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Abstract

In this work we aim to use an evolutionary argument to explain ex-
perimentally observed decision-making choices that are considered
irrational or inconsistent through the lens of classical expected utility
theory. Our hypothesis is that human decision-making reflects the
complex and uncertain environments our ancestors adapted to, which
result in sub-optimal decisions in abstract and oversimplified laboratory
setups. To investigate the effect of different evolutionary environments
on decision-making behavior, we implement an agent-based model of
the evolutionary process and analyse the decision-making behavior of
the trained agents. The simulation results confirm the aforementioned
hypothesis and indicate that the more ambiguous the evolutionary en-
vironment, the worse is the decision-making performance in simpler
non-ambiguous environments. We also detect expected utility violations
(using the Allais paradox experiment) across a wide range of evolu-
tionary training environments. We find considerable heterogeneity in
ambiguity preferences within evolutionary environments.
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Chapter 1

Introduction

Decision-making is perhaps the most fundamental action affecting every
aspect of human life. On an individual level everyone must make all types
decisions, small to large and irrelevant to important, every second of one’s
conscious life. Each and any event one experiences is preceded by some form
of decision-making.

Due to the evident importance of decision-making, scientists from various
fields (including economics, data science, psychology and biology) have used
laboratory experiments to gather empirical data on decisions under uncer-
tainty. When looking at the experimentally observed decision-making choices
through the lens of classical expected utility theory (and therefrom derived
theories), they are considered irrational or inconsistent. Examples of such con-
sistently observed paradoxes are the Allais paradox and the Ellsberg paradox
[1, 2]. Previous work on decision-making can only explain a subset of these
paradoxes and fails to take into account how the characteristics of decision-
making in a laboratory setting differ from real-world decision-making. The
focus of this project is to address these shortcomings by approaching the
decision-making process through an evolutionary perspective, by simulating
how evolution has shaped human decision-making.

In this work we use an evolutionary argument to justify experimentally ob-
served decision-making paradoxes. Our hypothesis is that humans decision-
making behavior reflects the complex and uncertain environments our ances-
tors adapted to, presumably by developing some form of heuristics, resulting
in optimal behavior in such complex real-world scenarios, but sub-optimal
decisions in abstract and oversimplified laboratory setups. To simulate the
evolutionary process we implement an agent based model, where each agent
is modeled as a neural network and a population of agents is trained using a
genetic algorithm. We incorporate the relevant aspects of (the evolution of)
human decision-making into the model i.e. the complexity and uncertainty of
decision environments as well as competition and cooperation mechanisms.
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1. Introduction

Our model builds on previous exploratory work done at the chair of En-
trepreneurial Risk at ETH Zürich [3]. Key differences of our work, are that our
model allows for stochastic decision-making and incorporates a cooperation
mechanism. Also, our data analysis is independent of other decision-making
theories. We do not report if the trained agents behave according to pre-
dictions of dominant decision-theories, but directly measure performance,
expected utility theory violations and ambiguity preferences. Specifically we
investigate the effect of the modeled evolutionary environment in regards to
(1) the types of choices (i.e. high/low stake, high/low ambiguity, high/low
gains) and (2) cooperation dynamics on the decision-making behavior in
simpler environments.

The remainder of this report is organized as follows: First, an overview of
preliminary notions of established decision theories and their shortcomings
is given in Section 2. Section 3 examines the motivations and approaches
to modeling decision-making behavior from an evolutionary perspective.
Section 4 describes the implemented agent-based model. Finally, in Section
5 and 6, we present and discuss the results of our simulations. Three
appendices complement the main text.
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Chapter 2

Established Theories of Decision
Theory

Decision theory is the study of (mainly) human choices. This field focuses on
choice under uncertainty, where an agent is faced with a number of actions,
each of which could give rise to more than one possible outcome with
different probabilities, not necessarily known to the agent. Many decisions
humans make are indeed choices under uncertainty, as the complexity and
interactivity of real-world decisions rarely allow for complete certainty.

Note, however, that not all decisions can be modeled as static choices under
uncertainty. For example, in inter-temporal choices, different actions lead to
outcomes that are realised at different stages over time and complex decisions
describe choices that are difficult simply due to their complexity.

2.1 Decisions under Uncertainty

Most models of choice under uncertainty characterize uncertain (i.e risky)
prospects in terms of lotteries: a discrete probability distribution on a set of
possible outcomes. A decision-maker then needs to choose between multiple
lotteries. Often, these outcomes represent monetary payoffs, but this need
not be the case. An outcome could also be a sports team winning, a law
passing or a student finishing their work in time for a deadline. If X is the
set of outcomes, a lottery L : X → [0, 1] with n possible outcomes is written
as:

L = (x1, p1; . . . ; xn, pn), (2.1)

where the lottery yields outcome xi with probability pi. Clearly, for a lottery
to be valid p1 + p2 + · · ·+ pn = 1 must hold.

For instance, the prospect that France and Germany are equally likely to
win the FIFA World Cup and one of them will definitely win, can be rep-
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2. Established Theories of Decision Theory

resented as a lottery L0 = (’France wins’, 1/2; ’Germany wins’, 1/2). If the
winning probabilities depend on who is chosen as the new coach for the
German national team, there would be multiple lotteries, such as L0 and
L1 = (’France wins’, 2/3; ’Germany wins’, 1/3), depending on who is coaching
the team.

It is important to differentiate between two concepts of uncertainty: risk
and ambiguity. Risk refers to decision-making situations, where all potential
outcomes and their probabilities of occurring are known to the decision-
maker, while ambiguity refers to situations, where either the outcomes
and/or their probabilities are not fully known to the decision-maker. Note
that the terms - uncertainty, risk and ambiguity - are not used consistently in
the decision theory literature: some authors use our definitions given above,
while others use the term uncertainty to refer to the concept we defined as
ambiguity. The formal definition of a lottery presented above characterizes
a risky prospect because both the set of outcomes and their probabilities
are given. One can extend the presented lottery definition to characterize
decisions under ambiguity. One of the simplest ways to model ambiguity is
by using lower envelope lotteries [4], which are defined as:

L = (x1, p
1
; . . . ; xn, p

n
), (2.2)

where p
i

specifies lower bounds on probability pi. Equivalently to Defi-
nition 2.1, the lower envelope lottery yields outcome xi with probability
pi, however, the lottery includes ambiguity because the actual value of pi
is not revealed. Here, a straightforward definition of ambiguity presents
itself, namely, the unassigned probability mass y = 1− ∑n

i=1 p
i
. As an ex-

ample, consider an urn with 100 balls where 20 are known to be black,
30 are known to be red and the remaining 50 are either black or red
in unknown quantities. With this knowledge, the prospect of drawing a
ball from the urn can be modeled by the following lower envelope lottery
L2 = (’Black ball drawn’, 0.2, ’Red ball drawn’, 0.3), with y = 0.5. Thus, while
the actual probabilities pi of the lottery L2 depend on the actual unknown
distribution of the red and black balls, with the given information we can
bound the actual probabilities as such: 0.2 ≤ p1 ≤ 0.7 and 0.3 ≤ p2 ≤ 0.8,
while p1 + p2 = 1.

2.2 Expected Utility Theory

The first theory of decision-making we will discuss is expected utility theory
(EUT), which has been the major paradigm in decision-making since the
mid 20th century. The expected utility hypothesis is standard in economic
modeling largely because of its simplicity and convenience. However, a
growing body of empirical evidence challenging the validity of EUT is
beginning to undermine its influence.
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2.2. Expected Utility Theory

2.2.1 Expected Value

We begin by discussing the expected value of lotteries, as this is where the
motivation of EUT stems from. Using the lottery notation introduced in 2.1,
the expected value EV(L) of a lottery L is given by:

EV(L) =
n

∑
i=1

pixi . (2.3)

The simplest decision-making rule mathematically, would be to select the
lottery L that has the highest expected value EV(L). While this rule seems
reasonable for decisions that are repeatedly made, this is not necessarily
the case for choices with high stake lotteries that are played only once. For
example, take a choice between two lotteries:

L1: a certain outcome of $1 million

L2: an uncertain option with an 50% chance of 5 million
and 50% chance of receiving nothing

The expected value calculation prescribes that one should choose the second
lottery because EV(L2) = $2.5 million > $1 million = EV(L1). In this
example, however, one would expect most people to choose the safe first
option of receiving $1 million. Empirical studies confirm that people do not
make decisions according to the expected value rule, especially when the
outcome values of the lotteries are large (e.g. $1 million) [5].

There are two intuitively convincing concepts that explain why people do
not base their decisions solely on the expected value of prospects:

1. Risk aversion: People tend to choose outcomes with low uncertainty
over outcomes with high uncertainty, even if the average outcome of
the latter is equal to or higher in monetary value than the more certain
outcome.

2. Diminishing marginal utility: Additional utility, for the moment meant
as “pleasure” or “happiness”, gained from an increase in consumption,
decreases with each subsequent increase in the level of consumption.

In our example, risk aversion can explain why the first lottery L1 appeals
to people. Even though the expected value of L1 is lower than for L2, L1
is definitely more certain. Moreover, diminishing marginal utility explains
why receiving $1 million (compared to receiving nothing) feels like a larger
utility gain, than receiving $5 million (compared to receiving $1 million),
even though in the latter comparison the difference in monetary value is
four times larger. Furthermore, diminishing marginal utility can explain the
fact that receiving $1 million does not have the same value to a billionaire
and a broke man. These observations led to the conclusion that people view
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2. Established Theories of Decision Theory

monetary outcomes subjectively. To address this, the concept of utility was
introduced into the expected value model to create EUT.

2.2.2 Expected Utility

Individual preferences over lotteries following Expected Utility Theory [6]
can be succinctly stated as follows: expected utility EU(L):

L1 � L2 ⇐⇒ EU(L1) ≥ EU(L2)

EU(L) =
n

∑
i=1

piU(W0 + xi)
(2.4)

where L1 � L2 denotes weak preference for L1 over L2. U(x) is the utility
function of the decision-maker and W0 is the initial wealth. Note that the
utility levels are computed using the absolute levels of wealth of an outcome
W0 + xi.

John von Neumann and Oskar Morgenstern provided an axiomatic founda-
tion for EUT [6], which defines a rational decision-maker, i.e. they showed
that if a decision-maker’s preferences over lotteries comply to these axioms,
there exists a utility function such that Eq. (2.4) holds. For later discussion,
we state these axioms below:

1. Preferences for lotteries are complete, which means that for any choice
between lotteries L1 and L2, a decision-maker must either prefer L1 to
L2 (denoted L1 � L2), L2 � L1 or both are equally attractive (denoted
L1 ∼L2).

2. Preferences for lotteries are transitive, which implies that if L1 %L2 and
L2 %L3 then L1 %L3.

3. Preferences for lotteries are continuous, which implies that if a decision-
maker ranks three lotteries L1, L2, and L3, they will be indifferent
between the middle-ranked lottery and some probability mixture of the
best- and worst-ranked lotteries. Formally, if L1,%L2 %L3, then there
exists a probability p ∈ [0, 1], such that p · L1 + (1− p)L3 ∼ L2, where
the notation on the left side refers to a compound lottery, in which L1
is received with probability p and L3 is received with probability 1− p.

4. Preferences for lotteries are independent, which means that if two lot-
teries have an identical probability and payoff branch, the levels of
this payoff and probability should not affect a decision-makers choice
between lotteries. Formally, if L1,%L2 then for any lottery L3 and prob-
ability p ∈ [0, 1] it must hold that p · L1 + (1− p)L3 % p · L2 + (1− p)L3.

If a decision-maker’s preferences can be represented by a utility function
U(x), this function is unique up to positive linear transformations, i.e. if the
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2.2. Expected Utility Theory

function U(x) represents a decision-maker’s risk preferences, then so will
U′(x) = a ·U(x) + b for any a and b where a > 0.

Utility functions can take many forms. For monetary outcomes, one can
assume receiving a larger amount yields greater utility and, thus, increasing
utility functions are adopted. The curvature of a utility function describes the
decision-maker’s attitudes towards risk: a concave utility function implies
that the decision-maker is risk averse, i.e. a sure amount is always preferred
over a risky bet with the same expected value (See Figure 2.1). Reversely, a
convex utility function represents a risk-prone decision-maker. The property
of diminishing marginal utility corresponds to the mathematical property
of concavity, and thus in fact implies risk aversion. An example of a simple
utility function of a risk-averse decision-maker is the logarithmic function:
U(X) = log(X).

W1 E(W) = X W2

U(W1)

U(E(W))

U(W)

U(W2)

Utility of lottery with
expected value X

Utility of lottery with
certain outcome X

W

U(W)

Figure 2.1: A utility function of a risk-averse decision-maker. Specifically,
a lottery with payoffs W1, W2 and expected value E(W), is displayed. The
graph illustrates that the concavity of the utility function implies risk-aversion,
because a certain payoff is always be preferred over a risky lottery with the
same expected value, i.e. U(X) > U(E(W) = X).

2.2.3 Subjective Expected Utility

Later, EUT was extended to subjective expected utility (SEU) to include choices
under ambiguity, i.e. choices where there are no objectively known proba-
bilities. Outcomes are assigned subjective probabilities πi and SEU suggests

7



2. Established Theories of Decision Theory

that the decision-maker should select the lottery L with the highest expected
subjective utility SEU(L) [7]. Using the notation of Equation 2.4 we have:

SEU(L) =
n

∑
i=1

πiU(W0 + xi). (2.5)

SEU is also applied to choices under risk, where one assumes that decision-
makers weigh outcomes with subjective probabilities, possibly different from
objective (exogenously given) ones.

2.3 Paradoxes and Empirical Violations of Expected Util-
ity Theory

To determine if EUT is a theory of practical use in modeling human decision-
making behavior, one needs to assess if the axioms EUT is based on (listed
in Section 2.2.2) hold sufficiently. In this section, we will present several
empirically reported violations of these axioms.

2.3.1 Allais Paradox

The Allais paradox is a classic example that illustrates how people violate
the independence axiom of expected utility [1]. The paradox arises when
comparing people’s choices in two different experiments, each consisting
of a choice between two lotteries. The outcomes for the lotteries in each
experiment are as follows:

Experiment A:

L1a: 100% chance to win $1 million.

L2a: 10% chance to win 5$ million,
89% chance to win $1 million,
1% chance to win nothing.

Experiment B:

L1b: 11% chance to win $1 million,
89% chance to win nothing.

L2b: 10% chance to win 5$ million,
90% chance to win nothing.

Studies have found that when presented with a choice between L1a and L2a,
most people choose L1a and when presented with a choice between L1b and
L2b, most people choose L2b [8]. However, to be in line with expected utility
theory, one person would need to choose either L1a and L1b or L2a and L2b.
Recall that, according to the independence axiom of EUT (axiom 4, Section
2.2.2), equal outcomes should cancel out. Concretely, this means one can
disregard the 89% common consequence of winning $1 million and winning
nothing in Experiment A and B, respectively. Then the remaining part of the
choices in both experiments are the same:

8



2.3. Paradoxes and Empirical Violations of Expected Utility Theory

L1: 11% chance of winning $1 million

L2: 10% chance to win 5$ million

Thus, not choosing the same lottery (first or second) in both experiments is a
direct violation of the EUT independence axiom. This paradox has led to the
development of many alternative decision theories, some of them we discuss
in Section 2.4.1.

2.3.2 Ellsberg Paradox

The Ellsberg paradox [2] is another paradox showing the descriptive in-
adequacy of Subjective Expected Utility. Similarly to the Allais paradox
experiment, we compare people’s decisions in two experiments, each con-
sisting of a choice between two lotteries. Here the lotteries characterize the
rewards for possible draws from a urn containing 90 balls, where 30 balls
are red and the remaining 60 balls are either black or yellow in unknown
proportions. The outcomes for the lotteries in each experiment are as follows:

Experiment A:

L1a: win $100 if you draw a red ball

L2a: win $100 if you draw a black
ball

Experiment B:

L1b: win $100 if you draw a red or
yellow ball

L2b: win $100 if you draw a black or
yellow ball

Studies have found that in Experiment A, people tend to choose the first
lottery L1a and in Experiment B, most people choose the second lottery L2b
[9]. Subjective Expected Utility theory prescribes that when choosing between
these lotteries in mind people behave as if they had a subjective probability
of the non-red balls being yellow or black and then compute the expected
utility of the two lotteries accordingly (see Section 2.2.3). Having formed a
unique probabilistic belief over the composition of the urn, one person should
choose the same lottery in both experiments (either L1a and L2a or L1b and
L2b), depending on if they believe that drawing a red ball is more likely than
drawing a black ball. This follows from a the independence axiom (axiom
4, Section 2.2.2), which allows us to disregard the ‘common consequence’ of
winning $100 due to drawing a yellow ball in Experiment B. However, this
choice-pattern is not the empirically observed and therefore an assumption
of EUT is violated.

The choice-pattern can be explained by ambiguity aversion, which is the
tendency to avoid options whose outcome probabilities are unknown. Con-
cretely, in our experiment people prefer to choose the lotteries to which they
can attach probabilities to their outcomes, i.e. in lottery L1a, the probability of

9



2. Established Theories of Decision Theory

winning $100 is known to be 1
3 , for the lottery L2b the probability of winning

$100 is known to be 2
3 , while for the less preferred lotteries L2a and L1b,

the probability is not known exactly. EUT fails to model this preference for
“probabilized uncertainty”.

2.4 Beyond Expected Utility Theory

So far we have presented EUT, the dominating normative theory that models
the optimal decision-making behavior of rational agents. In this section, we
present alternative decision theories, mainly developed to account for the
above presented paradoxes (Section 2.3).

Differently from normative theories (which prescribe which choices should
be made), descriptive theories aim to explain and predict people’s actual
decision-making behavior. They do so by condensing empirically found
phenomena into simple mechanisms. Their focus is usually not on giving
psychological explanations for the mechanisms they find. We present two
descriptive theories, prospect theory and rank-dependent utility theory in Section
2.4.1 and Section 2.4.2, respectively. In contrast, computational theories exam-
ine the underlying cognitive processes of decision-making. They construct
dynamic decision-making systems by connecting simple components taken
from elementary principles of cognition. Although the properties of the
components are simple, the emergent behavior of the ensemble system can
become complex. We briefly outline the major computational theories in
Section 2.4.3. An alternative approach is the so-called quantum decision theory
(QDT), which is based on the mathematics of Hilbert spaces and describes
decisions as an intrinsically stochastic event, in the same spirit as a quantum
measurement [10].

2.4.1 Prospect Theory

The most popular descriptive decision-making theory is prospect theory,
which was developed by Daniel Kahneman and Amos Tversky in 1979 [11].
Prospect theory splits the decision-making process into two distinct phases:
an editing phase and an evaluation phase. In the editing phase, the decision-
maker organizes and reformulates the available options to simplify the choice.
This phase attempts to explain all framing effects. Once the choices have
been framed for decision, the decision-maker enters the evaluation phase,
where they maximize a utility measure based on the potential outcomes and
their respective probabilities. Formally, the utility of a lottery in prospect
theory is evaluated as:

PT(L) =
n

∑
i=1

πiv(xi), (2.6)
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2.4. Beyond Expected Utility Theory

where v(x) is the value function and πi = w(pi) are the decision weights. Note
that this equation is very similar to the SEU equation (Equation 2.5). The
value function can be seen as the utility function in SEU: this is merely
a semantic change. The decision weights are computed using a weighting
function w(p) that takes as its argument an objective probability.

Prospect theory focuses on describing characteristics of the probability weight-
ing function w(p) and the value function v(x) that represent observed behav-
ior. We present the properties of the value function v(x) below and in Figure
2.2:

1. Reference dependence: People derive value from gains and losses, mea-
sured relative to some reference point, and not from absolute levels of
wealth. Thus, the argument of v(x) is xi and not W0 + xi.

2. Reflection effect: People are risk averse in the gain domain and risk-
seeking in the loss domain. Thus, v(x) is concave in the gain region
and convex in the loss region.

3. Loss aversion: People are more sensitive to losses than to gains of the
same magnitude. Thus, v(x) is steeper in the loss region than in the
gain region.

Loss Gain

x

v(x)

Figure 2.2: A hypothetical value function as prescribed by prospect theory.
The function is (1) s-shaped to account for reflection effect and (2) asymmet-
rical, with a steeper slope for losses than gains, to account for loss-aversion.

Specifically, Kahneman and Tversky, propose a value function of the following
form:

v(x) =

{
xα, if x ≥ 0
−λ(−xβ), otherwise

(2.7)
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2. Established Theories of Decision Theory

where their empirical data suggests α = β = 0.88 and λ = 2.25 [12].

For the probability weighting function w(p), prospect theory prescribes
only one property, namely that people overweight low probabilities and
underweight high probabilities (see Figure 2.3). Specifically, Kahneman and
Tversky propose a probability weighting function of the following form:

w(p) =
pγ

(pγ + (1− p)γ)1/γ
, (2.8)

where their data suggests that γ equals 0.61 and 0.69 for gains and losses,
respectively [12].

0 0.5

0.5

1

1

p

w(p)

Figure 2.3: A hypothetical probability weighting function, which overweights
low probabilities and underweights high probabilities, as prescribed by
prospect theory. For reference we plot linear probability weighting using a
dotted line.

The combination of the characteristics of the value function and the prob-
ability weighting function give rise to the fourfold pattern of risk attitudes,
which predicts people to be risk-seeking over low-probability gains and high-
probability losses and risk-averse over high probability gains low probability
losses, as shown in Table 2.1.
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2.4. Beyond Expected Utility Theory

Gains Losses

Low probability
risk seeking
(hope of gain)

risk averse
(fear of loss)

High probability
risk averse
(fear of missing gain)

risk seeking
(hope to avoid loss)

Table 2.1: The fourfold pattern of risk preferences prescribed by prospect
theory.

Since the introduction of prospect theory, numerous studies have investigated
and confirmed the proposed properties of the weighting function w(p) and
value function v(x) [13, 14, 15]. Findings are especially robust for probability
weighting. However, the existing empirical evidence for the fourfold pattern
of risk attitudes is mixed, for a review see [16].

A closer look at the literature reveals a number of gaps and shortcomings
in prospect theory. One shortcoming is that the theory is based on the
assumption that the decision weights only depend on the objective probability
and thus are independent of the value of the outcomes. Kahneman and
Tversky themselves suspected that the decision weights may be sensitive to
other properties, including the value of the outcomes and framing effects.
Numerous studies have confirmed that this is the case [17]. This entanglement
of probabilities and outcome values is assessed in rank-dependent theories,
discussed in Section 2.4.2, and stochastic representations of decision theory
[18]. Another gap in prospect theory concerns how to define the reference
point used to measure gains and losses [19]. To define the reference point,
one needs to determine what the decision-maker considers to be the ’neutral’
outcome of an uncertain prospect. This is not always as simple as looking
at a positive versus negative monetary payoff. Take for example the risky
prospect of buying a stock. Here, potential definitions of a gain could be that
the return on the stock was positive, or the return exceeded the risk-free rate
or the return exceeded the value that the investor expected to earn. Another
general critique of prospect theory is that it is difficult to consider prospect
theory as a unified solution because the parameters (describing the weighting
and value functions) are adjustable and adapted ad-hoc to fit the specific
data set that is being considered. Being a descriptive theory, prospect theory
also does not in any way attempt to explain the reasons behind the behavior
it describes.
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2. Established Theories of Decision Theory

2.4.2 Rank-Dependent Theories

Rank-dependent theories are based on the assumption that the rank of the
outcomes affects decision-making. In prospect theory this means that the
probability weighting is affected by the outcome values. We present one
rank-dependent theory here, cumulative prospect theory (CPT), which is a
rank-dependent extension of prospect theory [12].

The general equation used to evaluate lotteries is the same as in original
prospect theory (Equation 2.6). However, CPT predicts that not all unlikely
events are overweighted equally, but unlikely extreme outcomes are especially
overweighted. In general, two outcomes with the same objective probability
need not to have the same subjective weight. This is implemented by applying
probability weighting to the cumulative probability distribution, rather than
to individual probabilities. Thus, we have for the decision weights:

πi = w

(
n

∑
j=i

pi

)
− w

(
n

∑
j=i+1

pi

)
, (2.9)

where x1 ≤ x2 · · · ≤ xn and the probability weighting function w is the same
as described in Section 2.4.1 for prospect theory.

2.4.3 Computational Theories

The decision theories we have presented so far, are based on the maximiza-
tion of utility functions. These theories do not claim to describe the actual
decision-making process in nature, but rather are used as modeling tools.
In fact, for many decisions following the presented theories’ axioms would
be computationally intractable [20]. For example, the assumption of the
completeness of preferences (axiom 1, Section 2.2.2) can require huge cog-
nitive resources (that may exceed peoples cognitive capabilities) if the set
of options is very large. Computational theories, in contrast, focus on the
underlying processes in nature and try to use biological motivations to justify
their models.

Many computational theories are inspired by heuristics, which are simpli-
fying processes that people rely on when making choices. For example, a
popular heuristic is the elimination by aspects model, where the decision-maker
chooses among a given set of prospects during a sequential process. At each
stage, the decision-maker eliminates the prospects, which are inadequate in
a particular attribute, until only one prospect remains [21]. This strategy is
simple because only one aspect is considered at a time. However this also
means that an option can be eliminated on the basis of a single attribute even
if it might be the best option as a whole. Other computational theories, such
as the adaptive decision maker or the adaptive toolbox, are based on adaptive
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2.4. Beyond Expected Utility Theory

heuristics. This means that a decision-maker has multiple strategies (not
only one like the elimination by aspects theory), which they use adaptively
depending on the task, context, and individual difference factors. [22, 23].

Another type of computational models are sequential sampling models,
where a decision-maker gradually accumulates noisy information until a
threshold of evidence is reached. One such theory, decision field theory (DFT),
is implemented as follows: (1) The decision-maker makes a momentary
evaluation of each prospect at each moment in time and integrates these
across time to produce the overall (cumulative) preference state, (2) the
cumulative preference states of all options are then compared to determine
the valence for each option and (3) the first prospect who’s valence reaches the
decision threshold is chosen by the decision-maker [24]. Most importantly
DFT incorporates the cognitive mechanism of attention. Specifically, the
attention an individual devotes to each attribute of a prospect is assumed
to fluctuate over time and is modeled as a random walk. Attributes that
are in the focus of attention contribute more to the evaluation of a prospect.
In the case of a choice between lotteries, attention fluctuates between the
lotteries’ possible outcomes and the amount of attention depends on the
probabilities with which these outcomes occur i.e. outcomes with higher
probability receive more attention. DFT is one of the few models that (unlike
SEU and prospect theory) can explain violations of stochastic dominance,
independence, and stochastic transitivity. Also, DFT can account for speed
and accuracy trade-offs by assuming that the decision threshold varies across
individuals and decision situations.

A recent model, inspired by DFT, is stochastic representation decision theory
(SRDT) [18]. Similarly to DFT, in SRDT a stochastic process is assumed to
mimic the deliberation process, resulting in a decision once a certain threshold
is reached. The novel aspect of SRDT is that it takes into account the empirical
observation that the probabilities and outcomes of a prospect are often not
separable in the mind of the decision-maker. Instead of disentangling the
probabilities and outcomes of a prospect to calculate a subjective expectation
(as is done in almost all theories), in SRDT the probabilities and outcomes
interact non-trivially as they are combined in a non-symmetric and non-
separable way.
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Chapter 3

Decision-Making Behavior as an
Evolutionary Adaptation

In the previous chapter we outlined the major normative, descriptive and
computational decision-making theories. We saw that normative and most
descriptive theories dictate that people behave as if they were maximizing
some sort of utility, while computational approaches study the emergence of
decision-making behavior given the underlying cognitive and motivational
processes [25].

Evolutionary theories focus on the underlying evolutionary processes, from
which - they argue - the decision-making behavior emerges dynamically.
We focus specifically on evolutionary game theory [26], a method to study
evolutionary theories. In evolutionary games, individuals of a population
repeatedly interact and through a modeled evolutionary process the pop-
ulation evolves. In this project, our agent-based model can be seen as an
evolutionary game.

In this chapter we begin by briefly describing the process of evolution from
an biological perspective in Section 3.1. Then, in Section 3.2, we review
arguments about decision-making behavior as an evolutionary adaptation.
Specifically, we discuss three aspects of evolution that may be the underlying
cause of observed decision-making biases: (1) The maximization of the fitness
function, (2) the evolutionary environment and (3) biological limitations.
Finally, in Section 3.3, we introduce evolutionary algorithms, which can be
used to model the evolutionary process.

3.1 Human Evolution

In nature, populations evolve and adapt to their environment through a
process called natural selection or survival of the fittest [27]. Individuals in a
population differ in regards to some heritable traits, where some traits are
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better suited to the environment than others. These traits are controlled by
units called genes. The individuals with the favorable traits are considered
to have higher fitness because they have an advantage in survival and repro-
duction. The fittest individuals survive, reproduce and pass on their fittest
genes to their offspring during the sexual recombination process. Given
enough generations, a constant environment and enough genetic variation,
this process of natural selection then results in population’s fitness increasing.

Crucial to the human evolutionary process were two concepts: competition
and cooperation [28]. Competition for food and mates, two necessities to
maximize one’s chances to reproduce, was the underlying driving force of
natural selection. At the same time, the vast majority of our hunter-gatherer
ancestors lived in cooperative, small groups comprising several nuclear
families [29]. The cooperation took the form of sharing food and child rearing
responsibilities, these being the most important and energetically expensive
tasks, where cooperation was advantageous for all group members. Food
sharing, for example, was advantageous, because meat was often procured in
large units but only sporadically obtained by a given hunter. This cooperative
behavior gives rise to two separate forms of competition: inter-individual
and inter-group competition.

3.2 Optimality and Rationality in the Context of Evolu-
tion

Various biases (see Section 2.3) are consistently found in humans and other
primates [30]. These biases are considered irrational because they violate
principles of economic rationality, i.e. the choice patterns do not respect
the theoretic axioms of EUT. However, we argue that these decision-making
biases evolved because they follow principles of ecological rationality, i.e the
behavior is adapted to the environment in which humans act. We explore
three aspects of ecological rationality that potentially explain the biases we
find in studies. Firstly, in Section 3.2.1, we consider individuals maximizing
their fitness from the perspective of natural selection. Secondly, in Section
3.2.2, we discuss the role of the evolutionary environment and thirdly, in
Section 3.2.3, we take into account the computational limitations organisms
face.

3.2.1 Fitness Optimization vs Rationality Optimization

To give a flavor of ecological rationality and how it differs from what is gener-
ally considered rational, we consider the phenomenon of overconfidence, i.e
showing a bias towards overestimating one’s capabilities, control over events
and one’s invulnerability to risk. Intuitively, one would assume that being
overconfident and thus having an inaccurate view of the world would lead to
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3. Decision-Making Behavior as an Evolutionary Adaptation

faulty judgements and would not be able to compete with decisions based on
accurate, unbiased beliefs. However, this is not generally the case. In fact, a
robust finding in the psychology of judgment is that people are overconfident
[31, 32, 33]. We now present two evolutionary models that have been used to
explain the origin of such consistent presence of overconfidence.

Error Management Theory (EMT) [34] convincingly argues that biases, such
as overconfidence, are effective decision-making strategies because of the
asymmetric costs of false-positive and false-negative errors under uncertainty.
For example, one type of overconfidence that has been researched is men’s
overperception of women’s sexual intent [35, 36, 37]. In this scenario, the
false-positive error of ancestral men falsely inferring a prospective mate’s
sexual intent, resulted in the fairly low costs of wasted time and energy on
a failed sexual pursuit. In contrast, the false-negative error of men falsely
inferring that a woman lacked sexual intent, resulted in the costs of losing
a sexual opportunity and hence a reproductive opportunity. Because one
primary factor limiting men’s reproductive success over evolutionary history
was their ability to gain sexual access to fertile women, missing out on
such an opportunity would have a very high cost in the currency of natural
selection. Thus, following the argumentation of EMT, men’s overconfidence
in women’s sexual interest is not a mistake but adaptive behavior [38].

Another evolutionary argument explaining the presence of overconfidence
is altruism: overconfidence encourages exploration, and thus overconfident
individuals can provide valuable additional information benefiting the popu-
lation as a whole [39]. As a result, when groups within a population compete,
groups with some overconfident individuals have an evolutionary advantage
over groups without such individuals. This argument assumes that there
are two intertwined optimizations occurring in the evolutionary process: the
fitness of the group and the fitness of the individuals. In this case, there is a
trade-off between the fitness of the individuals that are overconfident and
putting themselves at risk and the fitness of the benefiting group.

These evolutionary arguments provide mechanisms that can explain a type
of rationality - ecological rationality - that differs from what we generally
consider rational. The root of the difference is that ecological rationality
assumes that:

1. organisms maximize for reproductive fitness (not utility) and

2. natural selection acts as the optimizing selection process.

The most important consequence of maximizing for fitness is that there
is no need for the choices to be internally consistent, because the fitness
value is influenced only by the outcomes and not the choices themselves.
For example, one can argue that efficiency is more crucial to survival than
choice consistency [20]. Then inconsistent biases can be optimal in the sense
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that they produce the best-case behavior from a biological perspective [40].
Another difference between fitness and utility is that the fitness value is a
relative measure, i.e depends on the other individuals’ performance in the
population. In fact, an individual could choose differently between the same
options in different points of time (which would traditionally be considered
highly inconsistent) and still maximize their fitness value.

The fact that natural selection acts as the optimizing selection process means
that, in contrast to economic rationality, ecological rationality is based on the
internal decision-making process: Only the decision process is heritable and
not the behavior directly, i.e. only the strategy will subject to any consistency
conditions [41]. For example, a strategy could be to always choose the first
option when making a decision. Here the decision-process is consistent, while
the choices would be considered inconsistent from the standard rationality
perspective.

3.2.2 Adaptation to the Evolutionary Environment

Another aspect that plays an important role in the evolutionary process is
the environment. Because ecological rationality is optimized through natural
selection, humans are only trained to act optimally in settings which they
encounter naturally. However, a decision-making process that performs
well in the environment in which humans evolved, may not perform well
in novel environments. In fact, some economically irrational behavior has
been justified by humans overgeneralizing rules that are reasonable in many
evolutionary contexts [42].

The settings in laboratory experiments that study irrational behavior of
humans, are not only novel but mostly very simple i.e. one-shot decisions.
In contrast, in real world environments, decisions are complex and may
depend on future expectations and/or interact with many other decisions.
This simplicity of laboratory experiments could make these environments
extremely different to natural environments and thus encourage the findings
of economically irrational behavior. Real world environments also include
contextual information, such as the energetic state of an organism, that a
decision-maker needs to take into account [43]. These state dependencies
can give rise to choice patterns that violate transitivity, even though they are
maximizing the fitness of the individuals [44].

3.2.3 Biological Computational Limitations

A different biological explanation of human decision-making biases is that
they are a result of the computational limitations of the human brain. Even
if the human brain had the information-processing capacity to actually
calculate various expected fitness consequences and apply calculus to find
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the optimal solution, it would be impractical apply this process for every
decision due to a lack of time. Thus, biases may not be optimal for a decision-
maker with perfect knowledge and infinite time, but optimal given the real
biological constraints humans face. In fact it may even be ecologically rational
for individuals to use heuristics, which occasionally result in sub-optimal
choices, because they are less computationally intensive [23].

Biological limitations also imply that there will be some non-zero chance
of decision-making errors. Consider a sub-optimal option being added to a
decision. Because future errors could result in the sub-optimal option being
wrongly chosen, this can affect the expected value of the choice even though
the decision-maker does not plan to choose the sub-optimal option. Models
that incorporate such error mechanisms have shown that this may result in
violations of the transitivity and independence axioms [45].

Not only the human brain has computational limitations, but also the process
of natural selection is limited. Natural selection does not create completely
new traits out of nothing, but rather makes incremental changes building
on previous traits. There may be trade-offs with other behaviors, which
biologically cannot be combined. Thus, the starting point and evolutionary
history of an individual constrains potential evolutionary trajectories [46, 47].
This is a further constraint on the decision-making optimization process.

3.3 Evolutionary Algorithms

Early analogies between the mechanism of natural selection and learning- and
optimization processes led to the development of evolutionary algorithms (EAs)
[48, 49], algorithms that are inspired by the biological evolutionary process.
EAs were developed with two somewhat separate intentions: firstly, to solve
specific optimization problems, where the mechanisms of natural adaptation
are used solely for performance reasons and evolutionary plausibility is
irrelevant. Secondly, EAs were developed to directly study the phenomenon
of adaptation as it occurs in nature and by doing so uncovering adaptive
behavior. In this report, we focus on the latter purpose of EAs, specifically
we will focus on the most popular type of EAs, namely genetic algorithms
(GAs) [49].

A GA maintains a population of N individuals, P(t) = {A1, . . . , AN} for
iteration t. Each individual Ai represents a potential solution to the problem,
which is manipulated by the algorithm. Traditionally a binary encoding has
been adopted to store the individuals’ genetic information [50], although the
best representations reflect something about the problem being solved. In
our model, for example, we chose as an appropriate encoding an array of
numbers, which represent the weights of a neural network.
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A GA consists of the following steps: First, an initial population is randomly
generated. Then the fitness function f : A → R, is applied to each of the
individuals, in order to measure the quality of the solution encoded by them:
the higher the fitness value, the better the solution. This function can have
various forms and is derived from the objective of the problem to be solved.
Using the individuals’ fitness values, a selection scheme is used to choose
the individuals that will be the parents of the updated population. We
discuss several prominent (probabilistic) selection schemes in Section 3.3.1.
Finally, recombination and/or mutation operators are applied to the selected
intermediate population to create the updated population:

P(t + 1) = mutation(recombination(Pselected(t))).

The basic operation of a GA is illustrated in Figure 3.1.

GA operators

Reproduction

Initial population
(randomly generated)

Generation = 0

Fitness measure

Selection
(whole population)

Crossover

Mutation

Termination
criteria

reached?
Final population

yesno

Generation += 1

Figure 3.1: Flowchart of the basic operation of a genetic algorithm (GA)
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Each iteration of this process is called a generation. The entire set of gen-
erations, usually in the hundreds, is called a run. At the end of a run, one
expects the population to contain one or more individuals with high fitness.
To ensure this is the case, one needs to define an appropriate termination
criterion, such as: (1) a individual’s genetic material satisfies some minimum
criteria, (2) the highest ranking individual’s fitness has reached a plateau
or (3) a fixed number of generations has been reached. Due to the random-
ness involved in generating the initial population and in the selection and
recombination schemes, two runs with different random-number seeds will
generally produce different behavior.

In the following subsections, we will outline common implementations of
the core components of GAs.

3.3.1 Selection Schemes

The selection operator chooses some individuals from a current population
to create a new population - the mating pool - containing the parents to
the individuals of the next population: Pmating(t) = selection scheme(P(t)).
Some individuals may appear in population Pmating(t) multiple times, while
others may not be present at all. To ensure the population size stays constant,
we require |Pmating(t)| = |P(t)|. The purpose of the selection operator is to
increase the average quality (i.e. fitness value) of the population, by giving
individuals of higher quality a higher probability to be copied into the next
generation. The selection pressure is the degree to which the individuals of
higher quality are favored. This component of the GA can be seen as the
algorithmic implementation of the evolutionary mechanism of survival of
the fittest.

The selection scheme of a GA plays a crucial rule in determining the conver-
gence rate of a GA: increasing the selection pressure increases the convergence
rate of the population. Too high of a selection pressure leads to a loss of
population diversity, resulting in an increased chance of the GA prematurely
converging to a sub-optimal local maximum. On the other hand, if the
selection pressure is too low, the average fitness of the population does not
increase sufficiently.

An ideal selection scheme should be easy and efficiently implementable
and enable the adjustment of the selection pressure that is needed for the
domain. Beyond selection pressure, selection schemes differ in their selected
populations’ expected (1) average fitness, (2) fitness variance, (3) loss of
diversity and (4) selection variance. In the following subsections we present
common selection schemes that we implemented in our model (See [51] for
more details regarding the characteristics of these schemes).
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Proportional Selection

In proportional selection - the original selection method proposed for genetic
algorithms - the probability of an individual i to be selected is proportionate
to its fitness value [49]. Thus, we have:

pi =
fi

∑N
j=0 f j

. (3.1)

We provide pseudocode of the proportional selection algorithm in Algorithm
1.

Algorithm 1 Proportional selection

Input: The population P(t) = {A1, . . . , AN}
Output: The population after selection P(t)′ = {A′1, . . . , A′N}

proportional(A1, A2, . . . , AN):
cum sumi = 0
for i← 0 to N do

cum sumi ← cum sumi−1 +
fi

∑N
j=0 f j

end for
for i← 0 to N do

r ← random([0, cum sumN ])
A′i ← Ak, where cum sumk−1 ≤ r < cum sumk

end for
return {A′1, . . . , A′N}

An advantage of proportional selection is that also individuals with low
fitness may survive the selection process. This is beneficial because there is a
chance that even individuals with low fitness have some characteristics, which
could be successful in the recombination process. A great disadvantage of
proportional selection is the fact that this method is not translation invariant
[52]. As a result the selection probabilities strongly depend on the scaling of
the fitness function. Take a population of ten individuals, with the following
fitness values:

Population A:

fbest = 10 (one individual)

fworst = 1 (one individual)

fother = 5 (eight individuals)

Population B:

fbest = 110 (one individual)

fworst = 101 (one individual)

fother = 105 (eight individuals)
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Note that the fitness values of population A added by 100 result in the fitness
values of population B, which can be achieved by translating the fitness
function by 100. This simple change in the fitness function can have very
large effects on the selection probabilities, in fact in population B the selection
probabilities of the best and worst individual are almost the same, while for
population A the difference is almost 20%:

Population A:

pbest ≈ 19.61%

pworst ≈ 1.96%

pother ≈ 9.80%

Population B:

pbest ≈ 10.47%

pworst ≈ 9.61%

pother ≈ 9.99%

Proportional selection also inherently favors risk-averse behavior for finite
populations. This results from the fact that the frequency of an agent with a
specific strategy being selected is a concave function of their payoff. Jensen’s
inequality then dictates that strategies with lesser variance, which correspond
to risk-averse strategies, will have an advantage [53].

Tournament selection

In tournament selection individuals are randomly chosen from the population
to compete in a tournament, where τ is the size of the tournament [54]. The
individual with the highest fitness of the competitors is copied into the
mating pool. This process is repeated N times.

Algorithm 2 Tournament selection

Input: The population P(t) = {A1, . . . , AN}, tournament size τ ∈ {1, . . . , N}
Output: The population after selection P(t)′ = {A′1, . . . , A′N}

tournament(τ, A1, A2, . . . , AN):
for i← 0 to N do

Ti ← τ individuals sampled uniformly at random from P(t) (with
replacement)

end for
return {A′1, . . . , A′N}

The tournament selection scheme is translation and scaling invariant i.e.
unaffected by the scale of the fitness values. Clearly, increasing the size of
the tournaments τ increases the selection pressure.
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Truncation Selection

In truncation selection with threshold τ, only the fraction τ best individuals
can be selected into the mating pool and they all have the same selection
probability [55].

Algorithm 3 Truncation selection

Input: The population P(t) = {A1, . . . , AN}, truncation threshold τ ∈ [0, 1]
Output: The population after selection P(t)′ = {A′1, . . . , A′N}

truncation(τ, A1, A2, . . . , AN):
Psort ← population {A1, A2, . . . , AN} sorted decreasingly by fitness value
for i← 0 to N do

r ← random({1, 2, . . . , τN})
A′i ← Psort

r
end for
return {A′1, . . . , A′N}

Linear Ranking Selection

In linear ranking selection [56], the selection probability is linearly assigned
to the individuals according to their rank. For individual i with rank ri out
of N individuals (the higher the value, the higher the rank), we present the
following equation to assign the selection probability:

pi =
1
N

(
τ− + (τ+ − τ−)

ri − 1
N − 1

)
, (3.2)

where τ−
N and τ+

N are the probabilities of selecting the individual with the
lowest and highest fitness, respectively. To keep the population size constant
we set τ+ = 2− τ−.

Exponential Ranking Selection

Exponential ranking selection follows the same mechanism as linear ranking
selection except that the probabilities of the ranked individuals are weighted
exponentially (see Algorithm 4 and replace 3.2 with Equation 3.3).

We present the following equation to assign selection probabilities to individ-
uals with rank ri ∈ {1, . . . , N}:

pi =
τN−ri

∑N
j=1 τN−j

, (3.3)

where the base of the exponent is set by the parameter 0 < τ < 1.
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Algorithm 4 Linear Ranking selection

Input: The population P(t) = {A1, . . . , AN}, reproduction rate of the worst
individual τ− ∈ [0, 1]

Output: The population after selection P(t)′ = {A′1, . . . , A′N}

linear ranking(τ−, A1, A2, . . . , AN):
Psort ← population {A1, A2, . . . , AN} sorted increasingly by fitness value
for i← 0 to N do

ri ← index(Psort == Ai)
end for
cum sumi = 0
for i← 0 to N do

cum sumi ← cum sumi−1 + pi (Equation 3.2)
end for
for i← 0 to N do

r ← random([0, cum sumN ])
A′i ← Psort

k , where cum sumk−1 ≤ r < cum sumk
end for
return {A′1, . . . , A′N}

3.3.2 Reproduction Operators

The next step in the GA is to generate an updated population of individuals
(i.e. solutions) from the selected mating-pool. To do this two main genetic
operators are used: crossover and mutation.

Crossover refers to the combining of genetic information of two (or more)
parent individuals to generate new offspring. The offspring that is created
typically shares many of the characteristics of its parent individuals. Note
that some GAs also use asexual reproduction, in which individuals can be
carried over to the next generation without applying the crossover operator.
The simplest type of crossover (mostly used for a bit array encoding of the
genetic information) is single point crossover: A point on both parents’ arrays
is picked randomly as the crossover point, where bits to the right of that
point are swapped between the two parents arrays. This results in two
offspring, each carrying some genetic information from both parents. In our
model, the genetic information of the individuals represent the weights of
neural networks and thus different ways of implementing crossover are more
applicable.

Mutation is conceptually analogous to biological mutation, altering values
in an individuals genetic information according to some specified stochastic
process. This process introduces new genetic material into the population
and allows the GA to explore the complete solution space.
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Chapter 4

The Agent-Based Model (ABM)

To simulate the evolutionary process, we implement an agent-based model
(ABM), a flexible method commonly used to model competitive and coopera-
tive behaviors [57]. In our ABM, each agent is modeled as a neural network
and interacts with an environment by making choices under uncertainty
and receiving payoffs according to their choices. Besides interacting with
the environment, the agents interact with each other by cooperating and
competing for payoff advantages (under a specific set of rules).

First, we describe the decision-making environment and the agent setup in
Section 4.1 and Section 4.2, respectively. Then, in Section 4.3, we outline how
the agents in the ABM evolve over time through the application of a GA.

4.1 Environment

The agents are confronted with choices, which are represented as a pair
of binary lotteries L1 and L2, each with two possible outcomes x1 and x2.
The probabilities of the lotteries’ outcomes are not exactly known by the
agents, who only receive partial information encoded by three parameters:
the minimum probabilities pmin, the maximum probability pmax and the shape
of the sampling distribution t. Thus, a choice under uncertainty between
lotteries L1 and L2 can be represented as follows:

C(L1, L2) = (x1, x2, pmin, pmax, t︸ ︷︷ ︸
L1

, x′1, x′2, p′min, p′max, t′︸ ︷︷ ︸
L2

). (4.1)

Note that the probabilities refer to the first outcome x1. The probability
interval of the second outcome can be inferred, as we only consider binary
lotteries.

To explore the effect of varying evolutionary environments on decision-
making behavior, we generate different types of lotteries in a controlled
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manner. We use the term environment to refer to the types of the lotteries
used in the ABM. We define three characteristics of the lotteries to specify
different types of environments, which we describe below:

1. Outcome variance V : The outcome variance refers to the difference
between the two possible outcomes of a binary lottery |x1 − x2|. The
larger the outcome variance, the more important the probabilities of a
lottery are in determining the payoff and thus “value” of a lottery. If
|x1− x2| = 0, then we have a (degenerate) lottery which yields outcome
x1 = x2 for sure. We run simulations in environments with three
outcome variance settings: (1) ‘high’: 0.4 ≤ V ≤ 0.8, (2) ‘low’: 0 ≤ V ≤
0.4, and (3) ‘high, low’: where high and low V is equally likely.

2. Probability range A: The information given regarding the probability p
of an outcome is an interval in which the probability lies, i.e. the proba-
bility pi of outcome xi is represented by pi

max and pi
min. Lottery types

are characterized by the range pi
min − pi

max of the probability intervals
they provide. The larger the probability range, the more uncertain the
lotteries of that type are. We run simulations in environments with
three probability range settings: (1) ‘high’: 0.4 ≤ A ≤ 0.6, (2) ‘low’: 0
≤ A ≤ 0.2, and (3) ‘high, low’: where high and low A is equally likely.

3. Probability distribution D: To generate the actual probability p used to
instantiate the lottery, we sample from a probability distribution, which
is non-zero only within the defined probability interval [pmin, pmax].
Each distribution is identifiable by an ordinal value of uncertainty t
(uncertainty increases with increasing t). We use three settings, dis-
played in Figure 4.1, in which we sample p from a bell-shaped, uniform
and U-shaped distribution. In the bell-shaped setting, the probability of
a lottery can be determined with high likelihood i.e. p will mostly lie
close to the median of the interval. In the uniform setting, the neutral
setting, any probability in the interval is equally likely. In the U-shaped
setting the probability is likely to be near to one of the extreme values
of the interval pmax and pmin. Thus, in this setting the payoff of the
lottery is the most difficult to predict.

We use the the beta distribution B with different parameters α and
β, defined on the interval [0, 1], to sample from each of the three
probability distributions. The sampling process is implemented as
follows:

X ∼ B(α, β)

p = pmin + X · (pmax − pmin).

The parameters of the distributions are set as follows:

(a) Bell-shaped distribution (t = 0) : α = 5, β = 5
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4.2. Agents’ Neural Network Topology

(b) Uniform distribution (t = 0.5): α = 1, β = 1

(c) U-shaped distribution (t = 1): α = 0.5, β = 0.5

When running simulations, 20% of the lotteries are always in the bell-
shaped distribution, to ensure that the agents do not overspecialize and
are given data to interpret the input t.

pmin pmax

x

P(x)

(a) Bell-shaped

pmin pmax

x

P(x)

(b) Uniform

pmin pmax

x

P(x)

(c) U-shaped

Figure 4.1: The probability density functions of the three probability distri-
butions used to generate the instantiated probability p of a lottery given its
probability interval [pmin, pmax] . The distributions are ordered from most cer-
tain to least certain (left to right). See Section 4.1 for details on the sampling
procedure.

4.2 Agents’ Neural Network Topology

Each agent of the ABM was modeled using a feed-forward artificial neural
network (ANN), displayed in Figure 4.2. Formally, each agent ai is repre-
sented as an array Wi = (wi

1, . . . , wi
X) that defines the weights of the agent’s

ANN. The used ANNs are simple multilayer perceptrons (MLPs) consisting
of three layers with input layer (11 nodes), one hidden layer (10 nodes) and
output layer (1 node). Additionally, there are bias inputs to the hidden
and output layers. Thus, each ANN consists of 131 weights.The neurons in
the hidden and output layer use the nonlinear activation functions sigmoid
function and the hyperbolic tangent function, respectively.

The main consideration when setting the ANN structure was to keep the neu-
ral network simple, to effectively model the time and computing constraints
of the human decision-making process. At the same time, the ANN needed to
have a large enough capacity to learn the inputs meaning. To ensure this was
the case, we trained the agents using a typical back propagation algorithm
[58] to fit a dataset of choices and EV-conform targets. The ANNs with the
chosen topology had the capacity to easily fit the expected value function,
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Figure 4.2: The neural network structure of the agents in the ABM. The
composition of the input I is described in Equation 4.8.

suggesting that they are able to fit a wide variety of mapping functions.
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4.3 The Genetic Algorithm

In this section, we present our GA, which maintains a population of agents,
where each agent’s ANN exhibits a specific decision-making behavior. As
introduced in Section 3.3, GAs generate an initial population and then
repeatedly (1) measure the fitness of the individuals in their population
and (2) create an updated population based on the measured fitness values
using the genetic operators selection, crossover and mutation. This process
goes on until some termination criteria are met, as described in Section 3.3.
We describe our implementations of these two steps in Section 4.3.1 and
Section 4.3.2, respectively. Finally, in Section 4.3.3, we present the additional
cooperation and competition mechanism, implemented as an extension of
the classical GA. An overview of the implemented GA is provided in Figure
4.3.

4.3.1 Fitness Assessment

In a given generation, each agent is confronted with M choices C(Li, Lj)
between two lotteries. The types of lotteries depend on the environment type
the ABM is set in, which we described in Section 4.1. Note that, within one
generation, each agent is confronted with the same choices. However, at each
generation, the choice set is re-sampled.

The choices of an agent are determined by forward propagating the input
data (representing a decision task) through the agent’s ANN. The output
of the forward propagation is between 0 and 1 and is interpreted as a
probability that the first lottery is chosen. Thus, the agents’ choices are made
probabilistically. The chosen lottery is played and the (stochastic) outcome
of the lottery is added to the score of the agent. The agents final score after
receiving the payoffs of all their choices, is their fitness value.

4.3.2 Updating the Population

Initialization

The initial population was generated by initializing the agents’ ANN weights
randomly (u.a.r) to values from a closed interval [−α0,+α0], where α0 was
set to 10.

Selection

We use the exponential ranking selection scheme described by Equation 3.3.
We set the parameter τ, which determines the exponentiality of the selection
method, to 0.99.
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1. Fitness assessment of agents

Agents make choice

Choice between two lotteries
Agents’ score updated

Additional evolutionary dynamics

Group cooperation

Rank calculation

Randomly generate ANNs

Initial population

Selection
(from whole population)

Crossover

Mutation

2. Generate new population (GA operators)

Population
converged?

Final population

Generation = 0
Choice = 0

Choice += 1

Choice < M

Choice ≥ M

yesno

Generation += 1
Choice = 0

Figure 4.3: Flowchart of the implemented ABM (M represents the number of
choices per generation).
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Crossover

We use sexual recombination, modeled by an arithmetical crossover operator, in
our GA. The arithmetical crossover operator combines the ANN’s weights
of two parent agents by computing two linear combinations of each weight
of the two parent agents to create two new agents. Formally, given the two
parent agents, a1 with W1 = (w1

1, . . . , w1
X) and a2 with W2 = (w2

1, . . . , w2
X), the

weight arrays of the offspring agents, o1 with Wo1 = (wo1
1 , . . . , wo1

X ) and o2 with
Wo2 = (wo2

1 , . . . , wo2
X ), are computed according to the following equations:

Wo1(i) = µw1
i + (1− µ)w2

i , (4.2)

Wo2(i) = µw2
i + (1− µ)w1

i , (4.3)

where µ ∈ [0.5, 1] is a user-specified constant set to 0.8 in our experiments.
Because µ > 0.5 the agents a1 and a2 are considered the dominant parents of
offspring o1 and o2, respectively.

Mutation

The implemented mutation operator, a form of dynamic mutation, was
inspired by previous work on mutation-based training of neural network
weights [59, 60]. Formally, the updating rule for the i-th weight of agent a is:

w′i = wi +N (0, α(a)), (4.4)

where N (0, α(a)) is the Gaussian perturbation with mean 0 and standard
deviation α(a), which is adapted during the process to control the severity of
the mutation.

Intuitively, agents with low fitness values should be mutated severely (i.e.
have a high value of α(a)), while those with high fitness values should only
be mutated slightly. To ensure that the mutation rate responds to the rate of
progress of the agent, we introduced an adaptive element in the mutation
operator by using the ratio of the maximum possible fitness value and the
current fitness value of an agent. The function α(a) is defined as follows:

α(a) = α0 ·
(

1− f itness(a)
f itnessmax

)β

, (4.5)

where α0 (the initial value of α) and β are set by user and f itnessmax is
the maximum score that the agent could have achieved in its lifetime (one
generation). Thus, if the agents are learning to adapt to their environment,
α(a) should be high in the beginning of the GA and should reduce (for all
agents) towards convergence of the agents’ ANNs. The constant β must be
chosen such that the the mutation severity is large enough to allow the GA
to sufficiently explore the solution space, while small enough to ensure an
acceptable rate of progress. We set β to 2.
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4. The Agent-Based Model (ABM)

Termination

A record is maintained of the number of consecutive generations showing no
improvement, i.e the fitness score of the agents stagnates. If this reaches a
predetermined number of generations then the process is terminated.

Note that we used this termination criterion for pre-testing and found that
in all settings the GA terminated within 500 generations. For consistency
purposes we ran all our reported simulations for 500 generations and report
the behavior of the population of agents in the final generation.

4.3.3 Cooperative and Competitive Dynamics

Group-based Cooperation

We implement a form of dynamic group-based cooperation, where agents
are organized into groups and redistribute a percentage of their score equally
between all members of their group. The score of agent ai in group Gk after
the redistribution step, denoted by s′(ai), is given by the following equations:

RGk = ∑
ai∈Gk

cks(ai) (4.6)

s′(ai) = s(ai) +
RGk

|Gk|
, for ∀ai ∈ Gk (4.7)

where ck and |Gk| represent the redistribution rate and number of agents
of group Gk, respectively. RGk is the amount of redistributed wealth within
group Gk.

The number of groups and their respective redistribution percentages are
set when initializing the algorithm. The agents in the initial population are
randomly assigned to a group. When a new population is generated the
agents’ group memberships are assigned to the group of their dominant
parent, i.e the parent they inherited the most genes (Definition in Section
4.3.2). The redistribution percentages of each group stay constant throughout
the complete run of the GA. Thus, no new groups with different redistribution
rates can emerge, but groups that perform poorly may die out.

This redistribution mechanism was inspired by the famous public goods
game [61], where (1) subjects (secretly) choose how many of their private
tokens to contribute to a public pot, (2) the tokens in this pot are multiplied
by a factor (greater than one and less than the number of players, N) and
finally (3) this ’public good’ payoff is evenly divided among the players. Each
subject also keeps the tokens they do not contribute. In the classic version of
the public goods game, players can (and in fact have an incentive to) free-ride
off of other players who are contributing to the common pool. This is not
the case in our setup, because once an agent is part of a group the amount

34



4.3. The Genetic Algorithm

they contribute to the public pot is predetermined. Our implementation
can be seen as a special version of the public goods game, where (1) the
participants’ contributions to the public pot are distributed asymmetrically
among a group, i.e. a percentage of their wealth (score) is contributed, so
successful agents contribute more than less successful agents and (2) the
multiplication factor of the public good is 1.

It is also important to differentiate the implemented group mechanism to
island-based or multi-population GAs that are primarily used to avoid pre-
mature convergence in classical GAs [62, 63]. In multi-population GAs
sub-populations evolve in (semi-) isolation for generations because the mi-
gration rate of agents between the different sub-populations is restricted. In
our implementation, the migration rate is not restricted, i.e. each agent in the
selection pool regardless of group membership is equally likely to be paired
up to reproduce. Also, the selection mechanism in our model is global, i.e.
agents compete to be selected with all agents within and outside of their
group. We do not aim to increase diversity, but use this group mechanism to
best approximate the evolutionary process where individuals lived in small
cooperative groups. Island-based approaches have been used with the same
intent in previous work [64]. One already mentioned difference is that we
make a different design choice regarding migration rates, which seems to be
scientifically sound as recent studies of current hunter-gatherers show that
group memberships were relatively fluid, i.e. new members joined groups
continuously [29]. Most importantly, however, our model also incorporates a
cooperation mechanism, which is crucial as cooperation was a key compo-
nent of human evolution (as discussed in Section 3.1). Especially novel about
our model is that it allows dominant cooperation rates to emerge depending
on the performance of the agents in the groups. Thus, we can explore which
cooperation rates are evolutionary superior and to what decision-making
behavior they lead.

Rank Awareness

We implement a direct feedback loop to the agents about their current
performance. Specifically, the agents’ ranks are recomputed after each choice
(after redistribution) and the rank is communicated to the agent by adding it
to the next input. Thus, the input to agent ai’s ANN is given by the choice
between two lotteries C(L1, L2) and the agent’s current rank ri:

I(L1, L2) = (C(L1, L2), ri) = (x1, x2, pmin, pmax, t︸ ︷︷ ︸
L1

, x′1, x′2, p′min, p′max, t′︸ ︷︷ ︸
L2

, ri),

(4.8)
where ri is scaled between 0 and 1.

Feeding this contextual information to the agents adds real-world complexity
to the GA and can be interpreted as the energetic state of an organism
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4. The Agent-Based Model (ABM)

or the stakes of the choice. As discussed in Section 3.2.2, such contextual
information affects decision-making and has been suggested as a cause of
paradoxical decision-making behavior in simpler environments. This added
awareness mechanism allows the ANNs to differentiate their decision-making
behavior depending on the contextual information, possibly leading to the
emergence of paradoxical decision-making behavior.

4.4 Setting the ABM Parameters

In general, our goal of using a ABM is to allow for the emergence of decision-
making behavior and not to train the agents to behave in line with a prede-
termined strategy. Thus, there is no obvious performance indicator and it is
difficult to define a performance metric to perform parameter optimization.

When setting the parameters of the ABM we focused on two criteria, which
show that the agents are following a reasonable strategy, but do not impose
decision-making biases. Specifically, we aimed for the agents to reach a
sufficient level of environment adaptation and order consistency. We measured
the adaptation to the environment by computing the average payoff received
on a large dataset of choices of their environment. The order consistency
was measured by computing the consistency between two inputs where the
lottery order is reversed, i.e I(L1, L2) and I(L2, L1). Clearly a high level of
order consistency is desirable, as it indicates that the agents have learnt to
recognize the meaning of the input data.

For completeness, we list some observations we made while determining the
parameter settings:

1. Lottery similarity: We found that for environments where most lotteries
had very similar expected payoff, the agents very quickly converge
to always preferring the first (or always preferring the second) lottery
presented in the choice, indicating that they were unable to learn a
strategy that performed better than random choices.

2. Selection sensitivity: We found that the overall population development
was very sensitive to the selection pressure. Too high of a selection
pressure resulted in premature convergence and almost no improve-
ment in performance over random strategies. Too low of a selection
sensitivity often resulted in the best agents dying out early on.

3. Number of choices: When setting the number of choices per iteration to
very high values, the agents tended to develop towards choosing the
lotteries with the highest expected value. However, from an evolution-
ary standpoint this set-up is problematic, as humans do not just make
a large amount of low stake choices in their lifetime.
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Chapter 5

Data Analysis Methods

We use four separate data analysis methods to assess the trained agents’
decision-making behavior.

Our hypothesis is that humans display seemingly irrational behaviors in
simple decision-making tasks tested in laboratories, due to the fact they
have adapted their behavior to the very different complex and uncertain
environments faced during evolution. We address this hypothesis by investi-
gating the decision-making behavior of the agents in environments that are
more simple (less ambiguous) than the ones in which they were trained in
throughout our data analysis.

In the first and second approach, described in Section 5.1 and 5.2, we measure
the degree of stochastic behavior and the general decision-making perfor-
mance of the agents, respectively. The other two methods investigate more
specific patterns of decision-making behavior to enable us to gain a better
understanding of the strategies the agents learn. We directly measure the
agents’ choice-patterns in the Allais paradox and ambiguity preferences
(explaining the Ellsberg paradox) using methods described in Section 5.3 and
5.4, respectively.

5.1 Measuring Stochastic Behavior

The decision-making process of the agents is modeled through an ANN and
allows for stochastic behavior. The output OL1,L2 ∈ [0, 1] of the ANN for
a choice between L1 and L2, is interpreted as the probability that the first
lottery is chosen. We investigate the effect of differing training environments
on the extent of stochastic behavior the agents display.

We define the stochasticity of a choice with output OL1,L2 as follows:
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stoch(OL1,L2) =

{
1−OL1,L2 for OL1,L2 ≥ 0.5
OL1,L2 otherwise

(5.1)

Thus, if the choice is deterministic i.e. the choice probability is 0 or 1, the
stochasticity is 0. If the choice is maximally stochastic i.e. L1 is equally likely
to be chosen as L2, the stochasticity is 0.5.

We calculate the average stochasticity of an agent on a set of M choices
C = {(L1

1, L1
2), ...., (LM

1 , LM
2 )} as follows:

stoch(C) =
1
M

M

∑
i=1

stoch(OLi
1,Li

2
) (5.2)

The average stochasticity of the population is simply the average stochasticity
of the agents in the population.

5.1.1 Fuzzy Preference

It is important to note that during the other data analysis methods we do
not sample the choice probability for each decision, but use the following
procedure, which also eliminates ordering effects: When determining an
agent’s preference between two lotteries L1 and L2, we present the agent with
two choices C(L1, L2) and C(L2, L1) (see Equation 4.8). The agents’ choices
may not be consistent when the choice is presented in the two orders i.e.
OL1,L2 6= 1−OL2,L1 . Thus, we define the concept of fuzzy preference, where
the preference is determined as the decision made with higher probability.
Specifically we have:

L1 � L2 ⇐⇒ OL1,L2 ≥ OL2,L1 , (5.3)

where � represents the fuzzy preference relation. We then interpret the
choice probability of choosing L1 as

OL1,L2
OL1,L2+OL2,L1

.

5.2 Measuring Environmental Fitness

This method aims to investigate if there are large discrepancies in the per-
formance of the agents trained in different environments. Specifically, we
aim to study how the complexity of the environments and the GA settings
affect the performance of the agents when making simpler decisions. To do
so, we compare the performance of agents on two datasets, each data point
being a binary decision task. Since these datasets represent the oversimplified
laboratory setups, they contain lotteries with no ambiguity, i.e. the interval
[pmin, pmax] the outcome probability p lies in shrinks to a point, pmin = pmax.
Consequently, the probability p is known with certainty. We randomly gener-
ate two datasets, one with choices where the difference between the expected
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values of the two lotteries are high (≥ 0.4) and one where the competing
lotteries may have similar expected values (≥ 0.1). Thus, we can compare
the performance between two levels of simplicity. The performance is com-
puted using the payoff of the chosen lotteries i.e. we compute the average
performance of an agent on a set of M choices C = {(L1

1, L1
2), ...., (LM

1 , LM
2 )}

as follows:

Lchosen(L1, L2) =

{
L1, if L1 � L2

L2, otherwise
(5.4)

performance(C) =
1
M

M

∑
i=1

payoff(Lchosen(Li
1, Li

2)) (5.5)

where � refers to the fuzzy preference relation. The average stochasticity
of the population is simply the average stochasticity of the agents in the
population.

5.3 Detecting Expected Utility Theory Violations

To detect violations of EUT we consider the common ratio version of the
Allais Paradox experiment, which involves only two-outcome lotteries. The
experiment aims to determine how certain outcomes are evaluated relative
to outcomes, which are merely probable. The experiment is set up as a pair
of choices (A and B), each consisting of a choice between two binary lotteries.
The first choice, A, is between a (near) certain prospect and a risky prospect.
The second choice, B, consists of the same lotteries as in A, except that the
probabilities for the higher outcomes are scaled by the same common ratio
i.e. mixed with a common lottery. The general setup can be summarized as
follows:

A *L1a (a (near) certain prospect) vs L2a (a risky prospect)

B L1b = λL1a + (1− λ)LC vs *L2b = λL2a + (1− λ)LC
(5.6)

where the mixing factor λ determines to what extent the lotteries are scaled
by the common lottery LC. The choice pattern indicated by the asterisks
is referred to as the common ratio effect [11]. Both the common ratio and
the reverse common ratio effect have been observed in empirical studies
[65] and violate of the independence axiom of EUT, which prescribes one of
the following preference pairs: [L1a � L2a and L1b � L2b] or [L1a ≺ L2a and
L1b ≺ L2b].

39



5. Data Analysis Methods

For concreteness, consider the following example:

A *L1a = 100% chance of 60 vs L2a = 80% chance of 75
20% chance of 0

B L1b = 25% chance of 60
75% chance of 0

vs *L2b = 20% chance of 75
80% chance of 0

where we have a mixing factor λ = 0.25 and can express L1b and L2b as
follows: L1b = (25% chance of L1a, 75% chance of 0) and L2b = (25% chance
of L2a, 75% chance of 0). The empirically observed choice pattern indicated
by the asterisks, violates the independence axiom.

In Tables 5.1 and 5.2 we list each of the pairs of choices we use to investigate
the common ratio effect. We test the robustness of the results in three
dimensions: First, we vary how large the gains are, second we vary the
mixing factor λ and third we measure the results for certain and near-certain
lotteries.
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Pairs
(at certainty)

Option 1 Option 2

Large gains

λ = 0.6 A 100% chance of 60 vs 80% chance of 75
20% chance of 10

B 60% chance of 60
40% chance of 10

vs 48% chance of 75
52% chance of 10

λ = 0.3 A 100% chance of 60 vs 80% chance of 75
20% chance of 10

B 30% chance of 60
70% chance of 10

vs 24% chance of 75
76% chance of 10

λ = 0.1 A 100% chance of 60 vs 80% chance of 75
20% chance of 10

B 10% chance of 60
90% chance of 10

vs 8% chance of 75
92% chance of 10

Small gains

λ = 0.6 A 100% chance of 20 vs 80% chance of 24
20% chance of 5

B 60% chance of 20
40% chance of 5

vs 48% chance of 24
52% chance of 5

λ = 0.3 A 100% chance of 20 vs 80% chance of 24
20% chance of 5

B 30% chance of 20
70% chance of 5

vs 24% chance of 24
76% chance of 5

λ = 0.1 A 100% chance of 20 vs 80% chance of 24
20% chance of 5

B 10% chance of 20
90% chance of 5

vs 8% chance of 24
92% chance of 5

Table 5.1: Pairs of choices used to investigate the common ratio effect, com-
paring the evaluation of certain outcomes relative to outcomes which are
merely probable. (See Table 5.2 for the choices dealing with near-certainty.)
Experiment A is a choice between a certain lottery and a binary lottery with a
higher EV. Experiment B is the same as A, except that the lotteries are mixed
with a common lottery LC, a certain prospect with outcome 5 and 10 in the
small gain and large gain setting. λ refers to the mixing factor defined in
Equation 5.6. Gains were multiplied by 100 for readability.
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Pairs
(near-certainty)

Option 1 Option 2

Large gains

λ = 0.6 A 95% chance of 60
5% chance of 10

vs 80% chance of 69
20% chance of 10

B 57% chance of 60
43% chance of 10

vs 48% chance of 69
52% chance of 10

λ = 0.3 A 95% chance of 60
5% chance of 10

vs 80% chance of 69
20% chance of 10

B 28% chance of 60
72% chance of 10

vs 24% chance of 69
76% chance of 10

λ = 0.1 A 95% chance of 60
5% chance of 10

vs 80% chance of 69
20% chance of 10

B 10% chance of 60
90% chance of 10

vs 8% chance of 69
92% chance of 10

Small gains

λ = 0.6 A 95% chance of 20
5% chance of 5

vs 80% chance of 24
20% chance of 5

B 57% chance of 20
43% chance of 5

vs 48% chance of 24
52% chance of 5

λ = 0.3 A 95% chance of 20
5% chance of 5

vs 80% chance of 24
20% chance of 5

B 28% chance of 20
72% chance of 5

vs 24% chance of 24
76% chance of 5

λ = 0.1 A 95% chance of 20
5% chance of 5

vs 80% chance of 24
20% chance of 5

B 10% chance of 20
90% chance of 5

vs 8% chance of 24
92% chance of 5

Table 5.2: Pairs of choices used to investigate the common ratio effect, com-
paring the evaluation of near-certain outcomes relative to outcomes which
are merely probable. Experiment A is a choice between a near-certain lottery
and a risky lottery with equal EV. Experiment B is the same as A, except
that the lotteries are mixed with a common lottery LC, a certain prospect
with outcome 5 and 10 in the small gain and large gain setting. λ refers to
the mixing factor defined in Equation 5.6. Gains were multiplied by 100 for
readability.
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5.4 Measuring Ambiguity Preferences

To provide intuitive representations of the ambiguity preferences of the
agents trained by our model, we use the recently developed ambiguity triangle
[4].

Certainty of x1

(1, 0, 0)

Certainty of x2
(0, 1, 0)

100% Ambiguity
(0, 0, 1)

fully-specified
lotteries (p

1 +
p
2 =

1)

Figure 5.1: Ambiguity triangle depicting lower envelope lotteries that have
two possible outcomes x1 and x2, where x1 > x2.

The ambiguity triangle is based on the concept of lower envelope lotteries,
defined in Equation 2.2. Recall that such lower envelope lotteries specify
the lower bounds on probabilities, p

1
, . . . , p

k
, for a set of outcomes x1, . . . , xn

and the ambiguity of the lottery is defined by the amount of “unassigned”
probability mass y = 1− ∑n

i=1 p
i
. The binary lotteries used in our model,

which are defined by the lower and upper bound of the probability of x1
(pmin, pmax), can easily be transformed into binary lower envelope lotteries
by setting p

1
= pmin and p

2
= 1− pmax. When presenting the agents with

such lotteries we set the lottery type t (see Section 4.1) to the neural ’uniform’
distribution setting.

All possible lotteries in the set of binary lower envelope lotteries with out-
comes x1 and x2 (with x1 > x2) can be defined by (p

1
, p

2
, y) and represented

graphically in one ambiguity triangle. Each point within the triangle rep-
resents one lottery, where the coordinates of the point are (p

1
, p

2
). The

vertices of the ambiguity triangle represent the extreme cases in the set of
lotteries: (1,0,0) represents a certain lottery with the preferred outcome x1,
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(0,1,0) represents a certain lottery with the non-preferred outcome x2 and
(0,0,1) represents a lottery where nothing is known about the probability
distribution over the two outcomes. This corresponds to the probability of
outcome x1 (and therefore of outcome x2) assuming any value between 0 and
1.

We examine choices between lower envelope lotteries that lie on lines with
the same expected value, referred to as EV-constant lines (such as the blue
line in Figure 5.1). Lotteries on one EV-constant line have the same expected
value if one makes no further assumptions about the actual probabilities
from their lower bounds (following the principle of insufficient reason [66]) .
Specifically, this means that if one reduces the ambiguity of a lottery evenly
i.e. when reducing the ambiguity of a lottery by x, the minimum probabilities
of both outcomes increase equally by x/2 units, then the resulting lottery is
on the same line. As an example we consider the lotteries L1 : (0, 0.3, 0.7) and
L2 : (0.35, 0.65, 0), which are the endpoints of the EV-constant line depicted
in Figure 5.1. When taking the lottery L1 and eliminating all ambiguity
without biased assumptions, one obtains (0 + 0.35, 0.3 + 0.35, 0.7− 0.7) =
(0.35, 0.65, 0) = L2. Thus this fully-specified lottery (without ambiguity) is
the endpoint of the EV-constant line on the hypotenuse of the ambiguity
triangle.

Varying the position of these EV-constant lines allows us to examine the
ambiguity preferences of the trained agents. Specifically we illustrate in
the next subsection how we can use the ambiguity triangle to assess if the
agents behave in line with the typical results of the Ellsberg experiment.
Furthermore, we will be able to assess whether the trained agents exhibit
constant ambiguity attitudes or show large variation in their ambiguity
preferences (depending on the values for x1, x2, p

1
and p

2
).

The agents’ (fuzzy) choice-preference are probabilities of choosing a choice
option. Because it is extremely unlikely that this choice probability will be
exactly 0.5, the agent is never completely indifferent between two choice
options. Thus, to determine if the ambiguity preference of an agent is neutral,
we define a indifference range [0.5− δ, 0.5 + δ] for choice probabilities: If a
choice probability p lies in this range we consider the agents to be indifferent
in this choice. If δ = 0, we do not allow indifference and agents will have a
preference in every choice.

The Ellsberg Experiment in the Ambiguity Triangle

The Ellsberg paradox, introduced in Section 2.3.2, can be illustrated by
preference patterns within the ambiguity triangle [67]. To do so the choices
in the Ellsberg experiment must first be transformed into lower envelope
lotteries. In the following paragraph we walk through one example of
how to construct lower envelope lotteries from the Ellsberg lotteries. We
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5.4. Measuring Ambiguity Preferences

also provide an overview of the Ellsberg experiment described with lower
envelope lotteries in Table 5.3 and a graphical illustration using the ambiguity
triangle (Figure 5.2).

Consider the first lottery in Experiment B of the Ellsberg experiment denoted
as L1b, where the outcome is $100 if a red or yellow ball is drawn and $0
otherwise. The number of red balls in the urn is known to be exactly 30 and
the number of yellow balls is uncertain lying somewhere between 0 and 60.
Thus, the minimum probability of receiving $100 is 1

3 while the maximum
is 1. Because the maximum probability of receiving $100 is 1, the minimum
probability of receiving $0 is 0. Thus, defining the lower lottery outcome x1
as receiving $100 and the outcome x2 as receiving $0, we can denote L1b as a
lower envelope lottery ( 1

3 , 0, 2
3 ).

Lotteries Payoffs of outcomes [$] Lower envelope lotteries

red black yellow (p
1
, p

2
, y)

L1a 100 0 0 ( 1
3 , 2

3 , 0)
L2a 0 100 0 (0, 1

3 , 2
3 )

L1b 100 0 100 ( 1
3 , 0, 2

3 )
L2b 0 100 100 ( 2

3 , 1
3 , 0)

Table 5.3: The Ellsberg experiment described with lower envelope lotteries,
where outcome x1 and x2 is receiving $100 and $0 respectively.

Typically in the Ellsberg experiment participants prefer the fully-specified
lotteries (circled in Figure 5.2) in both choices. Thus, one can assess if agents
behave according to the canonical choice pattern of the Ellsberg experiment
by analysing if they prefer lotteries on EV-constant lines that are closer to the
hypotenuse of the triangle. This corresponds to making ambiguity-averse
choices.
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5. Data Analysis Methods

(
0, 1

3
, 2

3

)
= L2a

(
1
3
, 2

3
, 0
)

= L1a

(
1
3
, 0, 2

3

)
= L1b

(
2
3
, 1

3
, 0
)

= L2b

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

Figure 5.2: Choices in the Ellsberg experiment depicted in the ambiguity
triangle. The lotteries lying on the same dashed line make up a choice. The
blue circles indicate the empirically observed typical choices.
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Chapter 6

Results

Due to the stochastic nature of the ABM, we need to simulate the model mul-
tiple times to investigate the expected decision-making behavior. Specifically,
we ran 20 repetitions of the ABM with 500 iterations for each training envi-
ronment. We report the standard deviation between runs when applicable.
The model was implemented using Python and all simulations were run on
a computing cluster provided by ETH Zürich (Euler).

We structure the results by data analysis method. In Sections 6.1 and 6.2,
we present the general results on the stochasticity and performance of the
decision-making behavior in simplified environments. Then we present the
(detected) EUT violations and ambiguity preferences we found in the trained
agent populations in Sections 6.3 and 6.4, respectively. Finally, we present
our findings on the cooperation mechanism in Section 6.5.

6.1 Stochastic Behavior

We analyze the stochasticity of the agents preferences in two simplified
environments and their respective training environment. Recall that we
measure the stochasticity using the agents’ choice probabilities, i.e. more
certain choices (with choice-probabilities near 0 or 1) correspond to low
stochasticity.

When looking at Table 6.1, where we report the results of the stochasticity
analysis, it is immediately noticeable that the outcome variance V of the
lotteries in the training environment has by far the greatest effect on the
degree of choice stochasticity. Specifically, agents trained in environments
with low outcome variance evolve to make highly stochastic choices, i.e.
have weaker preferences. This may be seen as paradoxical, as one could
argue that lotteries with low outcome variance are less noisy and thus should
lead to less stochasticity. However, because the stochasticity is also high in
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6. Results

Training environment
Simplified

environment I
(Large EV-diff)

Simplified
environment II
(Small EV-diff)

Training
environment

V A D Stochasticity Stochasticity Stochasticity

high high U-shaped 0.065 0.073 0.104

high high,low U-shaped 0.113 0.128 0.139

high low U-shaped 0.083 0.088 0.137

high high uniform 0.077 0.097 0.148

high high,low uniform 0.062 0.079 0.107

high low uniform 0.074 0.091 0.134

high high bell-shaped 0.084 0.107 0.130

high high,low bell-shaped 0.082 0.083 0.111

high low bell-shaped 0.078 0.126 0.186

high,low high U-shaped 0.096 0.130 0.128

high,low high,low U-shaped 0.094 0.120 0.134

high,low low U-shaped 0.090 0.117 0.128

high,low high uniform 0.109 0.125 0.140

high,low high,low uniform 0.100 0.126 0.135

high,low low uniform 0.105 0.130 0.147

high,low high bell-shaped 0.124 0.136 0.153

high,low high,low bell-shaped 0.098 0.123 0.136

high,low low bell-shaped 0.121 0.150 0.163

low high U-shaped 0.215 0.234 0.210

low high,low U-shaped 0.176 0.208 0.185

low low U-shaped 0.208 0.236 0.220

low high uniform 0.180 0.196 0.200

low high,low uniform 0.187 0.215 0.199

low low uniform 0.192 0.226 0.201

low high bell-shaped 0.200 0.231 0.207

low high,low bell-shaped 0.210 0.247 0.224

low low bell-shaped 0.198 0.236 0.205

Table 6.1: Average stochasticity of the agents’ decisions in the simplified
and training environments. Stochasticity measures the uncertainty of a
choice, where higher values represent higher stochasticity i.e. for the choice
probability p, we have stochasticity stochp = 0.5− |0.5− p|. See Equations
5.1 and 5.2 for details. The three characteristics that define the lottery types
in the training environment are the outcome variance V , probability range A
and probability distribution D.
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6.2. Performance in Simplified Environment

the training environment (with low outcome variance), this indicates that
the agents do not learn to differentiate strongly between lotteries. Perhaps
lotteries with highly contrasted outcomes are necessary for the agents to
learn the structure of the input and develop clear preferences.

For the rest of the analysis we look more closely at the ’variance-neutral’
environments which include lotteries with both high and low outcome
variance (i.e. the middle section of Table 6.1). When comparing the average
stochasticity, we find that the simpler the testing environments, the less
stochastic the agents’ decisions are. This indicates that for easy decisions,
such as choices between lotteries with large differences in expected value,
the preferences are stronger. We also see that there is a consistent trend in
each of the three testing environments: The degree of stochasticity increases,
the more certain the probability distribution D in the training environment.
Interestingly, the probability range A of the environment, which directly
influences the ambiguity of the environment, did not have a large effect on
the stochasticity of the agents’ decision-making.

6.2 Performance in Simplified Environment

In this section, we report the results on the effect of the training environment
on the agents’ performance in simplified environments. The data shows a
very high positive correlation (+0.9) between the performances in the two
simplified environments. Thus, we only present the results of the ’Simplified
environment I’ here. The full data on the performance (Simplified environ-
ment I and II and the training environment) can be found in the appendix
A.1. However, comparing the performance in the training environments is
problematic; although the datasets have been generated to have the same total
score for a decision-maker with a random strategy (choice probability 0.5 for
each choice), this does not mean that the maximum score is the same. We
also find a high negative correlation (-0.8) between the average performance
in the simplified environments and the standard deviation between runs.

As in the stochasticity analysis, the outcome variance V is the environment
characteristic that has the largest effect on the performance. On average,
agents trained in environments with high outcome variance perform worse
in the simplified environment, than agents trained in environments with
low outcome variance: For training environments with high outcome vari-
ance, the average score (as defined in Equation 5.5) is only 279 on average,
compared to 285 in training environments with low outcome variance. The
best performances (288 on average) result from agents trained in environ-
ments with varied variance (high and low). Both of the other environmental
characteristics, the probability range A and the probability distribution D,
which directly affect the ambiguity of the lottery, have a similar affect on
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6. Results

the performance, which we summarize in Table 6.3. In both cases, the more
ambiguous the training environment the worse the performance is in the
simplified environment, which confirms our hypothesis that populations
evolving in uncertain environments develop decision-making behavior that
is sub-optimal in simplified laboratory setups.

While the measured performance differences are small (∼ 2− 10%), most
of the differences between the performance in corresponding high and low
outcome variance settings (other parameters equal), are considered statisti-
cally significant by conventional criteria (t-test, p < 0.05). However, the same
performance score can result from many different choice combinations. To
better understand to what extent the performance difference corresponds
to differing decision-making behavior, one can consider the percentage of
differing choices made by populations trained in differing environments.
Using a few settings as random samples, we found that a small increase in
the difference in performance (e.g. 2% and 4%), can correspond to a large
increase in the percentage of differing choices (e.g. 6% and 25%). This shows
that the performance metric does not provide enough insight on its own. In
the following sections we look more closely at the choice patterns that affect
the performance.
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6.2. Performance in Simplified Environment

Training environment
Simplified

environment I
(Large EV-diff)

V A D Score (σ)

high high bell-shaped 280 (± 5.8)

high high uniform 278 (± 10.9)

high high U-shaped 270 (± 10.0)

high high, low bell-shaped 284 (± 7.3)

high high, low uniform 277 (± 9.6)

high high, low U-shaped 276 (± 9.7)

high low bell-shaped 292 (± 8.4)

high low uniform 286 (± 7.2)

high low U-shaped 274 (± 11.0)

high, low high bell-shaped 286 (± 4.0)

high, low high uniform 287 (± 4.2)

high, low high U-shaped 286 (± 3.5)

high, low high, low bell-shaped 288 (± 2.8)

high, low high, low uniform 286 (± 5.7)

high, low high, low U-shaped 286 (± 3.1)

high, low low bell-shaped 291 (± 2.3)

high, low low uniform 289 (± 3.4)

high, low low U-shaped 289 (± 3.0)

low high bell-shaped 285 (± 5.1)

low high uniform 285 (± 5.4)

low high U-shaped 283 (± 7.2)

low high, low bell-shaped 286 (± 5.9)

low high, low uniform 286 (± 4.1)

low high, low U-shaped 282 (± 6.6)

low low bell-shaped 288 (± 3.5)

low low uniform 285 (± 4.0)

low low U-shaped 284 (± 7.1)

Table 6.2: Total average score of the agents in the ’Simplified environment I’
dataset depending on their training environment. The choices in the ’Sim-
plified environment I’ dataset consist of lotteries that (1) are not ambiguous
(probabilities are fixed to a value and not range) and (2) differ in expected
value (EV) by at least 0.4. The score of an agent with a random strategy is
200. The payoffs of each choice lie between 0 and 1. The reported standard
deviation σ refers to the amount of variation between runs (not agents). The
three characteristics that define the lottery types in the training environment
are the outcome variance V , probability range A and probability distribution
D.
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6. Results

Probability range A
low low,high high

286 283 282

Increasing Ambiguity

Probability distribution D
bell-shaped uniform U-shaped

287 284 281

Increasing Ambiguity

Table 6.3: Performance (total average score) of agents in the ’Simplified
environment I’ dataset, depending on ambiguity characteristics of their
training environment. See Table 6.2 caption for details on the dataset.

6.3 Expected Utility Theory Violations (Certainty Ef-
fect)

The amount and type of EUT violations detected in the common ratio ex-
periment (described in Section 5.3), were very similar across all training
environments. We thus summarize the data and present the percentage
of runs in which the majority of agents violated independence, averaged
over all 27 environments, in Table 6.4. For detailed data on the individual
environments, see Appendix A.2.

We detect a significant prevalence of independence violations: In the true
certainty setting, we find that the agents almost always evolve to indepen-
dence violating decision-making behavior. The effect is slightly less robust
for small gains than for large gains. In the near certainty setting we find
that in most of the runs the agents did not evolve to independence violating
strategies. Only in around 10% of the runs, the dominant strategy of the
agents violated independence and thus EUT. We also find more frequent
violations of independence as the mixing factor λ (defined in Equation 5.6)
decreases. This could be because the lower λ the least similar the mixed
lotteries are to the original lotteries.

Almost all of the independence violations occur due to the certain lottery L1a
being chosen in choice A and the less certain lottery L2b being chosen in the
mixed choice B. This choice pattern is known as the ’certainty effect’. The
opposite effect, the reverse certainty effect was very rarely found (< 1% of
runs).
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6.4. Ambiguity Preference

% of runs violating independence

large gains small gains

certainty

λ = 0.6 99.4 89.3

λ = 0.3 99.6 95.0

λ = 0.1 99.4 96.7

near-certainty

λ = 0.6 0.7 7.0

λ = 0.3 1.3 11.9

λ = 0.1 22.0 13.0

Table 6.4: Percentage of runs where the dominant strategy (majority of agents)
violates the independence axiom of EUT, averaged over environments. The
mixing factor λ, near-certainty vs. certainty and large vs. small gain settings
uniquely describe the choice-pairs used to detect the independence violations
(See Tables 5.1 and 5.2 for details on the choice-pairs).

6.4 Ambiguity Preference

We assess the ambiguity preferences by presenting the agent populations with
choices between lotteries on five EV-lines on the ambiguity triangle. We find
that in all environments the ambiguity preferences are consistent for different
outcome values and over EV-lines i.e. for example, ambiguity-seeking agents
are ambiguity-seeking on each EV-line. In the cases where the population
has a non-neutral ambiguity preference, the preferences lie on the endpoints
of the EV-lines and not in the interior of the ambiguity triangle. We can,
thus, group the ambiguity preferences into three types: ambiguity-seeking,
ambiguity-averse and ambiguity-neutral, displayed in Figure 6.1. The fact
that the agents choose the most ambiguous or the certain option means that
they are maximally ambiguity-seeking or maximally ambiguity-averse and
allows for their ambiguity preferences to be represented as linear indifference
curves in the triangle.

In each environment, we found that ambiguity-seeking, ambiguity-neutral
and ambiguity-averse populations could emerge. The agents within a popu-
lation were generally homogeneous in regards to their ambiguity preferences,
however, between runs we observed large discrepancies. Generally, we find
that the dominant preference of the population evolves to ambiguity-seeking
preferences slightly more often than to ambiguity-averse preferences (47% vs
39% for indifference range = 0.48-0.52). On average, less ambiguous training
environments, evolve to ambiguity-seeking populations slightly more often
(40% for high A and 49% for low A, for indifference range = 0.48-0.52). The
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(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(a) Ambiguity-averse

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(b) Maximally ambiguity-seeking

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(c) Ambiguity-neutral

(0, 0, 1) (1, 0, 0)

(0, 1, 0)

(d) Non-maximally ambiguity-
seeking

Figure 6.1: Consistent ambiguity preferences of a population displayed on
the ambiguity triangle. The size of the dots indicates the number of agents
in the population that prefer this lottery over all others on the same EV-line.
(a-c) are the three types of preference behavior we find in our simulations,
(d) is a case that does not occur.
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6.5. Cooperation Dynamics

percentage of runs that evolve to ambiguity neutral preferences depend on
the indifference range of the choice probability. In Appendix A.3 we present
detailed results on the percentage of runs that evolved to ambiguity seek-
ing, neutral and averse preferences for several indifference ranges and all
environments.

6.5 Cooperation Dynamics

When running the simulations with multiple groups with different coopera-
tion rates, we found that the group with the higher cooperation rate dies out.
However, the developments (e.g. number of iterations until a group does out)
depend strongly on the selection pressure of the genetic algorithm.
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Chapter 7

Discussion

Our findings support our main hypothesis that very complex and ambiguous
evolutionary environments may result in sub-optimal decision-making in
simpler environments. We found that the outcome variance was the environ-
mental characteristic with the largest effect on both the agents’ performance
and choice-stochasticity in simplified environments. Our findings suggest
that strategies that are evolutionary beneficial in environments with high
outcome variance do not perform best in simpler, less ambiguous environ-
ments. This is an important insight, because lab experiments consisting of
lotteries with slightly differing monetary payoffs have very small outcome
variance compared to some evolutionary prospects such as, for example,
the prospect of going hunting, which could result in death or food. Also,
as expected, evolutionary environments with higher ambiguity (reflected
through the probability range and distribution of the lotteries’ probabilities),
resulted in poorer performance in the simple environment, suggesting that
the agents were not trained to perform optimally in these environments. The
stochasticity analysis showed that, as expected, more difficult choices were
generally more stochastic. We also found that agents trained in more certain
environments, made noisier choices. This is somewhat counter-intuitive, but
may be linked to the fact that the agents are less well-adapted, i.e. show lower
performance, in the environments with uncertain probability distributions.

Further compelling support for our hypothesis was given by the fact that
the trained agents’ decision-making behavior in the Allais’ common ratio
experiment was robust over all training environments. We detected violations
of expected utility theory that are in line with general empirical findings [68,
69]. The choice patterns support the hypothesis of the certainty effect, where
agents place disproportionate weight on outcomes when they are certain.
Several alternative theories can accommodate the certainty effect, the most
prominent such theory being prospect theory with its probability weighting
mechanism [11]. The finding that the certainty effect is more pronounced
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with large gains is consistent with empirical studies [70, 71]. We found that
the certainty effect did not occur in near certainty choices but required true
certainty (probability one). This is at odds with both expected utility and
probability weighting, which does not allow discontinuous preferences at
certainty. Previous studies regarding this are not consistent, some report the
same effects at and near certainty [72], while other evidence suggests that
decisions at certainty and near certainty differ [73, 74].

A consistent finding across environments regarding ambiguity preferences
was that populations either had no preference or predominately chose the
most ambiguous or most certain option. That is to say, populations never
preferred non-maximally ambiguous prospects. Experiments using the same
ambiguity triangle setup report observe this as well [4]. Other aspects of
the ambiguity preferences varied strongly across runs. In each training
environment ambiguity-averse, ambiguity-neutral and ambiguity-seeking
populations could emerge. This instability in the dominant ambiguity prefer-
ence suggests that either the ambiguity preferences were not a crucial factor
driving environmental fitness in the training environment or that there are
multiple equilibria. This heterogeneity in ambiguity preference has been
found in empirical studies as well, which find considerable heterogeneity
in ambiguity preferences among individuals and depending on the size of
gains [75, 76, 77]. We observed that less ambiguous training environments,
evolved to ambiguity-seeking populations slightly more often. This finding
supports our hypothesis that ambiguous environments lead to classically
considered paradoxical behavior (i.e. ambiguity-averse behavior) in more
simple environments. However, because of the variability in this metric,
more simulations are necessary to assess if there is a significant affect of
the training environment on the ambiguity behavior. Also, it needs to be
further investigated if there are in fact multiple equilibria (ambiguity-averse,
ambiguity-neutral and ambiguity-seeking) and how likely they are to occur.
Looking more closely at the preferences of the populations in the early gen-
erations of the GA, could provide important insights on the development of
the ambiguity preferences, which may be a strongly path-dependent process.

The findings regarding the cooperation mechanism show that group coop-
eration is does not emerge naturally, when wealth is simply redistributed.
Similarly, previous studies show that in the equivalent public good games
setting, where the multiplication factor is set to one, almost no contributions
to the public good are made [78]. The reasoning behind the simple redistri-
bution mechanism we implemented, was that this type of cooperation could
provide valuable diversity leading to an evolutionary advantage over groups
without such individuals. This was not observed, however.
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Chapter 8

Conclusion

The results of our simulations clearly support the hypothesis that decision-
making strategies emerging through evolutionary processes can result in
expected utility theory violations, in a broad range of environmental settings.
We also show that the characteristics of the evolutionary environment affect
the performance and choice-stochasticity in simplified environments.

While our simulations thoroughly addressed the question of the effect of
differing evolutionary environments, our findings are limited to the specific
design choices we made for our input representation and genetic algorithm.
To more precisely estimate the effect of the evolutionary environment, we
suggest extending the simulations to a wider range of settings for the evolu-
tionary algorithm and strategically analysing the influence of these design
choices. Another interesting question that merits future investigation is the
effect of more complex cooperation mechanisms, specifically introducing
incentives for cooperation by, for example, using a multiplication factor > 1
in the public goods game.
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A. Appendix

A.1 Performance in Simplified and Training Environ-
ments

Training environment
Simplified

environment I
(Large EV-diff)

Simplified
environment II
(Small EV-diff)

Training
environment

V A D Score (σ) Score (σ) Score (σ)

high high bell-shaped 280 (±5.8) 249 (±4.5) 225 (±2.8)
high high uniform 278 (±10.9) 247 (±7.3) 216 (±3.4)
high high U-shaped 270 (±10.0) 242 (±7.2) 213 (±2.4)
high high, low bell-shaped 284 (±7.3) 252 (±5.3) 218 (±2.5)
high high, low uniform 277 (±9.6) 246 (±6.2) 220 (±3.1)
high high, low U-shaped 276 (±9.7) 247 (±6.8) 216 (±3.2)
high low bell-shaped 292 (±8.4) 257 (±6.5) 222 (±4.2)
high low uniform 286 (±7.2) 253 (±5.3) 224 (±2.8)
high low U-shaped 274 (±11.0) 245 (±8.1) 221 (±5.1)

high, low high bell-shaped 286 (±4.0) 254 (±3.3) 240 (±1.4)
high, low high uniform 287 (±4.2) 253 (±3.5) 236 (±2.2)
high, low high U-shaped 286 (±3.5) 253 (±3.4) 243 (±1.8)
high, low high, low bell-shaped 288 (±2.8) 255 (±2.9) 237 (±1.2)
high, low high, low uniform 286 (±5.7) 253 (±3.7) 237 (±1.6)
high, low high, low U-shaped 286 (±3.1) 254 (±3.7) 244 (±1.9)
high, low low bell-shaped 291 (±2.3) 257 (±2.4) 243 (±1.3)
high, low low uniform 289 (±3.4) 255 (±3.1) 234 (±1.2)
high, low low U-shaped 289 (±3.0) 255 (±3.1) 240 (±1.2)

low high bell-shaped 285 (±5.1) 252 (±5.0) 256 (±0.7)
low high uniform 285 (±5.4) 252 (±4.4) 253 (±0.8)
low high U-shaped 283 (±7.2) 251 (±5.6) 251 (±1.0)
low high, low bell-shaped 286 (±5.9) 253 (±4.8) 250 (±1.2)
low high, low uniform 286 (±4.1) 255 (±3.0) 254 (±0.8)
low high, low U-shaped 282 (±6.6) 251 (±4.5) 254 (±0.7)
low low bell-shaped 288 (±3.5) 255 (±3.1) 255 (±0.8)
low low uniform 285 (±4.0) 254 (±4.4) 250 (±1.0)
low low U-shaped 284 (±7.1) 250 (±5.9) 252 (±0.8)

Table A.1: Total average score in simplified and training environments,
depending on the agents training environment. The score of an agent with
a random strategy is 200. The reported standard deviation λ refers to the
amount of variation between runs (not agents). The three characteristics that
define the lottery types in the training environment are the outcome variance
V , probability range A and probability distribution D.
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A.2 Results on Allais’ Common Ratio Experiment

Training environment
% of runs where dominant strategy violates EUT

(at certainty)

Large gains Small gains

V A D λ = 0.6 λ = 0.3 λ = 0.1 λ = 0.6 λ = 0.3 λ = 0.1

high high bell-shaped 100 100 100 70 90 95

high high uniform 100 100 100 85 95 100

high high U-shaped 100 100 100 80 90 90

high high, low bell-shaped 100 100 100 100 100 100

high high, low uniform 95 95 95 80 90 90

high high, low U-shaped 100 100 100 75 85 100

high low bell-shaped 95 95 95 65 70 85

high low uniform 100 100 100 75 90 90

high low U-shaped 95 100 95 65 75 80

high, low high bell-shaped 100 100 100 100 100 100

high, low high uniform 100 100 100 80 95 95

high, low high U-shaped 100 100 100 95 95 95

high, low high, low bell-shaped 100 100 100 100 100 100

high, low high, low uniform 100 100 100 100 100 100

high, low high, low U-shaped 100 100 100 100 100 100

high, low low bell-shaped 100 100 100 100 100 100

high, low low uniform 100 100 100 100 100 100

high, low low U-shaped 100 100 100 100 100 100

low high bell-shaped 100 100 100 85 95 95

low high uniform 100 100 100 90 100 100

low high U-shaped 100 100 100 100 100 100

low high, low bell-shaped 100 100 100 100 100 100

low high, low uniform 100 100 100 95 100 100

low high, low U-shaped 100 100 100 80 100 100

low low bell-shaped 100 100 100 100 100 100

low low uniform 100 100 100 90 95 95

low low U-shaped 100 100 100 100 100 100

Average 99.4 99.6 99.4 89.3 95.0 96.7

Table A.2: Percentage of runs, where the dominant strategy (majority of
agents) violates the independence axiom of EUT in the Allais common ratio
experiment at certainty. The decision of the majority of agents in a populations
is considered the dominant strategy.(V : outcome variance, A : probability
range and D : probability distribution.)
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Training environment
% of runs where dominant strategy violates EUT

(near-certainty)

Large gains Small gains

V A D λ = 0.6 λ = 0.3 λ = 0.1 λ = 0.6 λ = 0.3 λ = 0.1

high high bell-shaped 5 5 55 5 30 30

high high uniform 5 10 25 10 15 20

high high U-shaped 0 0 25 5 15 15

high high, low bell-shaped 0 0 40 10 20 20

high high, low uniform 0 0 30 5 15 15

high high, low U-shaped 0 5 35 0 25 30

high low bell-shaped 5 5 50 15 25 30

high low uniform 0 0 40 10 20 20

high low U-shaped 0 5 20 10 15 20

high, low high bell-shaped 0 0 20 0 0 0

high, low high uniform 0 0 30 15 20 20

high, low high U-shaped 0 0 10 20 20 20

high, low high, low bell-shaped 0 0 5 5 5 5

high, low high, low uniform 0 0 20 10 10 10

high, low high, low U-shaped 0 0 5 0 0 0

high, low low bell-shaped 0 0 15 5 5 5

high, low low uniform 0 0 20 0 0 0

high, low low U-shaped 0 0 10 0 0 0

low high bell-shaped 0 0 10 10 10 10

low high uniform 5 5 25 0 10 10

low high U-shaped 0 0 25 15 15 15

low high, low bell-shaped 0 0 10 0 0 0

low high, low uniform 0 0 15 5 5 5

low high, low U-shaped 0 0 25 10 20 20

low low bell-shaped 0 0 15 5 5 5

low low uniform 0 0 10 10 10 10

low low U-shaped 0 0 5 5 5 5

Average 0.7 1.3 22.0 7.0 11.9 13

Table A.3: Percentage of runs, where the dominant strategy (majority of
agents) violates the independence axiom of EUT per environment in the
Allais common ratio experiment near certainty. (V : outcome variance, A :
probability range and D : probability distribution.)
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A.3 Detailed Results on Ambiguity Preferences

Training environment Dominant ambiguity preferences [% of runs]

Indifference range: 0.48 - 0.52 Indifference range: 0.45 - 0.55

V A D seeking neutral averse seeking neutral averse

high high bell-shaped 55 5 40 55 15 30

high high uniform 30 15 55 20 35 45

high high U-shaped 50 5 45 45 20 35

high high, low bell-shaped 65 5 30 45 25 30

high high, low uniform 45 10 45 30 25 45

high high, low U-shaped 50 15 35 45 30 25

high low bell-shaped 50 0 50 35 25 40

high low uniform 40 5 55 35 15 50

high low U-shaped 45 25 30 30 45 25

high, low high bell-shaped 45 10 45 35 35 30

high, low high uniform 35 15 50 30 20 50

high, low high U-shaped 35 5 60 25 25 50

high, low high, low bell-shaped 45 25 30 35 50 15

high, low high, low uniform 75 0 25 35 45 15

high, low high, low U-shaped 60 5 35 40 40 20

high, low low bell-shaped 55 0 45 40 35 25

high, low low uniform 50 5 45 40 25 35

high, low low U-shaped 60 10 30 45 40 15

low high bell-shaped 40 25 35 25 55 20

low high uniform 35 30 35 25 55 20

low high U-shaped 40 40 20 25 60 15

low high, low bell-shaped 20 25 55 5 50 45

low high, low uniform 50 20 30 40 35 25

low high, low U-shaped 55 25 20 25 65 10

low low bell-shaped 50 15 35 10 85 5

low low uniform 35 30 35 15 65 20

low low U-shaped 60 15 25 35 50 15

Average 47 14 39 32 40 28

Table A.4: Percentage of runs where the population’s dominant strategy
is ambiguity-seeking, ambiguity-averse and ambiguity-neutral per environ-
ment.The three characteristics that define the lottery types in the training
environment are the outcome variance V , probability range A and probability
distribution D.
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