
Machine Learning with Graphs and
Applications in Finance

Master Thesis

C. Papadakis

September 14, 2021

Advisors: Prof. Dr. J. Teichmann, Prof. Dr. D. Sornette, Dr. D. Schmitt

Department of Mathematics, ETH Zürich

Abstract

In this paper we investigate how machine learning can be applied
to graphs with an emphasis on link prediction. Both from a super-
vised (binary classification) and semi-supervised (Graph Representa-
tion Learning) approaches are applied and compared. As an applica-
tion we build a competitors network by the use of Natural Language
Processing techniques to extract competitors mentioned by U.S. compa-
nies in their SEC 10-K and 10-Q reports, filled with Securities and Ex-
change Commission (SEC). The resulting network is a directed graph
where each company is connected to other companies in case their SEC
reports mention them as competitors. Link prediction in a supervised
binary classification setup involves data preparation, feature engineer-
ing and data splitting. Special care must be taken when computing
graph features and splitting the data for training and testing, in order
to avoid data leakage from the training to the test data set. Data leakage
tests are performed using artificial data, namely Erdös-Rényi networks.
Among various standard machine learning models for binary classifica-
tion, we find that the Gradient Boosting Classifier (GBC) performs best,
achieving AUC-ROC and F1 scores of 0.84 when trained and evaluated
on a balanced training set. Graph Representation Learning is an appli-
cation of Deep Learning on graphs, namely Graph Neural Networks
(GNN). The semi-supervised GNN model exhibit better performance
as measured by the AUC-ROC and F1 scores of 0.90 compared to the
supervised (GBC) model.

i

Contents

Contents iii

1 Introduction 1
1.1 Motivation for Graphs . 1
1.2 Metrics to describe Graphs . 2
1.3 Motivation for Machine Learning 12
1.4 Machine Learning for Graphs 14

2 Methods 17
2.1 The traditional ML pipeline . 17
2.2 Graph Representation Learning 18
2.3 Training . 24

3 Applications 27
3.1 Application: Competitor Networks 29

3.1.1 Data . 29
3.1.2 Competitors Identification 30
3.1.3 Explanatory Analysis 31
3.1.4 Results . 39
3.1.5 Conclusions . 41

4 Overall Conclusions 43

Bibliography 45

iii

Chapter 1

Introduction

The aim of our research is to investigate the performance of machine learn-
ing on graphs on financial applications with particular focus on competitor
networks. In this paper we collect a number of documents and use Natural
Language Processing techniques to extract information based on which we
build our graph. The documents consist of annual 10-K and quarter 10-Q
reports downloaded from the Security and Exchange Commission’s (SEC)
EDGAR website and we use them to build a network, where each node rep-
resents a company and each edge represents a directed link between that
company, and the competitors mentioned by it (if any).

1.1 Motivation for Graphs

Nowadays due to the rapid growth of socioeconomic-based online systems
new challenges have arisen which concern the analysis of the massive amount
of data gathered in those systems. Many aspects of these systems are draw-
ing more and more attention from several interdisciplinary fields such as
Social Sciences, Economics and Biology, which often aim to study the connec-
tions, relationships or interactions between the system’s components rather
than just the individual components themselves. This enables us to better
understand and analyze the structure of the underlying system which in
turn helps us learn more about the system itself, but also to make better
predictions about its evolution and not only.

A network is defined as a collection of a system’s components which are
called nodes while we refer to he interactions between them as edges or links.
The basic distinction between the two terminologies {network, nodes, links}
and {graph, vertices, edges} is that the first one is commonly used to de-
scribe systems of the real world, whereas the latter is mostly used for their
mathematical representation. Other terminologies such us sites and bonds or
actors and ties are also common in fields like in physics and sociology [3, 33].

1

1. Introduction

Throughout this paper we use the terms interchangeably like in the majority
of the network analysis literature.

In order to fully understand the mechanics of the system we need study
the structure of the corresponding network which strongly affects the way
the system works and evolves. In a social network for instance, the way
people are connected with each other determines the flow of information
passing through the network. For example one could consider the network
structure to study how people are affected by the news spread and what is
their attribute towards a vaccination against a disease. A network is basically
a simplified representation of a given system which is reduced to an abstract
structure that captures the basic information about the connectivity pattern
[36]. Nodes and edges can be labeled with extra information such as node
names, edge weights or any other so called attribute or feature.

Over the years a wide variety of mathematical and statistical tools has been
developed to analyze, model and understand network structures. These
tools have enabled scientists to provide answers to questions such as which
node is the most significant or which is the optimal path between two lo-
cations with respect to their distance and/or the respective travel costs. In
fact any system that can be represented as a network can be successfully
understood by the use of these tools given that the scientific question about
the system is well posed.

All these concepts are incorporated in one of the most famous fields of math-
ematics called Graph Theory. Firstly introduced by the notorious math-
ematician Leonard Euler via his paper Seven Bridges of Königsberg (1736),
Graph Theory provides a vocabulary for labeling and denoting network
structure properties but also to describe, quantify and measure this proper-
ties through mathematical operations. Thus like any other branch of math-
ematics we can exploit and combine this vocabulary to develop and prove
theorems about graphs and therefore about the representations of a given
system.

1.2 Metrics to describe Graphs

The notation we will be using throughout this paper is as follows. We refer
to a graph as an object G = (V , E) where V denotes the set of nodes and
E := {(u, v) : u, v ∈ V} the set of edges with (u, v) implying an edge going
from node u ∈ V to node v ∈ V . The associated adjacency matrix is denoted
by A ∈ R|V|×|V| and is used to represent the existence of edges by having
entries A[u, v] = 1 if (u, v) ∈ V and A[u, v] = 0 otherwise. Note that if the
graph is undirected, namely (u, v) ∈ V ⇐⇒ (v, u) ∈ V , then the adjacency
matrix is symmetric, but that does not hold in the case of directed graphs
(or digraphs) where the adjacency matrix is not symmetric.

2

1.2. Metrics to describe Graphs

We will also use the notation N (u) := {v ∈ V : (u, v) or (v, u) ∈ E} to
denote the set of adjacent nodes of some node u ∈ V for an undirected
graph and N in(u) := {v ∈ V : (v, u) ∈ E}, N out(u) := {v ∈ V : (u, v) ∈ E}
to denote the counterpart sets for the predecessor and successor nodes of u,
namely the nodes that point and are pointed by u respectively.

Degree

A key property for each node is their degree which represents the total num-
ber of links a node has with the other nodes. The degree of the ith node in
an undirected graph with N = |V| nodes is defined as

ki :=
N

∑
j=1

Aij =
N

∑
j=1

Aji (1.1)

Note that the second equality in (1.1) is justified by the symmetry of the
adjacency matrix. This in other words means that it makes no difference
if we sum over its rows or its columns; the result is the same. By using
the node degrees of an undirected graph the total number of links can be
computed via

L =
1
2

N

∑
i=1

ki (1.2)

The presence of the factor 1
2 in (1.2) is due to the fact that each edge is

counted twice. Indeed an undirected link between two nodes u, v ∈ V exists
if and only if Aij = 1 or equivalently Aji = 1 since A is a symmetric matrix.
For the case of a directed graph we distinguish between in-coming and out-
coming links by using the notation kin

i and kout
i to denote the in-degree and

out-degree of the ith node. Thus for digraphs a node’s total degree is given
by

ki := kin
i + kout

i (1.3)

where kin
i := ∑N

j=1 Aji and kout
i := ∑N

j=1 Aij. Immediately we see that for a
directed graph the total number of links is just the sum

L =
N

∑
i=1

kin
i =

N

∑
i=1

kout
i (1.4)

and the factor 1/2 is now absent. Finally by dividing equations (1.2) and
(1.4) by the total number of nodes N we obtain the average degree 〈k〉, average
in-degree 〈kin〉 and average out-degree 〈kout〉 respectively.

3

1. Introduction

Degree Distribution

We just saw that we can express the number of connections that a node has
by computing its degree. The degree distribution is simply the probability
distribution of the node degrees. In more detail if we denote by Nk the
number of nodes with degree k in a network with N many nodes, then the
probability that a node has degree k is pk = Nk

N . Alternatively we can also
think of it as the probability of choosing a node with degree equal to k.
Naturally since pk’s are probabilities they must be normalized, i.e. it must
hold that

∞

∑
k=1

pk = 1 (1.5)

Also note that the sum in (1.5) starts from 1 because we silently assume
that there are no disconnected vertices, which would be of zero degree. The
degree distribution has a central role in graph theory as the calculation of
several network properties require the knowledge of pk. In addition it pro-
vides useful information about the network structure and can be used to
explain phenomena such us the spread of a disease [23]. As for an example,
the average degree of an undirected network can be computed as

〈k〉 =
∞

∑
k=1

kpk (1.6)

Directed networks require again the distinction between in-degree and out-
degree distributions. In citation and social networks for example, a node
with more incoming rather than outcoming links is probably more impor-
tant than other nodes with less incoming and same outcoming links or same
incoming and more outcoming links. Furthermore we can use the two dis-
tributions to construct the joint in and out - degree distribution (given that
it exists) to investigate for example the correlation between the incoming
and outcoming links. The mathematical notation for the in-degree and out-
degree distributions is in accordance to the undirected case with the only
difference being a superscript ”in” and ”out” to denote the respective distri-
butions.

In simple types of networks, it is often observed that nodes have similar
degrees. However in real world networks one would most likely notice that
the majority of nodes are of relatively small degree with only a few nodes
having large degree, namely many connections with other nodes. The global
social network consists of over 7 billion individuals while there are over
200 billion Internet webpages. As a consequence the degree distribution of
real world networks exposes a long tail which decays much faster than the

4

1.2. Metrics to describe Graphs

Gaussian or the Exponential distributions. We say the distribution is heavily
(right) skewed and it basically means that we mostly observe small degrees
with only very few nodes having significantly larger degrees.

We close this subsection by noticing that the degree distribution is often not
enough to learn from for the complete structure of the network. The reason
is that there exists more than one replica graph with its nodes having the
same degrees as the original.

Density

Another significant metric for the structure of a graph is the density or connec-
tivity which is a straight-forward way of measuring the tendency of nodes
to form links. In the extreme (and very rare for real world applications)
scenario where all the nodes are connected with each other we characterize
the graph as complete or fully connected. We can use the number of nodes and
edges to calculate the density of our network which is simply defined as the
ratio of number of existing edges to the number of all possible edges.

For a complete undirected graph with N nodes we can get an edge by
randomly picking any pair of nodes, hence if there are N nodes there are
(N

2) =
N(N−1)

2 possible edges. On the other hand, a complete directed graphs
each node has N − 1 possible other nodes to connect with, hence there are
N(N − 1) possible edges. If in addition the graph contains self-loops then
every node is allowed to connect with any other node including itself (N2).
The density of a directed graph G = (V , E) is then given by

D =
|E |

|V|(|V| − 1)
(1.7)

while for an undirected graph the density is given simply by multiplying
by 2 the right side of (1.7). Note that the density is 0 when all the nodes
are disconnected and 1 when all the nodes are connected with each other,
hence when the graph is complete [6]. Therefore if we denote by LMAX the
maximum number of edges for any graph (directed or not) it always holds
that

0 ≤ D ≤ LMAX (1.8)

Connected Components

A connected component of an undirected graph is the largest collection of
nodes where every node can be reached by any other node in the same

5

1. Introduction

component. Especially for graphs that emerge from real world systems it is
very common to observe different connected components of different sizes.
Connected components are basically partitions of the set of nodes V , hence
non-empty, pairwise disjoint sets the union of which gives us the entire V .

The structure of the connected components is slightly more complicated
in directed graphs. That is the reason why we distinguish between weakly
connected components when the edges that consist each path point in both
directions and strongly connected components when the structure of each path
is in compliance with the edges’ direction.

Particularly in real world networks it is possible (if not typical) for there to
be no path at all between a given pair of nodes in a network. In fact in real
circumstances we observe a so called giant component (weakly or strongly
connected) which includes a largest portion of the network’s nodes (at least
50% and frequently even 90%). The rest of the nodes belong to other com-
ponents that are of significantly smaller size. Molloy et al. [21] studied the
conditions for a random graph to almost surely have a giant component but
also the impact on the graph structure after removing it.

Triadic Disclosure

One of the most important structural properties of networks involves the
concept of triadic disclosure. This concept essentially supposes that if two
nodes have the same neighbors then it is likely that these nodes are con-
nected with each other (if two people have a common friend then these
people are probably friends). The two most common metrics for triadic
disclosure are the clustering coefficient and transitivity.

In Graph Theory we call clustering coefficient the measure which quantifies
the tendency of nodes to form clusters with other nodes with common or
similar features. We first define the local clustering coefficient of a node u ∈
V as the proportion of the number of edges formed by its adjacent nodes
divided by the total number of edges that node u could possible form. Recall
that for a directed graph G = (V , E) with N = |V| the possible number of
edges that a node u can have is N · (N − 1) hence we obtain

C(u) :=
|(v, w) ∈ E : v, w ∈ Γ(u)|

N · (N − 1)
(1.9)

Notice that like density this measure is also on scale between 0 and 1. The
two extreme scenarios are when all the neighbors of a node are connected
with each other and second when none of the neighbors are connected with
each other. The value for the local clustering coefficient of that node would
be 1 and 0 in the first and second scenario respectively.

6

1.2. Metrics to describe Graphs

The average clustering coefficient for the graph G is then given by

C(G) :=
1
|V| ∑

u∈V
C(u) (1.10)

The transitivity of a graph G is the ratio of all triangles over all possible
triples in which every node of G is involved. In other words transitivity
is the overall probability for the network to have adjacent nodes intercon-
nected, thus revealing the existence of tightly connected communities (or
clusters). A triple is defined as a subgraph of three nodes {u, v, w} ⊂ V
with edges E ′ = {(u, v), (v, w)} ⊂ E (we call node v the center of the
triple) while a triangle is the same subgraph whose edges now are E ′′ =
{(u, v), (v, w), (w, u)} ⊂ E .

By carefully noticing that each triangle contains three triples, we denote by

δ(G) :=
1
3 ∑

u∈V
δ(u) (1.11)

the total number of triangles in a graph G, where δ(u) is the number of
triangles involving node u. In addition let τ(G) denote the total number of
triples in a graph G. Newman et al. 2002 [25] defined transitivity as

T(G) :=
3δ(G)

τ(G)
(1.12)

Transitivity is also called global clustering coefficient in the Network Analysis
literature and it is applied to both undirected and directed graphs [20]. Like
density, transitivity is also a measure scaled from 0 to 1 and it is a way of
expressing the likelihoods of the relationships that may exist in our graph
but they currently do not.

Centrality Measures

After investigating the basic measures for the structure of networks we pro-
ceed by reviewing some widely used measures to find the most important
nodes. We start with eigenvector centrality which assumes that a node u is
important if it is surrounded by important adjacent nodes v ∈ N (u). So
a node’s importance is dependent on the importance of its neighbors and
therefore eigenvector centrality is a recursive question. The eigenvector cen-
trality of a node u is defined by summing up the centralities of the adjacent
nodes

7

1. Introduction

C(u) :=
1
λ ∑

v∈N (u)
C(v) (1.13)

where λ is a positive constant. In order to solve the above recursive equa-
tion we need to rewrite it in its matrix form using the graph’s associated
adjacency matrix A as follows

Ac = λc (1.14)

where c denotes the centrality vector and the entries of A are Auv = 1 if
v ∈ N (u)) and 0 otherwise. One can immediately see that the centrality
vector is the eigenvector of A and λ its corresponding eigenvalue. Since
A is a square matrix with non-negative entires, by Perron-Frobenius Theo-
rem we know that the largest eigenvalue λmax is always positive and unique.
Once obtained we use the respective eigenvector cmax whose n-th entry cor-
responds to the eigenvector centrality of the n-th node. The method which
is used for solving this recursive equation is called Power Iteration Method,
which we describe later on after the discussion about PageRank.

The next common concept of centrality is the betweeness centrality [24] which
is based on the idea that a node is important when it is present on many
shortest paths between two other nodes in the network. By using the no-
tation σst(u) the set of shortest paths between node s and node t including
node u and σst the set of shortest paths between s and t, the betweeness
centrality of node u is

C(u) := ∑
s 6=u 6=t

|σst(u)|
|σst|

(1.15)

As mentioned earlier the concept of eigenvector centrality inspired several
other metrics for measuring the importance of nodes in a network. In their
groundbreaking paper of 1999, L. Page et al. [27] developed PageRank also
known as the Google Algorithm. PageRank is an algorithm for the computa-
tion of every web-page ranking which is based on the structure of the Web
graph and its most notorious application is in searching tasks. In fact, if not
yet obvious to the reader, PageRank is the cornerstone of the Google search
engine that all of us use on a daily basis.

The rather straightforward mathematical formulation of the PageRank algo-
rithm we use to describe its functionality is as follows. Let ri denote the
ranking score (importance) of page (node) i and di the number of successor
pages, namely its out-degree. Now if node i has an out-link to node j, then

8

1.2. Metrics to describe Graphs

every successor node receives ri/di as a value of importance. The impor-
tance rj of node j is defined by the sum of all the values of importance on
its predecessor nodes,

rj = ∑
i−→j

ri

di
(1.16)

or in matrix formulation,

r = S · r (1.17)

where S is called the stochastic adjacency matrix whose entries Sij =
1
dj

if
j −→ i and whose columns sum to 1.

As an example let us consider the following toy graph. By following (1.16)
for j ∈ {A, B, C} we calculate the so called flow equations,

A

B

C

r A

r B
/2

rB /2
rC /2

rC/2

rA = rB/2
rB = rA + rC/2
rC = rB/2 + rC/2

in which case r = (rA, rB, rC)
T and S =

0 1/2 0
1 0 1/2
0 1/2 1/2

Note that from equation (1.17) we obtain that the rank vector r is an eigenvec-
tor of matrix S with eigenvalue 1. As we previously discussed eigenvector
centrality and PageRank require recursive computations, which means that
every score that a node is assigned depends on the score of the other nodes.
In both cases we search for an eigenvector which corresponds to the great-
est eigenvalue. The existence and uniqueness of that eigenvector is justified
by the Perron-Frobenius Theorem. The most widely used eigenvector algo-
rithms that is used for these kind of problems is called the Power Iteration
method which is described below.

9

1. Introduction

Algorithm 1 Power Iteration Method
1: Choose ε > 0
2: Initialize r(0) = (1/N, . . . , 1/N)T . Assign equal scores to all nodes
3: for t=1,2,... do
4: while ‖r(t+1) − r(t)‖ ≥ ε do . Can use any vector norm
5: r(t+1) ← S · r(t)
6: r(t+1) ← r(t+1)

‖r(t+1)‖ . Normalize
7: end while

At first each node is initialized by assigning the same weight 1/N where
N = |V|. Until the deviation of the node rankings between the iterations be-
comes ε-small for some tolerance ε > 0, we continue updating the rankings
by performing matrix multiplication with the stochastic adjacency matrix
S and then the rankings are normalized. However this general setting is
not guaranteed to work in cases where the graph contains nodes with no
out-links (dead ends) or when the algorithm is ”stuck” within a group of
nodes and is unable to escape (spider-traps). To illustrate this, think of the
power iteration method as a process where at each iteration t a pawn is
randomly placed on a node and then travels within the graph according to
the direction of the edges. If at some point the pawn lies in an area of the
graph where a group of nodes only have out-links to other nodes of the
same group, then the pawn has no hope of going back on its track over the
entire graph.

To tackle the dead-end and spider-trap problems Page et al [27] introduced
a parameter which at every iteration gives the pawn the choice of deciding
whether to continue following an edge at random or to teleport to a ran-
dom node. This parameter is expressed as a probability α and is called the
teleporting parameter and is deployed to solve the spider-trap problem. The
trapped pawn will go to a link chosen uniformly 1 at random with proba-
bility α, either will jump to a random node with probability 1− α and after
a finitely many steps the pawn will eventually escape. Note that mathemat-
ically the spider-trap problem does not cause any convergence problems,
but the PageRank scores will not be the desired since the spider traps will
absorb all the importance of the network.

The teleporting parameter also helps with the dead-end problem simply by
teleporting every time the algorithm meets a node without out-links. In
that case some columns of the stochastic adjacency matrix will be zero and
thus the matrix is not column stochastic anymore because its columns must
sum to 1. As a result adding the teleporting parameter β in the equation

1By the scope of Probability Theory, α ∼ U{1, .., N} where N is the number of vertices.

10

1.2. Metrics to describe Graphs

will make the matrix column stochastic by teleporting when there are no
out-links.

The final PageRank equation is then given by

rj = ∑
i−→j

α
ri

di
+ (1− α)

1
N

(1.18)

and in matrix form

r = G · r (1.19)

where G = αS + (1 − α)C is also known as the Google Matrix and C is
a N × N matrix with Cij = 1/N ∀i, j ∈ {1, ..., N}. Equation (1.19) can be
efficiently solved for the rank vector r by using the power iteration method
on the stochastic adjacency matrix G.

As previously discussed, real world networks often consist of a giant com-
ponent which is proportional to the size of the network. As a consequence
given that a directed graph is not strongly connected, we conclude that only
the nodes in the strongly connected components or in the out-component 2

of that components can possibly have eigenvalue centrality other than 0. By
the lack of incoming links, the other nodes in smaller (weakly) connected
components will have nearly zero eigenvector centrality.

To tackle this problem a method proposed by Leo Katz (1953) [15] introduces
the idea of assigning ”for free” each node a small amount of centrality in-
dependently of the position of the node in the graph. Thus the nodes with
no incoming links will have that minimum but positive amount of central-
ity while the more connected nodes will have a higher centrality. However
nodes with low in-degree may still have high centrality when the centrality
of their predecessors large.

Katz centrality is widely used in directed networks and is suitable for captur-
ing the relative centrality of a node within a network [36]. The mathematical
formulation of Katz centrality as described above is given by the following
equation,

rj = α ∑
i−→j

ri + β (1.20)

where α, β > 0. The and β plays the role of the ”free” amount of centrality
that the nodes are given. In matrix form this equation can be rewritten as,

2By out-component we mean the component where there is a node which is pointed to
by another node which belongs to a different component

11

1. Introduction

r = αAr + β1 (1.21)

By rearranging the terms and solving for r we obtain

r = β(I− αA)−1 · 1 (1.22)

For convenience we usually set β = 1 since our purpose focuses on finding
the nodes with high or low centrality and not the centrality’s absolute mag-
nitude. The free parameter α leverages the balance between the eigenvector
centrality and the constant term β. In other words by letting α −→ 0 then
all the nodes will have the same centrality equal to β, while if we set large
values for α then the centralities of the underlying nodes will also increase
and then start to diverge. This can happen when the matrix I− αA is not
invertible, i.e. when det(I − αA) = 0 or equivalently det(A − α−1I) = 0.
From basic linear algebra it follows that this condition is the characteristic
equation whose roots α−1 are equal to the eigenvectors of the adjacency ma-
trix A. By following the notation we introduced for eigenvector centrality to
denote the largest eigenvector of A by cmax, we have that

det(A− α−1I) = 0 ⇐⇒ α−1 = cmax ⇐⇒ α = 1/cmax (1.23)

As we keep increasing the values for α the centrality scores start to diverge
and their values become meaningless in practice [36]. Thus to ensure con-
vergence it is recommended to use values 0 < α < 1/cmax. As a final remark
note that by dividing with the out-degree and setting β = (1 − α) 1

N we
obtain the formula for PageRank as given in equation (1.18).

1.3 Motivation for Machine Learning

In the early days of technological advancements the majority of automated
applications used a hand-coded set of rules to process or analyze data and fi-
nally make decisions. The idea of manually designing a set of decision rules
has proven to be feasible for some applications but this approach requires
a good understanding not only about the nature of the given problem but
also for how a decision should be made. In addition the logical structure
of the design that lies behind the solution for a given problem needs to be
very specific to the respective task and hence the domain in which the task
belongs. Inevitably even the slightest modification of the task would require
rewriting the decision rule from scratch.

Among many others a very common example of where a hand-coded ap-
proach would fail is the task of image recognition, also known as computer

12

1.3. Motivation for Machine Learning

vision. That is because despite the fact that humans are experts on recog-
nising and detecting objects in an image, the way a computer ”perceives” a
digital image is very different. A computer breaks down a digital image in
a bunch of pixels which all together compose the depicted object(s), while
every single pixel contributes more or less to the decision making process
about detecting which object(s) is what in the input image. This very dif-
ference in the representation of images makes it impossible for humans to
manually design a set of rules and features that successfully detects an ob-
ject in a digital image. On the other hand a Machine Learning program
provided with a large collection of images of the object we wish the com-
puter to recognise, is often enough to determine what characteristics make
up the depicted object.

The era of the data abundance that we live in, along with the technological
development give rise to the need of automated methods which is exactly
what Machine Learning provides. K. Murphy (2012) [22] characterizes Ma-
chine Learning as ”a set of methods that can automatically detect patterns in
data and then use the uncovered patterns to predict future data or to perform
other kinds of decision making under uncertainty”. By giving emphasis on
the word ”data” we want to stress out that Machine Learning is inherently
data driven, which means that data are the cornerstone of Machine Learning.
Then the goal of Machine Learning is to automatically extract meaningful
motifs from data by optimizing the parameters of the model of our choice.

The parameters optimization process is often simply called learning in Ma-
chine Learning literature and in order to achieve this goal we need to design
models which can efficiently learn how to generate similar data to the data
that we observe. If our model can mimic the data generation process well,
then given the input information the model learns how to make the right
decision or predict meaningful values.

Similarly to the real life there is a wide variety of tasks to learn and as a
consequence machine learning can be subdivided into different types each
appropriate for a given task. To illustrate this think of the task of learning
how to predict if tomorrow the weather will be good or bad, or how to clas-
sify an email as a spam or not. As humans, the way we would deal with
these problems is to use our experience knowledge from our every day life
(often we can sense a rainy weather by smelling the air and feeling a cold
breeze, or the change in the wind direction). This involves the basic idea of
one of the most commonly used types of learning called supervised learning.
The learning algorithm gains ”experience” by reviewing some examples to-
gether with their respective labels and tries to figure out a rule for labeling
a new unseen example.

In the supervised setting, the learning algorithm is given a pair of N inputs
and outputs D = {(xi, yi)}N

i=1 and the goal is to learn the mapping which

13

1. Introduction

given an input x will return the correct output y. The set D is called the
training set and we often refer to each tuple (xi, yi) as an example or instance.
Moreover each xi is a d-dimensional vector of d different features or attributes
which can be anything from a person’s age, sex, height to the number of
pixels in a picture or a particular frequency of a signal. We will also refer
to the output y as the target or response variable which can be real-valued or
even categorical, i.e. y ∈ {1, ..., C}N . These cases are called the problems of
Regression and Classification (with C different categories) tasks respectively
in machine learning literature.

The mathematical formulation of the problem is as follows. First we assume
that there is an unknown function f : X −→ Y for which it holds that y = f (x)
for a given input and output sampled from the space X and Y of all possible
input values and output values respectively. Then we train our model on a
training set D to estimate the function f and then use our estimation f̂ to
make predictions via f̂ (x) = ŷ. The goal then is to make predictions on new
input data which are different from the data on which the model is trained.
We say the model generalizes well in this case.

For the unsupervised learning the setting remains the same with the only
difference that the algorithm is provided only with the input data while
keeping the labels (if any) out of play. Thus the machine learning algorithm
is given a training set D = {xi}N

i=1 and the goal is to discover and recog-
nise ”interesting patterns” in the data structure. As for an illustration, in a
spam email detection task the learner is trying to detect ”unusual” emails
to construct itself a decision boundary for each prediction. Other typical ex-
amples of when unsupervised learning comes in handy include clustering
data points into subsets of similar objects and finding important features of
the input data on which the model’s prediction will be based, also known
as featurization.

1.4 Machine Learning for Graphs

Although machine learning on graphs is not much different from the tra-
ditional ML framework, there are two key differences which we need to
highlight. Firstly notice the structure of graphs can vary much more com-
pared to streams (e.g. sound and text) and matrices (e.g. images). Each
node in a graph encapsulates the information from a single data point and
the adjacent nodes play an important role in the distribution of information
over the entire network. In a digital image for instance, we could apply the
same filter on different locations, since each pixel has the same local struc-
ture as its neighbor pixels. The very absence of spatial locality due to the
complex topological structure of graphs is one of the main factors that make
machine learning on graphs challenging. Secondly the distinction between

14

1.4. Machine Learning for Graphs

supervised and unsupervised learning is often very tough to make [12] as
we will see later on.

The current broadly studied machine learning tasks on graphs are Node Clas-
sification, Link Prediction and Graph Classification. In this paper we focus on
the problem of link prediction which as the name indicates, is a task to pre-
dict whether there is a missing link between a given pair of nodes or not.
Link prediction branches into many modern applications from user recom-
mendation systems (which clothes to buy or which TV show to watch) to
predicting potential side effects of drugs [37] and many more.

15

Chapter 2

Methods

2.1 The traditional ML pipeline

As any kind of a problem one first needs to specify a set of objects which will
help us prepare the ground we will be working on. Objects can be anything
from nodes, edges or even an entire graph depending on the task we are
trying to solve. Given data in its original form, each data object is assigned
one of these roles. The traditional framework of machine learning requires
the user to specify features for the objects (e.g. the degree of a given node
can be used as a feature of itself) which are represented as d-dimensional
vectors x ∈ Rd, where the i-th coordinate is the measurement of the i-th
feature, i = 1, ..., d. Finally we need to choose or design an objective function
which we want to either maximize or minimize, and it basically encapsulates
what we want to learn.

Let us consider the following set up for link prediction as an example to
illustrate what we described above. We want to predict whether or not a
given pair of nodes is connected. That is, the objects in this case are the
edges of a graph G = (V , E), which are represented as source −→ target
node pairs (s, t) ∈ E for s, t ∈ V . Note that for every pair of nodes (u, v)
of an undirected graph, its symmetric pair (v, u) is also an element of E .
Now what we wish to learn is a function f : E −→ {0, 1} which maps edges
est := (s, t) 7→ 1 or 0 if the edge exists or not respectively. This function f
is then approximated some f̂θ , characterized by some parameters θ, which
minimizes a specified loss function L. That is

f̂θ∗ := argminθ L(y, f̂θ(x)) (2.1)

where y are the true labels and f̂θ(x) are the estimates of fθ when given the
features x as input.

In order to have hopes for achieving reasonably good performance, choos-
ing or designing effective features for our data is crucial. The choice of the

17

2. Methods

right features depends on the task level of interest. For node-level predic-
tions, e.g. node classification, the goal is to characterize the position and
the surrounding structure of a node in a network; therefore features such as
the node degree and centrality measures would be a reasonable choice. For
edge-level predictions, e.g. link prediction, the goal is to design features for
a pair of nodes. One can use for example distance based features like the
shortest path length between the given pair of nodes, or features based on
the local and global neighbor overlap like the number of common neighbors.
In fact all the metrics for graphs described in Section (1.2) can be utilized as
node or edge features.

Figure 2.1: The traditional ML pipeline

Once the features are obtained we proceed by transforming the original data
to tabular data, in the form of a feature matrix X ∈ RN×d, where N is the
number of objects and d the number of features for each object, and a target
column vector y ∈ RN . Finally we split the data for training and testing and
apply our favourite machine learning algorithm. Note here that special care
has to be exercised to prevent data leakage between train and test data sets
as we demonstrate later in this chapter.

2.2 Graph Representation Learning

As we discussed in the previous section, traditional machine learning in-
volves manual feature engineering. However the construction of features
is a problem dependent process in the sense that one needs to build one
feature at a time using domain knowledge. Due to the constantly growing
volume and complexity of data in these modern times, the manual design
of features can often be very time consuming and tedious since the code
must be rewritten for each different dataset every single time. Furthermore
for the majority of machine learning algorithms it is very challenging to ana-
lyze unstructured data like graphs and can often lead to poor performance.

A common way to tackle these problems is to use a variety of techniques in-
spired from deep learning where the need of feature engineering is alleviated.
Graph representation learning, as the name indicates, is about learning fea-
tures automatically by the use of efficient embeddings which are additionally
independent of the task we are trying to solve. Embeddings are encoded
information incorporated in a d-dimensional vector in Rd, where d is the di-
mension of the embedding space. In particular for graphs, we want efficient

18

2.2. Graph Representation Learning

embeddings with the property that similar node embeddings indicate some
similarity between the nodes in the original graph.

Figure 2.2: (Left) The original graph of the famous Zachary’s Karate Club benchmark dataset
where each color indicates different communities between the club’s members. (Right) A repre-
sentation of the same graph in a two dimensional embedding space. Image taken from [29].

The notion of similarity is something we need to determine and depends on
the given challenge; for example in the original network we may want two
nodes to be similar if they share the same degree, or the same number of
neighbors, or the same shortest path length between them or anything we
can imagine.

Definition 2.1 (Similarity) Suppose a graph G = (V , E) is given. We define the
function S : V × V : R≥0, V × V 3 (u, v) 7→ s ≥ 0 to be the similarity between u
and v.

Note that similarity is an equivalence relation. Indeed, let ∼ denote the
relation ”is similar to” and consider some arbitrary nodes u, v, z ∈ V . Then
the following hold:

1. (Reflexivity) u∼u

2. (Symmetry) If u∼v then v∼u

3. (Transitivity) If u∼v and v∼z then u∼z

We follow notation inspired by Hamilton’s book ”Graph Representation
Learning” [12]. In addition to the similarity score in the original graph,
one needs to define an encoder

ENC : V 3 u 7→ zu ∈ Rd (2.2)

which maps nodes from V to d-dimensional embeddings, and a decoder

DEC : Rd ×Rd 3 (zu, zv) 7→ DEC(zu, zv) ∈ R≥0 (2.3)

which takes pairs of node embeddings and maps them to some non negative
value such that DEC(zu, zv) ≈ S(u, v) by optimizing the encoder’s param-
eters. The discrepancy between the decoded (i.e. estimated) and the true

19

2. Methods

similarity values is then measured by a loss function ` : R≥0 ×R≥0 −→ R≥0,
which is utilized to optimize the encoder’s parameters by minimizing the
empirical loss

L = ∑
(u,v)∈D

`(DEC(u, v), S(u, v)) (2.4)

over a training set of nodes D. One can then choose any of the plenty tradi-
tional methods which can be utilized to minimize the loss such as Stochastic
Gradient Descent [32] or factorization based methods.

Shallow Encoders

The key benefit of the encoder-decoder model is that it allows us to compare
different embedding methods by utilizing different combinations between
the encoder, the similarity measure on the original graph and the loss func-
tion. Most of the methods developed so far are on their most part based
on so called shallow embeddings and several approaches arise by combining
them with different decoders and loss functions. In particular any shallow
node embedding approach uses as encoder an embedding based on the ID
of each node, namely

ENC(u) = Zu = Z · u (2.5)

where Z ∈ R|V|×d is a learnable matrix with entries Zij, the j-th embed-
ding of node i, and u ∈ I|V| is the indicator vector, i.e. has zero in all its
coordinates except a one which indicates the node’s ID. Hence a unique em-
bedding vector is assigned to each node which is directly optimized with
respect to the loss function.

The shallow encoding regime has inspired several popular node embed-
dings approaches to be developed over the years. For example Belkin et al.
(2001) [2] deploy spectral techniques for node embeddings and clustering
by using the L2-distance between two node embeddings as a decoder and a
weighted sum over the graph-based similarity scores for the computation of
the loss. More precisely,

DEC(zu, zv) = ‖zu − zv‖2
2 (2.6)

L = ∑
(u,v)∈D

DEC(zu, zv) · S[u, v] (2.7)

where S[·, ·] is the matrix with entries the similarity scores given from the
similarity function S(·, ·). This is called the Laplacian Eigenmap technique
and the idea behind it is that the loss is penalized for node embeddings
that are far away from each other. Other approaches include inner product
methods [4], [26] where the decoder is just the dot product between node
embeddings and the loss is measured by the L2 distance

DEC(zu, zv) = zT
u zv (2.8)

20

2.2. Graph Representation Learning

L = ∑
(u,v)∈D

‖DEC(zu, zv)− S[u, v]‖2
2 (2.9)

and Random Walk embeddings like DeepWalk [29] and node2vec [10] which
are based on the idea that two nodes are similar if they co-occur in the same
random walk along the network with high probability. More precisely the
decoder in this case is a composition of the softmax function with the dot
product of the embeddings whereas the loss is the cross entropy loss, namely

DEC(zu, zv) =
ezT

u zv

∑vk∈V ezT
u zvk

(2.10)

L = ∑
(u,v)∈D

− log(DEC(zu, zv)) (2.11)

where DEC(zu, zv) ≈ P(v|u) = probability that the random walk visits node
v when started from node u.

Despite the fact that shallow encoders have achieved many successes through-
out the past decade, they suffer from some important drawbacks. As we
previously described, all shallow encoders optimize embeddings which are
unique to each node. As a result none from the parameters of the encoder is
shared between nodes, which may lead to high computational cost particu-
larly for large networks. Moreover even if our data contain rich information,
which could be exploited by assigning it to nodes as features, they are not
taken into account. Hence in a social network for example where each node
represents a person, the gender nor the age of that person would be consid-
ered in the construction of the embeddings. Another very significant prob-
lem is that shallow encoders generate embeddings only for nodes which
are present during the training phase, or in other words they are inherently
transductive.

Graph Neural Networks

The natural idea of combining both structural and feature information to
construct efficient node embeddings give rise to the so called deep encoders
also known as Graph Neural Networks. Intuitively Graph Neural Networks
can be viewed as an iterative approach where nodes aggregate information
from their local neighborhood at each iteration, so that as the iterations
progress node embeddings contain more and more information from further
reaches of thee network.

More concretely given a graph G = (V , E) with a node features matrix
X|V|×d, deep encoders generate node embeddings zu, ∀u ∈ V by the ex-
change of ”messages” between nodes which are updated via neural net-
works [9]. Notice here that unlike shallow encoders, the GNNs framework
requires node features as input to the model. However even if data contain

21

2. Methods

no feature information, there are several options to choose from such node
statistics (provided in Section 1.2) or techniques like one-hot encoding etc.

The way the information between the nodes is aggregated is very similar
to the concept of Convolutional Neural Networks applied to digital images,
where a convolutional kernel is applied to different locations of the image.
Then the gathered information from the filter is aggregated with techniques
such as taking the sum, maximum or mean and then the aggregated infor-
mation is utilized in the next layer of the CNN. On the contrary for a graph
there is no window of fixed size to be applied in a similar fashion since the
topological structure in different areas of a graph varies (in contrast to grids
and sequences).

The filter-like counterpart in GNNs is a tree which is sequentially unfolded
from each target/parent node until no further splitting is possible. As
shown in the bottom of Figure 2.3 each parent node accepts the aggregated
messages from its child nodes which correspond to its neighbors. Then the
aggregated information passes to the next aggregation level and so on. We
refer to these trees as computational graphs as they provide us the way to ag-
gregate the messages from the local neighborhoods of each node and finally
compute the node embeddings.

Figure 2.3: (Upper) An illustration of how a fixed size window is applied in a convolutional layer
over a digital image. The encoded information from each pixel in the red square is aggregated,
i.e. taking the minimum pixel value, and then the same process continues until all the areas of
the image are covered. Image taken from http://gregorygundersen.com/blog/. (Bottom)
How a computational graph looks like for a target node A. The black and grey boxes represent
the ”machine” that aggregates the incoming information and can be anything from a simple sum
or pooling operator to neural networks even. Image taken from http://web.stanford.edu/

class/cs224w/.

Let us now provide a description of the general Graph Neural Network
framework. Suppose a graph G = (V , E) is given with a feature matrix

22

http://gregorygundersen.com/blog/
http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/

2.2. Graph Representation Learning

X|V|×d. The first step is to initialize the node embeddings by setting them
equal to the original node features, formally

h(0)u = xu , for all u ∈ V (2.12)

Then in each iteration k = 0, 1, ..., L, for a fixed number of layers L, we
calculate the messages from the neighbors of each node including itself via,

m(k)
u = MSG(k)(h(k)v) , for all v ∈ N(u) ∪ {u} (2.13)

After the messages are calculated the next and final step is to aggregate
them and apply an activation function σ(·) to obtain the current embedding
of each node,

h(k)u = σ
(

AGG(k)({m(k)
v : v ∈ N(u)}, m(k)

u)
)

(2.14)

where MSG(·) and AGG(·) are arbitrary differentiable functions (i.e. neural
networks). After L iterations the final node embeddings for each u ∈ V are
then obtained by zu = h(L)

u .

Notice that different iterations in the message passing process are referred
to as the different layers of the GNN, while each iteration k determines the
k-hop neighborhood of each node. Thus after k iterations two sources of
information are encoded:

1. structural information (e.g. the degrees of all nodes in u’s k-hop neigh-
borhood) and

2. feature information based on feautures of all nodes in u’s k-hop neigh-
borhood.

Several state of the art models have been developed in the last couple of
years, each one utilizing different ways of computing and aggregating the
messages. One of the fundamental and most succesfull Graph Neural Net-
work models is provided by Kipf & Welling (2016) [16] called Graph Convo-
lutional Network (GCN), where the node embeddings are updated by

h(k+1)
u = σ

(
∑

v∈N(u)
W(k+1) h(k)v√

|N(u)||N(v)|

)
(2.15)

The MSG operator in this case is chosen as

MSG(h(k+1)
v) = W(k+1) h(k)v√

|N(u)||N(v)|
(2.16)

where W(k) ∈ Rd(k)×d(k−1)
is a learnable weight matrix, while the AGG op-

erator is just the sum over the adjacent nodes. By looking more closely at

23

2. Methods

equation 2.15 we observe that the factors αuv := 1√
|N(u)||N(v)|

can be viewed

as a weight of importance for each message transferred from u to v. Based
on this observation Velivckovic et al. (2017) [35] proposed another famous
GNN model called Graph Attention Networks, which deploy a more so-
phisticated way of weighting the importance between the interchangeable
messages by the use of attention weights αuv, which are obtained by fitting
a single layer feed forward neural network α with a Softmax(·) function. To
be more precise,

h(k+1)
u = σ

(
∑

v∈N(u)
αuvW(k+1)h(k)v

)
(2.17)

where

αuv =
exp(euv)

∑vk∈N(u)exp(euvk)
(2.18)

and
euv = α(W(k+1)h(k)u , W(k+1)h(k)v) (2.19)

Another third example includes GraphSAGE proposed by Hamilton et al.
(2008) [13] involves a two step aggregation and is formulated as follows

h(k+1)
u = σ

(
W(k+1) ·CONCAT(h(k)u , AGG({h(k)v , ∀v ∈ N(u)}))

)
(2.20)

First the messages from the local neighbors of each node are aggregated,

for example via AGG = ∑v∈N(u)
h(k)v
|N(u)| and then the messages are further

aggregated over the node itself via concatenation. Finally the generated

embeddings are normalized by the L2 norm as h(k)u ←−
h(k)u

‖h(k)u ‖2
2

.

2.3 Training

As discussed in the previous sections there are two approaches to apply
machine learning on a graph. The first one involves the traditional setting
of supervised learning where we design features after having transformed
the data into a tabular form, while the unsupervised setting for focuses
on learning the features automatically based on both structural but also
feature-based information. Unsurprisingly though both approaches require
the computation of a loss over a training set and a test set for an approxima-
tion of the generalization error which ideally should be as small as possible.
We highlight here that splitting a graph into training, validation and test
sets is much different from the traditional splitting methods and thus spe-
cial care must be taken in the splitting process in order to prevent issues
such as data leakage. Another crucial point is that the nodes in a graph
are not independent and not identically distributed. In other words the i.i.d. as-
sumption is violated for the case of graphs, because instead of statistically

24

2.3. Training

independent datapoints we have a set of interconnected nodes. This also
plays an important role for the reason why the boundaries between super-
vised and unsupervised learning on graphs are often blur. Instead the term
semi-supervised learning if preferred when referring to machine learning
on graphs.

Figure 2.4: A simple graph that is split into training (red), validation (green) and test sets (blue
dashed lines).

We first begin by demonstrating the reason that lies behind the required
technicality for splitting a given graph. As an illustration let us consider
a toy example and suppose that the graph is split into training, validation
and test sets as shown in Figure 2.4. Not only node statistics like degree
or PageRank centrality, but also node embeddings are affected by the con-
nected nodes that participate in the message passing process towards each
node. For instance node ”E” will affect the prediction on node ”C” because
node ”E” transfers some message to node ”C”. At a brief glance this in turn
will affect node C’s degree (kC = 4 in the original network, while in the
training set kC = 1) but also its embeddings if one used the deep encoding
approach (note that equations in (2.13) and (2.14) involve the neighborhood
of each node).

In order to overcome these issues we consider two commonly used graph
splitting techniques. The first one is called Transductive Splitting, where the
input graph is observed in all dataset splits in the sense that the structure
of the entire graph is used to calculate the node embeddings. Then the split-
ting takes place only with respect to the labels, so that the model can only
observe the labels of respective nodes within each split. For illustration, let
us consider again a simple graph as shown in Figure 2.4. By transductively
splitting the graph we first obtain the embeddings using the entire graph,
then train the model on nodes B and C, validate on nodes E and F to tune
the model’s hyperparameters and finally test the model on nodes A and D.
This setting can be applied to both node and edge level tasks.

The next regime for splitting a graph involves the Inductive Splitting where

25

2. Methods

the original graph is split into three independent graphs by breaking the
edges between nodes. The node embeddings are then computed by treating
each subgraph as a single dataset. That is, the embeddings are computed
using the graph over the nodes within each split along with their labels.
As an example, by splitting the graph in Figure 2.4 inductively, we would
first use the training graph to compute the embeddings and train on the
nodes’ B and C labels. The same procedure is then applied for the validation
and testing sets. Note that this setting is applicable not only for node and
edge level tasks, but also for graph level predictions. However the inductive
splitting is more feasibly preferred for graph level tasks because we would
like to test our model to an independent unobserved graph.

26

Chapter 3

Applications

As an application we construct a competitors network between U.S. publicly
traded companies on 2020 based on their annual 10-K and quarterly 10-Q
filings to the U.S. Securities and Exchange Commision (SEC). These filings
typically include a competition section in which the companies list other
companies viewed as competitors. All these companies are legally forced by
the SEC to file these regulatory reports in which they include information
about their current financial state, their exposures to significant risks along
with their impact on future operations as well as other information. These fil-
ings are often reviewed by investors, shareholders and financial institutions
in order to gain insight based on which they build their strategies.

In a real financial market, companies often have the incentive to misrepre-
sent the real risk factors they face. In particular a company that faces a lot of
competition might want to downplay it in order to appear stronger and more
attractive to investors. On the other hand, companies which hold a nearly
monopoly position in the market might attempt to overplay the competition
so that do not face any anti-monopoly rules which may result in significant
monopoly losses. These rules, also known as antitrust laws aim to promote
competitive markets by making efforts to exercise monopoly power illegal.
Nonetheless if a company fails to explicitly disclose all the risks or any fore-
seeable business problems they face, there is a potential threat of lawsuits
and litigation from investors but also from the SEC. As a result of these reg-
ulations companies are not allowed to declare misleading information that
stray away from the reality. The very threat of lawsuits and therefore losses
works as a regulatory mechanism that connects what companies declare to
the truth, which in turn is what makes our data representative.

The legal pressure against any omission of this information explains the
fact that the 10-K reports are often of large size and very complex to read.
A feasible way to analyze these lengthy documents is by using a range of
natural language processing (NLP) techniques, which are used to extract in-

27

3. Applications

formation from large-scale text data in an automate fashion. A number of
academic studies have examined what investors can learn about a certain
company based on the information embedded in 10-K filings. For example
Azimi & Agarwal (2019) [1] demonstrate via deep learning how positive
and negative words in these filings predicted abnormalities with respect to
returns and trading volume. Another recent study by Cohen et al. (2020)
[5] showed that changes in the language and structure of filings have a pre-
dictive impact on future stock returns and future operations. In a closely
related research Eisdorfer et al. (2019) [7] implemented C-Rank, which is a
dynamic measure of firm competitiveness inspired from the famous PageR-
ank algorithm. One of their primary results indicate that firms with higher
competition ranking determined by the C-Rank algorithm, tend to outper-
form their peers in terms of subsequent equity returns.

In this paper we also use textual analysis to find the competitors that compa-
nies mention in the competition section of their 10-K and 10-Q filings. With
this in mind we construct a directed graph where nodes represent the compa-
nies and form directed links with the respective competitors each company
mentions in their filing like shown in Figure 3.1. The problem we are trying
to solve is to predict the competitors of each company via machine learn-
ing, based on the current state of competition in the market. We present a
framework for link prediction which aims to predict new connections based
on the ones that already exist. After demonstrating how machine learning
is applied on graphs and outlining the differences with the traditional ML,
we approach the problem from two different scopes, namely supervised and
unsupervised (or more precisely semi-supervised) learning.

Figure 3.1: An illustration of the construction of the competitors network based on the com-
petitors listed in the SEC filings of each company.

Link prediction, also known as Relation Prediction, can be naturally views
as a binary classification problem by setting the target variable to be the

28

3.1. Application: Competitor Networks

indicator function,

y = 1{(u,v)∈E} =
{ 1 , if(u, v) ∈ E

0 , otherwise
(3.1)

for any pair of nodes u, v ∈ V in a given graph G = (V , E). Any scien-
tific domain whose entities interract with a structured way can benefit from
link prediction and that explains the fact that it has a central role in the
ongoing scientific research. Link prediction gives the ability to traders and
marketers to recommend products or services to users based on their exist-
ing preferences and financial corporations to monitor the transactions in a
market. Additionally in biology, link prediction has been used to predict
links between proteins [30] or interactions between drugs [34].

3.1 Application: Competitor Networks

3.1.1 Data

The original dataset consists of 6.768 10-K and 10-Q filings reported by U.S.
companies on 2020. The largest portion of an EDGAR’s filing consists of
HTML code, embedded PDF’s, ASCII encoded graphics for financial tables
and other artifacts. In fact some filings may even exceed 400MB of space
because of these artifacts which typically do not include useful informa-
tion. For the purpose of our analysis we follow Loughran & McDonald’s
approach [19] to efficiently clean and compress the SEC filings before pars-
ing them. This method also accounts for the volume of each document since
after the cleaning process the file sizes do not exceed 600KB.

The firms that we encounter in our data include common firm entity types,
such as corporations, holdings, limited, LLC, etc. but also bank shares,
funds and trusts. These filings often differ more or less in their structure,
which makes it difficult to extract relevant information by following a global
approach. However, there are some common patterns in all 10-K filings
that can be used to capture information like the company name, central in-
dex key (CIK), standard industrial classification number (SIC) and the date
which indicates when the fiscal year ended up to which the filing refers to.
After converting the documents in text format, we used regular expressions
to build the patterns and then capture the information of interest for each
10-K report.

Apart from actual trading companies, the original dataset also consists of
funds and trusts which we decided to exclude (1.413 out of 6.768 filings).
The company NASDAQ in particular was also excluded since as a trading
venue and regulatory service it is very common to be mentioned by other
companies in their 10-K filing and thus is not considered as a fruitful source
of information.

29

3. Applications

It is also worth to mention that public companies usually name their pri-
mary competitors in their SEC filings, but this is not always the case. In ac-
cordance to the official SEC website, companies provide information about
the competition they face in the ”Part I: Item 1 Business” section, which is
also the first item in the filings’ section of contents. However, this structure
is not adopted by every company and as a result, not all the documents
contain such a section. In fact, we found that slightly more the half of the
documents (2813 out of 5355) were organised in “Item X” sections, while
the remaining ones had a completely different structure with no business or
competition section (most of which are trusts and funds).

3.1.2 Competitors Identification

After cleaning the dataset from filings that do not serve our purpose, we
continue by extracting the company names mentioned as competitors. At
this point, we decided to reduce the size of the documents by only keep-
ing the text between the ”Business” section and the next one, which varies
from one 10-K report to the other. Inspired from Li et al. (2013) [17], the
key idea is to search in every sentence of these documents for words that
indicate competition and then parse this sentences to capture the mentioned
companies.

One common approach that serves our purpose is to use Natural Language
Processing (NLP) techniques, which give us the ability to parse and extract
information from any kind of documents. For this task we used two famous
open source Python libraries called spaCy [14] and NLTK [18] , which come
with pre-trained models on large corpora of text that consist of a pipeline.
This pipeline includes the main utilities used to tokenize the document in
words or sentences, perform part of speech tagging, recognise named enti-
ties etc. Named entity recognition is the process where words are recognised
as entities, such as dates, people, geographic locations and organisations.
The criteria by which the entities are recognised are defined by the model
that is used and one can use the package’s already trained models, or even
train custom ones. However, training an NLP model strays away from the
purpose of this paper and in order to obtain better results we used two mod-
els. More specifically, we decided to combine the “en core web sm” from
spaCy and the “StanfordNERTagger” from NLTK package by taking the
union of the two outputs. Interestingly this technique led to almost perfect
results in recognising at least one competitor in 2.327 out of 2.813 filings
(more than 80%), which will play the role of the destination nodes from the
respective origins.

30

3.1. Application: Competitor Networks

3.1.3 Explanatory Analysis

Upon the completion of the construction of the competitors network we pro-
ceed by investigating the main characteristics of the network. The competi-
tors network is a directed graph consisted of |V| = 2.327 nodes and |E| =
3.429 edges. Recall from Section 1.2 that for a directed graph the number of
all possible links between its nodes is calculated as N · (N − 1) = 5.412.602.
To be more precise the graph density D = 0.00063. We therefore conclude
the competitors network is very sparse as it can be seen in Figure 3.2 below.

Figure 3.2: The Competitors Network created by parsing SEC 10-K filings and capturing com-
panies mentioned as competitors with the use of named entity recognition.

Indeed one can easily see that there are many individual components of dif-
ferent sizes with the majority being of size two. We calculated the weakly
connected components of the graph which do not consider whether the direc-
tion of the edges. We provide the following bar plot to have a more clear
picture since the large size of the graph makes it difficult to visualize all
the (weakly) connected components that consist the network. It can be seen
from the Figure 3.3 that the network consists of a one large component with
1.708 nodes while the size of the rest components is significantly smaller
(ranging from 1-7 nodes). In order to get a sense of the size of the network
we calculate its diameter which is simply defined as the largest path between
any pair of nodes. However since we argued that the network consists of
disconnected components we choose the largest one because it is safe to as-
sume that there is no larger diameter for the other smaller components. The

31

3. Applications

network diameter of this network’s largest component is 16; the greatest
distance between any two nodes far away from each other.

Figure 3.3: Frequency of individual components of different sizes

The next structural calculation involves the concept of triadic disclosure. As
seen in Section (1.2) the two most common metrics for triadic disclosure are
the clustering coefficient and transitivity. By applying equations (1.9), (1.12)
we obtain C = 0.025 and T = 0.28 respectively. Note that it should not be
surprising that the transitivity of the graph is much higher than its density.
Since the graph is very sparse there are less possible triples to form in the
graph, or mathematically, we see that the number of possible triples appears
in the denominator of equation (1.12) for transitivity.

Next we proceed by searching for the most important companies in the com-
petitors network. The degree is the simplest and among the most common
feature for measuring the importance of a node and it is simply calculated as
the sum of its edges. Since the competitors network is a directed graph we
also consider the in and out-degree which is similarly the sum of incoming
and outcoming edges respectively. The average node degree is 2.95 while
the average in and out degree are equal to 1.47. In addition Figure 3.4 be-
low displays the degree, in-degree and out-degree distributions. Clearly the
degree distributions are right skewed which means that the majority of the
in or/and out degrees are quite low and we rarely observe nodes with high
degrees.

In accordance to our discussion in Section (1.2), real directed networks often
consist of many different connected components of various sizes. The same
holds for the competitors network and because of this phenomenon the ma-
jority of nodes have nearly zero eigenvector centrality scores. Interestingly, a
similar picture corresponds to all the rest of centrality measures we tested to
evaluate the node importance, in order to find the most central nodes while
looking at them by different scopes.

32

3.1. Application: Competitor Networks

(a)

(b)

(c)

Figure 3.4: Barplots (left) and probability distributions (right) for in-out degree (a), in-degree
(b) and out-degree (c) for nodes in the competitors network.

The top 10 nodes with respect to six different centrality measures are sum-
marized in table (3.1) below. Notice that the vast majority of nodes with
high in-degree also had high Katz and PageRank scores. Recall that these
measures are based on random walks over the network, each with some ex-
tra modifications (see Section 1.2). If a node has many incoming links then
the random walk is very likely to visit that node. On the other hand, nodes
with many out-links in the context of competitors is an indication that the

33

3. Applications

Figure 3.5: Histogram of eigenvector centrality in the competitors network. Frequency is given
on the y-axis while x-axis displays the centrality scores.

underlying company might not be very competitive. This explains why the
companies with high-out degree do not appear to have Katz and PageRank
centrality.

In
Degree

Out
Degree

Eigenvector
Centrality

1 Pfizer Durect Gilead Sciences
2 Merck NantKwest Allogene Therapeutics
3 Facebook Gristone Oncology Pfizer
4 Microsoft Mustang Bio Atara Biotherapeutics
5 Amgen Curis Precision Biosciences
6 Apple Lipocine Mustang Bio
7 Johnson & Johnson Agenus Merck
8 Gilead Sciences Ziopharm Oncology Sangamo Therapeutics
9 Abbvie Gossamer Bio Crispr Therapeutics
10 Biogen Parsons Abbvie

Betweeness
Centrality

Katz
Centrality

PageRank
Score

1 Mustang Bio Pfizer Facebook
2 Bellicum Pharmaceuticals Merck Pfizer
3 Gristone Oncology Facebook Merck
4 Agenus Amgen Microsoft
5 NantKwest Microsoft Johnson & Johnson
6 Ziopharm Oncology Johnson & Johnson Apple
7 Hercules Capital Apple Moody’s
8 Fortress Biotech Gilead Sciences Amgen
9 Solar Capital Abbvie Medtronic
10 BridgeBio Pharma BIOGENiogen Walmart

Table 3.1: Top 10 rankings of different importance measures. The companies with the highest
centrality scores with respect to at least three different metrics are highlighted in bold font style.

34

3.1. Application: Competitor Networks

Supervised Link Prediction

Since link prediction is a binary classification problem we need to construct
two classes of positive and negative examples. While it may be obvious
that the positive examples are the true existing links, the same does not
hold for the negative examples. The approach we propose is to create a
set of all missing edges between all node pairs, by finding all the possible
edges and discarding the existing ones. However as explained in Section
1.2 for a directed graph with N vertices, the number of all possible edges
grows O(N2). As a consequence our approach is to randomly (sub)sample
equally many missing edges to the number of the existing ones, and use the
obtained non-links as negative examples. With this approach, we avoid any
issues with imbalanced classes which would need extra care and technicality,
but also we make sure that we do not induce any bias that could possibly
be caused by the generating process for the negative examples.

Secondly, as we highlighted in Section 2.3, the i.i.d. assumption does not
hold for graphs. That is something we need to consider with caution when
computing features for our data, since the graph itself inevitably injects
some structural information on the nodes, which is very hard to quantify
and can be the root for data leakage. To prevent such issues, we implement
the following mechanism which aims to compute node or edge features in-
dependently of the existence of links. Before we compute any feature for the
source, target nodes or the edge itself the mechanism checks if there is a link
between the given pair of nodes. In the case of an existing link, each feature
is calculated after the link is broken instead of naı̈vely computing features
given the prior information that the link exists.

Once the negative samples, namely the missing links, are generated we rep-
resent each edge in a dataframe format by representing each edge as a tuple
of source and target node, while assigning a label ”0” or ”1” for the missing
edges and the true edges respectively. Hence the original dataframe for the
edges of the graph has shape 2 ∗ |E | × 3, where the factor 2 is justified by
the fact that we generated equally many missing edges of the graph as the
existing ones, and we end up with two balanced classes. Next we randomly
split the data into training and test data (80% and 20% respectively). Note
that we intentionally did not mention the validation set, because the training
data will be randomly split again in a K-Fold validation with K = 5 applied
three times, so we make sure that none of test edges are observed during
the training procedure.

Next we proceed by computing features for the source and target nodes
of each edge but also for the edge itself. As previously described we first
run a check for the edge in question if it exists in the original graph before
computing each feature. The two tables below summarize the node and
edge features calculated for each edge in the training and test sets separately.

35

3. Applications

Table 3.2: Node features computed for the source and target nodes of each edge in the com-
petitors network.

Node features

Name Formula

In-degree kin
i := ∑N

j=1 Aji

Out-degree kout
i := ∑N

j=1 Aij

Table 3.3: Edge features computed for the competitors network.

Edge features

Name Formula

common in-neighbors |Nin(va) ∩ Nin(vb)|
common out-neighbors |Nout(va) ∩ Nout(vb)|

Adar-in ∑v∈Nin(va)∩Nin(vb)
1

log(|Nout(v))|)
Adar-out ∑v∈Nout(va)∩Nout(vb)

1
log(|Nin(v))|)

Jaccard-in |Nin(va) ∩ Nin(vb)|/|Nin(va) ∪ Nin(vb)|
Jaccard-out |Nout(va) ∩ Nout(vb)|/|Nout(va) ∪ Nout(vb)|
Cosine-in |Nin(va) ∩ Nin(vb)|/|Nin(va)||Nin(vb)|

Cosine-out |Nout(va) ∩ Nout(vb)|/|Nout(va)||Nout(vb)|
Preferential Attachment In |Nin(va)||Nin(vb)|

Preferential Attachment Out |Nout(va)||Nout(vb)|

During the feature engineering process we initially included more node fea-
tures, such as PageRank and Katz centrality scores and some derivatives of
in and out-degrees (e.g. a linear combination). However we discovered that
these features caused a significant amount of information leakage while we
were evaluating the model via comparing our results with randomly gener-
ated data, as we elaborate later. Our justification is that PageRank and Katz
algorithms use the entire graph when calculating the scores. That is, even if
we remove an existing edge before we calculate either of these features, these
algorithms will naturally use the connectivity of the entire network. This in
turn means that the calculation of these features for nodes in the training
set depend on the testing set counterparts and vice versa. As a consequence
these features were excluded from our final model.

Starting from benchmark models for classification tasks such as Logistic Re-
gression, Decision Trees and Random Forests, we found that a Gradient
Boosting Classifier1 achieved the best performance after tuning the model’s
hyperparameters by performing K = 5−Fold validation with three iterations
in each split. Due to the restricted time the hyperparameters are obtained

1For the implementation of Gradient Boosting Classifier we used the open source Python
library scikit-learn [28].

36

3.1. Application: Competitor Networks

via a randomized cross validation search over the hyperparameter space as
shown below. The optimal parameters appear in bold font.

• of estimators: 10, 50, 100, 250, 450

• learning rate: 0.05, 0.10, 0.15, 0.20, 0.25

• maximum depth: none, 2, 4, 5, 8, 10, 15

• minimum samples to split an internal node: 2, 5, 10, 20, 40

• minimum samples required at a leaf node: 2, 5, 10, 15, 20

Unsupervised Link Prediction

In this section we study the performance of a relatively simple graph neural
network designed for link prediction. Recall from Section (2.2) that GNNs
alleviate the need for feature engineering, instead we deploy deep encoders
to find efficient embeddings automatically based on information coming
both from the structure of the graph and the input node or edge features.
Next the generated embeddings are combined via a mathematical operation
the result of which is used later to obtain the final predictions.

In Section (1.4) we mentioned that machine learning on graphs often blurs
the boundaries between supervised and unsupervised learning. Link predic-
tion via GNNs is one of the classic examples that justify the above statement.
In more detail, on the one hand the GNN model is learning the embeddings
automatically, but on the other hand the labels and the dataset splits is our
very own responsibility. As an intuition, a subset of the edges is hidden from
the network and then the model is trying to predict whether the edge exists
or not. In the machine learning literature typically problems of this nature
are referred to as self-supervised or semi-supervised instead of unsupervised
learning, which is clearly not very precise in this setting.

Based on the idea we mentioned above, the hidden edges will only be used
as supervision when the model makes edge-level predictions. We call these
edges supervision edges as their sole purpose is for computing objectives
and they are not given as input to the model. Instead the unhidden edges
are used by the model which generates embeddings based on the message
passing-aggregation regime we described in Section (2.3). That is, we refer
to these edges as message passing edges or simply message edges.

Let us now describe how the graph data are split in practise for link predic-
tion. Recall that there are two common choices of splitting a graph, namely
the inductive setting which splits the input graph into three independent
graphs, and the transductive setting which allows the entire graph to be ob-
served in all splits. According to the literature the tranductive splitting is a
typical choice for link prediction. As a result the entire graph is observed in

37

3. Applications

Figure 3.6: Transductive splitting for link prediction. a) The original graph (b) While training
the model uses training message edges (red) to predict training supervision edges (orange) (c)
After the training supervision edges are predicted, use them as well as the training message edges
to predict validation edges (blue) during validation (d) At test time use all the above to predict
test edges (green) .

each split and that means that message passing and supervision edges are
both part of the graph structure and the supervision. Therefore we need to
further split the edges into training, validation and test edges which relate
as follows. Initially the model uses training message edges while training to
predict training supervision edges. During the validation process both train-
ing message and supervision edges are used to predict the validation edges.
Finally, at test time the training message, supervision and validation edges
are used to predict the test edges. Once the training process is complete, the
supervision edges become known to the GNN model so that the model’s
hyperparameters are tuned using everything that is known up to that point
and finally apply the same procedure while testing. Figure 3.6 provides an
illustration of this setting in a simple graph.

Now we have discussed the process with which the training, validation and
test sets are created, we proceed with the description of the GNN that we
used to predict missing edges for the competitors network. Recall that in
graph representation learning the presence of a feature matrix is necessary.
As we describe in Section (2.2) even when no domain knowledge is already
included in our data in the form of features, we can always design and
assign new features out of data characteristics. In particular, we generate
vector representations for the nodes using a shallow encoder based on ran-
dom walks called node2vec [10] and use them as node features.

The basic architecture of the GNN model consists of two GraphSAGE layers
which output the generated node embeddings that are then normalized for
higher computational stability. After the first normalization a Leaky ReLU
activation function is applied before feeding the embeddings into the next
layer of the network and apply the same procedure. Note that by including

38

3.1. Application: Competitor Networks

Figure 3.7: The design of the GNN model.

two GNN layers only nodes which are 2-hops away from each underlying
node are considered in the message passing process. After the embeddings
are generated we compute their dot product based on which we obtain the
final predictions for the existence of links between the given pair of nodes.
The model’s architecture is illustrated in Figure 3.7 above.

For the implementation of the transductive splitting as well as the design
of the GNN we used DeepSNAP [31], an open source Python library which
bridges NetworkX [11] and Pytorch Geometric [8]. NetworkX is one of the
most powerful graph libraries for creating and manipulating graphs, while
Pytorch Geometric provides a solid deep learning framework.

3.1.4 Results

The table below summarizes the performance of the models used for link
prediction on the competitors network by following two different learning
approaches, namely via supervised and semi-supervised learning on graphs.
We apply the same process followed for each model on 100 different random
seeds, so we can obtain a more clear picture for the results by the use of con-
fidence intervals. The scores we obtain both for the ROC-AUC and F1, turn
out to be normally distributed according to statistical normality tests with
statistical level of significance 95%. Interestingly, the GNN model even with
a simple architecture and only two GNN layers outperforms the Gradient
Boosting Classifier by nearly 6%.

Model Scores

ROC F1

GBC 0.84± 0.08 0.84± 0.07
GNN 0.90± 0.04 0.90± 0.04

Table 3.4: Performance of Gradient Boosting Classifier and shallow Graph Neural Network for
link prediction on the competitors network.

39

3. Applications

Next we investigate the importance of each feature we used to train the
Gradient Boosting Classifier. As we can observe from Table 3.5, the most
important features tend to be node features while at the bottom of the table
we see all the edge features.

Rank Feature Importance

1 Source Out-degree 0.555
2 Target In-degree 0.249
3 Target Out-degree 0.044
4 Preferential Attachment Out 0.035
5 Source In-degree 0.025
6 Adar - Out 0.022
7 Jaccard - Out 0.016
8 Preferential Attachment In 0.013
9 Adar - In 0.006

10 Cosine - Out 0.006
11 common out-neighbors 0.006
12 common in-neighbors 0.005
13 Jaccard - In 0.004
14 Cosine - In 0.004

Table 3.5: Feature Importances with respect to Gradient Boosting Classifier.

Our framework for the supervised setting, namely the Gradient Boosting
Classifier, involves three steps namely, the construction of features and data
splits plus a hyperparameter search during validation time. Therefore we
need to examine each step individually to determine if it results in data
leakage. For that we run two experiments to check for any leak caused by
the features, and one experiment for the other steps, namely splitting and
hyperparameter optimization.

To be more precise, we tested the model on 100 independent random graphs
generated by the Erdös-Rényi model and compare the results with those
obtained from the competitors network. In order to generate a random
graph, an Erdös-Rényi model is given a number of nodes N as well as a
probability parameter p which determined the probability of two nodes to
be connected by an edge, considering (or not) its direction. Recall that the
graph density is a number between 0 and 1 hence it can naturally play the
role of p. NetworkX [11] provides a function which generates Erdös-Rényi
directed graphs based on these two parameters. In our experiments the
random graphs were generated by using the same number of nodes as the
competitors network, while p was set equal to its density.

The first and second experiments aim to help us find any leak caused by

40

3.1. Application: Competitor Networks

the features selection by keeping the hyperparameters fixed and no split-
ting taking place. The purpose of the third experiment is to test if splitting
cause any leakage by keeping only the hyperparameters fixed. Finally we
test if we lose information because of the hyperparameter optimization by
running the fourth experiment. Since the underlying graphs are randomly
generated, the model’s results should be as close to random guessing as pos-
sible. For notation convenience let θ∗ denote the optimal hyperparameters
obtained for the Gradient Boosting Classifier when trained and validated on
the competitors network. A more detailed description of the experiments
along with their results are provided in the caption of Table 3.6. Note that
the standard deviations express the estimated uncertainty caused by each
case we test against.

Experiment Scores

ROC F1

1 0.50± 0.01 0.24± 0.02
2 0.50± 0.02 0.51± 0.02
3 0.52± 0.03 0.53± 0.05
4 0.52± 0.03 0.53± 0.05
5 0.50± 0.04 0.50± 0.04

Table 3.6: Results for four different experiments on 100 Erdös-Rényi random graphs using a
Gradient Boosting Classifier. 1) Train on the real data with θ∗ without hyperparameter optimiza-
tion or splitting and test model’s performance on an entire random graph. 2) Train on a random
graph with θ∗ without hyperparameter optimization or splitting and test model’s performance
on another entire random graph. 3) Split a random graph, train the model with θ∗ without hy-
perparameter optimization, and evaluate model’s performance on the test set. 4) Split a random
graph and train model with hyperparameter optimization, and evaluate model’s performance on
the test set. 5) Use transductive setting to split a random graph, calculate node2vec embeddings
as node features and evaluate GNN’s performance on the test set.

Finally for the GNN model we run a fifth experiment by again generating
100 random Erdös-Rényi graphs with different random seeds while setting
the parameters for N and p as before. Next we follow the identical steps as
for the competitors network, which include transductive splitting, featuriza-
tion and of course training and testing. The results for this experiment with
respect to the AUC-ROC and F1 scores are 0.50± 0.04.

3.1.5 Conclusions

We construct a network via using NLP to extract information from 10-K
and 10-Q filings about the competition each company faces. The competi-
tors network is a directed graph with nodes being the firms which form
directed links towards their competitors. We then provide a framework

41

3. Applications

which illustrates the technical details about how to translate graph data into
a form on which machine learning can be applied. We compared two dif-
ferent approaches, one via the traditional supervised and one through semi-
supervised learning. Despite the fact that the competitors network is very
sparse, both methods achieved high performance. Finally we evaluate the
statistical significance of the results by running five different experiments
on randomly generated data, all of which steadily fluctuate around 50%. As
a result we conclude that the final scores obtained via both approaches are
statistically significant.

The motivation for running these experiments is to test if the model really
learns something from the competitors network by testing the model on
random data. As a consequence it is desirable to obtain scores as close to
random guess as possible. We can see from the table that the results for
the ROC score are very close to 50%. However we observe that the results
for experiments no. 3 and no. 4 are slightly better which is an indication
of potential data leakage caused by the splitting process. After investigat-
ing the splitting process we found out that the training and testing sets are
not fully independent and that causes some information leakage. More pre-
cisely, while we split our data into training and testing edges there are source
and/or target nodes which are shared between the splits. For instance it is
a common phenomenon to encounter a training edge (ua, ub) and a testing
edge (ua, uc) which both have node ua in common. Furthermore recall that
the Erdös-Rényi graphs are generated by using the same number of nodes
and connectivity as the competitors network. Therefore the randomly gen-
erated graphs are of similar structure to the real network and that imposes
some structure which has an impact on the purity of the randomness of
these graphs.

Moreover, we emphasize that Erdös-Rényi is the simplest graph generation
algorithm, making them probably the easiest threshold to overcome for eval-
uating the models with random data.

42

Chapter 4

Overall Conclusions

In this paper we described how machine learning can be applied on graphs,
with an emphasis on link prediction, both from the supervised and semi-
supervised perspectives. As part of the supervised learning regime, we have
described several commonly used features for analyzing graphs in general
and for feature engineering in particular. Following that, we described a way
to represent graph data into tabular form as edge lists accompanied by node
and edge features features. In addition we highlighted the technical details
that one should consider while splitting data constructed out of graphs and
illustrated why special care must be taken. Our proposed mechanism allows
for the computation of node and edge features more efficiently, without
assuming any prior information regarding graph connectivity.

In our application, two methods of link prediction are investigated and com-
pared, one by translating the problem into a traditional supervised classi-
fication problem, and the other by utilizing deep learning. In particular,
we construct a network between U.S. companies and their competitors they
mention in their last 10-K and 10-Q filings and we aim to predict future
competitors based on the current market competition. The competitors men-
tioned in each company’s filing were extracted using Natural Language Pro-
cessing techniques.

More precisely, we used two different Named Entity Recognition (NER)
models to identify firms in the competition section of each filing. These
models are trained on massive corpora of text whose content in turn deter-
mines the specialization of each model. Due to time restriction, we used two
different NER models to finally combine their results in order to maximize
the likelihood of capturing all the companies that are actually mentioned in
these filings. However one will most likely obtain better results by training
a custom NER model on a corpora consisted of competition sections from
different filings.

43

4. Overall Conclusions

While both supervised and semi-supervised approaches that we have dis-
cussed perform reasonably well, there is clearly much room for improve-
ment in their performance. During our analysis in the supervised setting,
we found that the way we generate negative examples by just sampling from
all of the possible missing edges results in a small amount of data leakage.
The reason is the training and testing edges are not fully independent in the
sense that their source or target node often appears in both sets of edges.
Perhaps one could improve performance by implementing another splitting
approach which is more robust. An obvious idea would be to sample neg-
ative examples from the set of all possible missing edges, by making sure
that the respective source and target nodes do not coexist in the sets of train-
ing and testing edges. Particularly for a sparse graph like the competitors
network, this would naturally result in a smaller number of missing edges,
which would in turn cause strong imbalance between negative and posi-
tive examples. However for larger and more dense networks this approach
might result in better performance.

Another inspiring idea for future work is to incorporate domain-specific in-
formation as node or edge features such as the industrial sector and annual
stock returns of for each company. This idea would most likely amplify
the decision boundary in the direction of links between competitors that be-
long in the same industrial sector which would in turn make learning more
efficient. Moreover, despite the reasonably high performance of our GNN
model there are many state of the art methods which would probably in-
crease the performance. For instance, instead of GraphSAGE one could also
try adding Graph Attention Networks [35] which additionally consider spe-
cific weights for each link obtained from a trainable attention mechanism.
An other idea involves adding virtual nodes to leverage the sparseness of
our graph.

44

Bibliography

[1] Mehran Azimi and Anup Agrawal. Is positive sentiment in corporate
annual reports informative? evidence from deep learning. The Review
of Asset Pricing Studies, 2019.

[2] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Nips, volume 14, pages
585–591, 2001.

[3] Simon R Broadbent and John M Hammersley. Percolation processes: I.
crystals and mazes. In Mathematical proceedings of the Cambridge philo-
sophical society, volume 53, pages 629–641. Cambridge University Press,
1957.

[4] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph
representations with global structural information. In Proceedings of the
24th ACM international on conference on information and knowledge manage-
ment, pages 891–900, 2015.

[5] Lauren Cohen, Christopher Malloy, and Quoc Nguyen. Lazy prices.
The Journal of Finance, 75(3):1371–1415, 2020.

[6] Thomas F Coleman and Jorge J Moré. Estimation of sparse jacobian
matrices and graph coloring blems. SIAM journal on Numerical Analysis,
20(1):187–209, 1983.

[7] Assaf Eisdorfer, Kenneth Froot, Gideon Ozik, and Ronnie Sadka. Com-
petition links and stock returns. Available at SSRN 3469642, 2019.

[8] Matthias Fey and Jan E. Lenssen. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

45

Bibliography

[9] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In In-
ternational conference on machine learning, pages 1263–1272. PMLR, 2017.

[10] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In Proceedings of the 22nd ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 855–864, 2016.

[11] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network
structure, dynamics, and function using networkx. Technical report,
Los Alamos National Lab.(LANL), Los Alamos, NM (United States),
2008.

[12] William L Hamilton. Graph representation learning. Synthesis Lectures
on Artifical Intelligence and Machine Learning, 14(3):1–159, 2020.

[13] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, pages 1025–1035, 2017.

[14] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adri-
ane Boyd. spaCy: Industrial-strength Natural Language Processing in
Python, 2020.

[15] Leo Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18(1):39–43, 1953.

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[17] Feng Li, Russell Lundholm, and Michael Minnis. A measure of compe-
tition based on 10-k filings. Journal of Accounting Research, 51(2):399–436,
2013.

[18] Edward Loper and Steven Bird. Nltk: The natural language toolkit.
arXiv preprint cs/0205028, 2002.

[19] Tim Loughran and Bill McDonald. Textual analysis in accounting and
finance: A survey. Journal of Accounting Research, 54(4):1187–1230, 2016.

[20] R Duncan Luce and Albert D Perry. A method of matrix analysis of
group structure. Psychometrika, 14(2):95–116, 1949.

[21] Michael Molloy and Bruce Reed. The size of the giant component of a
random graph with a given degree sequence. Combinatorics, probability
and computing, 7(3):295–305, 1998.

46

Bibliography

[22] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[23] Mark EJ Newman. Spread of epidemic disease on networks. Physical
review E, 66(1):016128, 2002.

[24] Mark EJ Newman. A measure of betweenness centrality based on ran-
dom walks. Social networks, 27(1):39–54, 2005.

[25] Mark EJ Newman, Duncan J Watts, and Steven H Strogatz. Random
graph models of social networks. Proceedings of the national academy of
sciences, 99(suppl 1):2566–2572, 2002.

[26] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu.
Asymmetric transitivity preserving graph embedding. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1105–1114, 2016.

[27] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-
WP-1999-0120.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[29] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: On-
line learning of social representations. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 701–710, 2014.

[30] Yanjun Qi, Ziv Bar-Joseph, and Judith Klein-Seetharaman. Evaluation
of different biological data and computational classification methods
for use in protein interaction prediction. Proteins: Structure, Function,
and Bioinformatics, 63(3):490–500, 2006.

[31] Zecheng Zhang Xinwei He Rok Sosic Jure Leskovec Rex Ying, Jiax-
uan You. Deepsnap. https://github.com/snap-stanford/deepsnap/,
2020.

[32] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–407, 1951.

47

https://github.com/snap-stanford/deepsnap/

Bibliography

[33] M Sahini and Muhammadpr Sahimi. Applications of percolation theory.
CRC Press, 1994.

[34] Dhanya Sridhar, Shobeir Fakhraei, and Lise Getoor. A probabilistic ap-
proach for collective similarity-based drug–drug interaction prediction.
Bioinformatics, 32(20):3175–3182, 2016.

[35] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana
Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

[36] Song Yang. Networks: An introduction by mej newman: Oxford, uk:
Oxford university press. 720 pp., 85.00., 2013.

[37] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinformatics,
34(13):i457–i466, 2018.

48

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

	Contents
	Introduction
	Motivation for Graphs
	Metrics to describe Graphs
	Motivation for Machine Learning
	Machine Learning for Graphs

	Methods
	The traditional ML pipeline
	Graph Representation Learning
	Training

	Applications
	Application: Competitor Networks
	Data
	Competitors Identification
	Explanatory Analysis
	Results
	Conclusions

	Overall Conclusions
	Bibliography

