
 

 

Master Thesis 

 

Revisiting Equity Strategies with 

Financial Machine Learning 

 

Luca Schneider 

 
Department of Management, Technology and Economics 

Chair of Entrepreunarial Risks 

 

Supervisor: 

Prof. Dr. Didier Sornette 

 

September 2019 



 I 

Acknowledgements 
First of all, I would like to express my deep gratitude to my thesis supervisor, Professor Sor-

nette, for this research opportunity, his patience, availability and his suggestions that contrib-

uted to my reflection. 

I also thank Samuel Fux and Loher Gerson from the IT-Services of ETH Zurich for providing 

the computational resources for this thesis. 

I would also like to extend my thanks to my previous employer, Banque Paris Bertrand SA, 

and its Systemic Asset Management team for providing the raw data and the expertise in quan-

titative portfolio management. 

I wish to acknowledge the patience and continuing support from my partner, Jasmin Rose 

Lewis, and my relatives who have made the achievement of this thesis and the Master’s degree 

possible. 

Finally, a big thank you to my student colleagues from ETH, Timothée Barattin, Martin But-

terscotch, Emmanuel Profumo and Cédric Travelletti, for their extensive advice in code devel-

opment and statistics, and their support throughout the writing of this thesis. 

  



 II 

Abstract 
With the recent trend around Artificial Intelligence and Machine Learning, these techniques 

have been widely used by academics and practitioners to forecast financial markets. With the 

most modern concepts of financial machine learning and data science, this paper attempt to 

derive a sustainable and interpretable Equity strategy with common Equity strategies signals 

as input. This paper also reviews numerous challenges and issues encountered in financial ma-

chine learning application as early modelling have been compromised by data leakage despite 

cautious procedures. After remedying it, the strategies proposed remain profitable and still 

beats the Russell 1000 Index, including transaction costs. 

  



 III 

Contents 
 

1 Introduction ...................................................................................................................... 1 

2 Thesis Outline ................................................................................................................... 3 

3 Essential Concepts in Financial Machine Learning ..................................................... 8 

4 Feature Engineering ...................................................................................................... 11 

4.1 Context ....................................................................................................................... 11 

4.2 Feature Cleaning ........................................................................................................ 15 

4.3 Exploratory Data Analysis ........................................................................................ 16 

4.4 Initial Feature Selection ............................................................................................. 21 

5 Predictive Modelling ...................................................................................................... 25 

5.1 Context ....................................................................................................................... 25 

5.2 Primary Model ........................................................................................................... 34 

5.3 Feature Selection ....................................................................................................... 41 

5.4 Data Leakage ............................................................................................................. 44 

5.5 Pipeline Performances ............................................................................................... 47 

6 Portfolio Allocation and Portfolio Analysis ................................................................. 48 

6.1 Context ....................................................................................................................... 48 

6.2 Results ........................................................................................................................ 50 

7 Conclusion and Further Research ................................................................................ 55 

References ............................................................................................................................... 58 
Appendix A: Python and Dataset Files .............................................................................. 70 
Appendix B: Downloading Bloomberg data with Python ................................................. 71 
Appendix C: List of Bloomberg Fields downloaded ......................................................... 73 
Appendix D: Dataset Cleaning: a Detailled Description ................................................... 76 
Appendix E: List of Features ............................................................................................ 79 
Appendix F:        Equity Strategies Computation .................................................................... 87 
Appendix G: Portfolio Statistics Computation ................................................................ 112 
Appendix H: AutoML and Deep Learning ...................................................................... 115 
  



 IV 

List of Figures 
Figure 2.1 Graphical illustration of the trading framework. ..................................................... 4 
Figure 2.2 Graphical illustration of the machine learning pipeline. ......................................... 5 
Figure 4.1 Binary representation of missing values projected in the first two dimensions. ... 13 
Figure 4.2 Visualization of missing data patterns over the years. .......................................... 14 
Figure 4.3 Visualizations of the absolute and relative differences of SIDs over the years after 
feature cleaning. ....................................................................................................................... 16 
Figure 4.4 Variability summarized across the first 20 components of the FAMD. ................ 17 
Figure 4.5 Summary analysis of the first and second components of the FAMD. ................. 19 
Figure 4.6 Summary analysis of the third and fourth components of the FAMD. ................. 20 
Figure 4.7 Visualization of the quantitative predictors’ correlation matrix. ........................... 22 
Figure 4.8 Visualization of the uncertainty coefficient matrix. .............................................. 24 
Figure 5.1: Graphical illustration of the meta-labelling approach. ......................................... 25 
Figure 5.2: Graphical illustration of the data splitting and the training methodology used. .. 30 
Figure 5.3: Graphical illustration of the Repeated Holdout validation. .................................. 31 
Figure 5.4: Comparison of training methodologies: Means and standard deviations of metrics 
computed monthly ................................................................................................................... 36 
Figure 5.5: Comparison of training methodologies. ............................................................... 37 
Figure 5.6: Comparison of training with missing values: Means and standard deviations of 
metrics computed monthly. ...................................................................................................... 38 
Figure 5.7: Comparison of training with missing values ........................................................ 38 
Figure 5.8: Comparison of training with rolling pre-processed data: Means and standard 
deviations of metrics computed monthly. ................................................................................ 39 
Figure 5.9: Comparison of training with rolling pre-processed data: ..................................... 40 
Figure 5.10: Predictor selection percentage for selected feature subsets. ............................... 41 
Figure 5.11: The cross-validated results for RFE and SFS using GBT. ................................. 42 
Figure 5.12: Comparison of training with different feature subsets: Means and standard 
deviations of metrics computed monthly. ................................................................................ 43 
Figure 5.13: Graphical illustration of data leakage. ................................................................ 45 
Figure 5.14: Comparison of pipeline performances on the validation set: Means and standard 
deviations of metrics computed monthly. ................................................................................ 47 
Figure 6.1 Empirical Sharpe Ratio distribution for strategies ................................................ 50 
Figure 6.2 Top panel: Out-Sample cumulative returns for strategies and benchmarks. ......... 52 
Figure 6.3 Top panel: Out-Sample ratio of the strategies cumulative returns over the Russell 
1000 Index cumulative returns. ................................................................................................ 53 



 V 

List of Tables 
Table 4.1 Association between qualitative variables. ............................................................. 23 
Table 6.1 Strategies performances for out-of-sample data. .................................................... 54 



 VI 

Abbreviations 
 

AI Artificial Intelligence 

ANN Artificial Neural Network 

API Application Programming Interface 

AUC Area Under the receiver operating characteristic Curve 

AutoML Automated Machine Learning 

B/P Book-to-Price 

BDH Bloomberg Data History  

BDP Bloomberg Data Point 

BDS Bloomberg Data Set 

BICS Bloomberg Industry Classification System 

BLPAPI Bloomberg API 

BQL Bloomberg Query Language 

CA Correspondence analysis  

CAGR Compound Annual Growth Rate 

CPCV Combinatorial Purged Cross-Validation 

CUSIP Committee on Uniform Security Identification Procedures 

CV Cross-Validation 

DART Dropouts meet Multiple Additive Regression Trees 

DL Deep Learning 

DT Decision Tree 

EDA Exploratory Data Analysis 

EMH Efficient-Market Hypothesis 

EPS Earnings Per Share 

FAMD Factor Analysis of Mixed Data 

FPR False Positive Rate  

GA Genetic Algorithm 

GBT Gradient Tree Boosting 

GPGPU General-Purpose GPU programming 

GPU Graphical Processor Unit 

HDF5 Hierarchical Data Format 



 VII 

IID Independent and identically distributed random variables 

IPO Initial Public Offering 

ISIN International Securities Identification Number 

JSON JavaScript Object Notation 

k-NN k-Nearest Neighbors 

LASSO  Least Absolute Shrinkage and Selection Operator 

LR Logistic Regression 

LSTM Long Short-Term Memory 

MA Moving Average 

MAE Mean Absolute Error 

MAR Missing At Random 

MCA Multiple Correspondence Analysis 

MCAR Missing Completely At Random 

MCFD Mean Correct Forecast Directions 

MedAE Median Absolute Error 

MFTR Mean Forecast Trading Returns 

MI Mutual Information  

ML Machine Learning 

M&A Mergers and Acquisitions 

NA Non-Available 

NB Naive Bayes 

NLP Natural Language Processing 

NMAR Not Missing At Random 

NYSE New York Stock Exchange 

OLS Ordinary Least Squares  

PCA Principal Component Analysis  

PIT Point-In-Time 

Rep-Holdout Repeated Holdout validation 

RFE Recursive Feature Elimination 

RF Random Forests 

RL Reinforcement Learning 

RNN Recurrent Neural Networks 



 VIII 

ROC Receiver Operating characteristic Curve 

SA Simulated Annealing 

SBS Sequential Backward Selection 

SDK Software Development Kit 

SHAP SHapley Additive exPlanation  

SID  Security Identifier 

SUE Standardized Unexpected Earnings 

SVM Support-Vector Machine 

TPE Tree-structured Parzen Estimator 

TPR True Positive Rate  

   



 IX 

Notation 
This section provides a concise reference describing the notation used throughout this thesis. 

 

Number & Arrays 

 

 
Indexing 

 

 
Sets 

  
Calculus 

  

Probability & Information Theory 

 
 

 

a
A
a
A
a
a
A

A scalar
A scalar constant
A vector
A matrix
A scalar random variable
A vector-valued random variable
A matrix-valued random variable

ai
a− i
Ai, j
Ai,:
A:, j

Element i of vector a, with indexing starting at 1

All elements of vector a except for element i

Element (i, j) of matrix A
Row i of matrix A
Column i of matrix A

{0,1}
{0,1,...,n}

[a,b]
(a,b]

The set containing 0 and 1
The set of all integers between 0 and n
The real interval including a and b
The real interval excluding a but including b

′f (a) 

f (x)dx
S∫

Derivative of  f  at input point a

Definite integral with respect to x over the set S

P a | b( )
P(a)

p(a)

H(x)

Short hand for the probability P(a = a | b = b)

A probability distribution over a discrete variable a

A probability distribution over the continuous variable a

Shannon entropy of the random variable x



 X 

Datasets and Machine Learning 

  
Functions 

  
 

X

x( i)

y( i)  or y( i)

X

P(x,y)

F
( ′x , ′y )

ŷ

A set of training examples

The i-th example from dataset

The target associated with x ( i)  for supervised learning

The m× n matrix with input example x ( i)  in row X i,:
A data generating distribution

Hypothesis space of function to be learnt, i.e., a model

A testing pair

Label predicted by a function f , i.e., ŷ = f ( ′x )

f (x,θ )

ln x
1condition

A function of x  paramatrized by θ
Natural logarithm of x

is 1 if the condition is true, 0 otherwise



 

 1 

1 Introduction 
Financial markets have always been leading to a scientific and technological arms race among 

its participants. After the eras of trend-following, of statistical arbitrage, and high frequency-

trading, it seems that quantitative trading has been transitioning into a new era recently, with 

the democratization of Artificial Intelligence and Machine learning brought by digital compa-

nies (Sirotyuk, 2018). However, nor machine learning or trying to forecast financial markets 

with it are new. The academic literature abounds of application of different models and tech-

niques. (Cavalcante, Brasileiro, Souza, Nobrega, & Oliveira, 2016) provides a comprehensive 

review of techniques used by publication ranging from 2009 to 2015. More recently, (Ryll & 

Seidens, 2019) perform a meta-analysis on more than 150 articles related financial machine 

learning published from 1995 to 2018. In addition to rank deep learning models higher than 

other models, the authors observed the lack of standards shared in financial machine learning 

as compared to the rest of the machine learning space. 

Besides, the exercise of financial machine learning differs sensibly from the other machine 

learning areas due to the nature of financial markets. Main cited reasons are : 

• Size of datasets in finance: In computer vision, a single 3-channels picture of 224 

pixels format provides already more than 150’528 bits of information, as much as 150 

years of OLHCV data for a single stock. 

• Non-Stationarity: Machine learning theories have been formulated with the 

assumption of constant data pattern, while financial markets are known for their 

adaptivity and regime changes (W. Lo, 2017). 

• Noise to signal-ratio: Machine learning algorithms will always identify a pattern even 

it is a false signal (Black, 1986). 

• Decision space: In comparison to the main applications of Reinforcement Learning 

(RL) (Sato, 2019) in decision space with defined rules, finance involves the choice 

between numerous assets classes, markets,… without forgetting external uncertainties 

to be considered such as political or regulatory events. 

 

As such, defining a trading strategy with machine learning is far from trivial due to the chal-

lenging nature of the finance area. Recently published, (López de Prado, 2018) laid the ground 

for the rigorous application of machine learning in real investment scenario cases. As such, this 

thesis relies on such advanced methods to attempt to derive a sustainable trading strategy from 

well-known equity anomalies. 



 

 2 

The rest of this thesis is organized as follows. Section 2 outlines the thesis workflow and de-

scribes computational tools and data used. Section 3 reviews common bias encountered in 

strategy backtesting. Section 4 describes data exploration and early data pre-processing. Sec-

tion 5 sets the context of the machine learning models employed for classifying stock returns 

and deals with issue of data leaking. Section 6 translates predictions into tradable signals before 

backtesting the final strategies. Finally, concluding remarks are presented in Section 7. 

  



 

 3 

2 Thesis Outline 
Context 

This thesis focuses on the study of the predictability of stock returns within an interpretable 

machine learning framework. In addition, it is aimed to be as realistic as possible for an asset 

management environment. As such, the methodology provided here was designed to avoid 

common pitfalls encountered in financial machine learning application and strategy backtest-

ing, and ideally result in a sustainable trading strategy. As this thesis deals co-jointly with the 

fields of quantitative trading, machine learning and statistical learning, the models and meth-

odologies employed here are not sufficiently detailed in order to keep the paper consistent. 

However, their choices and consequences remain contested, and references are provided for 

interested readers. Therefore, it is expected that the reader is familiar with machine learning 

concepts in order to be able to grasp the content of this thesis. Finally, concepts are described 

progressively along the thesis to match with the paper's workflow, instead of compiling them 

in an early chapter, as may usually be encountered in other theses. 

 

Predictors 

The assumed set of predictors is as given in the equity section of (Kakushadze & Serur, 2018). 

 

Investment Universe 

The investment universe is defined as the stock components of the Russell 1000 Index. This 

choice is motivated by data availability, market efficiency and liquidity. The index measures 

the performance of the large-cap segment of the U.S. equity universe. It is a subset of the Rus-

sell 3000 Index and includes approximately 1000 of the largest securities, representing approx-

imately 92% of the U.S. market capitalisation1. The main index is updated annually, usually 

on the last Friday of June. Furthermore, the eligible quarterly Initial Public Offering (IPO) may 

be included along the year. For more information about the full methodology of the index con-

struction, please refer to the methodology available online2. Finally, being heavily scrutinised 

by financial professionals and academic studies, it is expected that an American mid-/large-

cap stock subset is an accurate measure to test the sustainability of any trading scheme. 

 

 
1 FRED: https://fred.stlouisfed.org/series/RU1000TR 
2 FTSE Russell: https://research.ftserussell.com/products/downloads/Russell-US-
indexes.pdf?704&_ga=2.184114918.1931757306.1563636511-2056835715.1563636511 



 

 4 

Trading Frequency 

As equity strategies from (Kakushadze & Serur, 2018) range from intra-day to quarterly, a 

monthly set up is chosen as a fair trade-off to encompass technical analysis-based strategies, 

more short-term oriented trading, and fundamental analysis-based ones which are more long-

term oriented. This choice is beneficial due to the inclusion of less noisy data, less turnover at 

the expense of less available data to train the algorithm, and lowered Sharpe ratio in comparison 

to a daily strategy (E. P. Chan, 2017). As such, monthly predictions are computed after the 

close of the last trading of month and trades are entered on the close of the following trading 

day until and kept for one month. This gap prevents look-ahead bias, ensures all data is avail-

able and allows for a realistic timeframe needed to run computations. This set up can be visu-

alised in Figure 2.1: 

 

 

Pipeline Outline 

This thesis is guided around three core steps: 

1. Feature generation: The dataset is generated, cleaned, and predictors computed. 

2. Predictive modelling: A learning algorithm is trained and optimised for defined 

machine learning metrics to generate predictions. 

3. Portfolio allocation: predictions are processed to allocate a strategy optimised for 

defined backtesting metrics. 

 

A chart with all the details of the pipeline is presented in Figure 2.2. 

 

X1

y1

	X2

y2

	X3

y3

XN

yN

Training	Set Testing	Set

Start Present

Gap

Figure 2.1 Graphical illustration of the trading framework. 



 

 5 

 

C
ro
ss
	V
al
id
at
io
n

Predictive	Modelling

Processed
Data

Sampling

Test	DatasetTraining	Dataset

Training	Window
Selection	

Pre-Proccesing

Feature	Selection

Hyperparameter
Optimization

Post-Processing

Final	Classification
Model

C
ro
ss
	V
al
id
at
io
n

Feature	Preparation

Raw	Data

Dataset
Cleaning

Ite
ra
tio
n

Feature
Generation

Feature	Cleaning
Ite
ra
tio
n

Exploratoray
Data	Analysis

Processed
Data

Initial	Feature
Selection

Predictors
Outputs	Labelling	

Missing	Data
Calendar	Filter

Index	Filtering

Redundancy

Bloomberg Other

Feature	Extraction

Portfolio	Allocation

Predictions
Ev
al
ua
tio
n

R
ef
in
em

en
t

Predictions

Sampling

Test	DatasetTraining	Dataset

Strategy	Allocation

Trading	Parameters
Optimization

R
ef
in
em

en
t

Post-Processing

Final	Strategy

Ev
al
ua
tio
n

Portfolio	Metrics
Trading	Costs

Feature	Scaling
Missing	Data

Classification	Metrics

Missing	Data

Figure 2.2 Graphical illustration of the machine learning pipeline. 



 

 6 

Software 

Most of the computations are conducted in Python; a free and open-source interpreted, inter-

active, object-oriented programming language (Van Rossum & De Boer, 1991). Due to its ac-

tive community around providing a vast selection of libraries and support, Python is currently 

among one of the fastest-growing programming languages, especially in the space of data sci-

ence and artificial intelligence. This thesis makes intensive use of its packages for scientific 

computing amongst others: 

• IPython (Pérez & Granger, 2007), Jupyter (Kluyver et al., 2016), Dask (Dask 

Development Team, 2016) and Joblib (Joblib developers, 2011) for development; 

• NumPy (Van Der Walt, Colbert, & Varoquaux, 2011) and Pandas (McKinney, 2010) 

for scientific computing and data processing; 

• Matplotlib (Hunter, 2007), Seaborn (Waskom et al., 2018) and Yellowbrick (Bengfort 

et al., 2018) for data visualisation; 

• SciPy (Jones, Oliphant, Peterson, & Others, 2001), Statsmodels (Seabold & Perktold, 

2010), Scikit-Rebate (Urbanowicz, Olson, Schmitt, Meeker, & Moore, 2018), Dython 

(Zychlinski, 2018) and Scikit-posthocs (Terpilowski, 2019) for statistical models and 

statistical tests; 

• Scikit-learn (Pedregosa et al., 2011), MLxtend (Raschka, 2018), Pomegranate 

(Schreiber, 2018) and LightGBM (Ke et al., 2017) for machine learning; 

• Keras (Chollet & Others, 2015) and Tensorflow (Abadi et al., 2015) for deep learning; 

• Hyperopt (Bergstra, Yamins, & Cox, 2013), Hyperas (Pumperla, 2016) and Optuna 

(Akiba, Sano, Yanase, Ohta, & Koyama, 2019) for hyperparameter optimisation; 

• Lime (Ribeiro, Singh, & Guestrin, 2016), ELI5 (TeamHG-Memex, 2016) and SHAP 

(Lundberg et al., 2019; Lundberg, Erion, & Lee, 2018; Lundberg & Lee, 2017) for 

machine learning explainability; 

• Auto-sklearn (Feurer et al., 2015) and TPOT (Olson, Bartley, Urbanowicz, & Moore, 

2016) for Automated Machine Learning (AutoML); 

• Pyfolio (Quantopian Inc., 2015) and Empyrical (Quantopian Inc., 2017) for portfolio 

analysis. 

 

For readability and reproducibility purposes, Jupyter notebooks are designed according to 

(Rule et al., 2019). Other undirectly relevant utility packages used here are mentioned through-

out this paper with references in footnotes. 



 

 7 

As no equivalent Python packages could be found, R (R Development Core Team (R 

Foundation for Statistical Computing), 2008) and the following packages have been used: 

• FactoMineR (Lê, Josse, & Husson, 2008) for multivariate analysis. 

 

Links to the scripts and notebooks used can be found in Appendix A. 

 

Hardware 

Some of the calculations reported here were performed using the EULER cluster at ETH Zurich 

and on the Google Cloud Platform, while deep learning models were realised with a Graphical 

Processor Unit (GPU): an NVDIA Quadro P5000 with 2560 CUDA cores and 16GB GDDR5. 

To enable large scale distributed parameters optimizations, a PostgreSQL database 

(Stonebraker & Rowe, 1986) from ETH Zurich has been used. 

 

Data 

In this paper, a Bloomberg terminal has been used to retrieve most financial data. While the 

data provider dominates the market of financial data with 33.2% of market share for institu-

tional investors in 20173, most encountered financial commercial data is not the most suitable 

for backtesting purposes. Such data might need additional efforts in order to be used appropri-

ately within a strategy development. Bloomberg data can easily be downloaded through their 

add-in provided for Excel. In order to automate the processing of larger quantities of data, the 

Bloomberg API4 (BLPAPI) for Python has been mostly used. More information about BLPAPI 

can be found in Appendix B. A list of all fields downloaded on Bloomberg can be found in 

Appendix C. To avoid survivorship-bias (see Chapter 3), security identifiers (SID) for the end-

of-month constituents of the Russell 100 Index are obtained from January 1995 (earliest date 

available for the constituents on Bloomberg) to March 2019 and compiled into a binary matrix, 

indicating whether the stock is a constituent of the index for the subsequent month or not. Then, 

after a cleaning of the SIDs list referred in Appendix D, the list is used to download individual 

security data where stock prices have been adjusted for dividends, corporate actions and stock 

splits. Finally, after cleaning the equity data, referred to in Appendix D, the dataset is ready for 

feature generation. 

  

 
3 Financial Times: https://www.ft.com/content/622855dc-2d31-11e8-9b4b-bc4b9f08f381 
4 Bloomberg API: https://www.bloomberg.com/professional/support/api-library/ 



 

 8 

3 Essential Concepts in Financial Machine Learning 
We review here essential concepts that should be taken into account before any data collecting. 

High-data quality is critical in a robust strategy development process and could be one of its 

most time-consuming steps. A common way to validate a trading strategy is to simulate it on 

past data, namely backtesting the strategy. It is as essential as not trivial to perform it. Naive 

approaches would lead to bias and flawed result metrics due to bias known among academics 

and financial professional. Adapted data and limiting bias is a necessary condition for a robust 

trading strategy. The following bias and errors are compiled from (López de Prado, 2018; Luo 

et al., 2014). The bias shares different terminologies between the fields of quantitative trading, 

statistical learning and machine learning but refers to the same underlying issues: 

1. Survivorship bias: It is usually introduced by considering only the current investment 

universe across the backtesting. Excluding securities that previously left it (i.e. 

bankruptcy, acquisition or delisting), would artificially inflate portfolio metrics. 

(Daniel, Sornette, & Woehrmann, 2009) analyses deeply this issue. 

2. Look-ahead bias: Also referred as data leakage, (Kaufman, Rosset, Perlich, & 

Stitelman, 2012), this bias consists of acting upon data that would have not yet been 

available at the simulated moment. It is ubiquitous that macroeconomic or companies’ 

fundamental data are lagged and can even be corrected posteriorly. For the same reason 

data random shuffling or classic cross-validation should be avoided when dealing with 

non-stationary time series data. Data timestamps of data availability should be 

monitored carefully in order to limit the likelihood of peeking into the future. It also 

possible to find Point-In-Time (PIT) data from data providers. In this way, CRSP and 

Compustat have been the most widely used database in the empirical finance literature5. 

3. Storytelling: Overinterpreting and trying to justify past random patterns. 

4. Data snooping: Also known as cherry-picking, p-hacking or selection bias, it occurs 

when a given set of data is used more than once for purposes of inference or model 

selection. When such data reuse occurs, there is always the possibility that any 

satisfactory results obtained may be due to chance rather than to any merit inherent in 

the method yielding the results. It is particularly relevant in finance due to its non-

experimental nature. Splitting data into in-sample dataset (training set) and out-of-

 
5 CRSP/COMPUSTAT: https://wrds-www.wharton.upenn.edu/pages/support/applications/linking-
databases/linking-crsp-and-compustat  



 

 9 

sample dataset (validation/testing set) and statistical tests, as the Bonferroni correction 

should be considered to prevent false discovery. 

5. Transaction costs: Transaction costs could only be known if the actual trade would 

have been made and are thus complicate to be simulated precisely. 

6. Outliers: Outliers are observations that deviates so much from others data points, 

raising the suspicion of being the result of a different generating process. Such extreme 

outcomes should be considered carefully They might never happen again and have non-

desired effects on a model. Investigating the nature and the severity of outliers and 

various robust statistical tools can help to mitigate it. 

7. Shorting: Short selling involves the availability of a lender, a cost associated with it 

and depends on different other market conditions and restrictions. Some regulators 

banned it temporarily during the financial crisis of 2007-2008 and other periods. 

 

In addition to these common errors, it is crucial to continually remain critical and look for other 

flaws that could affect the validity of backtesting results. For instance, the following could also 

be considered: 

• Using algorithms, especially machine learning, or exploiting financial anomalies on 

data corresponding to before their discovery. 

• Daily and lower frequency strategies usually rely on open and closing prices. As these 

prices are formed through an auction process every day, data providers often use the 

consolidated prices among market centres and might not reflect the trade execution 

price that one could obtain6. 

• Original stock prices might display variations despite not reflecting a change in real 

value for investors. When a dividend is issued, the stock price immediately drops to 

take into account that the company no longer owns this money. Another case is stock 

split where a company decides to increase/decrease the number of its outstanding 

shares. Prices are thus expected to follow proportionally. To prevent these price 

variations, it is common to find adjusted prices from data providers. The adjustment 

formulas used should be checked as it is not consistent across data providers. In the 

case of Bloomberg, backtesting with their adjusted close would not simulate receiving 

 
6 Beware of Low Frequency Data: http://epchan.blogspot.com/2015/04/beware-of-low-frequency-data.html  



 

 10 

dividend nor returns from re-investing it, underestimating strategy’s long term expected 

return7. 

  

 
7 Backtesting 101: Dividends and Adjustments: https://backtest-rookies.com/2018/10/12/backtesting-101-divi-
dends-and-adjustments/ 



 

 11 

4 Feature Engineering 
4.1 Context 

Feature generation 

After data collection and cleaning, 92 monthly predictors (57 quantitative and 35 qualitative) 

have been derived for each SID based on the Equity section of (Kakushadze & Serur, 2018). 

Depending on the data format required from the libraries used, qualitative data may need to be 

one-hot encoded, leading to the possibility of different numbers of predictors displayed across 

figures. The predictors are listed in Appendix E. Backgrounds and computations are presented 

in Appendix F. As opposed to training algorithms parallelly for each security , all individual 

stock datasets  are stacked into a single matrix  in order to fit one classifier 

on the investment universe simultaneously. This approach leads to more data for training and 

consecutively more general conclusion, reduced outliers influence and less overfitting (López 

de Prado, 2018). The decrease in computational complexity for optimising only one machine 

learning pipeline can also be added. 

 

Target generation 

As explained earlier, the returns to be predicted are computed between the close between each 

first trading day of months. This one-day gap in comparison to features prevents look-ahead 

bias in computation. Also, some SIDs might get delisted along the month, and should be taken 

into account to avoid survivorship bias. Delisted shares were assumed to equal a null share 

value, as the reason why the stock became delisted was not possible to automate for the quantity 

of SIDs on Bloomberg. For labelling, the methodology from (Fu et al., 2018) is followed here: 

stocks risk-adjusted returns are ranked for each timestamp. While the top and bottom quantiles 

are labelled positively and negatively, the candidates in the middle are discarded to filter out 

noise. It is proposed here to keep the middle candidates and to assess their values later with the 

meta-labelling approach in the predictive modelling chapter. Accordingly, target returns are 

defined as follows. 

For each month, the targeted returns of the  stocks constituting the index are firstly ranked 

with the empirical distribution function : 

 

i

{(X i , yi )}i=1,...,I (X, y)

Ri n

F̂n(x)

F̂n(x) =
1
n

1
xi≤x( )

i=1

n

∑



 

 12 

The associated cumulative probabilities are then labelled according to the quantile : 

 

While (Fu et al., 2018) labels only risk-adjusted returns, simple returns have also been labelled 

here, and the association between them tested statistically. For illustration purposes,  

is set in the following section. Across the entire dataset, approximately 14% of the returns 

would be labelled differently than the risk-adjusted returns. The Spearman’s rank correlation 

 (Spearman, 1904), Kendall’s rank coefficient  (Kendall, 1938), Chi-squared test  

(Pearson, 1900), Cramer’s value  (Harald, 1946) and their respective p-values8 have been 

computed as: 

 

It can be concluded that both types of returns are statistically too associated to be considered 

separately. Only simple returns are therefore kept. 

 

Missing data assumptions 

After filtering SIDs according to their index membership for each month, the predictors are 

first inspected for missing data. The heatmap of Figure 4.2 displays the percentage of missing 

data for each predictor along time. For a more condensed visualisation of missing patterns 

across predictors, a Principal Component Analysis (PCA) (Pearson, 1901) can be used. In this 

setting, the predictors are first converted to a binary matrix where missing data is labelled one, 

and zero otherwise (Kuhn & Johnson, 2019). The matrix is then transposed for predictors to be 

in rows before PCA is finally applied. Figure 4.1 illustrates the projections of the predictors on 

the two first components. A significant part of the missing data comes first from implied vola-

tility-related predictors, for which no data is available before beginning 2005 and secondly 

from the predictors Standardized Unexpected Earnings and Residual Momentum. 

 
8 p-values are smaller than the system smallest representable positive number and the values 0 have been then 
returned. See https://stackoverflow.com/questions/20530138/scipy-p-value-returns-0-0  

q

yi(q) !  

1 if F̂n(Ri ) ≥1- q

−1 if F̂n(Ri ) ≤ q

0 otherwise

⎧

⎨
⎪⎪

⎩
⎪
⎪

q = 1/ 3

rs τ χ 2

V

rs = 0.88, p ≈ 0

τ = 0.85, p ≈ 0
χ 2 = 582272, p ≈ 0
V = 0.78, p ≈ 0



 

 13 

These two have the longest lookback window requirement for computation, namely 24 and 36 

months and may most likely be the reason for missingness increase, in addition to the lower 

availability of fundamental data for early timestamps.  

Due to the previous explanation, the present missing data can be categorized as Not Missing At 

Random (NMAR) as opposed to Missing Completely At Random (MCAR) or Missing At Ran-

dom (MAR) (Roderick & Donald, 2019). While missing information for categorical variables 

can be easily encoded as Non-Available (NA) (Kuhn & Johnson, 2019), the situation is more 

challenging for continuous variables. NMAR represents the most complex case of the three, 

and strategies to handle it are to explore the causes of missing data and perform sensitivity 

analyses. Due to the temporal aspect of the problem, it is assumed here that observations are 

not statistically independent leading to a cautious approach for not introducing any bias. Bayes-

ian methods are proposed by (Kofman & Sharpe, 2000; Roderick & Donald, 2019). However, 

as they are outside of the scope of this thesis, such imputation is not attempted. Instead prob-

lematic predictors are momently dropped, and value of remaining missing data is assessed later 

with resistant models such as Decision-Tree (DT) models or Naïve Bayes (NB) (Hand & Yu, 

2001). 

 

Figure 4.1 Binary representation of missing values projected in the first two dimensions.  



 

 14 

 

Figure 4.2 Visualization of missing data patterns over the years. 



 

 15 

Outliers handling assumptions 

Outliers have been presenting a constant challenge in empirical finance research, mainly when 

relying primarily on Ordinary Least Squares (OLS). A 30-year review of empirical finance 

articles was performed by Adams, Hayunga, Mansi, Reeb, & Verardi, (2019), using mainly 

OLS and erroneous practice of outliers’ mitigation if any: winsorizing, trimming, dropping or 

univariate outliers’ identification in place of multivariate analysis. Instead, the authors intro-

duce a multivariate identification strategy and an estimator for both cross-sectional and panel 

regressions. This issue is approached here differently as classification methods have been cho-

sen. Harris (2017) revisits statistical distributions used in the fields of economics and finance, 

questioning the most use of Frequentist approaches and advocating for a balance with Bayesian 

methods instead. Thus, this thesis approaches data with distribution-free and robust methods. 

It is assumed instead that outliers’ origins are not the result of error and might contain valuable 

information. They should not be corrected nor dropped, assuming Bloomberg has entered its 

data correctly. In that sense robust algorithms, such as DT or data transformation techniques, 

such as spatial sign (Serneels, De Nolf, & Van Espen, 2006), should be applied. 

 

4.2 Feature Cleaning 

Based on the formulated assumptions, the predictors are cleaned as following: 

1. Filtering individuals according to their index membership for each month  

2. Encoding missingness for qualitative predictors. 

3. Dropping implied volatility-related predictors momently. They will be re-assessed in 

the modelling process. 

4. Dropping individuals with remaining missing data. They will be re-assessed in the 

modelling process. 

Figure 4.3 illustrates the effect of the cleaning process. For each month, 12% SIDs are dropped 

on average, leaving a monthly average of 865 SIDs lefts for training. The main reason for such 

a drop is related to the window length requirement to compute certain features as mentioned 

before.  



 

 16 

4.3 Exploratory Data Analysis 

After laying out the dataset and main assumptions, the dataset can be analyzed, and its main 

characteristics summarised with the help of visual methods, a step namely called Exploratory 

Data Analysis (EDA). As each of the 92 predictors are evaluated here, the most insightful fig-

ures and analyses are presented in this thesis to remain consistent. The interested reader is 

invited to refer to the Jupyter notebook (see appendix A) displaying the full EDA process where 

univariate distributions, bivariate distributions and other visual representations are presented.  

 

Feature extraction 

To directly visualise 92 dimensions, dimension reduction techniques are applied. As PCA can 

only be performed on continuous data, a Factor Analysis of Mixed Data (FAMD) (Pages, 2004) 

is chosen here to simultaneously analyses both qualitative and qualitative data. As an analogy, 

FAMD can be said to behave as PCA on quantitative variables and as Multiple Correspondence 

Analysis (MCA) for qualitative variables. MCA designs the extension to more than two cate-

gorical variables of a Correspondence Analysis (CA) (Gibrat, 1978). Before performing 

FAMD with R package FactoMineR, quantitative data needs to be normalised. As many pre-

dictors display skewness, a Yeo–Johnson transformation (Yeo & Johnson, 2000) is applied 

first before standardisation. The data transformation revealed to be non-essential as FAMD 

Figure 4.3 Visualizations of the absolute and relative differences of SIDs over the years after feature cleaning. 



 

 17 

with raw values displayed the same results. Figure 4.4 displays the explained variance across 

the first 20 components and its cumulative amount. The first four components are here exam-

ined in detail, capturing around 45% of the overall variability.  

Figure 4.5 provides a summary of the analysis for the first and second dimensions, while Figure 

4.6 for the third and fourth dimensions. For both figures, part (a) and (b) displays the top 22 

variables contributing to the respective dimensions. The red dashed line represents the expected 

average value if contributions were uniform. Both variables can be represented on plot (c), 

called the relationship square, where the correlation between variables and principal dimen-

sions can be assessed. Quantitative variables can be visualized on the correlation circle (d) 

where the signs of correlations are specified. The categories of qualitative variables are repre-

sented in (e). Variable categories with a similar profile are grouped together, while negatively 

correlated variable categories are positioned on opposite sides of the plot origin. Finally (f) 

displays individuals projected on the selected plane. In addition, more information is displayed 

on the plots as follows: variable names have been shortened to preserve space. Variables are 

coloured according to their contribution to each projection (lowest are in blue and highest are 

in red) on plots (c), (d) and (e) and only top lowest, and highest contributors have been labelled. 

Lastly, individuals are coloured according to the return label associated in plot (f). From both 

figures, it can be observed that neither of the first four components separates the return cate-

gories.  

In Figure 4.5, the first component seems to have captured a latent variable related to trend-

following/momentum (momentum, moving averages, residual momentum, standardized unex-

pected earnings), while the second one focuses on mean-reversion predictors and related indi-

cators (channels, support and resistance). Volatility and variance have an ambiguous role as 

Figure 4.4 Variability summarized across the first 20 components of the FAMD. 



 

 18 

they are negatively correlated to dimension 1, but positively correlated to dimension 2. On the 

plot of categories, neutral signals are all grouped at the origin. The position of categories seems 

coherent with the previous interpretation of axis as sell-signals of long channels and of support-

resistance are close to buying signals of moving averages and vice-versa. 

In Figure 4.6, dimension three have captured all predictors related to volatility and variances. 

Axis 4 interpretation is more conflictual as no variables seem to be well represented. It can be 

noticed that short term moving averages contribute the most to it. Again, for categories, buy 

and sell signals from previously mentioned moving averages are opposed on the 3rd dimension. 

In general, the primary information to be collected from theses plots is the strong inter- and 

intra-association of certain continuous and qualitative variables. Redundancy of certainty can 

easily be suspected, as some variables have been computed with close parameters.



 

 19 

  

Figure 4.5 Summary analysis of the first and second components of the FAMD. 

(a) The 22 predictors contributing the most to the first dimension. (b) The 22 predictors contributing the most to the 
second dimension. (c) Relationship between quantitative and qualitative predictors. (d) Relationship between 
quantitative variables and components. (e) Relationship between qualitative variables and components. (f) Projection 
of individuals on the components. 



 

 20 

Figure 4.6 Summary analysis of the third and fourth components of the FAMD. 

(a) The 22 predictors contributing the most to the third dimension. (b) The 22 predictors contributing the most to the 
fourth dimension. (c) Relationship between quantitative and qualitative predictors. (d) Relationship between 
quantitative variables and components. (e) Relationship between qualitative variables and components. (f) Projection 
of individuals on the components. 



 

 21 

4.4 Initial Feature Selection 

Context 

In general, models face the trade-off between predictive performance and model interpretabil-

ity: Extensively adding predictors might increase predictive ability, but it would be at the ex-

pense of model and computational complexity. In addition, some models may be sensitive to 

irrelevant predictors, multicollinearity or noise, and it always makes scientific sense to mini-

mise the feature set that provides acceptable results. As such, the goal of feature selection is to 

reduce the number of predictors as much as possible without compromising predictive perfor-

mance. Methods of feature selection are usually distinguished by three groups: 

1. Implicit methods: Some models already incorporate a feature selection in their 

modelling approaches such as LASSO regression (Tibshirani, 1996) or DT models: 

2. Filter methods: It designates an initial analysis of predictors before proceeding to 

modelling. Some algorithms or statistical tests can be used to judge the importance of 

predictors, such as RelieF (Robnik-Sikonja & Kononenko, 2003) or filtering out 

correlated predictors. 

3. Wrapper methods: They are iterative procedures continuously supplying predictor 

subsets to a learning model. The resulting model performance then guides the selection 

of the next subset to evaluate. Examples might include Recursive Feature Elimination 

(RFE) (Guyon, Weston, Barnhill, & Vapnik, 2002) with a greedy approach or non-

greedy ones such as Genetic Algorithms (GA) or Simulated Annealing (SA) 

 

Each of these groups presents its advantages and drawbacks. The reader is invited to consult 

(Kuhn & Johnson, 2019) for an exhaustive description. It is common in early feature engineer-

ing steps to remove multicollinear features or irrelevant ones with filter methods. However, for 

classification tasks, (Guyon & Elisseeff, 2003; Guyon, Gunn, Nikravesh, & Zadeh, 2006) pro-

vide small but revealing illustrated anti-examples with continuous data. As such, correlation 

does not always imply redundancy. Two highly correlated features taken together are shown 

to achieve a perfect class separation while providing poor separation taken independently. 

Moreover, a variable seeming useless by itself can provide to improve classification when 

taken with others.  



 

 22 

All variables 

For exploration purposes, all predictors have been evaluated concerning the target labels with 

first dependency measurement with the Mutual Information (MI) (Ross, 2014) from Scikit-

learn and secondly with the RelieF algorithm from Scikit-Rebate. While MI ranks each predic-

tor separately, RelieF takes into account interaction effects. For raw and scaled data and two 

or three classes of returns, these two procedures scored KNN_Prediction highly discrimina-

tive and negligible for the rest. This situation can also be observed with univariate and bivariate 

representations of the predictor (see Jupyter Notebook from Appendix A) 

 

Quantitative variables 

Despite high multicollinearity among quantitative predictors (see Figure 4.7), no filtering is 

attempted here as discussed above. An RFE will be applied during the predictive modelling 

process instead. 

Qualitative variables 

Redundancy among certain categorical variables can be assumed from the FAMD results. In-

stead of Cramer’s V, the uncertainty coefficient (Theil, 1970) is used here as a measure of 

association between categorical variables. The uncertainty coefficient relies on information 

entropy and provides to be asymmetric in comparison to Cramer’s V, with possible loss of 

Figure 4.7 Visualization of the quantitative predictors’ correlation matrix. 



 

 23 

information. For two discrete random variables and , the uncertainty coefficient  

is defined as9: 

 

Where  is the Shannon entropy of a single distribution,  is the conditional entropy 

and  is the MI10: 

 

 

Where  and  are the joint and conditional distributions. The first expression 

shows that the uncertainty coefficient is an MI normalised. Uncertainty coefficients between 

categorical variables are computed with the package Dython and can be visualised in Figure 

4.8. The filter threshold is set to 0.8 and variables are removed according to Table 4.1. Expo-

nential moving averages seems not to be statistically different from their simple moving aver-

ages counterparts. 

Table 4.1 Association between qualitative variables. 

Feature removed High association with 

Support_Resistance_20D 

Support_Resistance_10D 

Channel_10D 

Channel_20D 

Support_Resistance_10D 
Support_Resistance_20D 

Channel_10D 

EMA 30D SMA_30D 

EMA_50D SMA_50D 

EMA_100D SMA_100D 

EMA_200D SMA_200D 

3MA_60_120_200D 
3MA_30_120_200D 

3MA_90_120_200D 

 
9 Wikipedia: https://en.wikipedia.org/wiki/Uncertainty_coefficient  
10 Wikipedia: https://en.wikipedia.org/wiki/Mutual_information  

x y U x | y( )

U x | y( ) = H(x)−H x | y( )
H(x)

= I(x,y)
H(x)

H x( ) H x y( )
I(x,y)

H(x) = − P(x) lnP(x)
x
∑

H x | y( ) = − P(x, y) lnP x | y( )
x,y
∑

P(x,y) P x | y( )



 

 24 

 

  

Figure 4.8 Visualization of the uncertainty coefficient matrix. 



 

 25 

5 Predictive Modelling 
5.1 Context 

Forecasting stock returns can be translated into a classification problem where side returns 

define different classes. A third class for neutral cases can also be considered. Instead, the 

modelling is divided into two problems as presented in the Meta-Labelling approach of (López 

de Prado, 2018). The first modelling process focuses on predicting the side of the forecasted 

returns with targets {-1,1}. Neutral cases are dropped in this first step as it is assumed they 

would be assigned with low probabilities to both classes. Once sides are predicted, a second 

model re-assess the feature with side predictions to determine the size with targets {1,0}, that 

should be attributed to the bet. As such, the secondary model is expected to filter wrongly 

classified targets from the first model. This approach also reduces the likelihood of overfitting 

as models are trained for different targets. Figure 5.1 displays the meta-labelling approach.  

 

 

Learning algorithms 

As missing values and multicollinearity are still present in the dataset, early modellings are 

performed with DT algorithms for their non-parametric, distribution-free assumptions, and ro-

bustness to the presence of outliers and irrelevant attributes (Gama, Medas, & Rodrigues, 

2004). DT models can be combined into Ensemble model (Yaliang Li, Gao, Li, & Fan, 2015) 

in order to obtain a better model than any individuals one. Three ensembling approaches can 

be distinguished: 

Targets

Features

First	Model

Second	Modely:	Size

X:	Features	+	Predicted	Side

y:	Sides

X:	Features

Predicted	Side

Predicted	Size

Figure 5.1: Graphical illustration of the meta-labelling approach. 



 

 26 

• Bagging: Learners are created independently by resampling with replacement the 

dataset. The final forecast is the average of the learners' forecasts. 

• Boosting: Learners are fit sequentially where subsequent learners address previous 

models errors. The final forecast is a weighted average of the learners' forecasts. 

• Stacking: Learners forecasts are combined to train a meta-model to output a final 

forecast. 

 

Bagging addresses overfitting while boosting addresses underfitting, at the cost of a greater 

risk of overfitting. López de Prado (2018) suggests the bagging approach for financial machine 

learning, due to greater concerns of easy overfitting because of the low signal-to-noise ratio. 

The two types of approaches are tested here. As such, Random Forest (RF) (Ho, 1995), Gradi-

ent Tree Boosting (GBT) (J. H. Friedman, 2001) and Dropouts meet Multiple Additive Regres-

sion Trees (DART) (Rashmi & Gilad-Bachrach, 2015) have been selected. GBT popularity is 

due to its immense success in online data science competitions, and a detailed analysis is pro-

vided by (Nielsen, 2016). A less formal description can be found here11,12 and an intuitive 

description of RF can be found here13. Finally, DART is an extension of GBT (also called 

Multiple Additive Regression Trees (MART) according to authors) with an implementation of 

the concept of Dropout (Hinton, Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012), 

designed to regularise and prevent overfitting for neural networks. Instead of the commonly 

used XGBoost (Chen & Guestrin, 2016), LightGBM is adopted here for its higher convergence 

speed in comparison to XGBoost and handling missing values as opposed to Scikit-learn. 

 

Classification metrics 

Major classification metrics, such as accuracy, sensitivity, specificity and others rely on the 

implicit assumption of a valid probability cutoff (in general 0.5). As the class separation is 

expected to be filled with noisy samples, cutoff-free metrics are used initially. As such, the 

Area Under the receiver operating characteristic curve (AUC) (Green & Swets, 1966; 

Japkowicz & Shah, 2011) is chosen to indicate the separation capacity of the classifier. For a 

 
11 A Kaggle Master Explains Gradient Boosting: http://blog.kaggle.com/2017/01/23/a-kaggle-master-explains-
gradient-boosting/ 
12 How to explain gradient boosting?: https://explained.ai/gradient-boosting/index.html 
13 Random Forests for Complete Beginners: https://victorzhou.com/blog/intro-to-random-forests/  



 

 27 

random continuous variable in a binary classification, AUC is defined as the integral of the 

Receiver Operating characteristic Curve (ROC)14: 

 
Where  and  are the True Positive Rate and the False Positive Rate for a given 

threshold : 

 

Where  and  are the probability distribution for the positive and negative classes. 

Additionally, the log loss or cross-entropy is employed for probabilistic confidence across clas-

ses. For  samples and  classes as, the log loss  is defined as: 

 
While AUC aims to maximise classes discrimination, the log loss is meant to penalise the di-

vergence between actual and estimated probabilities. 

The secondary model is optimized for  for two reasons: 

1. Relabelling has no impact on log loss. 

2. There is more interest in focusing on prediction accuracy for the positive class, as 

compared in predicting both sides equally before. 

 score is defined as the harmonic mean of precision and recall 

 

Where recall and precision are: 

 

 

 
14 Wikipedia: https://en.wikipedia.org/wiki/Receiver_operating_characteristic 

x

AUC = TPR(FPR−1(x))dx
x=0

1

∫
TPR(T ) FPR(T )

T

TPR(T ) = p1(x)dx
T

∞

∫

FPR(T ) = p0(x)dx
T

∞

∫

p1(x) p0(x)

N C L

L(Y ,P) = − 1
N

yi, j ln pi, j
j=1

C

∑
i=1

N

∑

F1

F1

F1 = 2 precision ⋅recall
precision +  recall

precision =  TP
TP + FP

recall  =  TP
TP + FN



 

 28 

As these metrics are not directly interpretable, benchmark values are computed for perfor-

mances comparison. They represent the case of a classifier with random guesses for a balanced 

dataset: 

 

The case for AUC represents the area under a diagonal curve. The full mathematical derivation 

can be found here15. 

 

Sample weight 

In addition, Scikit-learn and LightGBM allow users to pass samples weights to learners fitting 

or to metrics. As higher absolute returns are defined as more important than negligible absolute 

returns, the sampling weight methodology of (López de Prado, 2018) is followed here, and 

sample weights are defined as the weighted absolute log returns at each timestamp. Logarith-

mic returns are chosen here due to their symmetric property. 

 

Dataset shift 

Machine learning algorithms have been formalised under the presumption of common data 

generating process between the training and the testing environment. In practice, this assump-

tion often fails to hold, and when the data distribution is subject to change over time, it is 

subject of dataset shift. The academic literature has been using different terminologies to ex-

press the same concept (Moreno-Torres, Raeder, Alaiz-Rodríguez, Chawla, & Herrera, 2012), 

but such a shift may fall in three categories as presented initially by (Kelly, Hand, & Adams, 

1999) for a set of predictors  and the class variable : 

1. Covariate shift: the input distribution  differs while the posterior distribution of 

the class memberships  remains unchanged. 

2. Prior probability shift: the class prior distribution  differs while the posterior 

distribution  remains unchanged. 

 
15 StackExchange: https://datascience.stackexchange.com/questions/31872/auc-roc-of-a-random-classifier  

AUCrandom = x dx = 0.5
0

1

∫
Lrandom2 classes

= − ln(1/ 2) ≈ 0.69

Lrandom3 classes
= − ln(1/ 3) ≈1.10

F1random = 0.5

X y

p(X)

p y |X( )
p(y)

p X | y( )



 

 29 

3. Concept shift: the relationship between input and class variables,  and

, differ while input and class distribution,  and , remains 

unchanged. 

 

This paper’s problem is naturally exposed to such shifts due to its temporal component. Mar-

kets are also known to be adaptive systems (W. Lo, 2017), and signal values are thus expected 

to keep changing. Developing algorithms to learn under dataset shift is an active area in ma-

chine learning research (Gama et al., 2004; Žliobaitė, 2010) and exploring the implementation 

of such learners is outside of the scope of this thesis. However, the following two adjustments 

are proposed and tested statistically to make our machine learning pipeline more adaptable: 

1. Sample weighting: (López de Prado, 2018) time linear decay factors are used to 

multiply sample weights and to decay older ones. The convention of the author is reused 

here, and for a decay parameter , the following cases can be observed: 

•  means no time decay. 

•  means that weights decay linearly, but are still strictly positive. 

•  means that weights converge linearly to zero as they get older. 

•  means that the sample weights of the oldest  portion are set to zero 

and are consecutively erased from memory. 

2. Sliding window training: Predictions are based on a learner periodically re-trained on 

a defined lookback window. Such methodology is standard in the financial machine 

learning literature. An example can be found in (Bao, Yue, & Rao, 2017) 

 

These implementations can be seen in Figure 5.2, in the context of the data splitting, described 

below. 

 

Data splitting 

The dataset is broken in three sections, as suggested by (Hastie, Robert, & Jerome, 2009): 

1. Testing set: defined as the last four years of the dataset, namely 16.5% of the entire 

dataset 

2. Training set: defined as the first 70% of the remaining data, namely 58.5% of the entire 

dataset 

3. Validation set: defined as the last 30% of the remaining data, namely 25% of the entire 

dataset 

p y |X( )
p X | y( ) p(X) p(y)

c∈(−1,1]

c = 1

0 < c <1

c = 0

−1< c < 0 c



 

 30 

The testing set is locked until the entire model calibration process is finished. This prevents 

underestimation of the true model error and should provide a clean backtest for the last four 

years at least. Finally, the model is built on the training set, and prediction errors during the 

modelling process are calculated using the validation set. Figure 5.2 illustrates the splits used. 

 

 

Resampling 

The commonly used fold Cross-Validation (CV) is known not to be suitable for time-de-

pendent data. The in-sample performances are then estimated with Repeated Holdout valida-

tion (Rep-Holdout) motivated by the exhaustive comparison of resampling methods for time 

series from (Cerqueira, Torgo, & Mozetič, 2019). Due to serial correlation and data derived 

from overlapping points, a monthly purge is applied between the inner-training set and the 

inner-testing set (López de Prado, 2018). Rep-Holdout and the purging procedures are illus-

trated in Figure 5.3. If not mentioned otherwise, 30 resamplings are performed to estimate 

performances. 

As observed by (López de Prado, 2018), Scikit-learn cross-validation implementations do not 

pass sample weights to the scoring function, but only to the estimator class. This issue has still 

not been solved as of the time of this paper16 and is common among other major Python ma-

chine learning libraries due to their dependency to Scikit-learn. The author’s solution is 

 
16 Github: https://github.com/scikit-learn/scikit-learn/pull/13432  

k-

Training	Set

Training	CV Validation	CV

Training Validation

Validation	Set
Out	of	Sample

Testing	Set

Training	Set

Training Validation

Validation	Set
Out	of	Sample

Testing	SetTraining Validation

Training Validation

Start

Start

Present

Present

Sl
id
in
g

W
in
do
w

G
ro
w
in
g

W
in
do
w

Figure 5.2: Graphical illustration of the data splitting and the training methodology used. 

Top pannel: Growing window illustrates the case where all previous data is considered. Bottom pannel: 
The model is only trained on a specific lookback period. 



 

 31 

followed, and a function estimating weighted score by repeated holdout validation has also 

been recorded here. 

 

Tuning parameters 

Because of the high complexity of LightGBM’s parameters tuning17, a grid-/random search 

(Bergstra & Bengio, 2012) would be computationally too demanding. Instead, Bayesian opti-

misation frameworks are chosen. Initially, with Hyperopt, hyperparameters search has been 

finally performed with Optuna. They both rely on a Tree-structured Parzen Estimator approach 

(TPE) (Bergstra, Bardenet, Bengio, & Kégl, 2011), but Optuna proved to be more performant 

due to its ability for parallel computing and pruning of unpromising trials. To enable large scale 

distributed optimisations with Optuna, a PostgreSQL database has been used. Unless men-

tioned otherwise, 200 trials are performed for each model. 

 

Statistical tests for model comparison 

The effective practice of statistical tests to compare classifiers has been controversial in the 

machine learning research space, mainly due to the use of multiple testing without significance 

tests correction or the use of parametric tests which assumptions cannot be proven to hold 

(Benavoli, Corani, Demšar, & Zaffalon, 2017; Japkowicz & Shah, 2011). Tests results pre-

sented in this thesis follows methodologies from (Demšar, 2006; Japkowicz & Shah, 2011; 

Salzberg, 1997). As such, monthly performance metrics are drawn from the validation set, 

meaning the learning algorithms has not been trained nor tuned with them. Then, the non- 

parametric Wilcoxon signed-ranks test, (Wilcoxon, 1945) and Friedman test (M. Friedman, 

1937) are performed to compare two and more classifiers respectively. Finally, whenever the 

 
17 Description of all parameters in LightGBM: https://lightgbm.readthedocs.io/en/latest/Parameters.html  

Training Validation

Training Validation

Training Validation

1
2

N

...

Available	window

Figure 5.3: Graphical illustration of the Repeated Holdout validation. 

For defined percentages of data assigned to the inner-training and inner-validation set, 
the remaining data available defines a window where sets can be randomly splitted. The 
gap between sets represents the training set being purged. 



 

 32 

null hypothesis of the Friedman test is rejected (H0: no significant difference between models 

performances), post hoc tests can be proceeded to identify which classifiers actually differ. For 

its complementarity with the Friedman test, the Nemenyi test (Nemenyi, 1962) is chosen here 

as a post hoc test. 

 

Feature selection 

Despite not affecting the predictive performances of DT algorithms, redundant predictors tend 

to dilute the feature importance scores (Kuhn & Johnson, 2019). In addition to the previous 

reasons mentioned, feature selection should also be applied in order to correctly interpret such 

scores. For this process, RFE is chosen for its complementarity with DT algorithms and its 

efficient screening of correlated variables (Gregorutti, Michel, & Saint-Pierre, 2017). RFE is a 

greedy Sequential Backward Selection (SBS) (Ferri, Pudil, Hatef, & Kittler, 1994) of predic-

tors for learners with weight coefficients or importance scores. For tree-based models, RFE 

primarily works by eliminating features recursively using feature importance, whereas SBS 

eliminates features based on a user-defined classifier/regression performance metric. These 

processes need to be paired with external resampling as they could easily overfit. 

RFE is performed with RFECV18 from Scikit-learn and SFS with SequentialFeatureSe-

lector19 from Mlxtend. As before, these objects cannot pass sample weights to the scoring 

function. While sample weights can be passed to the learner for SequentialFeatureSe-

lector, RFECV does not accept any sample weights. Due to their computational costs and the 

fact these implementations are already optimised for parallel computing, recoding them includ-

ing a weighted scorer has been considered out of this thesis scope. Instead, both implementa-

tions are used and tested on the separate validation set with weighted scorer. 

Furthermore, these computational complexities rise another issue concerning selection bias. 

CV methods are unbiased if all the aspect of classifier training takes place inside the CV (Hastie 

et al., 2009; Kuhn & Johnson, 2013). Ideally, it means that feature pre-processing, feature se-

lection, classifier type selection and classifier parameter tuning should be performed co-jointly 

in each CV loop. Due to the size of the dataset and the complexity of this paper machine learn-

ing pipeline, such procedures cannot be considered. Instead, we rely on the more pragmatic 

 
18 RFECV: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html  
19 SFS: http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/  



 

 33 

approach from (Kuhn & Johnson, 2019) and here20. The following assumptions are formulated 

to mitigate selection bias: 

• Precedent feature selections, i.e. filtering methods, have been done in an unsupervised 

way, meaning not taking into account targets, and should introduce any selection bias 

(Hastie et al., 2009). 

• Learners less sensitive to the choice of tuning parameters might not need to be re-tuned 

in a nested CV. (Kuhn & Johnson, 2019) used a Random Forest (RF) model for their 

application of RFE and thus LightGBM’s GBT is considered similarly less sensitive as 

opposed to Logistic Regression (LR) or Suppor-Vector Machine (SVM) (Corinna 

Cortes & Vapnik, 1995). 

 

A selection of promising features subsets and hyperparameters would be tested on the valida-

tion set. Finally, to study the impacts of correlated predictors and of the scorer in the selection 

process, the exercise of (Kuhn & Johnson, 2019) is repeated here. RFE and SBS are performed 

for AUC and log loss for three initial feature sets defined as: 

1. All predictors. 

2. Predictors filtered for correlation (threshold set at 0.8). 

3. Predictors filtered for multicollinearity with dependency estimation with RF21. 

 

In order to identify dependency among features, each feature can be regressed on the remaining 

ones with RF. Consecutively for each regression, the corresponding out-of-bag  indicates 

the independent variable dependency, or how it can be easily predicted. Regarding the depend-

ent variables, their importance scores can be interpreted as their predictive powers. Finally, 

dependent variables with importance scores close to one across several regressions can be re-

moved. The author’s package, Rfpimp22, is used to illustrate this filtering. 

  

 
20 StackExchange: https://stats.stackexchange.com/questions/264533/how-should-feature-selection-and-hy-
perparameter-optimization-be-ordered-in-the-m 
21 Dealing with collinear features: https://explained.ai/rf-importance/index.html#corr_collinear 
22 Rfimp: https://github.com/parrt/random-forest-importances  

R2



 

 34 

5.2 Primary Model 

As in the previous chapter, neutral cases, i.e. label 0, are momentarily dropped, leading to a 

binary classification problem with labels {-1,1}. Neutral cases are expected to be later pre-

dicted to both classes with low probability, allowing the second model to filter them out. In the 

next pages, different training configurations are compared. Classifiers are judged based on their 

capacity to distinguish return sides. For this purpose, performances are measured with non-

/weighted log loss and AUC on predictions made on the validation set. In addition, each con-

figuration hyperparameters have been retuned for weighted log loss. 

 

Window training 

As a first comparison, performances on the validation set are compared for models trained with 

growing windows and sliding windows. In order to describe training methodologies, the ter-

minology of (Cerqueira et al., 2019) is referred to this study. The term growing window de-

scribe including all previous data for training while sliding window includes a fixed size look-

back window for training. The following models are considered: 

• Growing window training for time decay factor  

• Sliding window training for windows of 1, 2, 4 and 8 years. 

 

Each model has been optimized for weighted log loss with internal Rep-Holdout validation. 

Figure 5.4 displays the statistics metrics computed over months on the validation set. All mod-

els seem to have the same level of class discrimination. However, growing windows models 

seem to have a slight advantage from a probabilistic view. Friedman tests have been then per-

formed for the four metrics, and the null hypothesis is rejected. Nemenyi tests then proceed 

and respective p-values are displayed in Figure 5.5. Across tests, a significant difference can 

generally be found between growing window and sliding window models, especially for 

weighted log loss, the optimised metric. For the rest of the study, sliding window models are 

then not considered anymore. In addition, to slightly lower performances, they are computa-

tionally expensive to optimise as parameters search have to be redone at each training slide. 

 

Missing values 

So far, missing values have been dropped. Their value on performances metrics is re-assessed 

here as LightGBM handles them. In a first time, samples with missing data are added back to 

the dataset, while the implied volatility features are added in a second step. New models are 

c∈{1,0.75,0.5,0,−0.25,−0.5}



 

 35 

compared to the previous growing training models. Figure 5.6 displays the statistics metrics 

computed over months on the validation set and related p-values from Nemenyi tests are dis-

played in Figure 5.7. While non-weighted performances slightly decreased, weighted log loss 

show to be lower and have less variance. P-values seem also to indicates statistical differences 

between models with and without missing values. As we are more interested in better proba-

bilities for returns with higher weights, missing values are therefore kept. 

 

Rolling preprocessing 

When stacking features, (López de Prado, 2018) recommends to standardize them on a rolling 

training window to ensure some distributional homogeneity in the dataset and numerous equity 

strategies of (Kakushadze & Serur, 2018) rely on ranking stocks. Ranking is also a way to 

mitigate outliers. Finally, as we perform cross-sectional analysis, rolling scaling could be suit-

able. Thus, models trained on monthly pre-processed feature are compared for: 

• Ranking. 

• RobustScaler(), as outliers are expected. 

• PowerTransformer(), as skewness is expected. 

Figure 5.8 displays the statistics metrics computed over months on the validation set and related 

p-values from Nemenyi tests are displayed in Figure 5.9. Monthly means and variances have 

both improved for weighted and non-weighted metrics, confirmed by the Nemenyi tests. Ro-

bustScaler() is kept as it is computationally more efficient than PowerTransformer() 

and to preserve the data distribution if it had to be discriminating for the secondary model. 

  



 

 36 

 

Figure 5.4: Comparison of training methodologies: Means and standard deviations 

of metrics computed monthly 



 

 37 

 

Figure 5.5: Comparison of training methodologies. 

Left pannel: Monthly metrics time series. Right pannel: Visualization of p-values from Nemenyi tests. 



 

 38 

 

 

  

Figure 5.6: Comparison of training with missing values: Means and standard deviations 
of metrics computed monthly. 

Base models refers to previous growing window models. 

Figure 5.7: Comparison of training with missing values 

 Visualization of p-values from Nemenyi tests. Base models refers to previous growing window models. 



 

 39 

 

 

 

 

 

Figure 5.8: Comparison of training with rolling pre-processed data: Means and standard deviations of metrics 
computed monthly.  

Raw models refer to previous models with raw data including all missing values and predictors 



 

 40 

  

Figure 5.9: Comparison of training with rolling pre-processed data:  

Visualization of p-values from Nemenyi tests. Raw models refer to previous models with raw data including all 
missing values and predictors 



 

 41 

5.3 Feature Selection 

The training methodology is defined so far as: 

• Growing window 

• Keeping missing values 

• Rolling pre-processing 

 

We are interested in removing irrelevant features and associated noise from the models. As 

described earlier, RFE and SFS are performed on all feature and two different feature subsets, 

previously filtered for correlation and multicollinearity. Results displayed in Figure 5.11 shows 

that GBT benefits from feature interaction between correlated features. Bests subsets proposed 

by RFECV and the three subsets that achieved best scores on SFS are selected for further in-

vestigation. Figure 5.10 displays selection percentage of predictors for theses subsets. Finally, 

these subsets are used for training and validation performances are reported in Figure 5.12. The 

subset RFECV LL all with 21 predictors is selected at this one the only having a lower mean 

and lower variance for weighted log loss compared to the base case. 

 

 

 

Figure 5.10: Predictor selection percentage for selected feature subsets. 



 

 42 

 Figure 5.11: The cross-validated results for RFE and SFS using GBT.  

Left pannel: RFECV selecting subset based on GBT feature importances. Middle and Right pannels: SFS selecting subset based on AUC/ LogLoss Score. Right pannels: 
GBT trained with sample weight. 



 

 43 

  

Figure 5.12: Comparison of training with different feature subsets: Means and standard deviations of metrics computed 
monthly.  

Base models refers to model with RobustScaler() and a time decay factor of 0.5. Value in brackets represents the number of 
predictors included in the subset. 



 

 44 

5.4 Data Leakage 

Context 

As early backtesting with the previously mentioned models, lead to extraordinary performances 

for a monthly strategy (Sharp Ratio above 5), the process modelling has been interrupted to 

investigate the possibility of data leakage. After investigations across the entire pipeline, it has 

been deduced that the predictions from the k-NN were probably the suspects for such leakage. 

This chapter is meant then to describe and to emphasize the subtility of data leakage (Kaufman 

et al., 2012) in financial machine learning application. It was enough to unintentionally leak 

data at one step to compromise the entire pipeline and invalidate results, despite rigorous pro-

cedures along the process: 

1. Feature Generation: inclusion of delisted index components; usage of PIT data; 

rolling prediction for k-NN; alignment of sample features and targeted returns with one 

day gap; Treatments for missing values and outliers not considered;  

2. Feature Engineering: Early feature selection without taking targets into account. 

3. Predictive Modelling: Dataset splitting; Cross-Validation with one month purging on 

training set; Results validation with validation set; Locking of the testing set; Rolling 

feature scaling. 

 

Leakage in financial application occurs when targets from training and testing sets are derived 

from overlapping points (López de Prado, 2018). The returns derivation illustrates the issue as 

they are defined from two different price points. Let be the targeted  returns for two 

timestamps assigned to the training and testing sets as : 

 

 

For  and then , information leakage necessary occurs as prices are shared. 

Another way more intuitive way to interpret is: By the time one should predict , the 

estimator could not have been trained with  as related prices were not 

yt s-days

t = t1,t2

yt1 =
Pt1+s
Pt1

−1

yt2 =
Pt2+s
Pt2

−1

t2 = t1 +1 Pt1+s = Pt2+s−1

yt2

yt  for t = t2 −1,...,t2 − s



 

 45 

available yet. In order to reduce the likelihood of leakage (López de Prado, 2018) suggests two 

approaches: 

1. Purging and Embargoing the training set: Removing data from the training set to 

ensure non-overlapping data between training and testing sets. 

2. Avoid overfitting: Impeaching the classifier to profits from leakage even if it occurs. 

See (López de Prado, 2018) for description of adapted classifiers. 

 

Regarding this paper, the prediction methodologies used for the k-NN strategy and the main 

framework are fundamentally different. The k-NN makes daily predictions of the return over 

the next 20 days (with one day gap) while the main framework makes monthly predictions 

only. In that sense, the main framework methodology is bias-free as we purge the last month 

of the training set. For the k-NN case, the situation is different as returns are continuously 

overlapping (see Figure 5.7). As the k-NN predictions were initially added to the feature set, 

leakage could not be prevented in the modelling process, even by locking the testing subset. 

The situation could have been avoided with: 

1. Larger purging or using a different framework for k-NN predictions. 

2. Using one of the classifiers recommended by (López de Prado, 2018). 

 

Due to its nature, data leakage is not trivial to detect and eliminate (Kaufman et al., 2012). The 

issue seemed obvious from backtests results. However, after reflexions, it could have been 

spotted earlier as constant flags were raised along the process: 

y1

y3

X1

	X2

X3

y2

y4X4

y5X5

y6X6

...

yT-2XT-2

yT-1XT-1

yTXT

Training	Set

Testing	Set

Overlap

Start Present

Gap Leakage	Barrier

Figure 5.13: Graphical illustration of data leakage.  

Lenghts of rectangle represent the timerange needed to compute feature and targets. The 
leakage barrier represents all training returns sharing data with the testing returns. 



 

 46 

1. Feature Generation: High performances for the regression problem (see Appendix F) 

2. Feature Engineering: High discrimination power of the leaking feature in comparison 

to the others. 

3. Predictive Modelling: High performances of learners; Constantly ranked first by 

feature selections and High feature importances attributed by models. 

 
Redefined Pipeline 

For ethical and scientific reasons, it has been decided to re-start the modelling processes per-

formed until now. As data leakage was spotted in the latest days of this thesis, the primary 

model has been designed in a shorter way: 

• k-NN have been retrained and forecasts re-computed with both a purging period of 21 

days 

• Models, pre-processing and hyper-tuning selection have been performed within one 

step with cross-validation. 

• Feature selection is skipped due to the nature of DT models 

• Analysis from Chapter 4, should remain robust for the rest of the predictors. 

 

The cross-validation performances of the redesigned primary model dropped terribly to 

. As it is not far from the performances of classifier with random guesses, a 

second pipeline has been designed parallelly with the primary model optimized for weighted 

recall. As described in (López de Prado, 2018),  this approach aims to classify the most possible 

number of positive labels at the expense of false-positive increase. False-positive are then ex-

pected to be filtered by the secondary model. 

  

Lweighted ! 0.55



 

 47 

5.5 Pipeline Performances 

After re-configuring pipelines and optimizing them for their own metrics, the pipeline opti-

mized for log loss selected GBTs for both models while recall selected an RF as primary and 

a GBT as a secondary model. Performances are compared on the validation set as observable 

from Figure 5.14. First, secondary models for both models seem to share some performances. 

Very close hyperparameters have been selected for both of them, interrogating the discrimina-

tion capacity of the first two models, as performances obtain very close to the equivalent of 

random guesses. Due to higher classification performances of secondary models in comparison 

to the first ones, it raises the issue of accepting a bet that has been predicted for the wrong side. 

  

Figure 5.14: Comparison of pipeline performances on the validation set: Means and standard 
deviations of metrics computed monthly.  

Meta refers to the primary model outputting meta-labels and Clf refers to the secondary model. The 
metric associated determines the pipeline for which the first model has been optimized for. 



 

 48 

6 Portfolio Allocation and Portfolio Analysis 

6.1 Context 

Once ML forecasts have been outputted, it remains to convert them into trading signals and 

backtest the strategy. For these tasks, the in-sample and out-of-sample time ranges are defined 

respectively as: 

• In-Sample: Training and Validation subsets defined in the predictive modelling 

process, i.e. from the 31st January 1995 to the 31st march 2015. 

• Out-of-Sample: Testing subset also defined earlier and locked until now, i.e. from the 

30th April 2015 to the 29th March 2019. 

 

An Equity Long-Only Investment Strategy is attempted as shorting stocks are not relevant in a 

monthly setting. Finally, portfolio statistics include trading costs of 0.25% and computations 

used are presented in Appendix G. 

 

Signals 

Weights are defined from the combination of sides predicted earlier from the primary model 

and the size probabilities from the secondary one, with the Bet Sizing approach presented by 

(López de Prado, 2018). From the output of the secondary model, let define  as the prob-

ability that the label  takes place. By computing testing the null hypothesis 

 and the test static : 

 

The bet size  is defined as:  

 

Where  represents the Standard Normal distribution and  is the corresponding CDF.  

Final signals can be obtained by multiplying the bet size with the predicted side. 

 

Backtesting through Cross-Validation 

The signals obtained needs to be translated to allocation weights as a long-only strategy as-

sumes: 

p(x)

x ∈ −1,1{ }

H0 : p(x = 1) =
1
2

z

z =
p(x = 1)− 1

2
p(x = 1)(1− p(x = 1))

∼ Z ,  with z ∈(−∞,∞)

m

m = 2Φ(z)−1 with m∈(−1,1)

Z Φ



 

 49 

 

Where stands for the normalized weight assigned to stock  at the timestamp . As we are 

interested in the bets with the highest probabilities, the  highest signals are selected and 

normalized: 

 

Where denotes the set of indices associated with the  highest signals. To prevent excess 

turnover induced by small weight differences at every prediction, the weights are further 

discretized: 

 

The parameters  and  are determined by optimizing the Sharp Ratio strategy due to the 

pitfall of out-sample performances of strategy optimized for return only as observed by 

(Wiecki, Campbell, Lent, & Stauth, 2016). To reduce the likelihood of backtest overfitting and 

obtain the highest true Sharpe ratio possible, we rely on the Combinatorial Purged Cross-Val-

idation (CPCV) (López de Prado, 2018). It recombines groups of observations into training 

and testing sets where learners can be applied to the forecast the testing sets. Finally  backtest 

paths can be recombined from the forecasts and allows to derive an empirical distribution of 

the Sharp ratio. Let  observations be partitioned into  groups without shuffling of size 

;  is the number of groups assigned to the testing set, the number of possible train-

ing/testing splits  is: 

 

The  testing sets from each combination can be re-grouped into  paths to be backtested: 

 

From there, the empirical distribution of the strategy’s Sharpe ratio can be derived. 

  

i
∑wi,t = 1  with wi,t ≥ 0  ∀t

wi,t i t

n

wi =
mi
mi

i
∑   where i∈I *

I * n

wi
* = round

wi
d

⎡

⎣
⎢

⎤

⎦
⎥d   where d ∈(0,1]

n d

ϕ

T N

T / N⎢⎣ ⎥⎦ k

ϕsplit

ϕsplit[N ,k]=
N
N − k

⎛
⎝⎜

⎞
⎠⎟
=

(N − i)
i=0

k−1∏
k!

k ϕ path

ϕ path[N ,k]=
k
N

N
N − k

⎛
⎝⎜

⎞
⎠⎟
=

(N − i)
i=1

k−1∏
(k −1)!



 

 50 

6.2 Results 

Empirical Distribution of Strategies’ Sharpe Ratio 

The CPCV is applied on the in-smaple dataset yo determine trading parameters. From the in-

sample time range,  months can be observed. To let the  groups timerange matches 

the out-of-sample time range (~4 years), monthly samples are assigned to  groups with 

size of 16 months and . Finally, we obtain the number of splits and backtest paths to be 

computed: 

 

The following trading parameters have been obtained by optimising the Sharpe Ration from 

the CPCV: 

  

Empirical Sharpe Ratio distribution can be plotted as follow: 

 

 

  

T = 243 k

N = 15

k = 3

ϕsplit = 455

ϕ path = 91

nlogloss = 26 dlogloss =
1

1066

nrecall = 101 drecall =
1
6363

Figure 6.1 Empirical Sharpe Ratio distribution for strategies 



 

 51 

Backtest Statistics 

Strategies are backtested with selected parameters. Cumulative returns for strategies and 

benchmarks are reported in Figure 6.2. Cumulative returns Ratios of the strategies over the 

Russell 1000 Index can be visualized in Figure 6.3. Finally, Strategy performances are reported 

in Table 6.1. Despite similar Sharpe Ratio, the LogLoss pipeline managed to remain more 

profitable than the benchmark including trading costs while trading costs killed the perfor-

mances of the Recall pipeline. By a higher differential between average returns from hits and 

misses, the log loss pipeline manages to recover quicker from drawdowns. 

From the trading parameters obtained below, we retrieve the effects from the metrics. As the 

log loss pipeline seems more confident on its bets, he selects only 26 stocks per time, leading 

to a higher turnover. The recall pipeline has however kept on increasing false positives and 

must pick a higher number of stocks per time to reach profitability, leading to lower turnover. 

Finally as empirical distribution and strategy performances do not correspond, we can question 

if such performances are not purely due by luck. 



 

 52 

 

  

Figure 6.2 Top panel: Out-Sample cumulative returns for strategies and benchmarks.  

Bottom panel: Out-Sample log cumulative returns for strategies and benchmarks. 



 

 53 

  

Figure 6.3 Top panel: Out-Sample ratio of the strategies cumulative returns over the Russell 1000 Index 
cumulative returns.  

Bottom panel: Out-Sample ratio of the strategies cumulative returns over the Russell 1000 Index 
cumulative returns displayed in log values. 



 

 54 

Table 6.1 Strategies performances for out-of-sample data. 

Category Measure Pipeline LogLoss Pipeline Recall Russell 1000 

Index   w/o TC with TC w/o TC with TC 

General Time range from the 30th April 2015 to the 29th March 2019 

 Turnover 16 13 N/A 

Performance Cumulative return 193.3% 135.8% 113.8% 75.2% 75.3% 

 CAGR 40.8% 35.3% 33.1% 28.8% 28.8% 

 Alpha 7.4% 3.2% 2.1% -1.2% N/A 

 Beta 1.35 1.35 1.20 1.20 N/A 

 Stability 0.92 0.89 0.9 0.84 0.89 

 Hit Ratio 53.8% 54.3% N/A 

 Average return from hits 0.34% 0.08% N/A 

 Average return from misses -0.29% -0.07% N/A 

Risk Volatility 21.1% 21.1% 16.5% 16.5% 12.7% 

 Skewness 0.20 0.19 -0.29 -0.31 -0.76 

 Kurtosis 0.75 0.73 0.62 0.62 1.75 

 Maximum drawdown -21.8% -24% -18% -20% -14% 

Efficiency Sharpe ratio 0.91 0.72 0.77 0.57 0.69 

 Information ratio 0.8 0.5 0.56 0.08 N/A 

 Sortino ratio 1.63 1.23 1.23 0.87 1.01 

 Calmar ratio 0.84 0.58 0.65 0.41 0.58 

 Tail ratio 1.24 1.14 1.10 1.02 0.85 

  



 

 55 

7 Conclusion and Further Research 

Because of data leaking has been spotted in the last weeks of this thesis, most findings of this 

thesis remain invalid. However, practical use of financial machine learning concepts and re-

lated issues have been underlined here. 

Section 3 reviewed essential concepts before starting to design any trading strategy. 

In Section 4, Assumptions about missing data and outliers have been defined, and a FAMD has 

been applied to both quantitative a qualitative variables to extract information from 92 dimen-

sions The interpretation of FAMD plots suggested many features were redundant. Correlated 

quantitative variables have also not been filtered. As shown further by RFECV and SFS, some 

feature interaction can occur between correlated feature, increasing model performance at the 

same time. Finally the uncertainty coefficient was used to remove 11 qualitative variables. As 

an example, exponential moving averages were found too associated with the respective length 

simple moving averages and were dropped, therefore. 

Section 5 presented the modelling process and the meta-labelling approach. Non-parametric 

statistical tests were also used to compare classifier performances. However, after feature se-

lection to determine a more efficient feature subset, data leakage has been suspected due to 

early out-of-sample backtest performances. The issue has been reviewed and fixed. New ma-

chine learning pipelines have been created to deliver more reasonable backtests. 

The predictions were converted, in Chapter 6 to allocation weights with statistical tests. Be-

sides, strategies have been optimized with the Combinatorial Purged Cross-Validation allow-

ing to backtest the entire training time range without overfitting. Finally two monthly equity 

strategies based on Ensemble of Decision-Tree algorithms were proposed, and their perfor-

mances analyzed. While trading costs annihilates profitability for the first one, the second one 

remains profitable and above the selected benchmark. These results were found similar to those 

of (Fischer & Krauss, 2018; Krauss, Do, & Huck, 2017) for whom, the performances of ma-

chine-learning based strategy were continually dropping over time. It can be assumed that fi-

nancial markets agents have been using machine learning techniques long enough for simple 

models to capture any profits nowadays. Also, the inputs were derived from already well doc-

umented and might no longer offer valuable trading signals or as (López de Prado, 2018) sug-

gests, traditional financial data have been so exploited that new alphas should be looked in 

alternative data. 

Finally, two additional chapters would have been added, if data leakage presence not occurred: 



 

 56 

• Machine Learning Interpretation with SHAP (Lundberg et al., 2018) as feature 

importances interpretation from decision trees algorithms cannot be considered 

consistent. 

• AutoML and Deep Learning. Models have been initially developed before data leakage 

was noticed. Therefore, it did not seem to be a priority to pursue development. 

Further research are suggested with the following five approaches. 

1. Features: Increasing them, as a limited amount of fundamental data were considered 

here. 

2. Learners: The field of AI/ML is currently one of the newest research areas, and it can 

be hard to keep pace with the constant flow of new learners developed. If the present 

topic should still be considered as a classification problem, one can consider more 

advanced deep learning models such as attention-based neural networks (H. Li, Shen, 

& Zhu, 2018; Youru Li, Zhu, Kong, Han, & Zhao, 2019; Vinayavekhin et al., 2018) or 

probabilistic deep learning (H. Wang & Yeung, 2016). Framing it as a stock ranking 

problem, LambdaRank or other ranking algorithms could be used (Burges, 2010; Song, 

Liu, & Yang, 2017; L. Wang & Rasheed, 2018). Finally, as trading strategies involve 

optimizing trading decisions, a deep-/reinforcement learning framework could be a 

natural framework (Sato, 2019). 

3. Asset classes: The present methodology could be easily extended to other asset classes 

as Kakushadze & Serur (2018) also define strategies for options, fixed income, indexes, 

volatility, foreign exchange, commodities, futures and others. If different class 

portfolios were to be designed, a machine learning asset allocation such as the 

Hierarchical Risk Parity allocation (HRP) (López de Prado, 2016) could be considered. 

4. Strategy framework: Compared to the proposed framework by (López de Prado, 

2018), this paper works with the monthly fixed-time horizon. The returns are also 

labelled according to their cross-section percentile. In that sense, positive returns could 

be labelled negative for the case of a bullish market and vice-versa. If dynamic 

thresholds were to be defined from a risk management realistic point of view, the triple-

barrier method (López de Prado, 2018) could have been used. Future researchers are 

also invited to explore different trading frequency, considering overlapping bets or 

long/short implementation. The strategy could also implement a layer of complexity 

such as stop-loss limits, market regime detection (Chakravorty & Awasthi, 2018; Cook 

& Smalter Hall, 2017; John M., 2016) or different allocation systems (Black & 



 

 57 

Litterman, 1992; López de Prado, 2016; Rotando & Thorp, 1992). Finally, the content 

of (Cesa-Bianchi & Lugosi, 2006) was recommended, however, not considered in this 

paper due to time constraints. 

5. Portfolio metrics: Due to time constraints, advanced backtests statistics (López de 

Prado, 2018) such as Probabilistic Sharpe Ratio and Deflated Sharpe Ratio, or a strategy 

risk review (López de Prado, 2018) have not been performed here. 

 

Finally, using R is also a consideration suggested here. While python is better suited for a 

production environment, the lack of flexibility and features from its ML packages at this time 

raised along the thesis might question its use for research purposes. For instance, Kuhn & 

Johnson (2019) rely on the Caret R package (Kuhn, 2008) that includes feature selection with 

genetic algorithms. 

  



 

 58 

References 

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … Zheng, X. (2015). 

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 

Retrieved from https://www.tensorflow.org/ 

Adams, J., Hayunga, D., Mansi, S., Reeb, D., & Verardi, V. (2019). Identifying and treating 

outliers in finance. Financial Management, 48(2), 345–384. 

https://doi.org/10.1111/fima.12269 

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A Next-generation 

Hyperparameter Optimization Framework. KDD 2019: Proceedings of the 25th ACM 

SIGKDD International Conference on Knowledge Discovery & Data Mining, 2623–

2631. https://doi.org/10.1145/3292500.3330701 

Altman, N. S. (1992). An Introduction to Kernel and Nearest-Neighbor Nonparametric 

Regression. American Statistician, 46(3), 175–185. 

https://doi.org/10.1080/00031305.1992.10475879 

An, B. J., Ang, A., Bali, T. G., & Cakici, N. (2014). The Joint Cross Section of Stocks and 

Options. Journal of Finance, 69(5), 2279–2337. https://doi.org/10.1111/jofi.12181 

Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2006). The Cross-Section of Volatility and 

Expected Returns. Journal of Finance, 61(1), 259–299. https://doi.org/10.1111/j.1540-

6261.2006.00836.x 

Ang, A., Hodrick, R. J., Xing, Y., & Zhang, X. (2009). High idiosyncratic volatility and low 

returns: International and further U.S. evidence. Journal of Financial Economics, 91(1), 

1–23. https://doi.org/10.1016/j.jfineco.2007.12.005 

Avellaneda, M., & Lee, J. H. (2010). Statistical arbitrage in the US equities market. 

Quantitative Finance, 10(7), 761–782. https://doi.org/10.1080/14697680903124632 

Baker, M., Bradley, B., & Wurgler, J. (2011). Benchmarks as limits to arbitrage: 

Understanding the low-volatility anomaly. Financial Analysts Journal, 67(1), 40–54. 

https://doi.org/10.2469/faj.v67.n1.4 

Bao, W., Yue, J., & Rao, Y. (2017). A deep learning framework for financial time series 

using stacked autoencoders and long-short term memory. PLOS ONE, 12(7), 1–24. 

https://doi.org/10.1371/journal.pone.0180944 

Benavoli, A., Corani, G., Demšar, J., & Zaffalon, M. (2017). Time for a change: a tutorial for 

comparing multiple classifiers through Bayesian analysis. The Journal of Machine 

Learning Research, 18(1998), 2653–2688. Retrieved from 



 

 59 

http://arxiv.org/abs/1606.04316 

Bengfort, B., Bilbro, R., Danielsen, N., Gray, L., McIntyre, K., Roman, P., … Krishna, G. 

(2018). Yellowbrick v0.9. https://doi.org/10.5281/ZENODO.1488364 

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for Hyper-Parameter 

Optimization. NIPS 2011 Proceedings of the 24th International Conference on Neural 

Information Processing Systems, 2546–2554. Retrieved from 

http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimizat 

Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. 

Journal of Machine Learning Research, 13, 281–305. Retrieved from 

http://jmlr.csail.mit.edu/papers/v13/bergstra12a.html 

Bergstra, J., Yamins, D. L. K., & Cox, D. D. (2013). Making a Science of Model Search: 

Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. 

ICML 2013: Proceedings of the 30th International Conference on International 

Conference on Machine Learning, 28, 115–123. Retrieved from 

http://proceedings.mlr.press/v28/bergstra13.html 

Bernard, V. L., & Thomas, J. K. (1989). Post-Earnings-Announcement Drift: Delayed Price 

Response or Risk Premium? Journal of Accounting Research, 27, 1. 

https://doi.org/10.2307/2491062 

Black, F. (1986). Noise. The Journal of Finance, 41(3), 528–543. 

https://doi.org/10.1111/j.1540-6261.1986.tb04513.x 

Black, F., & Litterman, R. (1992). Global Portfolio Optimization. Financial Analysts 

Journal, 48(5), 28–43. https://doi.org/10.2469/faj.v48.n5.28 

Blitz, D., Huij, J., & Martens, M. (2011). Residual Momentum. Journal of Empirical 

Finance, 18(3), 506–521. https://doi.org/10.1016/j.jempfin.2011.01.003 

Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple Technical Trading Rules and the 

Stochastic Properties of Stock Returns. The Journal of Finance, 47(5), 1731–1764. 

https://doi.org/10.1111/j.1540-6261.1992.tb04681.x 

Burges, C. J. C. (2010). From RankNet to LambdaRank to LambdaMART: An Overview. 

Retrieved from https://www.microsoft.com/en-us/research/publication/from-ranknet-to-

lambdarank-to-lambdamart-an-overview/ 

Cavalcante, R. C., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. 

(2016). Computational Intelligence and Financial Markets: A Survey and Future 

Directions. Expert Systems with Applications, 55, 194–211. 

https://doi.org/10.1016/j.eswa.2016.02.006 



 

 60 

Cerqueira, V., Torgo, L., & Mozetič, I. (2019). Evaluating time series forecasting models: An 

empirical study on performance estimation methods. CoRR, abs/1905.1. Retrieved from 

http://arxiv.org/abs/1905.11744 

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, Learning, and Games (1st ed.). 

Cambridge University Press. 

Chakravorty, G., & Awasthi, A. (2018). Deep Learning for Global Tactical Asset Allocation. 

SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3242432 

Chan, E. P. (2009). Quantitative Trading: How to Build Your Own Algorithmic Trading 

Business (1st ed.). John Wiley & Sons. 

Chan, E. P. (2017). Machine Trading: Deploying Computer Algorithms to Conquer the 

Markets (1st ed.). John Wiley & Sons. 

Chan, L. K. C., Jegadeesh, N., & Lakonishok, J. (1996). Momentum Strategies. Journal of 

Finance, 51(5), 1681–1713. https://doi.org/10.1111/j.1540-6261.1996.tb05222.x 

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. KDD 2016: 

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 

Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785 

Chollet, F., & Others. (2015). Keras. Retrieved from https://keras.io 

Cook, T., & Smalter Hall, A. (2017). Macroeconomic Indicator Forecasting with Deep 

Neural Networks. In The Federal Reserve Bank of Kansas City Research Working 

Papers. https://doi.org/10.18651/RWP2017-11 

Cortes, Corinna, & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 

273–297. https://doi.org/10.1007/BF00994018 

Daniel, G., Sornette, D., & Woehrmann, P. (2009). Look-Ahead Benchmark Bias in Portfolio 

Performance Evaluation. The Journal of Portfolio Management, 36(1), 121–130. 

https://doi.org/10.3905/JPM.2009.36.1.121 

Dask Development Team. (2016). Dask: Library for dynamic task scheduling. Retrieved 

from https://dask.org 

DeMiguel, V., Garlappi, L., Nogales, F. J., & Uppal, R. (2009). A Generalized Approach to 

Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. 

Management Science, 55(5), 798–812. https://doi.org/10.1287/mnsc.1080.0986 

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of 

Machine Learning Research, 7, 1–30. Retrieved from 

http://www.jmlr.org/papers/v7/demsar06a.html 

Donchian, R. D. (1960). High Finance in Copper. Financial Analysts Journal, 16(6), 133–



 

 61 

142. https://doi.org/10.2469/faj.v16.n6.133 

Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The 

Journal of Finance, 25(2), 383. https://doi.org/10.2307/2325486 

Ferri, F. J., Pudil, P., Hatef, M., & Kittler, J. (1994). Comparative study of techniques for 

large-scale feature selection. In Pattern Recognition in Practice IV (Vol. 16, pp. 403–

413). https://doi.org/10.1016/B978-0-444-81892-8.50040-7 

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter, F. (2015). 

Efficient and robust automated machine learning. In C. Cortes, N. D. Lawrence, D. D. 

Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information Processing 

Systems 28 (pp. 2962–2970). Retrieved from http://papers.nips.cc/paper/5872-efficient-

and-robust-automated-machine-learning.pdf 

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for 

financial market predictions. European Journal of Operational Research, 270(2), 654–

669. https://doi.org/10.1016/j.ejor.2017.11.054 

Foster, G. (1977). Quarterly accounting data: Time-series properties and predictive-ability 

results. The Accounting Review, 52(1), 1–21. https://doi.org/10.2307/2490556 

Foster, G., Olsen, C., & Shevlin, T. (1984). Earnings Releases, Anomalies, and the Behavior 

of Security Returns. Accounting Review, 59(4), 574. https://doi.org/10.2307/247321 

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The 

Annals of Statistics, 29(5), 1189–1232. Retrieved from 

http://www.jstor.org/stable/2699986 

Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the 

analysis of variance. Journal of the American Statistical Association, 32(200), 675–701. 

https://doi.org/10.2307/2279372 

Fu, X., Du, J., Guo, Y., Liu, M., Dong, T., & Duan, X. (2018). A Machine Learning 

Framework for Stock Selection. Retrieved from http://arxiv.org/abs/1806.01743 

Gama, J., Medas, P., & Rodrigues, P. (2004). Concept Drift in Decision Trees Learning from 

Data Streams. EUNITE 2004: Proceedings of the 4th European Symposium on 

Intelligent Technologies and Their Implementation on Smart Adaptive Systems, 218–

225. Retrieved from www.eunite.org 

Gibrat, R. (1978). L’analyse des données. Journal de La Société Statistique de Paris, 119(3), 

201–228. Retrieved from http://www.numdam.org/item?id=JSFS_1978__119_3_201_0 

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning (1st ed.). MIT Press. 

Goodwin, T. H. (1998). The Information Ratio. Financial Analysts Journal, 54(4), 34–43. 



 

 62 

https://doi.org/10.2469/faj.v54.n4.2196 

Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and Psychophysics (1st ed.). 

John Wiley & Sons. 

Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance in 

random forests. Statistics and Computing, 27(3), 659–678. 

https://doi.org/10.1007/s11222-016-9646-1 

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal 

of Machine Learning Research, 3, 1157–1182. 

https://doi.org/10.1162/153244303322753616 

Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (Eds.). (2006). Feature extraction (1st 

ed.). https://doi.org/10.1007/978-981-13-6098-5_3 

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene Selection for Cancer 

Classification using Support Vector Machines. Machine Learning, 46(1), 389–422. 

https://doi.org/10.1023/A:1012487302797 

Hand, D. J., & Yu, K. (2001). Idiot’s Bayes: Not So Stupid After All? International 

Statistical Review, 69(3), 385–398. https://doi.org/10.1111/j.1751-5823.2001.tb00465.x 

Harald, C. (1946). Mathematical Methods of Statistics (1st ed.). Princeton University Press. 

Harris, D. E. (2017). The Distribution of Returns. Journal of Mathematical Finance, 07(03), 

769–804. https://doi.org/10.4236/jmf.2017.73041 

Hastie, T., Robert, T., & Jerome, F. (2009). The Elements of Statistical Learning: Data 

Mining, Inference, and Prediction (2nd ed.). https://doi.org/10.1007/978-0-387-84858-7 

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). 

Improving neural networks by preventing co-adaptation of feature detectors. ArXiv E-

Prints, arXiv:1312.4569. Retrieved from https://arxiv.org/pdf/1207.0580.pdf 

Ho, T. K. (1995). Random decision forests. ICDAR 1995: Proceedings of the 3rd 

International Conference on Document Analysis and Recognition, 1, 278–282. 

https://doi.org/10.1109/ICDAR.1995.598994 

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 

9(8), 1735–1780. Retrieved from https://doi.org/10.1162/neco.1997.9.8.1735 

Hsu, P.-H., & Kuan, C.-M. (2005). Re-Examining the Profitability of Technical Analysis 

with White’s Reality Check and Hansen’s SPA Test. SSRN Electronic Journal. 

https://doi.org/10.2139/ssrn.685361 

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing in Science and 

Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55 



 

 63 

Hutter, F., Lars, K., & Joaquin, V. (Eds.). (2019). Automated Machine Learning: Methods, 

Systems, Challenges (1st ed.). https://doi.org/10.1007/978-3-030-05318-5 

Jansen, S. (2018). Hands-On Machine Learning for Algorithmic Trading: Design and 

implement investment strategies based on smart algorithms that learn from data using 

Python (1st ed.). Packt Publishing. 

Japkowicz, N., & Shah, M. (2011). Evaluating Learning Algorithms: A Classification 

Perspective (1st ed.). https://doi.org/10.1017/CBO9780511921803 

Joblib developers. (2011). Joblib. Retrieved from https://github.com/joblib/joblib 

John M., M. (2016). Applying Machine Learning to Identify Regimes For Asset Allocation 

and ALM. Retrieved from https://www.northinfo.com/documents/719.pdf 

Jones, E., Oliphant, T., Peterson, P., & Others, A. (2001). SciPy: Open Source Scientific 

Tools for Python. Retrieved from http://www.scipy.org/ 

Kakushadze, Z. (2016). 101 Formulaic Alphas. Wilmott Journal, 2016(84), 72–81. 

https://doi.org/10.1002/wilm.10525 

Kakushadze, Z., & Serur, J. A. (2018). 151 Trading Strategies (1st ed.). 

https://doi.org/10.1007/978-3-030-02792-6 

Kaufman, S., Rosset, S., Perlich, C., & Stitelman, O. (2012). Leakage in Data Mining: 

Formulation, Detection, and Avoidance. ACM Transactions on Knowledge Discovery 

from Data (TKDD), 6(4), 15. https://doi.org/10.1145/2020408.2020496 

Ke, G., Meng, Q., Wang, T., Chen, W., Ma, W., & Liu, T.-Y. (2017). LightGBM: A Highly 

Efficient Gradient Boosting Decision Tree. NIPS 2017: Proceedings of the 31st 

International Conference on Neural Information Processing Systems, 3149–3157. 

Retrieved from http://papers.nips.cc/paper/6907-a-highly-efficient-gradient-boosting-

decision-tree.pdf 

Kelly, M. G., Hand, D. J., & Adams, N. M. (1999). The Impact of Changing Populations on 

Classifier Performance. KDD 1999: Proceedings of the 5th ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, 367–371. 

https://doi.org/10.1145/312129.312285 

Kendall, M. G. (1938). A New Measure of Rank Correlation. Biometrika, 30(1/2), 81–93. 

https://doi.org/10.2307/2332226 

Kluyver, T., Ragan-kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., … 

Willing, C. (2016). Jupyter Notebooks: a publishing format for reproducible 

computational workflows. In F. Loizides & B. Schmidt (Eds.), ELPUB 2016: 

Proceedings of the 20th International Conference on Electronic Publishing (pp. 87–90). 



 

 64 

https://doi.org/10.3233/978-1-61499-649-1-87 

Kofman, P., & Sharpe, I. (2000). Imputation Methods for Incomplete Dependent Variables in 

Finance. In Research Paper Series 33. Retrieved from Quantitative Finance Research 

Centre, University of Technology, Sydney website: 

https://ideas.repec.org/p/uts/rpaper/33.html 

Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks, gradient-boosted trees, 

random forests: Statistical arbitrage on the S&P 500. European Journal of Operational 

Research, 259(2), 689–702. https://doi.org/10.1016/j.ejor.2016.10.031 

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of 

Statistical Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 

Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (1st ed.). 

https://doi.org/10.1007/978-1-4614-6849-3 

Kuhn, M., & Johnson, K. (2019). Feature Engineering and Selection: A Practical Approach 

for Predictive Models (1st ed.). CRC Press. 

Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. 

Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01 

Lee, T.-H. (2007). Loss Functions in Time Series Forecasting. University of California. 

Retrieved from http://www.faculty.ucr.edu/~taelee/paper/lossfunctions.pdf 

Li, H., Shen, Y., & Zhu, Y. (2018). Stock Price Prediction Using Attention-based Multi-Input 

LSTM. PLMR: Proceedings of The 10th Asian Conference on Machine Learning, 454–

469. Retrieved from http://proceedings.mlr.press/v95/li18c/li18c.pdf 

Li, Yaliang, Gao, J., Li, Q., & Fan, W. (2015). Ensemble Learning. In C. C. Aggarwal (Ed.), 

Data Classification: Algorithms and Applications (1st ed., pp. 483–503). CRC Press. 

Li, Youru, Zhu, Z., Kong, D., Han, H., & Zhao, Y. (2019). EA-LSTM: Evolutionary 

Attention-based LSTM for Time Series Prediction. Knowledge-Based Systems, 181, 

104785. https://doi.org/https://doi.org/10.1016/j.knosys.2019.05.028 

López de Prado, M. (2016). Building Diversified Portfolios that Outperform Out of Sample. 

The Journal of Portfolio Management, 42(4), 59–69. 

https://doi.org/10.3905/jpm.2016.42.4.059 

López de Prado, M. (2018). Advances in Financial Machine Learning (1st ed.). John Wiley 

& Sons. 

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., … Lee, S.-I. 

(2019). Explainable AI for Trees: From Local Explanations to Global Understanding. 

ArXiv E-Prints, arXiv:1905.04610. Retrieved from http://arxiv.org/abs/1905.04610 



 

 65 

Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2018). Consistent Individualized Feature 

Attribution for Tree Ensembles. ArXiv E-Prints, arXiv:1802.03888. Retrieved from 

http://arxiv.org/abs/1802.03888 

Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. 

NIPS 2017: Proceedings of the 31st International Conference on Neural Information 

Processing Systems, 4765–4774. Retrieved from http://papers.nips.cc/paper/7062-a-

unified-approach-to-interpreting-model-predictions.pdf 

Luo, Y., Alvarez, M., Wang, S., Jussa, J., Wang, A., & Rohal, G. (2014). Seven sins of 

quantitative investing. Retrieved from http://newyork.qwafafew.org/wp-

content/uploads/sites/4/2015/10/Luo_20150128.pdf 

McKinney, W. (2010). Data Structures for Statistical Computing in Python. SciPy 2010: 

Proceedings of the 9th Python in Science Conference, 51–56. Retrieved from 

https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf 

Meucci, A. (2010). Quant Nugget 4: Annualization and General Projection of Skewness, 

Kurtosis and All Summary Statistics. GARP Risk Professional - “The Quant 

Classroom,” 59–63. Retrieved from https://ssrn.com/abstract=1635484 

Moreno-Torres, J. G., Raeder, T., Alaiz-Rodríguez, R., Chawla, N. V., & Herrera, F. (2012). 

A Unifying View on Dataset Shift in Classification. Pattern Recognition, 45(1), 521–

530. https://doi.org/10.1016/J.PATCOG.2011.06.019 

Murphy, J. J. (1999). Technical analysis of the financial markets : a comprehensive guide to 

trading methods and applications (1st ed.). Prentice Hall Press. 

Nemenyi, P. (1962). Distribution-free multiple comparisons. Biometrics, 18(2), 263. 

Ng, A. Y. (2019). Machine Learning Yearning: Technical Strategy for AI Engineers, In the 

Era of Deep Learning (1st ed.). Retrieved from https://www.deeplearning.ai/machine-

learning-yearning/ 

Nielsen, D. (2016). Tree Boosting With XGBoost-Why Does XGBoost Win" Every" 

Machine Learning Competition? (Norwegian University of Science and Technology). 

https://doi.org/10.1111/j.1758-5899.2011.00096.x 

Olson, R. S., Bartley, N., Urbanowicz, R. J., & Moore, J. H. (2016). Evaluation of a Tree-

based Pipeline Optimization Tool for Automating Data Science. GECCO 2016: 

Proceedings of the Genetic and Evolutionary Computation Conference 2016, 485–492. 

https://doi.org/10.1145/2908812.2908918 

Pages, J. (2004). Analyse factorielle de données mixtes. Revue de Statistique Appliquée, 

52(4), 93–111. Retrieved from http://www.numdam.org/item/RSA_2004__52_4_93_0 



 

 66 

Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in 

the case of a correlated system of variables is such that it can be reasonably supposed to 

have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical 

Magazine and Journal of Science, 50(302), 157–175. 

https://doi.org/10.1080/14786440009463897 

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The 

London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 

559–572. https://doi.org/10.1080/14786440109462720 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … 

Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine 

Learning Research, 12(2/1/2011), 2825–2830. Retrieved from 

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html 

Pérez, F., & Granger, B. E. (2007). IPython: A System for Interactive Scientific Computing. 

Computing in Science and Engineering, 9(3), 21–29. 

https://doi.org/10.1109/MCSE.2007.53 

Piotroski, J. D. (2006). Value Investing: The Use of Historical Financial Statement 

Information to Separate Winners from Losers. Journal of Accounting Research, 38, 1. 

https://doi.org/10.2307/2672906 

Pumperla, M. (2016). Hyperas. Retrieved from https://github.com/maxpumperla/hyperas 

Quantopian Inc. (2015). Pyfolio. Retrieved from https://github.com/quantopian/pyfolio 

Quantopian Inc. (2017). Empyrical. Retrieved from https://github.com/quantopian/empyrical 

R Development Core Team (R Foundation for Statistical Computing). (2008). R: A Language 

and Environment for Statistical Computing. Retrieved from http://www.r-project.org 

Raschka, S. (2018). MLxtend: Providing machine learning and data science utilities and 

extensions to Python’s scientific computing stack. The Journal of Open Source 

Software, 3(24). https://doi.org/10.21105/joss.00638 

Rashmi, K. V., & Gilad-Bachrach, R. (2015). DART: Dropouts meet Multiple Additive 

Regression Trees. ArXiv E-Prints, arXiv:1505.01866. Retrieved from 

http://arxiv.org/abs/1505.01866 

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should i trust you?” Explaining the 

predictions of any classifier. KDD 2016: Proceedings of the 22nd ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, 1135–1144. 

https://doi.org/10.1145/2939672.2939778 

Robnik-Sikonja, M., & Kononenko, I. (2003). Theoretical and Empirical Analysis of ReliefF 



 

 67 

and RReliefF. Machine Learning, 53(1), 23–69. 

https://doi.org/10.1023/A:1025667309714 

Roderick, J. A. L., & Donald, B. R. (2019). Statistical Analysis with Missing Data (3rd ed.). 

John Wiley & Sons. 

Rosenberg, B., Reid, K., & Lanstein, R. (1985). Persuasive evidence of market inefficiency. 

The Journal of Portfolio Management, 11(3), 9–16. 

https://doi.org/10.3905/jpm.1985.409007 

Ross, B. C. (2014). Mutual Information between Discrete and Continuous Data Sets. PLOS 

ONE, 9(2), e87357. Retrieved from https://doi.org/10.1371/journal.pone.0087357 

Rotando, L. M., & Thorp, E. O. (1992). The Kelly Criterion and the Stock Market. The 

American Mathematical Monthly, 99(10), 922–931. 

https://doi.org/10.1080/00029890.1992.11995955 

Rule, A., Birmingham, A., Zuniga, C., Altintas, I., Huang, S.-C., Knight, R., … Rose, P. W. 

(2019). Ten simple rules for writing and sharing computational analyses in Jupyter 

Notebooks. PLOS Computational Biology, 15(7), e1007007. 

https://doi.org/10.1371/journal.pcbi.1007007 

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-

propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0 

Ryll, L., & Seidens, S. (2019). Evaluating the Performance of Machine Learning Algorithms 

in Financial Market Forecasting: A Comprehensive Survey. ArXiv E-Prints, 

arXiv:1906.07786. Retrieved from http://arxiv.org/abs/1906.07786 

Salzberg, S. L. (1997). On Comparing Classifiers: Pitfalls to Avoid and a Recommended 

Approach. Data Mining and Knowledge Discovery, 1(3), 317–328. 

https://doi.org/10.1023/A:1009752403260 

Sato, Y. (2019). Model-Free Reinforcement Learning for Financial Portfolios: A Brief 

Survey. ArXiv E-Prints, arXiv:1904.04973. Retrieved from 

http://arxiv.org/abs/1904.04973 

Schreiber, J. (2018). Pomegranate: fast and flexible probabilistic modeling in python. Journal 

of Machine Learning Research, 18(164), 1–6. Retrieved from 

http://arxiv.org/abs/1711.00137 

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and Statistical Modeling with 

Python. SciPy 2010: Proceedings of the 9th Python in Science Conference, (Scipy), 61. 

Retrieved from http://statsmodels.sourceforge.net/ 

Serneels, S., De Nolf, E., & Van Espen, P. J. (2006). Spatial sign preprocessing: A simple 



 

 68 

way to impart moderate robustness to multivariate estimators. Journal of Chemical 

Information and Modeling, 46(3), 1402–1409. https://doi.org/10.1021/ci050498u 

Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium Under 

Conditions of Risk. The Journal of Finance, 19(3), 425–442. 

https://doi.org/10.1111/j.1540-6261.1964.tb02865.x 

Sharpe, W. F. (1966). Mutual Fund Performance. The Journal of Business, 39(1), 119–138. 

Retrieved from https://www.jstor.org/stable/2351741 

Sirotyuk, E. (2018). State of Machine Learning Applications in Investment Management. In 

T. Guida (Ed.), Big Data and Machine Learning in Quantitative Investment (1st ed., pp. 

33–49). https://doi.org/10.1002/9781119522225.ch3 

Song, Q., Liu, A., & Yang, S. Y. (2017). Stock portfolio selection using learning-to-rank 

algorithms with news sentiment. Neurocomputing, 264, 20–28. 

https://doi.org/10.1016/j.neucom.2017.02.097 

Sortino, F. A., & Price, L. N. (1994). Performance Measurement in a Downside Risk 

Framework. The Journal of Investing, 3(3), 59–64. https://doi.org/10.3905/joi.3.3.59 

Spearman, C. (1904). The proof and measurement of association between two things. 

American Journal of Psychology, 15(1), 72–101. https://doi.org/10.2307/1412159 

Stonebraker, M., & Rowe, L. A. (1986). The design of POSTGRES. SIGMOD 1986: 

Proceedings of the 1986 ACM SIGMOD International Conference on Management of 

Data, 340–355. https://doi.org/10.1145/16894.16888 

TeamHG-Memex. (2016). ELI5. Retrieved from 

https://eli5.readthedocs.io/en/latest/overview.html 

Terpilowski, M. (2019). scikit-posthocs: Pairwise multiple comparison tests in Python. The 

Journal of Open Source Software, 4(36), 1169. https://doi.org/10.21105/joss.01169 

Theil, H. (1970). On the Estimation of Relationships Involving Qualitative Variables. 

American Journal of Sociology, 76(1), 103–154. https://doi.org/10.1086/224909 

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the 

Royal Statistical Society: Series B (Methodological), 58(1), 267–288. 

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x 

Urbanowicz, R. J., Olson, R. S., Schmitt, P., Meeker, M., & Moore, J. H. (2018). 

Benchmarking Relief-Based Feature Selection Methods for Bioinformatics Data Mining. 

Journal of Biomedical Informatics, 85(3), 168–188. 

https://doi.org/10.1016/j.jbi.2018.07.015 

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A Structure 



 

 69 

for Efficient Numerical Computation. Computing in Science and Engineering, 13(2), 

22–30. https://doi.org/10.1109/MCSE.2011.37 

Van Rossum, G., & De Boer, J. (1991). Interactively Testing Remote Servers using the 

Python Programming Language. CWI Quarterly, 4(4), 283–304. Retrieved from 

https://ir.cwi.nl/pub/18204 

Vinayavekhin, P., Chaudhury, S., Munawar, A., Agravante, J., De Magistris, G., Kimura, D., 

& Tachibana, R. (2018). Focusing on What is Relevant: Time-Series Learning and 

Understanding using Attention. ICPR 2018: Proceedings of the 24th International 

Conference on Pattern Recognition, 2624–2629. Retrieved from 

http://static.aixpaper.com/pdf/e/62/1806.08523.pdf 

W. Lo, A. (2017). Adaptive Markets: Financial Evolution at the Speed of Thought (1st ed.). 

Princeton University Press. 

Wang, H., & Yeung, D.-Y. (2016). Towards Bayesian Deep Learning: A Survey. ArXiv E-

Prints, arXiv:1604.01662. Retrieved from http://arxiv.org/abs/1604.01662 

Wang, L., & Rasheed, K. (2018). Stock Ranking with Market Microstructure, Technical 

Indicator and News. ICAI 2018: Proceedings of the 20th International Conference on 

Artificial Intelligence, 322–328. Retrieved from 

https://csce.ucmss.com/cr/books/2018/LFS/CSREA2018/ICA3687.pdf 

Waskom, M., Botvinnik, O., O’Kane, D., Hobson, P., Ostblom, J., Lukauskas, S., … Qalieh, 

A. (2018). mwaskom/seaborn: v0.9.0 (July 2018). 

https://doi.org/10.5281/ZENODO.1313201 

Wiecki, T., Campbell, A., Lent, J., & Stauth, J. (2016). All That Glitters Is Not Gold: 

Comparing Backtest and Out-of-Sample Performance on a Large Cohort of Trading 

Algorithms. The Journal of Investing, 25(3), 69–80. 

https://doi.org/10.3905/joi.2016.25.3.069 

Wilcoxon, F. (1945). Individual Comparisons by Ranking Methods. Biometrics, 1(6), 80. 

https://doi.org/10.2307/3001968 

Yeo, I.-K., & Johnson, R. A. (2000). A new family of power transformations to improve 

normality or symmetry. Biometrika, 87(4), 954–959. 

https://doi.org/10.1093/biomet/87.4.954 

Young, T. W. (1991). Calmar ratio: A smoother tool. Futures, 20(1), 40. 

Žliobaitė, I. (2010). Learning under Concept Drift: an Overview. ArXiv E-Prints, 

arXiv:1010.4784. Retrieved from http://arxiv.org/abs/1010.4784 

Zychlinski, S. (2018). Dython. Retrieved from http://shakedzy.xyz/dython/ 



 

 70 

Appendix A:  Python and Dataset Files 

Due to Bloomberg licensing, datasets are only available upon request, while the Python codes 

and Jupyter Notebooks can be found in the GitHub repository: https://github.com/lschneidpro  

 

Besides, the following links are provided for Python development on the ETH clusters: 

Python on the ETH clusters: 

https://scicomp.ethz.ch/wiki/Python 

 

Configuring submission command to the batch systems of ETH clusters: 

https://scicomp.ethz.ch/lsf_submission_line_advisor/ 

 

Managing Python environmments with Miniconda on the ETH clusters: 

https://www.tomstesco.com/euler-hpc-cluster/ 

http://kevinkle.in/jekyll/update/2019/02/28/leonhard.html 

 

Jupyter Notebooks on ETH clusters: 

https://gitlab.ethz.ch/sfux/Jupyter-on-Euler-or-Leonhard-Open  

  



 

 71 

Appendix B:  Downloading Bloomberg data with Python 

The Bloomberg Application Programming Interface (API), namely BLPAPI23, does not pro-

vide a native interface in Python, but in C++. Therefore, for a successful installation of the 

Python module, the following would be needed: 

• A local installation of the Bloomberg C++ SDK; 

• A C/C++ compiler to build the binary part of the Python module; 

• Configuring the system environment variables to locate the C++ SDK. 

More information can be found on this GitHub repository24 or in the WAPI section of a Bloom-

berg Terminal. For easier processing of the data, it might also be wise to install another module. 

Indeed, the API responses are in JSON (JavaScript Object Notation). Different Python wrap-

pers for BLPAPI are available. Tia25 is used here in order to directly have the requested data in 

Pandas object. Depending on the need, the request to the API can include parameters for type 

of price adjustments26. Data can be now requested while a Bloomberg terminal is running in 

the background with the help of their provided functions. They are similar to Bloomberg’s 

Excel functions are summarised in the table below. 

Table B.1 Bloomberg Formulae. 

Syntax Description 

BDP('security','field') Bloomberg Data Point (BDP) returns data to a 

single cell. This formula contains ONLY one 

security and ONLY one field 
  

BDH('security','field(s)', 

'start date', 'end date', 

'opt arg 1', 'opt arg 2') 

Bloomberg Data History (BDH) returns the histori-

cal data for selected securities and timeframe. 

BDS('security', 'field', 

'opt arg 1', 'opt arg 2') 

Bloomberg Data Set (BDS) returns multi-cell 

descriptive data. 

 

 
23 Bloomberg API: https://www.bloomberg.com/professional/support/api-library/ 
24 Bloomberg Python API: https://github.com/msitt/blpapi-python 
25 Tia: https://github.com/bpsmith/tia 
26 How to get adjusted stock prices from BLPAPI: https://lichgo.github.io/2015/11/14/how-to-get-adjusted-
stock-price-from-bloomberg-api.html  



 

 72 

To complete this list, Bloomberg recently introduced a new syntax, Bloomberg Query Lan-

guage27 (BQL) with more advanced functionalities. In addition to retrieving both current and 

historical data, as BDH and BDP, it is capable of performing complex tasks before retrieval 

(screening, interval calculations, time series calculations and supports the declaration of cus-

tom fields). At the time of writing, BQL is only available through Excel and have been only 

used to retrieve Point-In-Time (PIT) fundamental data.  

To identify a security, Bloomberg uses its own internal Security Identifier (SID) called Ticker, 

but other identifier types can also be passed to the functions, such as CUSIP or ISIN. Few 

examples to demonstrate how to request Bloomberg’s data are provided below: 

 

Retrieving the constituents of the Russel 1000 Index on the 31st January 2000: 

 

Retrieving the daily closing prices of the Apple stock from the 31st January 2000 to today: 

 

Retrieving the PIT Price/Book ratio of the Apple stock for a range of date with BQL 

 

  

 
27 BQL: http://fintools.com/BQL/Introduction_to_BQL_for_Excel%20080718_f%20jb.pdf  

1. from tia.bbg import LocalTerminal     
2.    
3. resp = LocalTerminal.get_reference_data(sids=['RIY Index'],     
4.                                         flds=['INDX_MWEIGHT_HIST'],   
5.                                         END_DATE_OVERRIDE='2000/01/31')     
6. res = resp.as_frame()   

1. from tia.bbg import LocalTerminal   
2.    
3. resp = LocalTerminal.get_historical(sids=['AAPL US Equity'],   
4.                                     flds=['PX LAST'],   
5.                                     start='2000/01/31')   
6. res = resp.as_frame()   

1. =BQL("AAPL US Equity"; "PX_TO_BOOK_RATIO"; "AS_OF_DATE=RANGE(1990-01-
01,1995-01-31)")   



 

 73 

Appendix C:  List of Bloomberg Fields downloaded 

Table C.1 Bloomberg Fields. 

Field Description 

INDX_MWEIGHT_HIST The list of all the equity members of the index. His-

torical members can be retrieved by utilising this 

field in conjunction with the date override field End 

Date Override. 

NAME The name of the company 

EQY_INIT_PO_TYP Initial Public Offer Type. The type of shares offered 

are common, class A, class B 

EQY_INIT_PO_DT Initial Public Offer Date, the date the company goes 

public. 

LAST_UPDATE_DT Date of Last Update. The date is only available if a 

trade has occurred in the past six weeks. If the most 

recent trade occurred before this, blank would be re-

turned. 

LAST_UPDATE_DATE_EOD End of day value for Date of Last Update 

MARKET_STATUS Trading status of an equity. Some possible values 

are: Active, Delisted, Acquired, Unlisted, Sus-

pended, Halted, Private Company, Expired or Post-

poned 

ID_ISIN The International Securities Identification Number 

(ISIN) consists of a two-letter country code, fol-

lowed by the nine-character alphanumerical national 

security identifier, and a check digit. 

ID_CUSIP Security identification number for the U.S. and Can-

ada. The Committee on Uniform Security Identifica-

tion Procedures (CUSIP) number consists of nine al-

phanumeric characters. The first six characters iden-

tify the issuer, the following two identify the issue, 

and the final character is a check digit. 

FUNDAMENTALS_TICKER The ticker to access fundamental equity data for a 

company 



 

 74 

BICS_LEVEL_1_SEC-

TOR_NAME 

The Bloomberg Industry Classification System 

(BICS) level 1 name 

BICS_LEVEL_2_INDUS-

TRY_GROUP_NAME 

The Bloomberg Industry Classification System 

(BICS) level 2 name 

BICS_LEVEL_3_INDUS-

TRY_NAME 

The Bloomberg Industry Classification System 

(BICS) level 3 name 

BICS_LEVEL_4_SUB_IN-

DUSTRY_NAME 

The Bloomberg Industry Classification System 

(BICS) level 4 name 

BICS_LEVEL_5_SEG-

MENT_NAME 

The Bloomberg Industry Classification System 

(BICS) level 5 name 

PX OPEN Price at which the security first traded on trading day 

PX HIGH Highest price the security reached during the trading 

day 

PX LOW Lowest price the security reached during the trading 

day 

PX LAST Last price for the security on trading day 

PX VOLUME Total number of shares traded on a security on the 

trading day 

EQY_WEIGHTED_AVG_PX Volume Weighted Average Price: Trading bench-

mark calculated by dividing the total value traded 

(sum of price times trade size) by the total volume 

(sum of trade sizes), taking into account every quali-

fying transaction. 

CUR_MKT_CAP Total current market value of all of a company's out-

standing shares stated in the pricing currency. 

HIST_CALL_IMP_VOL At the money call implied volatility of the 1st listed 

expiry that is at least 20 business days out from to-

day, calculated from a weighted average of the vola-

tilities of the closest out-of-the-money call option. 

CALL_IMP_VOL_10D Ten days at the money call implied volatility based 

on the Listed Implied Volatility Engine (LIVE) cal-

culator. 



 

 75 

CALL_IMP_VOL_30D Thirty days at the money call implied volatility 

based on the Listed Implied Volatility Engine 

(LIVE) calculator. 

CALL_IMP_VOL_60D Sixty days at the money call implied volatility based 

on the Listed Implied Volatility Engine (LIVE) cal-

culator. 

3MO_CALL_IMP_VOL Three months at the money call implied volatility 

based on the Listed Implied Volatility Engine 

(LIVE) calculator. 

6MO_CALL_IMP_VOL Six months at the money call implied volatility 

based on the Listed Implied Volatility Engine 

(LIVE) calculator. 

12MO_CALL_IMP_VOL Twelve months at the money call implied volatility 

based on the Listed Implied Volatility Engine 

(LIVE) calculator. 

IS_DIL_EPS_BEF_XO Diluted EPS Before Extraordinary Items: It excludes 

the effects of discontinued operations, accounting 

standard changes, and natural disasters. Uses 

weighted average shares figured as if all of the com-

pany's potentially dilutive securities had been 

changed into shares of common stock. 

PX_TO_BOOK_RATIO Ratio of the stock price to the book value per share. 

  



 

 76 

Appendix D:  Dataset Cleaning: a Detailled Description 

High-data quality is critical in a robust strategy development process and obtaining it could be 

the most time-consuming step. This survey indicates that collecting and cleaning data can be 

accounted for respectively 19% and 60% of data-scientists work28. 

Downloading and Cleaning Historical Index Members 

1. End-of-month index members are retrieved from 31st January 1995 (earliest 

availability on Bloomberg) and set in a binary matrix indicating whether the stock is a 

constituent of the index  

2. Due to the override date function of Bloomberg, SIDs appears how they were for the 

given dates, i.e. PIT. As Bloomberg standardised equity data convention29 over time, 

some old SIDs appear to be duplicate, referencing the same underlying security. For 

instance, AAPL US and APPL UW refer both to Apple’s stocks but are distinct in our 

initial binary matrix. All SIDs are renamed with US Equity ending, and Booleans data 

from duplicate SIDs are merged such that continuous historical membership of stocks 

is preserved. 

3. Few SIDs refer to different class of shares30 of the same company. Depending on the 

company, their prices can be highly correlated as they are exposed to the same 

underlying factors. The aim of this master thesis is to select companies shares in a 

cross-sectional manner. For this reason, the most common share classes, referred by 

the field FUNDAMENTAL_TICKER are kept. 

4. Fundamental data is not always available on Bloomberg, especially for older SIDs. As 

earlier fundamental data might not always be available, Bloomberg tends to refer 

theses data to the company that acquired the selected company if an acquisition 

happened. These cases are disregarded with the help of the field 

FUNDAMENTAL_TICKER. 

 

 
28 Forbes: https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-en-
joyable-data-science-task-survey-says/#4a599ddf6f63 
29 StackExchange: https://quant.stackexchange.com/questions/17157/difference-between-the-two-bloomberg-
codes 
30 Investopedia: https://www.investopedia.com/terms/c/class.asp 



 

 77 

Figure D.1 illustrates the effect of the cleaning process. For each month, maximum 1.5 % of 

the original SIDs are removed, and 2993 final SIDs are numbered across the selected 

timeframe. 

 

Downloading and Cleaning Equity Data 

Equity data can be finally downloaded from the cleaned SIDs as follows: 

1. Fundamental and Market data are downloaded from Bloomberg. Stock prices are 

adjusted for dividends, corporate actions and stock splits. 

2. Monthly Fama-French 3-/5-Factors are downloaded from Kenneth R. French’s 

website31 through the pandas-datareader library32.  

3. As trading days do not follow the business calendar of pandas due to American holidays 

and additional market closing days33, non-trading days are removed with the NYSE 

stock exchange calendar from the library pandas-market-calendars34. 

 
31 Kennet R. French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html  
32 Pandas datareader: https://pandas-datareader.readthedocs.io 
33 CNN: https://www.cnn.com/2018/12/01/business/markets-closed-george-h-w-bush/index.html  
34 Pandas market calendar: https://pandas-market-calendars.readthedocs.io/en/latest/index.html 

Figure D.1 Visualizations of the absolute and relative differences of SIDs over the years after SIDs cleaning. 



 

 78 

4. If data is missing between earlier and future non-missing data, missing values are filled 

forward. 

5. Fama-French factors and implied volatilities are converted from percentage to decimal 

to remain consistent with computed returns. 

6. Rows full of missing values are dropped. 

7. All Pandas objects are converted to type float32 and finally exported as HDF535for 

storage efficiency purposes. 

 

The missing data after cleaning are shown in Figure D.2 and spot the lack of availability of 

implied volatility before 2005.  

  

 
35 Pytables: https://www.pytables.org/ 

Figure D.2 Visualization of missing data paters over years. 



 

 79 

Appendix E:  List of Features 

The features are summarised in Table E.1. The computation of each of them and a description 

of related strategies can be found in Appendix F. 

 



 

 80 

Table E.1 List of Feature. 

Index Variable Name Description Type Strategy 

1 R_1MO Monthly return 
Quanti-

tative 
Price-Momentum 

2 R_Cumulative_3MO 

Cumulative return with a 1-

month skip period and a 3-

month formation period 

Quanti-

tative 
Price-Momentum 

3 R_Mean_3MO 

Mean monthly return com-

puted over a 3-month for-

mation period 

Quanti-

tative 
Price-Momentum 

4 
R_Risk_Ad-

justed_3MO 

Risk-adjusted mean monthly 

return over a 3-month for-

mation period 

Quanti-

tative 
Price-Momentum 

5 R_Cumulative_6MO 

Cumulative return with a 1-

month skip period and a 6-

month formation period 

Quanti-

tative 
Price-Momentum 

6 R_Mean_6MO 

Mean monthly return com-

puted over a 12-month for-

mation period 

Quanti-

tative 
Price-Momentum 

7 
R_Risk_Ad-

justed_6MO 

Risk-adjusted mean monthly 

return over a 6-month for-

mation period 

Quanti-

tative 
Price-Momentum 

8 R_Cumulative_12MO 

Cumulative return with a 1-

month skip period and a 12-

month formation period 

Quanti-

tative 
Price-Momentum 

9 R_Mean_12MO 

Mean monthly return com-

puted over a 12-month for-

mation period 

Quanti-

tative 
Price-Momentum 

10 
R_Risk_Ad-

justed_12MO 

Risk-adjusted mean monthly 

return over a 12-month for-

mation period 

Quanti-

tative 
Price-Momentum 

11 
Standardized_Un-

expected_Earnings 

Standardized unexpected 

earnings 

Quanti-

tative 
Earnings-Momentum 



 

 81 

12 Month_EPS 
Labels for month EPS an-

nouncement 

Qualita-

tive 
Earnings-Momentum 

13 BP_Ratio Book-to-Price (B/P) ratio 
Quanti-

tative 
Value 

14 VOL_21D 
Daily volatility over a 21-day 

observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

15 VOL_126D 
Daily volatility over a 126-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

16 VOL_252D 
Daily volatility over a 252-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

17 VOL_M_21D 
Monthly volatility over a  21-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

18 VOL_M_126D 
Monthly volatility over a 126-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

19 VOL_M_252D 
Monthly volatility over a 252-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

20 VAR_21D 
Daily variance over a 21-day 

observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

21 VAR_126D 
Daily variance over a 126-day 

observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

22 VAR_252D 
Daily variance over a 252-day 

observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

23 VAR_M_21D 
Monthly variance over a 21-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

24 VAR_M_126D 
Monthly variance over a 126-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

25 VAR_M_252D 
Monthly variance over a 252-

day observation period 

Quanti-

tative 

Low Volatility 

Anomaly 

26 CVOL_Diff_10D 

First-difference of call im-

plied volatilities for a maturity 

of 10 days 

Quanti-

tative 
Implied Volatility 



 

 82 

27 CVOL_Diff_30D 

First-difference of call im-

plied volatilities for a maturity 

of 30 days 

Quanti-

tative 
Implied Volatility 

28 CVOL_Diff_60D 

First-difference of call im-

plied volatilities for a maturity 

of 60 days 

Quanti-

tative 
Implied Volatility 

29 CVOL_Diff_6MO 

First-difference of call im-

plied volatilities for a maturity 

of 6 months 

Quanti-

tative 
Implied Volatility 

30 CVOL_Pct_10D 

Percent change of call implied 

volatilities for a maturity of 

10 days 

Quanti-

tative 
Implied Volatility 

31 CVOL_Pct_30D 

Percent change of call implied 

volatilities for a maturity of 

30 days 

Quanti-

tative 
Implied Volatility 

32 CVOL_Pct_60D 

Percent change of call implied 

volatilities for a maturity of 

60 days 

Quanti-

tative 
Implied Volatility 

33 CVOL_Pct_6MO 

Percent change of call implied 

volatilities for a maturity of 6 

months 

Quanti-

tative 
Implied Volatility 

34 CVOL_Spread_10D 

Realised-implied volatility 

spread for a maturity of 10 

days 

Quanti-

tative 
Implied Volatility 

35 CVOL_Spread_30D 

Realised-implied volatility 

spread for a maturity of 30 

days 

Quanti-

tative 
Implied Volatility 

36 CVOL_Spread_60D 

Realised-implied volatility 

spread for a maturity of 60 

days 

Quanti-

tative 
Implied Volatility 

37 CVOL_Spread_6MO 

Realised-implied volatility 

spread for a maturity of 6 

months 

Quanti-

tative 
Implied Volatility 



 

 83 

38 CVOL_Cross_10D 
Cross-sectional innovation for 

a maturity of 10 days 

Quanti-

tative 
Implied Volatility 

39 CVOL_Cross_30D 
Cross-sectional innovation for 

a maturity of 30 days 

Quanti-

tative 
Implied Volatility 

40 CVOL_Cross_60D 
Cross-sectional innovation for 

a maturity of 60 days 

Quanti-

tative 
Implied Volatility 

41 CVOL_Cross_6MO 
Cross-sectional innovation for 

a maturity of 6 months 

Quanti-

tative 
Implied Volatility 

42 
Residual_Momen-

tum_FF3 

Risk-adjusted residual returns 

for 3 Fama-French Factors 

Quanti-

tative 
Residual Momentum 

43 
Residual_Momen-

tum_FF5 

Risk-adjusted residual returns 

for 5 Fama-French Factors 

Quanti-

tative 
Residual Momentum 

44 
De-

meaned_10D_R1000 

10-day demeaned returns 

from the Russell 100 Index 

Quanti-

tative 

Mean-Reversion-Sin-

gle cluster 

45 
De-

meaned_10D_SP500 

10-day demeaned returns 

from the S&P500 

Quanti-

tative 

Mean-Reversion-Sin-

gle cluster 

46 
De-

meaned_21D_R1000 

21-day demeaned returns 

from the Russell 100 Index 

Quanti-

tative 

Mean-Reversion-Sin-

gle cluster 

47 
De-

meaned_21D_SP500 

21-day demeaned returns 

from the S&P500 

Quanti-

tative 

Mean-Reversion-Sin-

gle cluster 

48 
De-

meaned_10D_BICS1 

10-day demeaned returns 

from BICS level 1 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

49 
De-

meaned_10D_BICS2 

10-day demeaned returns 

from BICS level 2 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

50 
De-

meaned_10D_BICS3 

10-day demeaned returns 

from BICS level 3 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

51 
De-

meaned_10D_BICS4 

10-day demeaned returns 

from BICS level 4 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

52 
De-

meaned_10D_BICS5 

10-day demeaned returns 

from BICS level 5 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

53 
De-

meaned_21D_BICS1 

21-day demeaned returns 

from BICS level 1 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 



 

 84 

54 
De-

meaned_21D_BICS2 

21-day demeaned returns 

from BICS level 2 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

55 
De-

meaned_21D_BICS3 

21-day demeaned returns 

from BICS level 3 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

56 
De-

meaned_21D_BICS4 

21-day demeaned returns 

from BICS level 4 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

57 
De-

meaned_121D_BICS5 

21-day demeaned returns 

from BICS level 5 

Quanti-

tative 

Mean-Reversion-

Multiple Clusters 

58 Signal_SMA_30D Signals for 30-day SMA 
Qualita-

tive 

Single Moving Aver-

age 

59 Signal_SMA_50D Signals for 50-day SMA 
Qualita-

tive 

Single Moving Aver-

age 

60 Signal_SMA_100D Signals for 100-day SMA 
Qualita-

tive 

Single Moving Aver-

age 

61 Signal_SMA_200D Signals for 200-day SMA 
Qualita-

tive 

Single Moving Aver-

age 

62 Signal_EMA_30D Signals for 30-day EMA 
Qualita-

tive 

Single Moving Aver-

age 

63 Signal_EMA_50D Signals for 50-day EMA 
Qualita-

tive 

Single Moving Aver-

age 

64 Signal_EMA_100D Signals for 100-day EMA 
Qualita-

tive 

Single Moving Aver-

age 

65 Signal_EMA_200D Signals for 200-day EMA 
Qualita-

tive 

Single Moving Aver-

age 

66 Signal_2MA_10_30D Signals for 10/30 day SMAs 
Qualita-

tive 

Two Moving Aver-

ages 

67 Signal_2MA_10_50D Signals for 10/50 day SMAs 
Qualita-

tive 

Two Moving Aver-

ages 

68 Signal_2MA_30_50D Signals for 30/50 day SMAs 
Qualita-

tive 

Two Moving Aver-

ages 

69 
Sig-

nal_2MA_30_100D 
Signals for 30/100 day SMAs 

Qualita-

tive 

Two Moving Aver-

ages 



 

 85 

70 
Sig-

nal_2MA_30_200D 
Signals for 30/200 day SMAs 

Qualita-

tive 

Two Moving Aver-

ages 

71 
Sig-

nal_2MA_50_100D 
Signals for 50/100 day SMAs 

Qualita-

tive 

Two Moving Aver-

ages 

72 
Sig-

nal_2MA_50_200D 
Signals for 50/200 day SMAs 

Qualita-

tive 

Two Moving Aver-

ages 

73 
Sig-

nal_2MA_100_200D 

Signals for 100/200 day 

SMAs 

Qualita-

tive 

Two Moving Aver-

ages 

74 
Sig-

nal_3MA_5_10_20D 
Signals for 5/10/20 day SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

75 
Sig-

nal_3MA_5_20_60D 
Signals for 5/20/60 day SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

76 
Sig-

nal_3MA_10_30_50D 

Signals for 10/30/50 day 

SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

77 

Sig-

nal_3MA_30_60_120

D 

Signals for 30/60/120 day 

SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

78 

Sig-

nal_3MA_30_120_20

0D 

Signals for 30/120/200 day 

SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

79 

Sig-

nal_3MA_60_90_120

D 

Signals for 60/90/120 day 

SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

80 

Sig-

nal_3MA_60_120_20

0D 

Signals for 60/120/200 day 

SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

81 

Sig-

nal_3MA_90_120_20

0D 

Signals for 90/120/200 day 

SMAs 

Qualita-

tive 

Three Moving Aver-

ages 

82 

Signal_Sup-

port_Re-

sistance_10D 

Signals for 10-day Support 

Resistance Indicator 

Qualita-

tive 

Support and Re-

sistance 



 

 86 

83 

Signal_Sup-

port_Re-

sistance_20D 

Signals for 20-day Support 

Resistance Indicator 

Qualita-

tive 

Support and Re-

sistance 

84 

Signal_Sup-

port_Re-

sistance_30D 

Signals for 30-day Support 

Resistance Indicator 

Qualita-

tive 

Support and Re-

sistance 

85 

Signal_Sup-

port_Re-

sistance_60D 

Signals for 60-day Support 

Resistance Indicator 

Qualita-

tive 

Support and Re-

sistance 

86 

Signal_Sup-

port_Re-

sistance_90D 

Signals for 90-day Support 

Resistance Indicator 

Qualita-

tive 

Support and Re-

sistance 

87 
Signal_Chan-

nel_10D 

Signals for 10-day Channel 

Indicator 

Qualita-

tive 
Channel 

88 
Signal_Chan-

nel_20D 

Signals for 20-day Channel 

Indicator 

Qualita-

tive 
Channel 

89 
Signal_Chan-

nel_30D 

Signals for 30-day Channel 

Indicator 

Qualita-

tive 
Channel 

90 
Signal_Chan-

nel_60D 

Signals for 60-day Channel 

Indicator 

Qualita-

tive 
Channel 

91 
Signal_Chan-

nel_90D 

Signals for 90-day Channel 

Indicator 

Qualita-

tive 
Channel 

92 KNN_Prediction 
Forecasts of monthly returns 

with k-NN 

Quanti-

tative 

Machine Learning-

Single-Stock KNN 



 

 87 

Appendix F:  Equity Strategies Computation 

The following strategies were derived from the Equity section of (Kakushadze & Serur, 2018). 

For each strategy, an overview and a few variants are proposed based on academic papers to 

expand the predictors base. The mathematical notation of the authors is used here. 

 

Table F.1 List of Equity Strategies. 

Index Strategy Variants computed 

1 Price-Momentum 10 

2 Earnings-Momentum 2 

3 Value 1 

4 Low-Volatility Anomaly 12 

5 Implied Volatility 16 

6 Multifactor Portfolio 0 

7 Residual Momentum 2 

8 Pairs Trading 0 

9 
Mean-Reversion-Single Cluster 

Mean-Reversion-Multiple Clusters 

4 

10 

10 Mean-Reversion-Weighted Regression 0 

11 Single Moving Average 8 

12 Two Moving Average 8 

13 Three Moving averages 8 

14 Support and Resistance 4 

15 Channel 4 

16 Event-Driven-M&A 0 

17 Machine-Learning-Single-Stock KNN 1 

18 Statistical Arbitrage-Optimization 0 

19 Market-Timing 0 

20 Alpha Combos 0 

 

  



 

 88 

Strategy 1: Price-Momentum 

The momentum describes the inertia effect in stock returns, where past performing stocks 

would continue to perform well and vice-versa. The rationale for such an effect points to be-

havioural biases behaviour (initial underreaction and delayed overreaction over information 

dissemination), persistent supply, demand imbalances, a positive feedback loop between risk 

assets and the economy, or market microstructure (Jansen, 2018). The strategy then amounts 

to buying the best past performer stocks and selling the worst past performers. The most recent 

month is usually skipped due to a mean-reversion effect empirically observed in monthly-re-

turns (Kakushadze & Serur, 2018). Let  denote time measured in units of 1 month, with  

corresponding to the most recent time;  is the time series of adjusted closing prices for 

stock ; is the monthly return: 

 

 is the cumulative return computed over the month formation period (usually ) 

skipping the most recent month skip period (usually ): 

 

is the mean monthly return computed over the formation period: 

 

is the monthly volatility calculated over the formation period: 

 

And  is the risk-adjusted mean monthly return over the formation period: 

 

The predictors are subsequently computed for,   as shown in Table F-2: 

  

t t = 0

Pi t( )
i Ri(t)

Ri(t) =
Pi(t)
Pi(t +1)

−1

Ri
cum T - T = 12

S- S = 1

Ri
cum =

Pi(S)
Pi(S +T )

−1

Ri
mean

Ri
mean = 1

T
Ri

t=S

S+T−1

∑ (t)

σ i

σ i
2 = 1
T −1

(Ri(t)− Ri
mean )2

t=S

S+T−1

∑

Ri
risk .adj

Ri
risk .adj =

Ri
mean

σ i

T ∈ 1,3,6,12{ }



 

 89 

Table F.2 Price-Momentum variants. 

Variable name Value Description 

R_1MO  
Monthly return 

R_Cumulative_3MO  
Cumulative return with a 1-month skip 

period and a 3-months formation period 

R_Mean_3MO  
Mean monthly return computed over 3-

months formation period 

R_Risk_Adjusted_3MO  
Risk-adjusted mean monthly return over 

3-months formation period 

R_Cumulative_6MO  
Cumulative return with a 1-month skip 

period and a 6-months formation period 

R_Mean_6MO  
Mean monthly return computed over 12-

months formation period 

R_Risk_Adjusted_6MO  
Risk-adjusted mean monthly return over 

6-months formation period 

R_Cumulative_12MO  
Cumulative return with a 1-month skip 

period and a 12-months formation period 

R_Mean_12MO  
Mean monthly return computed over 12-

months formation period 

R_Risk_Ad-
justed_12MO  

Risk-adjusted mean monthly return over 

12-months formation period 

 

Strategy 2: Earnings-Momentum 

Momentum strategies can also be transposed to Earnings Per Share (EPS). Due to the seasonal 

aspect of business, seasonally different quarterly earnings show a correlation from one quarter 

to the next (Foster, 1977). As such, whenever a quarterly EPS is up compared to the quarter of 

the prior year, the next quarter would generate higher EPS expectation from analysts. Seasonal 

random walks with a trend have been then proposed to model unexpected EPS (Bernard & 

Thomas, 1989; Foster, Olsen, & Shevlin, 1984)). To capture deviation from this serial correla-

tion and associated future returns, the Standardized Unexpected Earnings (SUE) definition of 

(L. K. C. Chan, Jegadeesh, & Lakonishok, 1996) is used here. As before, the strategy consists 

of buying a top percentile and short a bottom percentile. Let denote time measured in the units 

Ri(1)

Ri
cum  for T = 3

Ri
mean  for T = 3

Ri
risk .adj  for T = 3

Ri
cum  for T = 6

Ri
mean  for T = 6

Ri
risk .adj  for T = 6

Ri
cum  for T = 12

Ri
mean  for T = 12

Ri
risk .adj  for T = 12

t



 

 90 

of 1 quarter, with  corresponding to the most recent time;  is the most recently an-

nounced quarterly EPS of the stock ; is the EPS announced four quarters ago; is the 

standard deviation of the unexpected earnings over the last eight quarters: 

 

In addition, as the paper framework is monthly, and returns might be diminishing along holding 

time (Kakushadze & Serur, 2018), months are labelled according to the previous EPS an-

nouncement month: 

 

The predictors are subsequently computed, as shown in Table F.3: 

Table F.3 Earnings-Momentum variants. 

Variable name Value Description 

Standardized_Unex-

pected_Earnings  
Standardised unexpected earn-

ings 

Month_EPS  
Labels for EPS announcement 

month 

 

Bloomberg’s field Diluted EPS Before Extraordinary Items36 is used here instead 

of basic EPS as a precautionary approach. Indeed, diluted EPS take into account securities that 

can be turned into share while extraordinary items might not have desired impacts. 

 

Strategy 3: Value 

Value strategies rely on selecting stocks based on accounting-based fundamental metrics and 

estimation of asset’s fair values. Stocks with low prices relative to their fundamental value, i.e. 

cheap stocks called value stocks, tend to deliver higher returns than the market portfolio 

(Jansen, 2018). (Rosenberg, Reid, & Lanstein, 1985) shows that a portfolio consisting of buy-

ing stocks with high ratio of book value of common equity per share to the market price, i.e. 

 
36 Stockpedia: https://www.stockopedia.com/ratios/diluted-eps-excluding-extrordinary-items-4914/ 

t = 0 Ei

i ′Ei σ i

Ei − ′Ei

SUEi =
Ei − ′Ei
σ i

Labeli  !  

0 if Ei  annonced the same month

1 if Ei  annonced one month ago

2 if Ei  annonced two months ago

⎧

⎨
⎪⎪

⎩
⎪
⎪

SUEi

Labeli



 

 91 

Book-to-Price ratio (B/P ratio), and selling their highly valuated counterparts, called growth 

stocks, deliver abnormal returns and goes against market efficiency. Such a phenomenon can 

be explained by increased premiums, compensating for higher risk and low-performance ex-

pectations from analysts (Piotroski, 2006). As before, the strategy consists of buying a top 

percentile group of stock and short a bottom one. Let denote time measured in units of 1 

month, with  corresponding to the most recent time; the stock is labelled by : 

 

The predictor BP_Ratio is subsequently computed, as shown in Table F.4: 

Table F.4 Value variants. 

Variable name Value Description 

BP_Ratio  Book-to-Price (B/P) ratio 

 

Strategy 4: Low Volatility Anomaly 

Simple anomalies can challenge the Efficient-Market Hypothesis (EMH) (Fama, 1970). Low-

risk stocks exhibit significantly higher risk-adjusted returns than the market portfolio, while 

high-risk stocks underperform it in the U.S. and across the world (Ang, Hodrick, Xing, & 

Zhang, 2006, 2009). (Baker, Bradley, & Wurgler, 2011) attributes this anomaly to behavioural 

finance biases such as fund managers with incentive towards risky assets. As before, the strat-

egy consists of buying a top percentile and short a bottom percentile. Let  denote time meas-

ured in units of 1 day, with  corresponding to the most recent time; is the time series 

of adjusted closing prices for a stock ;  is the cumulative daily return computed over the 

day formation period: 

 

is the mean return computed over day observation period: 

 

is the monthly volatility calculated over the observation period: 

t

t = 0 i

B/P ratioi =
Book value per sharei

Pi

B/P ratioi

t

t = 0 Pi t( )
i Ri

cum

T -

Ri
cum(t) =

Pi(t)
Pi(t +T )

−1

Ri
mean W -

Ri
mean = 1

W
Ri
cum(t)

t=0

W−1

∑

σ i



 

 92 

 

The predictors are subsequently computed for  and  as shown in 

Table F-5: 

Table F.5 Low volatility variants. 

Feature name Value Description 

VOL_21D  
Daily volatility over 21-days observation pe-

riod 

VOL_126D  
Daily volatility over 126-days observation 

period 

VOL_252D  
Daily volatility over 252-days observation 

period 

VOL_M_21D  
Monthly volatility over 21-days observation 

period 

VOL_M_126D  
Monthly volatility over 126-days observa-

tion period 

VOL_M_252D  
Monthly volatility over 252-days observa-

tion period 

VAR_21D  
Daily variance over 21-days observation pe-

riod 

VAR_126D  
Daily variance over 126-days observation 

period 

VAR_252D  
Daily variance over 252-days observation 

period 

VAR_M_21D  
Monthly variance over 21-days observation 

period 

VAR_M_126D  
Monthly variance over 126-days observation 

period 

VAR_M_252D  
Monthly variance over 252-days observation 

period 

The realised variance is also included, as (Kakushadze & Serur, 2018) often mentions allocat-

ing stock proportionally to their volatility, and their variance as well. 

 

σ i
2 = 1
W −1

(Ri
cum(t)− Ri

mean )2
t=0

W−1

∑

T ∈ 1,21{ } W ∈ 21,126,252{ }

σ i  for T = 1,  W = 21

σ i  for T = 1,  W = 126

σ i  for T = 1,  W = 252

σ i  for T = 21,  W = 21

σ i  for T = 21,  W = 126

σ i  for T = 21,  W = 252

σ i
2  for T = 1,  W = 21

σ i
2  for T = 1,  W = 126

σ i
2  for T = 1,  W = 252

σ i
2  for T = 21,  W = 21

σ i
2  for T = 21,  W = 126

σ i
2  for T = 21,  W = 252



 

 93 

Strategy 5: Implied Volatility 

The option prices can contain predictive information about stock returns. Consequently, (An, 

Ang, Bali, & Cakici, 2014) observed that stocks with more significant increases in implied 

volatilities for call options over the previous month have higher future returns on average, 

while stocks with implied volatilities for put options increases have lower future returns. As 

before, the strategy consists of buying a top percentile and short a bottom percentile. Other 

measures of innovation volatility from (An et al., 2014) have were added to the set of predic-

tors. Let  denote time measured in the units of month, with  corresponding to the most 

recent time;  is the time series of call implied volatilities for a stock  for maturity 

;  is the first-difference of call implied volatilities: 

 

is the percent change of call implied volatilities: 

 

 is the daily volatility computed over day window;  is the realised-

implied volatility spread: 

 

 is the cross-sectional innovation: 

 

Where the residual  is estimated from the cross-sectional regression: 

 

The predictors are subsequently computed daily and monthly for maturities of 10, 30 and 60 

days and of 6 months, as shown in Table F.6: 

Table F.6 Implied volatility variants. 

Variable name Value Description 

CVOL_Diff_10D  
First-difference of call implied volatilities for a 

maturity of 10 days 

t t = 0

CVOLi(t) i

M ΔCVOLi,M (t)

ΔCVOLi,M (t) = CVOLi,M (t)−CVOLi,M (t +1)

%ΔCVOLi,M (t)

%ΔCVOLi,M (t) =
ΔCVOLi,M (t)− ΔCVOLi,M (t +1)

ΔCVOLi,M (t +1)

σ i,M M - RVOL-IVOLi,M

RVOL-IVOLi,M =σ i,M −CVOLi,M

CVOLi,M
cs/shock

CVOLi,M
cs/shock = ε i

ε i

CVOLi,M (t) =α (t)+ β(t)CVOLi,M (t +1)+ ε i(t)

ΔCVOLi,10D



 

 94 

CVOL_Diff_30D  
First-difference of call implied volatilities for a 

maturity of 30 days 

CVOL_Diff_60D  
First-difference of call implied volatilities for a 

maturity of 60 days 

CVOL_Diff_6MO  
First-difference of call implied volatilities for a 

maturity of 6 months 

CVOL_Pct_10D  
Percent change of call implied volatilities for a 

maturity of 10 days 

CVOL_Pct_30D  
Percent change of call implied volatilities for a 

maturity of 30 days 

CVOL_Pct_60D  
Percent change of call implied volatilities for a 

maturity of 60 days 

CVOL_Pct_6MO  
Percent change of call implied volatilities for a 

maturity of 6 months 

CVOL_Spread_10D  
Realised-implied volatility spread for a maturity 

of 10 days 

CVOL_Spread_30D  
Realised-implied volatility spread for a maturity 

of 30 days 

CVOL_Spread_60D  
Realised-implied volatility spread for a maturity 

of 60 days 

CVOL_Spread_6MO  
Realised-implied volatility spread for a maturity 

of 6 months 

CVOL_Cross_10D 
 

Cross-sectional innovation for a maturity of 10 

days 

CVOL_Cross_30D 
 

Cross-sectional innovation for a maturity of 30 

days 

CVOL_Cross_60D 
 

Cross-sectional innovation for a maturity of 60 

days 

CVOL_Cross_6MO 
 

Cross-sectional innovation for a maturity of 6 

months 

 

Put implied volatilities, , are disregarded as the difference between and 

downloaded from Bloomberg is null most of the time for the selected timeframe. 

  

ΔCVOLi,30D

ΔCVOLi,60D

ΔCVOLi,6M

%ΔCVOLi,10D

%ΔCVOLi,30D

%ΔCVOLi,60D

%ΔCVOLi,6MO

RVOL-IVOLi,10D

RVOL-IVOLi,30D

RVOL-IVOLi,60D

RVOL-IVOLi,6MO

CVOLi,10D
cs/shock

CVOLi,30D
cs/shock

CVOLi,60D
cs/shock

CVOLi,6MO
cs/shock

PVOL PVOL CVOL



 

 95 

Strategy 6: Multifactor Portfolio 

This strategy consists of ranking stocks based on multiple factors, such as the previously men-

tioned ones. However, it is disregarded here as the machine learning framework is expected to 

rank itself the strategies. 

 

Strategy 7: Residual Momentum 

The performance of Momentum strategies is linked to the Fama-French factors. These strate-

gies are then exposed to losses whenever such factors switch signs. To remove momentum 

dependency on systemic factors, (Blitz, Huij, & Martens, 2011) propose a momentum strategy 

on the residuals. As before, the strategy consists of buying a top percentile and short a bottom 

percentile. Let  denote time measured in units of 1 month, with  corresponding to the 

most recent time;  is the monthly return for a stock ; is the risk-free monthly 

rate;  and are the 3-/5 Fama-French factors from Kenneth R. French’s web-

site37: 

 

The serial regression is run over a first month observation period (here ) with a 

month skip period (here ) to estimate the regression coefficients 

: 

 

The residuals  are estimated over a second month observation period (here ) 

with again a month skip period and by dropping the intercept : 

 
37 Kenneth R. French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

t t = 0

Ri(t) i Rfree(t)

XFF3(t) XFF5(t)

XFF3(t) =
MKT (t)
SMB(t)
HML(t)

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
XFF5(t) =

MKT (t)
SMB(t)
HML(t)
RMW (t)
CMA(t)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

T1-  T1 = 36 S-

S = 1

α i ,β1,i ,…,βN ,i  for i = 1,..., I

Ri(t)− Rfree(t) =α i + βn,i Xn(t)
n=1

N

∑ + ε i(t)    for t = S ,S +1,…,T1

ε i(t) T2- T2 = 12

S- α i



 

 96 

 

The residuals are then used to compute the risk-adjusted residual returns : 

 

The predictors are subsequently computed for the 3-and 5 Fama-French factors as shown in-

Table F.7: 

Table F.7 Residual momentum variants. 

Variable name Value Description 

Residual_Momen-

tum_FF3  
Risk-adjusted residual returns for the 3 Fama-

French Factors 

Residual_Momen-

tum_FF5  
Risk-adjusted residual returns for the 5 Fama-

French Factors 

 

Strategy 8: Pairs Trading 

This strategy attempts to capture mispricing from a pair of historically correlated stocks. How-

ever, it is disregarded here as the stock universe keeps changing each month. However, it is 

extended to clusters, as explained below. 

 

Strategy 9: Mean-Reversion-Single and Multiple Clusters 

Mean-reversion strategies, or contrarian strategies, assume that prices of correlated stocks fol-

low an underlying trend and prices would eventually revert if stocks are temporarily under- or 

over-priced with respect to the other related securities. Consequently, the strategy properties 

are opposite to those of momentum factors (Jansen, 2018) and are associated with market over-

reaction (Avellaneda & Lee, 2010). It consists then to buy the underpriced securities and sell 

the overpriced ones. Let  denote time measured in units of 1 day, with  corresponding to 

ε i(t) = Ri(t)− Rfree(t)− βn,i Xn
n=1

N

∑ (t)    for t = S ,S +1,…,T2

!Ri
risk .adj

ε i
mean = 1

T
ε i

t=S

S+T−1

∑ (t)

!σ i
2 = 1
T −1

ε i(t)− ε i
mean( )2

t=S

S+T−1

∑

!Ri
risk .adj =

ε i
mean

!σ i

!Ri
risk .adj  for FF3

!Ri
risk .adj  for FF5

t t = 0



 

 97 

the most recent time; is the time series of adjusted closing prices for a stock ;  is 

the logarithmic return computed over the day formation: 

 

Single Cluster 

For a single cluster of highly correlated stocks, the demeaned return is derived by removing 

the cluster's average return : 

 

The predictors are subsequently computed by subtracting returns from benchmarks for 

 as shown inTable F.8: 

Table F.8 Single cluster variants. 

Variable name Value Description 

De-

meaned_10D_R1000  
10-days demeaned returns from the Russell 

100 Index 

De-

meaned_10D_SP500  10-days demeaned returns from the S&P500 

De-

meaned_21D_R1000  
21-days demeaned returns from the Russell 

100 Index 

De-

meaned_21D_SP500  21-days demeaned returns from the S&P500 

 

Multiple Clusters 

The previous strategy can be extended to several clusters. For  clusters of historically highly 

correlated stocks (such as industry group), labelled ,  stocks can be associated 

through the  binary loading matrix  where  for stock  belonging to cluster 

; otherwise , such that: 

 

 is the map between stocks and clusters: 

 

Pi t( ) i Ri(t)

T -

Ri(t) = ln
Pi(t)
Pi(t +T )

⎛

⎝⎜
⎞

⎠⎟

!Ri

R
!Ri = Ri − R

T ∈ 10,21{ }

!Ri
R1000  for T = 10

!Ri
SP500  for T = 10

!Ri
R1000  for T = 21

!Ri
SP500  for T = 21

K

A = 1,...,K N

N × K Λ Λ i,A = 1 i

A Λ i,A = 0

NA = Λi,A > 0
i=1

N

∑

G

G : 1,...,N{ }→ 1,...,K{ }



 

 98 

The set  comprises the stocks belonging to cluster  such that: 

 

 is the mean return for a cluster : 

 

The demeaned return  is obtained by subtracting the cluster mean return: 

 

The predictors are subsequently computed with clusters defined as the five different levels of 

the Bloomberg Industry Classification System (BICS)38 for  as shown in 

Table F.9: 

Table F.9 Multiple clusters variants. 

Variable name Value Description 

Demeaned_10D_BICS1  
10-days demeaned returns from BICS level 

1 

Demeaned_10D_BICS2  
10-days demeaned returns from BICS level 

2 

Demeaned_10D_BICS3  
10-days demeaned returns from BICS level 

3 

Demeaned_10D_BICS4  
10-days demeaned returns from BICS level 

4 

Demeaned_10D_BICS5  
10-days demeaned returns from BICS level 

5 

Demeaned_21D_BICS1  
21-days demeaned returns from BICS level 

1 

Demeaned_21D_BICS2  
21-days demeaned returns from BICS level 

2 

Demeaned_21D_BICS3  
21-days demeaned returns from BICS level 

3 

 
38 More details in Appendix C 

JA A

JA = i G(i) = A{ }⊂ 1,...,N{ }
RA A = G(i)

RA =
1
NA

Rj
j∈JA
∑

!Ri
!Ri = Ri − RG( i)

T ∈ 10,21{ }

!Ri
BICS1  for T = 10

!Ri
BICS 2  for T = 10

!Ri
BICS3  for T = 10

!Ri
BICS 4  for T = 10

!Ri
BICS5  for T = 10

!Ri
BICS1  for T = 21

!Ri
BICS 2  for T = 21

!Ri
BICS3  for T = 21



 

 99 

Demeaned_21D_BICS4  
21-days demeaned returns from BICS level 

4 

De-

meaned_121D_BICS5  
21-days demeaned returns from BICS level 

5 

 

Strategy 10: Mean-Reversion–Weighted Regression 

The previous strategy assumed a binary loading matrix and can be extended to any non-binary 

matrix. However, it is disregarded here as no relevant inputs could be found. 

 

Strategy 11: Single Moving Average 

This strategy and the following ones belong to the field of technical analysis which (Murphy, 

1999) define as the forecasting of future prices trends, primarily with charts, with three princi-

pal sources of information available: price, volume and open interest. The early principles have 

been compiled initially at the end of 19th century by Charles H. Dow in the Dow theory39, and 

can be summarised with the following three main assumptions: 

• The market discounts everything and prices might be affected politically, 

fundamentally, psychologically, and others. 

• The price move in trends and can be identified with trend-following indicators. 

• The history repeats itself, and past successful patterns should continue based on human 

psychology. 

 

Despite its success, the field remains controverted among academics (Brock, Lakonishok, & 

LeBaron, 1992) and provides to be less effective in more extended frequency trading strategies 

in opposition to fundamental analysis. As an example, (Hsu & Kuan, 2005) examine the prof-

itability of such strategies in different markets and add proof to its lack of effectiveness in 

mature markets. 

The Moving Averages (MA) are one of the most widely used technical indicators. In the sta-

tistics field, it is a type of finite impulse response filters used to analyse a set of data points by 

 
39 Wikipedia: https://en.wikipedia.org/wiki/Dow_theory 

!Ri
BICS 4  for T = 21

!Ri
BICS5  for T = 21



 

 100 

creating a series of averages of different subsets of the full data set. A moving average is com-

monly used with time-series data to smooth out short-term fluctuations and highlight longer-

term trends or cycles. The threshold between short-term and long-term depends on the appli-

cation, and the parameters of the moving average are set accordingly. Let  denote time meas-

ured in units of 1 day, with  corresponding to the most recent time; is the time series 

of adjusted closing prices for a stock;  is the simple moving average of length day: 

 

 is the exponential moving average from the observation window: 

 

Where the smoothing factor  can be derived from 40:  

 

The strategy is finally based on the stock price crossing the moving average: 

 

The predictors are subsequently computed for  as shown inTable F.10: 

Table F.10 Single moving average variants. 

Variable name Value Description 

Signal_SMA_30D  Signals for 30-days SMA 

Signal_SMA_50D  Signals for 50-days SMA 

Signal_SMA_100D  Signals for 100-days SMA 

Signal_SMA_200D  Signals for 200-days SMA 

Signal_EMA_30D  Signals for 30-days EMA 

Signal_EMA_50D  Signals for 50-days EMA 

Signal_EMA_100D  Signals for 100-days EMA 

 
40 Exponentially weighted windows: https://pandas.pydata.org/pandas-docs/stable/user_guide/computa-
tion.html#exponentially-weighted-windows 

t

t = 1 P t( )
SMA(T ) T -

SMA(T ) = 1
T

P(t)
t=1

T

∑

EMAi(T )

EMA(T ) = 1− λ(T )
1− λ(T )T

λ(W )T−1P(t)
t=1

T

∑

λ(T ) T

λ(T ) = 2
T +1

    for T ≥1

Signal = 
Establish long/liquidate short position if P > MA(T )

Establish short/liquidate long position if P < MA(T )

⎧
⎨
⎪

⎩⎪

T ∈ 30,50,100,200{ }

SignalSMA  for T = 30

SignalSMA  for T = 50

SignalSMA  for T = 100

SignalSMA  for T = 200

SignalEMA  for T = 30

SignalEMA  for T = 50

SignalEMA  for T = 100



 

 101 

Signal_EMA_200D  Signals for 200-days EMA 

 

Strategy 12: Two Moving Averages 

The previous strategy can be extended to two moving averages. For two lengths and where 

, the signal is given by: 

 

The predictors are subsequently computed for 30, 50, 100 and 200 days as shown in Table  

F.11: 

Table F.11 Two moving average variants. 

Variable name Value Description 

Signal_2MA_10_30D  Signals for 10/30 days SMAs 

Signal_2MA_10_50D  Signals for 10/50 days SMAs 

Signal_2MA_30_50D  Signals for 30/50 days SMAs 

Signal_2MA_30_100D  Signals for 30/100 days SMAs 

Signal_2MA_30_200D  Signals for 30/200 days SMAs 

Signal_2MA_50_100D  Signals for 50/100 days SMAs 

Signal_2MA_50_200D  Signals for 50/200 days SMAs 

Signal_2MA_100_200D  Signals for 100/200 days SMAs 

 

Strategy 13: Three Moving Averages 

The previous strategy can be extended to three moving averages. For three simple moving 

averages with lengths , the signal is given by: 

SignalEMA  for T = 200

T1 T2

T1 < T2

Signal = 
Establish long/liquidate short position if MA(T1) > MA(T2 )

Establish short/liquidate long position if MA(T1) < MA(T2 )

⎧
⎨
⎪

⎩⎪

Signal for T1 = 10,  T2 = 30

Signal for T1 = 10,  T2 = 50

Signal for T1 = 30,  T2 = 50

Signal for T1 = 30,  T2 = 100

Signal for T1 = 30,  T2 = 200

Signal for T1 = 50,  T2 = 100

Signal for T1 = 50,  T2 = 200

Signal for T1 = 100,  T2 = 200

T1 < T2 < T3



 

 102 

 

The predictors are subsequently computed, as shown in Table F.12: 

Table F.12 Three moving average variants. 

Variable name Value Description 

Signal_3MA_5_10_20D  
Signals for 5/10/20 

days SMAs 

Signal_3MA_5_20_60D  
Signals for 5/20/60 

days SMAs 

Signal_3MA_10_30_50D  
Signals for 10/30/50 

days SMAs 

Sig-

nal_3MA_30_60_120D  
Signals for 30/60/120 

days SMAs 

Sig-

nal_3MA_30_120_200D  

Signals for 

30/120/200 days 

SMAs 

Sig-

nal_3MA_60_90_120D  
Signals for 60/90/120 

days SMAs 

Sig-

nal_3MA_60_120_200D  

Signals for 

60/120/200 days 

SMAs 

Sig-

nal_3MA_90_120_200D  

Signals for 

90/120/200 days 

SMAs 

 

Strategy 14: Support and Resistance 

Price of security will tend to stop and reverse at a certain level. The strategy here intends to 

capture such peaks, or resistance, and through, or support. (Kakushadze & Serur, 2018) pro-

vides a strategy for daily frequency trading. It is extended here to a monthly frequency to fit 

Signal = 

Establish long position if MA(T1) > MA(T2 ) > MA(T3)

Liquidate long position if MA(T1) ≤ MA(T2 )

Establish short position if MA(T1) < MA(T2 ) < MA(T3)

Liquidate short position if MA(T1) ≥ MA(T2 )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

Signal for T1 = 5,  T2 = 10,  T3 = 20

Signal for T1 = 5,  T2 = 20,  T3 = 60

Signal for T1 = 5,  T2 = 30,  T3 = 50

Signal for T1 = 30,  T2 = 60,  T3 = 120

Signal for T1 = 30,  T2 = 120,  T3 = 200

Signal for T1 = 60,  T2 = 90,  T3 = 120

Signal for T1 = 60,  T2 = 120,  T3 = 200

Signal for T1 = 90,  T2 = 120,  T3 = 200



 

 103 

this paper framework without high expectation. Let  denote time measured in the units of day, 

with  corresponding to the most recent time;  is the time series of closing prices for a 

stock;  and  are the highest and lowest prices from the day observation period: 

 

The pivot point, or centre,  is: 

 

The support  and resistance  levels are: 

 

The trading signal is defined as follows: 

 

The predictors are subsequently computed for  as shown in Table  

F.13: 

Table F.13 Support and resistance variants. 

Variable name Value Description 

Signal_Support_Re-

sistance_10D  
Signals for 10-days Support Re-

sistance Indicator 

Signal_Support_Re-

sistance_20D  
Signals for 20-days Support Re-

sistance Indicator 

Signal_Support_Re-

sistance_30D  
Signals for 30-days Support Re-

sistance Indicator 

Signal_Support_Re-

sistance_60D  
Signals for 60-days Support Re-

sistance Indicator 

Signal_Support_Re-

sistance_90D  
Signals for 90-days Support Re-

sistance Indicator 

 

t

t = 1 P(t)

Bup Bdown T -

Bup = max P(t),P(t +1)…,P(t +T )( )
Bdown = min P(t),P(t +1)…,P(t +T )( )
C

C =
Bup + Bdown + P

3

S R

R = 2×C − Bdown
S = 2×C − Bup

Signal= 

Establish long position if P >C
Liquidate long position if P ≤ R
Establish short position if P ≤C
Liquidate short position if P ≤ S

⎧

⎨

⎪
⎪

⎩

⎪
⎪

T ∈ 10,20,30,60,90{ }

Signal for T = 10

Signal for T = 20

Signal for T = 30

Signal for T = 60

Signal for T = 90



 

 104 

Strategy 15: Channel 

The Donchian channel indicator (Donchian, 1960) allows for a visualisation of the volatility 

of a market. It will be relatively narrow if prices are stable and vice-versa. Let  denote time 

measured in the units of day, with  corresponding to the most recent time;  is the time 

series of closing prices for a stock;  and  are the ceiling and floor from the day 

observation period: 

 

The trading signal is defined as follows: 

 

 

The predictors are subsequently computed for  as shown in Table  

F.14: 

Table F.14 Channel variants. 

Variable name Value Description 

Signal_Channel_10D  Signals for 10-days Channel Indicator 

Signal_Channel_20D  Signals for 20-days Channel Indicator 

Signal_Channel_30D  Signals for 30-days Channel Indicator 

Signal_Channel_60D  Signals for 60-days Channel Indicator 

Signal_Channel_90D  Signals for 90-days Channel Indicator 

 

Strategy 16: Event-driven-M&A 

This strategy attempts to capture excess returns generated via corporate actions such as Mer-

gers and Acquisitions (M&A). However, it is disregarded here as no relevant data could be 

found. 

 

t

t = 1 P(t)

Bup Bdown T -

Bup = max P(t),P(t +1)…,P(t +T )( )
Bdown = min P(t),P(t +1)…,P(t +T )( )

Signal = 
Establish long/liquidate short position if P = Bdown
Establish short/liquidate long position if P = Bup

⎧
⎨
⎪

⎩⎪

T ∈ 10,20,30,60,90{ }

Signal for T = 10

Signal for T = 20

Signal for T = 30

Signal for T = 60

Signal for T = 90



 

 105 

Strategy 17: Machine Learning–Single-Stock KNN 

The authors (Kakushadze & Serur, 2018)present here a strategy to predict future returns based 

on moving averages of the price and volume of varying lengths with a k-nearest neighbour (k-

NN) algorithm (Altman, 1992). A less formal description can be found here41. As opposed to 

the authors, a cross-sectional version is implemented here. Let  denote time measured in units 

of 1 day, with  corresponding to the most recent time; is the time series of closing 

prices for a stock; is the time series of the volume; is the daily return. The target 

variable  is defined as the cumulative return from the next trading  days. To prevent 

look-ahead bias and remain consistent with the rest of the thesis framework, a skip-day  is 

added: 

 

The predictor variables , , are the moving averages for volumes, for prices and 

the volatility for the day observation window: 

 

As opposed to training algorithms parallelly for each security , as the authors suggest, all 

individual stock datasets  are stacked into a single one  in order to fit one 

classifier on the investment universe simultaneously The predictors are further scaled by roll-

ing sample size  with scaling function : 

 

 
41 A Complete Guide to K-Nearest-Neighbors with Applications in Python and R: 
https://kevinzakka.github.io/2016/07/13/k-nearest-neighbor/ 

t

t = 0 P(t)

Vi(t) R(t)

y(t) T

S

y(t) = P(t − S −T )
P(t)

−1

Xa (t) a = 1,...,m

Ta -

X1(t) =
1
T1

V (t + s)
s=1

T1

∑

X2(t) =
1
T2

P(t + s)
s=1

T2

∑

X3(t) =
1

T3 −1
R(t + s)− 1

T3
R(t + s)

s=1

T3

∑
⎛

⎝⎜
⎞

⎠⎟

2

s=1

T3

∑
…

i

{(Xi , yi )}i=1,...,I (X, y)

Ttrain ϕ

!X a (t : t +Ttrain ) =ϕ(X a (t : t +Ttrain ))



 

 106 

For an out sample subset at the timestamp , the nearest neighbours of  among 

 can be found with the Minkowski distance42: 

 

Where the equation is the Manhattan-distance , or the Euclidean distance . 

Let , be the  nearest neighbours of . Finally, the predicted return 

 is the weighted corresponding realised values: 

 

The exercise was repeated, as presented in Table F.15, and the predictor KNN_Prediction is 

subsequently computed, after cross-validations, as: 

 

Table F.15 KNN variants. 

Variable name Value Description 

KNN_Predic-

tion 
 

Forecasts of monthly returns 

with k-NN 

Where is the Yeo–Johnson transformation43 (Yeo & Johnson, 2000). 

 

Application 

The exercise settings are defined as follows: after computing the moving average of prices, of 

volumes and volatility for windows of 21-, 63- and 126 days (hence ), targets returns are 

set monthly ( ) with a skip-day ( ). One of the major drawbacks of k-NN, is its scala-

bility. For  predictors and the sample size , the time complexity for the naïve approach 

 
42 Wikipedia: https://en.wikipedia.org/wiki/Minkowski_distance  
43 PowerTransformer: https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTrans-
former.html  

t k !X a (t)

!X a ( ′t ), ′t = t +1 ,...,  t +Ttrain

[D(t, ′t )]p = !X a (t)− !X a ( ′t )
p

a=1

m

∑

for p = 1 for p = 2

!X a ( ′tα (t)),  α = 1,  ..., k k !X a (t)

ŷ(t)

ŷ(t) = δ (k, y( ′tα (t)))

ŷ(t) for 

S = 1
T = 20
m = 9

Ta ∈ 21,63,126{ }
Ttrain = 100

ϕ ≡ψ (λ,x)

k = 3
p = 1

δ ≡ 'distance'

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

ψ (λ,x)

a = 9

T = 20 s = 1

D N



 

 107 

can reach 44. To mitigate this, the returns at each timestamp are continuously predicted 

based upon the predictors of the last  days. The rest of the hyper-parameters are set 

through RandomizedSearchCV with the parameter’s distributions set at Table F.16. The re-

gression performances are measured with the Median Absolute Error , the Mean Ab-

solute Error , the Mean Forecast Trading Returns  (Lee, 2007) and the Mean Cor-

rect Forecast Directions  (Lee, 2007): 

 

The two first ones are losses to asses predictions range errors and have been chosen as outliers 

are expected, while the latter ones measure the trading returns and the correctness of side pre-

dictions. 

Table F.16 Hyperparameters grid. 

Symbol Description Distributions of parameters 

 Scaler45 

 

 Number of neighbours  

 Weight function46  

 
Power parameter for distance 

metric  

 

he following methodology was used to prevent overfitting: 

 

 
44 Nearest Neighbor Algorithms: https://scikit-learn.org/stable/modules/neighbors.html#nearest-neighbor-algo-
rithms  
45 Preprocessing data: https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-data  
46 KNeighborsRegressor: https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighbors-
Regressor.html 

O(DN 2 )

Ttrain = 100

MedAE

MAE MFTR

MCFD

MedAE( y, ŷ) = median y1 − ŷ1 ,..., yn − ŷn( )
MAE( y, ŷ) = 1

n
yi − ŷi

i=0

n−1

∑

MFTR( y, ŷ) = 1
n

yi − sign( ŷi )( )
i=0

n−1

∑

MCFD( y, ŷ) = 1
n

1 sign( yi )−sign( ŷi )>0( )
i=0

n−1

∑

ϕ ϕ ∈
'MinMaxScaler ','RobustScaler ',
'StandardScaler ','QuantileTransformer ',
'PowerTransformer ','Normalizer '

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

k k ∈ 3,5,11,25,40,100{ }
δ δ ∈ 'uniform','distance'{ }

p k ∈ 1,2,3,4{ }



 

 108 

Table F.17 Implementation of the hyperparameters research 

1 Sample 200 hyper-parameters combination from the parameter grid; 

2 Sample 5 portions of the first half of the dataset; 

3 for each sample do 

4   Generate 40 splits of training and testing subset with Rep-Hold; 

5   for each split do 

6     for each combination of hyper-parameters do 

7       Fit model on the training subset; 

8       Predict the testing subset and report performances; 

9     end  

10   end   

11 end 

12 Average performances and rank combination of hyper-parameters; 

13 Select the best combination; 

 

The average metrics and their standard deviation across resample can be seen for all parame-

ter’s combination on Figure F.1. The lowest  corresponds already to the lowest  

and highest  and highest . Consequently, the parameters combination can be 

easily selected as there is no presence of trade-offs. 

 
Figure F.1 Cross-Validation performances over hyper-parameters combination 

MedAE MAE

MFTR MCFD



 

 109 

The precedent methodology is biased, as hyper-parameters are not determined on an expanding 

rolling basis. The lookback windows  could also have been determined with cross-valida-

tion. However, this approach has been chosen for computational reasons (already 80’000 fits 

on matrices of size ), and it is assumed it would not lead to significant look-ahead 

bias as the selected parameters continuously rank amongst the first ones across resamples and 

forecast remains predicted on a rolling basis. Figure F.2 shows the regression metric across 

time for the test subsets, i.e. forecasted returns. Despite outliers, 85% of side predictions are 

on average correct, and half of the predicted returns are wrong by less than 0.02 percent-point. 

Finally, predictions appear meaningful with and without outliers, as depicted by the scatterplots 

on Figure F.3. It should be remembered that returns have been predicted across all stocks and 

for the entire time range and thus, will not be all passed to the final learning algorithm. The 

individuals would be still selected according to their index memberships for each month, and 

this step is expected to filter outliers from stocks that have been dropped from the index.  

Besides, a different approach has been taken as k-NN can be sensitive to redundancy. Predictors 

with Pearson correlation coefficient above 0.9 have been dropped (see Figure F.4), and the 

same methodology was performed. However, this led to slightly worse performances across 

months such as , in comparison to  previously. 

  

Ttrain

120'000× 9

MedAE = 0.027 ± 0.13 0.024 ± 0.12

Figure F.2 Forecast performances over months 



 

 110 

Strategy 18: Statistical Arbitrage-Optimization 

This strategy allocates a portfolio requiring its Sharpe ratio to be maximised. However, it is 

disregarded here. Calculation of weights requires the inversion of a covariance matrix and 

would not be robust here for the following reasons: 

• The investment universe comprises correlated stocks, and the inversion of its 

covariance matrix would lead to unstable solutions. 

• It requires at least of IID observation in order to derive a non-singular 

covariance matrix of size . Assuming 800 stocks must be allocated each month 

(assumed value of the Russell 1000 Index constituents after cleaning), it would require 

at least 1276 years of daily data (López de Prado, 2018). 

  

0.5N (N +1)

N

Figure F.4 Visualization of the predictors correlation matrix. 



 

 111 

Strategy 19: Market-Making 

This strategy attempts to capture the bid-ask spread for a given stock (Kakushadze & Serur, 

2018). However, it is disregarded here as it does not match with the frequency trading of this 

paper. 

Strategy 20: Alpha Combos 

With technological advances, this strategy attempts to mine a big dataset of expected returns, 

called alphas by (Kakushadze & Serur, 2018). On their own, alphas are ephemeral, and any 

profit would be taken away by trading costs. Therefore, the idea is to combine them into a large 

alpha combo strategy. However, it is disregarded here as: 

• As the academic literature is minimal on the formulation of alphas in detail, researching 

such a large number of alphas is outside of the scope of this thesis. 

• While (Kakushadze, 2016) provides formulas for 101 alphas, their average holding 

period approximately ranges between 0.6 to 6.4 days compared to the monthly 

framework defined here. 

• In addition to the computational complexity, the 101 formulas presented are enigmatic 

and could compromise the interpretability of the final strategy. 

  



 

 112 

Appendix G:  Portfolio Statistics Computation 

The following assumptions are defined. Let  denote time measured in units of 1 month for an 

observed period  , with  corresponding to the initialization of the portfolio;  

is the annualization factor ( ); the risk-free rate  is assumed to be null;  is the 

monthly return for a stock labelled  from an investment universe ;  is the 

monthly return of a benchmark (defined here as the Russel 1000 Index);  is the monthly 

return of the portfolio defined as the weighted average of the returns from the invested assets: 

 

The portfolio return with transaction costs  (here ) is defined as (E. P. 

Chan, 2009): 

 

The r-moment for sample size n is given by: 

 

The unbiased cumulant estimates as reported in (Harald, 1946): 

 

Finally, the metrics from Table G.1 are derived (DeMiguel, Garlappi, Nogales, & Uppal, 2009; 

Goodwin, 1998; Meucci, 2010; Sharpe, 1964, 1966; Sortino & Price, 1994; Young, 1991). For 

metrics annualization, (Goodwin, 1998) compares four practices: usage of arithmetic-, 

geometric-, continuously compunded-mean and frequency-converted data. To remain 

consistant across metrics computations, the arithmetic mean is used. 

  

t

t = 1,2,...,T t = 0 N

N = 12 Rf Ri,t

i i = 1,2,..., I RB,t

RP,t

RP,t = wi,t−1Ri,t
i
∑

c c = 0.25% per trade

RP,t
C = RP,t − c

i
∑ wi,t − wi,t−1

mr =
1
n

(xi
i
∑ − x )r

k2 =
n
n−1

m2

k3 =
n2

(n−1)(n− 2)
m3

k4 =
n2

(n−1)(n− 2)(n− 3)
(n+1)m4 − 3(n−1)m2

2{ }



 

 113 

Table G.1 Portfolio Statistics 

Portfolio Statistics Formula 

General  

Turnover   

Performance  

Cumulative return   

CAGR  

Alpha  

Beta  

Stability  

Hit Ratio   

Average return from hits   

Average return from misses   

Risk  

Volatility  

Skewness  

Kurtosis  

Maximum drawdown  

  

Turnoveryear =
N
T

wi,t − wi,t−1
i=1

I

∑
t=1

T

∑

CRt = 1+ Ri( )i=1

t∏( )−1
CAGR = 1+ Ri( )i=1

T∏( )
P
T −1

α yearly =αN     where α t = Rt − βRB,t      for t = 1,...,T

β =
cov(R,RB )
var(RB )

R2  from ln(CR)t = a + bt      for t = 1,...,T

HR =
1(wi ,t−1Ri ,t>0)
1(wi ,t−1>0)i

∑
t
∑

t
∑

i
∑1(wi ,t−1Ri ,t>0)wi,t−1Ri,t

t
∑

i
∑1 wi ,t−1Ri ,t >0( )

∑
t
∑
i
1(wi ,t−1Ri ,t<0)wi,t−1Ri,t
∑
t
∑
i
1(wi ,t−1Ri ,t<0)

σ year = k2
1/2N 1/2

g1,year =
k3
k2
3/2

1
N 1/2

g2,year =
k4
k2
2

1
N

MD = max
τ∈(1,T )

(max
t∈(1,τ )

(Rt − Rτ ))



 

 114 

Efficiency 

Sharpe ratio  

Information ratio  

Sortino ratio  

Calmar ratio  

Tail ratio  is the quantile function 

 

  

SRyear =
k1
k
2

1/2 N
1/2

IRyear =
k1(Rp − RB )
k2
1/2(Rp − RB )

N 1/2

Sortinoyear =
k1

dsr
N 1/2    where dsr = 1

T −1
min(0,Rt )

t
∑

Calmaryear =
k1
MD

N

Tail  ratio =
F̂ −1(0.95)

F̂ −1(0.05)
    where F̂ −1(x)



 

 115 

Appendix H:  AutoML and Deep Learning 

As the process of designing and validating a machine learning pipeline can be time-consuming, 

the question of whether other faster-implemented tools could be used to compete with the work 

achieved so far has been raised. As such predictive performances are compared with AutoML 

and deep learning techniques. 

 

AutoML 

As machine learning pipeline performances can be very sensitive to numerous decisions, the 

field of automated machine learning (AutoML) emerged to ease the workflow of ML practi-

tioners. These systems aim to automate the entire machine learning pipeline in a data-driven 

way: feature pre-processing, feature selection, model selection and hyper-parameters tuning. 

These techniques are now mature enough to compete with and even outperform human-ma-

chine learning experts (Hutter, Lars, & Joaquin, 2019). As such, Auto-sklearn and TPOT are 

used here. While Auto-sklearn optimizes pipeline decision with Bayesian optimization, TPOT 

relies on Genetic Algorithm (GA). In addition to be very computationally demanding, the 

drawbacks of using such tools is their parameters complexity and their lack of flexibility as 

they provide to be only wrappers of other machine learning libraries such as Scikit-learning. 

As such, sample weights can be passed only to the estimator using TPOT, but not for Auto-

sklearn. They also both imputes automatically missing values using the median. 

 

Deep learning 

As opposed to shallow learning, deep learning depends less on the representation of data they 

are given and can avoid the time-consuming step of feature hand-designing (Goodfellow, 

Bengio, & Courville, 2016). For this reason, a deep learning implementation has been consid-

ered here. Among the family of Artificial Neural Networks (ANN), the Recurrent Neural Net-

works (RNN) (Rumelhart, Hinton, & Williams, 1986) are a group that can model the relation-

ship between sequences instead of considering each sample independently and are thus suitable 

for application in Natural Language Processing (NLP) or Time Series. A significant issue with 

early RNNs implementations was their vanishing gradient problem. Neural networks work 

mainly by adjusting their internal weights by backpropagating the gradient computed from the 

loss function. Vanishing gradient illustrates the case where neural networks cannot converge 

as gradient drops or explodes. As solution, emerged the sub-group of Gated RNN, such as Long 

Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997). In addition to share weights 



 

 116 

across sequences, Gated RNNs include an internal gates mechanism to accumulate information 

and forget it when useful. Finally, the choice of using an LSTM has also been motivated by 

(Ryll & Seidens, 2019) for LSTM overall better performances for stock forecasting in compar-

ison to more classic ANNs. For more information about LSTM architecture, the reader should 

consider (Goodfellow et al., 2016) or this less formal description47. The LSTM is implemented 

with Keras, a high-level API running on top of TensorFlow. This set up enables fast experi-

mentation in a research environment, instead of relying directly on TensorFlow, more suitable 

for a production environment. For faster training of the LSTM, a GPU has been used. As deep 

learning involves mainly matrix operations computation, GPU offers a solution for scalability 

due to their architectures. For other ends than video processing, computing with GPU is re-

ferred as General-Purpose GPU programming (GPGPU). Finally, the content of (Chollet & 

Others, 2015; Ng, 2019) has been followed for deep learning development good practices. 

 
47 Understanding LSTM Networks: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 


