply and demand, however
this will include the third trader, as explained in section 2.2. This model
features the same fundamentalists and noise traders, as described in chapter
1.
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2.1. Description of the three-agent model

2.1.2 The Dragon Rider/Slayer strategy

Let us now present the new addition to the two-agent, two-asset model from
chapter 1. This agent uses a bubble detection tool to calibrate its strategy,
whether it is directed towards Dragon Slayer characteristics, or Dragon Rider
characteristics. We will first present the features of this tool.

Bubble detection tool

The bubble detection tool that we use is the same as in the internal report
of Westphal and Sornette (2020a) . It is based on the exponential moving
average yt of the excess return, that we call overpricing momentum for the
rest of the study:

yt = ayt−1 + (1− a)(rt − r̄), (2.1)

where rt =
pt

pt−1
− 1 is the risky asset return, r̄ is the long-term return and

a is the memory parameter. As explained in the previous chapter, we note

that
1

1− a
is the number of time steps characteristic of the frame considered

by the exponential moving average.
The idea is that this overpricing momentum yt informs on the current trend
of the market, more specifically on whether the returns are higher or lower
than the long-term average, while smoothing the result over a certain win-
dow through the filter of averaging. In that way, day-to-day abrupt shocks
that are not representative of trends will be ignored by this measure. Note
that yt = Ht − r̄.
Now, in order to detect abnormal growth, we set a threshold y2 > 0 for what
is considered to be an overly high absolute discrepancy between the return
and the long-term average. That is, we use an indicator that will react to the
spread |yt| − y2. The chosen indicator is a logistic function of the following
form:

λ(y) =
1

1 + e−
|y|−y2

s

, (2.2)

where s > 0 is the sloppiness of the indicator.

It is a mapping from R to
[

1

1 + e
y2
s

, 1
)

that measures the likelihood of being

in a bubble. When |yt| is very high compared to y2, i.e. when the returns
have reached levels considered too far above or too far below the accept-
able variation y2, the indicator goes to 1 as the denominator goes down to 1.
Conversely, when the exponential moving average of the returns is perfectly
equal to the long-term average, the logistic function reaches its minimum

1

1 + e
y2
s

. Depending on the value of
y2

s
, this value can be closer to 0 (in the

case of y2 � s) or closer to
1
2

(in the case of y2 � s).

31



2. A three-agent market model: the Dragon Rider trader

While we can make the probability of a crash arbitrarily small in this setup,
it is important to note that this probability is never zero. In that sense, the
traders who use this detection tool constantly have a slight expectation of
a crash. In extreme conditions, i.e. y2 � s or very high sloppiness, the
probability of a crash never goes lower than 1/2. Figure 2.1 displays the
effect of sloppiness on the logistic function. Note that we will discuss the
precise values of each parameter when we look at the Dragon Rider results
in section 2.3. For now, the values used are set for general understanding
purposes, and can be considered arbitrary. We can confirm here that this
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Figure 2.1: Logistic function as a function of the overpricing momentum y,
for different values of the sloppiness s. In this figure, y2 = 0.005

version of the logistic function has a minimum
1

1 + e
y2
s

that can be closer to

0 if y2 � s, or closer to
1
2

if s is higher. The function measures abnormality
in the overpricing momentum, the norm being the value y = 0.
Figure 2.2 showcases what this bubble detection tool looks like on a price
path exhibiting a bubble. The price path corresponds to a realization of the
market for the two-trader, two-asset market. Alongside are shown the be-
havior of the overpricing momentum yt and the logistic function λ(yt). As
we can see, there are two main price peaks at times 600 days and 900 days
approximately. The beginning of those peaks are characterised by abnormal
increase in the overpricing momentum, that is increasing deviation of the
exponential moving average of the returns, from the long-term average re-
turn. In turn, λ(yt) goes to 1 whenever the absolute value of yt exceeds the
threshold y2.
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Figure 2.2: Example of overpricing momentum yt and logistic function λ(yt)
for a price path of the two-trader, two-asset model. In this figure, a = 0.95,
corresponding to a 20 day window, s = 0.0005, and y2 = 0.005.

Design of the trader

The Dragon Riders are designed as a variation of the fundamentalist traders.
Just as the fundamentalists, their goal is to maximize their individual ex-
pected utility at each time step. The Dragon Riders also have the same
CRRA utility. Since the characteristics are identical among Dragon Riders,
the collective behavior of this group of traders can be summarized with a
representative agent for the aggregated wealth of all the traders. This rep-
resentative agent is set to have the same coefficient of relative risk aversion

γ = −x
u′′(x)
u(x)

as the representative agent of the fundamentalist traders. The

reason behind all those similarities is the fact that the Dragon Riders are
meant to be regular investors like the fundamentalists, only with the differ-
ence of added knowledge about bubble detection. They have the freedom to
invest a fraction of its allocated wealth in the risky asset, and the remainder
is invested in the risk-free asset. The risky fraction is denoted xDR

t . Again, as
in chapter 1, the risky fraction is set to remain in [0, 1], that is, no borrowing
or short-selling is allowed. Their wealth structure also remains as follows:

WDR
t = WDR

t−1

[
1 + r f + xDR

t−1

(
rt +

dt

pt−1
− r f

)]
. (2.3)
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2. A three-agent market model: the Dragon Rider trader

However, the Dragon Rider differs from the fundamentalist in the sense that
they show an improved estimation of the expected return at time t. In the
case of the fundamentalist, the expected value of the return at time t, used
at t− 1 by the trader in their optimization, i.e. Ert := Et−1[rt], is taken to be
equal to the long-term average return r̄. This is a default best guess for the
fundamentalist.
In the case of the Dragon Rider, the estimation of Ert is improved using the
bubble diagnostic λ(yt) mentioned in 2.1.2, in the following way:

EDR
rt

= w((1− λ(yt)) · yt︸ ︷︷ ︸
I

− λ(yt) · sign(yt)y2︸ ︷︷ ︸
I I

) + r̄. (2.4)

And then the risky fraction of the Dragon Rider is chosen in an analogous
manner to that of the fundamentalist, through utility maximization using
this estimate:

x f
t−1 ≈

EDR
rt

+ dt−1(1+rd)
pt−1

− r f

γσ2 . (2.5)

First, note that when the exponential moving average of the excess return
goes closer to zero, i.e. the returns are close to r̄, so is the expectation of the
return. This is necessary and also showcases the fact that this agent is an
extension of the fundamentalist trader, who always uses r̄.
Figures 2.3 and 2.4 show an examples of the behavior of the expected re-
turn formula for the Dragon Rider, on a large bubble. Note that when the
threshold is lower, the Dragon Rider divests slightly too early from the risky
asset, before the bubble crash. Now, as explained before, when λ(yt) grows
close to 1, it indicates that yt has reached abnormally large values, meaning
that the exponential moving average of the returns has strayed too far from
the acceptable value threshold y2. This is where part II of the equation is
important, and part I vanishes. It pushes the expected return in the oppo-
site direction of the sign of the overpricing momentum sgn(yt), so that if
the price is exhibiting a positive bubble, the Dragon Rider divests from the
risky asset, and vice versa. It is a set correction factor of y2 because this cor-
responds to the approximate value of the expected size of the bubble when
the agent sells the asset, i.e. the expected size of the crash. Making part II
equal to −λ(yt)yt directly also makes sense, but in practice the variations
were too volatile as a strategy.
Conversely, when 1− λ(yt) grows close to one, it means that the rates of re-
turn are within a reasonable distance of the average return r̄, i.e. the distance
is not too far from y2. This is where the level confidence in the existence of
the bubble, controlled by s, is important, because it corresponds to situations
where |yt| − y2 � s. In those cases, Dragon Riders have a tendency to invest
in the risky asset in the same direction of the overpricing momentum. They
do it proportionally to the overpricing momentum itself yt, such that they
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Figure 2.3: Expected return formula for the
Dragon Rider, for a price path of the two-
trader, two-asset model. In this figure, a=0.95,
corresponding to a 20 day window, s=0.0005,
and y2 = 0.03
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Figure 2.4: Expected return formula for the
Dragon Rider, for a price pathof the two-
trader, two-asset model. In this figure,a=0.95,
correspondingto a 20 day window,s=0.0005,
and y2 = 0.05

are only lightly nudging their investment strategy either way when yt stays
close to zero.
There is, however, a critical point around y2, where the Dragon shifts its
strategy from part I to part II. For example, in the case of a positive bubble,
the design of the formula will cause the Dragon Rider to go from being in-
clined to invest in the risky asset to the opposite, compared to a the standard
set by a constant r̄ return. The effect of the shift around the critical point is
continuous due to λ(yt).
Finally, the amount of the corrections is proportional to a dampening factor
w, used to make sure that the expected return doesn’t exhibit unreasonably
high corrections.
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2. A three-agent market model: the Dragon Rider trader

2.2 Price derivation

The equilibrium of supply and demand still holds, however it features one
more agent.

0 = ∆D f
t + ∆Dn

t + ∆DDR
t

= W f
t−1

(
x f

t

[
1 + r f + x f

t−1

(
rt +

dt

pt−1
− r f

)]
− x f

t−1
pt

pt−1

)
+Wn

t−1

(
xn

t

[
1 + r f + xn

t−1

(
rt +

dt

pt−1
− r f

)]
− xn

t−1
pt

pt−1

)
+WDR

t−1

(
xDR

t

[
1 + r f + xDR

t−1

(
rt +

dt

pt−1
− r f

)]
− xDR

t−1
pt

pt−1

)
We recall that the writing of the risky fraction of the Dragon Rider are similar
to that of the fundamentalist, with the exception of Ert , which is variable in
the case of the Dragon Rider. It follows that similar manipulations of this
equation as in 1.4.2 in chapter 1 lead to a quadratic equation of the price
with changed parameters used in the simulations.

2.3 Dragon Rider grid exploration

In this section, we analyze the scope of the effect Dragon Rider model. On
the one hand, as in the work of Westphal and Sornette (2020a), we explain
the effect of parameters a, y2, and s on the Dragon Rider behavior, espe-
cially the formula of the expected return. On the other hand, we perform a
grid exploration in order to assess two things: the theoretical extent of the
effect of Dragon Riders on the market, specifically in reducing the size and
number of bubbles, and the effect of optimal Dragon Riders (in the sense of
self-interested traders who optimize for wealth related measures).
This study will allow us, in chapters 3 and 4, to draw more informed compar-
isons between the effect of Dragon Riders and the effects of a direct strategy
by a regulatory institution. Using the analysis, we will assess whether direct
policy can be as efficient as the self-regulation of markets, in this simplistic
setting.

Measures for the rest of the study

In the following, we will be measuring the effect of Dragon Riders on the
market, but also the performance of the traders. In order to do so, we
use different measures. We divide them in two categories: the measures
designed to assess the effectiveness of the trader, and the measures used to
evaluate the risky asset. The former are typically used in the perspective
of trading strategy validity, and focus on the gains of the traders, while
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2.3. Dragon Rider grid exploration

the latter are related to both volatility and the emergence of bubbles in the
market. Note that these measure will also be useful in chapter 3, when we
study the impact of open market operations on the model.

Sharpe ratio of the trader strategies We use Sharpe ratio to assess the
effectiveness of the strategies of the traders. Sharpe ratio of the Dragon
Rider is a relevant measure of performance of the trader. As mentioned in
chapter 1, it is calculated as:

µDR − r f

σDR (2.6)

where µDR =
1

T − 1

T

∑
t=1

WDR
t −WDR

t−1

WDR
t−1

is the empirical average over time of

the returns of the trader strategy, and σDR is the empirical standard devi-
ation of the returns of the trader strategy. This measure can be used to
compare strategies for experiments with the same time frame T. In the con-
text of our grid exploration, the total number of time steps was 10000, but
we only started the calculations at t = 2000, to allow for the initial transient
phase to subside.

Measures related to the price behavior We use moments of the returns
distribution, and two additional measures to assess the characteristics of the
market:

1. Volatility: a standard measure of market stability, calculated as the
empirical standard deviation of the returns

vp =

√√√√ 1
T

T

∑
t=1

(
pt − pt−1

pt−1
− µp

)2

(2.7)

where we note the empirical average of the returns µp =
1

T − 1

T

∑
t=1

pt − pt−1

pt−1
.

While high volatility can indicate propensity of the market to be risky,
it is not a complete assessment of the price path in the sense that does
not differentiate positive or negative deviations from the norm. Sharp
increases in price are not an undesired quality in a price path, but
rather the sharp decreases.

2. Conversely, skewness is a measure that separates upward and down-
ward motions in price. It is calculated as:

1
T

T

∑
t=1

( pt−pt−1
pt−1

− µp

vp

)3

(2.8)
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2. A three-agent market model: the Dragon Rider trader

3. The kurtosis is the fourth standardized moment of the returns, and
essentially captures the amount of outliers on either side of the mean.
The normal distribution has a kurtosis of 3, therefore it is usual to
measure the excess kurtosis as the difference:

1
T

T

∑
t=1

( pt−pt−1
pt−1

− µp

vp

)4

− 3 (2.9)

4. Value-at-Risk 5%: it is the lower boundary of the returns in 95% of the
cases. Here, the cases are the time steps.

5. Peak number Price peaks with time scale k are defined as in Westphal
and Sornette (2020b): if pt is the price at time t, then there is a peak at
time t0 if

∀t ∈ [t0 − k, t0 + k] , pt0 ≥ pt.

The time scale k corresponds to the minimum distance between con-
secutive peaks. We also choose k = 250 days (∼ one trading year), as
in Westphal and Sornette (2020b).
The measure itself counts the number of peaks in the considered time
frame T.

6. Average drawdown Peaks are defined as above, while valleys are defined
as the lowest price point between two peaks.
From there, the drawdown associated with a peak pt0 , with nearest next
valley pt1 is log( pt0

pt1
). Figure 2.5 shows an example of a peak, valley

and corresponding drawdown. The average drawdown is simply its
average over all peaks in the time frame (except the last).

Figure 2.5: Example of a price path where there is a peak, for k = 250
days. The red dots are the peak and valley, and the green arrow indicates
the drawdown. The price path is generated using the two-asset, two-trader
model with Ornstein-Uhlenbeck κ.
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2.3. Dragon Rider grid exploration

Empirical behavior of the model

Let us now recall from report of Westphal and Sornette (2020a) the initial
observed effects of Dragon Riders on the market.

Parameter choice Until now, we have not discussed the scale of each pa-
rameter of the Dragon Rider. It is important to recall that the setting is
artificial, and these parameters are subject to a few decisions made about
the market settings. However, the values of the parameters cannot be arbi-
trary, as they are to be effectively used as detection methods for phenomena
that occur in the two-asset, two-trader model of chapter 1. We will see in
part 2.3 how to optimize the parameters of the Dragon Rider, but for now, it
is important to have an initial idea of what their scale should be, in order to
focus the grid exploration better.
The Dragon Rider model works with some exogenous constants, but four
parameters can be changed, to modify its behavior. These parameters are a,
y2, s, and w. As explained previously, a is an indicator of the memory of the
Dragon Rider (the detection tool considers an exponential moving average
of scope ∼ 1

1−a when calculating the overpricing momentum), y2 represents
the threshold at which the Dragon Rider exits the bubble because the risk of
crash is considered too high, and the sloppiness s helps calibrate the sensi-
tivity of the response (as illustrated in Figure 2.1).

For a, we use the memory length
1

1− a
as a reference for what makes sense

as a value. It doesn’t make sense to go lower than 2 days (it is the extreme
boundary for defining an average), which corresponds to a = 0.5. More
reasonably, a value of around 7 days corresponds to a = 0.85. On the other
extreme, one trading year, i.e. 250 days, or two trading years correspond
to a = 0.996 and a = 0.998 respectively. Going above makes the notion of
the overpricing momentum lose meaning, because the exponential moving
average will converge towards the long-term average.
The threshold parameter y2 should be understood as a multiple of the long-
term return r̄. At the smallest, it is reasonable to tolerate excess returns of
around r̄ before exiting a bubble, while at the largest, it is likely that and ex-
cess return 50r̄ precedes a crash. Also note that the expected volatility of the
daily returns is very large compared to its expected value (with parameters
from chapter 1, it is 125 times higher). This also justifies such a tolerance
level for the overpricing momentum. Since we use r̄ = 0.00016, this corre-
sponds to minimum y2 at 0.00016, and maximum around 0.008.
The parameter s can be varied at will, but it makes sense to compare it to y2.
As we explained, when s is much larger than y2, the “probability of being

in a bubble” λ(yt) will have a minimum of around
1
2

. This could be prob-
lematic since the Dragon Rider behavior risks becoming erratic. As per the
recommendations of the report of Westphal and Sornette (2020a), we keep s
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2. A three-agent market model: the Dragon Rider trader

between 0.0001 and 0.002 with this range of y2. With these ranges, the mini-
mal value of the minimum of the logistic function is as low as 1.8× 10−35.
Lastly, we choose not to vary w, as this one is set as in Westphal and Sornette
(2020a). The idea is that the risky fraction of the Dragon Rider is, by con-
struction of the expected return formula, symmetric around the initial risky
fraction. The initial risky fraction is chosen at 0.3, like the fundamentalist
traders, since they are an extension of them. The scaling w of the formula
should therefore at least ensure that the risky fraction stays within 0 and
1. For that reason, the scaling factor w is chosen has the following upper
boundary:

w =
1
y2

(
r̄− r f +

d0

p0
(1 + r̄)

)
(2.10)

which is chosen as a value for w. After considerations on the effect of each
parameter variation, all other parameters fixed as specified in 1 the report
concludes that the combination a = 0.95, y2 = 0.008, s = 0.0005, w = 0.035
has good performance in terms of Sharpe ratio of the Dragon Rider.

Effect on the market The paper of Westphal and Sornette (2020a) shows
the effect on the market of the Dragon Riders with parameters listed above.
Interestingly, the more Dragon Riders are present in the market, the higher
reduction there is of the average number of peaks as well as the average size
of peaks. As a reminder, positive bubbles are identified as price peaks. We
recall that peaks with time scale k are defined as follows: if pt is the price at
time t, then there is a peak at time t0 if

∀t ∈ [t0 − k, t0 + k] , pt0 ≥ pt.

The performance of other traders is also affected by the introduction of
Dragon Riders in the market. The Sharpe ratios of noise traders, funda-
mentalist traders and Dragon Riders increase as the proportion of Dragon
Riders increases from 0% to 50%. That is, the reduction of bubbles on the
market seems to increase the performance of both other traders’ strategies.

Grid exploration: extent of market impact

We now consider the extent of the market impact that the Dragon Rider can
have, by performing a grid exploration on the parameters a, s and y2. The
goal is partly to obtain an increase in Sharpe ratio compared to the param-
eter set decided on in Westphal and Sornette (2020a), but also to observe
what happens if we optimize for different measures, such as number and
size of peaks, in particular if optimal market parameters coincide with opti-
mal Dragon Rider parameters.
For the latter purposes, we draw a so-called correlation analysis, to see if
optimizing the parameters with respect to Dragon Rider wealth gain yields
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2.3. Dragon Rider grid exploration

the same results as optimizing them with respect to Dragon Slayer charac-
teristics. In that framework, high correlation would go in the direction of
an “invisible hand” of Smith (1761) type of hypothesis, where the utility of
Dragon Rider traders is aligned with the overall stability of the market, re-
ducing the size and frequency of bubbles as they increase their wealth. Low
correlation would tend to indicate that regulatory entities targeting bubbles
specifically could have a stronger impact on them than the Dragon Riders.

Grid values We assess the effect of variations of parameters a, y2, and s, on
these measures. We use the following ranges:

a ∈ [0.5, 0.85, 0.98, 0.992, 0.996, 0.998]
s ∈ [0.0001, 0.0002, 0.0005, 0.001, 0.002]

y2 ∈ [0.0001, 0.002, 0.004, 0.006, 0.008]

The search explores all 175 combinations. Other parameters are set to a
the parameters from chapter 1. We perform the grid search for Ornstein-
Uhlenbeck κt and constant κt. The relevant result is the former, since con-
stant κ does not account for bubble behavior, but we will use the data of
constant κ later. As mentioned above, the total number of time steps of the
grid exploration experiments is 10000. For Sharpe ratio calculations, we start
at t = 5000, to allow for the initial transient phase to subside.
A very important parameter in this search is the initial wealth of the Dragon
Rider. In order to keep the scale of the total amount of initial wealth traded
constant over the different experiments, including in the following experi-
ments where the effect of the initial wealth of the Dragon Riders is studied,
we maintain a constant initial wealth for the ensemble of fundamentalists
and Dragon Riders, i.e. W f

0 + WDR
0 = 109, to match the two-asset model.

For this reason, we refer to the wealth of the Dragon Rider in percentages.
In our grid exploration, we use a 15% amount of Dragon Riders. According
to Westphal and Sornette (2020a), this proportion of Dragon Riders does not
completely suppress bubbles as in higher proportions, but starts to have an
effect. This allows us to compare the extent of the effect on the bubbles.
For each combination, we average each measure over the same 100 seeds.
We then look at average parameter values over the top 10%, 20%, and 50%
performing combinations, for all the different parameter values. Given the
results, we observe the top 10% in our findings. For instance, if we are using
a measure like average drawdown, where a lower number is more desirable,
we will use sort the combinations in ascending order and take the first val-
ues. Conversely, if the measure is Sharpe ratio, where a high number is
desirable, we will sort the combinations in descending order and take the
first values.
In the following, we will observe the behavior of Dragon Riders set up with
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2. A three-agent market model: the Dragon Rider trader

Mean Std

a 0.97 0.02
s 0.0005 0.0002
y2 0.0001 0.00004

Sharpe ratio

Mean Std

0.93 0.05
0.0006 0.0003
0.0001 0.00003

Peak number

Mean Std

0.98 0.01
0.0006 0.0002
0.0001 0.00005

Avg drawdown

Mean Std

0.97 0.03
0.0006 0.0001
0.0001 0.00002

Avg dd×p nb

Table 2.1: Average and standard deviation of the parameter values of a, s,
y2 over the top 10% performing combinations, under Ornstein-Uhlenbeck.
From left to right, top performing combinations with respect to Sharpe ratio
of the Dragon Rider, price peak number over the 10000 time steps time frame,
average drawdown on those peaks, and the product of the two (average
drawdown times peak number).

optimal combinations of parameters, in the case of optimization for Dragon
Rider Sharpe ratio, or average drawdown, peak number, and skewness.

Optimal combinations for Ornstein-Uhlenbeck κt

We obtain, the following optimal combinations of a, s and y2, when we
average the values of top performing 10% combinations in 4 parameters,
and obtain a combination with associated standard deviation. We recall the
combination from the report of Westphal and Sornette (2020a) for reference:
a = 0.95, s = 0.0005, y2 = 0.008.

We showcase in 2.1 the measures linked to the performance of the Dragon
Rider, as a trader, and the measures related to the amount and size of bub-
bles in the price path, because those are the ones we are interested in op-
timizing for, as mentioned above. Note that the average values taken over
the top 10% of the combinations in terms of skewness is identical to that
of the average drawdown. This signifies high correlation between the act of
optimizing for either measure. We will quantify this notion in the following
paragraph.
Also note that all of the combinations in 2.1 are rather similar, especially if
we consider the ranges given by the standard deviation we observe. This
tends to mean that the optimal combinations if optimizing for the Sharpe
ratio of the Dragon Rider, are the same as the ones obtained optimizing for
reduction of size and amount of peaks. However, this is only true for the top
10% performing ones, as far as we can observe here. The more systematic
correlation study in the next paragraph will help clarify this.
Also note that the threshold parameter y2 is reaching the lower boundary of
the exploration. We recall that this lower boundary is chosen because it is
assumed that fluctuations of the returns around r̄ can reasonably be set to
a minimum of r̄, without representing a real threat of bubble. We will see
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in an example that this already leads to erratic behavior on the part of the
Dragon Rider, which would probably be tempered in real life by transaction
costs, and as such, it is not realistic to extend the exploration further. How-
ever, these very small values of y2 lead to a better control of bubbles and
better Sharpe ratio overall. Note that some good control of bubbles can be
obtained with high y2 as well, but not as good as very low y2 in this study.
In figure 2.6 is an example of the behavior of the model using 15% of Dragon
Riders with parameters a, y2, and s optimized for Sharpe ratio of the Dragon
Rider, taken on one representative seed. In figure 2.7, we show behavior of
the model using 15% of Dragon Riders with the initial combination of West-
phal and Sornette (2020a), on the same seed and range of time steps.
As we can see, compared to the behavior of the model in figure 2.7, the
optimized model in figure 2.6 has a very smooth price path and shows a
dramatic and constant wealth increase for the Dragon Rider. This is done
through very sensitive and frequent switching of the amount of wealth in-
vested in either asset. The risky fraction of the model using the parameters
of Westphal and Sornette (2020a) is less polarized, never reaching 0 or 1,
while the optimized model switches back and forth from those values quite
often. This is explained by the more dramatic variations in the expected
return values used by the Dragon Rider to calibrate their wealth, as shown
in the bottom row. Indeed, the small y2 value leads the Dragon Rider to
interpret small deviations from the average return as a bubble. While in the
model using the parameters of Westphal and Sornette (2020a), the value of
Ert has a maximum around 0.0005, the boundary of Ert in the optimized case
is above 0.01.

In figure we also observe the Sharpe Ratio distribution of the three traders,
over 1000 seeds, for the Sharpe ratio of Dragon Riders optimized parameter
setting of 2.1. The methodology is the same as in chapter 1, to allow for com-
parison. The data is taken from simulations longer than those of the grid
exploration, and also taken from times t = 5000 and t = 17500 to make sure
not to incorporate transient effects at the initialization, as in 1. Compared
to the standard parameters of a = 0.95, s = 0.0005, y2 = 0.008, the Sharpe
ratios are much higher than with no intervention. Note that the Dragon Rid-
ers have higher Sharpe ratios than the fundamentalists and noise traders,
which indicates that they benefit from the bubble detection tool, and do in
fact arbitrage this information to their advantage. Overall, the results indi-
cate that the Sharpe ratio of the Dragon Rider can be dramatically increased
through parameter tweaking. Similar manipulations can also improve the
other measures significantly. However, they lead to unrealistic or unreason-
able Dragon Rider behavior and therefore cannot be used as a benchmark for
later experiments. It is however interesting to see that the standard param-
eters still provide significant bubble reduction, as emphasized in Westphal

43



2. A three-agent market model: the Dragon Rider trader

0 500 1000 1500 2000 2500 3000 3500 4000
1.0
2.0

Risky asset price pt

pt

0 500 1000 1500 2000 2500 3000 3500 4000
0

1
Risky Fraction

xn
t xf

t xDR
t

0 500 1000 1500 2000 2500 3000 3500 4000
5

10
15

Wealth

Wn
t /Wn

0 Wf
t/Wf

0 WDR
t /WDR

0

0 500 1000 1500 2000 2500 3000 3500 4000
0.01
0.00
0.01

Expected return formula of the Dragon Rider

Ert

Figure 2.6: Behavior of the three-agent market model with 15% of Dragon
Riders, and parameters set in chapter 1, with a = 0.97, s = 0.0005, y2 =
0.0001, the optimal combination obtained with respect to the Dragon Rider
Sharpe ratio. The top panel shows the price path, the second panel shows
the risky fractions of the three traders over time, the third panel shows
the normalized wealth (with respect to initial wealth) of the three types
of traders, and the last panel shows the evolution of the formula of the ex-
pected return Ert used by the Dragon Rider in the wealth allocation decision.

and Sornette (2020a).
An interesting observation we can make is that the optimization of the
Sharpe ratio of the Dragon Rider leads to similar results as the optimization
of the bubble size and amount related parameters. However, this conver-
gence is only observed on the few best performing combinations, that also
lead to unrealistic behavior of the trader. In the next analysis, we attempt to
draw correlation results from a wider scope of combinations.

Correlation analysis

An interrogation we aim to answer is whether Dragon Rider optimizing the
parameter values for their own utility maximization, for example getting the
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Figure 2.7: Behavior of the three-agent market model with 15% of Dragon
Riders, and parameters set in chapter 1, with a = 0.95, s = 0.0005, y2 = 0.008,
as in Westphal and Sornette (2020a). The top panel shows the price path,
the second panel shows the risky fractions of the three traders over time,
the third panel shows the normalized wealth (with respect to initial wealth)
of the three types of traders, and the last panel shows the evolution of the
formula of the expected return Ert used by the Dragon Rider in the wealth
allocation decision.

best Sharpe ratio, leads to a stabilization of the market in general.
To this end, we observe, for each combination (of the 175 that the grid search
covers), average performance values over 100 seeds. This means we have ar-
rays of the variation of the empirical expected value over 100 tries of each
performance measure along the 175 combinations. We measure correlation
between the 175 length arrays of different performances, using the Pearson
coefficient. If X = (x1, ..., xN) and Y = (y1, ...yN) are two arrays of perfor-
mance variation along the same set of N combinations, we calculate

ρ(X, Y) =
Cov(X, Y)

σXσY
,

where σX and σY are the sample standard deviations of X and Y and Cov(X, Y) =
1

N−1 ∑N
i=1(xi − X̄)(yi − Ȳ) is the sample covariance of X and Y.
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Figure 2.8: Distribution over 1000 seeds of the Sharpe ratios of the Funda-
mentalists, Noise traders, Dragon Riders and pure risky asset strategy, for a
three-agent model with parameters from chapter 1, a = 95, s = 0.0005 and
y2 = 0.008 and a wealth level of 15%. Sharpe ratios are calculated between
t = 5000 and t = 17500.

An absolute value of ρ(X, Y) close to one indicates that optimization for X
and Y are highly correlated. The sign indicates the orientation of the cor-
relation. We highlight some important takeaways form the study in table
2.2. This table indicates that for Ornstein-Uhlenbeck κ, the optimization
with respect to Sharpe ratio of the Dragon Rider is not very correlated with
price related measures. The two exceptions are the peak number, which is
significantly negatively correlated with ρ = −0.47, and the excess kurtosis
of the returns which is positively correlated with ρ = 0.62. While this seems
slightly counter intuitive, the peak number and excess kurtosis are rather
negatively correlated with ρ = −0.51. It seems that optimizing for Sharpe
ratio of the Dragon Rider might be accompanied with the effect of also low-
ering the amount of peaks, to some level of probability (the correlation factor
is lower than 1), while increasing the excess kurtosis. There might also be,
but with lower probability, an increase in Value-at-Risk at the 5% level, and
with similar likelihood, a reduction in the compound measure of average
drawdown times peak number.
As for the correlations between different market related measures, we first
highlight that the product of average drawdown and peak number is more
correlated with average drawdown than peak number. This is mostly due to
the fact that there is less variability of the number of peaks, than that of the
average drawdown. Note that the definition of a peak does not specify any
height, which might explain why there might technically remain peaks in
relatively smooth price paths. Also note that the peak number is negatively
correlated with Value-at-Risk is negatively correlated with peak number, at
a −0.58 level, and even more so with average drawdown, at a −0.95 level.
This is explained by the fact that a higher amount of peaks leads a more
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X measure Y measure ρ(X, Y)
Sharpe ratio DR Peak number −0.47
Sharpe ratio DR Average drawdown −0.06
Sharpe ratio DR Avg drawdown× Peak nb −0.17
Sharpe ratio DR Excess kurtosis 0.62
Sharpe ratio DR Skewness 0.05
Sharpe ratio DR Volatility −0.12
Sharpe ratio DR VaR 5% 0.18
Avg drawdown Avg drawdown× Peak nb 0.98
Peak nb Avg drawdown× Peak nb 0.66
Peak number Excess kurtosis −0.51
Skewness Excess kurtosis −0.32
Volatility Excess kurtosis 0.33
Peak number Volatility 0.54
Peak number VaR 5% −0.58
Avg drawdown VaR 5% −0.95

Table 2.2: Pearson correlation coefficients ρ(X, Y) between size 175 arrays
X and Y, corresponding to the empirical expected value calculated over
100 seeds, for each parameter combination of 175 combinations. This was
calculated using Ornstein-Uhlenbeck κ. The table is separated in two parts
by a double line. The top part of the table shows correlations between the
Sharpe ratio of the Dragon Rider, and various price-related measures. In it,
the numbers in bold are close or higher than 0.5. The bottom part features
correlations between said price-related measures for clarification. In that
section, the numbers in bold are close to 1.

frequent occurrence of very negative returns, thus also to a worse Value-at-
Risk, i.e. a lower one. Of course, one might ask if these very negative returns
caused by bubble crashes are offset by the sharp growth at the beginning of
the bubble, but there tends to be asymmetry between the left side and the
right side of the peak, in the sense that crashes are faster than growth in at
least some events. This is also nicely represented by the fact that there is
even further negative correlation when it comes to average drawdown, com-
pared to peak number alone.
While Sharpe ratio optimization of the Dragon Riders might not be com-
pletely uncorrelated with reduction of bubbles, we can observe that in this
framework, the market does regulate itself in an “invisible hand” fashion. A
Dragon Rider who does not care about the market still improves it to some
extent. However, the correlation shows that this stabilization is imperfect,
and a different set of parameters than the Dragon Rider’s can improve the
market even more.
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The same analysis is performed on constant κ, in table 2.3. The results are
noticeably different. In this context, is seems that Sharpe ratio optimization
for the Dragon Rider is rather equivalent to aiming directly at reducing peak
number and average drawdown, or volatility, or increasing Value-at-Risk at
the 5% level. This goes in favor of self-regulation in the absence of regimes
of spontaneous alignment of noise traders, in Ising fashion, as mentioned
above, which are exclusive to Ornstein-Uhlenbeck κt in our model.
An interesting point that bears noticing is the fact that the correlations
between skewness and excess kurtosis, and volatility and excess kurtosis,
switch signs in the constant κ case compared to the Ornstein-Uhlenbeck
case. They are also much closer to 1 in absolute value than in the Ornstein-
Uhlenbeck case, where the correlation approached 0.3 in absolute value.
This is due to the structural differences between the price patterns of the
two cases. A caveat to this analysis is that the impact of the Dragon Rider
for constant κ is much smaller than for Ornstein-Uhlenbeck κ. The absence
of bubbles makes the effects of the model much less significant. In that sense,
the correlation analysis is mostly confirming that fact.

X measure Y measure ρ(X, Y)
Sharpe ratio DR Peak number −0.94
Sharpe ratio DR Average drawdown −0.81
Sharpe ratio DR Avg drawdown× Peak nb −0.94
Sharpe ratio DR Excess kurtosis 0.95
Sharpe ratio DR Skewness 0.78
Sharpe ratio DR Volatility −0.96
Sharpe ratio DR VaR 5% 0.96
Avg drawdown Avg drawdown× Peak nb 0.94
Peak number Excess kurtosis −0.94
Skewness Excess kurtosis 0.71
Volatility Excess kurtosis −0.91
Peak number Volatility 0.88
Peak number VaR 5% −0.87
Avg drawdown VaR 5% −0.90

Table 2.3: Pearson correlation coefficients ρ(X, Y) between size 175 arrays
X and Y, corresponding to the empirical expected value calculated over
100 seeds, for each parameter combination of 175 combinations. Table was
calculated using constant κ. The top part of the table shows correlations
between the Sharpe ratio of the Dragon Rider, and various price-related
measures. The bottom part features correlations between said price-related
measures for clarification.
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Analysis of the effects of a time-varying memory parameter

In this section, we explore an extension of the Dragon Rider behavior. Until
now, the memory parameter a was constant. We recall that a is related to the
memory of the Dragon Rider. More precisely, 1

1−a represents the window, in
number of days, the Dragon Rider uses to compare price. In an effort to
improve bubble detection, this memory is made variable in the following
model generalization:

a(λ) = a0 × (1− λ)β

a is made dependent on λ such that during bubbles, when λ is close to 1,
the memory parameter gets shorter. That means that the model is more
sensitive to price movements, when it is more likely that the risky asset is
in a price bubble. Intuitively, a strictly positive β leads to a reduction the
memory parameter as the Dragon Rider detects bubble regime. The constant
case corresponds to β = 0. β < 1 makes a a concave function of 1− λ, while
β > 1 makes a a convex function of 1− λ. This means that β controls the
sensitivity to λ. Note that since λ ∈ [0, 1], this means that for cases of β > 1,
a(λ) is lower than a0, while when β < 1, a(λ) is higher than a0.
We conduct an analysis of the behavior of the Sharpe ratio of the Dragon
Rider trader, using the standard combination of parameters from Westphal
and Sornette (2020a): a = 0.95, s = 0.0005, y2 = 0.008. In figure 2.9, we show
plots of the evolution of several measure’s empirical expected value, calcu-
lated over 100 seeds, for T = 10000, for the case of 15% wealth of Dragon
Riders compared to the total of fundamentalists and Riders. The measures
considered are average drawdown, peak number, Value-at-Risk at the 5%
level, Sharpe ratio of the fundamentalist, the noise trader and the Dragon
Rider. As shown in those plots, the increase of β seems to have little effect
on the price related measures, and no positive effect. The increase of β also
decreases the Sharpe ratios of all three types of traders slightly, but signifi-
cantly.
In figure 2.10, we show analogous plots for a constant κ. The results are
inconclusive in this case, with no strong effects on either measure.
We also attempt the same experiments with higher proportions of Dragon
Riders up to 50% of wealth, and obtain similar results with stronger de-
creases in the Sharpe ratios in the case of Ornstein-Uhlenbeck κt. We con-
clude that this type of detection tool does not help the Dragon Rider increase
its accuracy or efficiency.
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Figure 2.9: Plots of the variation of each measure average over 100 seeds,
for different values of β applied to the three-agent model with the standard
parameters for the Dragon Rider a = 0.95, s = 0.0005, y2 = 0.008. Ornstein-
Uhlenbeck κt is used. In blue, the variation of each parameter is showed,
while in red is the benchmark of constant a behavior. From left to right, top
to bottom, the measures considered are average drawdown, peak number,
Value-at-Risk at the 5% level, sharpe ratio of the fundamentalist, the noise
trader and the Dragon Rider.
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Figure 2.10: Plots of the variation of each measure average over 100 seeds,
for different values of β applied to the three-agent model with the standard
parameters for the Dragon Rider a = 0.95, s = 0.0005, y2 = 0.008. Constant
κt is used. In blue is the variation of each parameter. In red is the benchmark
of constant a behavior. From left to right, top to bottom, the measures con-
sidered are average drawdown, peak number, Value-at-Risk at the 5% level,
sharpe ratio of the fundamentalist, the noise trader and the Dragon Rider.
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Chapter 3

A second three-agent market model: a
Dragon Slayer trader

As explained in our introduction, the goal of our study is to observe meth-
ods and consequences of market regulation. The first method is a simulation
of open market operations through an agent who dedicates their wealth to
making transactions to stabilize the market at the appropriate time when
they anticipate the rise and crash of a bubble.
In this chapter, we present the first type of agent designed with Dragon
Slayer objectives exclusively, that we will study. Recall that unlike the Dragon
Rider, Dragon Slayers represent agents who use their knowledge about price
bubble detection to reduce their amount and size, not arbitrage the informa-
tion. In total, we study two – in the next chapter, we will study a Dragon
Slayer with the ability to change the interest rate.
This is similar to what central banks would do in a context of asset price
targeting. We recall that asset price targeting is not the standard targeting
method for the central banks. As explained in our introduction, there is
debate as to whether it is appropriate, especially in the context of reducing
positive bubbles before the crash. However, we align our study with the ar-
guments in favor of asset price targeting. One remark is that our model can-
not account for inflation targeting, because of its simplicity. Central banks
access to inflation data through the tracking of the price of baskets of goods.
However, our market does not account for goods other than financial assets.
In that context, the risk-free rate can be interpreted as a nominal interest
rate, with unknown inflation and real interest rate. This does not perturb
the study, since we are interested in analyzing how to prevent bubbles and
crashes, making the model well adapted to our interrogations.
We also recall that central banks use several different instruments of mone-
tary policy. The instrument we are modeling in this chapter is open market
operations. We create a trader who invests its wealth on either the risky or
the risk-free asset, only in order to reduce the amount and size of bubbles
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in the market. In the context of conventional policy, open market operations
are the purchase or sale of government bonds only, but since we apply this
policy to bubbles and crashes, it is reasonable to assume that the policy en-
ters the realm of unconventional monetary instruments. In which case, the
purchase or sale of assets is also used. However, this is not unreasonable
or uncommon in real life behavior. Examples ranging from the Swiss Na-
tional Bank to analogous institutions in Hong Kong or Japan have shown
that central banks buy large amounts of shares. This is why it makes sense
to study this type of Dragon Slayer. A supporting point in this choice that
we also mentioned in our introduction, is that central banks have become
more and more inclined to own financial assets since the financial crisis of
2008, even when the threat of collapse is not imminent. As a last note, we
also know that since 2008, the amounts of money involved have largely in-
creased, which is why we will consider various initial wealth levels for this
trader.
In the previous chapter, we performed a grid exploration to assess the im-
pact of Dragon Riders in various parameter settings. We concluded that
optimization was possible, while still using the standard parameters as a
benchmark for more realistic behavior. We can now compare their perfor-
mance to what we obtain here through an institution using the same tools
of detection, and open market operations. We aim to reproduce the positive
externality generated by the Dragon Riders.
The good performance observed in the previous chapter justifies the use of
the same detection tool in our following strategy.

3.1 Description of the three-agent model

3.1.1 Market setup

The model we use is again an extension of the two-trader, two-asset model of
chapter 1. The model only differs from that of chapter 2 in the third trader’s
characteristics, because we replace the Dragon Rider with a Dragon Slayer.
As in the two-agent model, we keep one risky asset, and one risk-free asset.
The risk-free asset has a constant return r f . In addition, at each time-step
the risky asset provides a dividend dt = dt−1(1 + rd

t ) with rd
t = rd + σdut,

where ut
i.i.d.∼ N (0, 1). We keep the fundamentalist traders and noise traders

identical to the previous two chapters, and introduce a Dragon Slayer type
of trader.

3.1.2 Dragon Slayer strategy

Similarly to the Dragon Rider, the idea for the Dragon Slayer, is to create
an extension of the fundamentalist trader, since we can dictate its behavior
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through the control of the formula of estimation of the expected return of the
risky asset, noted EDS

rt
. It also allows us to revert to fundamentalist behavior

EDS
rt

= rd when intervention is not needed, thus replicating the intervention
with minimal disturbance to the market. This is due to the fact that fun-
damentalists themselves are a stabilizing element of the market, since their
investment is proportional to the dividend-price ratio.
Thus, we set up this trader with the following behavior characteristics. Con-
ceptually, they behave in order to maximize their individual expected utility
at each time step with the same CRRA utility as fundamentalists. The group
of Dragon Slayers are summarized with a representative agent for the aggre-
gated wealth of all the traders, just as the other types of traders. They have
the freedom to invest a fraction of their allocated wealth in the risky asset,
and the remainder is invested in the risk-free asset. The risky fraction is
denoted xDS

t . Their wealth structure is as follows:

WDS
t = WDS

t−1

[
1 + r f + xDS

t−1

(
rt +

dt

pt−1
− r f

)]
. (3.1)

and the utility maximization implies:

x f
t−1 ≈

EDS
rt

+ dt−1(1+rd)
pt−1

− r f

γσ2 . (3.2)

It is important to understand that while the dynamics are analogous to fun-
damentalists and Dragon Riders, we will set up the behavior of EDS

rt
such

that this is indeed an agent of regulatory behavior. That is, their goal is not
wealth maximization, but reduction of the price bubbles size and amount.
As a remark, this setup implies that the Dragon Slayer starts with an initial
amount of money and invests it throughout the course of the experiment.
One might ask why the Dragon Slayer is trading even when the risky asset
is not showing signs of a bubble, when it is supposed to model unconven-
tional monetary policy. We argue that in this simplified, closed model, ex-
ternal and discontinuous introduction of wealth and retraction of wealth in
the system is not realistic. It is easier to study the effects in the context of
having part of the fundamentalists turn into regulatory entities in times of
bubble detection, then revert back to the fundamentalist behavior. Another
argument would be that financial institutions build up their inventory of
stocks during normal times, so that they can react to bubbles and sell the
stock when necessary, which makes the behavior of our model analogous
to real market behavior. This is enabled by having a formula for EDS

rt
that

converges to rd, the long-term average, when no bubble is detected.
The foundation for the Dragon Slayer strategy is a lean against the wind pol-
icy. The basic concept is that when a positive bubble starts to happen, the
regulatory entity tries to change the trend by making the traders divest from
the risky asset. That is, when Dragon Slayers anticipate a positive bubble,
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3. A second three-agent market model: a Dragon Slayer trader

they divest from the risk-free rate in order to drive the price down (partly
through influence of the price momentum for noise traders, and partly by
effects on the equation of supply and demand), and when it starts crashing,
they slow down the fall by investing again. Dragon Riders and Dragon Slay-
ers share the same basis for bubble detection, in the form of the overpricing

yt = ayt−1 + (1− a)(rt − r̄), (3.3)

where rt =
pt

pt−1
− 1 is the risky asset return, r̄ is the long-term return and a

is the memory parameter. While the Dragon Slayer uses the same detection
tool and parameters as the Dragon Rider, because of their efficiency being
possibly correlated with their accuracy, it is important to note that there
is a difference in strategy with the Dragon Rider situation. The Dragon
Rider benefits from investing when a bubble is forming, which is why the
overpricing detection tool is important, as with the Dragon Slayer. However,
another key part of the strategy of the Dragon Rider is to know when to exit
the risky asset position. The exit must be made before the crash happens,
but possibly at the last minute. This justifies the existence of a threshold y2
in the following equation (2.2). However, a threshold in the Dragon Slayer
perspective might set the timing for entering the bubble instead of exiting
it, which means that the threshold would play a very different role. In this
approach, we find another way to detect the start of the crash, especially in
order to control the reaction of the model right after the crash. Contrary to
the Dragon Rider in chapter 2, where the crash is equivalent, in the formula,
with the beginning of a negative bubble, we want to implement a policy
that reacts almost immediately to the crash to counter it. There might be
delays to soften the effect of the policy, but in the detection, there must be
a way to pinpoint the exact moment of the crash, unlike for the Dragon
Rider, when overpricing absolute value is enough to determine the strategy.
Indeed, what we aim for is a lean against the wind policy where the Dragon
Slayer goes from selling the asset (as the price grows too fast), to buying the
asset right after the beginning of the crash.
In this perspective, we try to adapt the size of the intervention to the bubble
stage. We decide to rely on the empirical derivative of the overpricing, that is
the step by step acceleration of the overpricing yt − yt−1, because the switch
in the sign of the overpricing momentum is made evident in the crossing
of the value zero by the derivative. It is an approach that is in agreement
with the findings of super exponential growth in the empirical price bubbles,
seen in Sornette et al. (2009), Yan et al. (2012) and Jiang et al. (2010). In order
not to capture too much noise, we use a smoothed derivative Dm

t calculated
over m time steps in the following way:

Dm
t =

1
m

m

∑
k=1

(yt−k − yt−k−1) =
1
m
(yt−1 − yt−m−1) (3.4)
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3.1. Description of the three-agent model

Figure 4.1 shows an example of the behavior of the overpricing, and the
smoothed derivative of the overpricing, when confronted with a typical
price path from the model of chapter 1. We use m = 15 in this figure. The
price path is generated using the parameters of chapter 1, with Ornstein-
Uhlenbeck κt, in order to show the behavior around price peaks. We select a
zone where there are two price peaks, one at time 2500 and another shortly
after, at time 2650 approximately. As we can see, while the overpricing
indicates the price peaks, the value of the derivative of the overpricing is
particularly apt to serve as amplitude. It is very clear for the peak at time
2500 that the sign of the derivative changes signs and crosses zero at the mo-
ment of the crash, which is helpful for a formula of the amplitude around
rd that we want to introduce. Note that the smoothing with m = 15 induces
a delay of a few days in the response of the derivative. This causes a delay
in the response of the Dragon Slayer. However, unnecessary noise caused
by too low m can also cause malfunction of this regulatory force. Therefore,
we will calibrate this parameter. We can also notice that the amplitude of
the derivative is not symmetrical for this peak, as the growth of the returns
grows slower than it falls after the crash. This leads the correction before the
crash to be softer than the counteraction right after it. In this case, the peak
is not too sharp since the returns actually slow down for a while before the
crash. This highlights a response of the derivative that is adaptable to the
characteristics of the peak.

Note that in addition to this derivative, we could use the same indicator
reacting to the spread |yt| − y2 as for the Dragon Rider.

Indeed, we could consider intervening only after the overpricing has reached
a certain threshold and not before, that is, only changing anything in the
case of a bubble of a certain size. However, it is not the same situation. t is
important to note that the threshold y2 plays a different role in the Dragon
Rider’s strategy. Indeed, intuitively, the Dragon Rider benefits from only
exiting the bubble at the last possible moment before the crash. However,
the role of the threshold y2 for the Dragon Slayer is to indicate the begin-
ning of a bubble, for the Dragon Slayer to sell the risky asset. Conceptually,
if the amplitude is based on the derivative of the overpricing, there is also
no need to separate the intensity of response after reaching some arbitrary
threshold y2. Indeed, the derivative of the overpricing increases more and
more rapidly before the crash. This is due to the super exponential nature of
the growth. These observations lead us to disregard the idea of differentiat-
ing the response using some threshold, and to focus on a design that has the
same response to the derivative regardless of the status of the overpricing
itself, i.e. having the same response before or after the threshold is reached,
with an amplitude based on the derivative of the logistic function.
Thus, we design a response such that regardless of the bubble diagnostic,
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Figure 3.1: Example plots, over 500 time steps, of a price path accompanied
with the corresponding overpricing momentum and overpricing accelera-
tion (top, middle and bottom panels).

the formula of the expected return is modified with the same amplitude at,
in which case the logistic function becomes redundant, as in equation (3.5)

EDS
rt+1

= r̄− at, (3.5)

Considering the behavior of the smoothed derivative of the overpricing Dm
t ,

we decide to set at = wDm
t , where w is a weight that we will calibrate

considering the typical range of Dm
t , and the response of the model using

the formula without threshold first, as in (3.5). We will also consider the
effect of the window of smoothing m on the results, again calibrating on the
model using the formula without threshold.
So, to summarize, we will study the following formula for the expected
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return used by the Dragon Slayer to choose its risky fraction:

EDS
rt+1

= r̄− wDm
t , (3.6)

3.1.3 Price derivation

Again, the market price follows the equilibrium of the supply and demand.
Similar manipulations of this equation as in 1.4.2 in chapter 1 lead to an
analogous quadratic equation of the price.

0 = ∆D f
t + ∆Dn

t + ∆DDS
t

= W f
t−1

(
x f

t

[
1 + r f + x f

t−1

(
rt +

dt

pt−1
− r f

)]
− x f

t−1
pt

pt−1

)
+Wn

t−1

(
xn

t

[
1 + r f + xn

t−1

(
rt +

dt

pt−1
− r f

)]
− xn

t−1
pt

pt−1

)
+WDS

t−1

(
xDS

t

[
1 + r f + xDS

t−1

(
rt +

dt

pt−1
− r f

)]
− xDS

t−1
pt

pt−1

)

3.2 Dragon Slayer results

3.2.1 Choosing the weight w

In this section, we will choose the weight w associated with the smoothed
derivative of the overpricing in the perturbation factor of the formula (3.7)

EDS
rt+1

= r̄− wDm
t , (3.7)

We base the level of the amplitude on the typical range of Dm
t . Typical values

of Dm
t in case of a price peak have a maximum absolute value around 0.0025,

as in figure 4.1, as evidenced by experiments on a 100 seeds. We recall that
the baseline value of EDS

rt+1
is r̄ = rd = 0.00016, and that Dragon Rider varia-

tions of EDR
rt+1

typically had an absolute value of a maximum 0.0005, to keep
the risky fraction in an appropriate range [0, 1] without too much concentra-
tion at the extremes, or in the middle. Based on this, we choose a baseline of
w around 0.02 to keep this amplitude. Sensitivity analysis shows it to be an
appropriate choice, when testing later (including at different wealth levels),
in the wider range of w ∈ {0.0001, 0.0005, 0.01, 0.02, 0.05, 0.1}. The value 0.02
was found to have the best behavior for the model in terms of peak number
times average drawdown.

3.2.2 Wealth variation

Given this weight value, we study the effect of the variation of wealth on
the model. We find that the reduction of size and amount of bubbles gets
better as the wealth ratio increases. Recall that the initial wealth ratio is
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always referring to the ratio of Dragon Riders or Slayers wealth, to the sum
of Dragon Riders or Slayers and fundamentalists wealth. As discussed in 2
in the case of the Dragon Rider, we keep the total wealth of fundamentalists
and Dragon Slayers combined equal to 109, the same wealth as the noise
traders, to allow for comparison. As we can see in figure 3.2, the results on
peak number are a bit inconclusive because the number of peaks is relatively
similar, between 13.5 and 14.2. However, driven by the significant decline
in the average drawdown from 0.7 to 0.45, the product of the two steadily
decreases as the wealth ratio of Slayers increases.
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Figure 3.2: Plots of the variation of each measure average over 100 seeds,
for different values of the initial wealth of the Dragon Slayer applied to the
three-agent model with memory parameter for the Dragon Slayer a = 0.95.
Total initial wealth of fundamentalists and Dragon Slayers is maintained at
109. Ornstein-Uhlenbeck κt is used. From left to right, top to bottom, the
measures considered are average drawdown, peak number, and product of
average drawdown and peak number

This is confirmed in the behavior of the price paths in the representative
seeds, for time steps t = 2000 to 4000, using the parameters of chapter 1 as a
foundation, w = 0.02, and a = 0.95 for the Dragon Slayer when there is one.
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In figure 3.3, we show a benchmark for the price path in the case of only two
traders (no Dragon Slayer). In figure 3.4, we show the same section in the
case of 20% wealth ratio for the Dragon Slayer, and in 3.5 and 3.6, we show
the same section for initial wealth percentages 40% and 90% respectively.
The reduction in size of the bubble at around t = 3250 is clear (note that the
scale changes at every graph). We also notice that with increased amounts
of Dragon Slayers in the 90% frame, the bubble becomes a negative bubble.
The response becomes too strong, in the case of this price bubble. However
overall, 90% Dragon Slayer wealth performs better than lower proportions
in reducing bubbles.
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Figure 3.3: Plot of one realization (seed
126963) of the two-agent model, using param-
eters from chapter 1. Top panel shows the
price path, second panel shows the risky frac-
tions of the traders, lower panel shows the
wealth of the traders. The section shown is
from t = 2000 to t = 4000.

2000 2250 2500 2750 3000 3250 3500 3750 4000
1.0

2.0
3.0

Price pt

pt

2000 2250 2500 2750 3000 3250 3500 3750 4000
0

1
Risky Fraction

xn
t xf

t xDS
t

2000 2250 2500 2750 3000 3250 3500 3750 4000
1

2

Wealth

Wn
t /Wn

2000 Wf
t/Wf

2000 WDS
t /WDS

2000

Figure 3.4: Plot of one realization (seed
126963) of the three-agent model with Dragon
Slayer, using parameters from chapter 1, w =
0.02 and initial wealth of the Dragon Slayer at
20% of the total of Slayers and fundamental-
ists. Same time window and panel organiza-
tion as on the left.
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Figure 3.5: Plot of one realization (seed
126963) of the three-agent model with Dragon
Slayer, using parameters from chapter 1, w =
0.02 and initial wealth of the Dragon Slayer at
40% of the total of Slayers and fundamental-
ists. Same time window and panel organiza-
tion as above.

2000 2250 2500 2750 3000 3250 3500 3750 4000

1.0

2.0

6 × 10 1

Price pt

pt

2000 2250 2500 2750 3000 3250 3500 3750 4000
0.0

0.5

Risky Fraction

xn
t xf

t xDS
t

2000 2250 2500 2750 3000 3250 3500 3750 4000
1.0

1.5

Wealth

Wn
t /Wn

2000 Wf
t/Wf

2000 WDS
t /WDS

2000

Figure 3.6: Plot of one realization (seed
126963) of the three-agent model with Dragon
Slayer, using parameters from chapter 1, w =
0.02 and initial wealth of the Dragon Slayer
at 90% of the total of Slayers and fundamen-
talists.Same time window and panel organiza-
tion as above.
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Despite the fact that the optimal wealth allocation is to replace all fundamen-
talists with Dragon Slayers, this is not realistic to the composition of a real
market. We will keep a 50% allocation, which already allows for reduction
of bubbles, in the following examples.

3.2.3 Optimization of smoothing window m

We now derive a sensitivity analysis to get the best values for m in terms
of bubble size and amount reduction. Intuitively, very low m corresponds
to no smoothing of the derivative, which could induce noise, while high m
induces a delay in the reaction to the peak.
In figure 3.7, we show the effect of the smoothing window size on the peak
number, average drawdown and product of the two. The results are a bit
unclear but it seems like values between 10 and 25 provide the lowest val-
ues in size times amount of peaks. In particular, there seems to be a low
amount of peaks with higher amplitude at around 15 time steps of smooth-
ing. These results should be taken with a grain of salt since the amplitude
of the changes is never very high here. The peak number varies from 13.6 to
14.2, while the average drawdown takes values from 0.053 to 0.055. We set
m = 10 for the rest of the experiments.

3.2.4 Sharpe ratio distribution

As we can see in figure 3.8, the Sharpe ratio distribution is similar to that of
the two-agent model in figure 1.3 for the fundamentalist and noise traders,
and the risky asset. The same remarks apply for these three strategies
with respect to the change of behavior between constant κ and Ornstein-
Uhlenbeck κt. This means that the bubble reduction is not generally improv-
ing the efficiency of the strategies.
An interesting point is the distribution of the Dragon Slayer Sharpe ratios. It
is noteworthy that in constant κ, with no bubbles, the Dragon Slayer behav-
ior collapses with the behavior of the fundamentalist. This is the behavior
that we wanted for this trader. However, in the Ornstein-Uhlenbeck case,
the Dragon Slayer has a lower average Sharpe ratio than the fundamentalist
does. This is to be expected, since the strategy of the Dragon Slayer is to go
against the market during a bubble.

3.2.5 Comparison with Dragon Rider

In table 3.1, we use the combination of parameters a = 0.95, s = 0.0005, y2 =
0.008 for the Dragon Rider to compare the effects of Dragon Riders with
those of Dragon Slayers with a = 0.95 and w = 0.02. As is evidenced by
the amounts, the Dragon Rider is much more effective at reducing size and
especially amounts of bubbles than the Dragon Slayer. However, compared
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Figure 3.7: Plots of the variation of each measure average over 100 seeds,
for different values of the smoothing window of the derivative m applied
to the three-agent model with memory parameter for the Dragon Slayer
a = 0.95. Ornstein-Uhlenbeck κt is used. From left to right, top to bottom,
the measures considered are average drawdown, peak number, and product
of average drawdown and peak number

to no intervention at all, the Dragon Slayer manages to reduce the number
of bubbles by almost two thirds.
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Figure 3.8: Distribution over 1000 seeds of the Sharpe ratios of the Funda-
mentalists, Noise traders, Dragon Slayers and pure risky asset strategy, for
a three-agent model with parameters from chapter 1, a = 95, w = 0.02 and
a wealth level of 90%. Sharpe ratios are calculated between t = 5000 and
t = 17500.

% Model Peak nb Avg dd Avg dd × p
nb

0 2 agent 19.9 0.58 11.5
20 DS 13.7 0.56 7.7
20 DR 9.47 0.28 2.65
100 (opt) DS 13.6 0.45 6.12
60 (opt) DR 1.26 0.46 0.58

Table 3.1: Comparison between Dragon Rider and Dragon Slayer of average
value over 100 seeds of average drawdown, peak number, and the product,
for 20% of initial wealth, and the respective optimum initial wealth. The
measures of the two-agent model are at the top row as a benchmark. Mea-
sures are taken over a time period T = 10000.
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Chapter 4

Regulation through interest rate
modification

In this chapter, we extend the model from chapter 1 in a different direction
from chapters 2 and 3. Instead of considering traders and their positive ex-
ternality on the market, or open market operations as a means for regulatory
entities to reduce the size and amount of bubbles directly, we design regula-
tory strategies through interest rate alteration. As explained in our introduc-
tion, the regulation of markets can take several aspects. One of them, used
by central banks, is the modification of the interest rate, through various
mechanisms such as setting the overnight rates or influencing the exchange
rates. Our model is very simple, so we will summarize these interventions
through a modification of the nominal interest rate directly, i.e. modification
of the interest rate r f previously considered constant. The concept of the reg-
ulatory agent is still the “Dragon Slayer” type. To reduce confusion in the
naming, we will refer to this agent as the “interest rate Dragon Slayer”, and
the agent from chapter 3 as the “Dragon Slayer trader” when the context
is not clear. In the absence of this clarification, by default, “Dragon Slayer”
refers to the interest rate Dragon Slayer throughout the chapter.
Note that in essence, we will also adopt lean against the wind policy when
it comes to interest rate modification. This is similar to the approach in chap-
ter 3. However, the influence on the interest rate also influences the wealth
of the traders

4.1 Market setup

We again use the market setup of the two-agent model. The difference here
is that we introduce a new agent, a Dragon Slayer with the ability to modify
the interest rate.
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4. Regulation through interest rate modification

4.1.1 Basic market setup

Assets As in the two-agent model, we keep the structure of one risky asset,
and one so-called risk-free asset. However, the latter is no longer fully risk-
free, since now, its return r f

t , can be modified by the Dragon Slayer at each
step. The asset still represents a bank account or government-backed bond.
This represents the nominal interest rate. The price dynamics of the risky
asset are determined by the equilibrium of supply and demand and recalled
in section 4.1.2. The risky asset yields the same dividend dt at each time step,
as in the previous chapters, such that dt = dt−1(1 + rd

t ) with rd
t = rd + σdut,

where ut
i.i.d.∼ N (0, 1).

Fundamentalist traders and noise traders We keep a representative funda-
mentalist trader with the following wealth allocation principle:

x f
t−1 ≈

Ert +
dt−1(1+rd)

pt−1
− r f

t

γσ2 . (4.1)

And the representative noise trader keeps the same wealth allocation scheme
as well:

xn
t =

1
N+

t + N−t

N+
t−1

∑
i=1

(1− ξi(p+t−1)) +
1

N+
t + N−t

N−t−1

∑
j=1

(1− ξ j(p−t−1)), (4.2)

where ξ(p) are Bernoulli random numbers with parameter p.
Wealth dynamics for noise traders and fundamentalist traders remain:

Wt = Wt−1

[
1 + r f

t + xt−1

(
rt +

dt

pt−1
− r f

t

)]
(4.3)

Bubble detection tool We keep the overpricing definition:

yt = ayt−1 + (1− a)(rt − R̄), (4.4)

where rt =
pt

pt−1
− 1 is the risky asset return, R̄ is the long-term return and

a is the memory parameter.

4.1.2 Dragon Slayer scheme

Basic concept

The initial concept that we use is to find a way to modify the interest rate
around a constant long-term average r f in such a way that market crashes
are dampened. This involves slowing down price growth when it reaches
abnormally high levels, and slowing the falls. This corresponds to increasing
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4.1. Market setup

the interest rate when the price is about to crash (in order to encourage the
investors to converge towards the risk-free asset), and decreasing it when
the price is currently crashing in order to make the risky asset comparatively
more attractive. The average interest rate is maintained at a constant level
r f . We use the evolution of the overpricing (4.4) as a guide for the variation
around r f . When a positive bubble is expected, the Dragon Slayer should be
attempting to slow down the growth of the bubble, by increasing the interest
rate, therefore r f

t > r f . When the crash starts, the Dragon Slayer should be
trying to slow down the fall of the price by making the risk-free asset less
attractive, i.e. decreasing the interest rate, therefore r f

t < r f . Since the
overpricing quantifies the growth of the returns with the long-term average
as a reference point, we use its evolution as in chapter 3 to calibrate the
amplitude at in the following:

r f
t = r f + at, (4.5)

where at is the amplitude of the correction prescribed by the Dragon Slayer.
Note that in terms of notation and timing, the Dragon Slayer chooses the
interest rate r f

t , that will apply to the risk-free asset from t to t + 1, at t− 1
and given all available information at t− 1. We can also write this formula
in the following form (where at is now a multiplying factor for r f ):

r f
t = r f (1 + at). (4.6)

with at is the amplitude of the relative correction prescribed by the Dragon
Slayer. For the same reasons as above, at should be positive during the rise
of the bubble, and negative during the crash. In practice, we use second
formula (4.6) for better understanding of the chosen amplitude.

Amplitude of the correction

We attempted to assess the effect of interest rate r f
t modifications on the

price at t. The larger ambition here was to obtain a formula for at from 4.6
as a function of the state of the market at t− 1 by examining the variation
of price at t with respect to the interest rate modifications at t− 1. We used
Taylor expansion on the price equation to achieve this goal in first order
approximation. As explained above, the interest rate r f

t , applying to the risk-
free asset from t to t + 1, is chosen at t− 1.
In practice, we calculated the impact of a variation dr f

t on the price pt. Re-
calling the price equations in the two-agent model from chapter 1, we per-
formed a Taylor expansion which was inconclusive at this level. We refer to
the appendix for the details of the Taylor expansion.
In the end, we decided to drop this approach to the determination of the am-
plitude. Indeed, there are two main caveats to this line of reasoning. Firstly,
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4. Regulation through interest rate modification

a lot of the state at t− 1 cannot be perfectly known by the Dragon Slayer. It
is not reasonable to assume that the Dragon Slayer knows the risky fractions
of the other traders, for example, because in reality the risk aversion of the
population is not clear. Whether the Dragon Slayer could access the dynam-
ics and proportion of noise traders and fundamentalists is also debatable, so
we can only settle on averages for most values. Secondly, the approximation
we make in the appendix does not account for the full effect of the noise
traders on the price. We treat the risky fraction of noise traders at time t as a
constant independent of the price, to simplify the calculations, but in reality
the herding effect amplifies the effect of the variations of the interest rate on
the price. Therefore, the estimation can only be taken as a lower boundary
of the real price impact of a change in interest rate.
And finally, this approach to the determination of the amplitude is very spe-
cific to our model. We aim for a general formula that would possibly apply
to extensions of this model. This is why we opted for a formulation based
on empirical behavior rather than theoretical manipulation of the price equa-
tion.

Formula for the interest rate

Following the discussion in section 4.1.2, we find decide on a policy indepen-
dently from the price equation. Conceptually, we again need a lean against
the wind policy for the interest rate Dragon Slayer. We decide, based on the
behavior of the Dragon Slayer trader model in chapter 3, to use the same
overprice derivative based amplitude function. In order not to capture too
much noise, we use a smoothed derivative Dm

t calculated over m time steps
in the following way:

Dm
t =

1
m

m

∑
k=1

(yt−k − yt−k−1) (4.7)

We recall in figure 4.1 a comparative view of the overpricing and smoothed
derivative of the overpricing, on the price path of the model of chapter 1
containing a peak. We use m = 15 in this figure. The price path is generated
using the parameters of chapter 1, with Ornstein-Uhlenbeck κt, in order to
show the behavior around price peaks. The sign of the derivative changes
signs and crosses zero m

2 steps after the maximum value of yt, which is close
to the behavior we want for at We choose to use the following formulation
for the equation:

r f
t = r f (1 + wDm

t ). (4.8)

Note that this is very close to the model in chapter 3. In particular, under
certain weight w values, the formulas of the risky fraction of the fundamen-
talists in this model could be affected in a similar way as the formulas of the
risky fraction of the Dragon Slayer traders in chapter 3. Indeed, the risky
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Figure 4.1: Behavior of the derivative of the overpricing, plotted over 500
trading days, with the parameters of chapter 1. We use Ornstein-Uhlenbeck
κ. Top panel is the price, middle panel is the overpricing, and the third panel
is the empirical derivative, smoothed over 15 time steps.

fraction of the fundamentalists here is defined as :

x f
t−1 ≈

Ert +
dt−1(1+rd)

pt−1
− r f

t

γσ2

=
rd +

dt−1(1+rd)
pt−1

− r f (1 + wDm
t )

γσ2 (4.9)

while the risky fraction of the Dragon Slayer traders from chapter 3 is de-
fined as:
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4. Regulation through interest rate modification

x f
t−1 ≈

EDS
rt

+ dt−1(1+rd)
pt−1

− r f

γσ2

=
rd − wDm

t + dt−1(1+rd)
pt−1

− r f

γσ2 (4.10)

which corresponds to the same effect, with a different weight setting. How-
ever, the difference lies in the fact that the modification of rt

f also induces a
difference in wealth for the traders, thus changing the effect that they have
in the market. For instance, increasing rt

f for a couple of time steps not only
makes fundamentalists switch part of their investments to the so-called risk-
free asset, but they also increase their wealth in doing so, as opposed to the
Dragon Slayer traders who were losing wealth to influence the market, as
we saw looking at their Sharpe ratios. This means that the approach of the
fundamentalists in this chapter is still that of wealth maximizers. This pos-
sibly gives modifications in the derivative of the overpricing momentum a
bigger effect on the price, even with equal contribution in the risky fraction.
Indeed, as the fundamentalists gain wealth, their influence on the price is
heightened.
Keeping these differences in mind, we now study the effect of parameters a
and w on the performance of the intervention of the Dragon Slayer.

4.2 Dragon Slayer results

We initially performed a grid search over the values of the weight w and
the memory parameter a in order to get an idea of the best parameters for
reducing the amount and size of bubbles. The effect is studied with Ornstein-
Uhlenbeck κ, to test the influence on the size and amount of bubbles. The
smoothing of the derivative is kept at 15. We study combinations of param-
eters in the following ranges:

a ∈ {0.7, 0.85, 0.95, 0.98, 0.992, 0.996, 0.998}
w ∈ {1, 5, 10, 100, 200, 500, 1000}

Note that the range for w is purposefully large, because the effect of the inter-
est rate on the behavior of the price is not well quantified initially. However,
note that in order to keep the same order of magnitude as the Dragon Slayer
traders of chapter 3, we need a weight level w of the same order as 0.02/r f ,
i.e. of the order of magnitude of 500. Note that the weight could possi-
bly need to be lower, because of the additional effects linked to the wealth
modification of the fundamentalist and noise traders, that are not present in
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4.2. Dragon Slayer results

chapter 3. The range for a corresponds to a memory going from 3 days to
500.
We find initially that the best combination, in terms of peak number and
average drawdown as well as qualitative behavior for individual seeds, is
around a = 0.996, w = 200. Note that the weight is around what we expect,
albeit smaller, which could be explained by the additional effects of the inter-
est rate modification on the wealth of the traders. We showcase the behavior
of this combination, and refine the study through sensitivity analysis in the
following.

4.2.1 Effects of varying a

We compare the behavior of the model for w = 200 and values of a in
[0.992, 0, 998]. We note an optimal value at around 0.996 for average draw-
down times peak number. Note that this optimum is mostly driven by the
variations in the average drawdown, since the peak number seems to be
slightly higher in the neighborhood of 0.996. However, as we already re-
marked, the peak number could go slightly up as bubbles become smaller,
since peaks are not defined by an absolute size but rather comparatively to
the rest of the price path. Which is why we consider the product of the two
measures to be the most relevant information here. Another remark is that
the performance seems to have rather high sensitivity around 0.996, even if
the general trend indicates an optimum.

4.2.2 Effects of varying w

Now, we evaluate the behavior of the model for w in [100, 400], for a = 0.996.
In figure 4.3, we show the effect of the weight on the measures of average
drawdown, peak number and the product of the two. We conclude that
200 is an optimal value for w. The optimum is quite clear here, and mostly
driven by average drawdown too.

In figures 4.4 and 4.5, we showcase the behavior on an example experiment,
for Ornstein-Uhlenbeck κ, with no intervention and with intervention on the
interest rate with parameters a = 0.996 and w = 0.1. As we can see, the pos-
itive bubbles are hindered by the response of the Dragon Slayer. Note that
some other bubbles are not always hindered, and there is sometimes overre-
action on negative bubbles, which explains the remaining bubbles even with
Dragon Slayer intervention.

4.2.3 Effects of varying m

Finally, we vary the smoothing window to assess the sensitivity of the model
to this parameter. We vary the smoothing parameter within {2, 5, 7, 10, 12, 15, 20, 25, 30}.
The values either 7 or 15 seem optimal. The value 7 is optimal in terms of

73



4. Regulation through interest rate modification

0.992 0.993 0.994 0.995 0.996 0.997 0.998
a

0.680

0.685

0.690

0.695

0.700

0.705

0.710

avg_drawdown
0.992 0.993 0.994 0.995 0.996 0.997 0.998

a

14.0

14.1

14.2

14.3

14.4

14.5

14.6
peak_number

0.992 0.993 0.994 0.995 0.996 0.997 0.998
a

9.8

9.9

10.0

10.1

avg_d_times_peak

Figure 4.2: Plots of the variation of each measure average over 100 seeds,
for different values of the memory parameter a, applied to the three-agent
model with weight w = 200. Ornstein-Uhlenbeck κt is used. From left to
right, top to bottom, the measures considered are average drawdown, peak
number, and product of average drawdown and peak number

peak number, while the value 15 is optimal in terms of average drawdown.
We keep 15 as a smoothing parameter for the summary performance, be-
cause it is deemed preferable to have a larger amount of smaller bubbles.
Furthermore, the product of the average drawdown and peak number is
also slightly smaller for m = 15.

4.2.4 Summary results

We compare the results of the different models in table 4.1. We give a refer-
ence performance of the model with no intervention, as well as the results
of the model with Dragon Riders, Dragon Slayer traders, and interest rate
Dragon Slayers. Note that the model from this chapter is not the worst per-
forming of the three, but it has worse average drawdown than the model
without intervention. Comparatively with the Dragon Slayer trader model,
it seems that the effect on bubbles is less strong. We recall that the interest
rate Dragon Slayers have potentially the same effects on the risky fractions
of the fundamentalists as the modification applied on the fraction of Dragon
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Figure 4.3: Plots of the variation of each measure average over 100 seeds,
for different values of the weight w, applied to the three-agent model with
memory paramete a = 0.996. Ornstein-Uhlenbeck κt is used. From left to
right, top to bottom, the measures considered are average drawdown, peak
number, and product of average drawdown and peak number

Slayer traders in chapter 3. However, the interest rate modifications in the
present chapter concern the entirety of the fundamentalists, when Dragon
Slayer traders only ever represent a fraction of the total. Furthermore, there
is also an effect on the wealth of the noise traders and the fundamentalists,
when the interest rate is modified, that is not present in the case of the
Dragon Slayer traders. Dragon Slayer traders indeed lose wealth, as men-
tioned in chapter 3, when they counter the bubbles in lean against the wind
policy and divest from a sharply rising in price risky asset. Conversely, the
fundamentalists of the present chapter are fueled by utility maximization
when they choose to divest from the risky asset and move their wealth to
the so-called risk-free asset. Such effects can explain the discrepancy be-
tween the two strategies results. Note that the performance of the model
of the present chapter is also thwarted by the overreaction to some negative
price bubbles.
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Figure 4.4: Plot of one realization (seed
314382) of the model without Dragon Slayer
intervention, using parameters from chapter
1. Top panel shows the price path, second
panel shows the risky fractions of the traders,
third panel shows the wealth of the traders,
bottom panel shows the constant risk-free
rate . The section shown is from t = 2000
to t = 4000.
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Figure 4.5: Plot of one realization (seed
314382) of the three-agent model with Dragon
Slayer, using parameters from chapter 1, w =
0.1 and a = 0.996. Top panel shows the price
path, second panel shows the risky fractions
of the traders, third panel shows the wealth
of the traders, bottom panel shows the varia-
tions of the risk-free rate.

% wealth Model Peak nb Avg d Avg dd × p
nb

0 2 agent 19.9 0.58 11.54
100 (opt) DS chapter 3 13.6 0.45 6.12
60 (opt) DR 1.26 0.46 0.58

DS chapter 4 14.35 0.67 9.6

Table 4.1: Comparison between optimal Dragon Rider and optimal Dragon
Slayers of chapters 3 and 4 of average value over 100 seeds of average draw-
down, peak number, and the product. The measures of the two-agent model
are at the top row as a benchmark. Measures are taken over a time period
T = 10000.
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Figure 4.6: Plots of the variation of each measure average over 100 seeds,
for different values of the smoothing window m of the derivative, applied
to the three-agent model with memory parameter a = 0.996 and w = 200.
Ornstein-Uhlenbeck κt is used. From left to right, top to bottom, the mea-
sures considered are average drawdown, peak number, and product of aver-
age drawdown and peak number
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Conclusion

The main objective of this thesis was to design and study the effect of mon-
etary policies aimed at reducing the frequency and size of price bubbles on
the market. In order to do so, we extended an agent-based model devel-
oped in Kaizoji et al. (2015), Westphal and Sornette (2020b) and Westphal
and Sornette (2020a) among others. This agent-based model, which we pre-
sented in chapter 1, was shown to exhibit market bubbles, in the form of
super-exponential growth of the returns of the price of the risky asset, in
Kaizoji et al. (2015). We, in turn, studied three main strategies to reduce
these price bubbles. The first one was a derivation of the work of West-
phal and Sornette (2020a), with Dragon Riders optimized to enhance their
Dragon Slaying properties, in chapter 2. We recall that Dragon Riders are
agents who use their ability to predict extreme events to profit from this
information, while Dragon Slayers are agents who use the same ability in or-
der to prevent such extreme events. The denomination stems from the work
of Sornette (2009); Sornette and Ouillon (2012), who proposed the name
“Dragon-King” to describe statistical outliers of strong significance, such as
asset price bubbles and their subsequent crashes. We also modeled a purely
Dragon Slayer oriented agent implementing lean against the wind policy us-
ing open market operations in chapter 3. Lastly, we applied lean against the
wind policy through interest rate modification, designing another Dragon
Slayer for this purpose, in chapter 4.
As we found, regulatory policies can reduce certain bubbles significantly, es-
pecially when those are detected early, in our models. This goes in favor of
the arguments of Roubini (2006) and Filardo (2005), who support early inter-
vention for price-targeting monetary policy when price bubbles are forming.
It is notable that Dragon Riders generally performed better in reducing the
size and frequency of bubbles, than lean against the wind policies as we
designed them, even when the Dragon Rider policy was optimized with re-
spect to the Sharpe ratio of the trader. We recall in further detail that with a
parameter setting designed for a better Dragon Rider performance, turning
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60% of the fundamentalists into Dragon Riders could bring the number of
peaks from 19.9 to 1.26, and bring their average size from 0.58 to 0.46 (re-
call that the initial price is set to 1). This is to be put in perspective with
the fact that replacing all fundamentalists with the Dragon Slayer traders of
chapter 3 brought the number of peaks from 19.9 to 13.6 only, while their
average size was brought to 0.45. And finally, the interest rate modifying
Dragon Slayers of chapter 4 brought the number of peaks to 14.35 and ac-
tually raised their average size to 0.67. This could mean that in this setting,
self-regulation has better effects on the market than external intervention
by a regulatory entity. However, this discrepancy could also be due to the
differences in the design of the policies. Note that the interest rate policy
was less effective than the open market operations, which could be dues to
issues of assessing of the effect of such a transversal policy as interest rate
control. We also cannot exclude the hypothesis that differently shaped lean
against the wind policies could have more significant impact on the market.
Finally, also note that we found ways to optimize the Dragon Riders such
that exceptionally favorable behavior of the market could be induced. One
might ask if these strategies would work in real market scenarios, or if they
are a result of overfitting to our simple model. Similarly, one might ask
if early intervention in asset price targeting is only worth pursuing in our
simple model. Such a question could be answered through extension of the
model, robustness testing with different parameters of the model, or real
data applications of the model.
To go further into detail, among others, this work could be extended in the
following ways. It would be pertinent to observe the applications of these
regulatory policies to extensions of the initial model of Kaizoji et al. (2015).
For instance, in the work of Chiarella et al. (2009), a higher dimension of
the risky asset price is introduced. Assessing the impact of the regulatory
policies of our model to this type of more complex market could uncover
valuable insights. Different currencies could also be introduced, as in West-
erhoff (2008), to account for exchange rate intervention by the central banks.
Furthermore, quantifying interaction between the different regulatory instru-
ments we studied would help understand the optimal behavior of central
banks better. One might also model fiscal policies instead and study their
interaction with our model. And, of course, the application of all these
strategies to real market data would definitely yield stronger confidence in
the use of monetary instruments that we prone in this report.
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Appendix

In this appendix, we detail the calculations for a study on what amplitude
should be chosen for an interest rate prescription formula, in order to mod-
ify the price path of a two type of agent model introduced in chapter 1. We
attempted to assess the effect of interest rate r f

t modifications on the price at

t. More precisely, we attempted to obtain an estimate of
∂pt

∂r f
t

. The larger am-

bition here was to obtain a formula for at from 4.6 as a function of the state
of the market at t− 1 by examining the variation of price at t with respect
to the interest rate modifications at t− 1. We used Taylor expansion on the
price equation to achieve this goal in first order approximation. Note that
the interest rate r f

t , applying to the risk-free asset from t to t + 1, is chosen at
t− 1. In practice, we calculated the impact of a variation dr f

t on the price pt.
However this was inconclusive in providing good amplitude prescription.
There is a discussion to be had about whether the Dragon Slayer would real-
istically be informed about the risky fractions of the representatives of other
traders, but for the purposes of this study, we assume it does.

Price equation with time-dependent interest rate Let us recall the impli-
cations of the equilibrium of supply and demand. As in chapter 1, this
translates into the following equation for the excess demand of the funda-
mentalists and noise traders:

∆D f
t + ∆Dn

t = 0 (A.1)

The difference is that the interest rate, featured in both those excess demands,
is now dependent on time. Because of the time-dependent interest rate in the
wealth dynamics, as featured in equation (4.3), the excess demand formula
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for both traders now becomes for i ∈ {n, f }:

∆Di
t = xi

tW
i
t − xi

t−1W i
t−1

pt

pt−1

= W i
t−1

(
xi

t

[
1 + r f

t + xi
t−1(rt +

dt

pt−1
− r f

t )

]
− xi

t−1
pt

pt−1

)
(A.2)

(A.3)

Therefore, we can use the following equation:

0 = ∆D f
t + ∆Dn

t

= W f
t−1

(
x f

t

[
1 + r f

t + x f
t−1(rt +

dt

pt−1
− r f

t )

]
− x f

t−1
pt

pt−1

)
+Wn

t−1

(
xn

t

[
1 + r f

t + xn
t−1(rt +

dt

pt−1
− r f

t )

]
− xn

t−1
pt

pt−1

)
, (A.4)

in order to derive the price as a fuction of the interest rate change ∆r f
t . The

same derivations lead to a quadratic equation of the form

at p2
t + bt pt + ct = 0, (A.5)

with

at =
1

pt−1

(
W f

t−1x f
t−1(

Ert+1 − r f
t

γσ2 − 1) + Wn
t−1xn

t−1(xn
t − 1)

)
(A.6)

bt = W f
t−1

(
x f

t−1
1

pt−1

dt(1 + rd)

γσ2 +
Ert+1 − r f

t
γσ2

(
x f

t−1(
dt

pt−1
− r f

t − 1) + r f
t + 1

))

+Wn
t−1xn

t

(
xn

t−1(
dt

pt−1
− r f

t − 1) + r f
t + 1

)
(A.7)

ct = W f
t−1

dt(1 + rd)

γσ2

(
x f

t−1(
dt

pt−1
− r f

t − 1) + r f
t + 1

)
(A.8)

Which obtains a positive root

pt =
−bt −

√
b2

t − 4atct

2at
(A.9)

as explained in chapter 1. Now, we will draw a few observations from this

equation before obtaining an estimate of
∂pt

∂r f
t

.
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Observations on the relationship between r f
t and pt From a high-level

viewpoint, we can already infer the nature of the relationship between pt

and r f
t , all other things being equal.

Note that for the purpose of the approximations, a lot of parameters can be
taken around their expected value, independently of t. However, the price
at t− 1 is not one of them, and neither is the dividend dt−1 (depending on
the growth rate rd, it can heavily depend on t.
As a first understanding of the price equation, let us note that all other things
being equal, the parameter at from (A.5) is an affine function of r f

t , bt is a
degree 2 polynomial in r f

t , and ct is affine in r f
t . This makes the numerator

of the function approximately a polynomial of degree 2 in r f
t (approximately

because there is a square root of a power of 4 involved), and the denomina-
tor an affine function of r f

t . pt is an algebraic fraction in r f
t . Asymptotically,

when r f
t becomes very large, pt is linear in r f

t . Note that pt is well defined
when r f

t = 0, i.e. it has a value in R.

Taylor expansion Let us now derive a Taylor expansion to understand the
effect on the price of a slight modification of the interest rate dr f

t such that
dr f

t � r f
t . We are interested in a first degree approximation, in order to get

an estimate of what the amplitude of corrections should look like. To that
end, we rewrite the factors at, bt, ct as functions of r f

t :

at = αar f
t + βa, (A.10)

bt = αb(r
f
t )

2 + βbr f
t + γb, (A.11)

ct = αcr
f
t + βc, (A.12)
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with

αa = −
W f

t−1

pt−1

x f
t−1

γσ2 , (A.13)

βa =
Wn

t xn
t−1(xn

t − 1)
pt−1

+
W f

t−1x f
t−1

(
Ert+1 − γσ2)

pt−1γσ2 , (A.14)

αb = −W f
t−1

1− x f
t−1

γσ2 , (A.15)

βb =
Wt−1

γσ2

(
Ert+1(1− x f

t−1)− 1− x f
t−1

(
dt

pt−1
− 1
))

+ Wn
t−1xn

t (1− xn
t−1),

(A.16)

γb =
W f

t−1

γσ2

[
x f

t−1dt(1 + rd)

pt−1
+ Ert+1

(
x f

t−1

(
dt

pt−1
− 1
)
+ 1
)]

+ Wn
t−1xn

t

(
xn

t−1

(
dt

pt−1
− 1
)
+ 1
)

, (A.17)

αc = W f
t−1(1− x f

t−1)
dt(1 + rd)

γσ2 , (A.18)

βc = W f
t−1

dt(1 + rd)

γσ2

[
1 + x f

t−1

(
dt

pt−1
− 1
)]

(A.19)

Then, using these more compact notations, we can infer a formula for the
first degree expansion of the price with respect to r f

t . First, we calculate the

Taylor expansion of
1

2at
for small variations of r f

t :

1
2at

∣∣∣∣
r f

t +dr f
t

≈ 1
2at

∣∣∣∣
r f

t

− 1
2

∂Rat

a2
t

∣∣∣∣
r f

t

dr f
t

=: A1dr f
t + B1, (A.20)

with

A1 =
−αa

2(αar f
t + βa)2

,

B1 =
1

2at

∣∣∣∣
r f

t

. (A.21)
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Now, we calculate the first degree Taylor expansion of −bt −
√

b2
t − 4atct:

−bt −
√

b2
t − 4atct

∣∣∣∣
r f

t +dr f
t

≈
[
−bt −

√
b2

t − 4atct

]
r f

t

−

∂Rbt
2bt∂Rbt − 4at∂Rct − 4ct∂Rat

2
√

b2
t − 4atct


r f

t

dr f
t

= A2dr f
t + B2, (A.22)

with

A2 = −
(

2αbr f
t + βb

) bt(2αbr f
t + βb)− 2(αact + αcat)√

b2
t − 4atct


r f

t

,

B2 =

[
−bt −

√
b2

t − 4atct

]
r f

t

. (A.23)

With this compact notation, we simply have:

dpt+1

dr f
t

≈ A1B2 + A2B1 (A.24)

Calibrating the corrections using the approximation Based on the approxi-

mate value of
dpt+1

dr f
t

, we can decide how to calibrate the amplitude of correc-

tions on the interest rate that we perform using the Dragon Slayer. Ideally, if

we have the exact value of
dpt+1

dr f
t

, we can deduce a linear approximation of

the modification we need to perform in order to approach the desired value.
Indeed, if:

dpt−1

dr f
t

≈ A1B2 + A2B1

then the consequence to a perturbation dr f
t will be

dr f
t ≈

dpt−1

A1B2 + A2B1

(A.25)
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and if we want to maintain a constant return rt = r̄, for example, we can
deduce the following approximations:

rt = r̄

⇐⇒ pt + dpt − pt−1

pt−1
= r̄

⇐⇒ yt + r̄ +
dpt

pt−1
= r̄

⇐⇒ dpt = −yt pt−1

This gives us the target dpt we aim for. We use the approximation yt ≈ yt−1

to obtain an approximate prescription of dr f
t :

dr f
t ≈

−yt pt−1

A1B2 + A2B1
(A.26)

The above result (A.26) could theoretically be used the foundation for the
amplitude in the formula for r f

t . However, this was inconclusive in our
study, because of two main reasons. Firstly, it is doubtful that the Dragon
Slayer could be expected to know the state of the market so completely at
t− 1. Applying averages to this equation gives unsatisfying results, proba-
bly because of some high parameter sensitivity that is overlooked in such
an attempt. Secondly, the concept of the approach is nearing on overfitting
to this specific model. We want to be able to generalize our results to other
extensions of the model.
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