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Abstract

The goal of this thesis is to explore the possibilities of using quantum walks in a decision theory

framework. The inspiration came from the recently developed Stochastic Representation

Decision Theory (SRDT) [1] that described the human choice process by a classical random

walk. This framework predicts some empirically observed patterns (inverse S-shape probability

weighting and risk-seeking attitude for losses) by letting the value and probability of the

outcome influence the choice in a non-trivial and non-separable way. By exploring the use

of quantum walks in the context of decision making, we aim to generalize and enrich SRDT

with typical quantum properties like entanglement and interference, that have already shown

useful in the previously developed Quantum Decision Theory (QDT) [2]. Indeed, this line of

research contributes to providing a micro foundation for Quantum Decision Theory, in the

same spirit of statistical physics for thermodynamics.

This thesis is a collection of explored directions, summarized in Figure 0.1. After a general

introduction to Decision Theory and Quantum Walks, we try to extend the SRDT framework

into the quantum domain. Based on the found opportunities and challenges we proceed with

investigating different parametrizations of the choice problem. After a short intermezzo on

continuous-time quantum walks, we return to the previously used coined quantum walk and

shift our attention from the position space distribution to the spin. Here, we combine the

insights gained before to present a new quantum walk-based framework that combines the

influence of probability and value in a novel way. Finally, we review all ideas and provide

some possibilities and challenges for the future.
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1Introduction to Decision Theory

1.1 State of the Art
In economics and cognitive science, the field of Decision Theory aims to predict and

describe human choice behavior. In the context of economics, the most widely implemented

form is Expected Utility theory [3]. This simple framework predicts that a decision-maker will

choose the option that leads to the highest expected utility, formed by summing subjective

values (utility) of events weighted by their objective probabilities. The utility function is

defined in such a way that subjects value the outcomes relative to their current wealth (asset

integration [4]). By replacing the outcomes with the expected utility of the wealth gain, a new

choice problem is created. Within this new decision problem, the decision-maker is assumed to

pick always the option with the highest expected utility. The exact form of the utility function

determines the subject’s attitude towards risk. In practise, many violations of this principle can

be observed [5], [6]. One of the explanations is the notion of bounded rationality [7]. Rather

than seeking the optimal choice, people will turn to a satisfactory option, trading optimality

for efficiency.

There have been several attempts to extend or replace expected utility theory. In [8]

Quiggin presents a model called Rank dependent utility theory, based on the concept that the

weight of an option depends on both the probability and the rank of the outcome among

other outcomes. Where the ‘rank’ is given by the position of the alternative when they are

ordered from best to worst option. This is implemented by using a transformation function

for the probability in combination with a utility function for the outcome. The resulting

function can be seen as being composed of two competing forces. In this way, it is possible

that the final preferences can be risk-averse even though the utility function is convex if

the probability weighting is sufficiently deterministic [9]. This theory is able to capture the

empirical observation that people tend to overweight small and underweight large probabilities.

Especially, if the outcome is of extreme value. For example, people tend to overweight the

probability that a disaster happens at the nuclear power plant because of the severe impact.

Another approach is based on the separation of gains and losses. Empirical evidence

shows that people’s risk appetite can be very different when faced with gains vs losses [10].

Based on this idea Kahneman and Tversky [11] presented Cumulative Prospect Theory where

they use a convex value function for losses (risk-seeking) and a concave function (risk-averse)

for gains. In this way, they are able to capture the typical behavior governed by the risk

appetite, while still employing a deterministic framework.

This deterministic nature seems to be often violated in empirical evidence. For example,

when faced with the same decision twice, subjects are not guaranteed to take the same

decision in both instances. To deal with this, Random Utility Theories were introduced in for

example [12]. To allow for deviations from rationality, a stochastic component is added to the

utility function: V (x) = U(x) + εx, with U(x) the usual utility function and εx the stochastic
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component. The assumption on the distribution of εx determines the exact theory, some

example are [13], [14] and [15]. Although this model allows for deviations from expected

utility theory, the core is still deterministic, modeling the observed stochasticity as the result

of some error or lack of information about the subject. Adding this ‘noise component’ in an

ad-hoc fashion furthermore leads to the problem of joint hypothesis testing [16].

Instead of explaining the observed violations as errors or attributing them to a lack of

information when predicting the choice, one could also assume that the choice process is

simply not deterministic in nature. This is the starting point for Quantum Decision Theory first

introduced in [2]. This theory, based on the mathematical structure of Hilbert spaces, exploits

the intrinsic probabilistic nature and entanglement properties of quantum mechanics. The

assumption is that decision making is an intrinsically probabilistic process giving an explana-

tion for the changes in choice behavior when facing a decision multiple times. Furthermore,

the entanglement properties allow interdependence between alternatives, implying that the

different possible outcomes in a decision cannot be seen independently. The theory states that

each decision is the outcome of the state of mind of the decision-maker represented by Dirac

state |ψs〉 and a prospect state |πn〉 representing the outcome. The resulting choice probability

for a prospect πn can be split into two terms: p(πn) = f(πn) + q(πn). Here, f(πn) accounts

for the ‘rational’ utility of the considered lottery and it is thus called utility factor. The second

one, q(πn), termed attraction factor, instead reflects the interference pattern between prospect

and state of mind of the decision-maker, mathematically resulting from the non-additive

property of quantum probabilities. Descriptively, it embodies all the deviations from rationality,

caused by subconscious deliberation, subjective feelings, and momentary influences. The exact

form of the functions f(πn) and q(πn) are derived from the axioms of QDT [17]. A different

parametrization of the functions is developed in [13].

In this thesis, we will start from another theory that was a first attempt to provide a

microfoundation for QDT, called Stochastic Representation Decision Theory, henceforth SRDT.

The central assumption is the same as in QDT: the decision process is intrinsically probabilistic.

Besides support from experimental evidence, research in the field of neuroscience also shows

signs of a stochastic component in the decision-making process. For example, Kurtz et al.

[18] link the observed choice stochasticity to the inherent variability of neural activity when

computing values. Moreover, this theory allows for the probability and value to influence the

decision in a non-separable way.

To introduce stochasticity, SRDT is based on the concept of a random walk. The delibera-

tion process is represented by a Brownian particle (the decision-maker) undergoing a random

walk in an abstract space, where different events are encoded through absorbing domains.

We introduce the framework by looking at the very simple decision problem of choosing

between two (or more) lotteries. In the coming sections, we will formally introduce the model

and subsequently show its predictions: i) the inverse S-shaped subjective probability as a

function of the objective probability; ii) risk-seeking behavior in the loss domain; iii) observed

violations of stochastic dominance [19].

1.2 Stochastic Representation Decision Theory
This section is based on the founding paper [1].
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Figure 1.1. – Spatial structure of a random walk between two lotteries (4 lottery outcomes).

The concept of a random walk is used in many scientific fields, as a basis for computer

algorithms [20], in economics [21] and physical processes [22]. In one dimension, i.e. on

a line, one could imagine a particle taking steps to the left or to the right depending on the

outcome of a coin flip. For a fair coin, at each step, the particle moves to the right with

probability 0.5 and with the same probability to the left. Thanks to the Central Limit Theorem,

the limit distribution of the properly scaled random walk is a Gaussian.

For the SRDT framework, we imagine a walker performing a random walk between two

or more absorbing boundaries corresponding to lottery outcomes. Once the particle reaches

one of the boundaries, it is absorbed and the walk ends. Doing this many times, we interpret

the fractions of walks ending at one wall as the subjective probability of the represented

outcome. By using the objective probability and outcome values to bias the trajectory of the

walk, we get a non-trivial deliberation process.

For definiteness, imagine the following two lotteries: L1 = [oA, p; oB , 1 − p] and L2 =
[oC , q; oD, 1− q], where Lottery 1 gives outcome oA (resp. oB) with probability p (resp. 1-p).

This can be represented as a random walk on four branches. We associate the length of the

branches, and thus the distance to the absorbing boundary, with the objective probability of

the outcome. That means that the higher the probability that an event occurs, the shorter the

distance to the corresponding boundary. On top of that, we can introduce a value dependent

force in each branch derived from a potential that biases the walk. The probability of choosing

a lottery is composed of the absorption probability in the two branches that belong to that

lottery, i.e.

P (L1) = P (1a) + P (1b).

In this way, the absorption probability at one branch does not only determine the subjective

probability of the represented event but also provides a measure of attractiveness for each

event. This is a unique feature of the SRDT model.

To introduce the value dependent potential we assume the existence of some utility

function endowed with the minimal properties of being concave and non-decreasing in the

gain domain to present risk aversion. The potential is linear with the slope proportional to the

utility of the outcome u(oA). The sign is such that the bigger the utility, the stronger the force.

Due to the ‘starfish’ structure of the graph (see Figure 1.1), the problems remains essentially

3 Chapter 1 Introduction to Decision Theory



one dimensional and we can describe the evolution of the probability density on, say, branch

1a by a Fokker-Planck equation [23], [24].
∂p(x,t)
∂t = u(oA)∂p(x,t)

∂x + D
2
∂2p(x,t)
∂x2

p(a, t) = 0 ∀t(absorbing boundary)

p(0, t) = f(t) (probability mass from the other branches)

(1.1)

By simple dimensional analysis, we can foresee that the diffusion coefficient D governs

the relative impact of the value and the probability. For very large values of D the decision-

maker only cares about the probabilities and neglects the values. For very small values of

D the influence of the value dominates the decision and the subjective probability will be

redirected towards the highest valued option.

1.2.1 Subjective probabilities

We can now derive an explicit form for the subjective probabilities. We consider one

lottery with two outcomes. In this case, the absorption fraction at boundary A represents

the subjective probability that the decision-maker assigns to outcome oA. We begin with a

situation without a value dependent potential. The Brownian particle starts at the origin

between two branches of length a and b. To derive the absorption probabilities we follow the

procedure in [25]. We start by rewriting the Fokker Planck equation for a general starting

position x0: 
∂p(x,t)
∂t = −∂(−V ′(x)p(x,t))

∂x + D
2
∂2p(x,t)
∂x2

p(a, t) = p(b, t) = 0∀t

p(x, t = 0) = δ(x− x0)

(1.2)

Given the localized initial condition, we can focus on the conditional probability P (x, t|x0, t =
0) which obeys the same Fokker Planck equation. By introducing the conditional probability

current J(x, t|x0, 0) = −V ′(x)p(x, t|x0, 0) − D
2
∂p(x,t|x0,0)

∂x , we can write the Fokker Planck

equation as a continuity equation:

∂p(x, t|x0, 0)
∂t

= −∂J(x, t|x0, 0)
∂x

(1.3)

This type of equation one can also find in fluid dynamics. We can now compute the absorption

probability after time t as:

ga(x0, t) = −
∫ ∞
t

dt′J(a, t′|x0, 0) =
∫ ∞
t

dt′
(
V ′(a)p(a, t|x0, 0) + D

2
∂p(x, t|x0, 0)

∂x

∣∣∣
x=a

)
gb(x0, t) =

∫ ∞
t

dt′J(b, t′|x0, 0) =
∫ ∞
t

dt′
(
− V ′(b)p(p, t|x0, 0)− D

2
∂p(x, t|x0, 0)

∂x

∣∣
x=b

)
(1.4)

Now p(a, t|x0, 0) satisfies the backward Fokker Planck equation, so we are interested in

the absorption probability at t = 0. Taking the infinite time limit t→∞ we have:
−V ′(x0)∂πa(x0)

∂x0
+ D

2
∂2πa(x0)
∂x2

0
= 0

πa(a) = 1, πa(b) = 0

πa(x0) + πb(x0) = 1

(1.5)
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where πa(x0) denotes the probability of being eventually absorbed by the wall at distance a

when starting from x0.

Setting the potential to zero we observe:

πa(x0) = x0 − b
a− b

= b− x0

|a|+ b

πb(x0) = 1− πa(x0) = |a|+ x0

|a|+ b

(1.6)

Since what matters is the relative distance of the wall to the starting position, we can

safely set x0 = 0 such that we get the simple expressions:

πa = b

a+ b
πb = a

a+ b

when no potential is involved. To make this coincide with the objective probabilities of the

event we have to set a = 1 − p and b = p up to a scaling factor that we can choose to be 1

without loss of generality. This assignment corresponds to the assumption that people are able

to assess the probabilities correctly if no value is involved. This condition allows us to study

the consequences of introducing a value dependent potential.

Consider a linear potential of the form:

V (x) =

u(oA)x if x0 < 0

u(oB)x if x0 > 0
(1.7)

For the Fokker Planck equation that means:
−u(oA)dπ

(L)
a (x0)
dx0

+ D
2
d2π(L)

a (x0)
dx2

0
= 0 if x0 ≤ 0

u(oB)dπ
(R)
a (x0)
dx0

+ D
2
d2π(R)

a (x0)
dx2

0
= 0 if x0 > 0

π
(L)
a (a) = 1, π(R)

a (b) = 0

(1.8)

Where the superscripts (L), (R) denote πa(x0) for positive and negative values of x0

respectively. Choosing again 0 for the starting position the following continuity equations

should hold:
π(L)
a (0) = π(R)

a (0)

dπ
(L)
a (x0)
dx0

∣∣∣
x0=0

= dπ
(R)
a (x0)
dx0

∣∣∣
x0=0

(1.9)

With these conditions we can solve Equation 1.8 to get:

πa(0) =
u(oA)
u(oB) (e−

2u(oB)b
D − 1)

u(oA)
u(oB) ((e

u(oB)b
D − 1) + (e−

2u(oA)|a|
D − 1))
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Figure 1.2. – Subjective probability of outcome oA following Equation 1.10 as a function of the objective
probability which is encoded in the initial position. In the left panel, the distribution is
plotted for different values of the Diffusion coefficient and fixed u(oA) = u(oB), while
u(oA) is varied in the right panel. In the right panel D=20 for all curves.

Using the condition of rationality in the absence of value |a| = 1 − p and |b| = p this

gives:

π(p) := P (1a|L1) = p(oA)
p(oA) +1−p (oB)

p(oA) := u(oA)
1− e−

2u(oA)(1−p)
D

, 1−p(oB) := u(oB)
1− e−

2u(oB)p
D

(1.10)

This formula predicts the inverse S-shape of overestimating (underestimating) small

(large) probabilities, only by postulating a minimal interaction between probability and value.

The exact asymmetry between high and low probabilities is governed by the ratio u(oA)/u(oB).
The larger the difference between the values, the larger the subjective distortion for small p’s

compared to high p’s. Furthermore, the influence of D and the two typical limits of value only

vs probability only is also visible in this equation. In Figure 1.2 we show Equation 1.10 with

and without a value bias. The inverse S-shape is clearly visible.

1.2.2 Choice between multiple lotteries

We can extend the ideas from the last section to a choice between multiple lotteries. In

this case, the walk takes place on multiple branches in a starlike setting, as in Figure 1.1. For

two lotteries, we can represent the choice probabilities as:

P (L1) = U(L1)
U(L1) + U(L2) (1.11)

with

U(L1) = Ũp(oA) + Ũ1−p(oB) = u(oA)
1− e

−2u(oA)(1−p)
D

+ u(oB)
1− e

−2u(oB)p
D

U(L2) = Ũq(oC) + Ũ1−q(oD) = u(oC)
1− e

−2u(oC )(1−q)
D

+ u(oD)
1− e

−2u(oD)q
D

(1.12)

Formula 1.11 recovers the ratio scale representation of Luce’s choice axiom for binary

choices [26]. This implies that the theory possesses the desirable property of stochastic

transitivity for pairwise choices. This means that if lottery 1 is equally good as or better than

lottery 2, and lottery 2 is equally good or better than lottery 3, then lottery 1 is also equally

good or better than lottery 3.
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Figure 1.3. – Probability distorted utility function as a function of the original one (left) and value of
the outcome (right) for different values of Dp. The black dots on the right indicate the
inflection point between a convex and concave function.

This can be generalized to choices between an arbitrary number of lotteries. With N

branches the probability to choose lottery Lj is:

PN (Lj) = Uj∑N
i=1 Uj

(1.13)

The effective utilities Uj are given by expressions similar to equations 1.10. The effective

utilities are influenced by the objective probability and the value option in a non-trivial and

non-separable way. Their relative importance is governed by the value of D.

1.2.3 Risk seeking behavior for losses

In Equation 1.10 the subjective probability is formed by the objective probabilities and

the value of the outcomes. However, we could also define a dual in which the value perception

is influenced by the probabilities. The probability distorted utility function as a function of

the original utility function and the outcome is shown in Figure 1.3 for different values of

Dp := D
2(1−p) . Interestingly, the effect of the probability transforms an originally concave

utility function into a convex one in (a part of) the loss domain. This means that the theory

predicts risk-seeking behavior in the loss domain and the existence of an inflection point in

the behavior towards gains vs. losses. This is an empirical observation that is used as the

basis for the earlier described Cumulative Prospect Theory, but here arises purely from the

interaction between value and probability.

1.2.4 Violation of Stochastic Dominance

Lottery 1 first order stochastically dominates Lottery 2 if P (L1 ≤ 0) ≤ P (L2 ≤ o) and

P (L1 ≤ 0) > P (L2 ≤ o) for at least one outcome [27]. Most decision theories try to obey

this property to reflect the rational behavior ‘more is better.’ However, violations of stochastic

dominance are observed when people are faced with more complex lotteries like:

L1 = [e96, 0.9;e14, 0.05;e12, 0.05] L2 = [e96, 0.85,e90, 0.05,e12, 0.1]. (1.14)

In this case, Lottery 1 stochastically dominates Lottery 2, but people often choose Lottery 2.

In contrast to other theories SRDT can actually account for this with low values of D. In this

case, people are mostly guided by the values, paying insufficient attention to the probabilities.

In that light, Lottery 2 becomes the more attractive option because there are larger values

involved.
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1.3 Limitations of SRDT
The above-outlined framework is able to explain some of the empirical observations such

as inverse-S shape dependence of the subjective probability on the objective one, violation

of stochastic dominance, and risk-seeking behavior in the loss domain. However, there are

also issues that remain. First of all, because of the set-up, the framework confirms the

usual assumptions on the independence of outcomes. This is in accordance with the choice

framework by Luce [26]. It means that each alternative is evaluated on its own and that

this evaluation is not influenced by the presence of other outcomes. In the SRDT framework,

this clearly arises because the absorption probability in one branch is independent of the

absorption probability in other branches. When it comes to choices between multiple lotteries,

this assumption is even stronger since the exact geometry of the star-like graph, i.e. which

branch is opposite to which, does not matter. Illustratively speaking, the branch does not

know to which lottery it belongs. In practice, this independence of alternatives is shown to be

violated. A good example is the decoy effect [28] which is easiest explained by an example.

Suppose you are looking for a new phone and you see the following two options:

A B

Price e400 e300
Storage 30GB 20GB

Based on you personal valuation, you have some probability of preferring option A over

option B. Now suppose there is a third option added to the problem:

A B C

Price e400 e300 e450
Storage 30GB 20GB 25GB

Option C is dominated by both options A and B so it might not seem like a valuable

addition. Furthermore, following the assumption of independence of alternatives, the presence

of option C should not affect with which probability you choose option A over B. However,

in practice, many people find option A more attractive in the second choice problem than in

the first. This is called the decoy effect [28]. Such effects can be incorporated in the earlier

described rank dependent theories because, but not in SRDT. In this domain, SRDT is on

the same side as expected utility theory because it confirms the independence of alternatives

assumption even though many types of violations are known. Next to the decoy effect

examples are the attraction, compromise, and similarity effect [29]. Here the extension to

quantum might provide a new opportunity for SRDT. Because of its set-up and coherence

properties, all alternatives are evaluated at the same time which leads to interdependence and

interference effects as will be explained in later chapters.

Something closely related to the violation of the independence of alternatives is the

concept of conjunction fallacy [30]. Conjunction is one of the basic rules in probability theory

that states that the probability of the conjunction of two events cannot exceed the probability

of each event individually. In the famous example, people are asked which of two option they

find more probable to be true after a short introduction about a girl named Linda [30]:
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“Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As
a student, she was deeply concerned with issues of discrimination and social justice, and also
participated in anti-nuclear demonstrations.”

Which is more probable?

1. Linda is a bank teller.

2. Linda is a bank teller and is active in the feminist movement.

Simple mathematics based on the independence of alternatives tells you that option 1

is more probable. In contradiction, most people point out option 2 as most likely to be true.

Again, SRDT is not able to deal with such demonstrations of conjunction fallacy. Quantum

walks, however, could provide an opening here. One of the special phenomena in quantum

walks is that the absorption probability at a wall located on the left is enhanced once a second

wall is placed on the right. In the context of the Linda problem, this could be used to explain

how the subjective probability of Linda being a bank teller is increased once the second

characteristic of Linda is added.

Lastly, SRDT was meant to serve as a microfoundation of Quantum Decision Theory. Using

quantum properties like interference and entanglement the theory is able to describe many

empirical observations not accounted for by traditional theories [2]. Here, quantum walks

could help to establish this relation. As will be explained mathematically later, the evolution

of a quantum walk can be split in a (Markovian) transition matrix part plus interference terms

[31]. This is very similar to the structure of QDT, where the evolution was given by a classical

utility part complemented by a quantum interference term parametrizing the attraction factor.

This form was directly derived from fundamental Quantum mechanical principles, namely

the Born rule and commutation relations. Within the QDT framework, the exact form of the

functions was postulated [17]. The fact that the same functional form arises from a Quantum

Walk could help to formulate a microfoundation of the earlier postulated terms, now by only

making an assumption of the underlying process.

In the next section, we will introduce the general concept of a Quantum walk and its

mathematical structure. After that, we are ready to explore their use in the context of decision

making.
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2Quantum Walks

2.1 Introduction
As mentioned before, random walks are extensively used in physics and computer science.

They form the basis of many algorithms and process theories. It was this algorithmic power

that also led the way to the development of the quantum analog of the random walk, the

so-called quantum walk. It is one of the cornerstones of modern quantum information theory

and just like the classical counterpart, it is a very powerful algorithmic tool. The concept of a

quantum walk is not uniquely defined, there are multiple versions used for different purposes.

In the following, we will provide a gentle introduction to the field of quantum walks and

break it down to the parts that proved most useful for the development of our framework.

An excellent introduction from the perspective of a computer scientist can be found in [20].

Here, we will be mainly concerned with the mathematical and physical properties of quantum

walks.

Imagine a random walk on a line, i.e. a particle moving left and right according to a

random coin flip. As a direct transition to the quantum world, one could imagine this particle

as a wavepacket moving in superposition. Any process in quantum mechanics should be

unitary to be physical. Therefore, in this setting, the only possible operation here would be

the translation operator moving the particle left or right with equal probability. This results in

motion in a single direction, nothing different than the random walk! This fact was recognized

by Aharanov et. al [32] and later Meyer [33] who was studying quantum cellular automata.

The solution was the introduction of an extra degree of freedom into the system called the

spin. In analogy with the spin-1/2 particle, the spin can be seen as the direction of the particle

and can be labeled by a left and right state. The quantum walk may now be described as

follows: at each step, a unitary transformation is applied to the spin of the particle creating a

superposition of left and right states. A conditional shift operator then moves the particle to

the neighboring sites according to this superposition. For example, imagine a particle being at

location 0 in the state
√

0.4 |right〉+
√

0.6 |left〉; the evolution operator then shifts “40% of

the particle to location +1 and 60% to location -1.” Continuing this process of transforming

the internal state and shifting the particle accordingly, an interesting pattern arises. As the

particle moves in superposition, the different components can interfere with each other giving

rise to very rich dynamics which we will discuss in more detail later. One of the key differences

between a quantum walk and a moving quantum particle is that the walk takes place in

discrete position space (and discrete-time in most cases). This means that the motion is not

described by the Schrödinger equation.

The previously discussed class of quantum walks is called discrete-time or ‘coined quantum

walks’ referring to the spin as the coin state of the particle in analogy to the classical random

walk. However, this is not the only description of a quantum walk used. Closer to traditional

quantum mechanics is the concept of continuous-time quantum walks. Unlike the discrete
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version, the continuous-time quantum walk takes place entirely in position space. It can be

seen as the quantum counterpart of continuous-time classical Markov chains. The concept was

first defined in [34]. They described the evolution as being generated by a Hamiltonian as

U(t) = exp{−iHt}. The form of the Hamiltonian is derived from the adjacency matrix of the

underlying graph. For example, on a line, the particle can only move to its nearest neighbors

or stay at its current position. This gives a tight-binding-like Hamiltonian:

H =
∑
x

(2 |x〉 〈x| − |x− 1〉 〈x| − |x+ 1〉 |x〉), (2.1)

where we chose a constant transition rate/ hopping probability of 1. Now we can write the

action of the Hamiltonian on a state vector in standard quantum mechanical notation:

〈x|H |ψ〉 = 2 〈x|ψ〉 − 〈x− 1|ψ〉 − 〈x+ 1|ψ〉 .

Here we can see the direct analogy with standard quantum mechanics since this equation is

the same as the first-order finite difference approximation of ∇2 in the Schrödinger equation

[35]. Now we can write the time-dependent state vector as: |ψ(t)〉 = exp(−iHt) |ψ(0)〉.
Although the formulation is very different from the discrete-time quantum walk (no coin

space), the evolution follows a very similar pattern. Establishing a relationship between the

two types is however not straightforward. Different procedures have been outlined in [36]

and [37].

Other classes of quantum walks come for example from the experimental implementation

in optical lattices and are then described as a scattering mechanism. We will not consider

these other types in this thesis. For completeness, we do want to mention a couple of

proposals for the physical implementation of quantum walks. Since quantum walks were

designed at first for algorithmic purposes the most straightforward implementation would

be on a quantum computer. Since these are not fully developed on larger scales yet, other

experimental proposals are investigated ranging from solid-state architectures and nuclear

magnetic resonance systems to optical lattices and ion traps [38][39],[40] and [41]. The

typical behavior of quantum walks makes it not only interesting for algorithmic purposes but

also for the investigation of physical phenomena such as topological phases and protected

edge states [42], [43]. This draws even more attention to the field and especially the physical

aspects of quantum walks.

In this thesis, we will try to take inspiration from the wide range of uses of quantum

walks to develop a framework similar to SRDT with the quantum walk at its core. Our goal is

not to design a physical set-up or algorithm that can be run on a quantum computer but to

use the mathematical concepts and properties to design a predictive framework. We will see

that the special property called coherence of the quantum walk which gives it its interesting

behavior, is very sensitive to any introduction of irreversibility making the dynamics rich, but

also difficult to deal with.

2.1.1 Mathematical Structure of DTQW

The walk takes place on the combined Hilbert space Ht = Hc ⊗ Hp, where Hp is the

infinitely large space of position vectors and Hc the two-dimensional coin space. We use the
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canonical basis |↑〉 , |↓〉 to denote the left and right coin state respectively. Therefore we can

write the state of the walker as |ψ〉 = |j〉coin ⊗ |x〉position.

One evolution step of the walk consists of a rotation of the spin by the coin operator

and a conditional position shift by the shift operator. The most general two dimensional coin

operator can be written as [44]:

Ĉξ,θ,ζ =
(
eiξ cos θ eiζ sin θ
e−iζ sin θ −e−iξ cos θ

)
(2.2)

In a later section we will show how the different parameters in the coin operator can be

used to bias the quantum walk. The most used coin operator is a symmetric coin leading to

the so called Hadamard walk [20]:

H = 1√
2

(
1 1
1 −1

)
(2.3)

This is an unbiased coin, but whether it will give a symmetric walk strongly depends on

the initial state. The coin operator is followed by a shift operator which can be written as:

S = |↑〉 〈↑| ⊗
∑
x

|x− 1〉 〈x|+ |↓〉 〈↓|
∑
x

|x+ 1〉 〈x| , (2.4)

i.e. right spin is moved to the right and left to the left. One time step is then given by

U = S · (C ⊗ I), where I is the identity matrix in position space. Because the evolution is

unitary and deterministic, the state at any later time t can be found by t applications of the

evolution operator on the initial state, giving the time dependent state: |ψ(x, t〉 = U t |ψ(x, 0)〉.

This state |ψ〉 is essentially a vector consisting of a left and right component: |ψ〉 =
(
ψL

ψR

)
,

which means that the evolution through the application of U is simply a matrix multiplication.

To illustrate the differences with the classical random walk described in section 3.2 we evolve

the walk starting in initial state |ψin〉 = |↑〉 ⊗ |0〉 three steps by repeatedly applying U with

the Hadamard coin operator defined in (2.3):

∣∣ψ1〉 = 1√
2

(|↑〉 ⊗ |1〉 − |↓〉 ⊗ |−1〉∣∣ψ2〉 = 1
2(|↑〉 ⊗ |2〉 − (|↑〉 − |↓〉)⊗ |0〉+ |↓〉 ⊗ |−2〉)∣∣ψ3〉 = 1
2
√

2
(|↑〉 ⊗ |3〉+ |↓〉 ⊗ |1〉+ |↑〉 ⊗ |−1〉 − 2 |↓〉 ⊗ |−1〉 − |↓〉 ⊗ |−3〉)

(2.5)

We can see that the quantum walker now occupies 4 different states after the third step,

spreading in both directions. Continuing this procedure for T steps, we get the distribution

calculated as
∣∣∣∣ψT 〉∣∣2 shown in Figure 2.1 where it is compared to the distribution of a classical

random walk with an unbiased coin. For the quantum walk we chose the initial state 1√
2

(
1
i

)
.

Because the right spin component stays imaginary and the left spin part stays real, then the

two will not interfere and the walk is symmetric[45], [44]. In section 3.2 we will discuss

further how different coins and initial states can be used to tune the spreading and amount of

interference of the quantum walk.
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Figure 2.1. – Discrete Time Quantum Walk and Classical Random Walk in position space. The DTQW is
formed through evolution with the Hadamard coin departing from the symmetric initial

state 1√
2

(
1
i

)
, the Random Walk uses an unbiased coin [46]

In Figure 2.1 one of the most important properties of quantum walks making them useful

for quantum computing can also be seen; they spread quadratically faster than their classical

counterparts. That means the variance scales with σ2 ∼ T 2, potentially giving a quadratic

speed up for algorithms based on quantum walks.

The fact that quantum walks evolve as a superposition of left and right moving states

gives rise to a wavelike pattern. That also means that the system is subjected to interference,

depending on the coin and initial state. As long as the system is not measured, the system will

remain coherent and therefore show the typical pattern of the double-peaked distribution and

the uneven occupation of even versus odd states.

2.2 Measurements
As in continuous space quantum mechanics, performing measurements has a nontrivial

effect on the system. One of the key features of a quantum walk is that, unlike the random

walk, it is coherent throughout space. However, this coherence can be destroyed be measuring

the walk (either its spin or position). Just like in standard quantum mechanics the walk will

collapse to a point upon measurement indicating the position or spin of the particle at that

time. More on the effects of the walk will be discussed in Section 2.5.

A general measurement in position space is defined as a standard projection on position

space. Formally:

P =
∑
x

|x〉 〈x| . (2.6)

Performing the projection over the whole position space gives the amplitude of the wave

function at each location, and therefore by taking the absolute value squared, the probability

distribution of the particle. Doing such a measurement corresponds to asking the question:

‘Where is the particle?’ We can also perform a partial measurement which only disturbs the

system slightly. For example, we can ask whether the particle is at location n. If the answer

is Yes, the wave function collapses to the point n. If the answer is No, the wave function

14 Chapter 2 Quantum Walks



collapses onto all other points, which means that most of the coherence is maintained. These

partial measurements are useful when implementing boundary conditions since enforcing

any type of boundary requires some knowledge of whether the particle is at the boundary or

not.

2.3 Analytical Solution for the free walk
We introduce the Schrödinger approach [47], [48] to quantum walks, which takes

advantage of the translational invariance of the quantum walk. We refer to the walk on a

infinite line as ‘free’ or ‘unbounded.’ The translational invariance of free walks implies that

the walk has a simple representation in Fourier space. To demonstrate the method, we use the

general form of the Hadamard walk:

H =
( √

ρ
√

1− ρ
√

1− ρ −√ρ

)
(2.7)

Later we will see that with the appropriate choice for the initial state, this matrix covers all

possible quantum walks on the line. Using this matrix in combination with the standard shift

operator (2.4) we can write the state vector at time t as:(
ψL(x, t)
ψR(x, t)

)
=
(√

ρψL(x+ 1, t− 1) +
√

1− ρψR(x+ 1, t− 1)
√

1− ρψL(x− 1, t− 1)−√ρψR(x− 1, t− 1)

)
(2.8)

Since we are working in discrete space, we make use of the discrete Fourier transform:

f̃(k) =
∞∑

x=−∞
f(x)eikx

f(x) = 1
2π

∫ π

−π
f̃(k)e−ikxdk

(2.9)

The inverse Fourier transform uses an integral instead of a sum since, in the unbounded walk

case, we have a continuum of k values. Therefore the statevector in momentum space is

ψ̃(k, t) =
∑
x ψ(x, t)eikx. We can write the evolution of the right and left component seperately

by the introduction of two new matrices [48]:(
ψL(x, t)
ψR(x, t)

)
= M−

(
ψL(x+ 1, t− 1)
ψR(x+ 1, t− 1)

)
+M+

(
ψL(x− 1, t− 1)
ψR(x− 1, t− 1)

)
.

With M− =
(√

ρ
√

1− ρ
0 0

)
and M+ =

(
0 0

√
1− ρ −√ρ

)
. Using the discrete Fourier trans-

form:

ψ̃(k, t) = M+
∑
x

ψ(x− 1, t− 1)eik(x−1) +M−
∑
x

ψ(x+ 1, t− 1)eik(x+1)

= (M+e
−ik +M ik

e ) ˜ψ(k, t)

= Mkψ̃(k, t),
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where we defined Mk =
(

e−ik
√
ρ e−ik

√
1− ρ

eik
√

1− ρ −eik√ρ

)
which is in general Mk = ΛkUT with

Λk =
(
e−ik 0

0 eik

)
. Now we can write the time dependent state as ψ̃(k, t) = M t

kψ̃(k, 0). The

reason that we used the Fourier representation is that the time evolution now has a simple

form in terms of the eigenvectors and eigenvalues of Mk:

M t
k = (λ+

k )t
∣∣φ+
k

〉 〈
φ+
k

∣∣+ (λ−k )t
∣∣φ−k 〉 〈φ−k ∣∣ . (2.10)

We now compute the eigenfunctions of the system. Using det(Mk − λI) = 0 we obtain:

λ±k =
−2i√ρ sin k ±

√
4− 4ρ sin k2

2
λ±k = √ρ(−i sin k ±

√
1/ρ− sin k2)

(2.11)

Because Mk is unitary by construction,
∣∣λ±k ∣∣ = 1. Therefore we can write the eigenvalues as

λ±k = e∓iωk where
sinω+

k = √ρ sin k

ω−k = π + ω+
k .

(2.12)

Now we look for eigenvectors of the form:

(
φL(x, t)
φR(x, t)

)
=
(
Ak

Bk

)
ei(kx−ωkt)

Solving the equation: e−iωk
(
Ak

Bk

)
= Mk

(
Ak

Bk

)
gives [47]:

Ak± = 1√
2N

√
1± cos k√

1/ρ− sin k2

Bk± = ± e−ik√
2N

√
1∓ cos k√

1/ρ− sin k2

(2.13)

Where the eigenfunctions are normalized such that |Ak±|2 + |Bk±|2 = 1/N such that the

probability over N sites sums to 1. Now that we have the eigenvectors and values of the

system we can decompose any initial state into the eigenvectors of the evolution operator and

use the inverse Fourier transform to write the evolution in position space. For example, for

the Hadamard walk with ρ = 1/2 and the initial state

(
1
0

)
the evolution of the left and right

component in position space is:

ψL(x, t) =
∫ π

−π

dk

2π
−ieik√

1 + cos k2
e−i(ωkt−kx)

ψR(x, t) =
∫ π

−π

dk

2π
(
1− cos k√

1 + cos k2
)e−i(ωkt−kx).

(2.14)
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2.4 Quantum walk as Markovian process plus
interference

To gain more insight into the evolution of the discrete-time quantum walk, we can write

its evolution as a Markovian transition matrix plus interference terms. Exactly the presence of

the interference terms is what makes the walk quantum and gives it its special behavior. This

description of a Quantum walk was first introduced by Romanelli et. al. in [31]. Depending

on the exact formulation it can be both used to describe the probability distribution in position

as well as the distribution of the spin. This second option will come back in Chapter 6, here

we focus on the spatial distribution.

Following [31] we write the wave function in space as:

|Ψ(t)〉 =
∑
x

(
ax(t)
bx(t)

)
|x〉 . (2.15)

We use the general Hadamard matrix:

H(θ) =
(

cos θ sin θ
sin θ − cos θ

)
. (2.16)

We use this parametrization to follow the notation in [31]. Note that this is equivalent to

Equation 2.7 when associating cos θ = √ρ. In this case the usual Hadamard walk is retrieved

for θ = π/4.

The evolution of the components can be written as:

ax(t+ 1) = cos θax+1(t) + sin θbx+1(t) (2.17)

bx(t+ 1) = sin θax−1(t)− cos θbx−1(t). (2.18)

We denote by Px,L(t) ≡ |ax(t)|2 the probability of being in the left spin state in position x

at time t. Using Equation 2.17 we can write the evolution of the right and left distribution

as:

Px,L(t+ 1) = Px+1,L(t) cos θ2 + Px+1,R(t) sin θ2 + βx+1(t) sin 2θ (2.19)

Px,R(t+ 1) = Px−1,L(t) sin θ2 + Px−1,R(t) cos θ2 − βx−1(t) sin 2θ (2.20)

where βx(t) = Re(ax(t)bx(t)∗), the interference term. Using the fact that the total probability

of being in position x is the sum of the two components, the probability can be written in

compact form as [31]:

Pxs(t+ 1) =
∞∑

x=−∞

∑
l=L,R

Txy,slPyl(t) + βxs(t) sin 2θ (2.21)
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where:

Txx+1,LL = Txx−1,RR = cos θ2

Txx+1,LR = Txx−1,Rl = sin θ2

Txy,ls = 0

βxL = βx+1

βxR = −βx−1.

Txy,sl has all needed properties of a classical transfer matrix for a Markovian process.

That means that in the absence of the interference terms, this simply describes a Markovian

process with transition probability given by Txy,sl. Furthermore, the Markovian part only

depends on the spin and position of the walker in the previous time step.

This structure of a classical part complemented by interference terms is what we also saw

in QDT [17].

2.5 Decoherence In Quantum Walks
The coherence of the Quantum walk is a unique property that leads to very different

dynamics compared to a classical random walk. However, this also puts a severe restriction on

the possible evolution operators. A quantum walk is described by a unitary operator which

makes the walk reversible and therefore coherent. On the other hand, a classical random

walk, being a simple Markov process, has a dissipative and irreversible dynamics. In an

experimental set-up, there are many environmental factors that can influence the walk. In

particular, we already described how measurements collapse the wavefunction and therefore

break the coherence of the walk. This brings us to another important property: in order to

classify as a quantum walk, the walk should reduce to a classical random walk if the amount

of decoherence is sufficiently large [49].

In general, any operation that breaks the unitarity of the walk classifies as a decoherence

mechanism. Some examples are performing random measurements via projection [32],

dephasing [50], [51] or imperfect shifts [39]. The fact that a quantum walk reduces to a

classical random walk when decohered can be easily shown by using projective measurements

of the position. Imagine a quantum walker in a general state |Ψ〉 =
(
α

iβ

)
⊗ |x〉. After one

application of the Hadamard coin and shift operator the walker is in state:

1√
2

(
α+ iβ

0

)
⊗ |x− 1〉+

(
0

α− iβ

)
⊗ |x+ 1〉 . (2.22)

If we now measure the position, the walker will be at position x − 1 with probability p =
1
2 (α2 + β2) = 1

2 because of the normalized initial state. Upon measuring, the wave function

collapses to either x− 1 or x+ 1. When applying the evolution operator to the collapsed state,

the walker will again move left or right with probability 1
2 . This is simply a random walk

with unbiased coin. When measuring at each time step, the wave function does not move in

superposition because it collapses to a point after each measurement. Therefore, no quantum

(interference) effects take place. Looking back at the previous section and especially Equation
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2.21 we can interpret the process of decoherence as decreasing the factor βx(t). If this factor

is 0, the process is simply Markovian.

Both numerical [52] and analytical studies [53] show that the quantum walk is relatively

vulnerable to decoherence. The transition to a classical behavior is therefore relatively quick

but depends on the specific type of decoherence. All decoherence mechanisms can be roughly

divided into two classes, decoherence of the position and decoherence of the coin. Lopez [54]

shows with a Wigner function approach that the random walk resulting from decohering the

position (for example by measuring the position of the walker) results in a classical walk that

is independent of the initial state. Coin decoherence, on the contrary, results in a superposition

of two random walks each starting in a different position, depending on the initial coin state.

As a measure of the ‘quantumness’ people usually turn to the standard deviation. The

typical difference between quantum and random walks lies in the fact that the former spread

linearly in time, ballistically, while the random walk only spreads as
√
t, diffusively. The

transition from ballistic to diffusive behavior marks the quantum-classical transition. In

addition to diffusive spreading, the walk can also exhibit Anderson localization for certain

types of dynamic or static decoherence as discussed in [55]. The fact that the quantum

walk reduces to a classical random walk if we measure its location at each step is a useful

tool to compare the two. For instance, this property allows us to compare the bias in the

quantum walk with the bias in random walks. For a more elaborate treatment of decoherence

in quantum walks, see [49] and references therein.
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3Extension of the Classical SRDT
Framework

In Section 1.2 the SRDT framework was introduced where the attractiveness of an alternative

is given by the probability for a random walker to be absorbed on the left vs. the right wall. In

this chapter, we try to extend this framework by replacing the random walker by a quantum

walker. The set-up of SRDT will be followed as closely as possible to be able to compare the

classical and the quantum case.

The Chapter is organized as follows. First, we will introduce the quantum equivalent of

absorbing walls for the one dimensional walk. We will also discuss two analytical methods

to calculate the absorption probability for a quantum walk. Second, we will discuss how to

bias a quantum walk in general and tailor the bias factors to the choice problem. In the third

section we will compare the quantum walk based framework to the classical SRDT model. We

will conclude with some general remarks on this approach.

3.1 Introducing boundaries in Quantum Walks
In SRDT, the key quantity is the probability to be absorbed at one of the boundaries

between which the walker moves. Following this set-up, we want to impose these absorbing

boundary conditions on a one-dimensional quantum walk system. This is however not

straightforward. First of all, the fact that the walker moves in a superposition of states,

there is no way to know whether the particle has reached the boundary without performing a

measurement. As described in the introduction, measurements affect the system, rendering the

walk to be classical if the decoherence is strong. Second, absorbing (part of) the wavefunction

during the evolution introduces irreversibility and therefore breaks the unitarity of the system.

Third, the introduction of boundaries also breaks the translational invariance of the walk. The

earlier described Schrödinger approach to describe the quantum walk evolution will therefore

in general not be applicable anymore.

We can draw an analogy with electrons in a solid. These quantum particles that move

through a periodic lattice are described by Bloch waves [56]. In the quantum walk we have a

very similar situation where quantum particles with an internal degree of freedom (spin) are

moving through discrete space [57], [58]. The key feature of the Bloch wave solution is that

the translation operator and the full Hamiltonian commute and are therefore diagonalized

by the same eigenstates. As soon as the translational invariance is broken, this is no longer

true and thus the system cannot be described by the standard Bloch wave solution. This is

also true for the quantum walk where the introduction of boundaries breaks the translational

invariance and therefore makes the dynamics irreversible and thus non-unitary.

Although a physical boundary might not be natural in the quantum walk system, we can

use a protocol carried over from quantum computing to impose the boundaries in a slightly

different way. The idea is as follows [59]:
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1. Initialize the walker in the state |Ψ(x, 0)〉 =
∑
x

(
α

β

)
⊗ |0〉.

2. Evolve the walk one step with operator U .

3. Perform a partial measurement to check whether the particle is at one of the boundaries:

P = |Bl〉 〈Bl|+|Br〉 〈Br|. This returns ’Yes’ with probability ||Ψ(Bi, t)〉|, withBi = Bl, Br

at each time step. If the answer for one of the boundaries is Yes, stop the walk. If the

answer is No, reinitialize the walker in state (I − P ) |Ψ(x, t)〉 and renormalize the

probability by removing the ‘absorbed part’.

4. Repeat step 2 until the particle is absorbed by one of the walls.

With this protocol, we use the concept of partial measurement to absorb the particle at each

step. Because the measurement is only partial, most of the coherence will be conserved and

therefore the walk will not be classical. From now on, we will use this protocol to impose the

absorbing boundaries onto the system.

In the literature, several attempts have been done to analytically extract the absorption

probability of the system. However, this is very complex and so far only a few limits of the

behavior are known [60], [59], [61], [62], [63] and [64]. Here, two of the main contributions

will be summarized with the respective references to the literature.

3.1.1 Combinatorial solution: PQRS method

The first approach is based on the counting of paths. The central idea is to count the

number of paths that can reach the respective boundary from the initial location at time T,

given the evolution operator and initial state. Konno and colleagues are the main contributors

in this field, here we give an overview of their method called the PQRS model [59].

For simplicity of notation we paramatrize each unitary quantum walk operator as:

U =
[
a b

c d

]

Recalling the evolution of the right and left component as in Equation 2.8 we can write the

transformation as:

|ψ(x, t+ 1)〉 = P |ψ(x+ 1, t)〉+Q |ψ(x− 1, t)〉 (3.1)

with

P =
[
a b

0 0

]
Q =

[
0 0
c d

]
(3.2)

So U = P +Q. We can now introduce two additional matrices:

R =
[
c d

0 0

]
S =

[
0 0
a b

]
(3.3)

such that P,Q,R and S form a complete basis of the vector space of complex 2x2 matrices

with inner product 〈A|B〉 = Tr(A∗B). That means that we can express any complex 2x2

matrix in terms of these four matrices:

V = Tr(P ∗V )P + Tr(Q∗V )Q+ Tr(R ∗ V )R+ Tr(S∗V )S
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Having introduced the basics of the PQRS method, we now turn to the issue of the absorption

probability. We introduce the new measure Ξ(N)
x0 (t) which is the weighted sum of possible

paths for which a particle starting from position x0 first hits 0 before reaching N at time t.

This is defined as a product of left- (P) and right-moving (Q) operators. For example, a particle

starting from x0 = 1 with N = 3 taking 5 steps can take the following path to reach 0 before

reaching 3:

Ξ(3)
1 (5) = P 2QPQ = ab2cR (3.4)

From Ξ(N)
x0 (t) we can directly extract the probability that a particle starting from x0 in

coin state φ hits 0 before hitting N by taking the modulus squared:

P
(N)
k (t;φ) =

∣∣∣Ξ(N)
x0

(t)φ
∣∣∣2 (3.5)

Summing over all times yields the total probability.

A system with only one boundary can be seen as takingN →∞, i.e. absorption means that

the particle hits the boundary before escaping to∞. There we reach the first special property of

quantum walks. Recall that an unbiased classical random walk in one-dimension is recurrent,

therefore, in the presence of one absorbing boundary, it will be absorbed asymptotically with

probability 1. For quantum walks, however, this is not the case. The walker always has a

finite probability to escape the boundary (under the constraint that the initial position is

not at the boundary), even when it is symmetric. For the particular case of x0 = 1 and

φ =T [1, 0], assuming Hadamard coin, several authors have proved that the escape probability

is P (∞)
1 (T [1, 0]) = 2

π [48], [47].

To show how the PQRS decomposition can help to calculate the sum of paths, we will

consider the general case of finite N . Using the PQRS basis we can write the sum of paths

as:

Ξ(N)
x0

(t) = pNx (t)P + qNx (t)Q+ rNx (t)R+ sNx (t)S (3.6)

The following table will be useful in further computations
P Q R S

P aP bR aR bP

Q cS dQ cQ dS

R cP dR cR dP

S aS bQ aQ bS

Let us now compute the coefficients defined in Eq. 3.6. Since Ξ(N)
x0 (t) is defined in terms

of left and right movements, we can deduce the following difference equation from the general

evolution:

Ξ(N)
x (t) = Ξ(N)

x−1(t− 1)P + Ξ(N)
x+1(t− 1)Q. (3.7)
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Using the PQRS decomposition, this also gives recurrence relations for the coefficients:

pNx (t) = apNx−1(t− 1) + crNx−1(t− 1)

qNx (t) = dqNx+1(t− 1) + bsNx+1(t− 1)

rNx (t) = bpNx+1(t− 1) + drNx+1(t− 1)

sNx (t) = cqNx−1(t− 1) + asNx−1(t− 1)

To determine the coefficients we use the boundary conditions from the absorbing bound-

aries. Because we use a partial measurement protocol, we assume perfect absorption once

the particle reaches the boundary. Note that this is really an algorithmic statement since the

experimenter stops the process once the particle is found. Physically speaking, any absorbing

potential would also lead to some reflection of the wave.

When x0 = N i.e the particle starts at the other boundary, the probability that it will be

absorbed in location 0 is of course 0. That means:

P
(N)
N (0;φ) =

∣∣∣Ξ(N)
N (0)φ

∣∣∣2 = 0 (3.8)

Using the PQRS decomposition for the null matrix, this gives for the coefficients:

p
(N)
N (0) = q

(N)
N (0) = r

(N)
N (0) = s

(N)
N (0) = 0 (3.9)

In the other extreme case, if x0 = 0 the absorption probability is one, i.e. Ξ(N
0 )(0) = I

giving:

p
(N)
N (0) = ā q

(N)
N (0) = d̄ r

(N)
N (0) = c̄ s

(N)
N (0) = b̄

where we denote the complex conjugation of any number z by z̄.

Having constructed the boundary conditions, we can now focus on the 0 < x0 < N case,

which also means t ≥ 1. From the example in Equation 3.4, we can see that we only need

two types of paths to describe the evolution, namely P and Q corresponding to right and left

movements. Therefore we can simplify the equations by setting qNx (t) = sNx (t) = 0 for t ≥ 1
in Equation 3.6.

The total absorption probability in 0 with another boundary present at N can be written

as (see Lemma 1 in [59])

P (N)
x0

(φ) =
∞∑
t=1

P (N)
x0

(t, φ) with P (N)
x0

(t, φ) = C1(t)|α|2 + C2(t)|β|2 + 2Re(C3(t)αβ̄) (3.10)

where we wrote the initial coin state as T [α, β] such that |α|2+|β|2 = 1 and the time dependent

coefficients are given by

C1(t) =
∣∣apNx (t) + crNx (t)

∣∣2
C2(t) =

∣∣bpNx (t) + drNx (t)
∣∣2

C2(t) = (apNx (t) + crNx (t))(bpNx (t) + drNx (t))
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To solve the coefficients explicitly, we make use of generating functions. This means that

we encode pNx (t) and rNx (t) as the coefficients of a power series of z:

p̃Nx (z) =
∞∑
t=1

pNx (t)zt r̃Nx (z) =
∞∑
t=1

rNx (t)zt (3.11)

The details of the derivation are shown in Appendix A. Finally, we can obtain the total

absorption probability in the infinite time limit (see Theorem 2 in [59]).

Theorem 3.1.1

PNx0
(φ) = C1|α|2 + C2|β|2 + 2Re(C3ᾱβ)

with initial state φ =T [α, β] and

C1 = 1
2π

∫ 2π

0

∣∣ap̃Nx (eiθ) + cp̃Nx (eiθ)
∣∣2dθ

C2 = 1
2π

∫ 2π

0

∣∣bp̃Nx (eiθ) + dp̃Nx (eiθ)
∣∣2dθ

C3 = 1
2π

∫ 2π

0
(ap̃Nx (eiθ) + cp̃Nx (eiθ))(bp̃Nx (eiθ) + dp̃Nx (eiθ))dθ

This gives the absorption probability for a general SU(2) coined walk, from a general

starting position and state and for general wall locations. This very general formulation has

two downsides: first, it only gives the infinite time limit, although by explicitly inverting the

generating functions, Equation 3.10 also gives the finite time case. For every scenario the

coefficients have to be obtained from the recurrence relations and given their complicated

form, it is often impossible to solve the integrals analytically. Therefore, although the answer

is exact, it is too complicated to get a practical intuition of the underlying process.

Other objections to this method could be that the partial measurement protocol as

absorbing boundaries is not a real physical process since it requires an active experimenter

that stops the walk whenever the particle is found at the boundary. In the next section, we

analyze the walk from a more physical example, where we use a matrix change to induce

scattering behavior, mimicking a partially transmitting boundary. Specifically, we will analyze

this system by adopting the Schrödinger method presented earlier.

3.1.2 Transmittive boundaries by matrix change

Since the quantum particle is spreading like a wave over the position space, the notion of

absorption becomes less clear. Strictly speaking, once the wave function hits the boundary,

this represents a certain probability that the particle is at the boundary. In the classical case,

the absorption probability is formed by looking at a large number of particles. However, in

the quantum case, we have only 1 quantum particle that is responsible for the probability

distribution. That means that when imposing an absorbing boundary in the classical sense,

the probability of being absorbed is essentially the probability of the quantum particle to be at

that location at the time of measurement. By implementing a continuous partial measurement

protocol, you project onto the bulk states of the system, thereby removing the part of the

probability function that indicates the chance of the particle being at the boundary. That

means that the probability is not conserved in this case. More figuratively speaking, only part

of the particle keeps propagating.
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In the last section, we presented the path counting method that calculates the probability

of absorption as the number of possible paths leading to the wall. Here, we take a more

physical approach, studying the transmission of waves in the presence of some attractive

potential. In the quantum walk language, we do this by changing the coin operator to the

Pauli z matrix after the boundary. This means that beyond the boundary, there is no more

mixing between left and right and once the wave is transmitted, it just wanders off to infinity.

This approach is more ‘physical’ since the total probability over the whole region is conserved.

We interpret the part of the wave that is transmitted through the potential as the absorbed

part.

Since we now have a transmittive boundary, part of the wave will also be reflected.

Exactly this reflection property gives the walk in this set-up similar properties as removing

part of the wavefunction does in terms of interference [47]. This is another motivation to use

the more physical notion of transmission. Therefore, we imagine a boundary with a variable

reflection coefficient. Note that the boundary here is effectively implemented by changing the

evolution operator beyond the boundary location.

For the most part we combine the approaches of [47] and [65]. Let us first consider a

semi infinite line system with a boundary at n=M. Specifically, we consider the following

evolution under the general SU(2) coin:

Cξ,θ,ζ,φ = eiφ

(
eiξ
√
ρ eiζ

√
1− ρ

e−iζ
√

1− ρ −e−iξ√ρ

)
(3.12)

Once the walker hits the boundary, right movers can be either transmitted through or be

reflected, with the ratio depending on the reflection coefficient r. Since only right moving

waves can be transmitted through a boundary on the right, there are no left movers outside

the domain. This condition gives the following evolution matrix and boundary conditions:

(
ψL(x, t)
ψR(x, t)

)
=
( √

ρeiξL(x+ 1, t− 1) + e−iζ
√

1− ρR(x− 1, t− 1)
e−iζ
√

1− ρψL(x− 1, t− 1)− e−iξ√ρψR(x− 1, t− 1)

)
for x < M − 1

(3.13)

(
ψL(M, t)
ψR(M, t)

)
=
(

L(M + 1, t− 1)
L(M − 1, t− 1)

√
1− ρeiζ −R(M − 1, t− 1)√ρe−iξ

)
(3.14)

(
ψL(x, t)
ψR(x, t)

)
=
(
L(x+ 1, t− 1)
kR(x− 1, t− 1)

)
with k =


√

1− r2 if x = M + 1

1 if x > M + 1
(3.15)

And finally the boundary condition:(
ψL(M − 1, t)
ψR(M − 1, t)

)
=
(

L(M, t− 1) + rR(M, t− 1)
L(M − 2, t− 1)

√
1− ρeiζ −R(M − 2, t− 1)√ρe−iξ

)
(3.16)

Furthermore, we know that since there are no left-movers beyond the right boundary

L(M, t−1) = 0. For this to be satisfied at all times L(M−1, t) = rR(M, t−1), different waves
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with the same eigenvalue should destructively interfere. We can enforce this by introducing

an image particle outside the boundary, such that we write the total wavefunction as:(
ψL(x, t)
ψR(x, t)

)
=

∑
k∈(−π/2,π/2)

e−iωk±t
[(
Ck±

(
Ak±

Bk±

)
eikn + Cπ−k±

(
Aπ−k±

Bπ−k±

)
ei(π−k)n

)

+
(
Dk±

(
Ak±

Bk±

)
eik(n−2(M−1)) +Dπ−k±

(
Aπ−k±

Bπ−k±

)
ei(π−k)(n−2(M−1))

)] (3.17)

Imposing the boundary condition gives:

Dk± = −Cπ−k±e
iωπ−k±Aπ−k±e

i(π−k)(M−1) − rBπ−k±ei(π−k)M

eiωk±Ak±e−ik(M−1) − rBk±e−ik(M−2) (3.18)

Here Ak± and Bk± denote the eigenfunction of the evolution operator. For the one-

parameter Hadamard coin these are given by Equation 2.13. Similarly, they can be derived for

the more general SU(2) coin as will be done in the next section.

So left from the boundary we can write the wavefunction as:(
ψL(x, t)
ψR(x, t)

)
=

∑
k∈(π/2,π/2

e−iωk±t
[
Fk±

(
Ak±

Bk±

)
eikn + Gk±

(
Aπ−k±

Bπ−k±

)]
(3.19)

with

Fk± = Ck± − e−2ik(M−1)Cπ−k±
eiωπ−k±Aπ−k±e

i(π−k)(M−1) − rBπ−k±ei(π−k)M

eiωk±Ak±e−ik(M−1) − rBk±e−ik(M−2)

Gk± = Cπ−k± − e−2i(π−k)(M−1)Ck±
eiωk±Aπ−k±e

ik(M−1) − rBπ−k±eikM

eiωk±Ak±e−i(π−k)(M−1) − rBk±e−i(π−k)(M−2)

(3.20)

From this wavefunction we can calculate the probability to escape transmission through

the wall by identifying the survival probability as:

ΛM =
∫ π

2

−π
2

(|Fk±|2 + |Gk±|2)dk (3.21)

Because the total probability is normalized to 1, this also gives us the probability to be

absorbed.

We could apply the same approach to the two boundary case, where on the left only

left movers can be transmitted. In this setup, we need to account for double reflected waves

that go back and forth between the boundary before being transmitted. In other words, in

order to satisfy the boundary conditions based on destructive interference on both sides, we

have to introduce an infinite amount of image particles, one for each reflected wave. This

is not analytically feasible. However, it is still possible to get an idea about the absorption/

transmission at one wall in the presence of the other wall by using the reflection probability

and escape probability from the other wall. First, let us write the possible types of waves as a

geometric series recalling that the probability of reflection is r2 and therefore the probability
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of absorption is 1− r2. Distinguishing wall 1 and 2 we can write all possible paths that lead to

absorption as:
(1− r2

1)(1 + r1r2 + (r1r2)2 + (r1r2)3 + ....

= (1− r2
1)

1− r1r2

(3.22)

Using the survival probability from the other wall, we can write the transmission probability

at the first wall as [47]:

PN1 = ΛM (1− r2
1)

1− r1r2
(3.23)

Just like before, this is the absorption probability in the infinite time limit. Because only

the asymptotic limit is considered, the influence of different coin parameters and the initial

state is not visible. These will mainly have an effect in finite time. Unfortunately, an analytical

solution at an arbitrary time under arbitrary conditions is highly non-trivial to obtain, as

we also saw in the previous section. To investigate the use of quantum walks in decision

making we will therefore mainly use simulations. First of all, we will, however, show how the

different parameters influence the dynamics of the quantum walk and therefore the absorption

probability.

3.2 Biasing Quantum walks
In the classical SRDT framework the objective probabilities were encoded in the distance

to the boundary. In addition, a value dependent potential was added on the two half-lines

to either attract or repel the particle to the boundary. Together, these two factors bias the

random walker in a certain direction. The novelty of this approach is that the probability and

the value affect the walker in a non-separable way, with the diffusion coefficient determining

their relative importance. To translate this set-up to the quantum walk and investigate further

options, we first show how a quantum walk can be biased in general.

The important difference between a random walk and a quantum walk is that we now

have an extra degree of freedom, the spin. In the random walk, the movement of the walker

is determined by flipping a (possibly biased) coin. In the quantum walk, the walking direction

is given by a rotation of the internal state given by the quantum coin operator. It is important

to note that the name ‘coin operator’ is somewhat misleading in this case. What the coin

operator does is basically rotating the basis in which you measure the internal state of the

particle [20]. Therefore, it creates a superposition of the two spin states according to which

the walker moves to the left and right in one step. This is a deterministic process and for a

time- and space independent coin the rotation will be the same throughout the whole process.

Therefore, different than for the random walk the dynamics are not the result of picking a

move at random from a distribution. The probabilistic nature of the quantum process instead

lies in the fact that upon measurement the wavefunction will collapse to a point with the

probability for each point given by the underlying distribution.

We first consider a one-dimensional quantum walk in unbounded space. The tools to bias

can be categorized into coin operator bias and shift operator bias. In addition the initial state

and position of the walker also influence the evolution. However, there is a degeneracy in

the bias in the initial spin state and coin state for example. Put differently, even when the
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initial state is fixed, we can get te full range of possible quantum walks by adjusting the coin

operator and vice versa.

We consider the SU(2) coin, which is the most general two-dimensional rotation matrix:

Cξ,ρ,ζ,φ = eiφ

(
eiξ
√
ρ eiζ

√
1− ρ

e−iζ
√

1− ρ −e−iξ√ρ

)
(3.24)

We can ignore the factor eiφ, as it is just a global phase with no effect on the distribution.

The shift operator still looks the same as before (Equation 2.4), i.e. the right-handed coin

state is shifted one step to the right and the left-handed one step to the left.

To get a first intuition of how the different parameters bias the walk we can write out one

evolution step by applying the operator to the general initial state |ψ(n, 0)〉 =
(
α

β

)
⊗ |0〉1

|ψ(n, 1)〉 = (eiξ√ρα+ eiζ
√

1− ρβ) |−1〉+ (e−iζ
√

1− ρα− e−iξ√ρβ) |1〉 (3.25)

To make the bias more clear, we now calculate the probability to be found in position −1 after

one step

∣∣ψL∣∣2 = |ψ(−1, 1)|2 = ρ|α|2 + ei(ξ−ζ)√ρ
√

1− ραβ∗ +
√

1− ρ√ρα∗βei(ζ−ξ) + (1− ρ)|β|2

(3.26)

Now we separate the effects of the coin and the initial state by first considering the initial

state: |ψ(n, 0〉 = 1√
2

(
1
i

)
which, without additional bias, leads to a symmetric distribution.

Then the probability to move left or right is:

∣∣ψL∣∣2 = 1
2(ρ+ iei(ξ−ζ)√ρ

√
1− ρ+ i

√
1− ρ√ρe−i(ξ−ζ) + 1− ρ

= 1
2(1− 2√ρ

√
1− ρ sin(ξ − ζ))∣∣ψR∣∣2 = 1

2(1 + 2√ρ
√

1− ρ sin(ξ − ζ))

(3.27)

We can immediately see that the walk is symmetric only if ξ = ζ. Since only the difference

between the two factors matters, we can achieve the full range of bias by only using one

exponential term as long as we adjust the range of that term to ξ ∈ (−π, π). Also, note that ρ

does not bias the walk, but regulates how strong the bias acts. Indeed, given a fixed value of

ξ − ζ, ρ regulates the spreading of the walk. See Figure 3.1 for two examples.

As mentioned before, the bias in the coin and initial state have some degeneracy. To

investigate this, we will use the Fourier analysis of the walk as introduced in Section 2.3. We

will now do this for the general walk.

1For simplicity we chose the initial position to be x0 = 0, the unbounded line is translationally invariant, therefore
this choice is without loss of generality. Note that this will be different in a situation with boundaries.
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Figure 3.1. – Quantum walk for ρ = 0.4 (left) and ρ = 0.7 (right) starting from the symmetric initial
state and without additional bias in the coin.

To be more specific, we use the fact that |α|2 + |β|2 = 1 for a normalized initial state to

parametrize the initial state as |ψ(n, 0)〉 =
( √

η
√

1− ηeiα

)
⊗ |0〉. Using the Fourier transform

2.9, the initial state in momentum space is:
∣∣ψ̃(k, 0)

〉
=
( √

η
√

1− ηeiα

)
. The coin operator in

momentum space is:

Ũξ,θ,ζ,φ(k) =
(

eiξ
√
ρe−ik eiζ

√
1− ρe−ik

e−iζ
√

1− ρeik −e−iξ√ρeik

)
(3.28)

The evolution is now given by:

∣∣ψ̃(k, t)
〉

= Ũ(k)t
∣∣ψ̃(k, 0)

〉
.

As usual, we proceed by diagonalizing Ũ . The eigenvalues are given by:

λ± = −i√ρ sin (ξ − k)±
√

1− ρ sin2(ξ − k). (3.29)

Since Ũ(k) is still a unitary matrix, we can write eigenvalues as:

λ± = e−iω
±
k

Where:
sin
(
ω+
k

)
= √ρ sin (ξ − k)

ω−k = π − ω+
k

(3.30)

The eigenvectors are given by:

∣∣v+
k

〉
= 1
N+
k

( √
1− ρ

e−i(ω
±
k

+ζ−k) − ei(ξ−ζ)√ρ

)
∣∣v−k 〉 = 1

N−k

( √
1− ρ

−ei(ω
±
k
−ζ+k) − ei(ξ−ζ)√ρ

) (3.31)

with the normalization factors being:

N±k = 2∓ 2√ρ cos (k ∓ ω+
k − ξ)
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We can now write the evolution of the initial state in terms of the eigenvalues and

eigenvectors. Therefore we need to decompose the initial state into eigenvectors of the

evolution operator:

∣∣ψ̃(k, t)
〉

= e−iω
+
k
t
∣∣v+
k

〉 〈
v+
k

∣∣ψ̃(k, 0)
〉

+ e−iω
−
k
t
∣∣v−k 〉 〈v−k ∣∣ψ̃(k, 0)

〉
The inner products are:

〈
v±k
∣∣ψ̃(k, 0)

〉
= 1
N±

(
√

1− ρ√η +
√

1− ηei(α+ζ)(ei(∓ω
+
k
−k) − e−iξ√ρ) (3.32)

This equation already gives us insights into the interplay between parameters:

• ρ and η appear in non-trivial ways and therefore have a unique effect on the distribution.

• α only occurs in combination with ζ and ζ does not appear anywhere else. This shows

the degeneracy of these bias factors, meaning that we can restrict to using only one of

them.

3.3 Subjective probabilities
Based on the previous section we use the following set-up as an extension of the classical

SRDT framework. The initial position of the particle between the boundaries is determined

by the objective probabilities. For the simulations, we choose to fix the walls at locations 0

and N such that the whole walk takes place on ‘positive’ positions. Specifically, for a general

lottery L1 = [oA, p; oB , 1− p] we associate the left wall with outcome oA. The initial position

will be x0 = (1 − p) × N where N is the distance between the two absorbing walls. This

formula is such that the higher the probability of the event (p), the shorter the distance to the

corresponding wall. Since there is no classical counterpart of the coin state, we initialize the

system in the state ψ = 1√
2

(
1
i

)
, which will give a symmetric walk in absence of any bias.

We first look at the situation without any value bias. In this case, SRDT predict an

inverse S-shaped relation between the subjective probability given by the relative absorption

probability and objective probability of oA. To extract the absorption probability in the

quantum case we use the partial measurement protocol described in Section 3.1. At the end of

the simulation (a predefined time T), the subjective probability of outcome A is calculated as

the probability of being absorbed by the left boundary divided by the total probability of being

absorbed. Note that in all cases, this will be different than the absolute absorption probability

because the quantum particle has a non-zero probability to escape all measurements.

We will use the generalized Hadamard coin:

H =
( √

ρ
√

1− ρ
√

1− ρ −√ρ

)
(3.33)

In figure 3.2 we show the subjective probability: π(p) = P (BL)
P (BL)+P (BR) as a function of p for

different values of ρ. Here P (BL) (P (BR)) is the probability of being absorbed by the left

(right) wall.

As we can see in Figure 3.2, for particular values rho we do retrieve a similar inverse

S-shape as in the classical case. Note that we fixed the time, or equivalently the number
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Figure 3.2. – Subjective probability as a function of p for different values of ρ. The number of steps
equals the distance between the boundaries, left panel: T = N = 50, right panel
T = N = 100.

of steps, to the distance between the boundaries. Although the ratio between the distance

between the boundaries and the number of steps is equal in both figures, we still see a small

difference in shape. In further analyses, we will usually fix the number of sites and steps to be

equal, not explicitly stating the effect of their absolute magnitude. We have to keep in mind

however that the absolute values do have a small effect on the result.

Recall that ρ does not bias the walk, but regulates the variance of the walk through the

mixing between the left and right component. For ρ = 1 there is no mixing between the two

components. That means, the part of the walk that was in the left-handed part of the initial

state will walk left and the right-handed part will go right without any interference occurring.

In the Bloch wave formulation, two Bloch waves are created in the first step which then both

move in their own direction without interfering. This means that the two peaks will just travel

away from each other until they have reached the boundary. The absorption probabilities

will exactly reflect the initial spin state, which is, in this case, symmetric, so the absorption

probability will be 0.5 at both walls.

In the other extreme ρ = 0 there is complete mixing between the two components. This

means that the walker will stay localized around the starting position and will never reach

either wall. This is like two Bloch waves being trapped between mirrors. The distribution will

alternate from two equal peaks at the 2 positions just next to the boundary at even steps and

one peak at the initial position at odd steps. For all intermediate values, there will be some

mixing between the components, determining the spreading rate of the walk. Note that ρ does

not alter the relative magnitudes of the peaks. However, because it regulates the variance, it

can enhance or decrease the effect of the initial position. For a relatively low value of rho, the

variance will be small and therefore the boundary that is hit first will receive a high portion

of the wave-function at once, therefore the effect of the starting position is amplified. If we

compare this to the double S-shape obtained in the classical version of the theory we can see

strong similarities with the curves of ρ = 0.7 and ρ = 0.8 where we also find this pattern.

We now want to add a value bias similar to the value dependent potential in SRDT. In

the quantum walk case, the simplest way to add a left/right bias in a coherent way is through

the coin. To be able to compare with the classical framework, we will employ different bias

values on the two half-lines. For the quantum walks, this means that we have at least two

different evolution operators. The weak position dependence of the operator leads to some

decoherence in the system. It is therefore important to keep in mind that introducing the value
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bias has a non-trivial effect on the distribution. In the Bloch wave analogy, we can imagine

electrons traveling through two different types of solids. Since we use the starting position

of the walker to represent the objective probabilities, the walker starts out in one solid and

then travels towards the other one. This leads to reflection/ transmission effects at the border

between the two solids. The general form of the biased coin is:

C =
( √

ρeiθ
√

1− ρ
√

1− ρ −√ρe−iθ

)
(3.34)

Note that because the bias is determined by the difference in exponential factors (as

discussed in Section 3.2) we only have to add a bias on the diagonal of the matrix to be able

to bias both to the right and left. From Equations 3.27 we see that the bias follows a sinus.

Therefore, the bias will be maximal for θ = ±π/2. We still have freedom in how to translate

the value of an outcome to the bias factor. This is also the case in the classical framework. The

only requirement is that the function is non-decreasing in the value. We will, therefore, take a

holistic approach and focus on the effects of different values of θ. For a symmetric initial state,

the transition probabilities is one step are given by:

∣∣ψL∣∣2 = 1
2 −
√
ρ
√

1− ρsin(θ)∣∣ψR∣∣2 = 1
2 +√ρ

√
1− ρsin(θ).

(3.35)

Note that the sin θ bias is now the equivalent of the value dependent force in the classical case,

with an acting strength regulated by ρ.

In analogy to the classical case, there is no value bias at the origin, giving the particle a

50/50 percent chance to go left or right. To summarize, we have three coins in our system,

corresponding in spirit to the piece-wise linear potential of the classical theory (Eq. 1.7):

Ĉx =



√ρeiθ1
√

1− ρ
√

1− ρ −√ρe−iθ1

 if x < x0 √
ρ

√
1− ρ

√
1− ρ −√ρ

 if x = x0√ρeiθ2
√

1− ρ
√

1− ρ −√ρe−iθ2

 if x > x0

(3.36)

As the simplest case, we first investigate the situation where there is a value bias with

varying strength on the left part of the line and no bias on the right half. Reducing the number

of coins to two. Second, we use three different coins corresponding to two different attractive

forces in the classical case.

In Figure 3.3 we plot the subjective probability as a function of p for different values

of θ and ρ. Note that the blue line always denotes the baseline θ = 0. We see that for

ρ = 0.9 non-zero values of θ shift the curves upwards for small p-values. This means that the

probability of being absorbed by the left wall is enhanced by the bias to the left, as expected.

However, for smaller values of ρ the effects are very small and they mainly act when the

particle starts closer to the left wall (large p-values). This is also expected behavior since

the bias to the left only acts on the left half of the line. Therefore, if the particle starts out
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far from the left wall, it takes a long time (especially for small values of ρ) to enter the bias

region. When an opposite direction bias is present on the right side, the probability of being

absorbed on the left when starting on the right half-line becomes smaller, also as expected.

The differences are larger for small values of ρ. Compared to the case without bias, there is an

even sharper transition around p = 0.5. The presence of the bias on the right side however

only has a very small effect on the influence of the value bias on the left side for larger values

of p. This is related to the fact that bias only acts locally. These plots also show that the

influence of the starting point is very large. Since in the first step the two Bloch waves are

prepared, in which region you start has a very large effect on the final absorption probability,

with θ amplifying or damping the absorption probability depending on starting location.

(a) ρ = 0.5 (b) ρ = 0.5

(c) ρ = 0.7 (d) ρ = 0.7

(e) ρ = 0.9 (f) ρ = 0.9

Figure 3.3. – Subjective probability of outcome oA as a function of the objective probability which is
encoded in the initial position for different values of ρ and θ1 and θ2. The left column only
has a value bias on the left half of the line, the right column has a bias over the whole
regions. Here the bias on the right side is fixed, the bias on the left side is varied. In all
cases T = N = 100.
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Figure 3.4. – Subjective probability of outcome oA following Equation 1.10 as a function of the objective
probability which is encoded in the initial position. In the left panel, the distribution is
plotted for different values of the Diffusion coefficient and fixed u(oA) = u(oB), while
u(oA) is varied in the right panel. On the right, D=20 for all curves.

An alternative approach is to let one bias work over the whole region. This keeps the

quantum walk coherent and therefore has a more trivial effect. This is however different

from the classical framework since one option is now favored over the whole region. That

means, that at each evolution step, the probability of moving to the left is enhanced, also if

you are already close to the right wall. This right wall has no additional attraction power in

this model.

3.4 Interpretation of the Results
The above analysis shows how some of the results found using the classical random walk

can be reproduced with the quantum walk. For example, the inverse S-shape dependence on

the initial position can be found for particular values of ρ. In addition, with the quantum walk,

we have more parameters to play with than in the classical case. First of all, the value of ρ

determines a large part of the dynamics. Since ρ is associated with the mixing between the

internal states of the quantum walk, we could interpret this as the measure of ‘quantumness’

in the system. In the extreme case ρ = 1 there is no mixing between the right and left moving

wave and the subjective probability will represent the initial state. In the other extreme case

ρ = 0 there is complete mixing between the components and the walk will be concentrated

on the initial state or his two neighbors. Therefore, the walker will not be absorbed at all.

In all intermediate cases, the components mix, and therefore interference arises. Note that

when ρ < 0.5 the left component is mainly determined by the right component of its neighbor.

This very strong mixing regime seems less useful for our conceptual use. We can interpret this

interference as the decision-maker exploring different paths that interfere with each other

when they are in the same location. So instead of averaging over a large number of walkers

in the classical case, the quantum walk represents all these paths at the same time, allowing

them to interfere.

When it comes to adding a value bias, the exponential terms in the coin seem the most

straightforward term to bias the walk to the left or right, starting from a symmetric initial state.

The bias arises because constructive interference is promoted on the favored side, while extra

destructive interference arises on the other hand. We see that the effect is most pronounced

for ρ = 0.5. Furthermore, when using different coins on different parts of the line leads to a

sharp transition around p = 0.5 related to the fact that the bias only acts locally.
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(a) ρ = 0.5 (b) ρ = 0.7

Figure 3.5. – Subjective probability of outcome oA as a function of the objective probability which is
encoded in the initial position for different values of ρ and θ. The same (biased) coin is
used over the spatial region. In all cases T = N = 100.

In Figure 3.4 we show the value distorted probability derived in the classical SRDT frame

(see Section 1.2). In this case, we clearly see an inverse S-shape for all values of D. When

varying the value bias in the left half, we see an overall rise in absorption probability on the

left side. The intersection with the bisector is shifted to the right.

Comparing the classical and quantum case, we see some large differences in the effect

of value bias. Where in the classical case there is an overall shift upwards in the absorption

probability, in the quantum walk this is only local. This is due to the fact that changing the

coin along the line leads to transmission and reflection effects on top of a change in bias. This

also means that the intersection with the bisector is always at p = 0.5. Alternatively, if we

applied the same coin over the whole region, with a bias towards one side, the effects would

be more similar to the classical case. This is shown in Figure 3.5.

Because there is no classical counterpart of the spin, we chose the symmetric state as the

initial state in the analysis. However, already from the ’rational’ case ρ = 1 we can see that the

initial state has a large influence on the behavior. In the classical case, the diffusion coëfficient

determined the relative importance of value and probability. Although ρ has a large influence

on the dynamics, it does not seem to do play the same role in the quantum case. Instead of

converging to the diagonal (π(p) → p) for large values of D, the distribution converges to

the initial state for large values of ρ. We deduce that ultimately the initial spin state has a

stronger influence on the dynamics than the initial position. If we again draw the analogy to a

Bloch wave, this is expected. In the first step, two Bloch waves are created that both move in

opposite directions. As long as the number of time steps is such that both waves can reach the

boundary they are moving to, the differences in absorption will be determined by the initial

state and the interference and not so much the position. At short times, however, the position

bias can have a very large effect if one of the peaks already reached the boundary while the

other one has not.

While we can retrieve some of the behavior (inverse-S, shifting of the curves) from the

classical case with the quantum framework, the distribution in position space is very different.

In the classical case, the total distribution of random walkers will give a Gaussian, here we

have a wide variety of distribution once we include bias factors. The initial spin state plays

an important role in the dynamics of the quantum walk but has no classical counterpart.

Therefore, we used the symmetric initial state for the analysis. In future chapters we will
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explore the full potential of the quantum walk by, among other things, varying this initial

state.
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4Going beyond SRDT

In the previous chapter, we extended the classical SRDT to the quantum world by making use

of a quantum walk. To that end, we used the exponential factors in the coin and the starting

position to bias the walk. In this chapter, we will leave the classical SRDT framework behind

and explore how quantum walks can be used and interpreted in general in the context of

decision making. In the first section we investigate the influence of the initial spin state on

the dynamics and use this to encode the objective probabilities of the alternatives. Second

we change the interpretation of the abstract space the walker moves in and explore the

possibilities of biasing the shift operator. We then shortly look at the effects of ‘boundaries’ on

the evolution. Afterwards, we discuss the choice between lotteries rather than the formation

of subjective probabilities. We finish with the introduction of the Entropy of Measurement as

a measure for the uncertainty of the choice.

4.1 Objective probability in the initial state
In the previously presented quantum extension of SRDT, the interpretation of ρ was still

unclear. Where in the classical case the diffusion coefficient regulates the relative importance

of value and initial position bias, this can not be said of ρ. In the extreme case of ρ = 1,

the probability distribution in position space will be a two-peak distribution with relative

magnitude given by the initial spin state. The crucial role of the initial spin state leads us

to another parametrization: rather than encoding the objective probabilities of events into

branch lengths, we encode them in the initial coin state. For non-zero values of ρ the two

probability start to mix leading to a spread out of the probability distribution. This mixing

of probabilities is essentially an irrational effect. In this context, ρ is governing the level of

‘irrationality’ or the ‘quantumness’ of the decision-maker. One could imagine that the level of

irrationality is determined by the character of the decision-maker, but also by the difficulty of

the problem. For example, if two outcomes are relatively close in expected value, it is harder

to distinguish them. This concept of ‘irrationality’ in the decision-maker resonates with the

notion of bounded rationality [7]. It represents the fact that humans are not always able to

assess probabilities truthfully and rationally. On top of that, we could again add a value bias

to also influence the probability assessment.

Putting the objective probabilities in the intitial spin state is also appealing from another

quantum point of view. We can draw the analogy with the concept of unobserved variables in

quantum mechanics. [66]. Due to the conditional form of the shift operator, the spin and the

position of the coin are entangled. The movement of the coin in position space is determined

by its internal state. If we just look at the position space probability distribution (as we also

do when looking at the absorption probability), we trace out the coin. That means that the

coin state is essentially unobserved. However, because of the entanglement, it is still possible

to obtain information about the coin state through the position space distribution.
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Figure 4.1. – Probability of being absorbed by the left wall as a function of ‘p’ in the initial coin state
(√p, i

√
1− p)T for different values of ρ.

Descriptively, if we look at a lottery we see something very similar. When playing a

lottery, the outcomes are directly visible and can be assessed realistically. The probability,

however, will only be visible after a large number of tries. In the frequentist interpretation, the

probability is the number of times you get outcome A out of N tries when N →∞. Counting

the frequencies of a limited number of tries only, the observed frequencies can strongly deviate

from the objective probabilities. If we encode the objective probabilities in the initial coin state

and look at the absorption probabilities we can interpret this as gaining information about

the initial coin state. In the extreme case ρ = 1 that we can call ‘rational’ in this case, the

absorption probability will be equal to the objective probability. However, when the assessment

is imperfect (ρ < 1) because of bounded rationality and possibly value effects, the absorption

probabilities, and thus the ‘observed’ spin, will be different from the objective value.

To make this more formal, we start with the general Hadamard coin:

H =
( √

ρ
√

1− ρ
√

1− ρ −√ρ

)
(4.1)

For the initial state we use: |ψ(x0, t)〉 =
( √

p

i
√

1− p

)
, where p is the probability to get

outcome oA in the lottery. Note that we still focus on the formation of the subjective probability

at this point. The bottom component of |ψ(x0, t)〉 is in the imaginary domain so that we retrieve

a symmetric distribution for p = 0.5. We use the same absorption protocol as before, using

partial measurements. In Figure 4.1 we plot the absorption probability at the left boundary as

a function of the initial coin state.

We see again the over- and underestimating of small and large probabilities respectively.

However, we do not see a nice S-shape like in the initial position bias case. Looking back at

the analytical form of Equation 3.32 and the rest of Section 3.2 this is not surprising. We see

that the initial coin state always enters as a multiplication factor and thus has a linear effect.
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It is important to stress that even if the initial coin state is completely polarized, for

example |Ψ〉 =
(

1
0

)
, there will still be mixing for ρ 6= 1. Therefore, it is important to always

consider the initial state in combination with ρ for each problem. For example, if one would

wish to represent a certain lottery it is not enough to set the initial to (1, 0) for example. To

obtain an absorption probability of 1 for the left wall ρ has to be set to 1 as well.

We can add a value dependent bias factor in the same way as we did in the last section,

namely by adding an exponential term on the diagonal. We first start with the three different

coins from Equation 3.36. The results are shown in Figure 4.2 We see that the value bias adds

some non-linearity in the subjective probability. The curves are shifted upwards for small

values of p. It is surprising that for larger values of p, the larger probability is not amplified

by the value bias but tends to be damped. This is a consequence of the fact that the bias

works through interference. The position distribution deviates more from the two-peaked

distribution once the bias is added. Because the bias to the left only works in the left region

the line is split into two parts. Technically, even three parts because we always implement a

bias-free coin at the origin.

We see that the curves are shifted up by this value bias, similar to what we have seen

before. This also means that the inflection point lies beyond p = 0.5, which means that even if

the objective probability for the other outcome is slightly higher, the value bias makes sure

that the outcome higher in value still has a larger subjective probability. This is similar to

what we saw in the classical case, although the shape of the curves differ. In this case, the

bias also adds a non-linearity to the dependence on the initial state. The effect is again more

pronounced for smaller values of ρ.

4.1.1 Interpretation of the results

As stated in the introduction to this section, encoding the objective probabilities has some

appealing factors conceptually. First of all, the parameter ρ has an attractive interpretation

as the ’quantumness’ of the problem which could be related to the difficulty of the decision.

To formulate a connection between the two, one could, for example, use the difference in

expected value. A plausible assumption could be a function that is decreasing in expected

value difference. That means that if the two options are close in expected value, the value of ρ

is lower and thus the probability assessment will be less ‘rational.’ However, there are many

more ways to quantify the difficulty of the problem and ultimately, the right functional form

should be taken from experimental data. We comment more on this later when discussing

choices between two or more lotteries where the interpretation of ρ might be more natural.

We saw that adding a value bias leads to non-trivial results, especially when different

coins are used along the line. We already used the analogy of electrons traveling from one

solid into the other. In this way, the translational invariance is broken and there will be

reflection and transmission effects around the edges. Since an analytical solution is very hard

to find in this case, it is still unclear how these effects influence the walk exactly. Moreover,

since we are now using the initial spin state to encode the probabilities, the walker will always

start in the same location, between the two biased coin regions. Decoherence and reflection

effects are therefore present from the first evolution step onward. Spatial dependence of the

coin may, therefore, be less appealing. Using the same coin over the whole region has the

41 Chapter 4 Going beyond SRDT



(a) ρ = 0.5 (b) ρ = 0.5

(c) ρ = 0.7 (d) ρ = 0.7

(e) ρ = 0.9 (f) ρ = 0.9

Figure 4.2. – Subjective probability of outcome oA as a function of the objective probability which is
encoded in the initial state for different values of ρ and θ1 and θ2. The left column only
has a value bias on the left half of the line, the right column has a bias over the whole
regions. Here the bias on the right side is fixed, the bias on the left side is varied. In all
cases T = N = 100.
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(a) ρ = 0.5 (b) ρ = 0.7

Figure 4.3. – Subjective probability of outcome oA as a function of the objective probability which is
encoded in the initial state for different values of ρ and θ. The coin is the same over the
whole region. In all cases T = N = 100.

more straightforward consequence of raising the absorption probability for every value of p.

This is shown in Figure 4.3.

4.2 Walk on a value chain: Biasing the step
operator

Up till this point, we considered a biased coin to change the evolution of the walk.

However, we could also alter the step operator by varying the step sizes. This could have

different interpretations. First of all, the step size can be related to the probability. If you focus

on the absorption probability, events with a larger probability would in this way reach the

boundary faster than events with a small probability. In a second, more natural interpretation,

one could also associate the step size with a gain in wealth. Obtaining a larger outcome then

means taking a bigger step in wealth. This second interpretation asks for a redefinition of the

‘space’ in which the walk takes place. In the simplest case, we can imagine a lottery with one

gain and one loss. We now let the one-dimensional space represent the wealth levels of the

individual. With each step, you go up (walking right) or down (walking left) in gains. In this

interpretation, there is no absolute need for absorbing boundaries. It is rather the absolute

position upon measurement of the walker or the distribution in wealth space that matters.

Without loss of generality, we fix the step length to the left to 1 and vary the sizes of

steps to the right. In Figure 4.4 we plot the mean displacement of the walker from its initial

position as a function of the step size. We see that the connection is perfectly linear. If we also

look at the full probability distribution, we see that the distribution gets shifted to the right

and is broader with increasing step size. We also see that this is quite a strong bias since the

whole distribution is shifted by the difference in step size. In terms of absorption probability,

the right moving part of the walk will reach the boundary way faster than the left moving part,

quite a trivial effect.

As it is evident, there is not much room to alter the bias strength. Note that this is mainly

a problem when considering absorption for the choice probabilities. For an unbounded walk,

the strong bias that the step operator gives could be less of an issue. A different value of ρ will

change the variance of the walk and therefore make the distribution wider or narrower. It will
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(a) ρ = 0.5, x0 = 100, step size = 6 (b) ρ = 0.6, x0 = 100, step size=6

(c) Mean displacement as a function of the stepsize

Figure 4.4. – Displacement dependence on the step size to the right.

however not change the mean displacement of the walk since the variance changes both on

the right and on the left.

For a lottery with two gains, we could also imagine that the left and right coin state both

move to the right but with different step sizes, corresponding to a greater outcome. Figure

4.5 shows again the means displacement as a function of the step size. Now we see the exact

opposite dependence, the larger the step-size the smaller the mean displacement. We also

see this if we look at the individual distributions. Due to interference properties, the walker

stays closer to the initial position. This is something very counter-intuitive and does not seem

appropriate for our framework.

Since two coin states walking in the same direction leads to very non-trivial patterns,

this is not a good option for the framework. Building on the fact that we saw a more

predictable form of bias in the variant where we had one loss and one gain we could imagine

to reformulate the only gain lottery introducing ‘relative loss’. For example, we could define

moving left as a loss compared to the average value of the outcomes or any other reference

value. This, however, does not solve the problem of the step size bias being very strong in

nature and not easy to tune.

Another possibility is to leave the ‘line structure’ and convert it to a regular graph. In this

way, each node of the graph can represent a particular wealth level which gives more freedom.

In each iteration, the walker can move from one node to two possible new wealth levels,

without the restriction that the wealth levels have to differ by a constant amount. An example

of a simple value graph with objective transition probabilities is displayed in Figure 4.6. Note

that with a quantum walk the transition probabilities from node to node are determined by the

coin and current state. There is a large strain of literature on the properties of quantum walk
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(a) ρ = 0.5, x0 = 0, step size = 2 (b) ρ = 0.5, x0 = 0, step size=6

(c) Mean displacement as a function of the stepsize

Figure 4.5. – Displacement dependence when walker to the right only

on graphs see i.e. [32], [38], [67] and [68]. As long as the graph is regular, the properties

are very similar to a quantum walk on the line in terms of spreading and interference.

To extract the choice probabilities in terms of absorption one could imagine absorbing

nodes in the graph. On the other hand, the distribution over the value graph could be used to

extract the total subjective value of a lottery in order to compare it to other lotteries. In this

way, it is not the subjective probability of each outcome we focus on, but the total assessment

of the lottery that determines the probability of choosing this lottery over another.

Up to this point, we only looked at a symmetric initial state and unbiased coin. Of course,

we can tune the strength of the step bias by making the probability of taking the large step

very small. In principle, the same linear relations remain although it will only be smaller in

absolute size. In conclusion, when focusing on the absorption probability, biasing the walk

through variable step size is unfeasible, because it clouds all the other factors at play. However,

for an unbounded walk it could be a powerful tool. We will come back to this in Chapter 6.
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Figure 4.6. – Example of a regular value graph. v1 and v2 denote the value of the first and second
outcome respectively. p and 1− p denote the objective transition probabilities.

4.3 Boundary Effects
As described before, the most straightforward way to introduce irreversibility into the

system is by adding absorbing boundaries via partial measurements. Despite its simple compu-

tational implementation, analytically this is very challenging. Furthermore, we would like to

know the effects of the boundaries on the absolute and conditional absorption probabilities.

In this section, we investigate these effects by comparing the distribution to a free quantum

walk where we only impose the boundaries in the end. That is, we let the walk evolve for a

predefined number of steps and then measure which part of the probability has passed the

boundary points. See for an illustration Figure 4.7.

Figure 4.7. – Free walk with virtual boundaries (red lines).

We first investigate the effects of boundaries when the objective probabilities are encoded

in the starting position. Figure 4.8 shows the comparison of the ‘absorbing’ and ‘free’ walk for

both the subjective probability and the absolute absorption on two different time scales. The

dotted lines represent the free walk and the solid lines are the walk with absorbing boundaries.

46 Chapter 4 Going beyond SRDT



At short times, the curves are quite similar, especially for subjective probability. This changes

at longer times. Especially for the absolute absorption probability, the differences are quite

large. For the subjective probability, we see that the absorbing walk converges quickly to a

50/50 distribution whereas the free walk remains asymmetric.

We now do the same for the walk where the initial state represents the objective probabil-

ities. Figure 4.9 shows the results. In terms of subjective probabilities, the curves are very

similar. The differences are larger for the absolute absorption probability but less pronounced

than in the previous example.

All in all, we see similarities between the free and absorbing walks at short times and

for the initial state dependence even at longer times. In the absolute absorption probability,

the differences are more pronounced. Here the effect of removing part of the wavefunction

by partial measurement on the interference patterns is clearly visible. The similarities for the

subjective probabilities, however, can help to find at least an approximate solution for the

absorption probability by using the solution of the free walk.

Figure 4.8. – Comparison of the subjective probability (left) and absolute absorption probability (right)
of the absorbing and free walk as a function of p at different times. The initial position is
given by x0 = (1− p) ∗N with N=100.
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Figure 4.9. – Comparison of the subjective probability (left) and absolute absorption probability (right)
of the absorbing and free walk as a function of p at different times. The initial state is
given by (

√
(p), i

√
1− p). N=100, x0 = 50.

4.4 Choice between lotteries
So far, we have concentrated on the formation of subjective probability. We now shortly

discuss the probabilities of extracting the choice probabilities for a total lottery.

Instead of a walk between lottery outcomes to quantify the subjective probability and

attractiveness of an outcome, we can also imagine a walk between two lotteries. Now we have

some different variables that we can use to bias the walks. We could, for example, imagine

a walk between two expected values corresponding to the two lotteries. Since ρ determines

the mixing between components and therefore the strength of some bias parameters, we

could interpret ρ as the ’quantumness’ of the decision problem. Intuitively, the harder the

decision problem, the higher the ’quantumness’, and thus the lower the value of ρ. The

most straightforward way to parametrize ρ would be as a function of the difference in the

expected utility of both lotteries. The closer the expected utilities, the harder the decision.

However, there are some important caveats that are an issue for probabilistic decision theories

in general. The most pronounced one is the concept of stochastic dominance [27]. This

can be demonstrated by a simple example. Imagine two lotteries: L1 = (60,0.4,20,0.6) and

L2 = (60,0.5,20,0.5). Lottery 2 is clearly better than Lottery 1, the outcomes are the same

but Lottery 2 has a larger probability of getting the highest outcome. Now if we calculate

the expected values of the lotteries we get L1=36 and L2=40, which is not a very large

difference. Therefore, if we took ρ as a linear function of the difference, there will still a high

probability that the walker gets absorbed by L1, although this is largely irrational behavior. So

the challenge is to design a function for ρ that obeys stochastic dominance.
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Note that the walk itself will look the same depending on the types of bias used (initial po-

sition, initial state, exponential on the diagonal, and variation of ρ) it is just the interpretation

that changes here.

One of the downsides of doing a one-dimensional walk between two expected values is

that we lose the properties of entangled value and probability dependence, because we only

look at the expectation value of the lottery, adding the quantum walk as an ad-hoc layer on

top of expected utility theory. On the other hand, the definition of ρ as the quantumness of

the process seems more natural in the context of choosing between lotteries than within a

single lottery.

In Section 4.2 we discussed the possibilities of using a walk in value space. Instead

of imposing some absorbing boundary or region, this could be a tool to calculate the total

subjective value of a lottery. In this case, the probability distribution of each value level

determines the weight of that value level such that the weighted sum over all nodes gives the

total subjective value. By designing a value graph for each lottery and let the walk evolve in

this space with an initial state and biased step operator given by the lottery properties we

could compare different lotteries based on their subjective value. The relative difference than

gives the choice probability. We will proceed with this idea in a slightly different fashion in

section 6.

4.5 Entropy of measurement
We already know that ρ regulates the variance of the walk through the amount of mixing

between left and right. One interpretation is that ρ therefore quantifies the ‘uncertainty’ of the

decision. In addition to the variance of the walk, we can also use the Entropy of Measurement

[44], which also largely depends on ρ, as a measure of uncertainty in the decision. We use the

definition of the von Neumann entropy and write the measurement entropy as:

H(i) = −
∑
i

pi ln pi, (4.2)

where pi is the probability of being at position i (after tracing out the coin). In Figure

4.10 we show the measurement entropy as a function of ρ. The other coin variables have a

negligible effect on the measurement entropy. We see an ‘arch-like’ shape for the measurement

entropy as a function of rho, which gets shifted upwards for longer times. This shows that the

measurement entropy (and thus the uncertainty of the measurement) is maximal for ρ = 0.5.

The entropy slowly falls off on both sides of ρ = 0.5 and only takes a big drop at extreme

values. For very low values of ρ the wavefunction stays close to the initial position and is

centered at one (two) sites at odd (even) times. For very large values of ρ the wavefunction

again only peaks at two sites, however, these sites are now at location x0 ± T . For the

measurement entropy the exact location of the peaks doesn’t matter, hence the symmetric

‘arch-like’ relation with ρ. Over time, the absolute value of the entropy grows, related to the

absence of a stationary distribution for the quantum walk.

If we choose to take ρ as regulating the uncertainty of the decision we can, therefore,

restrict the values of ρ to the range ρ ∈ (1, 0.5) to capture the whole range from certain to

maximally uncertain decisions.
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Figure 4.10. – Dependence of the measurement entropy on ρ (left) and the initial state (right).

We now look at the measurement entropy as a function of the initial coin state for different

values of ρ, shown in Figure 4.10. We see the same arch-like shape for both dependencies. For

the dependence on ρ, the entropy curves are shifted upwards for longer times. This is another

indication that the Quantum Walk, in general, does not converge to a static distribution. For

the dependence on the initial state, the entropy curves get shifted depending on the value

of ρ. As can also be seen in Figure 4.10, the entropy is highest for ρ = 0.5. In addition

to the absolute magnitude, also the shape of the curves changes with ρ. The measurement

entropy is highest for the symmetric initial state belonging to p = 0.5, this is quite intuitive. If

probabilities are very close together, it is harder to distinguish them.
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5Continuous Time Quantum walk

In previous Chapters, we focused on the use of the discrete-time quantum walk because of

its similarities with the classical random walk. However, as stated in the introduction, there

is another type of quantum walks with a different underlying mechanism that nevertheless

exhibits similar behavior. The continuous-time quantum walk is not simply the continuous-

time limit of the coined quantum walk. Instead, its evolution is governed by a Hamiltonian

and takes place completely in position space, without the extra coin degree of freedom. In this

chapter, we will explore whether this type of quantum walk can be useful for a decision-making

framework.

5.1 Absorption by repeated measurements
To introduce irreversibly in the quantum walk we will again use the concept of partial

measurements. However, since the evolution is now in continuous time, there is no notion of

a ‘step’ and thus measuring whether the particle is at the boundary at each step needs to be

redefined. Therefore, we introduce a measurement frequency, which determines the strength

of the effect. Introducing the measurement at two points on the line corresponds to two walls,

possibly with a different measurement frequency. We indicate the time between measurements

by τ , such that the measurement frequency is given by 1/τ . When taking the limit τ → 0
corresponding to continuous measurement, we recover the quantum Zeno effect [69]. This

effect can best be described as ‘the system cannot evolve if you are constantly watching it.’ It

is a property of quantum mechanical systems that states that no evolution takes place if the

system is constantly measured. In our case, no evolution means no absorption and thus under

continuous measurement, we will measure nothing at all at the boundary sites. As continuous

monitoring is thus not possible, we can only account for imperfect absorption. Note that this is

very natural in quantum mechanics. Although the walk is now no longer unitary, most of the

coherence is still preserved. For appropriate disturbance τ << 1/γ with γ the hopping rate in

the Tight-Binding Hamiltonian (see below), we can adopt a perturbative approach to describe

the surviving part of the walk. For simplicity, we set the hopping rate to γ = 1, and thus the

approximation will be valid for τ << 1. Since the total probability needs to be conserved, the

survival probability of the walker gives us an indirect measure of the absorption probability.

We follow the procedure outlined in [70]. A continuous time quantum walk is described

by a tight-binding type Hamiltonian of the form: H =
∑N
r,s=1 Hr,s |r〉 〈s|, with Hr,s a real,

symmetric matrix. The non-vanishing elements have strength γ which we set to 1 here for

simplicity. The evolution of the quantum walk is then described by the Schrödinger equation

whose solution is |ψ(t)〉 = Ut |ψ(0)〉 with Ut = e−iHt. We distinguish between sites belonging

to the system (translational invariant bulk) and the boundary states where the measurements

are performed. The projection operator on the boundary set D is defined as A =
∑
r∈D |r〉 〈r|

and the complementary projection onto the system states is B = 1− A. After performing a

measurement the system will be in the state ρ = A |ψ〉 〈ψ|A + B |ψ〉 〈ψ|B. However, since
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we stop the simulation whenever the particle is detected, we can focus on the evolution of

the system states. The state after measurement is described as |ψ+〉 = B |ψ−〉. We can now

describe the evolution operator in terms of measurement intervals τ as Ũ = BUτ . That means

that the survival probability at time t = nτ is Pt = 〈ψ+
n |ψ+

n 〉 = 〈ψ(0)| Ũ†nŨn |ψ(0)〉. For an

initial state in the bulk Ũ = Be−iHτB, this is now a non-unitary evolution operator acting

on the system states. The first application of B projects on the Bulk, such that only these

states evolve with the Hamiltonian. Then, the second action of B removes the states that

ended up at the boundary after evolution. Note that the evolution is now given in terms of

‘measurement instances’, i.e. at each step the system gets t = τ time to evolve. The strength of

the non-unitarity is also governed by the measurement interval τ . For small τ we can expand

the evolution operator up to second order as:

Ũ = B[I − iHτ τ
2

2 H
2 + ...]B (5.1)

We can split the Hamiltonian into three parts: H = Hs +HM + V , one Hamiltonian for the

translation invariant bulk (Hs), one for the measurement sites (Hm) and a potential coupling

the boundary to the system (V ):

Hs =
∑
l,m

Hl,m |l〉 〈m| ; Hm =
∑
α,β

Hα,β |α〉 〈β|

V =
∑

l, αVl,α |l〉 〈α|+ Vα,l |α〉 〈l| .

Here, we denoted the system state by indices l,m and the boundary sites by α, β. Note that

system and boundary states do not overlap. Therefore, all inner products between system and

boundary states will vanish and equation 5.1 becomes:

Ũ = I − iHsτ −
τ2

2 H
2
s −

τ2

2
∑
l,m

∑
α

Vl,αVα,l 〈l|m〉+ ....

= e−iHeffτ +O(τ3).
(5.2)

Where:

Heff = Hs + Veff (5.3)

This is a non-Hermitian Hamiltonian that we will have to diagonalize. As long as the decoher-

ence due to the measurement is relatively small (τ < 1/γ), we can treat Veff as a perturbation.

In the following, we will assume that we measure on two sites, one at both ends of the line.

This will determine the specific form of the effective potential that couples the system sites to

the boundary. For the system states, we will assume the general tight binding Hamiltonian:

Hs = −
N−2∑
x=1

(|x+ 1〉 〈x|+ |x− 1〉 〈x|). (5.4)

The potential for two measurement sites at n = 1, N is given by:

Veff = − iη2 |2〉 〈2| −
iτ

2 |N − 1〉 〈N − 1| . (5.5)

Here, η and τ are the measurement intervals at the left and right wall respectively. These

determine the strength of the potential on both sides.
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We can now calculate the evolution of the wavefunction with repeated measurements

with perturbation theory. Therefore, we first compute the eigenvalues {εs} and eigenvectors

{|φs〉} of the system Hamiltonian. Note that there are now N − 2 states in the system.

εs = −2 cos ( sπ

N − 1) (5.6)

〈x|φs〉 = φs(x) =
√

2
N − 1 sin (sπ(x− 1)

N − 1 ) (5.7)

We can now determine the perturbation to the eigenvalues due to the potential by

calculating the expectation value of Veff:

〈Veff 〉 = 〈φs|Veff |φs〉

= − iη

N − 1φs(2)2 − iτ

N − 1φs(N − 1)2

= − iη

N − 1 sin2(sπ(N − 2)
N − 1 )− iτ

N − 1 sin2( sπ

N − 1).

(5.8)

The perturbed eigenvalues are written as ε′s = εs − i
2 (αs + βs) with αs = − 2η

N−1 sin2( sπ(N−2)
N−1 )

and βs = 2τ
N−1 sin2( sπ

N−1 ). The resulting evolution of a system eigenstate is:

|φs(t)〉 = e−iHefft |φs(0)〉 = e−αst/2e−βst/2e−iεst |φs(0)〉 . (5.9)

The evolution of a particle initially located in x0 in terms of system eigenstates reads:

|ψ(t)〉 = e−iHefft |x0〉 =
N∑
s=1

φs(x0)e−αst/2e−βst/2e−iεst |φs(0)〉 . (5.10)

Here φs(x0) denotes the decomposition of the position state into system eigenstates, which is

easily found using Equation 5.7. The quantity we are interested in is the survival probability

of the walk, which in turn, also gives us the absorption probability since the total distribution

is normalized to 1. The survival probability at a certain time is given by:

Px0(t) = 〈ψ(t)|ψ(t)〉

=
N∑
s=1

2
N − 1 sin2(sπ(x0 − 1)

N − 1 )e−
2ηt
N−1 sin2( sπ(N−2)

N−1 )e
2τt
N−1 sin2( sπ

N−1 ).
(5.11)

For comparison, it will also be instructive to look at the one boundary case where

measurements are done at a single site. The derivation is very similar except for the fact that

we now have N − 1 sites in the system and the boundary is placed at location 0. The survival

probability reads [70].

Px0(t) =
N∑
s=1

2
N

sin2(sπx0

N
)e− 2τt

N sin2( sπN ). (5.12)

We first look at the survival probability for this one boundary case (Eq. 5.12). In Figure

5.1 we plot the survival probability over time for different starting positions of the walk. We

can see roughly two types of behavior depending on the initial position. For states close to

the boundary (x0 < 10) the decay is fast, whereas for states initially in the bulk (x0 > 10) the
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Figure 5.1. – Survival probability over time for different initial position states, in the presence of one
measurement site with measurement interval τ = 0.1.

curve is way flatter. There is a relatively quick transition between the two. For a lattice of 60

sites, all starting positions x0 > 5 sites from the boundary will roughly give the same curve.

From times t/N = 100 up to t/N = 103, we can see some interesting power-law behavior.

More specifically, in [70] they derived the following dependence on the starting position:

Px0(t) = 1√
8πτt
N

(1− e−x
2
0N/2τt). (5.13)

In Figure 5.2 we plotted this function as dotted lines. We can see the similarity, although the

curves are shifted.

We can now look at the behavior of the survival probability in the presence of two walls

(Equation 5.11). In Figure 5.3 the survival probability is shown for an initial state close to one

of the boundaries and for an initial state well in the bulk. First, we chose the measurement

intervals at both walls to be η = τ = 0.1.We see very similar behavior as in the one boundary

case. From the equations, it is easy to verify that in this case, the decay constant will be

roughly twice as big. In general, we can say that:

αs + βs = − 2η
N − 1 sin2(sπ(N − 2)

N − 1 ) + 2τ
N − 1 sin2( sπ

N − 1)

= 2t
N − 1 sin2( sπ

N − 1)(η + τ)
(5.14)

Now for large N, N − 1 ≈ N such that if η = τ the decay constant is indeed twice as big as for

the one boundary case. This is also visible in the graphs, see Figure 5.3 where we plotted the

one boundary case as solid lines and the two boundary case as dotted lines for three different

starting positions. Here we see that the relative patterns do not change, the curves just get

shifted. This supports our analytical finding that the survival probability should decay twice

as fast if all measurement intervals are equal.
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Figure 5.2. – Survival probability in the presence of one measurement site with interval τ = 0.1. The
dotted lines represent the power law as in Equation 5.13.

Figure 5.3. – Survival probability over time in the presence of one and two measurement sites in position
N=1,100 with measurement interval τ = η = 0.1.
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Figure 5.4. – Survival probability over time for different values of η, τ is fixed at 0.1. N = T = 100,
x0 = 2 (left) and x0 = 10 (left).

We now vary the measurement interval at the second boundary, while keeping the first

one fixed at τ = 0.1. See Figure 5.4. The curves get shifted downwards for higher values of η,

corresponding to more frequent measurements.

5.2 Interpretation of the Results
Focusing on the absorption probability of the walls, a power-law kind of behavior over

time is observed. The exact power depends on whether the initial state is located well within

the bulk or close to one of the boundaries. This is summarized by Equation 5.12 for one

boundary. In Figure 5.1 we observe two types of behavior, which is readily explained by

Equation 5.12. When x0 is small (close to the boundary) and Nx0 is small compared to tτ ,

we can expand the exponential as:

e−Nx0/2τt ≈ 1− Nx2
0

2τt + 1
2
(Nx2

0
2τt

)2 + ... (5.15)

where x = tτ
N . Focusing on the dependence on t, to first order the survival probability decays

as:

P (t) = 1√
8πτt
N

(1− eNx
2
0/2τt) ≈ 1/t3/2. (5.16)

Apart from the region where x0 is very small, the factor Nx0/2τt is big for a large range

of t. Therefore, the survival probability will be dominated by the prefactor 1/
√

8πτt
N and thus

decay over time like 1/t1/2. The transition between these two regimes is the transition from

an intermediate asymptotic behavior for the small values of x0 to the full asymptotic behavior

of the system and takes place over only a couple values of x0. In the case of two boundaries,

the behavior is not very different, the decay is just faster. The relative speed of decay is given

by the measurement frequencies. If the same frequencies are used for all walls in the single

and double wall system, the decay is exactly twice as fast in the two boundary system.

This power-law type of behavior for the survival probability is something we also find

in the classical random walk. In that sense, the continuous-time quantum walk does not

provide many new insides. This is mainly because the coherence is not so important for the

dynamics, in this case, leading to unsurprising absorption behavior. Furthermore, because

of the Hamiltonian structure and absence of the coin, there are only limited ways to bias the

walk. On top of that, although the continuous-time quantum walk also reduces to a classical
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random walk when introducing a sufficient amount of decoherence, the connection between

the two is less clear. All in all, the continuous-time quantum walk does not provide us with

enough new opportunities for a decision-making framework. Therefore, we will return to the

coined quantum walk for the remainder of this thesis.
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6Evolution of the global spin
distribution

6.1 The spin at the center of attention
So far, we have essentially followed the classical SRDT framework, in the sense that the

subjective- or choice probabilities are given by the relative absorption probabilities, somehow

imposing from outside a choice criterion. However, with the quantum walk, we might as

well switch views and focus on the spin of the walker instead. This approach is appealing in

multiple ways. First, the quantum spin is a discrete entity, as is the choice between lotteries.

Roughly, we encode the information about lotteries in the walker position space; then, we

study how the evolution in position space affects the evolution in the spin space, representing

now the choice probabilities. The spin here is not treated as a redundant degree of freedom;

rather, its distributional properties, intrinsically coupled with the ‘external environment’,

directly reveal the decision-maker preferences.

Note that since no boundaries are involved in this case, the walk is completely coherent

and translational invariant, permitting an analytical solution. Lastly, the interpretation of ρ

governing the level of ‘irrationality’ as discussed in Section 4.1 still holds in this case. Thus,

without introducing decoherence we have a ‘rational’ limit in which the choice probabilities

will be given by the initial state.

The next question is how to measure the spin. During the evolution, the probability

distribution of the walker spreads out over multiple positions. The amplitude at each site

is given by the spin components. Depending on where and when you measure, the relative

magnitude of these two components can be completely different. In order to understand how

the spatial degree of freedom influences the spin, we will start from the evolution of the global

spin distribution. In essence, by tracing out the position by summing over all sites, we get the

“total” spin probability of the system, i.e. the probability of measuring the spin-independent of

the particle position. We will now first give an introduction to the evolution of such global

spin distribution for the usual two-dimensional coin state. Then, to build the framework for a

choice between two binary lotteries, we will enlarge the spin space to four dimensions, giving

us the opportunity to use the individual lottery components to shape the evolution. Finally,

we will tie everything together and present a framework of decision making based on the

weighted spin distribution of the four-spin state quantum walk in one dimension.
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6.2 Global spin Distribution
The description of the global spin evolution is very similar to the one used in 2.4. We

follow the notation of [71] and write the general Hadamard coin as:

Ĉ =
(

cos θ sin θ
sin θ − cos θ

)
. (6.1)

Note that we only take a one parameter coin to keep the notation clear. The extension to a

more general coin is straightforward. The wavefunction of the walker can be written as:

|ψ(x, t)〉 =
(
ax(t)
bx(t)

)
, (6.2)

where the subscript x denotes the spatial position and t the time step. With the usual step

operator, the evolution of the two components is given by:

ax(t+ 1) = cos θax+1(t) + sin θbx+1(t) (6.3)

bx(t+ 1) = sin θax−1(t)− cos θbx−1(t) (6.4)

The probability to be in the left-spin state at position x at time t is given by: Pu(x, t) =
|ax(t)|2. Therefore, the total left and right spin probabilities at time t are given by:

PL(t) =
∑
x

|ax(t)|2 PR(t) =
∑
x

|bx(t)|2. (6.5)

These two components form the so called global spin distribution:

[
PL(t)
PR(t)

]
. Given Equation

6.3, we can write the evolution of the global spin as:[
PL(t+ 1)
PR(t+ 1)

]
=
(

cos θ2 sin θ2

sin θ2 cos θ2

)[
PL(t)
PR(t)

]
+ Re(Q(t)) sin 2θ

[
1
−1

]
, (6.6)

where Q(t) =
∑
x ax(t)b∗x(t). With this equation, the evolution is split in a Markovian and an

interference part regulated by Q(t). If Q(t) = 0 for all t, the process is Markovian. However,

since Q(t) is time dependent, we cannot generally solve this equation. However, if we assume

that Q(t) is constant in time, the Equation 6.6 is readily solved to be [71]:[
PL(t)
PR(t)

]
= 1

2

(
1 + cos 2θt 1− cos 2θt

1− cos 2θt 1 + cos 2θt

)[
PL(0)
PR(0)

]
+Re(Q)1− cos 2θt

tan θ

[
1
−1

]
. (6.7)

This shows that in the absence of interference the evolution is described by a master equa-

tion.

Because of the conditional nature of the shift operator, the spin and position are entangled.

The entanglement can be quantified by the entanglement entropy defined as [72]:

SE = −Tr(ρc log ρc) (6.8)
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where ρc is the reduced density matrix
∑
x |Ψ(x)〉 〈Ψ(x)| in coin space. Using the shorthand

notation:

A =
∑
x

|ax|2 (6.9)

B =
∑
x

axb
∗
x (6.10)

C =
∑
x

|bx|2 (6.11)

∆ = AC − |B|2 (6.12)

we can write the eigenvalues of ρc as [72]:

r1,2 = 1
2[1±

√
1− 4∆]. (6.13)

Then the entropy of entanglement is given by:

SE = −(r1 log2 r1 + r2 log2 r2). (6.14)

The fact that the entropy of entanglement is non-zero means that the spin and position can

influence each other. However, the entropy of entanglement does not give a causal relation,

i.e. it is still unclear how the spin affects the spatial distribution and vice versa. By focusing

on the absorption probability while encoding the objective probabilities in the initial spin

state we investigated how the spin affects the position degree of freedom. Now, focusing on

the distribution of the spin, we investigate the inverse relation. In the following sections,

we will first enlarge the spin space to four dimensions to encode a binary choice between

binary lotteries. We will redefine the shift and coin operator accordingly and investigate their

influence on the spin distribution.
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6.3 Using the spin as decision variable
Our first goal is to model the decision between two binary lotteries. This means that

we have four lottery components in total that can be evaluated. Because we want to allow

the components and lotteries to be evaluated in a dependent way we only use one walker to

model the choice process as a whole. To still account for all individual components we enlarge

the coin space to four dimensions. The wave vector is now described by:

|ψ(x, t)〉 =


ax(t)
bx(t)
cx(t)
dx(t)

 . (6.15)

To tailor the state to the choice between lotteries we associate the first two components with

the first lottery and the last two with the second lottery. In general, we consider two lotteries

of the form: L1 = [v1, p; v2, 1−p] and L2 = [v3, q, ; v4, 1− q]. Similar to what we did in Section

4.1 we use the initial spin state to encode the objective probabilities of the lotteries, i.e. our

initial spin state is given by: 
L↑1(0)
L↓1(0)
L↑2(0)
L↓2(0)

 = 1√
2


√
p

i
√

1− p
i
√
q

√
1− q

 . (6.16)

The state is normalized such that each lottery holds 1/2 of the total probability prior to

evolution. At time 0, the probability of choosing Lottery 1 and getting the highest value is

thus p/2, 1/2 from choosing Lottery 1 and p from getting the highest outcome. After the first

step, this probability will be given by
∣∣∣L↑1(1)

∣∣∣2. Note that we fixed the phase factors such

that the two middle components start out in the imaginary domain. This ensures that if all

probabilities are equal to 0.5 the probability distribution in position space will be symmetric

for every value of ρ and η. However, different choices for the phase factors are also possible.

To evolve the walker we need to adapt the coin and shift operator to the four dimensional spin

state. We create a four dimensional coin by taking the outer product of two two-dimensional

generalized Hadamard coins (see Equation 2.7) H(ρ)⊗H(η):

C4 =


√
η
√
ρ

√
1− η√ρ √

η
√

1− ρ
√

1− η
√

1− ρ
√

1− η√ρ −√η√ρ
√

1− η
√

1− ρ −√η
√

1− ρ
√
η
√

1− ρ
√

1− η
√

1− ρ −√η√ρ −
√

1− η√ρ
√

1− η
√

1− ρ −√η
√

1− ρ −
√

1− η√ρ √
η
√
ρ.

 (6.17)

Because of the structure, ρ and η both have a different role. Consider the limiting case ρ = 1.

In this case, the coin is a block diagonal matrix. This means that within each lottery the

components can mix, however, there is no mixing between the two lotteries. On the other

hand, if we take η = 1 only components from different lotteries mix. In general, we can say

that ρ regulates the mixing between lotteries and η the mixing within. However, ρ and η do

not act independently and can amplify or decrease each other’s effects.
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The next step is to define how the walker moves in space. We still want the problem to

be one-dimensional in space and therefore we go back to the wealth space we discussed in

Section 4.2. For the moment we restrict ourselves to gain lotteries only. The walker starts out

in position x0 representing 0 additional wealth. Both to the left and right the wealth level

goes up by a certain amount per step. For simplicity we set this amount to e1 per site, i.e.

taking one step to the left or right corresponds to gaining e1 unit. Conceptually, the walk

in value space represents a decision-maker imagining playing the lotteries multiple times to

see which lottery gives the highest expected value. Because the two lotteries are evaluated

at the same time the multiple possible paths that lead to the same wealth level can interfere.

Furthermore, by adjusting the coin operator, different components mix during the evolution,

representing the inability to assess all options rationally and independently.

Since the walk now takes place in wealth space, we can use the step operator to encode

the values of the lotteries. In general we define the shift operator as:

Sv =
∑
x

|x〉 〈x− v1| ⊗
∣∣∣L↑1〉〈L↑1∣∣∣+ |x〉 〈x− v2| ⊗

∣∣∣L↓1〉〈L↓1∣∣∣
+ |x〉 〈x+ v3| ⊗

∣∣∣L↑2〉〈L↑2∣∣∣+ |x〉 〈x+ v4| ⊗
∣∣∣L↓2〉〈L↓2∣∣∣ . (6.18)

With this shift operator, each component is shifted a number of sites equal to the gain in

wealth that the outcome represents. Here, the two components of Lottery 1 are shifted to the

left, and the components of Lottery 2 are shifted to the right. As an illustration, think of the

two lotteries as being coin flips. For the first lottery, if the coin shows head you gain ev1, if

it shows tail you get ev2. Now if the walker ends up in the first spin state, this corresponds

to choosing to play Lottery 1 and the outcome being heads. In this case, you take v1 steps

to the left, representing an increase in wealth of v1 units. The shift operator is fixed at each

step, however, which portion of the wave-function takes which step is determined by the

spin state and thus by the subjective probabilities. Note that in this way the probability and

value influences are in principle in different Hilbert spaces, but because of the entanglement

between spin and position they both influence the walk in a non-trivial and non-separable

way.

The concept of interference is also intuitive in this set-up. Components can interfere

if they are at the same site, meaning at the same wealth level. The interference is then

between different paths that lead to the same wealth level. As the walk evolves, the probability

distribution will spread out over many different wealth levels depending on the parameters

of the coin. The goal of this approach is to describe the formation of the subjective expected

values of each lottery. To quantify this, we measure the spin distribution after a predefined

number of evolution steps. To account for the achieved wealth levels, we take a weighted

distribution over the position space. The weighting function can be seen as a utility function

with the minimal property that it increases in |x− x0|. This, because the components that are

located the furthest away from the starting position represent the highest gain in wealth and

should, therefore, get a larger weight. To extract the expected value of each lottery we group

the first two and last two spin components together to get the total subjective expected value

of Lottery 1 and 2 respectively. Mathematically this means that the subjective expected value

of a lottery is given by:

Es(Li(x)) = 1
t

∑
x

f(x)(
∣∣∣L↑i (x, t)∣∣∣2 +

∣∣∣L↓i (x, t)∣∣∣2), (6.19)
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where f(x) is the weighting function (utility function) and
∣∣∣L↑i (x, t)∣∣∣2 represents the probability

of being in position x and spin state L↑i at time t. The prefactor 1/t denotes that we are

taking the time average. By looking at the time average we account for the fact that the

walker spreads in position space over time, therefore achieving a higher bias factor at larger

times. Taking the average makes sure that we can retrieve the rational expected values when

ρ = η = 1, we will show this explicitly in Subsection 6.4.

Based on these expected values we can define the choice probability. There are different

choices possible, just like there are multiple possible choices for the weighting function. Here,

we will consider the simple case of a linear weighting function:

f(x) =

(x0 − x) for L1

(x− x0) for L2.
(6.20)

Note that the signs are different for Lottery 1 and 2 because lottery 1 walks to the left and

thus (x− x0) would be negative. We choose not to use the absolute value here to distinguish

between the left and right domains. Components that are found in the left half of the line were

part of Lottery 1 for at least 1 step longer than for Lottery 2 since only Lottery 1 components

are shifted to the left. This means that we can denote the left half as the ‘Lottery 1 domain’.

Because of mixing between the components, it is still possible to find Lottery 2 components in

the Lottery 1 domain. Conceptually, this could represent a decision-maker that chose Lottery

1 multiple times but then switched to Lottery 2 in the last step. By allowing the weighting

function to be negative, the components that are found in the ‘wrong’ domain contribute

negatively to the total expected value therefore indirectly raising the choice probability of

the other lottery. This assumption amplifies the effects of the coin parameters ρ and η and

therefore we use it here to illustrate the model. However, many more options are possible for

the utility function.

The choice probability is a function of the subjective expected values. We here use

the most straightforward definition of choice probability as the ratio of subjective expected

values:

P c(L1(t)) = Es(L1(t))
Es(L1(t)) + Es(L2(t)) . (6.21)

To compare the outcomes of the walk with the ‘rational’ case we also define the rational

choice probability, given by the ratio of objective expected values:

P r(L1) = pv1 + (1− p)v2

pv1 + (1− p)v2 + (1− q)v3 + qv4
. (6.22)

This represents the rational choice probability of Lottery 1 with the familiar lottery

parametrization: L1 = [v1, p; v2, 1− p] and L2 = [v3, q, ; v4, 1− q].

6.3.1 Evolution of the expected values

To understand the properties of the model, we look at the evolution of the subjective

expected values. Note that the weighting function is always imposed afterward and therefore

thus not actively influence the evolution.

Analogously to Equation 6.6, we can again write the evolution of the global spin distri-

bution as a Markovian part plus interference terms. The evolution is given by the repeated
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application of U4 = Sv(IN ⊗C4) where the shift and coin operator are given by Equation 6.18

and 6.17 respectively. Note that instead of one interference term, we now have several, which

can be compactly written in matrix form. We denote by L↑1 the expected value of the first

component of Lottery 1 at time t, the other components are defined in a similar fashion.


E(L↑1)(t+ 1)
E(L↓1)(t+ 1)
E(L↑2)(t+ 1)
E(L↓2)(t+ 1)

 =


ηρ (1− η)ρ η(1− ρ) (1− η)(1− ρ)

(1− η)ρ −ηρ (1− η)(1− ρ) −η(1− ρ)
η(1− ρ) (1− η)(1− ρ) −ηρ −(1− η)ρ

(1− η)(1− ρ) −η(1− ρ) −(1− η)ρ ηρ



E(L↑1)(t)
E(L↓1)(t)
E(L↑2)(t)
E(L↓2)(t)



+


√
η(1− η)(1− ρ)

√
η(1− η)ρ

√
ρ(1− ρ)(1− η)

√
ρ(1− ρ)η√

η(1− η)(ρ− 1) −
√
η(1− η)ρ

√
ρ(1− ρ)η

√
ρ(1− ρ)(1− η)√

η(1− η)ρ (1− ρ)
√
η(1− η)

√
ρ(1− ρ)(η − 1) −

√
ρ(1− ρ)η

−
√
η(1− η)ρ (ρ− 1)

√
η(1− η) −

√
ρ(1− ρ)η

√
ρ(1− ρ)(η − 1)



A(t)
B(t)
C(t)
D(t)



+
√
η(1− η)

√
ρ(1− ρ)


1
−1
−1
1


(6.23)

where

A(t) =
∑
x

f(x)Re(L↑2(x, t)L↓2(x, t)∗) B(t) =
∑
x

f(x)Re(L↑1(x, t)L↓1(x, t)∗)

C(t) =
∑
x

f(x)Re(L↓1(x, t)L↓2(x, t)∗) D(t) =
∑
x

f(x)Re(L↑1(x, t)L↑2(x, t)∗)

E(t) =
∑
x

f(x)(Re(L↑1(x, t)L↓2(x, t)∗) +Re(L↓1(x, t)L↑2(x, t)∗))

(6.24)

The presented set-up described a decision-maker that imagines playing the lotteries

multiple times. By keeping track of the wealth gains a subjective expected value of each

lottery is formed. The expected values are defined as the time average of the weighted sum

over position space. Because of the interference, this time average is no longer equal to the

ensemble average which you would get by averaging over a large number of walkers. This

means it breaks ergodicity.

In the next section, we look at the influence of the parameters of the walk on the subjective

expected values and the choice probabilities.

6.4 Influence of the parameters
Before we dive into the role of the different parameters, we show explicitly how taking

the time average makes sure that we retrieve the rational choice probabilities for ρ = η = 1. In

this ‘rational’ case, the coin operator is simple a four-dimensional identity matrix, thus the spin

distribution is given by the initial state in each step. The application of the shift operator then

shifts each component according to the value of the outcome. For simplicity, we set x0 = 0
such that the displacement is simply given by the absolute value of the position. Because there

is no mixing during the T timesteps, the four occupied states during the evolution are vi × t.
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Using Equation 6.19 the subjective expected value of the first components is simply given

by:

E(L↑1)(t) = 1
t

∑
x

x
∣∣∣L↑1∣∣∣2 = 1

t
v1 × t× p = v1 × p. (6.25)

So we see that by normalizing the expected value by the number of time steps the case

η = ρ = 1 gives exactly the objective expected value.

We now investigate the role of the parameters of the coin, shift operator and initial state

in the evolution. To isolate the effects of ρ and η we first look at the evolution of a completely

symmetric initial state: 
L↑1
L↓1
L↑2
L↓2

 = 1
2


1
i

i

1

 . (6.26)

This initial state represents the lotteries L1 = [v1, 0.5; v2, 0.5] and L2 = [v3, 0.5; v4, 0.5].
With all probabilities being equal, the distribution in position space will be symmetric, however

the choice probability still depends on the values of the outcomes. For the special case v1 = v3

and v2 = v4, the choice probability will be 50/50.

Application of the coin on this state yields
1
2
√

1− η
√

1− ρ+ 1
2 i
√
η
√

1− ρ+ 1
2 i
√

1− η√ρ+
√
η
√
ρ

2
1
2 i
√

1− η
√

1− ρ− 1
2
√
η
√

1− ρ+ 1
2
√

1− η√ρ− 1
2 i
√
η
√
ρ

1
2 i
√

1− η
√

1− ρ+ 1
2
√
η
√

1− ρ− 1
2
√

1− η√ρ− 1
2 i
√
η
√
ρ

1
2
√

1− η
√

1− ρ− 1
2 i
√
η
√

1− ρ− 1
2 i
√

1− η√ρ+
√
η
√
ρ

2

 . (6.27)

Application of the biased shift operator now shifts each component to a different site.

We can then calculate the probability to end up at the corresponding sites by squaring the

amplitudes:

|Ψ(x, 1)〉 =
√
−(η − 1)η

√
−(ρ− 1)ρ+ 1

4 |x0 − v1〉+ 1
4 −

√
−(η − 1)η

√
−(ρ− 1)ρ |x0 − v2〉

+ 1
4 −

√
−(η − 1)η

√
−(ρ− 1)ρ |x0 + v3〉+ 1

4 +
√
−(η − 1)η

√
−(ρ− 1)ρ |x0 + v4〉 .

(6.28)

To calculate the choice probability we take the weighted sum over position space

P cL1
(1) =

4
√

(1− η)η
√

(1− ρ)ρ(v1 − v2) + v2 + v1

v1 + v2 + v3 + v4 + 4
√

(1− η)η
√

(1− ρ)ρ(v1 − v2 − v3 + v4)
(6.29)

We see that the weighted distribution makes sure that both ρ and η have an effect on

the choice probability as well as the absolute and relative values of the outcomes. Of course,

this is only after one step so interference does not play a role yet unless either v1 = v2 or

v3 = v4 and thus multiple components end up at the same site. We also see that if either η = 1
or ρ = 1 the choice probability is simply given by the values. Note that this is because we

chose a symmetric initial state for the probabilities, i.e. each outcome has the same objective

probability, otherwise, this would not be the case.
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(a) ρ = 1, η = 1 (b) ρ = 0.1, η = 0.5

(c) ρ = 0.7, η = 0.5

Figure 6.1. – Probability distribution in position space for different values of ρ, η. All Figures display
lotteries: L1 = [9, 0.7; 2, 0.3] and L2 = [0.4, 2; 0.6, 7].

To investigate the interplay between probability, value and coin parameters we numeri-

cally investigate the evolution of the general initial state:
L↑1
L↓1
L↑2
L↓2

 = 1√
2


√
p

i
√

1− p
i
√

1− q
√
q

 . (6.30)

This state represents the lotteries L1 = [v1, p; v2, 1−p] and L2 = [v3, q; v4, 1− q] where v1 > v2

and v3 > v4. As a reference we always take the objective expectation values, or equivalently,

the case ρ = η = 1.

To illustrate the distribution that results from the defined walk, we show in Figure 6.1

the distribution in position space for: (Fig. 6.1a) the rational case η = ρ = 1; (Fig. 6.1b) the

case of medium mixing within the lottery η = 0.5 and absence of inter-lottery mixing (ρ = 1);

(Fig. 6.1c) medium inter lottery mixing η = 0.5 and ρ = 0.7. We see that the fully rational

case indeed produces a 4-peaked distribution where the magnitude of the peaks is given by

the initial state amplitudes. By allowing for mixing within the lotteries, two separate quantum

walk distributions arise in two different parts of the line. By allowing for both mixing within

and between lotteries the distribution is no longer split but occupies all states between the

two side peaks. In this case, all components of the lotteries can potentially interfere as well.
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6.4.1 Subjective expected value

We now take a look at the subjective expected values. First of all we look at lotteries

L1[10, p; 2, 1− p] and L2[10, 0.5; 2, 0.5]. That means, we fix all values and the probabilities in

Lottery 2, but vary the probabilities in Lottery 1. Note that the values are the same in both

lotteries. Figure 6.2 displays the subjective values of both lotteries for different values of ρ

and η.

A first important observation is that varying the probability in Lottery 1 also has an effect

on the expected value of Lottery 2, explicitly showing the interdependence of the components.

Second, we see that the expected values are underestimated for ρ 6= 1. This is because the

mixing between components leads to a spread in position space, therefore deviating from the

four-peaked distribution of the rational case. Therefore, we now have multiple weighting

factors all of them equal to or lower than what we would achieve without mixing. Thus, the

amount of probability in the peak located furthest away from the initial position is smaller

and thus the portion of the wavefunction receiving maximum weight is also smaller, leading

to an overall lower expected value. Since the underestimation occurs for both L1 and L2 the

relative effects will only be visible in the choice probability.

(a) ρ = 0.5 (b) ρ = 0.5

(c) ρ = 1 (d) ρ = 1

Figure 6.2. – Subjective expectation value of Lottery 1 on the left and Lottery 2 on the right as a function
of the probability of the probability p of outcome 1 in Lottery 1 for different values of ρ
and η. The displayed lotteries are L1[10, p; 2, 1− p] and L2[2, 0.5; 10, 0.5]. The black lines
represent the rational expectation value of the lottery (ρ = η = 1).

Third, both ρ and η affect the slope of the curves, with ρ also responsible for an overall

shift such that the higher the value of ρ the closer the subjective value comes to the rational

value. For ρ = 1 the values of η lead to an overestimation (underestimation) of the expected

value of Lottery 1 for p < 0.5 (p > 0.5), while the expected value of Lottery 2 is equal to the
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rational value for all values of η in this case. This is intuitive since in the absence of mixing

between lotteries they are evaluated independently and thus a change in Lottery 1 does not

affect the expected value of Lottery 2.

(a) ρ = 0.5 (b) ρ = 0.5

(c) ρ = 1 (d) ρ = 1

Figure 6.3. – Subjective expectation value of Lottery 1 on the left and Lottery 2 on the right as a function
of the value v1 of the first outcome of Lottery 1 for different values of ρ and η. The
displayed lotteries are L1[v1, 0.4; 2, 0.6] and L2[10, 0.5; 2, 0.5]. The black lines represent
the rational expectation value of the lottery (ρ = η = 1).

We now fix the probabilities, but vary the values in Lottery 1 and again look at the subjec-

tive expected value for different values of ρ and η. Figure 6.3 displays lotteries L1[v1, 0.4; 2, 0.6]
and L2[10, 0.5; 2, 0.5]. Again, we see the overall underestimation if ρ 6= 1. Furthermore, we

see a peak in the distribution for v1 = 10. At this point, the lotteries are equal in value which

possibly leads to more interference because the components are more likely to end up at

the same site because of the equal step size in both directions. Again, for ρ = 1 Lottery 2 is

unaffected. For ρ = 1 it is clear that a higher value leads to a larger overestimation of the

expected value representing a higher attraction for high valued outcomes.

To make the dependence on ρ and η more clear, Figure 6.4 shows directly the dependence

of the subjective value of L1 and L2 as a function of η while holding ρ fixed and vice versa

for two different sets of lotteries. For 2 lotteries with unequal values (right panels) which

lottery is over/underestimated changes with the value of η leading to an inflection point. This

shows that for lower values of η the expected value of lottery with the higher total value is

overestimated. In general, we can also see that the overall shift compared to the rational

subjective value is regulated by ρ.
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(a) L1 : [10, 0.4; 2, 0.6] and L2 : [4, 0.4; 6, 0.6] (b) L1 : [10, 0.4; 2, 0.6] and L2 : [4, 0.2; 6, 0.8]

(c) L1 : [10, 0.4; 2, 0.6] and L2 : [4, 0.4; 6, 0.6] (d) L1 : [10, 0.4; 2, 0.6] and L2 : [4, 0.2; 6, 0.8]

Figure 6.4. – Dependence of the subjective expectation value of both lotteries on η (top row) and ρ
(bottom row). Note that on the left the rational expectation values are equal for both
lotteries.

6.4.2 Choice probability

Using the subjective expectation values we now investigate the influence of the parameters

on the choice probability. We use the definition of Equation 6.21, i.e. the relative subjective

value. Figure 6.5 shows the choice probability for lottery 1 in pair L1 = [10, k; 2, 1− k] and

L2 = [2, 0.5; 10, 0.5] on the left and L1 = [10, k; 2, 1− k] and L2 = [4, 0.5; 6, 0.5] on the right as

a function of the rational choice probability as defined by Equation 6.22. Note that because we

take the time average the number of steps in general only has a very small influence as long as

we allow for sufficient time to spread and interfere. Similar to what we did for the subjective

expectation values we fix lottery 2 and vary the probabilities in lottery 1. The influence of

value is now visible when comparing the left and right values.

If we first focus on the case ρ = 1 in the bottom two panels we see the same over/

underestimating behavior as in Section 4.1. Small choice probabilities as overestimated while

large probabilities are underestimated. This is also something we saw in SRDT although there

the relation followed an inverse S-shape whereas here the relation is linear. Also, note that

for the lotteries with equal values the inflection point lies at p = 0.5 while on the right side

where the values are different the inflection point is shifted. This means that even though the

rational probability of Lottery 2 is higher, the higher value of Lottery 1 leads to a subjective

choice that favors Lottery 1. The shift of the inflection point is even larger for ρ 6= 1. We could

interpret this shift as a higher risk appetite when larger values are involved in one lottery. For

an inflection point beyond p = 0.5, the low probabilities of the outcome are counteracted by
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the higher potential gain such that the decision-maker still chooses Lottery 1 although this is

rationally not the right option.

(a) ρ = 0.5 (b) ρ = 0.5

(c) ρ = 0.8 (d) ρ = 0.8

(e) ρ = 1 (f) ρ = 1

Figure 6.5. – Subjective choice probability (P c(L1), Equation 6.21 on the vertical axis as a function
of the objective choice probability (ρ = η = 1) denoted by P r(L1). The weighting
function is Equation 6.20. The panels on the left display lotteries: L1 = [10, k; 2, 1− k]
and L2 = [0.5, 10; 0.5, 2]. The panels on the right display L1 = [10, k; 2, 1 − k] and
L2 = [0.5, 6; 0.5, 4] where the value of k is varied along the x-axis resulting in an increasing
rational choice probability. The dotted line displays the bisector. The number of timesteps
is 30.

In general, we can say that η regulates the deviation in slope from the rational value and

therefore the amount of under/overestimation. On the other hand, ρ is responsible for the

overall shift, especially of the inflection point depending on the value difference. We could,

therefore, interpret ρ as the main parameter to regulate the influence of value on the choice

probability, where η regulates the importance of objective probability. However, we know that

like probability and value η and ρ do not act independently but can amplify or decrease each

other’s effects.
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6.5 Example: The Decoy Effect
One of the limitations of the classical SRDT framework was that it obeyed the indepen-

dence of alternatives assumption of the Luce choice axiom [26]. We named the decoy effect as

one of the empirically observed violations of this assumption [73], [28]. To recap, the decoy

effect is the phenomenon that an option becomes more attractive once an extra (stochastically

dominated) option is added to the choice problem. See section 1.3 for an explicit example for

choices without uncertainty.

Quantum Decision Theory as introduced in Section 1.1 can account for the Decoy Effect

because of the mathematical structure of a utility and attraction factor [74]. Imagine again

a choice between two phones with two dimension, the quality and the price. We indicate A

as the object of higher quality and higher price and B as the one with slightly lower quality,

but also a lower price. Now if you add an option C with a slightly better quality than option

A, but a price that is double the price of A, this option is in principle not very attractive.

However, adding this option attracts the buyers attention to the quality dimension of the

decision. Therefore, when comparing options A and B, A will now be favored stronger than

before because it clearly wins when it comes to quality. The attraction of attention to the

quality of the product can be described by the attraction factor q(πn) in QDT. Therefore, QDT

can account for the Decoy or Attraction effect observed in experiments and make quantitative

predictions [74].

We will now show how the previously developed spin-based decision framework can also

predict the decoy effect when choosing between lotteries.

Imagine a choice between two lotteries: L1 = [15, 0.3; 6, 0.7] and L2 = [5, 0.5; 3, 0.5]. The

expected values are E(L1) = 8 and E(L2) = 4. We can now define the ‘rational’ likelihood to

choose L1 over L2 as:

I2
L1

= P (L1 > L2)
P (L2 > L1) = 2. (6.31)

This means that it is twice as likely to choose L1 than it is to choose L2. Now we add a third

option to the problem: L3 = [3, 0.5; 1, 0.5] with expected value E(L3) = 2. We determine the

choice probability of all options of the three lottery choice by pairwise comparison. One can

imagine a sequential algorithm [75]. First, you randomly select one of the three possible

pairwise choices: {L1, L2}, {L2, L3}, {L1, L3}, each pair is picked with probability 1/3. Then,

the chosen alternative from this pair is compared to the third alternative. In this way we can

write the probability of choosing L1 in the presence of three lotteries as:

P (L1|L1, L2, L3) = 1
3 [2× P (L1|L1, L2)P (L1|L1, L3)

+ P (L2|L2, L3)P (L1|L1, L3) + P (L3|L2, L3)P (L1|L1, L3)].
(6.32)

Focusing on the likelihood of picking L1 over L2, we can directly write:

P (L1|L1, L2, L3)
P (L2|L1, L2, L3) = P (L1|L1, L3)

P (L3|L1, L3)
P (L3|L2, L3)
P (L2|L2, L3) . (6.33)
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If the alternatives are evaluated independently, Luce choice model predicts that the

relative likelihood of choosing L1 over L2 does not change when a third lottery is added [76].

In our example, the rational relative likelihood of L1 over L2 when L3 is present is given by:

I3
L1

= P (L1|L1, L2, L3)
P (L2|L1, L2, L3) = P (L1|L1, L3)

P (L3|L1, L3)
P (L3|L2, L3)
P (L2|L2, L3) = 8

2
2
4 = 2 (6.34)

Any violation of this, i.e. an increase of the likelihood when an extra option is added is

the decoy effect.

We will now demonstrate that with the framework outlined above that we can predict

the decoy effect by allowing for mixing between the components. In Figure 6.6a we plot the

likelihood of choosing L1 over L2 in the presence of two and three lotteries. Figure 6.6b

shows the ratio of the two likelihoods. We can see that the likelihood increases once a third

option is added. This is exactly the decoy effect and shows a violation of the independence

of alternatives. Based on the ratios of the likelihoods, we can also see that the decoy effect

is stronger for lower values of ρ which is expected since ρ regulates the mixing between

lotteries. The same can be said of η, which regulates mixing within the lotteries. We know

that the effects of η and ρ can amplify each other. The rational case ρ = η = 1 (although not

shown here) again represents the independent evaluation of each component and does indeed

confirm Luce’s choice axiom.

(a) Likelihood
(b) Likelihood-ratio

Figure 6.6. – (a) The relative likelihood of choosing L1 over L2 for two lotteries as in Equation 6.31
(dotted lines) and for three lotteries as in Equation 6.33 (solid lines) as a function of ρ for
different values of η. The used lotteries are L1 = [15, 0.3; 6, 0.7], L2 = [5, 0.5; 3, 0.5] and
L3 = [3, 0.5; 1, 0.5] such that the ‘rational’ likelihood is 2. The fact that the solid lines run
above the dotted lines is the Decoy Effect. (b) We plot the ratio of the two likelihoods i.e.
R = I3

L1/I
2
L1 as a function of ρ for different values of η.
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7Discussion

In this thesis, we presented some possible ways in which quantum walks can be used to

formulate a Decision Theory. The starting point was the random walk based Stochastic

Representation Decision Theory. By substituting the random walk by a quantum walk we

extended this theory in the quantum domain. In the absence of a value bias, we were able to

retrieve a similar inverse S-shape for the relation between absorption probability and starting

position which represents the objective probability as in the classical theory. However, this only

works for certain values of ρ. The attractive force resulting from a value dependent potential

in the classical case was translated to an exponential term in the coin for the quantum walk.

However, since the bias only acts locally three different coins were needed along the line.

This position dependence of the coin led to decoherence and reflection effects. Therefore, the

results deviated quite a lot from the classical case and were harder to interpret. One important

difference is that the intersection with the bisector was shifted in the classical case when a

value bias was added, whereas in the quantum case is always stays at p = 0.5. Furthermore, ρ

is the other main parameter in the quantum walk, however it was shown that its effects cannot

simply be related to those of the diffusion coefficient in SRDT. This makes it challenging to

compare the two theories on a more absolute level.

Another issue was that the introduction of absorbing boundaries is very non-trivial in

the quantum case. We chose an algorithmic protocol based on partial measurements for the

implementation. However, this breaks the translational invariance and coherent and reversible

nature of the quantum walk. This disturbance makes the formulation of an analytical solution

for the absorption probability very challenging. Also, an important feature of the quantum

walk, namely its spin degree of freedom, remained unexplored in this theory. This motivated

us to go beyond SRDT.

In Chapter 4 we discussed some other parametrizations of the decision problem while

investigations different options to bias the quantum walk. This chapter laid the foundation for

the spin-based framework presented in Chapter 6. Here, we switched from a walk between

absorbing boundaries to a walk in ‘wealth space.’ The choice between two binary lotteries

was modeled with only one walker with a four-dimensional spin vector that represents the

probabilities of all alternatives. A special shift operator with value-dependent step-sizes

determined the motion based on the probability spin-space. By finally taking a weighted sum

over the wealth space for the global spin distribution, the subjective expected values of each

lottery were determined. Comparing these expected values gives the choice probabilities. We

illustrated the method by showing how the interdependence of alternatives in this framework

can predict the Decoy effect.

This spin-based framework can be tuned in multiple ways. First of all, we have the

coin parameters ρ and η which regulate the mixing between and within lotteries respectively,

although in a non-trivial and non-separable way. Second of all, the weighting function and

even the definition of the choice probabilities can take many different forms. We took a linear

form as an example, but a more sophisticated function might be needed.
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One of the key features of SRDT was that probability and value influence the decision in

a non-trivial and non-separable way. Due to the entanglement between and position and spin

we were able to achieve that in this set-up as well. However, the dynamics are much more

complicated because of the four-dimensional spin space and variable step-operator. Therefore,

further research on the dynamics is needed to understand and interpret the influence of all

involved parameters. This also asks for an analytical solution that is not yet developed. On the

one hand, the many parameters and higher dimension make this challenging. On the other

hand, the walk is unitary and translationally invariant admitting a treatment by for example

Fourier analysis.

One advantage of this approach is that because of the entanglement between spin and

position the value and probability influence the decision in a non-trivial and non-separable

way just like in SRDT. However, where in SRDT the diffusion coëfficient determined their

relative importance, this cannot be said of ρ and η. Instead, ρ and η are essentially a measure

for the ‘irrationality’ or ‘quantumness’ of the problem. Therefore, the question is how to

relate their values to the decision problem at hand. This should be motivated by a better

understanding of the dynamics and, ultimately, experimental data.

The introduction of quantum walks into decision theory was also motivated by the

successes of Quantum Decision Theory [2]. We aimed to generalize and enrich SRDT with

quantum properties like entanglement and interference to help establish the relation with

QDT. Both in the introduction on Quantum walks and for the spin-based framework, we

showed that the evolution process can be written as a Markovian process plus interference

terms. This structure is very similar to the one in QDT. However, where this functional form

was derived from the principles of Quantum mechanics, the exact form of the functions was

postulated in QDT. In the framework presented here, we retrieved this form by assuming the

underlying process instead. Indeed, this shows that quantum walks are a powerful tool to

develop the microfoundation of QDT in the spirit of statistical physics for thermodynamics.

Additionally, we also investigated the possibilities of using Continous-Time Quantum

walks for a decision theory framework. For this, we followed the SRDT set-up of a particle

between absorbing boundaries. One advantage was that the Hamiltonian structure of this

walk permits the use of perturbation theory to analytically calculate the absorption probability.

However, because there is no coin space here, the options to bias the walk are limited.

Furthermore, the absorption probabilities are very similar as in the classical case and show

no surprises. All in all, we concluded that this did not provide enough new opportunities for

decision theory.

On the more technical side, most of the results in this thesis are based on simulations.

Simple algorithms were used to investigate the qualitative nature of the dynamics. Of course,

these simulations are subject to numerical errors and limited computation power. We did

not provide an elaborate error analysis of the walk, mainly because the focus was always

on shape more than absolute value. All figures were created with Python and are meant

to be illustrations of the model more than numerical results. Therefore, we always used

stylized lottery examples which occasionally feature extreme values to make the effects more

pronounced. The limitations of simulations again highlight the importance of analytical

solutions. We provided them where possible, but there is still a lot of work to be done here.

Further development of the theory should make it possible for the future to calibrate it against

experimental data.
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8Conclusion

The aim of this thesis was to explore the possibilities of using quantum walks to develop a

decision theory. More specifically, we aimed to generalize and enrich the classical SRDT with

quantum properties and try to connect it to the successful Quantum Decision Theory. As a

first step, we translated the set-up of SRDT to a quantum walk. This had some success in

terms of qualitative patterns. However, there were also some major differences in terms of the

implementation of the value bias and the interpretation of the parameters. For example, we

were not able to establish a relation between the diffusion coefficient of SRDT and the coin

parameter ρ which makes a comparison in quantitative terms difficult.

Motivated by the rich dynamics of the quantum walk we broadened our horizon and

developed a spin-based theory that combines different ways to bias the walk. Although the

probability and value terms of the lotteries are initially located in different Hilbert spaces,

entanglement and interference allowed them to influence the walk in a non-trivial and non-

separable way. This theory is based on some unique quantum features and has no direct

classical counterpart. Exactly the coherent and interfering nature violates the independence of

alternatives assumption and could, therefore, solve some problems of SRDT. Future research

is needed to better understand the dynamics of the four-dimensional walk in value space and

to relate all parameters to the decision problem at hand. However, the initial results such as

the prediction of the Decoy effect are promising.

Another aim was to provide a micro-foundation for Quantum Decision Theory. By writing

the evolution of the quantum walk as a Markovian process plus interference we showed the

similarities between the two theories. This shows that quantum walks have the potential of

being the key element in the underlying theory of QDT.

Of course, a lot of challenges remain and many new questions were posed in this thesis.

Especially the development of an analytical solution and a convincing translation from the

decision problem into quantum walk parameters are important avenues for future research.

We hope that this thesis can serve as a first step into the bright future of quantum walk-based

decision theory.
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Appendix





ADerivation of the absorption
probability with the PQRS method

Having presented the total absorption probability in Equation 3.10, we now want to obtain an

explicit form for the coefficient by using generating functions.

p̃Nx (z) =
∞∑
t=1

pNx (t)zt r̃Nx (z) =
∞∑
t=1

rNx (t)zt (A.0.1)

Using the earlier defined recurrences we can write:

p̃Nx (z) = azpNx−1(z) + czrNx−1(z) r̃Nx (z) = bzpNx+1(z) + dzrNk+1(z) (A.0.2)

We can solve these equations to get the pure recurrences by multiple substitution:

dpNx=2(z)−
(
∆z + 1

z

)
pNx+1(z) + ap̃Nx (z) = 0

drNx=2(z)−
(
∆z + 1

z

)
rNx+1(z) + ar̃Nx (z) = 0

with ∆ = det(U) = ad− cb. Both equations satisfy the same recurrence, meaning that they

have the same roots. These can be found by solving the characteristic equation

dλ2 −
(
∆z + 1

x

)
λ+ a = 0

giving:

λ± = ∆z2 + 1±
√

∆2z4 + 1 + 2∆z2 − 4ad
2zd

We can use the following relations for a unitary matrix:

|a|2 + |b|2 = |c|2 + |d|2 = 1 ac̄+ bd̄ = 0 c = −∆b̄ d = ∆ā

to rewrite the eigenvalues as:

λ± =
∆z2 + 1∓

√
∆2z4 + 2∆(1− 2|a|2)z2 + 1

2∆āz (A.0.3)

Since λ+λ− = -1 we can now write the coefficients in terms of the eigenvalues as:

p̃Nx (z) = Azλ
x0−1
+ +Bzλ

x0−1
− r̃Nx (z) = Czλ

x0−N+1
+ +Dzλ

x0−N+1
− , (A.0.4)

where we used the distance to left and right boundary respectively as exponents. To determine

the coefficients Az, Bz, Cz, Dz we generate some new boundary conditions. Using pN0 =
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ā, rN0 = c̄ and rNN = pNN = 0 together with the recurrence relations in Eq. A.0.2 we obtain:

pN1 (z) = z and rNN−1(z) = 0. So the coefficients satisfy Az+Bz = z;Cz+Dz = 0. Abbreviating

Az − z/2 = z/2−Bz = Ez:

p̃Nx (z) =
(z

2 + Ez)λx0−1
+

)
+
(z

2 − Ez
)
λx0−1
− (A.0.5)

r̃Nx (z) = Cz(λx0−N+1
+ − λx0−N+1

− ) (A.0.6)

For the two remaining coefficients we can generate more conditions by using the recurrence

relations. For example:

rN1 (z) = (pN2 (z)− rN2 (z))z/
√

2

Using a similar relation for rNN−2 we get:

Cz = z2
√

2
(−1)N−2(λN−3

+ − λN−3
− )

[
(λN−2

+ − λN−2
− )2

− z√
2

(λN−2
+ − λN−2

− )(λN−3
+ − λN−3

− )− (−1)N−3(λ+ − λ−)2]−1
(A.0.7)

Ez = − z

2(λN−2
+ − λN−2

− )

[
2(−1)N−3(λ+ − λ−)(λN−3

+ − λN−3
− )[

(λN−2
+ − λN−2

− )2 − z√
2

(λN−2
+ − λN−2

− )

(λN−3
+ − λN−3

− )− (−1)N−3(λ+ − λ−)2]−1 + (λN−2
+ + λN−2

− )
] (A.0.8)

To obtain the absorption probability following equation 3.10 we need to invert the

expression for the generating function to obtain the real coefficients. Instead of dealing with

an infinite sum, we can set z = eiθ and perform an integral over θ to obtain the coefficients

C1, C2 and C3. This is similar as inverting the Fourier transform.

pNx0
(eiθ) =

∞∑
t=1

pNx (t)(eiθ)t, (A.0.9)

such that

pNx (t) = 1
2π

∫ 2

0
πpNx0

(eiθ)dθ (A.0.10)

Therefore the total absorption probability is (see Theorem 2 in [59]).

Theorem A.0.1

PNx0
(φ) = C1|α|2 + C2|β|2 + 2Re(C3ᾱβ)

with initial state φ =T [α, β] and

C1 = 1
2π

∫ 2π

0

∣∣ap̃Nx (eiθ) + cp̃Nx (eiθ)
∣∣2dθ

C2 = 1
2π

∫ 2π

0

∣∣bp̃Nx (eiθ) + dp̃Nx (eiθ)
∣∣2dθ

C3 = 1
2π

∫ 2π

0
(ap̃Nx (eiθ) + cp̃Nx (eiθ))(bp̃Nx (eiθ) + dp̃Nx (eiθ))dθ
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