ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Cyber Risks and Data Breaches

Master Thesis

Aline Schillig
22 October 2018

Advisors: Dr. S. Wheatley!, Prof. M. Maathuis?, Dr. S. Frei, Prof. D. Sornette!.
Chair of Entrepreneurial Risks' & Seminar for Statistics, ETH Ziirich






Abstract

In this master thesis we analyze data breaches which constitute one of the key cyber
risks of today’s cyber world. Motivated by previous work, in particular the work of
Eling and Loperfido [14, 2017], Wheatley, Maillart and Sornette [37, 2016], Hofmann,
Wheatley and Sornette [18, 2018], we analyze data breaches with at least 70k records
lost from an insurance point of view with a new extended dataset. We use multidi-
mensional scaling to identify severity risk classes based on the economic sector. To
model the frequency we employ generalized linear models (GLMs), whereby we de-
tect notable different scenario outcomes for the future development of the frequency of
data breaches with at least 70k records lost. The data breach severity is analyzed with
respect to various characteristics of the event, such as the size and economic sector
of the affected entity as well as the type of breach medium, the mode of failure that
led to the breach and whether a third party was involved in the data breach event.
We estimate the severity distribution, which is best approximated by a truncated log-
normal or upper-truncated Pareto distribution for various thresholds for the complete
dataset. In a further step we study the reporting delay. Herefore both parametric and
non-parametric methods are used to assess the development of the reporting delay
over time and its relation to other variables. Furthermore, we analyze whether there
have been any changes in the reporting of data breach events due to the introduction
of data breach notification laws in the United States.
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1 Introduction

1.1 Cyber risks and data breaches: a definition

Within this master thesis we study data breach events, which correspond to one type of
risks of the ever-changing cyber world [15]. The word ”cyber” takes its meaning from
the nouns computer network and virtual reality and is used in a broad context. Gener-
ally speaking, it relates to anything that has to do with information technology systems.
It includes the internet but also our dependence on electronic networks upon which our
infrastructure runs. While there are many benefits coming along with the ongoing tech-
nological progress, there are also risks that need to be considered and assessed. As cyber
appears in a wide range of contexts it naturally involves a vast spectrum of risks. One
definition of the latter is given by the Geneva Association [15, p. 12] and defines cyber
risk to be:

” Any risk emerging from the use of information and communication tech-
nology (ICT) that compromises the confidentiality, availability, or integrity of
data or services. The impairment of operational technology (OT) eventually
leads to business disruption, (critical) infrastructure break down, and physical
damage to humans and properties.”

Discussing all of the risks associated with cyber exceeds the scope of this master thesis and
we have therefore decided on focusing our attention on a single type of risk, namely the
risk associated with data breaches. A data breach refers to the event of a loss of massive
amounts of data. Hereby we can distinguish between different events by the kind and size
of data that was lost, the owner, how the loss happened and if there were any negative
consequences for the involved parties. The type of information included in such an event
can be anything from credit card information, social security numbers, bank account
information, login credentials, physical addresses up to personal health information. The
size of an event is typically defined by the number of records lost, whereby a record contains
any of the aforementioned types of information. In many cases the lost data corresponds to
client information collected by an entity or organization, whereby this also includes online
forums and governments. Knowing who is the owner of the lost data already provides a
lot of information about what kind of data might be at stake. If client data was stolen
from a bank, the bank’s client would generally be more worried about the privacy of their
financial information than of their personal health information. Similarly, voting data of
citizens are more likely to be stored by a government or political organization rather than
by a financial institution. While hacking is one of the most common reasons for a loss
of data [18], there are also others. In particular do not all events happen on a malicious
basis and can result due to a human error or a failure of the used hard- or software. Data
breach events are of importance as the stolen data is often traded on the dark web and
can lead to identity and credit card fraud [37].
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1.2 Aim of the thesis

The aim of this master thesis is to do a statistical analysis on data breaches. The main
interest lies therefore in looking at the phenomenon from an insurance point of view and
herefore to define individual risk classes, characterize both the frequency and severity
distributions, evaluate the reporting delay and assess whether changes in the regulatory
framework have influenced the reporting of data breaches. Of particular interest is hereby
to assess the changes over time and quantify them if possible.

1.3 Previous results

There are numerous perspectives one can consider when looking at cyber risks and data
breaches. In the following we limit the research review to the three topics categorization
of cyber risks, related costs and previous analyses of data breach events, as they are most
helpful in understanding the issue at hand.

Categorization of cyber risks

A fundamental question which has to be answered is how cyber events should be classified
[15, 4]. Several methods exist, but a universal standard has yet to be established. Ad-
mittedly, this might be too much to ask for, as it greatly depends on what question one
wants to answer. However, this is of immense importance as it lays the stepping stone for
cyber insurance. In order to be able to ensure such risks it must be clear what they entail
and what is covered. A categorization from an insurance point of view is given by the
Geneva Association [15], where cyber risks are characterized by multiple dimensions. The
first one differentiates between events that are caused by natural disasters or events that
can be considered man-made catastrophes. The latter allows a further differentiation by
considering the kind of activity (criminal, non-criminal, intentional, accidental), the type
of attack (malware, insider attack, spam, denial of service, etc.) and the type of attacker
(terrorist, governmental, criminal). The second dimension measures the vulnerability,
whereby both the organization specific security level as well as the one from the industry
or supply chain partners are considered. The third dimension distinguishes among the
consequences of a cyber event, as they can for example lead to a loss of data or business
interruption, which may lead to a monetary loss later on.

Costs related to data breaches

This highlights another research question which has been of high interest with regards
to the pricing of cyber insurance contracts, namely what are the costs associated with
cyber risks? An extensive study on the costs of data breach events has been conducted
by the Ponemon institute in 2017 [22]. In this study an average amount of costs per lost
record is calculated based on a global sample from 11 countries and two regional samples’.
To get an estimate for the costs associated with a data breach event, numerous aspects
were considered. Firstly, there might be a loss of costumers, which was unforeseen and
not planned for, due to the data breach. Further costs stem from the detection, internal
reporting and containment of the breach event. This includes for example additional
assessments and audits as well as investigative tasks. Then there are costs after the data
breach which stem from notifying the victims, legal expenditures and identity protection
services for victims - only to name a few. While the average costs of data breaches are
decreasing on a global level (158 US$ in the study from 2016 vs. 141 US$ in the study from
2017), the average costs have risen for some countries. The US is for example not only the

'The study considered 419 organizations from the US, the UK, Germany, Australia, France, Brazil,
Japan, Italy, India, Canada, South Africa, the Middle East (including the United Arab Emirates and
Saudi Arabia) and the ASEAN region (including Singapore, Indonesia, the Philippines and Malaysia).
The analysis was limited to events with 1k up to 100k records lost.
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country with the highest average costs per lost record (255 US$ in the 2017 study) but has
also shown a significant increase from 2016 onwards. For the 419 organizations included
in the 2017 study the average total cost was 3.62 million US$, while for the previous year
the average total was 4 million US$. Even though the average total costs per data breach
have declined, it is still a glaring additional amount of expenses to digest and further
accentuates the demand for insurance products.

Previous analyses of data breaches

Previous research has already been conducted in this field and the following analysis
builds upon previous work done by Eling and Loperfido [14, 2017], Wheatley, Maillart
and Sornette [37, 2016], Hofmann, Wheatley and Sornette [18, 2018] and we therefore
give a brief summary of their respective results.

In [14, 2017] multidimensional scaling (MDS) is used to define different risk classes with
regards to frequency and severity. Hereby both the kind of attack (hack, unintended
disclosure, etc.) as well as the type of organization (business, governmental, etc.) were
considered and Eling and Loperfido showed that different types of data breaches should be
modelled as individual risk classes. For both frequency and severity several distributions
were parametrized per risk class and compared to the original dataset. While for severity
the skewed log-normal distribution shows the best fit, the frequency is best modelled by
a negative binomial distribution.

In [37, 2016] both frequency and severity distributions have been estimated, whereby a
current maximum breach size was detected. The monthly frequency was modelled via
a Poisson generalized linear model (GLM) and while the rate for events within the US
remained stable, a significant increase was detected for events outside of the US. For
the severity a current maximum was detected which grows sublinearly in time and is
characterized by a doubly truncated Pareto distribution. Furthermore, it was found that
both the frequency and severity of data breach events scale with the organization size
s (here given by the market capitalization) according to s%¢. The cumulative process
is studied and the issue of the erosion of privacy is highlighted as personal information
accumulates in underground markets.

In [18, 2018] the authors give a characterization of data breach events as a man-made
catastrophe and show that data breaches are in particular dominated by hacking events.
For the latter it was shown that both the frequency and severity have been increasing
over time, whereby the half-yearly frequency counts were modelled by a log-linear nega-
tive binomial GLM and for the severity both a truncated log-normal as well as an upper-
truncated pareto distribution give a suitable fit. Furthermore, challenges with regards to
cyber insurance have been thoroughly discussed. The currently on the market available
insurance policies have many limitations and exclusions and thus make it difficult for cos-
tumers to select a product that suits their needs. However, at the same time it is hard for
insurance companies to price policies adequately as the risk is largely driven by human
behavior. Further challenges with regards to insuring cyber risks were discussed from dif-
ferent viewpoints (insurance company, regulatory & societal, individual & firm), whereby
for insurance companies the major limitations in insuring cyber risks lie in the ongoing
change of the technology, the heavy-tailed nature and the violation of independence among
different events.

When comparing the results from different analyses it is important to keep in mind that
firstly the datasources or a combination thereof are most often not the same or cover differ-
ent timespans, as the analyses have been conducted at different points of time. Secondly,
most analyses only consider the upper tail of the severity distribution, whereby different
truncation points have been used. Even though severe breaches account for almost all of
the lost records [37], there are still numerous small events happening.
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Other analyses on the topic have been conducted in [12] and [29].

1.4 Outline of the thesis

Based on the work that has been done so far, we would like to revisit some of the previously
posed questions on a new dataset. Moreover, we would like to additionally look at more
ways to characterize such data breach events. To this end we have built our own dataset
from three publicly available sources (see section 1.5.1) and added market data as well as
additional factor variables, which further classify the data breach events. As Eling and
Loperfido in [14] we use multidimensional scaling (MDS) to differentiate between different
risk classes in chapter two. Then we characterize both the frequency and severity distri-
bution functions in chapters three and four. In chapter five we use an additional dataset
to assess the development of the reporting delay of data breach events over the last couple
of years. In chapter six we investigate whether the frequency of data breaches changed
with the introduction of data breach notification laws per state within the United States
(US). The results are summarized at the end of each of the corresponding subsections. A
short summary thereof and comparison with previous findings of the literature is given in
chapter seven, where also future questions of interest are presented.

1.4.1 General remarks

Throughout this master thesis standard mathematical notation is used, where we denote
by Y, N the response variables and by X the corresponding predictor variables in a
matrix. Observations are denoted by y; and their corresponding predictor vector by x;.
Any subscripts such as ¢, m or g refer to the time or time interval such as months or
quarters. [ specifies the parameters in the statistical models and the intercept is always
included if not otherwise specified. Furthermore, hypothesis tests are conducted at a 95%
confidence level if not mentioned otherwise. As a general rule of thumb our estimates are
shown with no more than three significant digits (most often only two) as they are only
estimates of the true values and contain some amount of uncertainty. The reporting of
more significant digits might cause the reader to believe that the estimates are of higher
precision than they are likely to be and we thus refrain from doing so. The names of
variables are printed in italics to make the distinction clear and for factor variables the
corresponding levels are also printed in italics.

Throughout the master thesis several acronyms are used and in table 1.1 a list of them is
given as a point of reference.

1.5 Description of the main dataset

1.5.1 Sources

For our analysis we will work with a dataset combined from the following three publicly
available datasources.

1. Privacy Rights Clearinghouse (PRC') [8], as of 2.6.2018. Most of the events were
obtained from this source. PRC only records events which are reported within the
US2. The database contains events from February 2005 until May 2018.

2. Breach Level Index (bli) [20], as of 23.4.2018. This is the second largest source and
has recorded data breach events from all over the world since 2013 until the end of
2017.

2This does not imply that the organization is headquartered in the US.


https://www.privacyrights.org/
https://breachlevelindex.com/

1.5. Description of the main dataset

Table 1.1: Acronyms used throughout the master thesis and their corresponding terms.

Acronym  Term ‘ Acronym  Term
AD Anderson-Darling OLS Ordinary least squares
AIC Akaike information criterion other Miscellanous sector which is a merger of the

economic sectors energy, basic materials,
utilities, politics and military

BIC Bayesian information criterion pol Politics

bli Breach Level Index (see section 1.5.1 for PRC Privacy Rights Clearinghouse (see section
further information) 1.5.1 for further information)

CA Correspondence analysis SW Software

edu Education/educational unkn Unknwon

GLM Generalized linear model Us United States

gov Government/governmental 50 Energy (economic sector)

HIBP “Have I Been Pwnd” (see section 5.1 for 51 Basic materials (economic sector)
further information)

HW Hardware 52 Industrials (economic sector)

IiB Information is beautiful (see section 1.5.1 for 53 Consumer cyclicals (economic sector)
further information)

KS Kolmogorov-Smirnov 54 Consumer non-cyclicals (economic sector)

MCAP Market capitalization / market capitalized 55 Financials (economic sector)

MDS Multidimensional scaling 56 Healthcare (economic sector)

MFACT Multiple factor analysis 57 Technology (economic sector)

mil Military 58 Telecommunication services (economic

sector)
NPO Not-for-profit organization 59 Utilities (economic sector)

3. Information is Beautiful ([iB) [21], as of 6.6.2018. This database contributes the
least to our dataset, as most of the events are already contained in the other two.
It also records global events and contains data breach events from 2004 onwards.

1.5.2 Dataset

Only events with at least 70k records lost were considered and yielded a dataset with
993 observations. The number of records lost is referred to by severity or total records
(name of variable). For each observation a proxy date is available and the location of
the headquarters of the affected entity was specified (if possible). Additional market
information was included® in order to better understand what kind of companies were
affected. The additional market data consists of the economic sector of the affected entity,
its market capitalization (if available) and the number of employees at the proxy date (if
available). An additional variable also distinguishes among the type of organization (e.g.
private, public, government) and six factor variables add further information about the
breach event. The latter provide a specification of the medium with which the data was
lost, give information about whether multiple firms were involved in the same data breach,
whether the breach was committed or facilitated by an inside or outside party, whether
the breach happened intentionally, whether a third party was involved and specify the
mode of failure of the data breach. The complete list and a detailed description of the
variables is provided in the appendix A.1.

3Mostly from Thomson Reuters [13] and other publicly available resources, such as annual reports.


https://docs.google.com/spreadsheets/d/1Je-YUdnhjQJO_13r8iTeRxpU2pBKuV6RVRHoYCgiMfg/edit




2 Exploratory Analysis

We start by doing an exploratory analysis of the main dataset and as in [14], we use
multidimensional scaling (MDS) [23] to this end. In order to identify any subgroups
within our dataset we require a dissimilarity measure that can deal both with continuous
and factor variables. One possible dissimilarity measure that can handle both types of
variables is Gower’s similarity coefficient [17]. By using this measure no valid subgroups
could be identified on the complete dataset when taking all variables into account. We have
thus decided on using a simplified approach and show in this section how the frequency of
data breach events of different severities is related to the economic sector. Following [14],
we use multiple factor analysis (MFACT) [26] in a second step to analyze its development
over time.

2.1 Multidimensional scaling

As in [14], we set up a contingency table which counts how often a sector has been
victimized and thereby differentiates between the severity of the attack. Since total records
is a continuous variable, we group it into quartiles. As some sectors (energy (50), basic
materials (51), utilities (59), politics (pol) and military (mil)) show very few observations
we merge them into a miscellaneous sector called other, otherwise they appear as outliers
and dominate the representation.

Table 2.1: Number of events reported in the complete dataset per economic sector (industrials (52), consumer
cyclicals (53), consumer non-cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication
services (58), education (edu) and other; the economic sectors energy (50), basic materials (51), utilities (59),
politics (pol) and military (mil) have been merged into the miscellaneous sector other) differentiated by severity
quartiles. The row percentages are shown in brackets and the row total in the right outmost column. Differences
between the economic sectors are both visible in the row totals and the relative frequency of events per severity
quartile.

1. Quartile 2. Quartile 3. Quartile 4. Quartile Total

52 39 (23.8%) 40 (24.4%) 46 (28.0%) 39 (23.8%) 164
53 28 (20.3%) 26 (18.8%) 46 (33.3%) 38 (27.5%) 138
54 8 (24.2%) 11 (33.3%) 7 (21.2%) 7 (21.2%) 33
55 34 (27.2%) 38 (30.4%) 31 (24.8%) 22 (17.6%) 125
56 43 (29.7%) 50 (34.5%) 35 (24.1%) 17 (11.7%) 145
57 30 (14.8%) 27 (13.3%) 54 (26.6%) 92 (45.3%) 203
58 6 (15.8%) 10 (26.3%) 7 (18.4%) 15 (39.5%) 38
edu 45 (51.7%) 26 (29.9%) 10 (11.5%) 6 (6.9%) 87
other 15 (25.0%) 20 (33.3%) 12 (20.0%) 13 (21.7%) 60

Usually, correspondence analysis is used for contingency tables. In correspondence analysis
the primary goal is to reveal the dependence relationship among the row and column
variables [23]. However, we are interested in identifying different risk classes and will
therefore apply MDS in order to represent the dissimilarities between the economic sectors
in a two or three dimensional space. For contingency tables the chi-square distance is
usually used to assess the dissimilarity between rows (or columns). This was also done in
[14] and we use the same distance measure here.

This allows us to express the difference in the frequency of data breach events with respect

7
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to severity quartiles for two different economic sectors. We use the classical MDS algorithm
[23, p. 481] to get a two or three dimensional representation of our contingency table.

o
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Figure 2.1: Left plot: Decay of the eigenvalues of the multidimensional scaling solution of the contingency table
showing the number of events reported in the complete dataset per economic sector (industrials (52), consumer
cyclicals (53), consumer non-cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication
services (58), education (edu) and other; the economic sectors energy (50), basic materials (51), utilities (59),
politics (pol) and military (mil) have been merged into the miscellaneous sector other) differentiated by severity
quartiles. Starting from the fourth largest eigenvalue all of them are equal to zero, which means we can represent
the observed dissimilarities between the economic sectors exactly in a three dimensional space. Right plot: Two
dimensional representation of the economic sectors given by the multidimensional scaling solution of the aforemen-
tioned contingency table. We observe in particular a separation of the education (edu), the technology (57) and
the telecommunication (58) sectors from the other economic sectors.

In the left panel of figure 2.1 we can observe a fast decay from the first to the second eigen-
value and a plateau at the second and third largest eigenvalue. The subsequent eigenvalues
are equal to zero. This indicates that we can represent the observed dissimilarities quite
accurately in a two or three dimensional space. The representation in a two dimensional
space is shown on the right of figure 2.1.

2.1.1 Two dimensional multidimensional scaling representation

The goodness of fit measure! equals 0.91 and indicates that the two dimensional MDS so-
lution has a good fit. An interpretation of the axes is given by considering the correlations
of the fitted points per axis with the columns of our contingency table.

Table 2.2: Correlations of the fitted coordinates of the two dimensional multidimensional scaling solution of the
contingency table showing the number of events reported in the complete dataset per economic sector (industri-
als (52), consumer cyclicals (58), consumer non-cyclicals (54), financials (55), healthcare (56), technology (57),
telecommunication services (58), education (edu) and other; the economic sectors energy (50), basic materials (51),
utilities (59), politics (pol) and military (mil) have been merged into the miscellaneous sector other) differentiated
by severity quartiles with the columns of the original contingency table. The first principal component shows a large
negative correlation with the fourth severity quartile while the second principal component exhibits some negative
correlation with the second and some positive correlation with the fourth severity quartile. These correlations pro-
vide an interpretation for the principal component axes and thus how the individual economic sectors differ from
each other.

1. Quartile 2. Quartile 3. Quartile 4. Quartile

Corr. x-axis 0.46 0.28 -0.46 -0.72
Corr. y-axis 0.10 -0.36 -0.16 0.24

We observe that the first axis of the MDS representation shows a high negative correlation
for events with breached records in the fourth severity quartile. It is also shows a notable

LA goodness of fit measure is given by dividing the sum of the eigenvalues of the components used
for the representation by the total sum of the eigenvalues, i.e. for the two dimensional representation this

equals (Zle )\i)/(Z?:l i) [35].

8
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negative correlation for events with breached records in the third severity quartile and a
notable positive correlation for events with breached records in the lowest severity quartile.
Hence large positive x-coordinates can be associated with a high frequency of breaches
in the first severity quartile or breaches with very few severe breaches in the third and
fourth severity quartile. If sectors are positioned close to the origin along the x-axis, it
indicates that they mostly suffer breaches with severity in the second quartile or across
the complete spectrum of the considered breach severity?.

If we consider again the right plot of figure 2.1, we note the following:

e The education sector (edu) is positioned at the right outer edge along the x-axis as
it shows a high frequency of events in the lowest severity quartile and a comparably
low rate of events in the fourth.

e The healthcare sector (56) also shows a rather low number of events for the fourth
severity quartile but it has a lower x-coordinate as it suffers mostly from breaches
of the second severity quartile and not of the first.

e The technology sector (57) is located on the far left along the x-axis, as it mostly
suffers from breaches of the fourth severity quartile and from notably fewer from the
first.

e For the telecommunication sector (58) we observe the lowest number of events in
the first and the highest in the fourth severity quartile. As there is no sharp increase
of the frequency from the first to the fourth severity quartile it is not positioned as
far away from the origin as the technology sector (57).

e The consumer cyclical sector (53) has a similar x-coordinate as the telecommunica-
tion sector (58) since it has a high rate of events in the third and fourth quartile but
the frequency for the first and second severity quartile are not considerably lower.

The y-axis does not show as strong correlations with the columns of the contingency table
as the x-axis, but we can still observe a negative correlation with the second quartile and
a positive correlation with the fourth.

If we look at figure 2.1, we see that the education sector (edu) shows the largest y-score
as it mostly suffers from breaches of the first severity quartile and from notably fewer
from the other three. Hence the large positive y-coordinate shows this discrepancy for the
second severity quartile. The technology sector (57) also shows a large positive y-score as
it mostly suffers from the fourth severity quartile and fewer from the second. The same
holds true for the telecommunication sector (58). However in this case the y-coordinate
is a bit lower as the discrepancy is not as profound as for the technology sector (57). The
healthcare sector (56) shows a large negative y-score as it mostly suffers from breaches of
the second severity quartile and from fewer of the fourth.

2.1.2 Three dimensional multidimensional scaling representation

We are also going to consider the three dimensional representation and therefore add the
contribution of the third largest eigenvalue (see figure 2.2). We note that the financial
sector (55) and the healthcare sector (56) are closest to the xy-plane. For the consumer
cyclical sector (53), the industrial sector (52), the education sector (edu) and the technol-
ogy sector (57) we observe positive z-coordinates. However, while the industrial (52) and
consumer cyclical sector (53) are positioned relatively close to each other in the xy-plane,
the education (edu) and technology sector (57) are located far apart on opposite sides.

The telecommunication sector (58), the consumer non-cyclical sector (54 ) and the miscel-
laneous sector other show negative z-coordinates, whereby we see that the miscellaneous

2Recall that our dataset only considers events with at least 70k records lost.
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sector other and the consumer non-cyclical (54) are very close to each other along all
three coordinates.

Z-Coordinate Z-Coordinate

0.15 0.15
7 0.10 0.10
/ 0.05 0.05
0.00 0.00

-0.05 -0.05

-0.10 -0.10

-0.15 -0.15

Figure 2.2: Left plot: Three dimensional representation given by the multidimensional scaling solution of the
contingency table showing the number of events reported in the complete dataset per economic sector (industri-
als (52), consumer cyclicals (53), consumer non-cyclicals (54), financials (55), healthcare (56), technology (57),
telecommunication services (58), education (edu) and other; the economic sectors energy (50), basic materials (51),
utilities (59), politics (pol) and military (mil) have been merged into the miscellaneous sector other) differentiated
by severity quartiles. The colors differentiate between the z-axis factor scores (see color bar on the right). Right
plot: The same plot as on the left showing additionally a projection of the economic sectors onto the xy-plane.
The third principal component provides in particular further differentiation between the economic sectors which are
located close to each other in the xy-plane (consider for example the economic sectors industrials (52), consumer
non-cyclicals (54) and other).

For the three dimensional representation we get a goodness of fit equal to 1, which means
that we were able to find a representation in R? which yields exactly the observed differ-
ences of our contingency table. Below we show the correlation of the different axis with
the columns of the contingency table.

Table 2.3: Correlation of the fitted coordinates of the three dimensional multidimensional scaling solution with the
columns of the contingency table showing the number of events reported in the complete dataset per economic sector
industrials (industrials (52), consumer cyclicals (53), consumer non-cyclicals (54 ), financials (55), healthcare (56),
technology (57), telecommunication services (58), education (edu) and other; the economic sectors energy (50),
basic materials (51), utilities (59), politics (pol) and military (mil) have been merged into the miscellaneous sector
other) differentiated by severity quartiles with the columns of the original contingency table. The first principal
component shows a large negative correlation with the fourth severity quartile while the second principal component
exhibits some negative correlation with the second and some positive correlation with the fourth severity quartile.
The third principal component shows a large positive correlation with the first and third severity quartile. These
correlations provide an interpretation for the principal component axes and thus how the individual economic sectors
differ from each other.

1. Quartile 2. Quartile 3. Quartile 4. Quartile

Corr. x-axis 0.46 0.28 -0.46 -0.72
Corr. y-axis 0.10 -0.36 -0.16 0.24
Corr. z-axis 0.71 0.54 0.77 0.46

We see that for the z-axis we get a high positive correlation for both the first and third
severity quartile. Therefore, sectors with a large positive z-coordinate seem to suffer in
particular from breaches of the first or third severity quartile.

Combining this interpretation with the ones from the other two axes and the contingency
table 2.1 from the beginning, we note the following:

e The education sector (edu) seems to be very different from all other economic sectors.
It mostly suffers from breaches of the first severity quartile and notably fewer from
the other three.
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The technology sector (57) is also positioned separately from the others as it mostly
experiences breaches from the fourth severity quartile and also numerous from the
third.

The telecommunication sector (58) is close to the technology sector (57) in the xy-
plane, but their z-coordinates are very different. This is due to the fact that the
telecommunication sector (58) shows a lower number of events with breach severity
in the third quartile and not as clear of an increase along the severity quartiles as the
technology sector (57) does. However, this could also be due to the lower number
of observations compared to the technology sector (57).

The consumer cyclical sector (53) has the highest z-coordinate as it shows an accu-
mulation of breaches from the third severity quartile.

The industrial sector (52) suffers breaches from all severity quartiles®, whereby it
also shows a slightly higher rate for the third severity quartile. Therefore it is
positioned close to the origin in the xy-plane and shows a positive z-coordinate.

The grouped sector other and the consumer non-cyclical sector (54) seem to be
quite similar as they are closely located to each other. Both of them experience in
particular breaches from the second severity quartile and fewer from all the others.

The financial sector (55) and the healthcare sector (56) show very similar breach
frequency pattern as they suffer from the complete spectrum but show an accumula-
tion in the second quartile and a decreasing frequency for the higher quartiles. The
healthcare sector (56) is distanced apart from the financial sector (55) along the
y-axis as the accumulation in the second quartile is more profound.

2.1.3 Conclusion

Based on the above observations we draw the following conclusions:

1.

For the frequency one can combine the miscellaneous sector other and the consumer
non-cyclical sector (54) as they show a very similar frequency pattern with respect
to severity quartiles.

. Another possible risk class could be given by the technological sector (57) and the

telecommunication sector (58). Even though MDS clearly separates them, if we
consider the contingency table 2.1 one might wonder if this is due to the overall
lower rate of events that the telecommunication sector (58) suffers, which can result
in a less clear frequency pattern.

. Another possible pair is given by the financial sector (55) and the healthcare sector

(56). Both of them suffer from the complete spectrum with an accumulation in the
second quartile, whereby this is more profound for the healthcare sector (56).

. The remaining sectors (education (edu), industrials (52), consumer cyclicals (5%))

should be considered as different risk classes since they are clearly separated in the
MDS solution and show different frequency patterns in the contingency table 2.1.

2.2 Multiple factor analysis

2.2.1 Dominating subgroups

Even when taking the different timespans of the datasources into account, the number of
events reported per year varies a lot (see table 2.4). Therefore we would like to identify

3This is not surprising if one considers that this sector offers a lot of services to other sectors and
therefore operates in various fields.

11



2. EXPLORATORY ANALYSIS

years that have a similar frequency distribution with respect to breach severity (again
considered in quartiles) for different economic sectors. We use multiple factor analysis
(MFACT) [32] to track the evolution of the frequency distribution with respect to different
severity quartiles over time. For this we have set up 13 contingency tables as the one
for MDS, whereby each table summarizes the events of a given year. MFACT applies
correspondence analysis (CA) to the individual contingency tables and then balances the
influence of the individual tables in the overall analysis [2, 26].

Table 2.4: Number of data breaches per year for the complete dataset, built from the three datasources Privacy
Rights Clearinghouse, breach level index and Information is Beautiful. The variation between the years is partially
explained by the different timespans of the different datasources (Privacy Rights Clearinghouse records events with
a date from 2005 onwards, breach level index for the time period 2013 until the end of 2017 and Information is
Beautiful since 2004).

Year # Events Year # Events Year # Events

2004 1 2009 27 2014 122
2005 31 2010 42 2015 107
2006 50 2011 48 2016 183
2007 49 2012 48 2017 129
2008 47 2013 90 2018 19

Recall that our observations range from 2004 until end of May 2018, which is a broad time
spectrum considering the number of categories and observations we have. As an example,
we show two contingency tables for 2008 and 2015 in table 2.5.

Table 2.5: Left table: Number of events reported in the complete dataset (built from the three datasources Privacy
Rights Clearinghouse, breach level index and Information is Beautiful) in 2008 per economic sector (industrials (52),
consumer cyclicals (58), consumer non-cyclicals (54 ), financials (55), healthcare (56), technology (57), telecommu-
nication services (58), education (edu) and other; the economic sectors energy (50), basic materials (51), utilities
(59), politics (pol) and military (mil) have been merged into the miscellaneous sector other) differentiated by
severity quartiles. Right table: The analogous table as on the left for 2015. The observed variation in the number
of events for the two years is partially due to the different timespans of the different datasources (Privacy Rights
Clearinghouse records events with a date from 2005 onwards, breach level index for the time period 2013 until the
end of 2017 and Information is Beautiful since 2004)).
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As expected, the contingency tables do show some sparse entries. In 2004 we only have
one event reported, and we will therefore include it into the 2005 table. Moreover, we
have to keep in mind that 2018 is only partially represented, since the data was extracted
at the beginning of June in 2018. We start by applying MFACT to these 13 yearly tables.

First of all, we note that the two dimensional plot in figure 2.3 shows less than 50% of the
total inertia, which is an analogous measure for the total variance explained. In MFACT
the first eigenvalue is between 1 and the number of tables considered. If it is close to the
maximum the first dimension of the individual CAs are considered to be similar and would
therefore justify a simultaneous analysis of the individual contingency tables [26]. As this
is not the case, we consider several subgroups. This yields the following observations:

1. Our set of sectors can be divided into two subgroups. The first subgroup contains the
economic sectors industrials (52), consumer cyclicals (53), financials (55), health-
care (56) and technology (57), the second consumer non-cyclicals (54), telecom-
munication services (58), education (edu) and other (the economic sectors energy
(50), basic materials (51), utilities (59), politics (pol) and military (mil) have been
merged into the miscellaneous sector other). Considering all of them together yields
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Figure 2.3: Group representation plot of the multiple factor analysis of the contingency tables showing the number
of events in a year (for 2005 until 2018) per economic sector (industrials (52), consumer cyclicals (53), consumer
non-cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication services (58), education
(edu) and other; the economic sectors energy (50), basic materials (51), utilities (59), politics (pol) and military
(mil) have been merged into the miscellaneous sector other) differentiated by severity quartiles. The total inertia
shown in the plot (27.38% for the first axis, 17.25% for the second) is less than 50%. As the former is an analogous
measure to the total variance explained the considered two dimensional groups representation does not display
most of the variance observed in the compromise table of the yearly contingency tables and thus makes a reliable
comparison between different years challenging.

a representation which is dominated by the second group. If we look at the two
groups we can note the following: Firstly, 54, 58 and other are the sectors with the
lowest rate of events and all of them are considerably lower than the ones observed
in the first group. For the educational sector the overall rate of events is not as low
as for 54, 58 and other, but it is still notably lower than the overall rates from the
first subgroup.

Table 2.6: Number of events reported in the complete dataset per economic sector (industrials (52), consumer
cyclicals (58), consumer non-cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication
services (58), education (edu) and other; the economic sectors energy (50), basic materials (51), utilities (59),
politics (pol) and military (mil) have been merged into the miscellaneous sector other). The economic sectors can
be split into two groups by their total number of events, i.e. the ones with an overall total below 100 (consumer
non-cyclical (54), telecommunication (58) and other) and above 100 (industrials (52), consumer cyclicals (53),
financials (55), healthcare (56) and technology (57).

52 53 54 55 56 57 58 edu other

# 164 138 33 125 145 203 38 87 60

Secondly, another similarity between the sectors consumer non-cyclicals (54 ), telecom-
munication services (58), education (edu) and other is given by the number of sparse
entries in the contingency tables. These four sectors show most zero entries among
the quartiles for contingency tables on a yearly basis. Even though MFACT takes
the different levels of frequencies into account it is probably the combination of these
two facts that leads to the dominating role of the second subgroup in the analysis
with all sectors on a yearly basis.

Table 2.7: Number of sparse entries per economic sector (industrials (52), consumer cyclicals (58), consumer non-
cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication services (58), education (edu)
and other; the economic sectors energy (50), basic materials (51), utilities (59), politics (pol) and military (mal)
have been merged into the miscellaneous sector other) in the yearly contingency tables of the number of events
reported in the complete dataset per economic sector (same as the aforementioned ones) differentiated by severity
quartiles. In particular economic sectors with a low total number of events reported in the complete dataset show
a high number of sparse entries.

52 53 54 55 56 57 58 edu other

# sparse entries 4 13 36 5 10 17 34 20 22
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2. EXPLORATORY ANALYSIS

2. The contingency table for the year 2009 appears to be quite different due to its
low overall number of events. Considering again table 2.4, we can see a notable
decrease in comparison to the other years. The same holds true for 2018 due to its
incompleteness and the time span of the different datasources (see section 1.5.1).

MFACT has a weighting mechanism in place that takes care of the different frequency
levels. However, due to the observed sparsity for some sectors we have decided on analyzing
the two previously mentioned subgroups separately. Furthermore, considering the low
number of overall events, we have also grouped some of the years in order to reduce the
number of contingency tables.

2.2.2 Sector subset industrials, consumer cyclicals, financials, health-
care and technology

In the following the sectors consumer non-cyclical (54 ), telecommunication services (58),
education (edu) and other are excluded. For the remaining sectors the overall numbers of
events per year are shown in table 2.8.

Table 2.8: Number of events reported in the complete dataset (built from the three datasources Privacy Rights
Clearinghouse, breach level index and Information is Beautiful) per year from the economic sectors industrials (52),
consumer cyclicals (53), financials (55), healthcare (56) and technology (57). The variation between the years is
partially explained by the different timespans of the different datasources in which events were reported (Privacy
Rights Clearinghouse records events with a date from 2005 onwards, breach level index for the time period 2013
until the end of 2017 and Information is Beautiful since 2004).

Year # of Events  Year # of Events  Year # of Events

2004 1 2009 16 2014 96
2005 20 2010 35 2015 83
2006 36 2011 41 2016 149
2007 39 2012 35 2017 103
2008 34 2013 69 2018 18

We will exclude the years 2005 (incl. 2004), 2009 and 2018 as they might again distort
the representation due to their low rate of events. Considering the remaining years on an
individual basis gives a poor fit. A remedy for this is to group consecutive years in order
to reduce the number of contingency tables. It is hereby very important to keep in mind
that the following results depend on the grouping of the years.

The first overall eigenvalue is 3.29 which is close to 4, the number of tables considered,
and it therefore seems appropriate to analyze the groups simultaneously. From the plots
in figure 2.4 we note the following:

e In the plot on the left there is a clear separation between the years 2006-2008 and
the other three groups, which indicates an evolvement over time of the frequency
distribution with respect to severity quartiles for the different sectors. The groups of
the more recent years are positioned more closely together. However, hereby there
is also a clear distinction visible between the two groups 2010-2012, 2013-2015 and
the last group 2016-2017.

e Looking at the third plot of figure 2.4, we also observe a high variation of the
estimates in the factor scores for the different tables. The compromise factor scores
are colored in black and especially for the sectors industrials (52), financials (55)
and technology (57) we observe a broad range of partial factor scores around the
compromise score.

An analysis of the contributions from the different sectors to the principal compo-
nents of the separate CAs (table not shown) shows that a high positive score along
the first principal component is strongly negatively associated with severe breaches
from the fourth severity quartile. The technology sector (57) is positioned far out
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Figure 2.4: Left plot: Groups representation plot of the multiple factor analysis of the contingency tables of the
yearly groups 2006-2008, 2010-2012, 2013-2015 and 2016-2017, whereby each contingency table shows the number
of events reported within the years specified by the respective yearly group per the considered economic sectors
industrials (52), consumer cyclicals (53), financials (55), healthcare (56) and technology (57) differentiated by
severity quartiles. The total inertia shown in the plot is quite high (59.63% in the first dimension, 19.75% in
the second). As the former is an analogous measure to the total variance explained, this two dimensional groups
representation plot displays most of the variance observed in the compromise table of the contingency tables of the
yearly groups. A simultaneous analysis of the different yearly groups is only appropriate to do if the first compromise
eigenvalue is close to the number of tables considered. In this case this is given as the first overall eigenvalue equals
3.29 and we consider four contingency tables simultaneously. Middle plot: For the aforementioned multiple factor
analysis we show the correlations of the first three principal components of the individual correspondence analyses
of the yearly groups tables 2006-2008, 2010-2012, 2013-2015 and 2016-2017 with the first two compromise principal
components (along the x-axis the correlation with the first compromise principal component is shown, along the
y-axis the correlation with the second principal component). The length and angle of the correlation arrows of
the principal components of the individual yearly groups show how much a principal component contributes to a
compromise principal component. In particular we observe that all first principal components of the individual
yearly groups tables are very correlated with the first compromise principal component and thus the first principal
component is a good representation for all of them. The second compromise principal component mostly reflects
the second principal components of the yearly groups 2006-2008 and 2016-2017. Right plot: For the aforementioned
multiple factor analysis we show the partial factor scores of the considered economic sectors industrials (52),
consumer cyclicals (58), financials (55), healthcare (56) and technology (57) of the individual correspondence
analyses of the yearly groups tables 2006-2008 (red), 2010-2012 (green), 2013-2015 (blue), 2016-2017 (pink) and
the respective compromise factor scores (black). In particular for the sectors industrials (52), financials (55) and
technology (57) we observe a high variation of the partial factor scores which is an indicator for a high variation of
the frequency across severity quartiles over time.

on the left which shows that it suffers in particular from these breaches. Moreover,
the plot tells us that this is the case for all yearly groups. On the other side we see a
notable positive compromise factor score for the financial (55) and healthcare (56)
sector. Both of them seem to suffer less breaches from the fourth severity quartile.
These observations are in line with what we have seen in the MDS section 2.1.

The interpretation of the second compromise axis is not as straight forward. By
looking at the contribution from the individual CAs we observe that almost half of
the contribution to this axis stems from 2006-2008 and roughly a third from 2016-
2017 (this can also be seen in the partial axes plot). This major contribution to the
second principal components in these two individual tables stem from the financial
(55) and healthcare (56) sectors, whereby a large positive score is associated with
many breaches from the first severity quartile or not so many from the second.
Considering the individual tables we see that the financial sector (55) shows most
of the events in either the first or second quartile, whereby the healthcare sector
has always suffered mostly from events from the second severity quartile. Hence
the second compromise principal component is primarily showing the discrepancy
between these two sectors for the two mentioned yearly groups.

The first observation for the groups representation plot can be verified by looking at the
coefficient of similarity [3] between the different contingency tables shown in figure 2.5.

We see especially low correlations between 2006-2008 and both groups 2010-2012 and
2013-2015 which matches their position in the groups representation plot. As expected,
the groups 2010-2012 and 2013-2015 show a higher correlation coefficient than each of
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Figure 2.5: Pairwise similarity correlation coefficients of the contingency tables of the yearly groups 2006-2008, 2010-
2012, 2013-2015, 2016-2017, whereby each contingency table shows the number of events reported within the years
specified by the respective yearly group per the considered economic sectors industrials (52), consumer cyclicals
(53), financials (55), healthcare (56) and technology (57) differentiated by severity quartiles, and the compromise
table (MFA). We observe both large and small positive similarity correlation coefficients for various pairs of yearly
groups, which indicates that some yearly groups can be considered similar (e.g. 2010-2012 and 2013-2015) but that
there has as well been an evolvement over time as for example the two groups 2006-2008 and 2013-2015 show a very
low similarity correlation coefficient.

them individually with the group 2016-2017. Hence the two groups 2010-2012 and 2013-
2015 can be considered to be more similar than 2016-2017. What is surprising, is the
low value of the correlation coefficient between 2013-2015 and 2016-2017 of 0.54 and the
rather high value between 2006-2008 and 2016-2017 of 0.74.

Overall it appears that for the sectors industrials (52), consumer cyclicals (53), financials
(55), healthcare (56) and technology (57) we have found three different similarity clusters
of the frequency distribution with respect to severity quartiles. The first one consists of
2006-2008, the second of 2010-2012, 2013-2015 and the third cluster of 2016-2017.

2.2.3 Sector subset consumer non-cyclicals, telecommunication services,
education and other

We proceed analogously as in the previous section for the subset of sectors consumer non-
cyclical (54), telecommunication services (58), other and education (edu). The yearly
number of events observed for this subset is shown in table 2.9.

Table 2.9: Number of events reported in the complete dataset (built from the three datasources Privacy Rights
Clearinghouse, breach level index and Information is Beautiful) per year from the economic sectors consumer non-
cyclical (54), telecommunication services (58), education (edu) and other. The economic sectors energy (50), basic
materials (51), utilities (59), politics (pol) and military (mil) have been merged into the miscellaneous sector other.
The variation between the years is partially explained by the different timespans of the different datasources in
which events were reported (Privacy Rights Clearinghouse records events with a date from 2005 onwards, breach
level index for the time period 2013 until the end of 2017 and Information is Beautiful since 2004).

Year # of Events  Year # of Events  Year # of Events

2004 O 2009 11 2014 26
2005 11 2010 7 2015 24
2006 14 2011 7 2016 34
2007 10 2012 13 2017 26
2008 13 2013 21 2018 1

In the following we only exclude the years 2004 and 2018. For the resulting 13 contingency
tables there are six columns without any observations. Since the inverse of the column
weights are needed in the individual analyses the current method will not work with such
sparse tables. Therefore we directly consider five groups of consecutive years. The first
eigenvalue of the compromise fit is 3.73, whereby the maximum is at 5. This is not very
close, but we can still try to infer something from this fit.
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Figure 2.6: Left plot: Groups representation plot of the multiple factor analysis of the contingency tables of the
yearly groups 2005-2007, 2008-2010, 2011-2013, 2014-2015 and 2016-2017, whereby each contingency table shows
the number of events reported within the years specified by the respective yearly group per the considered economic
sectors consumer non-cyclical (54), telecommunication services (58), education (edu) and other (the economic
sectors energy (50), basic materials (51), utilities (59), politics (pol) and military (mil) have been merged into
the miscellaneous sector other) differentiated by severity quartiles. The total inertia shown in the plot is quite
high (58.03% in the first dimension, 29.24% in the second). As the former is an analogous measure to the total
variance explained, this two dimensional groups representation plot displays most of the variance observed in the
compromise table of the contingency tables of the yearly groups. A simultaneous analysis of the different yearly
groups is only appropriate to do if the first compromise eigenvalue is close to the number of tables considered.
In this case this is not given as the first overall eigenvalue equals 3.73 and we consider five contingency tables
simultaneously. Middle plot: For the aforementioned multiple factor analysis we show the correlations of the first
three principal components of the individual correspondence analyses of the yearly groups tables 2005-2007, 2008-
2010, 2011-2013, 2014-2015 and 2016-2017 with the first two compromise principal components (along the x-axis
the correlation with the first compromise principal component is shown, along the y-axis the correlation with the
second principal component). The length and angle of the correlation arrows of the principal components of the
individual yearly groups show how much a principal component contributes to a compromise principal component.
For both compromise principal components we observe yearly groups principal components which do not point
into the same direction and thus make a comparison challenging. Right plot: For the aforementioned multiple
factor analysis we show the partial factor scores of the considered economic sectors consumer non-cyclical (54),
telecommunication services (58), education (edu) and other of the individual correspondence analyses of the yearly
groups tables 2005-2007 (red), 2008-2010 (green), 2011-2013 (blue), 2014-2015 (pink) 2016-2017 (brown) and the
respective compromise factor scores (black). For all considered economic sectors we observe a high variation of the
partial factor scores which is an indicator for a high variation of the frequency across severity quartiles over time.

To assess the similarity between different groups from the groups representation plot in
figure 2.6, we directly consider the similarity correlation coefficient between the different
contingency tables shown in figure 2.7. Hereby we make the following observations:
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Figure 2.7: Pairwise similarity correlation coefficients of the contingency tables of the yearly groups 2005-2007, 2008-
2010, 2011-2013, 2014-2015, 2016-2017, whereby each contingency table shows the number of events reported within
the years specified by the respective yearly group per the considered economic sectors consumer non-cyclical (54),
telecommunication services (58), education (edu) and other differentiated by severity quartiles, and the compromise
table (MFA). We observe both large and small positive similarity correlation coefficients for various pairs of yearly
groups, which indicates that some yearly groups can be considerd similar (e.g. 2005-2007 and 2008-2010) but that
there has as well been an evolvement over time as for example the two groups 2005-2007 and 2011-2013 show a very
low similarity correlation coefficient.

e What we observe from the table is that the plot is not telling us everything and
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2. EXPLORATORY ANALYSIS

might even be misleading. The group 2016-2017 is clearly separated from all other
years, while it is the group that shows the highest similarity coefficients between
0.61 — 0.77 with all other groups. While the groups 2011-2013 and 2014-2015 are
close in the plot, they show a low coefficient of similarity of 0.44. On the other hand,
2005-2007 and 2008-2010 are close to each other in the plot and show a similarity
coefficient of 0.81, which one would expect based on the groups representation plot.

e Also when considering the partial axes plot in figure 2.6 we see that the first dimen-
sions of the principal component of groups 2005-2007 and 2011-2013 are likely to be
too far away for a clear interpretation of the first compromise dimension. Even when
looking at the contribution of the sectors to the individual first principal components
there is no clear interpretation.

e [t becomes evident from the third plot of figure 2.6 that for most observations the
partial factor scores cover a wide range of the principal component plane and even
cross compromise axes. Especially the consumer non-cyclical (54) and telecommu-
nication (58) sector do not show many events. Therefore the number of events is too
low and the tables are too sparse to observe any clear similarities or dissimilarities
between the different sectors and yearly groups.

2.2.4 Conclusion

We had to simplify the individual tables in order to get a reliable group representation.
In particular we had to partition the economic sectors into two sets as otherwise one of
them dominates the fit due to its sparsity and overall low rate of events. Moreover, we
also had to group consecutive years in order to reduce the number of contingency tables.
With these restrictions in mind, we were able to identify for the first subgroup (sectors
industrials (52), consumer cyclicals (53), financials (55), healthcare (56) and technology
(57)) some similarities in the frequency distribution for the years 2010-2012 and 2013-
2015. The group 2016-2017 appears to be more similar to 2006-2008 and 2010-2012 than
to 2013-2015. In particular it seems like the frequency distribution of the groups 2010-2012
and 2013-2015 is rather different from the one observed in 2006-2008.

For the second subgroup (consumer non-cyclical (54), telecommunication services (58),
education (edu) and other) the group representation is not reliable. Based on the similar-
ity correlation coefficients of this subgroup one can consider the older groups 2005-2007
and 2010-2012 to be similar, but otherwise the groups should be considered separately.
Interestingly the group 2016-2017 shows some degree of similarity with all other groups.

Generally we observed throughout the various fits a high variation between the partial
factor scores, which is an indicator for a high variation of the frequency across severity
quartiles over time.
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3 Frequency

For analyzing the frequency of data breaches we start by looking at the histograms of the
monthly, quarterly and half-yearly counts of the complete dataset in figure 3.1 (i.e. of
data breach events with at least 70k items lost). For all three granularities we note two
things:

e There is an apparent shift of the frequency level from 2013 onwards.

e From mid 2016 onwards there is a decline of the number of data breach events, which
raises again the question of missing events and the length of a reporting delay.
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Figure 3.1: Histograms of frequency counts for monthly (left), quarterly (middle) and half-yearly buckets (right) for
the complete dataset (i.e. for events with at least 70k records lost; the dataset is built from the three datasources
Privacy Rights Clearinghouse, breach level index and Information is Beautiful). The datasources of the events are
differentiated by colors: breach level index (bli; blue), Information is beautiful (IiB; green) and Privacy Rights
Clearinghouse (PRC); red).

The observed non-stationarity is partly due to the different timespans of the databases
that have been used to generate the dataset. To circumvent these artificial shifts we
consider the following two subsets to model the frequency:

e Privacy Rights Clearinghouse (PRC') for 2005-2018,
e all events between the beginning of 2013 and the end of 2017 from all the datasources.

3.1 Frequency fit for Privacy Rights Clearinghouse

3.1.1 Time only predictor variable

We analyze the PRC dataset by looking both at monthly and quarterly counts, which are
shown in figure 3.2. For both sets there is some strong variation visible but we cannot
identify any clear pattern or systematic relationship between the counts and the date
variable. If we consider the empirical mean and variance, we observe for the monthly
counts a slight overdispersion (here we have fi,, = 3.23 and 62, = 3.68) and a slight
underdispersion for the quarterly counts (i, = 9.63 and 63 = 9.07).

As the over- and underdispersion is relatively small we have decided on using a Poisson
generalized linear model (GLM) with log-link function to model the counts over time (i.e.
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Figure 3.2: Monthly (left) and quarterly counts of events (right) for the Privacy Rights Clearinghouse datasource
(considering events with at least 70k records lost).

we model an exponential trend in the mean over time) [31]. The residual plots and a full
discussion thereof are presented in the appendix B.1.1. For both models they appear to be
fine and do not show any systematic trend that remains unaccounted for in the model. In
table 3.1 we show the coefficient estimates for the two fits. What clearly sticks out in both
models are the non-significant p-values and the large standard errors for the date variable.
For both models the residual deviance hardly differs from the null deviance. Moreover, for
both periods the empty model is preferred according to the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) (see table 3.2).

Table 3.1: Coefficient estimates (with standard errors and z-test p-values) of the Poisson generalized linear models
with log-link function for monthly and quarterly counts with date as predictor variable for the Privacy Rights
Clearinghouse datasource (considering events with at least 70k records lost). For both models the z-test does not
reject the null-hypothesis of the date coefficient being equal to zero at a 95% confidence level.

Poisson model for monthly counts  Poisson model for quarterly counts

Estimate Std. error P-value Estimate Std. error P-value
Intercept 9.1e-01 4.7e-01 0.056 2.1e+00 4.7e-01 8.2e-06
date 1.7e-05 3.1e-05 0.58 1.1e-05 3.1e-05 7.3e-01

Table 3.2: Residual deviance, Akaike information criterion (AIC) and Bayesian information criterion (BIC) of the
Poisson generalized linear models with log-link function for monthly and quarterly counts with and without date
as predictor variable for the Privacy Rights Clearinghouse datasource (considering events with at least 70k records
lost). For both monthly and quarterly counts the model with date as predictor variable hardly differs from the
empty model with regards to the considered goodness of fit measures.

Residual deviance AIC BIC

Poisson model for monthly counts 188.4 651.3 657.4
Empty model for monthly counts 188.7 649.6 652.6
Poisson model for quarterly counts 50.1 273.9 277.9
Empty model for quarterly counts 50.2 272 274

A x2-test does clearly not reject the empty model in favour of the date model for both
time intervals (p-values > 0.5) and we thus conclude that the empty models give the best
fit as the date variable does not contribute in a notable way. The fits of the empty model
and the model including the date predictor variable are shown in figure 3.3, whereby we
also show the first and third quartile estimates.

3.1.2 Sector percentages as predictor variables

For the PRC dataset we introduce variables that specify the percentage of events from
a specific sector of the total number of events reported in a period'. As including all of

!This might seem odd at first sight, as the introduced predictor variables depend on the dependent
variable and thus prediction seems impossible with this model. However, the idea is to first analyze if
there exists a systematic relationship between the sector percentages and the counts. If one is interested
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Figure 3.3: Fitted values of the Poisson generalized linear models with log-link function for monthly and quarterly
counts with and without date as predictor variable for the Privacy Rights Clearinghouse datasource (considering
events with at least 70k records lost). The model fit including the date as predictor variable is shown in blue and the
empty model in red, estimates for the first and third quartile are also shown (dotted lines). For both the monthly
and quarterly counts the fitted values of the two models are almost identical.

them would result in a linearly dependent set, we have decided on considering the sectors
which belonged to the first subgroup obtained in the MFACT section 2.2.1, i.e. industrials
(52), consumer cyclical (5%), financials (55), healthcare (56) and technology (57). The
introduced percentage variables for the formerly mentioned economic sectors are denoted
by an ”5” followed by the sector number.

Exploratory Analysis

The exploratory analysis of the predictors is shown in the appendix in section B.1.2. The
sector percentages are not correlated and in particular for the monthly model we have
a high number of zero percentages across all sectors. For the monthly dataset we also
observe monthly counts for which all events originate from one sector.

Residual Analysis

We fit a Poisson GLM with log-link function to the complete dataset with the sector
percentages as predictors. The complete discussion of the residual analysis is shown in
appendix in section B.1.3. The residual plots are not completely satisfactory due to bent
loess-smoothers and residuals which do not scatter evenly. These are partly due to the
high number of zero-percentage values across the different percentage predictors, which is
in particular prominent for the monthly model. The residual plots tell us that with the
current model we overestimate months or quarters with a very low total and if the model
predicts a high value, it generally overestimates the observations as well.

Model comparison

In table 3.3 we show the summary statistics of the two fits. For the monthly model all
sector percentages contribute significantly at a 95% confidence level and their coefficients
are approximately within the same range. However, for all coefficients we observe relatively
large standard errors. For the quarterly counts it does not seem like the sector percentages
add a lot of value as most of them are non-significant. Again we observe relatively large
standard errors. Table 3.4 shows the different statistics of the two fits.

While for the monthly count model the AIC and BIC are lower in comparison to the model
that only contains date as predictor (see table 3.2), AIC and BIC are now higher for the

in prediction, one could try to analyze the percentages and get a prediction of the latter, which could
then be used to predict the counts (given that a systematic relationship between the counts and the sector
percentages exists).
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Table 3.3: Coefficient estimates (with standard errors and z-test p-values) of the Poisson generalized linear models
with log-link function for monthly and quarterly counts with sector percentages of the respective counts as predictor
variables (only for the sectors industrials (52), consumer cyclicals (58), financials (55), healthcare (56) and tech-
nology (57)) for the Privacy Rights Clearinghouse datasource (considering events with at least 70k records lost).
For the monthly model the z-test does reject the null-hypothesis of the individual sector percentages being equal to
zero at a 95% confidence level, whereby for the quarterly model for most sector percentages the null-hypothesis of
the same test is not rejected (at the same confidence level).

Poisson model for monthly counts Poisson model for quarterly counts

Estimate Std. error P-value Estimate Std. error P-value
Intercept 0.70 0.12 3.8e-03 1.7 0.25 4.2e-12
S52 0.68 0.22 2.6e-03 0.89 0.43 0.036
S53 0.58 0.23 1.1e-02 0.73 0.43 0.094
S55 0.89 0.22 5.5e-05 0.80 0.47 0.089
S56 0.48 0.19 1.3e-02 0.66 0.35 0.062
S57 0.54 0.21 1.3e-02 0.53 0.44 0.23

Table 3.4: Null deviance, residual deviance, x2-test p-value, Akaike information criterion (AIC) and Bayesian
information criterion (BIC) of the Poisson generalized linear models with log-link function for monthly and quarterly
counts with sector percentages of the respective counts as predictor variables (only for the sectors industrials (52),
consumer cyclicals (58), financials (55), healthcare (56) and technology (57)) for the Privacy Rights Clearinghouse
datasource (considering events with at least 70k records lost). Based on the x2-test the sector percentage model is
the preferred choice for the monthly counts in comparison to the empty model while for the quarterly counts the
sector percentage model does not significantly differ from the empty model at a 95% confidence level.

Null dev. Res. dev.  x2-test p-value AIC BIC

Monthly 188.7 167.5 0.00075 638.4  656.9
Quarterly 50.2 43.2 0.22 275  286.9

quarterly model - even in comparison to the empty model. This and the y?-test indicate
that the empty model is a better choice for the quarterly counts (p-value: 0.22). This is
supported by the fact that almost all bootstrap confidence intervals [5] for the quarterly
counts model contain zero (see table 3.5).

Table 3.5: 95% bootstrap confidence interval of the Poisson generalized linear models with log-link function for
monthly and quarterly counts with sector percentages of the respective counts as predictor variables (only for the
sectors industrials (52), consumer cyclicals (53), financials (55), healthcare (56) and technology (57)) for the
Privacy Rights Clearinghouse datasource (considering events with at least 70k records lost). For the monthly model
zero is not included in any of the confidence intervals while for the quarterly model 0 is included in most confidence
intervals of the sector percentage predictor variables.

Intercept S52 S53 S55 S56 S57
Monthly counts model
lo-2.5% 0.44 0.16 0.13 0.32 0.086  0.079
estimate 0.70  0.68 0.58 0.89 0.48 0.54
up-97.5% 0.94 1.1 0.97 1.3 0.84 0.98
Quarterly counts model
lo-2.5% 1.2 014 -0.18 -0.078 -0.035 -0.11
estimate 1.7 0.89 0.73 0.80 0.66 0.53
up-97.5% 2.2 1.6 1.6 1.8 1.3 1.3

Furthermore, if we do a backward stepwise selection which tries to minimize the AIC by
excluding predictor variables, the best model for the quarterly counts is the empty model,
which only contains the intercept. For the monthly counts the y?-test suggests that the
sector model gives a better fit than the empty model (p-value: 7e—4). An estimate for
the generalization error of the monthly models can be obtained with the out-of-bootstrap
sample error [5]. For the empty model we get an error of 3.688, for the model with date
as predictor 3.762 and for the model with the sector percentages 3.896. According to the
estimated generalization errors and the BIC criteria (see tables 3.2 and 3.4), the empty
model is the preferred choice for the monthly counts. The three fits for the monthly counts
are shown in figure 3.4.
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Figure 3.4: Fitted values of the Poisson generalized linear models with log-link function for the monthly counts for
the Privacy Rights Clearinghouse datasource (considering events with at least 70k records lost). In red the fit of the
empty model is shown, in green the fit of the model with date as predictor variable and in blue the fit of the model
with sector percentages of the respective monthly counts as predictor variables (only for the sectors industrials (52),
consumer cyclicals (5%), financials (55), healthcare (56) and technology (57)). The latter provides a better fit but
there is not enough statistical evidence for a systematic relationship between the monthly counts and the sector

percentage predictor variables.

The model including the sector percentages fits the data better than the empty model,
however it shows a larger generalization error and we thus do not believe the better fit was
due to a systematic relationship between the counts and the sector percentages. Moreover,
the residual plots for the sectors are not completely satisfactory. However, it remains an
open question whether the empty model is the best one or if there are other predictor
variables or a combination thereof that could yield a better fit or tell us more about the
monthly frequency of events.

3.2 2013-2017 monthly count fit

In the following we consider the 2013-2017 subset for the frequency and look at monthly
counts, which are shown in figure 3.5. Generally we observe an increasing trend for the
monthly counts, whereby we can also make out timespans with a lower number of events,
i.e. at the beginning of 2013, in the middle of 2015 and at the end of 2017.
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Figure 3.5: Left: Plot of the monthly frequency counts of events reported within the beginning of 2013 until the
end of 2017 in the complete dataset (considering events with at least 70k records lost). Middle: The former plot
on the left including the fitted values of the Poisson (blue cross) and negative binomial (red triangle) generalized
linear models with log-link function and with date as predictor variable for the aforementioned dataset, whereby
the first and third quartile estimates of both models are shown as dashed lines (blue for Poisson, red for negative
binomial). Right: The analogous as the one in the middle whereby this time the Poisson and negative binomial
generalized linear models take date as a polynomial of degree two as predictor variable. The models presented in
the middle and right plot suggest two different developments: in the linear case there is an increase of the number
of events over time and in the quadratic model a maximum is reached in the middle of 2016 and the number of
events is decreasing afterwards.
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3.2.1 Residual analysis

We start by fitting a Poisson and negative binomial GLM with log-link function and date
as predictor variable. Doing so yields the following observations. Firstly, the Poisson and
negative binomial fits are very similar (also consider table 3.6) and therefore show very
similar residual plots (the residual plots are fully discussed in detail in the appendix B.1.4).
The latter are not completely satisfactory as we observe slightly bent loess-smoothers.
If we include the date variable as a polynomial of degree two, the plots improve a bit.
Secondly, for both the linear and quadratic models the residuals follow mostly a stationary
process but show some slight autocorrelation at a time lag of 4. (This observation is
important, as we bootstrap the residuals later on.)

3.2.2 Model summary

The coefficient estimates of the four different models are shown in table 3.6. For the two
linear models we have a significant increase over time, whereby for the quadratic models
we observe a parabola with a negative coefficient for the quadratic term. The coefficient
estimates of the Poisson and negative binomial models are very similar.

Table 3.6: Coefficient estimates (with standard errors and z-test p-values) of the Poisson and negative binomial
generalized linear models with log-link function and date as predictor variable (top: linear in date, bottom: quadratic
in date) for the monthly counts of events reported within the beginning of 2013 until the end of 2017 in the complete
dataset (considering events with at least 70k records lost). The coefficient estimates of the Poisson and negative
binomial models are almost identical (for both the linear and quadratic date models). The models linear in date
suggest a significant increase over time (the date coefficient being equal to zero is not rejected by the z-test at a 95%
confidence level) and the quadratic models suggest a parabola with a negative coefficient for the date coefficient of
degree 2.

Poisson Neagtive binomial

Estimate Std. error P-value Estimate Std. error P-value

Linear in date

Intercept 2.3 0.04 <2e-16 2.3 0.046  <2e-16

date 1.2 0.31 2e-4 1.2 0.35 8.3e-4
Quadratic in date

Intercept 2.3 0.041  <2e-16 2.3 0.044  <2e-16

date 1.3 0.33 1.1e-4 1.3 0.36 3.6e-4

date? -0.84 0.32 8.9e-3 -0.85 0.35 1.5e-2

The dispersion parameter 6 for the negative binomial distribution specifies the relationship
between the expectation and the variance via 012\& = un, + é/ﬁvt' For both fits of the

negative binomial model 6 shows a large standard error, whereby for the quadratic model
the standard error is larger than 6.

Table 3.7: Estimated dispersion parameter § and their corresponding standard errors in the negative binomial
generalized linear models with log-link function and date as predictor variable (first row: linear in date, second row:
quadratic in date) for the monthly counts of events reported within the beginning of 2013 until the end of 2017 in
the complete dataset (considering events with at least 70k records lost). The standard errors are quite large and if
we test for overdispersion in the corresponding Poisson generalized linear models using the test from Cameron and
Trivedi [7] the null hypothesis of no overdispersion is not rejected for the model which takes date as a polynomial
of degree two as predictor variable (p-value 18%) and borderline rejected for the linear date model with a p-value
of 4.6% at a 95% confidence level.

0 Std. error

Linear in date 35 28
Quadratic in date 58 68

We test for overdispersion in the Poisson models using the test from Cameron and Trivedi
[7] at a confidence level of 95% and get a clear negative result for the model with date as
polynomial of degree two (p-value: 18%) and a borderline positive result for overdispersion

24



3.3. Conclusion

for the model which is linear in date, with a p-value of 4.6%.

3.2.3 Model comparison

To assess which model fits the count data best, we consider both AIC and BIC as well
as the generalization error estimated via bootstrapping [5, p. 44]. As we have time-
dependent data with a trend and slightly correlated errors, we cannot use the classical
bootstrap method. To generate valid bootstrap samples we have used a moving block
bootstrap on the Pearson residuals? of the respective models® [16]. From table 3.8 we
see that the Poisson model of degree two performs best according to AIC and BIC, but
the generalization error is a bit larger than for the negative binomial model of degree
two. Both of them clearly perform better than their linear counterparts. Since we have
seen that the overdispersion is not significant in the quadratic date model, we prefer the
Poisson over the negative binomial fit.

Table 3.8: Null deviance, residual deviance, Akaike information criterion (AIC), Bayesian information criterion
(BIC) and moving block bootstrap generalization error of the Poisson and negative binomial generalized linear
models with log-link function taking date as a predictor variable (as a polynomial of degree 1 and 2) for the
monthly frequency counts of events reported within the beginning of 2013 until the end of 2017 in the complete
dataset (considering events with at least 70k records lost). With regards to all goodness of fit measures the models
which are quadratic in date perform better than the models which are linear in date.

Null dev. Res. dev. AIC BIC Gen. error

Poisson degree 1 91.5 775 3294 3335 14.6
Poisson degree 2 91.5 70.5 324.3 330.6 13.6
Negative binomial degree 1 70.7 59.7 329 335.3 14.5
Negative binomial degree 2 77.5 59.6 325.4  333.8 13.4

3.3 Conclusion

For the PRC subset we have seen a constant rate for both the monthly and quarterly
counts and for the quarterly counts the empty model is the best choice. For the monthly
counts the model including the sector percentages performs better than the empty model
with regards to some goodness of fit criteria but not all of them. Therefore we are not
convinced that this is superior to the empty model and believe that a further analysis with
other predictor variables or a combination thereof might give more insights. Furthermore,
using a multivariate instead of a univariate approach should also be considered, as it can
deal with multiple responses (e.g. number of events per economic sector per month).

For the subset 2013-2017 the quadratic models outperform their linear counterparts with
regards to all goodness of fit measures. However, the final decision on which model to
choose greatly depends on what happens after the beginning of 2018. Herefore we consider
three possible scenarios. In scenario number 1 the observed decrease of data breaches at
the end of 2017 is merely a temporary effect and the rate of events will increase again
thereafter, as it was the case in 2015. In scenario number 2 the decrease at the end of 2017
is not a temporary effect and a lower rate of events will manifest itself in the future. In
this case the predictive power of the quadratic model is questionable as it was estimated
on data that only contains limited information about the future development. In scenario
number 3 neither a clear increase or decrease of the monthly counts will occur, which
might require other modelling techniques for prediction than a GLM. Another concern
that comes to mind is the effect of the reporting delay. However, since we have limited the
data to events between 2013-2017 and have extracted the data at the beginning of summer

2The Pearson residuals are given by r; = (N; — E[N;])/E[N;]%® and a block of length four is used.

3As we require the bootstrap Y;* observations to be integers, we have applied the same rounding as
in [30]: Y;* = maxz (0, [E[N;] + r; E[N;]®° + 0.5]), whereby r; denotes the bootstrapped Pearson residual.
Moving blocks of length 2 to 4 were considered and for all of them we reached the same conclusion.
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2018, the effect should be negligible*. Hence without considering further information of
the future development we do not believe to be able to reach a sound decision on which
model should be chosen for the 2013-2017 subset. Even when more information becomes
available, caution is still required in future predictions due to the ever-evolving nature of
data breaches [18].

A recently published study from Risk Based Security [34, 2018] reports a decline in the
number of events for the first quarter of 2018 in comparison to the first quarter of 2017.
Nevertheless we cannot reach a firm conclusion as their results are based on a dataset that
considers both events for which the number of records lost is unknown® as well as known.
This highlights another limitation of the model due to the used dataset. Since we are
dealing with a restricted view on the problem, the results cannot be directly generalized
to the complete phenomenon and it remains unclear whether the results for events with
at least 70k breached also hold for events with less than 70k items breached.

Interestingly, the models from the sections 3.1 and 3.2 tell two different stories. While for
the PRC' subset we have observed a constant rate of events and the rate remains constant
even if we only consider the PRC events in 2013-2017. Therefore the main driver of
the non-constant development in the rate of events for the 2013-2017 subset appears to
originate from the other two sources, whereby most events in the period 2013-2017 stem
from bli. Hence an additional analysis solely on the bli subset and a thorough comparison
to the other two might reveal some further insights into the development of the rate of
data breaches.

“In chapter 5 we analyze the reporting delay. Based on the used dataset we get an estimate for the
median delay for events with at least 70k records lost, which equals 195 days, hence slightly above six
months.

5In the used dataset in [34] for slightly more than 50% of the events the breach size was unknown.
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4 Severity

4.1 Severity vs. single predictor variables

In the following we analyze the severity distribution of the total records variable. We start
by comparing the total records variable against the other variables in the dataset. While
doing so we have to keep in mind that our dataset originates from three different sources
of unequal sizes, which might cause some inhomogeneities among the observations. We
already know by the description of the sources that Privacy Rights Clearinghouse (PRC')
focuses on events which are reported within the US. Considering the severity vs. datasource
boxplot in figure 4.1, we see that this is in fact the case. The PRC subset is clearly right-
skewed and shows the lowest median among all three. Breach level index (bli) is as well
right-skewed but not as much as PRC and shows as well a notably higher median. On the
contrary we have that Information is Beautiful (/iB) is more symmetrically distributed
and therefore also shows a much higher median than the other two datasources.
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Figure 4.1: Log-transformed total records vs. datasource (breach level index (bli), Information is beautiful (IiB),
Privacy Rights Clearinghouse (PRC)) of the complete dataset (considering events with at least 70k records lost),
whereby the total is shown on the right (in darkgray). Enough statistical evidence is found for the groups having
differently trimmed means (20% symmetric) and to follow different distribution functions (with p-values below
4.6e—4 using Welch’s trimmed mean (20% symmetric) test with Windsorized variances and Welch’s test on ranked
data [9]).

Since we are dealing with not normally distributed observations and unequal variances
among the different groups, we have used Welch’s test statistic on trimmed means (20%
symmetric trimming) and Windsorized variances [9] to assess whether or not there exists
at least one group with a different trimmed mean from all the others at a 95% confidence
level. The null hypothesis for equally trimmed means among all groups is clearly rejected
with a p-value of 1.3e—14. We also used Tukey’s procedure [9] to do multiple pairwise
comparisons between the individual groups and for each pair the null hypothesis of equally
trimmed means is rejected at a 95% confidence level with p-values below 8.6e—14. We
get the same results with p-values below 4.6e—4 if we use Welch’s test statistic on the
ranked data to assess whether the distribution functions among the different groups are
equal and if they are pairwise equal.

Therefore we need to check for differences among the three datasources in the following
analysis of the severity distribution. If such differences are detected, they are mentioned
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in the corresponding subsections.

4.1.1 Severity vs. date

Below we show the logarithmized severity vs. the date variable, whereby we have also
split the set according to the three different datasources. Fitting a truncated lognormal
regression model [10] on the complete dataset shows a significant linear increase!, which
remains if we fit the model on a random half of the dataset and compare it to the fit on
the other half. The same model yields a significant increase of the same magnitude over
time for the bli subset and a borderline non-significant increase of the same magnitude
for the PRC' subset (at a confidence level of 95%). However, if we check again on two
random halves, the date variable does not provide enough signal for a significant increase
over time for any of the two subsets. While the date coefficient estimates remain of the
same magnitude, a t-test does not reject the null hypothesis of them being equal to zero
on both halves (p-values > 0.1 for at least one half; the PRC subset consists of 520 events,
bli of 386 and IiB of 87). Hence we cannot determine the exact source of the observed
increase, as it could be from PRC, bli or both of them.
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Figure 4.2: Log-transformed total records vs. date (left) and log-transformed total records vs. date including time
trend estimate from the truncated regression models taking date as predictor variable (right) for the complete
dataset (considering events with at least 70k records lost). The sources of the individual points have been marked:
blue cross for breach level index (bli), red plus for Privacy Rights Clearinghouse (PRC) and green triangle for
Information is Beautiful ([<B) and the same colors are used for their respective truncated regression fit. The black
solid line in the right plot shows the estimated trend for the complete dataset. The datasources show different
slopes over time.

4.1.2 Severity vs. country

The country variable is strongly dominated by the US and we therefore consider only the
classes US and non-US. We can see in the boxplot in figure 4.3 that the interquartile
range of the breach size is much larger for organizations headquartered outside of the US
than for organizations headquartered within the US. Moreover, the median is also clearly
elevated for the mon-US group in comparison to the US one. While the spread of the
distribution (i.e. distance between the whiskers) is much larger for the non-US group we
do not observe any outliers (here in the sense of points outside of the whiskers), whereas
there are several for the US group. The upper tail of the logarithmized breached records
distribution is by construction right-skewed. However, we observe that the US group is
clearly more right-skewed than the non-US group.

We perform the same hypothesis tests as in section 4.1 and again in both cases we can reject
the null hypothesis of equally trimmed means and equal distribution functions among the

'The estimates of the coefficients are (standard errors are mentioned in brackets): intercept:
0.746(2.81); date: 0.0017(3.88e—4); sigma: 4.395(0.45). The t-test on the date coefficient rejects the
null hypothesis of the later being equal to zero with a p-value of 6.5e—6. The date variable was shifted to
start at O for the first event.
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Figure 4.3: Boxplot of the log-transformed total records variable for the headquarter location groups US and non-
US for the complete dataset (considering events with at least 70k records lost), the total distribution is shown on
the far right (in darkgray). The 20% symmetrically trimmed mean is shown in red (dashed line) and the number of
observations per group is shown in brackets next to the group label. Using Welch’s trimmed mean (20% symmetric)
test with Windsorized variances and Welch’s test on ranked data [9] show that both their trimmed means and the
distribution functions the two groups follow are unequal, (with p-values below 3.2e—8).

two groups respectively, with p-values below 3.2e—8. For this variable one might wonder
if the two distributions can be considered the same above a certain threshold. This can be
tested by a two-sample Kolmogorov-Smirnov test. Performing this test at a 95% confidence
level shows that if the thresholds lie between 1.44 and 2.6 million, the two distributions
can be considered the same (for 1.44 we have 184 observations in the US group and 118 in
the non-US group, for the threshold 2.6 million 132 and 90 respectively). Afterwards the
distributions differ again (p-values < .05), until we reach the last 53 observations (where
38 US events and 15 non-US events remain).

4.1.3 Severity vs. market capitalization and severity vs. number of
employees

In the left plot of figure 4.4 we show the log-transformed total records vs. the log-transformed
and inflation adjusted market capitalization for the 142 observations for which the latter
was available. In the plot we can see two observations on the left which are located fur-
ther apart from all the others. The one on the far left is a company which has lost a lot
of market capitalization before the breach (Spiral Toys Inc.) and the other is an Indian
company which has been in financial troubles for more than a year before the data breach
happened (Aadhaar Ventures India LTD). Besides those two organizations, there is one
observation at the top which catches the eye. This point represents the massive Yahoo
data breach in 2016 with 3 billion records lost. All the other observations scatter evenly,
whereby we have more observations in the lower half along the y-axis than in the upper
half, as we are only considering the upper tail of the breached records distribution. In
the plot no clear relationship between the market capitalization and the number of lost
records is visible. When fitting a truncated regression model to the data [10] the market
capitalization variable does not relate in a notable way to the total records variable. The
same holds true if we take the datasource of the observations into account. Hence the
increasing relationship between the market capitalization and data breach severity from
[37] could not be confirmed within our dataset.

For the number of employees we draw the same conclusions as for the market capitalization,
in particular there is no clear relationship between the number of employees variable and
the total records variable visible in the right plot of figure 4.4. Also when considering the
outer edges we see both very large and very small companies that suffer from a broad
spectrum of data breaches.
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Figure 4.4: Log-transformed total records vs. log-transformed and inflation adjusted market capitalization (left) and
log-transformed total records vs. log-transformed number of employees (right) for the complete dataset (considering
events with at least 70k records lost). For both size variables no clear systematic relationship is visible with the
number of records lost.

4.1.4 Severity vs. economic sector

The severity quartiles vs. the economic sector have already been discussed in section 2.1,
where some differences between the sectors were found. In figure 4.5 we show the boxplot
for all original economic sectors and the miscellaneous sector other, which consists of the
sectors energy (50), basic materials (51), utilities (59), politics (pol) and military (mal).
Notable differences both in the median level and the span of the different sectors become
again evident. In particular we can verify our observations from section 2.1, as the financial
(55) and healthcare (56) sector are very similar as well as the consumer non-cyclical sector
(54) and the miscellaneous sector other. We observe again that the technological (57)
sector suffers in particular from very severe breaches and the educational sector (edu)
shows a different distribution than all the others. Moreover, we note that organizations
dealing with politics and elections (pol) have clearly a higher median than the total median
and actually show a similar severity distribution as the telecommunications (58) sector.
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Figure 4.5: Boxplot for log-transformed total records vs. economic sector variable (taking the levels energy (50),
basic materials (51), industrials (52), consumer cyclicals (58), consumer non-cyclicals (54 ), financials (55), health-
care (56), technology (57), telecommunication services (58), utilities (59), education (edu), military (mil), politics
(pol)) and the miscellaneous sector other (colored in lightgray and is a merger of the sectors energy (50), basic
materials (51), utilities (59), military (mil) and politics (pol)) for the complete dataset (considering events with at
least 70k records lost). On the far right the total is shown as well (in darkgray). The 20% symmetrically trimmed
mean is shown in red (dashed line) and the number of observations per economic sector is shown in brackets next
to the sector label. Notable differences between the economic sectors exist both in their median levels and the
distribution function they follow.

Our observations are further supported by the same Welch test on the trimmed means
with Windsorized variances at a 95% confidence level as in section 4.1. The null hypothesis
of having equally trimmed means among the sectors is clearly rejected (p-value: 5e—20).
From the multiple pairwise comparison results in table 4.1 we see that the financial (55)
and healthcare (56) sector do not have significant differently trimmed means and the
same holds for the consumer non-cyclical sector (54 ) and the miscellaneous sector other.
The technological sector (57) has a significant differently trimmed mean than all the other
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sectors except for the telecommunication (58) sector. For the educational sector (edu) the
null hypothesis of having equally trimmed means is rejected for each pairwise comparison
with another sector.

Table 4.1: Test statistics of Tukey’s multiple pairwise comparison for Welch’s trimmed mean (20% symmetric) test
with Windsorized variances for the total records variable grouped by the economic sectors (industrials (52), consumer
cyclicals (53), consumer non-cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication
services (58), education (edu) and the miscellaneous sector other, which is a merger of the sectors energy (50),
basic materials (51), utilities (59), military (msl) and politics (pol)) based on the complete dataset (considering
events with at least 70k records lost) at a 95% confidence level, p-values are shown in brackets. In particular the
education sector has a differently trimmed mean than all the others.

53 54 55 56 57 58 edu other

52 -2.8(0.11)  0.78(1) 2.4(0.29) 4.4(0.00049) -8.2(0) -2.4(0.31) 10.4(8.8e-14)  0.48(1)

53 2.6(0.21) 5.3(1.1e-05) 7.5(5.6e-11) -5.5(2.4e-06)  -0.88(0.99) 13.2(4.5e-14)  2.3(0.39)

54 0.71(1) 1.8(0.71) -6.4(9e-07) -2.6(0.22) 5.1(0.00028) 0.22(1)

55 1.9(0.65) -10.6(9.5e-13) -3.6(0.019)  8.1(2.1e-12)  -0.9(0.99)

56 -12.9(9.9e-13) -4.5(0.0014) 7.2(3e-10) -1.9(0.56)

57 2.3(0.34) 18.1(4.2e-13) 5.9(2.2e-086)
3(0.34)

58 7.2(2.9e-07) 2.

The results of the tests on ranked data are mostly in line with the ones from table 4.1 (table
not shown). In the multiple pairwise comparison tests on the ranked data we do not get
a rejection of the null hypothesis of two sectors following the same distribution function
for the pairs: (industrials (52), healthcare (56)), (consumer cyclicals (53), technology
(57)), (consumer non-cyclicals (54), technology (57)), (financials (55), telecommunication
services (58)), (healthcare (56), telecommunication services (58)) and (technology (57),
other) (at a 95% confidence level).

4.1.5 Severity vs. organization type

In figure 4.6 the boxplot for the total records vs. the organization type variable is shown.
Also here we observe notable differences in the severity distribution between the various
types. The median severity is the highest for publicly traded companies (group MCAP),
whereby the latter also shows the broadest span. In sharp contrast to this is the public
entities group which shows the lowest median and for which the third quartile is even
below the overall median value. Also the not-for-profit (NPO) group shows a rather low
median and does not spread as wide as others. Interestingly, the private and governmental
(group Gow) types are similar in both median level and interquartile range.
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Figure 4.6: Boxplot for log-transformed total records vs. organization type variable (taking the levels government
(Gov), market capitalized (M CAP), not-for-profit organizations (NPO), private and public) for the complete dataset
(considering events with at least 70k records lost). On the far right the total is shown as well (in darkgray). The 20%
symmetrically trimmed mean is shown in red (dashed line) and the number of observations per group is shown in
brackets next to the group label. As for the economic sectors we observe notable differences between the considered
groups both in their trimmed means and the distribution functions they follow.

Doing the same hypothesis tests as in section 4.1 shows that both null hypotheses of equally
trimmed means and equal distribution functions among the groups are clearly rejected with
p-values below 4.6e—11. The multiple pairwise comparison test shows that for the trimmed
means all organization type pairs are significantly different except for public organizations
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and NPO’s at a 95% confidence level (see table 4.2). Multiple pairwise comparison on the
ranked data (see table 4.2) shows that the MCAP group has a distribution function that
is different from all the others. The null hypothesis of a different distribution function
between government and private organizations is not rejected and the NPO group seems
to have a similar distribution function as the government and public group. However, at
the same time the null hypothesis that the government and public group have the same
distribution function is clearly rejected.

Table 4.2: Test statistics of Tukey’s multiple pairwise comparison for Welch’s trimmed mean (20% symmetric)
test with Windsorized variances (top) and for Welch’s test on ranked data (bottom) for the total records variable
grouped by the organization type variable (taking the levels government (Gov), market capitalized (MCAP), not-
for-profit organizations (NPO), private and public) based on the complete dataset (considering events with at least
70k records lost) at a 95% confidence level, p-values are shown in brackets. Based on the considered tests most
groups significantly differ with regards to their total records trimmed means and their total records distribution
function.

MCAP NPO private public

Welch’s test on trimmed means

Gov -6.3 (1.1e-08) 4.2 (6.5e-04) -2.8 (3.8e-02) 6.7 (2.1e-09)
MCAP 9.0 (0) 5.0 (1.5e-05) 11.3 (0)

NPO -6.8 (4e-08) 1.5 (5.7e-01)
private 10.6 (1.1e-14)

Welch’s test on ranked data

Gov 4.0 (9.1e-04) -2.7 (6.1e-02) 1.7 (4.2e-01) -4.1 (8.2e-04)
MCAP -5.3 (1.2e-05)  -3.0 (2.2e-02) -6.9 (1.6e-09)
NPO 3.9 (2.8e-03) -0.6 (9.7e-01)
private -5.6 (2e-06)

4.1.6 Severity vs. multiple firms

A comparison between the severity and multiple firms variable is challenging as only fewer
than 5% of observations are multiple firms events. Considering the boxplot in figure 4.7,
we observe a higher median for the multiple organization events (group TRUFE) than for
the events with only one affected entity (group FALSE). At first sight this is in line with
what one would expect, as more entities directly result in a larger exposure. However,
at the same time we see that the span of the single entity events is much broader and
therefore one might wonder, if there really exists a difference between the two groups. In
particular we have seen in section 4.1.3 that there are also small organizations (whereby
smallness is measured in number of employees), which have suffered from various sizes
of breaches and that there was a very noisy relationship if any between the size of an
organization and the severity of the breach. The Welch’s trimmed mean (20% symmetric)
test with Windsorized variances does not reject the null hypothesis of equally trimmed
means at a significance level of 95% (p-value: 17%) and for the Welch test on the ranked
data we get a borderline rejection of equal distribution functions with a p-value of 4.98%.
Using again the two-sample Kolmogorov-Smirnov test for various thresholds shows that
the null hypothesis of the two groups having the same distributions is not rejected at a
95% confidence level up to a threshold of 25.1 million, where only 5 multiple firms events
remain (vs. 71 single firm events).

4.1.7 Severity vs. insider/outsider

The boxplot in figure 4.8 shows no notable difference between the total records vs. insider
group and the total records vs. outsider group, in particular their medians and interquartile
ranges are almost identical. However, what we can observe is that if it is unknown whether
the breach happened because of an inside or outside party (group unkn), it is more likely
that the breach is less severe.

Welch’s trimmed mean (20% symmetric) test shows that at least one group has a different
mean (p-value: 3.3e—4) and a multiple pairwise comparison confirms that the trimmed
mean of the unknown group significantly differs from the other two groups with p-values
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Figure 4.7: Boxplot for log-transformed total records vs. multiple firms variable (taking the level “TRUE” if multiple
firms were involved in the same breach event and “FALSE” otherwise) for the complete dataset (considering events
with at least 70k records lost). On the far right the total is shown as well (in darkgray). The 20% symmetrically
trimmed mean is shown in red (dashed line) and the number of observations per group is shown in brackets next to
the group label. A solid comparison is challenging as the two groups are of very unequal sizes.
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Figure 4.8: Boxplot for log-transformed total records vs. insider/outsider variable (taking the level insider if an
inside party committed or facilitated the data breach and outsider if the data breach was committed or facilitated
by an outside party, sometimes this is as well unknown (unkn)) for the complete dataset (considering events with at
least 70k records lost). On the far right the total is shown as well (in darkgray). The 20% symmetrically trimmed
mean is shown in red (dashed line) and the number of observations per group is shown in brackets next to the group
label. The two groups insider and outsider are very similar with regards to their total records median levels and
their total records distribution function. The unknown group shows a lower median and shorter span than the other
two which is an indication for an information reporting problem for less severe data breaches.

below 1.02e—4 (see table 4.3). Also Welch’s test on rank-ordered data rejects the null
hypothesis of equal distribution functions among the groups (p-value: 0.36%). A multiple
pairwise comparison rejects the null hypothesis of the unknown group and outsider group
having the same distribution function, but not for the unknown group and the insider
group (see table 4.3). However, one might question the latter result as the first test tells
us that the trimmed means are different. Moreover, as we only consider the ranks and not
the observed values the rank-based test uses less information than the trimmed mean test.
Hence we conclude the unknown group to follow a different distribution function than the
other two groups.

Table 4.3: Test statistics of Tukey’s multiple pairwise comparison for Welch’s trimmed mean (20% symmetric) test
with Windsorized variances (left) and for Welch’s test on ranked data (right) for the total total records variable
grouped by the insider/outsider variable (taking the level insider if an inside party committed or facilitated the
data breach and outsider if the data breach was committed or facilitated by an outside party, sometimes this is
as well unknown (unkn)) for the complete dataset (considering events with at least 70k records lost) at a 95%
confidence level, p-values are shown in brackets. There is no statistical evidence that the involvement of an insider
or outside party has an effect on the total records trimmed mean or on the total records distribution function. The
test results further support the suspicion that the reporting of information is of less quality or quantity for less
severe data breaches than for larger ones.

Welch’s test on trimmed means Welch’s test on ranked data
outsider unkn outsider unkn
insider -2.1 (9.7¢-02) 4.2 (1e-04) 1.2 (4.7e-01)  -2.2 (6.7e-02)
outsider 6.8 (7.7e-10) -3.4 (3.1e-03)
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Figure 4.9: Boxplot for log-transformed total records vs. medium variable (taking the levels hardware (HW) if the
data was lost through a hardware medium, software (SW) if it was lost through a software medium and unknown
(unkn) if the information is not available) for the complete dataset (considering events with at least 70k records
lost). On the far right the total is shown as well (in darkgray). The 20% symmetrically trimmed mean is shown
in red (dashed line) and the number of observations per group is shown in brackets next to the group label. In
particular for the hardware and software groups we observe notable differences with regards to the total records
trimmed mean level and the span of the total records distribution function.

4.1.8 Severity vs. medium

In 20% of the cases the data was lost through a hardware medium (HW'), whereby these
losses are less severe than a breach via a software medium (SW) as visible in figure 4.9.
This makes sense as with hardware media there generally exist more capacity limitations
than with software media. For example, clouds can store much more data than a typical
laptop and have therefore a much higher exposure. Welch’s test statistic for the trimmed
means and Windsorized variances clearly rejects the null hypothesis of equally trimmed
means for the software and hardware group in Tukey’s multiple pairwise comparison test
with a p-value below 4.85e—10. We get the same result in the multiple pairwise comparison
test with rank-ordered data with a p-value of 5.56e—11. For both kinds of tests there was
no difference between the unknown group (unkn) and the other two groups detected.
However, this is not surprising as it only contains very few observations.

4.1.9 Severity vs. intentional

While there are more than three times as many events which happen intentionally (group
yes), there does not seem to be a difference in the breach severity of such events in
comparison to unintended events (group no). In figure 4.10 we show the boxplot of the
intentional variable. For unintentional and intentional data breach events the median,
the interquartile range and the overall span are almost identical. For events where it
remained unknown (group unkn) there is no clear relation to the breach severity variable
visible besides showing a higher mean than the other two groups. However, this could also
be due to the size. The same hypothesis tests on the trimmed means and ranked data
as in the previous subsections show no statistical evidence for unequally trimmed means
or different distribution functions among the three groups at a 95% confidence level with
p-values above 50%.

4.1.10 Severity vs. failure mode

There are several modes of failure that make it possible for a data breach to occur.
Considering figure 4.11, there are a few interesting things we can note. First of all,
the highest median belongs to the process group where data breach events have occurred
due to bad or non-existent security processes. Overall, these cases make up for 10% of
the total. Secondly, a solid 20% of the cases are due to human error, whereby the human
group shows a slightly lower median than the total distribution. Most events happened
due to a software or hardware error (group SW/HW), whereby almost all of them are
related to a software error. However, there is still a big proportion of events for which
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Figure 4.10: Boxplot for log-transformed total records vs. intentional variable (taking the levels yes if the data
breach event happened on purpose and no if it happened unintentionally; there are as well cases for which this is
unknown (unkn)) for the complete dataset (considering events with at least 70k records lost). On the far right the
total is shown as well (in darkgray). The 20% symmetrically trimmed mean is shown in red (dashed line) and the
number of observations per group is shown in brackets next to the group label. The intentional and unintentional
groups are very similar both in their total records median level and their total records distribution function.

it is not clear what the mode of failure was (group unkn). Once more this group shows
the lowest median and highlights again the information availability problem for less severe
data breaches.
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Figure 4.11: Boxplot for log-transformed total records vs. failure mode variable (taking the levels human if a
human error let to the data breach, process if a process error made it possible for the data breach to happen,
software/hardware (SW/HW) if an error in the used medium was the mode of failure and unknown (unkn) as this
is information is not always known) for the complete dataset (considering events with at least 70k records lost.
On the far right the total is shown as well (in darkgray). The 20% symmetrically trimmed mean is shown in red
(dashed line) and the number of observations per group is shown in brackets next to the group label. Both the total
records median levels and total records distribution function are very similar among all groups.

For this variable the hypothesis tests are not conclusive. While Welch’s test does not reject
the null hypothesis of equally trimmed means among the groups (p-value: 65.4%), Welch’s
test on the ranked data does reject the null hypothesis of having the same distribution
function among the groups (p-value: 3.82%). However, when doing a multiple pairwise
comparison on the ranked data none of the pairs reject the null hypothesis of having the
same distribution function (at a 95% confidence level).

4.1.11 Severity vs. third party

In 15% of the cases a third party was involved in or responsible for the data breach event.
What we observe from the boxplot in figure 4.12 is a higher median and interquartile range
for events without a third party involvement (group no) than for events with (group yes)
or events with no information (group unkn). Again for the unknown group we observe
the lowest median and shortest span, which tells us that in particular events with few
records lost belong to this category. Hence one might wonder whether events without
a third party involved actually have a higher median or if this is a result of unavailable
information for less severe breaches. On the other hand, for the group of observations
where a third party was involved, we see an almost identical distribution as for the one of
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Figure 4.12: Boxplot for log-transformed total records vs. third party variable (taking the levels no if no third
party was involved or partially responsible for the data breach to occur, yes if the contrary holds and unknown
(unkn) if it is not known) for the complete dataset (considering events with at least 70k records lost). On the far
right the total is shown as well (in darkgray). The 20% symmetrically trimmed mean is shown in red (dashed line)
and the number of observations per group is shown in brackets next to the group label. Differences between the
total records median levels and total records distribution functions among the three groups are visible but strong
statistical evidence for the latter two being significantly different at a 95% confidence level is only present for the
comparison between the no third party involved group (no) and the unknown group (unkn; see table 4.4).

Again using Welch’s test statistic for the trimmed mean (20% symmetric) and Windsorized
variances as well as Welch’s test on ranked data, both null hypotheses of equally trimmed
means and the same distribution functions among the groups are rejected with p-values
below 1.12e—05. Doing a multiple pairwise comparison test using Tukey’s procedure for
the trimmed means rejects the null hypothesis for every pair (see table 4.4). The test
on ranked data indicates that only no and unkn group follow a different distribution (see
table 4.4).

Table 4.4: Test statistics of Tukey’s multiple pairwise comparison for Welch’s trimmed mean (20% symmetric)
test with Windsorized variances (left) and for Welch’s test on ranked data (right) for the total records variable
grouped by the third party variable (taking the levels no if no third party was involved or partially responsible
for the data breach to occur, yes if the contrary holds and unknown (unkn) if it is not known) for the complete
dataset (considering events with at least 70k records lost) at a 95% confidence level, p-values are shown in brackets.
Only for the comparison between the no third party involved group (no) and the unknown group (unkn) strong
statistical evidence is present for the two groups having a significantly different total records trimmed mean and to
follow different total records distribution functions.

Welch’s test on trimmed means Welch’s test on ranked data
unkn yes unkn yes
no 8.3 (0) 2.6 (2.9e-02) -4.8 (5e-06) -1.7 (2.1e-01)
unkn -4.0 (2.2e-04) 2.2 (8.1e-02)

4.1.12 Concluding remarks on individual predictors

From the previous subsections is becomes clear that some variables might be more impor-
tant than others to describe the breach severity or still need some further investigation.
Furthermore, there were some confounding effects detected due to the source of the in-
dividual observations, which has to be respected in further analyses. From the previous
subsections we can summarize the following results:

e The severity of breached records above 70k has shown an overall increase over time,
whereby we have observed different slopes for the different datasources. However, it
is not entirely clear where most of this signal is coming from, as it could either be
from the bli datasource, PRC or both of them.

e For the simplified country variable (with groups US and non-US) and the medium
variable (with groups HW, SW and unkn) the groups clearly differ with regards to
breach severity except for the unkn group. Entities headquartered outside of the
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US and software media are related to more severe breaches than their counterparts,
which are US-headquartered entities and hardware media respectively. Furthermore,
if we test whether the two groups of the country variable follow the same distributions
at various thresholds, there is only a limited range of threshold values for which this
holds true (i.e. in between 1.44 and 2.6 million at a 95% confidence level).

There was no statistical evidence found for a clear relationship between the to-
tal records variable and the size variables, whereby both market capitalization and
number of employees were considered. Further possible questions to explore are
whether additionally given the economic sector a relationship exists and if there
exists a relationship for a higher threshold than 70k.

With regards to the economic sector variable the results are in line with what we
have seen in the MDS section 2.1. Differences with respect to the total number of
records breached were also observed for the more general organization type variable,
whereby in particular the publicly traded companies group should be considered
different from all the others.

We do not believe that there was enough statistical evidence present for linking mul-
tiple firms events with a higher severity. Herefore hypothesis tests on the trimmed
means (symmetric 20%), the ranked data and the empirical distributions were con-
ducted. The null hypothesis of equally trimmed means among all groups was not
rejected but the null hypothesis of the groups having the same distribution function
based on ranks was rejected, whereby the corresponding p-value was close to the
significance level. A two-sample Kolmogorov-Smirnov test did not reject the null
hypothesis of the two groups having the same distribution function for most thresh-
olds considered (p-value > 0.05). Furthermore, other variables have not suggested
that there is a clear relationship between the size and the total records variable for
data breach events with at least 70k items lost. The comparison was especially chal-
lenging due to different magnitudes of the two groups and therefore this question
should again be revisited on a different dataset.

From the severity vs. insider/outsider variable we can make two important observa-
tions. Firstly, breaches committed or mostly facilitated by an inside or outside party
do not seem to be different with regards to breach severity, as no statistical evidence
was found for the contrary (at a 95% confidence level). Secondly, in particular data
breaches which are less severe belong to the group for which the information was
not available. This suggests that the reporting of information is of less quality or
quantity than for larger data breaches. This makes sense as large data breaches
affect more people and therefore also get a broader media coverage.

For the failure mode variable no clear indication with regards to the breach severity
could be found. Hence this should again be reevaluated on another dataset. However,
if we only consider the boxplot in figure 4.11, it looks like we are in the same situation
as for the insider/outsider variable. Generally the groups don’t differ from each
other, except for the unknown group. The latter shows the lowest median and hints
again at the aforementioned reporting issue for less severe data breaches.

Further support for the reporting problem suspicion for less severe data breaches is
given by the third party variable. Among the three groups (insider, outsider, un-
known) considered, the unknown group shows again the lowest median and trimmed
mean. A multiple pairwise comparison shows that for the trimmed mean test all
three groups have a significantly different mean, while according to the rank-based
test only the outsider group seems to have a different distribution function. The
result from the first test is interesting as it suggests that if a third party was in-
volved, the breaches are less severe and that larger breaches are more likely to be
"home-made”. However, this result is not supported by the second test and the
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rejection is not of high magnitude. Therefore the influence of a third party involved
on the severity for breaches above 70k items should again be considered on another
dataset.

4.2 A multivariate model for total records based on date
and medium

In the previous section we were able to identify trends and characteristics of the severity
with regards to individual predictor variables. In particular we have seen that the severity
is increasing over time and that for different types of breach media the distribution differs
significantly at a 95% confidence level. Thus in the following we assess how the severity
changes over time by medium type. Hereby we limit the analysis to the Privacy Rights
Clearinghouse (PRC') subset, as we have observed different slopes in the increase by
datasource in section 4.1.1 and because most of the data breaches which happened through
a hardware medium originate from this source?. Moreover, for every event in the PRC
subset it is known whether the data breach happened through a hardware medium (HW;
188 events) or through a software medium (SW; 332 events).

We consider the following three truncated gaussian regression models
e M1: total records ~ date,
e M2: total records ~ date and medium,
e M3: total records ~ date and medium as a factor model.

In a truncated gaussian regression we estimate the conditional expectation E[yly > u]
based on the at u left-truncated observations y;. The original distribution of the y;’s is
hereby assumed to be gaussian [36]. The conditional expectation equals

Elyily; > u] = asiTB +o——F— (4.1)

whereby ¢ and ® denote the standard normal probability density and cumulative distri-
bution functions respectively. The coefficients 8 and the variance o2 of the original normal
distribution N (z7 8, 02) are estimated via the maximum likelihood of the conditional den-
sity, which equals

T
p(U=tl)

1— @(“rih)

g

fyilys > u) = : (4.2)

Naturally, for a at u left-truncated random variable the expectation is higher than the one
of the original gaussian distribution A (i,0?) and its variance is smaller. The variance of
a at u left-truncated A (u, 0?) random variable Y equals

Var(Y|Y > u) =0?(1 -

(4.3)

2To be precise, 85% of the cases which happened with a hardware medium originate from the PRC
datasource.
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4.2.1 Residual analysis

We use the truncreg package [10] to fit the truncated regression models®. The residual
plots and a discussion thereof are included in the appendix B.2.1. In the individual residual
plots we observe a separation of the residuals for the two groups. Furthermore we note
that HW events are slightly overestimated in the model M1 and that the overestimation
increases for higher fitted values.

4.2.2 Model comparison

In figure 4.13 we show the three different model fits. We observe an increase over time for
both groups HW and SW in the models M1 and M2, whereby in the factor model M3 it
is only visible for the SW group. This suggests that the observed increase of the severity
over time originates from this subgroup. However, it is also evident that the HW group
appears much less frequent which makes a comparison over time challenging. Considering
the coefficient estimates in table 4.5 we note that for both models M1 and M2 the date
variable is significantly contributing at a 95% confidence level, while according to model
M3 the individual date coefficients for the HW and SW group do not differ significantly at
a 95% confidence level. However, if the factor term is excluded there is sufficient statistical
evidence for a different intercept for the two groups HW and SW in M2. Even when we
test the model M2 on two random halves of the dataset?, the null hypothesis of them
having the same intercept is still rejected with p-values below 0.05.

— M1 - M2 (HW) M3 (HW) & HW
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Figure 4.13: Truncated regression fits of the three models M1 (logarithmized total records ~ date), M2 (logarithmized
total records ~ date and medium, whereby medium is a factor variable taking the two levels hardware (HW) and
software (SW)) and M3 (logarithmized total records ~ date and medium as a factor model) for the Privacy Rights
Clearinghouse datasource (considering events with at least 70k records lost), whereby observations and fits of the
hardware group (HW) are colored blue and observations and fits of the software group (SW) are colored red. The
solid (black) line corresponds to M1, the dashed line to M2 and the dotted line to M3. Different levels with regards
to the severity are clearly visible for the two groups hardware and software and in particular we observe a lower
number of hardware events in more recent years.

The above observations are furthermore supported by the AIC, BIC and log-likelihood
ratio test at a 95% confidence level (see table 4.6). Model M2 is clearly the preferred
choice compared to model M1 based on the aforementioned measures. Even though the
AIC value of M3 is slightly lower, the BIC is clearly higher in comparison to the one of
M2. In particular is the hypothesis of the additional coefficient in M3 being equal to zero
not rejected by the log-likelihood ratio test for the nested models M2 and M3. Hence
there is not enough statistical evidence for the support of a different rate of increase over
time for the two groups. However, this might be due to the lower number of observations
in the HW group for more recent years.

3In all three models we have shifted the date variable to start at 0 for the first event in the time series.
Furthermore, to run the algorithm smoothly for all three models we had to lower the threshold of 70k by
0.5 on the log-scale.

“Hereby we keep the ratio of the observations with a HW or SW medium at the same level as in the
original dataset considered.
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Table 4.5: Coefficient estimates (with standard errors and t-test p-values) of the three truncated regression models
M1 (logarithmized total records ~ date), M2 (logarithmized total records ~ date and medium, whereby medium is
a factor variable taking the two levels hardware (HW) and software (SW)) and M3 (logarithmized total records ~
date and medium as a factor model) for the Privacy Rights Clearinghouse datasource (considering events with at
least 70k records lost). In particular for the factor model M3 we observe large standard errors for all coefficient
estimates and thus indicates that there is not enough statistical evidence for a different slope for the two groups
hardware and software.

M1 M2 M3
Estimate Std. error P-value Estimate Std. error P-value Estimate Std. error P-value
Intercept 7.3 1.3 5.7e-09 6.9 1.2 2.9e-08 7.9 1.3 2.9e-10
Date 0.0011 0.00023 2e-06 0.00070 0.00020 0.00052 0.00016 0.00040 0.70
MediumSW 2.5 0.69 0.00029 1.0 1.1 0.34
Date:MediumSW 0.00069 0.00046 0.13
Sigma 3.4 0.31 0 3.2 0.28 0 3.2 0.28 0

Table 4.6: Akaike information criterion (AIC) and Bayesian information criterion (BIC) values of the three trun-
cated regression models M1 (logarithmized total records ~ date), M2 (logarithmized total records ~ date and
medium, whereby medium is a factor variable taking the two levels hardware (HW) and software (SW)) and M3
(logarithmized total records ~ date and medium as a factor model) for the Privacy Rights Clearinghouse datasource
(considering events with at least 70k records lost). The log-likelihood ratio test statistics for the nested models (M1
vs. M2, and M2 vs. M3) is shown as well, whereby p-values are shown in brackets and the confidence level has
been corrected for the family wise error rate using Bonferroni’s method [35]. The latter test for the nested model
comparison M2 vs. M3 does also not provide statistical support for the two groups hardware and software to have
a different date coefficient at a 95% confidence level.

M1 M2 M3

AIC BIC x2: M1 vs. M2  AIC BIC x%: M2 vs. M3 AIC BIC

1'943.6 1°956.4 17.1(7.2e-05) 1'928.5 1°945.5  2.4(2.5e-01) 1'928.2 1°949.4

4.2.3 Conclusion

We conclude that there is in fact a significant increase over time (p-value < 0.001) of
the severity of data breaches with at least 70k records lost for both medium groups.
However, there is no statistical evidence for different rates of increase for the two groups.
The best model M2 suggests a (massive) increase of the expected number of records lost
by 00007365 _ 1 — .29 of the original gaussian distribution per year, whereby the SW
breaches are more severe than the HW breaches as the former has a higher intercept. The
increase of the truncated expected values of the model M2 are shown per year and for
both medium types in table 4.7. The yearly change of the expected truncated records lost
on the original scale starts at a different level for the two medium types, however for both
of them the rate of increase has almost doubled over the last fourteen years.

Table 4.7: Expected number of total records lost by the truncated regression model M2 (logarithmized total records
~ date and medium, whereby medium is a factor variable taking the two levels hardware (HW) and software (SW))
for the Privacy Rights Clearinghouse datasource (considering events with at least 70k records lost) for the first of
January of the years 2005-2018 for both media hardware (HW) and software (SW). The estimates are shown on
log-scale (LS) and on the original scale (OS), as well as a %-change per year for the original scale. For both groups
the rate of increase on the original scale has almost doubled over the last fourteen years.

2005 2006 2007 2008 2009 2010 2011
HW
Records on LS~ 12.3 12.3 12.3 12.4 12.5 12.5 12.6
Records on OS 21 10% 2210* 2310* 2410% 2610 27 104 29 104
%-change 4.8% 5.1% 5.3% 5.6% 5.8% 6.1%
SW
Records on LS~ 12.8 12.9 13.0 13.1 13.1 13.2 13.3
Records on OS 37 10* 40 10* 43 10* 47 10* 51 10* 56 10* 61 10%
%-change 7.7% 8.1% 8.6% 9% 9.5% 9.9%
2012 2013 2014 2015 2016 2017 2018
HW
Records on LS 12.6 12.7 12.8 12.8 12.9 13.0 13.1
Records on OS 31 10* 33 10* 3510* 38 10% 41 10* 44 10* 48 10*
%-change 6.4% 6.8% 7.1% 7.5% 7.8% 8.2% 8.7%
sSW
Records on LS~ 13.4 13.5 13.6 13.8 13.9 14.0 14.1
Records on OS 68 10* 75 10* 84 10* 94 10% 106 10* 120 10* 137 10%
%-change 10.4% 11% 11.5% 12.1% 12.7% 13.3% 13.9%
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4.3 Density estimation

From the previous two sections we know there exist inhomogeneities among the different
datasources. Evaluating everything with respect to three different datasources is quite an
elaborate task. In the following we were not able to do so and thus the results based on
the complete dataset have to be looked at with these reservations in mind.

4.3.1 For the complete dataset

As in [18] we fit a truncated lognormal, a Pareto and an upper-truncated Pareto distri-
bution® [1] to the total records variable for three different thresholds (70k, 500k, 1Mil).
The parameter estimates are shown in table 4.8 and the fits in figure 4.14. Considering
the latter we see that the truncated lognormal and the upper-truncated Pareto yield a
better fit for the tail in comparison to the Pareto distribution, as the latter is too heavy-
tailed in the second half. For the Pareto distribution we have o < 1 and hence an infinite
mean. Moreover, the log-likelihood values are the highest for the truncated lognormal and
upper-truncated Pareto model and almost identical for the latter two for all thresholds
considered.

Table 4.8: Parameter estimates for the truncated lognormal, the Pareto and the upper-truncated Pareto distributions
based on the complete dataset at various thresholds (70k, 500k, 1M3l.). The used threshold (u), the number of
observations above u (n), the parameter estimates, their standard errors in brackets and the log-likelihood of the
fits are given for each distribution function. For all thresholds the truncated lognormal and upper-truncated Pareto
distribution give the best fit based on the log-likelihood values.

Truncated lognormal Pareto Upper-truncated Pareto

u n o o? logL « logL « logL

70k 993  4.7(2.5) 24(0.37)  -15'200  0.43(0.014) -15'210  0.40(0.015)  -15'198
500k 480 9.6(2.0) 13.8(0.3) -8'062  0.50(0.023) -8'070  0.45(0.025) -8°063
IMil. 364 8.8(3.2) 15(0.61) -6'281  0.54(0.029) -6'285  0.45(0.03)  -6'281

—— Gaussian kernel
---- Truncated lognormal

Pareto
-~ Upper-truncated Pareto

Density
0.2 03
|
-10 05
|

-2.0
L

0.1

Survival Probability on log10-scale
-15
|

-25

— Empirical

-~ Truncated lognormal
Pareto Pareto

o] --~ Upper-truncated Pareto $7 -== Upper-truncated Pareto

7 — Empirical
---- Lognormal

r T T T T 1 T T T T T T T T T T T
12 14 16 18 20 22 12 14 16 18 20 22 5 6 7 8 9

Log-transformed Total Records log-transformed Total Records Total Records on log10-scale

Figure 4.14: Probability density plot (left), cumulative density plot (middle) and survival probability plot on
logl0-scale (right) for the estimated distributions truncated lognormal (red dashed), Pareto (blue dotted) and
upper-truncated Pareto (green dashdotted) for the complete dataset (i.e. with a threshold of u = 70k). In the
density plot we used a Gaussian kernel estimate for the density of the observations (black solid line). In the other
two plots we show the empirical cumulative density function (black solid line). The tail of the empirical distribution
function is best approximated by the truncated lognormal distribution.

We now compare the fits by considering several goodness-of-fit measures (see table 4.9)
[38]. We observe that generally the truncated lognormal and upper-truncated Pareto are
valid choices. Except for the threshold u = 500k, the Pareto distribution is always rejected
at 95% confidence level from both the Kolmogorov-Smirnov (KS) and Anderson-Darling
(AS) test® [38]. Also with regards to AIC and BIC Pareto is the least favorable choice.
For u = 70k both the lognormal and upper-truncate Pareto distributions are rejected by

5We assume that the upper limit is known and set it to the largest observed value, which is 3 x 10°.
In both tests we test whether the true distribution the data originates from (denoted by F) is the
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the KS test but not by the AD test, hence both of them appear to be valid choices. For
u = 500k only the lognormal distribution is not rejected by both hypothesis tests and is
thus the preferred choice (although there is only a small difference in comparison to the
upper-truncated Pareto distribution). For u = 1Mil. the upper-truncated Pareto is the
only distribution that is not rejected by both hypothesis tests and thus the preferred one.

Table 4.9: Goodness of fit measures (D, = Kolmogorov-Smirnov test statistic, A, = Anderson-Darling test statistic,
Akaike information criterion (AIC) and Bayesian information criterion (BIC)) for the truncated lognormal, Pareto
and upper-truncated Pareto distributions for the thresholds u = 70k, 500k and 1M l. based on the complete dataset
(for Dy, and A, p-values are provided in brackets). With regards to the given measures either the truncated
lognormal or the upper-truncated Pareto distribution provide a suitable fit.

Truncated lognormal Pareto Upper-truncated Pareto

u = 70k
D, 0.058 (0.0024) 0.055 (0.0044)  0.046 (0.030)
Ay 2.1 (0.077) 4.7 (0.0040) 2.1 (0.077)
AIC  30°401.3 30°421.2 30’398.6
BIC 30'411.1 30’426.1 30’403.5

u = 500k
D, 0.051 (0.16) 0.051 (0.152) 0.033 (0.66)
A, 1.7 (0.13) 5.5 (0.0017) 2.7 (0.041)
AIC 16’128.4 16°142.2 16°128.4
BIC 16°136.8 16°146.4 16’132.6

u = 1Mil.
D, 0.080 (0.019) 0.080 (0.019) 0.080 (0.019)
A, 3.5 (0.015) 7.2 (0.00026) 2.42 (0.055)
AIC 12’566.6 12’572.9 12’564.9
BIC 12’574.4 12°576.8 12°568.8

4.3.2 For the economic sectors

From both the MDS section 2.1 as well as the previous section 4.1 it becomes clear that
the economic sectors follow different severity distributions. While for the complete dataset
a truncated log-normal or upper-truncated Pareto give a good fit for various thresholds,
we assess in the following whether this is as well the case for the severity distribution of
the individual economic sectors for the original threshold u = 70k. We summarize the
economic sectors with a small number of observations in the miscellaneous sector other.

In figure 4.15 we show the different fits for the individual sectors and in table 4.10 the
parameter estimates of the distributions. By considering the density fits it becomes obvi-
ous that not all distributions are a suitable fit for a specific sector and for the considered
threshold. For many sectors there is a slight or even pronounced mode for the lower
range of the total records variable, which is better captured by a truncated log-normal
distribution rather than a Pareto or upper-truncated Pareto distribution. At this point
it is also important to note that some of the provided total records have most likely been
rounded to the nearest power of ten or an integer multiple thereof, as they appear more
often than other random natural numbers. This explains some of the observed spikes in
the histograms. A good example for this is the plot of the consumer cyclical sector (53),
where there is a clear spike before e!4, which is about 1.2 million. Hence many events with
records close to 1 million have probably been rounded. In fact, for the sector 53 the value
1 million appears most often with seven times, followed by 5 other values which appear
three times. This is observation is important since it causes ties and we use the KS test to
assess whether the observations originate from one of our assumed distributions, whereby
the used test statistic D,, is given by the maximal difference of the empirical distribution

E,(-) to the assumed one Fy, i.e D,, = sup |Fy(y) — Fo(y)| [38].
y

same as our assumed distribution Fpy, i.e. Ho : F' = Fy. Hereby we use the empirical distribution Fn as an
estimate for F'.
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Table 4.10: Parameter estimates for the truncated lognormal, the Pareto and the upper-truncated Pareto distribu-
tions for the economic sectors (with factor levels industrials (52), consumer cyclicals (53), consumer non-cyclicals
(54), financials (55), healthcare (56), technology (57), telecommunication services (58), education (edu) and the
miscellaneous sector other, which is a merger of the sectors energy (50), basic materials (51), utilities (59), military
(m4l) and politics (pol)) at the threshold u=70k based on the complete dataset. The number of observations per
sector is given by n, the parameter estimates, their standard errors in brackets and the log-likelihood of the fits are
provided for each distribution. For all economic sectors either the truncated lognormal or upper-truncated Pareto
distribution give the best fit based on the log-likelihood value.

Truncated lognormal Pareto Upper-truncated Pareto

Sector n I o? logL « logL « logLs

52 164  12.6(0.38) 5.9(0.062) -2’498.5  0.34(0.027) -2’499.9  0.24(0.034) -2’494.1
53 138  13(0.40) 6.7(0.075) -2°173.3  0.30(0.026) -2°177.7  0.23(0.032) -2’173.9
54 33 12.5(0.80)  5.2(0.27) -495.2 0.36(0.067)  -495.3 0.20(0.090)  -493.3
55 125  12.4(0.39) 4.7(0.064) -1’851 0.38(0.034)  -1'850.7  0.29(0.042) -1'848.4
56 145  12.4(0.22)  2.8(0.025) -2°080.7  0.43(0.036) -2°082 0.34(0.043)  -2’080.4
57 203  14.1(0.27) 7.4(0.042) -3’391.4  0.24(0.017) -3’411.2  0.15(0.023) -3’398.7
58 38 13.4(0.57)  5.5(0.18) -603.1 0.29(0.050)  -605.7 0.12(0.070)  -601.5
edu 87 11.5(0.40)  2.4(0.057) -1'163.8  0.58(0.064) -1°158.5  0.49(0.074) -1’158.9
other 49 11.1(1.9) 12(0.83) -754.8 0.33(0.049)  -753.7 0.22(0.062)  -751.6

With the above considerations and the goodness of fit measures presented in table 4.11,
we make the following observations for the individual economic sectors.

e For the industrial sector (52) sector we observe a slight mode of the density at
the lower spectrum of the total records variable. Firstly, almost a third of the
observations are below 200k. Secondly, the values 100k and 200k appear most
frequent (six times) and cause two spikes slightly before e'? and slightly afterwards,
and thus lead to the observed mode in the density. Thus it is not surprising that both
the Pareto and upper-truncated Pareto distributions are rejected by both the KS
and AD test (p-value < 0.005). The KS test is rejected for the truncated lognormal
distribution with a p-value of 3.8% whereas the AD test is clearly not. Thus the
truncated lognormal distribution is a reasonable choice for the considered threshold.
Presumably, the upper-truncated Pareto distribution gives a good fit for a higher
threshold, as there will no longer be a mode in the density and because already now
both AIC and BIC are the lowest for this distribution.

e For the consumer cyclical sector (53) we observe a more pronounced mode for the
lower total records range than for the industrial sector (52). In particular there are
three spikes visible, whereby the first one is due to multiple appearances of the high
ten thousands (e.g. 70k, 80k, 95k). The second one includes values around 1 million,
which in fact appears seven times and is by far the most frequent one. The third
one is given by several events with 40 up to 60 millions of records lost. Again, both
the Pareto and upper-truncated Pareto distributions are rejected by the KS and AD
tests (p-value < 0.005). The truncated lognormal distribution is neither rejected by
the KS nor the AD test (p-value > 0.1). Moreover, it scores well with regards to
AIC and thus gives the best fit.

e For the consumer non-cyclical sector (54 ) we have the lowest number of observations
(33). Thus there are some sparse areas in the histogram towards the upper end. For
the lower range of the total records variable we observe again a slight mode and
three spikes. There are four events in between 70k and 80k which cause the first
spike, whereas the second is caused by three events above 300k and the third by
three data breaches with 1.5 up to 1.7 million records lost. Again the truncated
lognormal distribution gives a reasonable fit, however this time the upper-truncated
Pareto distribution is a valid option as well, as it is not rejected by the KS and the
AD test (p-values > 0.19) and scores best according to both AIC and BIC.

e For the financial sector (55) the density shows a mode at the lower range of the
total records values. We observe two spikes, one at 100k and the other around 1
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Figure 4.15: Probability density plots per economic sector (industrials (52), consumer cyclicals (53), consumer non-
cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication services (58), education (edu)
and the miscellaneous sector other, which is a merger of the sectors energy (50), basic materials (51), utilities (59),
military (mil) and politics (pol)) including the estimated distributions lognormal truncated (red dashed), Pareto
(blue dotted) and upper-truncated Pareto (green dashdotted) for the threshold w = 70k based on the complete
dataset. In each plot a Gaussian kernel estimate was added (black solid line). From left to right and top to bottom
we show the economic sectors industrials (52), consumer cyclicals (53), consumer non-cyclicals (54), financials (55),
healthcare (56), technology (57), telecommunication services (58), education (edu) and the miscellaneous sector
other. While for most economic sectors either the truncated lognormal or the upper-truncated Pareto distribution
provide a reasonable fit, for some not a single one of the considered distributions fits well and a larger class of
distribution functions should be considered.

million. The KS test rejects all distributions (p-values < 0.05), whereby the p-value
of the truncated lognormal distribution is close to the significance level of 5%. The
AD test rejects as well the Pareto and upper-truncated Pareto distributions. The
truncated lognormal on the other hand is not rejected at a 95% confidence level, but
the p-value of the test statistic is only slightly above the 5% significance level. Thus
from the distributions we consider for the threshold 70k the truncated lognormal
appears to be the most suitable choice. However, as for the industrial sector (52)
it is very likely that the other two give a reasonable fit for a higher threshold when
there is no longer a mode in the density.

e For the healthcare sector (56) all distributions are rejected by both the KS and
AD test at a 95% confidence level. If we consider a higher confidence level, i.e.
99%, then the only distribution that becomes acceptable is the truncated lognormal.
Considering the density plot in figure 4.15 we observe a profound mode for very low
values of the total records variable which is not well-captured by the truncated
lognormal. Thus for this sector and the considered threshold it is advisable to
consider as well other distributions, such as the truncated Gamma distribution.
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4.3. Density estimation

Table 4.11:  Goodness of fit measures (D,, = Kolmogorov-Smirnov test statistic, A, = Anderson-Darling test
statistic, Akaike information criterion (AIC) and Bayesian information criterion (BIC)) for the truncated lognormal,
Pareto and upper-truncated Pareto distributions for the individual economic sectors (industrials (52), consumer
cyclicals (53), consumer non-cyclicals (54), financials (55), healthcare (56), technology (57), telecommunication
services (58), education (edu) and the miscellaneous sector other, which is a merger of the sectors energy (50), basic
materials (51), utilities (59), military (msl) and politics (pol)) for the thresholds u = 70k based on the complete
dataset (for Dy, and A,, p-values are provided in brackets). For most economic sectors either the truncated lognormal
or the upper-truncated Pareto distribution provide a reasonable fit but for some sectors all considered distribution
functions are rejected by the Anderson-Darling and the Kolmogorov-Smirnov test at a 95% confidence level and

thus a larger class of distribution functions should be considered.

Truncated lognormal Pareto Upper-truncated Pareto

Sector 52

D, 0.11 (0.039) 0.21 (6.4e-07)  0.18 (7.1e-05)

Ay 1.8 (0.12) 9.9 (1.2e-05) 5.6 (0.0014)

AIC  5°000.9 5’001.7 4’990.3

BIC 5’007.1 5’004.8 4’993.4
Sector 53

D, 0.089 (0.22) 0.19 (6e-05) 0.16 (0.001)

A 1.7 (0.14) 9.8 (1.3e-05) 6.71 (0.00046)

AIC  4’350.5 4’357.3 4°349.9

BIC  4’356.4 4’360.3 4’352.8
Sector 54

D, 0.13 (0.63) 0.24 (0.04) 0.18 (0.19)

A, 0.74 (0.53) 2.3 (0.067) 1.3 (0.22)

AIC  994.3 992.5 988.6

BIC 997.3 994 990.1
Sector 55

D, 0.12 (0.043) 0.23 (1.5e-06)  0.20 (5.5e-05)

A 2.4 (0.06) 9.3 (2.6e-05) 6.6 (0.00053)

AIC  3’705.9 3’703.3 3’698.7

BIC 3'711.6 37706.2 3’701.5
Sector 56

D, 0.12 (0.031) 0.26 (4.8¢-09)  0.23 (4.5e-07)

A, 2.6 (0.044) 13 (4.2e-06) 9.9 (1.3e-05)

AIC  4’165.3 4’166 4’162.8

BIC  4'171.3 4’168.9 4’165.8
Sector 57

D, 0.059 (0.47) 0.19 (7.8e-07) 0.12 (0.0037)

A, 1.1 (0.32) 15 (3e-06) 7.9 (0.00013)

AIC  6786.7 6’824.4 6’799.5

BIC 6'793.4 6’827.8 6’802.8
Sector 58

D,  0.10 (0.78) 0.20 (0.091) 0.14 (0.44)

A, 0.48 (0.77) 2.7 (0.04) 1.1 (0.29)

AIC 1’210.1 1'213.3 1°205.1

BIC 1’213.4 1'214.9 1°206.7
Sector edu

D, 0.21 (0.00064) 0.33 (3.8¢-09)  0.30 (1.2e-07)

A 4.1 (0.0082) 8.3 (8.5e-05) 6.9 (0.00036)

AIC  2’331.7 2’319 2’319.8

BIC 2’336.6 2’321.5 2’322.3
Sector other

D, 0.14 (0.26) 0.21 (0.023) 0.17 (0.11)

A, 1.2 (0.25) 2.3 (0.064) 1.6 (0.15)

AIC 1’513.5 1’509.5 1’505.1

BIC 1'517.3 1'511.3 1’507

45



4. SEVERITY

Again, it is very likely that for a higher threshold we get a good estimate by one of
the three originally considered distributions.

e Considering the density plot of the technology sector (57) it becomes evident that
one might need two different distributions to model the total records for the consid-
ered threshold as there are two clearly distinguished modes; the first one around 1
million and the second at 20 million. A compromise fit is given by the truncated
lognormal, which is not rejected by any of the hypothesis tests (p-values > 0.3) and
also gives the best fit according to AIC and BIC.

e For the telecommunication sector (58) we again have only a small amount of obser-
vations for the range considered (38). There is one spike around 300k records lost, a
slightly higher number of events at the beginning and a sparser region for the upper
range of the total records variable. For this sector both the truncated lognormal and
upper-truncated Pareto distribution should be considered as possible distributions
based on the goodness of fit measures in table 4.11. However, the density is much
better captured by the truncated lognormal distribution and is thus the preferred
one.

e For the education sector (edu) we observe a similar situation as for the healthcare
sector (56). The density shows a clear mode for the lowest range of the total records
variable, which is not well captured by either of the distributions. Hence it is not
surprising that all of them are rejected by the KS and AD tests (p-values < 0.01).
Thus for the considered threshold other distributions should be considered, which
might yield a better fit.

e The miscellaneous sector (other) shows a slight mode in the density along the lower
range of the Total Records variable, where we also observe two spikes. The first one
around 100k and the second around 200k. As the mode is only slightly visible, both
the truncated log-normal and upper-truncated Pareto give a reasonable fit based on
the available goodness of fit measures. Furthermore, both of them are not rejected
by both the KS and AD tests (p-values > 0.1).

4.3.3 Conclusion

With regards to the distribution of the total records variable there are three important
take-away messages. Firstly, if we consider the complete dataset at different thresholds,
either the truncated lognormal or the upper-truncated Pareto distribution give a reason-
able fit. Secondly, from section 4.3.2 it becomes evident that for some economic sectors
other distributions might be more suitable. Thus a larger class of distributions should
be considered and compared to the current ones. It is important to note that the fit of
the distributions depends directly on the threshold. Therefore individual thresholds for
the economic sectors should be introduced. Thirdly, for most of the economic sectors the
truncated lognormal provides a reasonable fit or the best among the three distributions
considered. For others the upper-truncated Pareto is as well a sensible choice. For the
considered threshold the Pareto distribution was however outperformed for each sector by
one of the others. This is not necessarily the case for higher thresholds.

Furthermore, in section 4.1.1 we observed an increase over time trend for the total records
variable. In the density estimation section we did not account for this but this should be
considered if one wishes to make predictions. Therefore it is a crucial next step to identify
from which source(s) the time trend originate(s) from in order to be able to make the
corresponding adjustments in the density estimation.
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5 Reporting Delay

In the following chapter we would like to investigate if there have been any changes in
the reporting duration of data breach incidents over the past couple of years. There are
several reasons why a change in the reporting of such events might occur. Changes in
the regulatory framework can lead to a faster reporting of data breaches as delay or non-
reporting will result in heavy fines [22]. On the other hand, the ongoing coalescence of the
physical and the technological world leads to an increased awareness of the risks associated
to the new technology and a more responsible use.

5.1 Description of the dataset

The dataset for the analysis is taken from the website “Have I Been Pwnd” (HIBP)
[19], which is run by Troy Hunt. He is a well-known cyber security expert and collects
data from known breaches on his website to enable the general public to check whether
or not they are affected by the breach. The dataset contains 285 events, whereby the
oldest breach stems from July 2007 and the most recent from May 2018. The dataset has
the following features: title, name, domain, breach date, added date, modified date, pwn
count, description, is verified, is fabricated, is sensitive, is active, is retired, is spam list,
data classes. We use this for a first analysis on the reporting delay but we believe the
dataset has the following two limitations. Firstly its size, as it is rather small. Secondly,
the sample might not be an accurate representation of the complete spectrum of data
breaches as events are included based on a single person’s selection.

Breach date, added date and time difference

The dataset contains both a proxy date for when the breach happened (breach date) and
when it became known to the public (added date). We will use the difference between
these two dates as an estimate for the reporting delay. From the original 285 observations
in the dataset only 223 could be used in the analysis. Some events had to be excluded as
their breach date lies before the time Troy Hunt started his database at the end of 2013
[19]. If the breach date lies before that, the added date variable is no longer a good proxy
for when the breach became known to the public and we have therefore only considered
events with breach date from 2014 onwards’.

We are interested in the reporting delay which is given by the time lag between the
variables breach date and added date. Therefore we will first consider the histograms of
these two variables. On the left in figure 5.1 we show the overlaid histograms for both
variables for half-yearly buckets and we observe a clear time shift between the occurrence
and the reporting frequency. To be more precise, we look at the reporting delay of the
respective events ordered by their breach date, which is shown on the right in figure 5.1.
The reporting delay has a natural upper bound, which is given by the difference between
the current date and the breach date. Since this data was downloaded on the 2018-06-05,
it contains all the information that was entered up to the previous day, which will be used

!One event had to be excluded as the added date was before the breach date, which is generally not
the case.
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5. REPORTING DELAY

as a reference date. We should also keep in mind that this figure might not show the
complete picture as some events might have not been reported yet.
|
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Figure 5.1: Overlaid histograms of the breach date (blue) and added date (pink) variables with half yearly buckets
(left) and reporting delay in days ordered by breach date (right), whereby an upper bound is shown in gray with
reference date 2018-06-04, for the reduced “Have I Been Pwnd” dataset, which only includes data breach events
with breach date from 2014 onwards. Between the breach date and added date variables a clear time shift is visible.

We introduce a new variable which is called time difference and specifies the number of
days between the breach date and added date variable. This will be our response variable
and from now on we exclude the added date variable, as we otherwise have a dataset with
linearly dependent variables. In figure 5.2 we show the histogram of the time difference
variable, which is right-skewed?.
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Figure 5.2: Left: Histogram of the new response variable time difference, which is given by the difference of the
breach date and added date variable for the reduced “Have I Been Pwnd” dataset, whereby only events with breach
date from 2014 are included. Right: The log-transformed version of the time difference variable, whereby the latter
was shifted by 1 day for the transformation. The median of the time difference variable equals 139 days.

These plots motivate us to further analyze if there is statistical evidence for this visually
observed time shift in the histograms and in the latter case, how we can quantify it. Before
we look more closely at the other variables.

Other variables in the dataset

The five variables is verified, is fabricated, is sensitive, is retired, is spam list are booleans
and a detailed description of them is provided in the appendix (see table A.9). The pwn
count variable specifies the number of records lost and the data classes variable specifies
the kind of information that was lost in the breach. The latter takes multiple values per
observation and the list of the original 110 possible attributes® is shown in the appendix
in table A.11. For the analysis we only consider attributes that appear at least ten times

2For the log-transformation we have shifted the time difference by one day, i.e. log(time difference) =
log(time difference + 1).

3Some of them refer to the same information and have thus been merged to one information attribute.
The used mapping is shown in table A.10 in the appendix.
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5.1. Description of the dataset

in order to get a reasonable parameter estimation. Hence the remaining variables of the
dataset are:

e 5 pre-set booelans (number of “TRUE” values are shown in brackets): is verified
(206), is fabricated (1), is sensitive (20), is retired (1) and is spam list (7),

e 1 continuous variable: pwn count, which is right-skewed and we thus use its log-
transformed version (cf. figure 5.3),

e 13 boolean variables based on the former data classes variable, shown with the
number of “TRUE” values in table 5.1.

Table 5.1: Information attributes of the data classes variable, which specify the types of information that were lost
in the breach, and their corresponding frequencies in the reduced “Have I Been Pwnd” dataset, whereby only events
with breach date from 2014 are considered. Most of the information attributes occur only seldomly.

Attribute Frequency  Attribute Frequency  Attribute Frequency
Email addresses 218 Names 58 Geographic locations 21
Passwords 185 Website activity 50 Chat logs 15
Usernames 147 Phone numbers 35 Job titles 11

IP addresses 108 Physical addresses 35

Dates of birth 62 Genders 33
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Figure 5.3: Histogram of the pwn count variable, which specifies the number of records lost, on the original scale
(left) and log-transformed (right) for the reduced “Have I Been Pwnd” dataset, whereby only events with breach
date from 2014 are considered. This variable is clearly right-skewed.

We check for multicollinearity among all predictor variables. To this end we look at the
variance inflation factor, which measures how much of the variance of an ordinary least
square (OLS) coefficient is induced by multicollinearity. If this score is above 5 we might
have some multicollinearity and if it is larger than 10, the multicollinearity is assumed to
be very strong [11].

Table 5.2: Variance inflation factors for the remaining predictor variables in the reduced “Have I Been Pwnd”
dataset, whereby only events with breach date from 2014 are considered. The remaining predictor variables are
breach date, pwn count (specifies the number of records lost) and the boolean information attributes variables,
specifying whether a certain type of information was present in the data breach event or not, as well as the pre-
defined boolean variables which provide further information about the data breach event.

BreachDate 1.1 Geographic.locations 1.5 IsSpamList 1.5 Phone.numbers 3

Chat.logs 1.3  IP.addresses 1.2 IsVerified 1.4  Physical.addresses 2.7
Dates.of.birth 1.7  IsFabricated 1.2 Job.titles 1.4  PwnCount 1.5
Email.addresses 1.2 IsRetired 1.1 Names 2.6 Usernames 1.6
Genders 1.8  IsSensitive 1.1  Passwords 1.7  Website.activity 1.2

Since all of the variance inflation factors are below 5 we do not have evidence that the
different predictor variables are linearly correlated. Hence we do not exclude any variables.
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5. REPORTING DELAY

5.2 Model fitting

In order to answer our question about the change of the reporting duration of data breaches
over time we consider several types of models in the following subsections.

5.2.1 Generalized linear model fit

We start by fitting a generalized linear model (GLM) with identity-link function and
with the log-transformed time difference variable as response variable to the dataset. As
predictor variables we use all variables mentioned in the previous section and the breach
date variable*. The diagnostic plots do not show any peculiarities for the full model and
based on the summary output (not shown) we conclude that the variables breach date,
pwn count, website activity, geographic location as well as IP addresses turn out to be
the significant ones (at a confidence level of 95%). As a next step we try to reduce our
model to the relevant variables in order to identify the most important ones. An all subset
regression suggests to use the variables breach date, pwn count, IP addresses, geographic
locations and physical addresses. Therefore, most of the predictor variables that were
significant in the full model remain significant. The only exception is the website activity
variable which dropped out. On the other hand, the variable physical addresses entered
into the model. The coefficient estimates of the reduced model are shown in table 5.3.

Table 5.3: Coefficient estimates (with standard errors, t-test statistic and p-value of the t-test) of the reduced
generalized linear model fit obtained by an all subset regression on the reduced “Have I Been Pwnd” dataset,
whereby only events with breach date from 2014 are considered and the predictor variables breach date, pwn count
(which specifies the number of records lost), five pre-defined booleans which provide further information about the
data breach and thirteen booleans which specify the kind of information that was lost in the data breach event were
available in the reduced dataset. The null deviance equals 961.13 on 222 degrees of freedom and the residual deviance
774.3 on 217 degrees of freedom, Akaike information criterion equals 924.43 and the coefficient of determination
R? =19.44%.

Estimate  Std. error  t value  Pr(> [t])

Intercept 1.5 0.8 1.9 5.9e-02
BreachDate -0.00095 0.00032 -2.9 3.7e-03
PwnCount 0.24 0.057 4.2 3.4e-05
IP.addressesTRUE 0.99 0.26 3.9 1.5e-04
Physical.addressesTRUE -0.97 0.35 -2.7 6.5e-03
Geographic.locationsTRUE -1.4 0.44 -3.1 2.1e-03

Considering the estimates in table 5.3, we can make several interesting observations.
Firstly, the breach date variable shows a negative coefficient of small magnitude. Secondly,
the pwn count variable shows a large coefficient with a positive sign, which suggests that
the larger the breach the longer the reporting delay will be. Moreover, the intercept shows
a relatively large standard error. The interpretation of the information attributes is not
straight forward due to the different signs of the coefficients. While the presence of the
IP addresses has a prolonging effect, the presence of the other two shorten the delay. Ad-
ditionally, the magnitude of the information attribute coefficients is largest for geographic
locations which is only present in 10% of the observations and almost as large in magni-
tude as the intercept. The coefficients of the IP addresses and physical addresses variable
are almost identical in size but of opposite sign. Hence if both of them are present, they
almost annihilate the effect of one another on the reporting delay.

If we fit the model on a random half of the observations and compare it to the fit on
the second half, the only variable that remains significant at a 95% confidence level on
both fits is the pwn count variable and hence questions the validity of the others. This
concern is further supported by the low R? value of roughly 20%. If we combine the
information attributes into a single variable, which takes the value “TRUE” as soon as

“For the modelling we have shifted the breach date variable to start at 0 for 2014-01-01 and use as well
the log-transformed pwn count variable.
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5.2. Model fitting

any of them is present, it turns out that this combined information variable is clearly not
significantly adding to the reporting delay. Hence the information attributes might add
more noise than signal. For the latter model the breach date variable remains borderline
non-significant at a 95% confidence level, even when fitting it on two subsets. Thus it
remains questionable whether there exists a systematic relation between the reporting
delay and the breach date.

The residual plots of the reduced model presented in table 5.3 show some peculiarities in
the scale-location plot (not shown). A constant level of variance is observed for the lower
part of the fitted values and a decreasing variance for the second part of the fitted values.
This indicates that a GLM is not the best model choice for our data and we therefore
explore other options. Hereby we use the reduced model as a starting point and check if
we reach the same conclusion for the information attributes. Nevertheless we show the fit
of the reduced model in figure 5.4, which exhibits a slight decreasing trend over time. One
might wonder if this is the same for all quantiles of the reporting delay and we therefore
fit a quantile regression to the dataset in the next section.
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Figure 5.4: Modelled (red) vs. observed (blue) reporting delays on log scale (left) and on the original scale (right)
for the reduced generalized linear model obtained by an all subset regression on the reduced “Have I Been Pwnd”
dataset, whereby only events with breach date from 2014 are considered. The remaining predictor variables are
breach date, pwn count (which specifies the number of records lost) and the three information attributes variables, IP
addresses, physical addresses and geographic locations, which take the value “TTRUE” when the named information
attribute is present in a data breach event. A slightly decreasing trend over time is visible.

5.2.2 Quantile regression

We will perform a quantile regression [24] on the reduced model obtained in section 5.2.1.
This method enables us to assess how the parameters for the different predictor variables
change for different quantiles of the response. Recall that in quantile regression we assign
asymmetric weights to the absolute error terms, whereby the weights depend on the quan-
tile 7 € [0,1]. The coefficients of a T-quantile regression solve the following minimization
problem

B, = argmBmE[ﬂY —~ XB|Z{Y = XB} + (1 — )Y — XB|Z{Y < XB}]. (5.1)

Therefore we get estimates of the quantile coefficients by solving

N
By = arg mﬂlnz Tlyi — 2B Z{y; = ©:B} + (1 — 1)y — w:B8| T{y: < x:B}], (5.2)
i=1

whereby x; denotes the i** row vector of the matrix X, which contains the values of the
predictor variables for the i observation y;.

We fit a quantile regression for all deciles. By retesting the fit on random halves of the
subsets we reach the same conclusion as in section 5.2.1. In particular for the information
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5. REPORTING DELAY

attributes zero is mostly included in the 90% confidence interval of the quantile estimates
or very close to the bounds thereof. Hence we exclude them from the model and show the
quantile coefficient estimates for the intercept and the remaining two variables in figure
5.5 (Due to the exclusion of the information attributes the latter two automatically take

over more importance in the model and thus show smaller p-values.)
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Figure 5.5: Quantile regression parameter estimates for the modelling of the log-transformed time difference variable
with 90% confidence region (gray area) for the intercept (left), breach date (middle) and pwn count, which specifies
the number of records lost, (right) per decile for the reduced “Have I Been Pwnd” dataset, whereby only events
with breach date from 2014 are considered. The red line denotes the ordinary least square estimate and the dashed
line the corresponding 90% confidence interval. The coefficients of determination R2 of the quantile regressions® lie
between 2% — 16%.

“For quantile regression there also exists a coefficient of determination R2 goodness of fit measure
which is similar to the coefficient of determination R? measure from ordinary least squares. Contrary the
latter, the R2 from quantile regression focuses on a local goodness of fit for a specific quantile as it is based
on a correspondingly weighted sum of the absolute residuals [25].

Based on the plots presented in figure 5.5 we note the following;:

e Intercept: The intercept covers a wide range across the different deciles. While it is
almost zero for the lowest three it steadily increases for the higher deciles and thus
contributes more to the length of the delay for longer reporting delays.

e Breach date: For this coefficient we observe a change of the sign for the lowest decile.
This suggests that events with very short reporting delays have actually showed an
increase in the delay over the past couple of years. From the first to the second
decile there is a strong decrease and a change of sign. Even though four out of eight
of the following quantile estimates lie within the 90% confidence bound of the OLS
regression coefficient, the OLS coeflicient is underestimating the decrease over time
for most of the events.

o Pun count: Except for the first and the last two deciles, the coefficient estimates
lie within or very close to the border of the 90% confidence interval of the OLS
estimate. Moreover, the estimates of the first and the last two deciles are almost
zero, which suggests that for events with very short or very long reporting delays
the pwn count variable does not provide any differentiating information. On the
contrary, the pwn count variable contributes more to the modelling of the delays
from the second decile on, whereby it does more so for the lower deciles than for the
higher ones.

In figure 5.6 we plot the reporting delay vs. the breach date and add the quantile regression
estimates to it, as well as the GLM estimate from the model only taking pwn count and
breach date as predictor variables®. For all models we add a loess-smoother based on the
breach date variable. This yields a continuous non-parametric estimate based only on the
breach date variable and is in line with our observations above from figure 5.5. For the
first and the last two decile regressions the loess-smoother almost follows a straight line
and the pwn count variable has almost no contribution. For decile regressions in which the

SWhile the breach date and the pwn count coefficients remain of roughly the same magnitude, the
GLM intercept estimate increased by 50% in comparison to the reduced GLM model from section 5.2.1.
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5.2. Model fitting

pwn count variable has a larger estimate, we observe a broader spread of the fitted values
(consider for example the fitted values from the second or third decile regressions). Almost
all decile regressions show a decreasing trend. The only exception to this are the regressions
from the lowest two deciles. While for the lowest we can observe an increase, the reporting
delay does not seem to have changed over time for the second decile. Furthermore, for
the 0.3-0.6 quantile regressions we observe a stronger decrease from 2017 on towards the
end. However, this could be due to the not yet reported events, i.e. events that happened
recently but have a long delay and are thus still unknown. Interestingly the GLM-fit lies
mostly between the 0.3-0.4 quantile regressions.

In the right plot in figure 5.6 we show the estimates from the GLM and the quantile
regressions on the original scale and have again added a loess-smoother. As the observed
linear decrease in the second plot of figure 5.6 was on the logarithmic scale, the decreasing
effects become multiplicative on the original scale for the reporting delay. Hence we
observe a strong decrease for events prior to 2016 and a less profound decrease later on.
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Figure 5.6: Left: Fitted reporting delay values of the quantile regression models per decile with breach date and
pwn count (which specifies the number of records lost) as predictor values vs. the breach date variable for the
reduced “Have I Been Pwnd” dataset, whereby only events with breach date from 2014 are considered, on log-scale.
Middle: The former plot also including a loess-smoother for each quantile regression and the fitted reporting delay
from the generalized linear model only containing pwn count and breach date as predictor variables, also with a
loess-smoother. Right: The plot in the middle transformed back to the original scale. For the quantile regressions
different rates of decrease and increase over time can be observed for different deciles.

Since we are most interested in the dependence between the time difference and the breach
date, we can also fit a univariate quantile regression to a model only containing those two
variables (not shown). We observe an increase in the time difference for the lowest decile
and a decrease for all the other deciles, including the second one for which the estimate
remained constant before. Since most of the coefficients change notably over different
quantiles, the results from the quantile regression emphasize that a GLM is not a suitable
model. Furthermore, we have no statistical evidence that the information attributes con-
tribute in a systematic way as for several quantile coefficient estimates zero was within or
close to the 90% confidence bounds. Thus we exclude them from now on. Finally, also
for the quantile regressions we have observed very low R? values which question again the
existence of a systematic relationship between the remaining two predictor variables and
the response. In the next section we will employ a method that allows for more flexibility
in the modelling of the reporting delay.

5.2.3 Generalized additive model fit

In the following we will fit a generalized additive model (GAM) to our dataset. It allows
to fit non-parametric penalized regression splines to each predictor individually and hence
provides the desired flexibility [5]. Below we show the results of the GAM summary
statistics for the model only taking pwn count and breach date as predictor variables,
whereby we have used a spline function for both of them.
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5. REPORTING DELAY

Table 5.4: Coefficient estimates of the reduced generalized additive model fit taking pwn count (which specifies the
number of records lost) and breach date as predictor variables based on the reduced “Have I Been Pwnd” dataset,
whereby only events with breach date from 2014 are considered. For the predictor variables pwn count and breach
date a spline function was used. In the top part the intercept estimate, its standard error, t-test statistic and p-value
of the t-test are shown while in the lower part the estimated degrees of freedom (edf) of the spline functions, the
reference degrees of freedom, the F-test statistic and the corresponding p-value for the pwn count and breach date
variables are shown. The deviance explained by the model is 21.2%, the adjusted coefficient of determination R?
equals 18.2%.

Estimate  Std. error  t value Pr(> |t])

Intercept 4.3 0.13 34 0

edf Ref. df F p-value
s(PwnCount) 6 7.2 4.9 3.4e-05
s(BreachDate) 2 2.5 6.8 6.1e-04

We start by noting that the log-transformed pwn count variable is highly non-linear with
an estimated degrees of freedom (edf) close to 6. Also for the breach date we can observe
a non-linear behavior with an edf of 2, which suggests a behavior of a quadratic function.
The two respective functions are shown in the first two plots in figure 5.7. We note that
for both variables there exist ranges of predictor values for which the smoothing function
is almost constant. For the pwn count variable the smoothing function takes negative
values for pwn count below e'3, slightly oscillates thereafter above zero and tends toward
zero for the upper range of the pwn count variable. This suggests that in particular for
events with a low number of records lost the pwn count variable has a shortening effect
on the reporting delay, whereas for more severe breaches it might have a prolonging effect
or no influence at all. For the breach date the smoothing function remains constant at the
beginning until a few months into 2015 and declines afterwards. Thus it has a shortening
effect on the delay for more recent breaches.
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Figure 5.7: Left: Smoothing function of the pwn count variable (which specifies the number of records lost) in the
generalized additive model fit for the log-transformed reporting delay taking pwn count and breach date as predictor
variables based on the reduced “Have I Been Pwnd” dataset, whereby only events with breach date from 2014 are
considered. The estimated degrees of freedom of the smoothing function is six which is highly non-linear. Middle:
Smoothing function of the breach date variable from the aforementioned model, which has an estimated degrees of
freedom equal to 2. Right: Fitted reporting delay values on the log-scale for the 7 € {0.4,0.5} quantile regression
models, the generalized linear model (GLM) and the generalized additive model (GAM), whereby all models take
the pwn count and breach date as predictor variables. The generalized additive model shows a constant reporting
delay for 2014 and a decline thereafter, whereby the other three models show a decline over the complete considered
time horizon.

We should also note the low value of the adjusted R? and the deviance explained by the
model (see table 5.4). This suggests that only a rather small part of the overall variance is
explained by the model even though we have chosen a more flexible method this time. This
supports the previous concerns about the existence of a systematic relationship between
the reporting delay and the predictor variables for the given dataset.

In the right plot of figure 5.7 we show the GAM fit vs. the breach date variable, the
T-quantile regression estimates for 7 € {0.4,0.5} and the GLM fit only based on the pwn
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count and breach date variable. We have added a loess-smoother for all fits. In comparison
to the other models the GAM loess-smoother remains constant for the year 2014 and shows
a similar decline as the others afterwards. While the GLM fit lies mostly between the 0.3
and 0.4 quantile regressions, besides the first year the GAM lies mostly between the 0.4
and 0.5 quantile regressions.

5.3 Conclusion

In the previous subsections we have fit three different models. First and foremost, all three
of them score very low with regards to the considered goodness of fit measures and if the
fit was tested on random halves, the fits were not very stable. Many of the information
attributes dropped out early on and they do not appear to relate in a systematic way to
the reporting delay. However, answering this question is also challenging as many of them
only seldomly occur. The existence of a systematic relationship between the delay and the
two continuous variables pwn count and breach date remains questionable. It is however
certain that for the given dataset we cannot explain most of the variation observed in the
delay solely with these two variables.

A model comparison is thus challenging as the relationship does not seem to be well
captured or remains largely unaccounted for in all of the three models. With these concerns
in mind, all of them have however showed a decrease of the reporting delay over time. In
particular we have seen from the quantile regression model that the decrease is of different
rate for the various deciles and that the shortest delays have actually shown an increase
over time. Furthermore the GAM fit suggests that the variables breach date and pwn
count might only contribute to the modelling of the time difference for a specific range of
values.

Thus we do not believe to have found a sound model for the reporting delay with the
given dataset. Much of the behavior of the delay remains unaccounted for and further
predictor variables need to be considered. There is an indication for a decreasing trend
over time, however these results have to be treated with reservations. Furthermore, in
the above analysis we have used the breach date variable and pursued the question: if a
data breach happens on a given day, how long is its delay expected to be? Naturally one
can also use the added date variable, which then tries to answer the question: if a breach
becomes known at a certain date, when is it expected to have originally occurred? In any
case one needs to check for the existence of a time dependence between the delay and the
considered date.
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6 Data Breach Notification Laws
in the United States

In the following we compare the number of data breach events before and after the intro-
duction of data breach notification laws in the US. This is of interest as regulations have
been introduced state wise and not on a national level at once. Therefore, we can analyze
whether the introduction of notification regulations has had any effect on the reporting of
such events.

6.1 Effective dates of notification laws in the United States

For the analysis we use the main dataset presented in section 1.5 and consider organizations
which are headquartered in the US and for which the state or US territory! is known.
Hence there are 690 observations that can be used for the analysis. To answer the posed
question, we start by considering figure 6.1 which shows when notification laws became
effective within the US. The covered timespan is quite broad but it is also clearly visible,
that most states have introduced regulations within the beginning of 2005 and end of 2007
(38 out of the 52 considered, i.e. 73%).
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Figure 6.1: Effective date of notification regulations per state within the United States [28]. The height of the
points is not meaningful and solely used for visualization purposes.

!Puerto Rico is not a state but one of the US territories. Besides the 50 official states, the federal
district of Columbia is also included in the dataset.
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6. DATA BREACH NOTIFICATION LAWS IN THE UNITED STATES

6.2 Analysis

We directly exclude states with no events reported and states that have had their data
breach notification laws introduced before the first reported event in the dataset from the
analysis. Furthermore, we also exclude any states with no observations before or after the
effective date of the regulations, as we cannot infer anything from them. This leaves us
with 390 events for the set of states shown in table 6.1.

Table 6.1: States and their effective date of the first data breach notification regulations, total number of registered
events and number of events before and after the effective date of notification regulations based on the complete
dataset (the total is also split by datasources: Privacy Rights Clearinghouse (PRC'), breach level index (bli) and
Information is Beautiful (IiB)). Only states with a positive number of data breach events both before and after the
effective date are shown.

Split according to datasource

State Effective Date # before # after Total bli IiB PRC
Arizona 2006-12-31 1 6 7 2 0 5
Colorado 2006-09-01 2 9 11 1 0 10
Connecticut 2006-01-01 1 10 11 2 0 9
District of Columbia 2007-07-01 4 32 36 8 2 26
Georgia 2005-05-05 1 34 35 5 1 29
Illinois 2006-01-01 1 27 28 8 0 20
Towa 2008-07-01 2 5 7 2 1 4
Kentucky 2014-07-15 1 5 6 2 0 4
Maine 2006-01-31 1 1 2 0 0 2
Maryland 2008-01-01 3 12 15 0 1 14
Massachusetts 2007-10-31 7 13 20 [§ 1 13
Michigan 2007-07-02 2 6 8 2 0 6
Minnesota 2006-01-01 2 11 13 3 0 10
Missouri 2009-08-28 2 11 13 2 0 11
Nebraska 2006-07-13 2 4 6 1 0 5
New Jersey 2006-01-01 1 15 16 6 1 9
New York 2005-12-07 4 62 66 12 5 49
North Carolina 2005-12-01 1 10 11 4 0 7
Ohio 2006-02-17 2 15 17 1 2 14
Oklahoma 2008-11-01 1 8 9 2 1 6
Oregon 2007-10-01 1 8 9 3 2 4
South Carolina 2009-07-01 1 3 4 0 0 4
Tennessee 2005-07-01 1 11 12 3 0 9
Utah 2007-01-01 1 5 6 1 0 5
Virginia 2008-07-01 4 18 22 0 3 19

Considering the above table, we see that for many states only one event is reported
before the regulations became effective. This is especially the case for states which have
introduced them early. In the plots in figure 6.2 we show when the individual events
happened and when the corresponding regulations were introduced (red line) for the states
in table 6.1. We observe the following;:

e There is a high variety between the number of events per state.

e For most of the states, the frequency of data breaches does not show any clear pattern
and there are also longer timespans of no data breach events, consider for example
Arizona, Connecticut and Utah. For some states we also observe time periods with
an accumulation of events, such as Georgia between 2016 and 2017 or New Jersey
in 2014.

e The only states for which one might wonder if the rate has increased after the
introduction of the new regulations are Illinois, New York, Ohio and Virginia. For
Illinois there is one event in the year before the regulations became effective and four
and three in the two following years respectively. At the same time we also observe
larger periods of no events, i.e. 2008 until mid 2009 and mid 2010 until mid 2012.
For New York we make a similar observation. While four events have been reported
before the regulations became effective, ten have occurred in the same timespan
afterwards. However, also for New York we find again timespans with fewer events.
The same holds true for Ohio and Virginia as both of them show an accumulation
of events after the introduction as well as some sparse timespans afterwards.
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Figure 6.2: Number of events before and after the introduction of data breach notification regulations for the states
(from left to right and top to bottom) Arizona, Colorado, Connecticut, District of Columbia, Georgia, Illinois, Iowa,
Kentucky, Maine, Maryland, Massachusetts, Michigan, Minnesota, Missouri, Nebraska, New Jersey, New York,
North Carolina, Ohio, Oklahoma, Oregon, South Carolina, Tennessee, Utah and Virginia based on the complete
dataset. The red line shows when the regulations became effective and the symbols make it possible to distinguish
between events that happened close in time and mark the datasource of the events: the red triangle corresponds to
Privacy Rights Clearinghouse (PRC'), the blue plus to breach level index (bli) and the green cross to Information
is Beautiful (IiB). The height of the points is not meaningful and solely used for visualization purposes.

e Another state that stands out is Massachusetts. Notification laws were introduced
in October 2010 but even before that many events were reported and became known
to the public. From 2016 onwards we observe again more events, whereby most of
them stem from the same datasource (bli).

6.3 Conclusion

Based on table 6.1 and figure 6.2 we have no evidence that suggests an influence of
the introduction of notification laws on the number of reported events over time for the
given dataset. This is primarily due to the small size of the dataset which results in
few observations before the introduction of the regulations and notable sparse regions
afterwards. Furthermore, we have to keep in mind that we only consider events with at
least 70k items breached, which account for most of the records lost, but constitute only
a small fraction of the total number of data breaches?.

2For the dataset used in [37] it was observed that while breaches with at least 40k records lost account
for more than 99% of the total records lost, they constitute less than 10% of the overall number of events.
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7 Conclusion

Below we give a short summary of the overall results and compare them to the previous
results from the literature mentioned in section 1.3. In a second part we highlight some
of the key questions of interest for further analyses.

7.1 Summary and discussion of results

In chapter two we were able to identify different risk classes based on the economic sector
with respect to the frequency differentiated by severity quartiles. A comparison to the
results of Eling and Loperfido [14] is challenging as they identified risk classes based on
the economic sector with respect to the attack type (this information was not available
in the used dataset). However, in comparison to them we have obtained a much finer
classification of the economic sector. The latter provides a clear basis for the definition of
risk classes with regards to severity, independently of the type of attack, which is in any
way hard to classify in a consistent manner.

In chapter three we analyzed the frequency of data breach events for two different subsets
at a threshold of 70k records lost. The first subgroup consists of the PRC subset, for
which a Poisson model provides the best fit for the monthly and quarterly counts and
does not show an increase over time. In Eling and Loperfido [14] the same datasource was
used, however they considered all data breach events for which the number of lost records
was known and modelled the frequency on a daily basis, which is best approximated by
a negative binomial distribution. Thus one or the other distribution is more suitable for
different thresholds and time intervals considered. In the second subgroup, which consists
of the events from all three sources with a date within the beginning of 2013 until the
end of 2017, a mostly increasing development over time was visible. In particular is the
observed trend driven by one source (bli). However, based on the given dataset we cannot
predict the future development of the frequency over time.

In the first part of chapter four the severity was analyzed in detail with respect to all
available variables. A truncated regression model showed a significant increase over time
for the complete dataset. However, when fitting a truncated regression model on each of
the three datasources, the observed increase of the complete dataset was not present for
every datasource. Furthermore, from the additional factor variables it became clear that
there exists an information reporting issue for data breaches which are less severe - even
though we are considering a threshold of 70k records lost. For the same threshold we were
also not able to identify any relationship between the severity and the size of the organiza-
tion as it was done by Wheatley, Maillart and Sornette [37], whereby we have considered
two measures for the size of the affected entity. Furthermore, we have also studied the
development over time by breach medium. Already in the first section of chapter four it
became evident that the two media (software and hardware) considered follow a different
severity distribution. While there was enough statistical evidence for a different intercept
in a truncated regression model, the increase over time of the two medium types appears
to be the same (at a 95% confidence level). However, assessing this question was chal-
lenging as there were fewer events with a hardware medium for more recent years. In the
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third section of chapter four we estimated various distribution functions for the severity
at different thresholds. Hereby the truncated lognormal and the upper-truncated Pareto
distributions give a reasonable fit. In a second step we differentiated by economic sectors
at the threshold 70k records lost and it became evident that on this granularity level both
the threshold and sector are of high importance when estimating the distributions. While
the truncated lognormal and upper-truncated Pareto have been suitable choices for the
complete dataset at various thresholds, a larger class of distribution functions should be
considered for some economic sectors (e.g. for the healthcare sector).

In chapter five the reporting delay was analyzed and there was no convincing statistical
evidence found for the delay to relate in a systematic way to the breach date, that is no
trend over time could be detected. In particular we have seen that most of the variation of
the reporting delay remains unaccounted for with the considered variables and methods.

In chapter six we looked at the frequency of data breach events of entities headquartered
in the US, per state, while taking the state wise introduction of data breach notification
laws into account. Our own dataset provides only a limited view on the issue and thus it
is not surprising that there were no clear changes visible.

7.2 Further questions of interest

With our analyses we detected many potential areas of research and questions within the
field, whereof we would like to list here the most interesting ones.

Firstly, there is great potential to extend the analysis on the frequency to several thresholds
and also apply multivariate techniques instead of remaining in the univariate setting. In
particular more recent data should be included in the model in order to make a sound
decision on the future development of the frequency of data breaches. Another extension
of the frequency analysis is the estimation of missing events due to a reporting delay. This
can for example be done by using the chain ladder method [38]. Secondly, while we get
reasonable density fits for the complete dataset for the considered distributions at various
thresholds, a wider class of distribution functions should be considered for a fitting on a
more granular level. In particular, if a dataset with the complete spectrum of the total
records variable is available, one could properly characterize the distribution of the small
data breaches and of the large ones by identifying a suitable threshold, whereby this can
as well be considered at several granularity levels for various subgroups. Thirdly, while the
reporting delay was analyzed with regards to the breach date, it can as well be analyzed
with respect to the date it became publicly known. Hereby a different question is pursued,
namely if at a given date a data breach became known, how long has it been since the
breach has happened? Furthermore, as our analysis indicated that the number of records
lost has a prolonging effect on the reporting delay, a more detailed analysis with regards
to various thresholds occurs to be of interest. Hereby it is recommended to consider a
different dataset with more variables and which is not prone to a selection bias. Fourthly,
the analysis with regards to the data breach notification laws should be revisited on a
dataset without a threshold or the threshold that is specified in the respective notification
regulations, if any such threshold exists.
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A Description of the Datasets

A.1 Main dataset

Total records

This variable specifies the number of records breached and is available for each observation.
In our dataset we have only considered events with at least 70k records breached, therefore
the two histograms in figure A.1 show the upper tail of the severity distribution.
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Figure A.1: Histograms of total records breached on original scale (left) and log-scale (right) based on the complete
dataset (considering data breach events with at least 70k records lost).

The total number of records breached is clearly right-skewed.

Table A.1: Mean, standard deviation and skewness of the total records variable on original and log-scale (LS) based
on the complete dataset (considering data breach events with at least 70k records lost).

Mean Sd Skewness Mean on LS Sd on LS Skewness on LS

14 10 115 108 20 13 2.0 1.1

Country

There are 985 events for which it was possible to assign a headquarter location of the
affected business(es). Sometimes it was not possible to do so since multiple firms were
affected and they are headquartered in different countries. There are also cases, where
it is not even clear which company or organization was the owner of the data. For these
observations we have also not assigned a location. In table A.2 we show the different
countries and their frequencies in the main dataset.

It is not surprising that the US appears most often. Data breach notification laws have
been introduced state wise since 2003 and by now it is mandatory in every state [28]. As a
result, the information was publicly available and made it possible to create databases of
such events. From the sources that were used for our own dataset, most events originate
from the PRC set which registers events reported within the US.
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Table A.2: Number of data breach events by headquarter location based on the complete dataset (considering data
breach events with at least 70k records lost).

Country Freq. Country Freq Country Freq Country Freq Country Freq.
Us 720 Israel 8 South Africa 3 Vietnam 2 Iceland 1
United Kingdom 59 Russia 7 Chile 2 Argentina 1 Malaysia 1
Canada 26 Turkey 5 Denmark 2 Bangladesh 1 Moldova 1
Japan 24 Hong Kong 4 Iran 2 Belgium 1 Panama 1
China 17 Netherlands 4 Ireland 2 Brazil 1 Philippines 1
South Korea 15 Sweden 4 Malta 2 Bulgaria 1 Qatar 1
India 12 Italy 3 New Zealand 2 Cyprus 1 Serbia 1
France 9 Mexico 3 Pakistan 2 Czech Republic 1 Slovakia 1
Germany 9 Norway 3 Saudi Arabia 2 Finland 1 Syria 1
Australia 8 Poland 3 Spain 2 Greece 1 Taiwan 1

Location state

For the 720 affected entities headquartered in the US, it was possible for 690 of them to
register the state. Again, for events with multiple entities affected which are headquartered
in the US but in different states no value was entered. In table A.3 we show the frequency
for each state appearing in the dataset.

Table A.3: Number of data breach events by headquarter location (state wise) within the US based on the complete
dataset (considering data breach events with at least 70k records lost).

State # State # State # State # State #
California 130 Indiana 19 Oklahoma 9 Utah 6 Hawaii 2
New York 66 Ohio 17 Oregon 9 Delaware 4 Idaho 2
Texas 37 New Jersey 16 Michigan 8 Louisiana 4 Maine 2
District of Columbia 36 Maryland 15 Pennsylvania 8 South Carolina 4 Montana 2
Georgia 35 Minnesota 13 Wisconsin 8 Alabama 3 New Mexico 2
Florida 31 Missouri 13 Arizona 7 Kansas 3 Vermont 2
Illinois 28 Tennessee 12 Towa 7 New Hampshire 3 Alaska 1
Washington 23 Colorado 11 Nevada 7 North Dakota 3 ‘West Virginia 1
Virginia 22 Connecticut 11 Kentucky 6 Puerto Rico 3

Massachusetts 20 North Carolina 11 Nebraska 6 Arkansas 2

It is no surprise that California and New York appear most often. A lot of companies, in
particular companies which operate in the technological sector, are headquartered in Cal-
ifornia and numerous financial institutions are headquartered in New York. Furthermore,
the District of Columbia is also among the top five as most federal governmental bodies
are located there. For all of these three groups numerous events have been registered (see
table A.8).

Date

This variable is known for every event. However, it should be seen more as a proxy date.
In some cases, the actual breach date is known and might have been even entered into the
database for the date. However, in other cases the date might refer to the point of time
when the breach became publicly known and was reported in the media. In our dataset
the first event happened on 2004-06-23 and the last on 2018-05-15. Below we show the
number of reported events per year, whereby both the first and last year are considered
to be incomplete.

Table A.4: Number of data breaches per year based on the complete dataset (considering data breach events with
at least 70k records lost).

Year # Events Year # Events Year # Events

2004 1 2009 27 2014 122
2005 31 2010 42 2015 107
2006 50 2011 48 2016 183
2007 49 2012 48 2017 129
2008 47 2013 90 2018 19
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A.1. Main dataset

It is important to keep in mind that we have merged different databases which have been
recording events over different time spans and for different locations. Therefore an increase
over time can also be due to the fact that at some point of time we can observe more. In
figure A.2 we show how much the different sources contribute to the complete dataset.
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Figure A.2: Histograms of quarterly data breach events based on the complete dataset (considering data breach
events with at least 70k records lost), color-coded for different sources (blue for breach level index (bli), green for
Information is beautiful (IiB), red for Privacy Rights Clearinghouse (PRC)) and shown for all data breach events
(left), data breach events with affected entities headquartered in the US (middle) and data breach events with
affected entities headquartered outside of the US (right).

Market capitalization

142 entities from our dataset are publicly traded on the stock market and we extended the
dataset with their market capitalization value in US dollar as of the provided date in the
dataset. We acknowledge, that for a handful of events the stock price might have already
been adversely affected by the breach at that point of time. However, we still believe that
it can be used as a proxy for the company size in most cases. We have adjusted all market
capitalizations for inflation' and show their values as of 1st June 2018. The histograms
of the original and log-transformed market capitalization are shown in figure A.3.

Table A.5: Mean, standard deviation and skewness of the inflation adjusted market capitalization variable on
original and log-scale (LS) based on the complete dataset (considering data breach events with at least 70k records
lost).

Mean Sd Skewness Mean on LS Sd on LS Skewness on LS

53 10° 98 10° 3.3 23 2.4 1.1
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Figure A.3: Histograms of inflation adjusted market capitalization on original scale (left) and log-scale (right) based
on the complete dataset (considering data breach events with at least 70k records lost).

The market capitalization variable is clearly right-skewed.

1We have used the yearly average inflation rate of the consumer price index for the US dollar [6].
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Number of employees

Another indication for the size of an entity is the number of employees. For private and
publicly traded companies this number is mostly available (in 550 out of 668)2. Overall,
for 617 out of 993 observations it was possible to assign a value. Of the 376 observations

without a size, 209 belong to government entities.
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Figure A.4: Histograms of the number of employees variable on original scale (left) and log-scale (right) based on
the complete dataset (considering data breach events with at least 70k records lost).

Table A.6: Mean, standard deviation and skewness of the number of employees variable on original and log-scale
(LS) based on the complete dataset (considering data breach events with at least 70k records lost).

Mean Sd Skewness Mean on LS Sd on LS Skewness on LS

28 10> 103 10° 12.5 7.1 3.0 0.004

This variable is also clearly right-skewed.

Economic sector

For the classification into different sectors we used the Thomson Reuters business classifi-
cation scheme [33] and extended it with the three categories mil for military organizations,
edu for educational institutions and pol for political organizations or election centers. The
sectors and their corresponding frequencies are shown in table A.7.

Table A.7: Economic sectors and their frequencies based on the complete dataset (considering data breach events
with at least 70k records lost).

Sector  Name Freq.
50 Energy 3
51 Basic Materials 1
52 Industrials 164
53 Consumer Cyclicals 138
54 Consumer Non-Cyclicals 33
55 Financials 125
56 Healthcare 145
57 Technology 203
58 Telecommunication Services 38
59 Utilities 4
edu Education 87
mil Military 18
pol Politics & Elections 23

It is important to note the broad scale of the frequency for the different sectors and that
three of them show less than ten events.

21f available, the number of employees of the year specified by the date variable was taken. For publicly
traded companies this is most often available in their annual reports.
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A.1. Main dataset

Organization type

We can also look in a more general way at entities that were affected by data breaches.
This variable classifies them into 5 different types of organizations, whereby we distinguish
between entities belonging to a government (Gov), businesses that are private, businesses
that are publicly traded (MCAP), not-for-profit organizations (NPO) and other public
institutions that do not belong to governments, such as public schools. For 19 events it
was not possible to assign a type. In table A.8 we show the contingency table of this
variables split across the different economic sectors.

Table A.8: Contingency table showing both the frequency of organization type and economic sector based on the
complete dataset (considering data breach events with at least 70k records lost).

Gov  MCAP NPO private public NA  Total

50 2 0 0 1 0 0 3
51 0 0 0 1 0 0 1
52 92 21 1 47 0 3 164
53 4 34 2 98 0 0 138
54 7 7 0 19 0 0 33
55 24 28 7 58 1 7 125
56 32 8 25 80 0 0 145
57 6 29 4 162 0 2 203
58 0 14 0 24 0 0 38
59 1 1 0 2 0 0 4
edu 9 0 3 13 62 0 87
mil 18 0 0 0 0 0 18
pol 14 0 1 0 8 0 23
NA 0 0 1 2 1 7 11
Total 209 142 44 507 72 19 993

One should note that some of the combinations can be considered mutually exclusive, as
no school district (belonging to the edu sector) is publicly traded on the stock exchange
(MCAP). By looking at this table, we can clearly see some sparse regions, which can either
happen because of the former mentioned point or due to the size of the dataset. Moreover,
we can see that for some sectors the organization belong in more than 50% of the cases
to the same organization type. For example, the organizations of the industrial sector 52
belong mostly to governments. For the sectors 53, 54, 56-59 we can see that actually over
50% of the organizations belong to the private sector, whereby the financial sector slightly
misses the 50% mark. The educational sector mostly consists of public organizations,
military organizations are completely part of a government and political organization
mostly. Hence the organization type variable can often be considered a generalization of
the Thomson Reuters’ sectors.

Introduced factor variables

For our dataset we have introduced six factor variables which might give additional insights
into data breach events. Below we give a short overview for these variables and mention
the number of events for each level in brackets.

o Multiple firms: Boolean variable indicating if multiple firms were affected by the
breach (holds true for 38 events).

e Insider/outsider: Factor variable indicating if the key person responsible for the
breach was an insider (212) or an outsider (684). This is not always known (97).

e Medium: Specifies the medium that was involved in the breach: software (762) or
hardware (222), but this is also sometimes unknown (9).

e Intentional: Factor variable indicating if the data was breached on purpose (734) or
by accident (220), but this is also not always known (39).

67



A. DESCRIPTION OF THE DATASETS

e Fuailure mode: Specifies if the breach resulted due to a human error (202), an error
in the process (106; for example, poor security standards are considered to be a
process error) or due to the used software/hardware (430). This information is not
always known (255).

e Third party: Specifies if a third party is to a large part or fully responsible for the
breach happening (154) or not (556), but again it was not possible to determine this
for all events (283).

A.2 “Have I Been Pwnd” dataset

In the following we provide further information about the dataset that was used in chapter
5. The variables is verified, is fabricated, is sensitive, is retired, is spam list are booleans
and a description of them directly taken from the “Have I Been Pwnd” website [19] is
shown in table A.9.

Table A.9: Description of the pre-defined boolean variables in the “Have I Been Pwnd” dataset directly taken from
the “Have I Been Pwnd” website [19].

Variable Description
Is verified “Indicates that the breach is considered unverified. An unverified breach may not have been hacked from the
indicated website. An unverified breach is still loaded into HIBP when there’s sufficient confidence that a

significant portion of the data is legitimate.”

Is fabricated “Indicates that the breach is considered fabricated. A fabricated breach is unlikely to have been hacked from
the indicated website and usually contains a large amount of manufactured data. However, it still contains
legitimate email addresses and asserts that the account owners were compromised in the alleged breach.”

Is sensitive “Indicates if the breach is considered sensitive. HIBP enables you to discover if your account was exposed in
most of the data breaches by directly searching the system. However, certain breaches are particularly sensitive
in that someone’s presence in the breach may adversely impact them if others are able to find that they were a
member of the site. These breaches are classed as ”sensitive” and may not be publicly searched.”

Is retired “Indicates if the breach has been retired. After a security incident which results in the disclosure of account
data, the breach may be loaded into HIBP where it then sends notifications to impacted subscribers and
becomes searchable. In very rare circumstances, that breach may later be permanently remove from HIBP

”retired breach”.”

where it is then classed as a
Is spam list “Indicates if the breach is considered a spam list. This flag has no impact on any other attributes but it means

that the data has not come as a result of a security compromise.”

The variable data classes lists the various types of information that were included in each
data breach. Overall there are 110 different types of information in the original dataset.
Looking more closely at these attributes, we observe that some of them refer to the same
information. For example, dates of birth appears as an attribute, but age, age groups and
year of birth also appear within the list and refer to the same information. In such cases
the variables have been merged. The complete list of the original attributes for the data
classes variable including their respective frequencies is shown in table A.11 and the used
mapping is shown in table A.10.

Table A.10: Mapping of the data classes variable information attributes which refer to the same information in the
“Have I Been Pwnd” dataset [19].

Original Mapped to

Age groups Dates of birth

Ages Dates of birth

Email messages Chat logs

Passport numbers Government issued IDs
Private messages Chat logs

Races Ethnicities

SMS messages Chat logs

Years of birth Dates of birth
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A.2. “Have I Been Pwnd” dataset

Table A.11: Original information attributes of the data classes variable and their frequencies in the “Have I Been
Pwnd” dataset [19].

Information attribute Frequency Information attribute Frequency
Email addresses 279 Auth tokens

Passwords 241 Bank account numbers
Usernames 192  Banking PINs

IP addresses 132 Beauty ratings

Names 78 Biometric data

Dates of birth 75  Buying preferences
Website activity 72 Car ownership statuses
Phone numbers 46  Career levels

Physical addresses 45 Cellular network names
Genders 43  Charitable donations
Geographic locations 26 Chat logs

Private messages 14 Credit card CVV

Job titles 11 Customer feedback
Security questions and answers 10  Customer interactions

Employers

Instant messenger identities
Spoken languages
Government issued IDs
Payment histories
Account balances
Avatars

Credit cards

Email messages
Marital statuses
Purchases

Social connections

Deceased date

Deceased statuses

Device usage tracking data
Drug habits

Eating habits

Financial investments
Financial transactions
Fitness levels

Health insurance information
IMEI numbers

IMSI numbers

MAC addresses

Browser user agent details Net worths
Ethnicities Nicknames
Home ownership statuses Occupations

Income levels

Physical attributes
Sexual orientations
User website URLs
Education levels

Family members’ names
Family structure
Historical passwords
Partial credit card data
Passport numbers

Time zones

Age groups

Credit status information
Device information
Drinking habits
Homepage URLs
Nationalities

Personal descriptions
Relationship statuses
Sexual fetishes

Social media profiles
Years of birth

Address book contacts
Ages

Apps installed on devices
Astrological signs

FHREAERFODNNNNDNDNNNDNDNDNGWWOWWWWWER S B R RCIOLOTOtotot ot N 00 00 0o

Parenting plans

Password hints

Payment methods
Personal health data
Personal interests
Political donations
Political views
Professional skills

Profile photos

Purchasing habits

Races

Recovery email addresses
Religions

Reward program balances
Salutations

School grades (class levels)
Smoking habits

SMS messages

Support tickets

Survey results

Travel habits

User statuses

Utility bills

Vehicle details

‘Work habits

Years of professional experience
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B Additional Material

B.1 Chapter 3 Frequency

B.1.1 Residual analysis of the Privacy Rights Clearinghouse time model

The residual plots for the monthly and quarterly time models of section 3.1.1 are discussed
below.

Residuals
0.0

Residuals
-10 -05 00 05 10 15 20
L L L L L L L

T T T T T T T T T T T
310 315 320 325 330 335 9.4 95 9.6 9.7 9.8 9.9
fitted values fitted values

Figure B.1: Residuals vs. fitted values of the Poisson generalized linear model taking date as predictor variable
with loess-smoother for the monthly counts (left) and quarterly counts (right) for the Privacy Rights Clearinghouse
(PRC) datasource (considering events with at least 70k records lost). As the values are discrete horizontal lines
can be observed in the residual plots.

For the monthly counts the loess smoother follows a straight line and does not show
any major deviations. However, we see a clear pattern among the residuals as all of
them are located on horizontal lines of different levels. This is due to the fact that our
response variable NN is discrete and only takes values in {0,...,10}. Moreover, the range
of the fitted values is quite narrow which indicates that the model is almost constant over
time. Additionally there are two sparse areas visible in the upper half of the residual
plot and one might wonder, if this is due to a time pattern. However, when looking at
the autocorrelation of the residuals it only shows a borderline indication at a time lag of
six months and we therefore consider this to be due to randomness. For the quarterly
counts there is some curvature visible in the loess smoother. If we model the counts as
a polynomial of degree two of the date variable the fit is only slightly improved and we
therefore prefer to stick with the smaller model. For the quarterly counts the residuals
spread more evenly and there is no sign of autocorrelation. We observe again some sort
of levels among the residuals. However, in this case it is less pronounced as the response
variable covers a broader range of values. As before, the range of the fitted values is very
narrow in comparison to the range of the observations.

B.1.2 Exploratory Analysis of the sector percentage models

In the following we present the exploratory analysis of the PRC sector percentage model
presented in section 3.1.2. In figure B.2 we show the histograms of the sector predictor
variables, whereby the top row shows the ones for the monthly counts and the bottom
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row the ones for the quarterly counts. For the monthly count model zero appears most
often for all sectors and we observe that there were some months for which all the affected
entities belonged to the same sector. For the quarterly count model zero also appears
most often except for the healthcare sector (S56). Moreover, we see a much more diverse
picture with respect to the different sectors. Mostly the various sectors are included with a
low percentage in the quarterly counts and in rare cases a single sector was predominantly
present with a share above 50%. Recall that the sector percentages do not necessarily add
up to one, as the total number of events also includes events from the sectors 54, 58, edu
and other, which have not been included in the model.
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Figure B.2: Histogram for sector percentage variables (which specify the percentage of counts from an economic
sector in the respective counts) for the monthly counts (top row) and quarterly counts (bottom row), whereby from
left to right the sectors industrials (52), consumer cyclicals (53), financials (55), healthcare (56), technology (57)
are shown. The x-axis shows the monthly (top row), or quarterly (bottom row) respectively, percentage value of
the respective counts in [0, 1].

The pairs plots of the predictor variables are shown in figure B.3.

00 04 08 00 04 08 00 04 08 00 02 04 00 02 04 00 03 06

Figure B.3: Pairs plot for the count N and sector percentage variables (which specify the percentage of counts from
an economic sector in the respective counts) for the economic sectors (industrials (52), consumer cyclicals (53),
financials (55), healthcare (56) and technology (57)) for the Privacy Rights Clearinghouse (PRC') datasource for
the monthly counts (left) and quarterly counts (right).

We first start by analyzing the monthly pairs plot as it is easier and many observations can
be directly transferred to the quarterly pairs plot. For the monthly counts vs. the sectors
we observe several decaying lines next to each other. This pattern is a direct consequence
of the monthly counts range (here N € {0,...,10}) and the range of the number of times
a sector was affected. The sectors 52, 53 and 55 show at most three events per month
which then resulted in the decaying lines 1/N, 2/N or 3/N. The same holds for the sectors
56 and 57, whereby for 56 we have also two months in which it suffered four events and
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for 57 one month in which it suffered five events. The first decaying curve 1/N is the
most clearly visible one for all sectors as all of them have suffered a breach more often
once a month than twice or three times.

For the pairs plots of the sector predictor variables we also observe a pattern of diagonal
lines, whereby this is clearly visible for the pairs (552, S55), (552, §56), (552, S57), (S55,
S56), (855, S57) and (S56, S57). The diagonal lines at a 45 degree angle are explained
by the fact that if the sector pairs both have non-negative values, in more than 50% of
the cases they show the same number of events per month. Hereby this mostly consists
of cases where both of them suffered from one event. The spread along the diagonal line
is then given by dividing by the total number of events per month N, which varies in
between zero and ten. In some cases we can even see several diagonal lines, consider for
example the pair (552, S55). This happens if the number of events per month for the
sectors differ and this combination appears several times for a different total number of
events per month. We conclude that even though there are some clear lines visible, the
correlation among the sectors is very low.

For the quarterly counts we have a very similar picture. This time however, the range of
N as well as the range for the number of events per quarter for an individual sector is
larger. Considering the pairs plot of the sectors, we see that the percentage pairs spread
a bit more than in the monthly dataset but in some cases we can make out the same
diagonal lines. For some pairs we can observe sparse regions (e.g. consider (552, 556)),
this is partly due to the different axes and partly because the range of the sectors differ
more than before as the percentages go maximally up to 40% - 80% for the individual
sectors. Again we do not observe any strong correlations among the different sectors.

B.1.3 Analysis of the residual plots for the sector percentag models

We fit a Poisson GLM with log-link function to the complete dataset with the sector
percentages as predictors. The residual vs. fitted value plot for both models are shown
in figure B.4. For both models the curved loess-smoother function catches the eye. The
loess-smoother remains curved if we consider bootstrapped versions of the models (gray
lines). Comparing the fitted values to the actual observations shows that we generally
overestimate months or quarters with a very low total, which leads to the curvature at the
left outer edge of the range of the fitted values in the residual plots. Furthermore, if the
model predicts a high value, it generally overestimates the observations. For the monthly
counts the residuals are allocated again on several curved levels as N is discrete (and only
takes values between zero and ten). For the quarterly model this is much less pronounced
as the range of N is larger and we have fewer observations. For both models we do not
detect any outliers or leverage points.
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Figure B.4: Residuals vs. fitted values for the Poisson generalized linear models with sector percentages of the
respective counts as predictor variables (for the economic sectors industrials (52), consumer cyclicals (53), finan-
cials (55), healthcare (56) and technology (57)) for the monthly counts (left) and quarterly counts (right) with
loess-smoother (red line) and loess-smoother for bootstrapped versions (gray lines) based on the Privacy Rights
Clearinghouse dataset (considering data breach events with at least 70k records lost).
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Also when considering the partial residual plots in figure B.5, we observe a curved smooth-
ing function, whereby this is again more pronounced for the monthly count model than for
the quarterly count model. Resampling shows that the loess smoother is not very stable.
For the partial residual plots of the monthly model this is again more pronounced as we
have a much lower ratio of nonzero percentages vs. zero percentages than in the quarterly
model. However, by looking at the individual points we observe that we generally underes-
timate very low percentages and overestimate high percentages. For the quarterly counts
model we get more stable fits as we have a higher ratio of nonzero percentages vs. zero
percentages and more evenly scattered residuals. For the sectors 5% and 57 we can again
observe an underestimation of very low nonzero percentages which causes a bump in the
smooth function. The two residual plots for which the loess-smoother follows mostly a
straight line are the ones for the financial (55) and healthcare sector (56) in the quarterly
count model. Considering again their histograms shown in figure B.2, we can see that in
comparison to all the others these are the two sectors who are not strongly dominated by
the zero percentage value. Therefore we conclude that the bent loess-smoothers in most
partial residual plots are primarily due to the accumulations of zero percentages for most
sectors in both models and a lower number of observations for higher percentages, which
are generally overestimated in the monthly model.
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Figure B.5: Residuals vs. sector percentage variables in the Poisson generalized linear models with sector percentages
of the respective counts as predictor variables (for the economic sectors industrials (52), consumer cyclicals (53),
financials (55), healthcare (56) and technology (57)) for the monthly counts (top row) and quarterly counts (bottom
row) based on the Privacy Rights Clearinghouse dataset (considering data breach events with at least 70k records
lost). A loess smoother is shown in red and from left to right the economic sector percentages are industrials (52),
consumer cyclicals (58), financials (55), healthcare (56) and technology (57).

B.1.4 Analysis of the residual plots for the 2013-2017 models

In figure B.6 we show the residual plots of the models presented in section 3.2. For both
the Poisson and negative binomial model the residual vs. fitted value plot shows a curved
smoothing function for the model with date as a linear predictor. For the lower part of the
fitted values the residuals are more or less evenly scattered whereas for the third quartile
of the fitted values we generally underestimate the counts and for the fourth quartile we
overestimate them. In the partial residual plot against the date variable we can observe
the same curvature for both models. Even though the curvature is not very extreme,
it could be an indication for a missing quadratic term in the model. If we include the
date variable as a polynomial of degree two, the smoothing function no longer shows a
curvature in the residuals vs. date plot, but it shows a bump for the higher fitted values
in the residuals vs. fitted value plot. In particular many residuals are clustered there
and show an overestimation for fitted values in between 10-12 and an underestimation for
fitted values above 12. (Again these observations hold for both the Poisson and negative
binomial model.)
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Figure B.6: Residual plots for the Poisson (top row) and negative binomial (bottom row) generalized linear models
for monthly counts taking date as predictor variable (linear: degree 1; quadratic polynomial: degree 2), whereby
on the left two plots for the linear date model are shown: i) residuals vs. fitted values and ii) residuals vs. date
variable, and on the right the same for the quadratic date model. A loess-smoother is shown in each plot (red line).
The models are based on the complete dataset with events reported within the beginning of 2013 and the end of
2017 with at least 70k records lost.

If we account for this linear or quadratic trend, we would like to know whether or not the
residuals form a stationary process'. For this we conduct the KPSS test [27], where the
null hypothesis states that the time series is stationary around a deterministic trend and
the alternative states that the time series has a unit root. As we have already corrected
the time series for a time trend via the fitted Poisson or negative binomial model, we
conduct the test on the residuals with the null hypothesis of an intercept and no time
trend. For all four models (Poisson of degree 1 and 2, negative binomial of degree 1 and
2) the test does not reject the null hypothesis?. If we look at the residual time series, we
can see some timespans with a lower rate of events as seen in the original process, but
overall the process does not seem to be non-stationary. However, the residuals show some
slight autocorrelation at a time lag of 4.
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Figure B.7: Residual time series of the monthly counts Poisson generalized linear models (two on the left) and
monthly counts negative binomial generalized linear models (two on the right), whereby the first and third plot
show the residuals from the linear date models and the second and fourth from the models taking the date variable
as a polynomial of degree two as predictor variable. The models are based on the complete dataset with events
reported within the beginning of 2013 and the end of 2017 with at least 70k records lost. The residuals are slightly
autocorrelated at a time lag of four but there was no statistical evidence found for them to be non-stationary (at a
95% confidence level using the KPSS test [27]).

Tt is important to know the structure of the residuals as we want to bootstrap them later on.
2The hypothesis tests were conducted at a 95% confidence level and for all for models the results
p-values were larger than 0.1.
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B.2 Chapter 4 Severity

B.2.1 Residual analysis of the date and medium model

The residual plots of the three models discussed in section 4.2 are shown in figure B.8.
First and foremost, it is important to keep in mind that the residuals follow a truncated
distribution as well [36]. In all three models we observe a separation of the residuals from
the two media groups, whereby this separation is partly visible for M1, more so for M2
and fully for M3. While the residuals of the HW group accumulate at the lower range of
the fitted values, the upper range is at least dominated or fully occupied by the residuals
from the SW group. Hereby we also note some differences in the spread of the residuals
between the HW and SW group, as the latter covers a broader range. The negative
residuals are captured within a bounded area, which is due to the lower truncation bound
and the modeling of an increasing trend. Besides the three largest positive residuals of the
SW group, the two largest positive residuals of the HW group and the aforementioned
separation along the fitted values, the remaining residuals scatter evenly in the upper half
for both groups. In all three plots the added loess smoother follows a slightly curved
horizontal line. We added individual loess smoothers for both groups and in particular
for the model M1 we observe that HW events are slightly overestimated and that the
overestimation increases for higher fitted values.

Model M1

Model M2

Model M3

& HW
+ sw

7o Hw

+ sw

& HW
+ sw

Residuals
Residuals
Residuals

aady ¥,

T T T T T T T T T
125 13.0 135 14.0 125 13.0 135 14.0 125 13.0 135 14.0

Fitted values Fitted values Fitted values

Figure B.8: Residual plots of the three truncated regression models M1 (logarithmized total records ~ date; left),
M2 (logarithmized total records ~ date and medium, whereby medium is a factor variable taking the two levels
hardware (HW) and software (SW); middle) and M3 (logarithmized total records ~ date and medium as a factor
model; right) for the Privacy Rights Clearinghouse datasource (considering events with at least 70k records lost),
whereby residuals and loess-smoothers of the hardware group are colored blue and residuals and loess-smoothers of
the software group are colored red. A loess-smoother for all the residuals is shown in black and for all three models
a separation of the residuals of the two groups hardware and software is visible.
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