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Abstract

Extremes and unpredictability are fascinating, but ominous words ap-
pearing in many different scientific fields, ranging from mathematics
and engineering, to physics and finance. Focusing here on the topic of
quantitative finance, this master thesis aims to address and demystify
the concepts discussed immediately above in order to give a better un-
derstanding of risky financial investments, in the context of unstable
and irrational market conditions.

In this research two different calibration approaches are adapted and
deployed to the jump-diffusion model developed by Malevergne and
Sornette [2014], in order to give statistically significant estimates to its
unknown parameters.

To begin with, the model is analysed. Results are indicative of being
able to capture empirically observed dynamics of financial time series.
Simultaneously, it is revealed that there is inherently complexity in dis-
entangling regular and anomalous activity. One of the most innovative
aspects of the model at hand, lies within its non-local self-referencing
crash-hazard rate estimate. The aim of this approach is basically to
take into account not only instantaneous price deviations of the under-
lying asset from its fundamental value, but also previously observed
unusual and unsustainable dynamics. This is achieved without the
need for endogenous factors.

The first calibration approach extends the work that has been done in
Berntsen [2015], embedding the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm developed by Spall [1987] within a
SIR particle filter implementation. Due to complex dependencies be-
tween the hyper-parameters and the latent variables extracted by the
filter, no convergence can be guaranteed. More stable estimates are
then obtained through an offline profile likelihood maximization.

As a next step, different parameter combinations are analyzed by de-
ploying a Monte Carlo calibration approach, leading to interesting ob-
servations about the model itself.

The paper concludes with a comparison to a simpler GARCH(1,1) model,
within a practical risk measure estimation context. All code and data
are available on Github.
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Chapter 1

Introduction

In the whole financial market history and especially in the last years we had
many clear proofs that the well-known efficient markets hypothesis widely
spread in the economic theory, cannot be applied. The presence of phases
where stock prices are showing extraordinary growth, known as bubbles,
could be considered as one of the most studied example of such a failure.

The idea behind the study of financial bubbles is to understand price de-
viations from their fundamental value and more precisely to model their
dynamics. In chapter 2 the model developed by Malevergne and Sornette
[2014] is introduced and positioned within the general jump-diffusion frame-
work. In their novel approach a stock is considered in a bubble if its price
is currently too far beyond what would have been its expected growth over
a certain time span [t− τ, t] and a mispricing metric will be introduced to
measure such a distance. Obviously the larger the mispricing the larger the
probability of a crash at the next time step and this will lead consequently to
a larger conditional expected return aiming to introduce positive feedbacks
in price dynamics.

The way in which the crash-hazard rate is modeled is used to correct one un-
realistic and misleading assumption made in most existing jump-diffusion
models and especially in the rational expectation ones. The wrong idea be-
hind them is that the crash-hazard rate is considered to be proportional to
the conditional expected return, underestimating the risks whenever the lat-
ter is going to zero. Non-arbitrage condition holding true in time of growing
bubbles is an additional point that Malevergne and Sornette [2014] model is
willing to correct allowing for heterogeneous collection of traders, everyone
with his own risk profile.
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1. Introduction

Due to the (usually) low frequency of jumps in “standard” market condi-
tions, positioning their appearances within rare events, and given the great
attention Poisson processes have drawn in modeling extremes, a small part
of chapter 2 has also been dedicated to their mathematical construction and
simulation.

The present work is mainly interested in estimating the parameters of the
aforementioned model. Two different approaches are pursued and they
are both described in chapter 3. The first one is basically an extension of
Berntsen [2015] where the dual estimation problem is tackled deploying an
online version of a stochastic optimisation (SPSA) algorithm included within
a Sequential Monte Carlo (SMC) framework. The second approach instead
is a modified profile likelihood method implemented following the guide-
lines in Filimonov, Demos, and Sornette [2016].

Different simulations of the model, Particle Filter and optimisation methods
are performed, compared and summarized in chapter 6. Application to fi-
nancial data is then showed in chapter 7 where Malevergne and Sornette
[2014] model is compared to a simpler GARCH(1,1), whose estimation is
presented in the Appendix, to estimate VaR and ES leading to quite interest-
ing results.
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Chapter 2

Models of Bubbles and Crashes

The idea of the following chapter is to introduce a discrete-time version of a
jump-diffusion model developed by Malevergne and Sornette [2014]. Since
it is part of the same framework a general introduction to jump-diffusion
models and their specific use in modeling bubbles and crashes in financial
markets is also given in section 2.1 together with a brief digression on point
processes. Section 2.2 is then dedicated to the introduction of rational expec-
tation models. In section 2.3, we propose a model with which we attempt to
correct the unrealistic assumptions of the aforementioned class of rational
expectation models.

2.1 Jump-Diffusion Models

Over the last few years much attention has been given to jump-diffusion
models by academic researchers and practitioners from major banks and fi-
nancial institutions. Economists like Blanchard and Watson [1982] have tried
to explain and understand consistency between rationality and deviation of
assets prices from their fundamental values, coming to the conclusion that
in many markets, phenomena such as runaway asset prices and crashes have
foundation built upon the well-known rational expectations theory. Later in
the 80s Weil [1987] considered and formalized a psychological phenomenon
important during chaotic periods, for example bubbles, that is trust. He ob-
served that stochastic bubbles on intrinsically useless assets may exist only
if enough faith is pinned on its persistence in the future.

Moving forward to a more mathematical approach the general framework
developed by Black and Scholes is widely known to be far too simplistic and
not to be able to capture all the features showed by empirical financial time
series like leptokurticity, volatility clustering and implied volatility smile
just to mention but a few. Its limitations stem from the fact that Black and
Scholes were willing to model stock return dynamics deploying only basic
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2. Models of Bubbles and Crashes

stochastic processes with continuous path. In order to overcome these draw-
backs, Merton [1976] extended the diffusion framework introducing jumps
in the dynamics aiming to retrieve the discontinuity observed in financial
data.
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Figure 2.1: Top: IBM daily adjusted closing prices from January 1995 to Jan-
uary 2016. Threshold for (absolute) jumps is set to 7%. Bottom: GBP/JPY FX
Rate tick data during Brexit week, 23-24 June 2016. Threshold for jump set
to 0.7%. Green and red bars denote positive and negative jumps respectively.
Reference for jumps always on the right y axis.

In the general jump-diffusion framework log-prices are indeed described
by a mixture of a Brownian motion and a Poisson point process, named
respectively, diffusion and jump part. Although during unstable historical
periods and especially after the last financial crisis jumps are appearing with
more and more frequency, they are still considered in research as part of the
branch dealing with rare events and point processes are pretty well-known
means used to model them. Let (Ω,F , P) be a probability space and (E, E)
a measurable state-space where the points exist. For a sequence {Zi}i≥1 ∈ E
and ∀A ∈ E a counting measure on E is defined by
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2.1. Jump-Diffusion Models

m(A) = ∑
i:Zi∈A

1 = #{i : Zi ∈ A}. (2.1)

Additionally if for all compact sets K ⊂ E the value m(K) is finite, eq. 2.1
defines a point-measure. Let now Mp(E) be the space of all point-measures
on E equipped with an appropriate σ−algebra Mp(E). We can now give
the followings:

Definition 2.1 A point-process on E is a measurable map

N : (Ω,F , P) −→ [Mp(E),Mp(E)] .

ω 7−→ N(ω) = mω(·) .

Definition 2.2 A point-process N is called Poisson Point Process (or Poisson Ran-
dom Measure) on E with intensity measure (or mean measure) Λ if:

• for A ∈ E and K ≥ 0 ,

P(N(A) = K) =

{
Λ(A)K

K! · e−Λ(A) if Λ(A) < ∞ ,
0 if Λ(A) = ∞ ;

(2.2)

• for any m ≥ 1 if A1, · · · , Am are mutually disjoint sets in E then the random
variables N(A1), · · · , N(Am) are iid.

Poisson processes have piecewise constant trajectories, are right-continuous
with left limits and constant jumps size equal to 1 where the intervals be-
tween them are exponentially distributed.
Three (intrinsic) properties follow immediately from the above definitions

1. points occur independently of one another;

2. the occurrence of a point x ∈ E neither encourages nor inhibits the
occurrence of other points;

3. complete randomness, that is lack of interaction between different re-
gions and the points in general, driven by the variation of the intensity
measure Λ.

Since the main focus of this thesis is in finance, it makes more sense to con-
sider a process with not only a single possible jump size. A generalization
is then given by the compound Poisson process where the waiting times
between jumps are exponential, but the jump sizes can have an arbitrary
distribution. More precisely, let N be a Poisson process with parameter λ
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2. Models of Bubbles and Crashes

and {Yi}i≥1 be a sequence of independent random variables with law f . The
process

Xt =
Nt

∑
i=1

Yi ,

is called compound point process.
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Figure 2.2: Top: sample path of a compound Poisson point process with
normally distributed jump sizes. Bottom: simulated Brownian motion tra-
jectory.

As we have already specified in order to obtain a simple jump-diffusion pro-
cess it is enough to combine a Brownian motion with drift and a compound
Poisson process. In finance one of the best known model of this type is the
Merton model [Merton, 1976] where the stock price dynamics is given by

dSt

St−
= µdt + σdWt + d

(
Nt

∑
i=1

Yi

)
, (2.3)

where St− = lims↑t Ss and Wt is a standard poisson process. As described
in Eraker, Johannes, and Polson [2003] and Christoffersen, Jacobs, and Mi-
mouni [2007] a more general definition of a jump-diffusion model is assum-
ing that the logarithm of stock prices, Xt = logSt and the underlying vari-
ance, Vt, jointly solve the following system of stochastic differential equa-
tions:
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2.1. Jump-Diffusion Models
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Figure 2.3: Blue line (left scale): simulated sample path of a jump-diffusion
process (Brownian motion + compound Poisson). Red bars (right scale):
jumps generated by the compound Poisson point process.

(
dXt
dVt

)
=

(
µ− 1

2 Vt−
α(Vt−)

)
dt +

√
Vt−

(
1 0

ρσv
√
(1− ρ2) · σv

)
dWt +

(
ξxdNx

t
ξvdNv

t

)
,

(2.4)

where Vt− = lims↑t Vs, Wt is a standard Brownian motion in R2 where the
two components dWx

t and dWv
t have correlation ρdt, Nx

t and Nv
t are Poisson

processes with constant intensities λx and λv, and ξx and ξv are the jump
sizes in returns and volatility, respectively. Just to be a bit more clear ρ con-
trols the asymmetric correlation in the leverage effect, that is the empirical
evidence showed in Black [1976] that leverage of firms increase proportion-
ally to the decrease in the share values. Most of the popular model used in
finance for option pricing and hedging like Heston, pure stochastic volatility
(SV), SVJ that incorporate jumps in returns and also the more complex SVIJ
that include correlated jumps within both variance and return dynamics, are
included in the specification (2.4).

The following Euler discretization scheme with interval ∆ = 1 is used in
order to solve the equation (2.4) with rt+1 = Xt+1 − Xt describing asset log-
returns
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2. Models of Bubbles and Crashes

rt+1 = µ− 1
2

Vt +
√

Vtε
x
t+1 + ξx

t+1 Jx
t+1 ,

Vt+1 = Vt + α(Vt) + σv
√

Vtε
v
t+1 + ξv

t+1 Jv
t+1 ,

(2.5)

where the two shocks εx
t+1 = Wx

t+1−Wx
t and εv

t+1 = Wv
t+1−Wv

t are bivariate
normally distributed with zero mean, unit variance and correlation ρ, and
Jx
t+1 and Jv

t+1 indicate jump arrivals following Bernoulli random laws with
success probabilities λx and λv respectively.

2.2 Rational-Expectation models of bubbles

Following rational expectation theory, the cumulative effect of people’s fore-
cast about any future behavior is considered optimal, since it has been using
all the available data and information in the market. Might those forecasts
be limited by any extent? Are market participants “smart” in a “rational-
expectation way”?

In the discrete-time economy considered here, only one speculative asset
is traded and for simplicity interest rate, information asymmetry, risk aver-
sion and frictions are ignored, while all efficient market hypothesis hold
true. Within this simple and stylized framework, rational expectations are
matching the following martingale condition:

∀T > t , Et[p(T)] = p(t) , (2.6)

where p(t) stands for the price of the asset at time t and Et[·] denotes the
conditional expectation. Since risk aversion is ignored, there is no distinction
between physical and risk neutral probability. No dividends are paid by
the asset. Its fundamental value at time t is then equal to 0 leading to a
speculative bubble for every positive value of p(t). We can now introduce
a probability of a crash simply adding a supplementary term j denoting a
jump process

j =

{
0 before the crash ,
1 afterwards .

(2.7)

Following the guidelines in Johansen, Ledoit, and Sornette [2000] the cdf
and the pdf of the time of the crash are called Q(t) and q(t) = dQ

dt respec-
tively. The hazard rate is then defined as

h(t) =
q(t)

1−Q(t)
. (2.8)
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2.3. Non-local behavior models

Eq. (2.8) describes the probability per unit of time that the crash will happen
in the next instant if it has not happened yet. Assuming that in case of a
crash, the price drops by a percentage κ ∈ (0, 1), asset price dynamics before
the crash are given by:

dp = µ(t)p(t)dt− κp(t)dj . (2.9)

As already pointed out at the beginning of the section, martingale condition
(2.6) must hold and so µ(t) has to be chosen accordingly. More precisely
taking the conditional expectation on both sides of eq. (2.9) and observing
that

Et[dj] = 1 · h(t)dt + 0 · (1− h(t)dt) , (2.10)

we get to the following equality

Et

[
dp/dt
p(t)

]
= µ(t)− κh(t) = 0 =⇒ µ(t) = κh(t) . (2.11)

Assuming no jump between t0 and t and plugging the previous equation
into eq. (2.9), we get an ODE whose solution is given by

log
[

p(t)
p(to)

]
= κ

∫ t

t0

h(s)ds . (2.12)

A big drawback concerning the whole rational-expectation theory is that,
as mentioned above, it imposes proportionality between the conditional ex-
pected return and the contemporaneous crash hazard rate. An immediate
implication is that when the asset price stabilizes, this relationship may seri-
ously underestimate the underlying risks faced by the investors. In order to
correct this deficiency, the new jump-diffusion model developed in Malev-
ergne and Sornette [2014] is introduced in the next section. It argues indeed
that the unrealistic condition matching instantaneously return and risk does
not hold true especially in uncertain times of growing bubbles in which
perfect markets and no friction are assumptions that should be avoided.

2.3 Non-local behavior models

In the simplified discrete-time economy considered here only a risk free and
a risky asset are traded. The former has of course a rate of return equal to r f
while the risk of the latter one is defined on the probability space (Ω,F , P)
enriched with the filtration {Ft}t∈N. The log-return of the risky asset at
time t is described by the following dynamic

9



2. Models of Bubbles and Crashes

log (St/St−1) = rt = µt + σt · εt − κ · Jt · It︸ ︷︷ ︸
correction term

, (2.13)

where

• St is the price of the risky asset;

• µt and σt are drift and volatility at time t, respectively;

• εt ∼ N (0, 1) independent of Ft−1;

• κ > 0 is the average jump size;

• Jt ∼ Exp(1) independent of Ft−1;

• It ∼ Bern(λt), where λt denotes the conditional success probability
and is equal to the log-logistic (or Fisk) function evaluated in a time-
changing mispricing index;

• random variables εt, Jt and It are independent conditional on Ft−1.

The correction term in eq. (2.13) avoids underestimating the downside risk
that may be faced by investors when regime changes and asset price is stabi-
lized. As specified also in Malevergne and Sornette [2014] different param-
eter settings within this framework, may lead to some well-known models
such as

µt σt κ λt Model
µ σ 0 Geometric Random Walk
µ GARCH(p, q) 0 GARCH model
µ σ λ most Rational-Exp Bubbles models

Under the assumption that the expected return at time t conditional on the
available information at t− 1 is constant and equal to r̄ and that rt admits sta-
tionary distribution with finite second moment as described in Malevergne
and Sornette [2014] we get

r̄ = Et−1[rt] ,
= Et−1[µt + σt · εt − κ · Jt · It] ,
= µt − κ ·Et−1[Jt] ·Et−1[It] ,
= µt − κ · λt ,

(2.14)

where Et−1[Jt] = 1 by standardization. Recalling that µt = r̄ + κλt, it is
easy to see that the return required by the investors namely µt, increases

10



2.3. Non-local behavior models

together with the time varying crash-hazard rate λt. This first conclusion
completely agrees with the well-known economic theory which claims that
higher risk implies higher return. An additional and maybe more important
point within the financial bubble framework is also implicitly sustained by
the above equation. Due to the high return and since there is no determin-
istic evidence about the end of the bubble or in general about a change of
regime, for every investor it makes more sense to keep the risky position
open, inflating the speculative bubble even further.

As previously pointed out, volatility clustering is a widely accepted stylized
fact about empirical data, giving us a bit of predictability power. Within our
model volatility is described by σt and the process we chose to model its dy-
namics and capture its most important characteristics without deploying too
complicated means, is a GARCH(1,1). Following its standard specifications,
the dynamic of the variance of the risky asset is described by

σ2
t = ω + α · (rt−1 − r̄)2 + β · σ2

t−1 , where ω, α, β ≥ 0 . (2.15)

In this case σt · εt is said to follow a GARCH(1,1) process. This model is
able to capture volatility persistency, since |rt| could be large if either |rt−1|
or σt−1 is large. Covariance-stationarity for such a model is guaranteed by
Proposition 4.21 in McNeil, Frey, and Embrechts [2015] that is

Proposition 2.3 The GARCH(1,1) process defined in 2.15 is a covariance-stationary
white noise process if and only if α + β < 1. Its variance is then given by

σ̄2 =
ω

1− α− β
. (2.16)

Plugging in eq. 2.16 in 2.15 will lead to the following reparametrization of
the process

σ2
t = σ̄2 · (1− α− β) + α · (rt−1 − r̄)2 + β · σ2

t−1 . (2.17)

Moving from θ = (ω, α, β) to θ̄ = (σ̄2, α, β) is pretty useful especially from
an estimation stability point of view. Every optimization routine is indeed
really sensitive to the starting values and considering θ̄, sample variance
could be taken as a starting point for the parameter σ̄2. Additionally as
shown in Appendix A, when computing the gradient with respect to the
parameter vector θ̄ we will get also components with more similar order of
magnitude compared to the ones taken with respect to θ. A big difference
within the components of the gradient could lead to optimization problems
when the minimization routine is deployed, since too less importance is
given to the smaller values.
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2. Models of Bubbles and Crashes

The last term in eq. 2.13 is the one we called correction term and it is probably
the most innovative part of the whole model together with the mispricing met-
ric we are going to introduce later on in the section. This correction part is
dealing with the jumps and their arrivals times described by a Bernoulli ran-
dom variable It, whose success probability λt, also known as crash-hazard
rate is time-varying and asymptotically follows a logistic-normal distribu-
tion. A non-local estimation procedure is also included in the way in which
the term λt is deduced. As we have already specified in the introduction
this novel approach is considering a given stock in a bubble if its price is
currently too far beyond what would have been its expected growth over
a certain time span [t − τ, t]. To measure such a distance an investor may
consider the following metric

δt,τ =
St

St−τ
· e−τr̄ , (2.18)

where St is the price of the asset a time t and using eq. 2.14 together with
the tower property of the conditional expectation we can define r̄ as the un-
conditional expected return of the risky asset, that is r̄ = E[rt]. The metric
above is essentially a discounted increment over the considered time span
and it is known as an anchoring on price. Simply considering δ1/τ

t,τ instead of
δt,τ anchoring on return could also be considered following the same idea.
Once more, the above construction is putting emphasis on the “positive-
feedback circle” that is shown in real price dynamics. Abnormal growth in
price implies higher risk and higher risk generates a larger probability of
a crash at next time step. Then higher risk subsequently leads to a higher
expected return required by investors given that no crash will happen. Until
prices go back to their fundamental values the loop does not stop pushing
stock prices up with a super-exponential growth.

Within our framework mispricing is determined on a time interval [t− τ, t].
That is for different choices of τ we will get a different point of view match-
ing the real world situation in which every trader has his own percep-
tion and could use different time scales to define his strategy, from high-
frequency to buy-and-hold. In order to assess those differences, starting
from eq. (2.18) Malevergne and Sornette [2014] noticed that

log
[
δ1/τ

t,τ er̄
]
=

1
τ

τ−1

∑
k=0

log
St−k

St−k−1
, (2.19)

is essentially a moving average over the rolling window [0, τ] and they fur-
ther observed that a similar result could be obtained using an exponentially-
weighted moving average
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2.3. Non-local behavior models

log(δt,a · er̄) = (1− a)
∞

∑
k=0

ak · log
St−k

St−k−1
,

= (1− a) · log
St

St−1
+ a · log(δt−1,a · er̄) ,

(2.20)

hence

logδt,a = (1− a) ·
(

log
St

St−1
− r̄
)
+ a · logδt−1,a . (2.21)

Parameter a, that in Berntsen [2015] was shown to be one of the most dif-
ficult to calibrate, is merging traders heterogeneity, trying to describe the
point of view of the whole market participants about a specific mispricing.

Now it is finally possible to introduce the mispricing index

Xt :=
1
s

log
δt−1,a

d
, (2.22)

and using eq. (2.21) we get

Xt = −
logd

s︸ ︷︷ ︸
X̄

·(1− a) + a · Xt−1 +
1− a

s︸ ︷︷ ︸
η

·(rt−1 − r̄) , (2.23)

where in the two previous equations d and s define respectively the mis-
pricing threshold above which a stock is considered “too” far from its fair
value and the uncertainty about it. Formally instead, d is the scale parameter
while s is the shape parameter of the log-logistic function

F(δ) =
1

1 +
(

δ
d

)− 1
s

,

=
1

1 + exp(− 1
s log δ

d )
,

= L
(

1
s

log
δ

d

)
,

(2.24)

where L(·) is the standard logistic function given by L(x) = 1
1+e−x . More-

over, defining λt := L(Xt) we finally specify one of the most important
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2. Models of Bubbles and Crashes

relationship of the whole model, that is the link between mispricing index
and crash-hazard rate. As an additional remark Aitchison and Shen [1980]
showed that λt thus defined, follows asymptotically the logistic-normal dis-
tribution, whose density reads

f (x|µ, σ) =
1√

2πσx(1− x)
· exp

[
− 1

2σ2

(
ln

x
1− x

− µ

)2
]

, (2.25)

where µ and σ are respectively, the mean and the variance of the mispricing
index

Xt ∼ N
(

X̄,
η2

1− a2 ·Var(rt)

)
. (2.26)

To conclude the section the dynamics of the jump-diffusion model intro-
duced by Malevergne and Sornette [2014] are the following

rt = r̄ + κ · L(Xt) +
√

Vt · εt − κ · Jt · It ,
Xt = (1− a) · X̄ + a · Xt−1 + η · (rt−1 − r̄) ,

Vt = σ̄2 · (1− α− β) + α · (rt−1 − r̄)2 + β ·Vt−1 ,

(2.27)

where λt = L(Xt) =
1

1+e−Xt
while the three stochastic processes Jt ∼ Exp(1),

It ∼ Bern(λt) and εt ∼ N (0, 1) are independent conditional on the available
information at time t− 1.

The aim of this master thesis is to calibrate the model described by the above
dynamics. In order to clarify once more the meaning of the 8 parameters we
want to estimate, here is a brief description of each one of them:

• r̄ is the unconditional expected return of the risky asset;

• κ is the average jump size;

• a is the constant smoothing factor of the exponential moving average.
It represents the degree of weighting decrease, meaning a higher a
discounts older observations faster;

• X̄ is the average value for mispricing. It is proportional to the thresh-
old d and inversely proportional to the uncertainty s;

• η depends on both the smoothing factor a and the fuzziness parameter
s. It regulates the variance dependency of the mispricing index;

• σ̄2 is the long-time variance of the GARCH(1,1) process;
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2.3. Non-local behavior models

• α and β are two parameters of the GARCH(1,1) model driving the
persistency of the volatility through time. The former describes this
dependency on past squared returns while the latter on past volatili-
ties.
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Chapter 3

Dual estimation

Let’s say we have a model involving unobservable variables and unknown
parameters. How could we estimate the parameters and extract the hid-
den states? Such a problem, called dual estimation problem, is well-known in
mathematics and engineering and an extensive literature from many fields
has been dealing with it since decades. In the following chapter the problem
is introduced and an online estimation procedure is adapted for the model
at hand. The first section presents a Sequential Monte Carlo (SMC) method
implemented by Berntsen [2015] and used to extract hidden states, precisely
jump times and sizes, from discretely realised stock prices. Section 3.2 first
explains the difference between online and offline parameter estimation and
then illustrate how the Simultaneous Perturbation Stochastic Approximation
algorithm developed by Spall [1998] is structured and how it is tailored to
the filtering framework given in section 3.1

3.1 State space filtering

State-space models, also known as hidden Markov models, are used in dif-
ferent fields of research like econometrics, biology, engineering and many
others with applications spanning from stochastic volatility models to neu-
roscience or biochemical network models. In a general framework, a state-
space model with an unknown parameter θ ∈ Θ, is formally defined by
an observable stochastic process, say {rt}t∈N>0 and an unobserved one, say
{Lt}t∈N>0 with Markov transition density gθ(Lt|Lt−1). Hence their two dy-
namics are defined as

rt = fθ(Lt, ε
y
t ) , (3.1)
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3. Dual estimation

Lt = gθ(Lt−1, εx
t ) , (3.2)

where ε
y
t and εx

t describe respectively, the noise in the observed data and the
state shock. In the stochastic volatility models for example we can identify
volatility with the unobservable state Lt and define rt as the asset’s observed
log-return. The idea of such models is to extract latent information from
the observed dynamics using some statistical (Bayesian) model. Using those
information, we would then be able to capture unobserved changes in the
underlying (hidden) process and use them to infer and follow a different
and more precise dynamic. In this first section we assume that the parame-
ter θ ∈ Θ defining the model is known, while section 3.2 will show how to
deal with its estimation when the unkown case is analyzed.

3.1.1 Optimal Filtering

Filtering is basically the process of estimating the state vector at time t, given
all the (noisy) observations collected up to that time, namely {ri}t

i=1. In a
Bayesian framework, it means that p(Lt|r1, · · · , rt), which to ease the nota-
tion will in future be specified as p(Lt|r1:t), can be computed by the follow-
ing two-step recursion.

(i) Prediction step: p(Lt|r1:t−1) is computed via

p(Lt|r1:t−1) =
∫

p(Lt|Lt−1)p(Lt−1|r1:t−1)dLt−1 , (3.3)

where the distribution p(Lt|r1:t−1) can be seen as the prior over Lt
when the most recent measurement rt is not yet available.

(ii) Update step: the posterior over Lt is obtained using Bayes’ rule to up-
date the prior with the new measurement rt, that is

p(Lt|r1:t) ∝ p(rt|Lt)p(Lt|r1:t−1) . (3.4)

As pointed out in Kantas, Doucet, Singh, Maciejowski, Chopin, et al. [2015]
both online and offline analytical inference on the state process {Lt} based
on the observed dynamic {rt}, are feasible only for simple linear Gaussian
state-space models. When non-linear non-Gaussian scenarios are analyzed
instead, approaches like Extended Kalman Filter and Gaussian sum filter
together with Markov Chain Monte Carlo (MCMC) methods have been
proposed, for example in Alspach and Sorenson [1972]. As described in
Berntsen [2015] for example, when dealing with more complex situations
where the filtering density is not known analytically, we may rely on se-
quential Monte Carlo algorithms, also known as particle filters. Their wide
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3.1. State space filtering

popularity stems from their pretty simple implementation and high paral-
lelizable structure and especially due to their higher precision in the esti-
mates compared to the standard alternatives [Cappé, Moulines, and Rydén,
2009], [Del Moral, 2004].

3.1.2 Particle Filter

Sequential importance sampling (SIS) is the basic Monte Carlo method used
when prediction and update steps are not analytically tractable. To describe
how SIS particle filter works and how it is adapted to our framework we
will rely on the guidelines given in Berntsen [2015]. In this framework is
now useful to consider the full posterior distribution p(L0:t−1|r1:t−1), rather
than the filtering distribution, p(Lt−1|r1:t−1). The idea of this method is
to give a discrete approximation p̂(L0:t−1|r1:t−1) to p(L0:t−1|r1:t−1), with a
(normalized) weighted set of samples {π(n)

t−1, L(n)
t−1}N

n=1 called particles, and
recursively update these particles to obtain an approximation to p(Lt|r1:t).
The filtering density is then approximated via

p(L0:t−1|r1:t−1) ≈
N

∑
n=1

π
(n)
t−1δ

L(n)
0:t−1

, (3.5)

where π
(n)
t−1 = p(L(n)

t−1|r1:t−1) and δ
L(n)

t−1
is the Dirac function centered in L(n)

t−1.

As already stated the idea will be now to recursively update the particles in
order to derive an approximation to p(L0:t|r1:t). To do that, let’s now define
a proposal density q(L0:t−1|r1:t−1) way easier to sample from, compared to
p(L0:t−1|r1:t−1) and let’s assume that the importance density q(L0:t|r1:t) can
be factorized as

q(L0:t|r1:t) = q(L0:t−1|r1:t−1)q(Lt|L0:t−1, r1:t) .

Then remembering that the state process is Markov and that the observa-
tions are conditionally independent, we can use the following result from
Berntsen [2015] in order to define a recursive formula for the importance
weights

πt = πt−1
p(rt|Lt)p(Lt|Lt−1)

q(Lt|Lt−1, rt)
. (3.6)

We finally obtained a discrete approximation pN(Lt|r1:t) of the filtering den-
sity p(Lt|r1:t) via the following equations
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3. Dual estimation

L(n)
t ∼ q(Lt|L(n)

t−1, rt) , (3.7)

π
(n)
t = π

(n)
t−1

p(rt|L(n)
t )p(L(n)

t |L
(n)
t−1)

q(L(n)
t |L

(n)
t−1, rt)

. (3.8)

As mentioned already, the algorithm we have just introduced is returning
a discrete approximation {L(n)

t , π
(n)
t }N

n=1 of the posterior p(Lt|r1:t), solving
basically our particle filtering problem. Unfortunately this solution has an
evident drawback, named degeneracy, as soon as the time t starts to increase.
Degeneracy is typically measured by the value

Neff =
1

∑N
i=1(π

(i)
t )2

,

said effective sample size, where a smaller Neff means a larger variance for the
weights. As the time t increase indeed, only few particles will have a signif-
icant weight, where all the others will have a weight close to 0. Sequential
importance resampling (SIR) algorithm corrects this shortcoming with two
simple refinements:

1. the proposal density q(Lt|L(n)
t−1, rt) is taken to be the state transition

distribution p(Lt|L(n)
t−1);

2. at every iteration step resampling has to be applied.

In our implementation, step 2 is active at every iteration, but to increase effi-
ciency it could be set dynamically in order to take place only whenever the
value Neff plunges below a pre-defined threshold. Given that resampling
is done with replacement particles with large weigths are more likely to
be drawn multiple times while the small-weighted ones tend to be “forgot-
ten”. A weight equal to 1/N is then assigned to all the newly resampled
particles solving the original degeneracy problem. This result unfortunately
comes with a price, cause sample impoverishment problem is then added to
the method. Diversity of the particles will indeed tend to decrease after a
resampling step, with the extreme case, that all particles might collapse into
a single one. Regularized Particle Filter (RPF) has been proposed in Musso,
Oudjane, and Le Gland [2001] as a potential solution to the problem.

Another important point that is worth to remark, is that using p(Lt|L(n)
t−1)

as a proposal density, SIR algorithm is not taking into account any informa-
tion whenever a new observation rt is made available. This drawback may
be solved deploying another version of the Particle Filter, namely Auxiliary
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3.2. Online Parameter Estimation

Particle Filter (APF). The approach has been implemented and analyzed in
Berntsen [2015], but the slightly better results obtained for the model at
hand, were not enough to justify its increased complexity compared to the
SIR method.

SIR Particle Filter
1: At time t = 0, for all i ∈ {1, · · · , N}:
2: Initialize L(i)

t and π
(i)
t

3: At time t ≥ 1, for all i ∈ {1, · · · , N}:
4: Simulate L(i)

t ∼ p(Lt|L(i)
t−1)

5: Compute π
(i)
t ← p(rt|L(i)

t )/ ∑N
i=1 p(rt|L(i)

t )

6: Draw z(i) ∼ Multinomial(N; π
(1)
t , · · · , π

(N)
t )

7: Set L(i)
t ← L(z(i))

t
8: Return:
9: p(Lt|r1:t) ≈ pN(Lt|r1:t)← {L(i)

t , 1
N}

The last part of this chapter is dedicated to the introduction of an online opti-
mization method, that could be directly implemented within the Sequential
Monte Carlo algorithm introduced in section 3.1.2.

3.2 Online Parameter Estimation

As noticed in Kantas et al. [2015], no perfect method exists with regards
to dual estimation problems. The same method could perform differently
from one model to another and every situation should be tackled in a spe-
cific manner. One important distinction that has been done in Kantas et al.
[2015] was between online and offline estimation. Precisely, the former ap-
proach is the one in which the estimate is done when new data is available
during the operation of the model. It is typically performed using a recur-
sive algorithm and it leads to values that may vary over time. Differently,
the values estimated with the latter methods are not time varying, since es-
timation is done only once all the significant data has been collected. Even
though offline approach is considered better in terms of statistical efficiency,
we preferred here an online implementation. Financial data are indeed pub-
lished and updated continuously and a “real time” estimation procedure
has been considered to be more appropriate for the model at hand, aiming
to define a dynamic calibration method.
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3.2.1 Stochastic Optimisation

The original Simultaneous Perturbation Stochastic Approximation (SPSA) al-
gorithm was introduced and fully analyzed in Spall [1987] and Spall [1992].
The method is part of the more general stochastic optimization framework
widely employed in many areas of engineering, physical and social sciences
with applications spanning from model fitting and statistical parameter es-
timation, to adaptive control and pattern classification. Although in our
specific case the gradient of the objective function is known in closed-form,
see Malevergne and Sornette [2014], we decided to deploy a gradient-free
method in order to achieve better performance at the expense of computa-
tional precision. Concerning the implementation of the method within SIR
particle filter instead, guidelines from Chan, Doucet, and Tadic [2003] have
been used as a general reference.

Let’s now consider the problem of minimizing (or maximizing) a differen-
tiable loss function F : R8 → R, that is equivalent to find a root θ∗ of the
gradient

g(θ) =
∂F(θ)

∂θ
= 0 .

whose approximation is based on a highly efficient and easily implemented
“simultaneous perturbation”. Let θ = (r̄, σ̄, α, β, κ, X̄, η, a) be our 8-dimensional
vector of parameters we need to optimize. SPSA requires all the single com-
ponent of θ to be varied randomly, simultaneously and independently to
obtain two estimates of the cost function (likelihood in our case). Among
other well known finite-difference methods, here only two measurements
of the loss function are required regardless the dimension of θ. Starting
from an initial guess θ0, SPSA algorithm iteratively update the parameters
following:

θ̂t = θ̂t−1 + γt · ĝ(θ̂t−1) , t ∈ {1, · · · , T} , (3.9)

where ĝ(·) and {γt} are respectively the gradient approximation and a gain
sequence that will be introduced in the next sections.

Gradient approximation

Let’s define the “simultaneous perturbation” estimate for the gradient and
consider a 8-dimensional vector of mutually independent mean-zero ran-
dom variables, namely ∆t. Regular conditions specified in Spall [1992]
have to be satisfied in order to guarantee strong convergence and asymp-
totically normality of θ̂t. The most important one is probably that for all
i ∈ {1, · · · , 8} E(|∆−1

t,i |), or some higher-order inverse moment, needs to
be bounded, which precludes ∆t,i to be normally or uniformly distributed.
Even though no additional assumption has to be made on the distribution of
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∆t,i, symmetric Bernoulli has been suggested in Spall [1992] as a preferred
practical choice. At time t the “simultaneous perturbed” gradient is then
given by

ĝ(θ̂t) =


y(+)

t − y(−)t
2ct∆t,1

...
y(+)

t − y(−)t
2ct∆t,8

 , (3.10)

where
y(+)

t = F(θ̂t + ct∆t) ,

y(−)t = F(θ̂t − ct∆t) ,
(3.11)

and {ct} is the other gain sequence (of positive scalars) together with the
previously introduced {γt}.

Gain Sequences γt and ct

In every stochastic optimization method, the choice of the algorithm coeffi-
cients is critical to its convergence and SPSA is no exception in this regard.
Optimal gain sequence selections is theoretically derived from asymptotical
performance, but as shown in Wang [2013], for practical applications things
become different. The two sequences, γt and ct, are defined as

kt =
k

(K + t + 1)ρ
and ct =

c
(t + 1)γ

,

where the feasible domain for ρ and γ is defined in Spall [1992] by ρ ≤ 1,
2ρ − 2γ > 1 and 3γ − ρ/2 ≥ 0 together with their optimal asymptotical
choices given by ρ = 1 and γ = 1/6. Accordingly to Wang [2013] for fi-
nite sample cases, sequence kt should not be too small, that means smaller
values for K and ρ (suggested equal to 0.602 in Spall [1992]) and a larger
one for k. Letting N be the maximum number of iterations, we are obvi-
ously forced to choose K to be proportional to N in order to achieve some
reasonable performance within the fixed limited number of iterations, that
is K = $N. Additionally since the effect of K should disappear in later it-
erations without leading to a too small gain step, $ has to be chosen from
{0.1, 0.01, 0.001 · · · } while a larger k must be preferred. Finally a rule for
k can be easily determined considering the performance of the algorithm
in early iterations. Another important consideration must be added to the
above discussion. Precisely, due to the flatness of the likelihood with respect
to some of the parameters, both kt and ct should be defined as vector and
not just scalar sequences, in order to accommodate the different changes of
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magnitude of each parameter from one step to the other. To conclude, c is
generally set equal to the standard deviation of the measurement noise, but
since direct measurement is available, a small positive value is then assigned
to c.

The last part of the chapter is used to present the pseudo-code describing
step-by-step our SPSA implementation. Following this guidelines it should
be fairly easy to implement the optimisation routine in every desired filter-
ing framework.

SPSA Algorithm within SIR Particle Filter

1: Sequential Importance Sampling
2: At time t = 0, for all i ∈ {1, · · · , N}:
3: Initialize L(i)

t and π
(i)
t

4: At time t ≥ 1, for all i ∈ {1, · · · , N}:
5: Simulate L(i)

t ∼ p(Lt|L(i)
t−1)

6: Compute π
(i)
t ← p(rt|L(i)

t )/ ∑N
i=1 p(rt|L(i)

t )
7: Cost function evaluation
8: Generate a 8-dimensional simultaneous perturbation vector ∆t

9: Compute θ
(i)+
t ← (θ

(i)
t + ct∆

(i)
t ) and θ

(i)−
t ← (θ

(i)
t − ct∆

(i)
t )

10: Evaluate cost function F(θ(i)+t ) and F(θ(i)−t )
11: Gradient approximation

12: ĝ(θ̂t)←
(

F(θ(i)+t ) − F(θ(i)−t )
2ct∆t,1

, · · · , F(θ(i)+t ) − F(θ(i)−t )
2ct∆t,8

)T

13: Parameter Update
14: θ

(i)
t+1 ← θ

(i)
t + ct · ĝ(θ(i)t )

15: Resampling
16: Draw z(i) ∼ Multinomial(N; π

(1)
t , · · · , π

(N)
t )

17: Set L(i)
t ← L(z(i))

t and θ
(i)
t+1 ← θ

z(i)
t+1
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Chapter 4

Offline parameter estimation

A different estimation approach is outlined in this chapter, where all the
information related to the observable process rt are assumed to be available
by the time of the analysis. Following the conclusions that has been made
in Malevergne and Sornette [2014] and Berntsen [2015], that is direct maxi-
mization of the cost function is not feasible due to both its sloppiness with
respect to some of the parameters and to the high computational costs, a
profile and modified profile likelihood approach are introduced and imple-
mented following the guidelines given in Filimonov et al. [2016]. DLIB C++
library has been used to perform the maximization, deploying an uncon-
strained optimizer and defining artificial boundaries in order to satisfy the
different constraints of some parameters. float 128 data type has also been
considered trying to take into account the highest numerical precision in or-
der to detect fluctuations of the log-likelihood within its flat sections. Direct
maximization lead to some interesting result, but profile likelihood method
wasn’t able to conclude anything valid from a statistical point of view.

4.1 Maximum Likelihood

The (usually) easiest and probably mostly used way of estimating a set of
unknown parameters is through maximum likelihood. The idea behind it is
pretty simple and straightforward. Let {rt}T

1 be an observable stochastic pro-
cess depending on a static parameter vector θ and let p(rt|θ) be the density
function describing a single obervation. Assuming that {rt}T

t=1 are indepen-
dent and identically distributed, the likelihood function of the process is equal
to the joint density function p(r1, · · · , rT|θ), that given our iid assumption is
equal to

L(θ |r1, · · · , rT) = p(r1, · · · , rT|θ) =
T

∏
t=1

p(rt|r1, · · · , rt−1; θ) . (4.1)
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4. Offline parameter estimation

For simplicity a log-transform of the previous equation, called log-likelihood,
is usually considered

ln L(θ | {r1, · · · , rT}) =
T

∑
t=1

ln p(rt|r1, · · · , rt−1; θ) . (4.2)

Within our framework the dynamics of the stochastic process rt are given by
the jump-diffusion model described by the eq. 2.27. Conditionally on Ft−1,
Jt and It, our process is then distributed as:

rt|Ft−1, Jt, It ∼ N (µt − κ · Jt · It, σ2
t ) . (4.3)

Integrating out both Jt and It from the above distribution following the
guidelines in Malevergne and Sornette [2014] the conditional distribution
of the log-returns reads

rt|Ft−1 ∼
{

EMG(µt, σt, κt) with probability λt ,
N (µt, σ2

t ) with probability 1− λt ,
(4.4)

where EMG(µ, σ, κ) defines the Exponentially Modified Gaussian distribu-
tion with density

fEMG(x|µ, σ, κ) =
σ

|κ| · ϕ(x|µ, σ) · R
(

sgn(κ) ·
(

x− µ

σ
+

σ

κ

))
. (4.5)

The function R(·) given by

R(x) =
1−Φ(x)
ϕ(x|0, 1)

, (4.6)

can be easily implemented following the guidelines in Marsaglia [2004],
while Φ(·) and ϕ(·) represent respectively the cumulative distribution and
the density function of a normal random variable. Log-likelihood is then
described as

ln L(θ | {r1, · · · , rT}) =
T

∑
t=0

[
λt · fEMG

(
rt|µt, σt, κt

)
+

+ (1− λt) · ϕ
(

rt|µt, σ2
t

)]
.

(4.7)
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Our goal is to find θ∗ that maximizes the function ln L(·). That is we wish
to find the θML such that

θML = arg max
θ

L(θ|r1 · · · rT) . (4.8)

As shown in Malevergne and Sornette [2014] and Berntsen [2015] direct max-
imisation of the likelihood doesn’t perform well due to the sloppiness of some
parameters with respect to the objective function, in the sense expressed by
Waterfall, Casey, Gutenkunst, Brown, Myers, Brouwer, Elser, and Sethna
[2006]. In his work P. Berntsen proved also that a brute force approach deploy-
ing a cross-section analysis of the 8-dimensional parameter space, would be
too computationally expensive and time consuming without even spanning
efficiently all the possibile parameter combinations. To tackle the sloppiness
of the cost function Hessian matrix is then the only way to take into account
and properly deal with the different orders of magnitude of the curvature
of the likelihood with respect to the parameter.
To overcome the difficulties in dealing with a mixture of distributions is cru-
cial to consider both Jt and It as latent states. Expectation-Maximization
(EM) algorithm is considered one common technique to solve similar prob-
lems. More precisely, given an incomplete data set, EM algorithm is a gen-
eral method of finding the maximum-likelihood estimate of the parameters
of the underlying distribution. Incompleteness of data stands here for

• missing data in the set due to limitations (e.g. noise) of the observation
process;

• likelihood is analytically intractable and extra but hidden/latent param-
eters need to be added to the data set.

Our framework is exactly within the latter application. Let indeed assume
that we are not only observing log-returns {rt}T

t=1, but also jump times and
sizes (latent states) {Jt, It}T

t=1. With this assumption and recalling the dy-
namics of the model described in 2.27 the complete likelihood conditional
on Ft−1 is given by:

(rt, Jt, It) ∼ N (µt − κ · Jt · It, σ2
t ) · E(1) · λIt

t · (1− λt)
1−It , (4.9)

that is

ln L(θ | {rt, Jt, It}T
t=0) =

T

∑
t=0

[
− 1

2
ln2πσ2

t −
1

2σ2
t
(rt − µt + κ · Jt · It)

2

− Jt + It · lnλt + (1− It) · ln(1− λt)

]
.

(4.10)
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4. Offline parameter estimation

The idea behind the EM algorithm developed by Dempster, Laird, and Rubin
[1977] is pretty simple and it works with the following two steps:

1. Expectation Step: it averages over the latent states according to the
model estimation of their probability distributions;

2. Maximisation Step: the model parameters are estimated by maximis-
ing the averaged likelihood.

Unfortunately the aforementioned method has been already exploited and
proved to be inefficient in Malevergne and Sornette [2014] due to log-likelihood
sloppiness we mentioned before. Even though no satisfying results has been
obtained, their approach was enlightening and extremely helpful for our
calibration purposes. The auxiliary function Qθ|θ0 introduced below was
shown indeed to be pretty useful to give an analytical expression of both
the gradient and the Hessian of the log-likelihood function given in 4.10.

Qθ|θ0
t = E

θ0
t−1

[
− 1

2
lnσ2

t −
(rt − µt + κ · Jt · It)2

2σ2
t

− Jt+

+ It · lnλt + (1− It) · ln(1− λt)|St

]
,

=− 1
2

lnσ2
t −

(rt − µt)2

2σ2
t

− κ(rt − µt)

σ2
t

·Eθ0
t−1[Jt · It|St]+

− κ2

2σ2
t
·Eθ0

t−1[J
2
t · It|St]−E

θ0
t−1[Jt|St]+

+ E
θ0
t−1[It|St] · lnλt + E

θ0
t−1[1− It|St] · ln(1− λt) ,

(4.11)

where E
θ0
t−1[·] stands for the expectation conditional on Ft−1 under the pa-

rameter θ0. Gradient and Hessian implementation has been done following
the guidelines in Malevergne and Sornette [2014]. Given the sensibility of
our problem, an extreme precision is crucial while performing the calcula-
tions and float 128 data type has been used in our first C++ implementa-
tion. Unfortunately, DLIB and EIGEN optimization libraries were unable to
process float 128 data type we went back to the “standard” double preci-
sion.

The following section will be an introduction to a hierarchical sequential
optimization implemented accordingly to the work done by Filimonov et al.
[2016]. Additional guidelines has been given also in Filimonov and Sor-
nette [2013] where a similar estimation problem was faced, proving that a
sequential optimization of the objective function may lead to a way less com-
plex and more stable fitting procedure. With this method the cost function
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should be indeed characterized by good smooth properties with in general
a single minimum whenever the model fits properly the empirical data. In
the first part of section 4.2 profile likelihood procedure is introduced, while in
the second one a modified version of it is proposed and adapted to model at
hand.

4.2 Profile Likelihood

To summarize, our aim is to solve the following

L(θ | {rt}T
t=1) −→ max

θ
, (4.12)

where L(θ | r1, · · · , rT) stands for the complete likelihood of the model over
the whole observed time series {rt}T

1 . The general idea behind the method
we are interest in, it is to detect those parameters over which the cost func-
tion is more or less sensitive, that is equivalent to find a way to distinguish
between rigid and sloppy parameters. In order to understand their sensi-
tiveness, eigenvalues and eigenvectors relative to the Hessian matrix of the
likelihood function are computed and ranked. Parameters corresponding
to the largest eigenvalues are considered rigid, while the smallest ones are
considered sloppy. Once parameters have been ordered and the ranking has
been recognized, n clusters are created following a hierarchical classification
of the 8-dimensional parameter space. After rigid (top) and sloppy (bottom)
clusters have been detected, the following n-step sequential optimization is
performed:

• fix the values of the sloppy parameters, θsloppy;

• optimize the cost function with respect to the rigid ones

Lp(θsloppy) = max
θrigid

L(θrigid | θsloppy) . (4.13)

Often the function Lp(θsloppy), known as profile likelihood, is wrongly con-
sidered a genuine likelihood, since it treats the sloppy parameters as if
they were known. With this assumption the inference on θsloppy based on
Lp(θsloppy) may indeed be inaccurate, leading to unstable estimates rela-
tively to small perturbations in the observed data.

4.3 Modified Profile Likelihood

To correct the drawback highlighted in the last part of the previous section, a
pretty useful and reliable approach called modified profile likelihood has been
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4. Offline parameter estimation

introduced by Barndorff-Nielsen [1983]. This method is trying to correct
the aforementioned deficiencies of the profile likelihood, multiplying the latter
one with an additional factor, M(θsloppy), that is

Lm(θsloppy) = M(θsloppy) · Lp(θsloppy) ,

= |I(θ̂rigid|sloppy)|−
1
2 ·
∣∣∣∣ ∂θ̂rigid

∂θ̂rigid|sloppy

∣∣∣∣ · Lp(θsloppy) ,
(4.14)

where | · | is the absolute value of a matrix determinant and I(θrigid) is the
observed Fisher information matrix on the rigid parameters, assuming the
sloppy ones are known:

I(θ̂rigid|sloppy) = −
∂lnL(θ)

∂θrigid∂θ
′
rigid

∣∣∣∣
θrigid=θ̂rigid|sloppy

. (4.15)

Intuitively, (4.15) is a penalty term correcting the overestimation that may
arise in Lp(·) and with its inclusion we are taking into account the curva-
ture of the likelihood, crucial in our calibration framework since its sloppi-
ness has been shown to be the main issue. To conclude, with the Jacobian
term J(θsloppy) = |∂θ̂rigid/∂θ̂rigid|sloppy| modified profile likelihood acquires the
fundamental property to be invariant with respect to any reparametrization
of θsloppy. Despite some limitation due to the difficulties that may arise in
evaluating the Jacobian term in many realistic models Lm(θsloppy) can be
considered a genuine likelihood function. As pointed out by Filimonov et al.
[2016], in comparison with other Bayesian approaches and integrated likeli-
hood functions it also has the advantage to do not require any prior density
specification for the sloppy parameters. Finally, since likelihood L(θ) is mean-
ingful up to some constants, its following normalized version called relative
likelihood, is usually considered:

R(θ) =
L(θ)

maxθ L(θ)
∈ [0, 1] . (4.16)

The same idea holds true for both profile and modified profile likelihood. An
additional remark has to be done also with regards to the uncertainty in
estimated parameters and to such a purpose our inference is based on the
likelihood ratio R(θ) defined in eq. (4.16). MLE approach indeed provides
us not only the estimated points of interest, but also the probabilistic ranges
within which they could live given the observed data. We will rely here on
the same procedure described in Filimonov et al. [2016]. Precisely, we will
deploy the intuitive likelihood interval (LI) approach, allowing us to avoid
any kind of regularity assumption on the model. To define such an interval
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some arbitrary cutoff has to be chosen and only values of R(θ) above this
fixed threshold, will be considered statistically valid. Hence

LI(θ∗) =

{
θ∗ : Rm(θ

∗) =
Lm(θ∗)

Lm(θ̂∗)
> 0.05

}
, (4.17)

describes the likelihood interval at the 5% cutoff point while θ∗ defines the
sloppy parameter we are trying to profile. The problem with this approach
is that due to the sloppiness of the likelihood with respect to the parameter
of interest, no meaningful likelihood ratio may be defined. Indeed for every
choice of the sloppy parameter in the feasible range the likelihood of the
model won’t be particularly affected, leading to a likelihood interval as wide
as the original parameter domain.

Now that we have introduced some of the tools needed to estimate the pa-
rameters of a given model, in the following chapter we will assume that a
successful calibration method has been performed already. Two of the most
important risk measures will be introduced together with some of their most
important properties and some statistical backtesting techniques to assess
their reliability.
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Chapter 5

Risk Measures

This chapter is an introduction on how to measure and estimate, from a sta-
tistical point of view, the risks associated with a given portfolio. The main
topic at the beginning will be the loss operator used to express the variation
of the portfolio value in terms of risk factor changes. More precisely the first
section introduces some basic probabilistic and statistical tools that are then
used to define risk measures, like Value at Risk (VaR) and Expected Short-
fall (ES). In section 5.2 some common estimation techniques are presented,
while some pitfalls and backtesting methods are then introduced in the final
sections. McNeil et al. [2015] is used as a main reference for most of the
chapter.

5.1 Risk Factors and Loss Operator

Modeling the statistical properties of random (future) losses is considered
one of the main task of every risk manager, aiming to predict with a given
confidence, changes in the value of the portfolio owned during a specific
time span.

To begin with, let’s define a filtered probability space (Ω,F , (Ft)T
1 , P) where

all the possible events live and a random variable L : Ω → R describing a
loss. Let t be the current time, Vt denote the value of a portfolio of assets
and/or liabilities known at time t and ∆t be the considered time horizon.
The following assumptions must hold:

(i) no changes in the portfolio composition in ∆t;

(ii) no intermediate payments during ∆t.

Different time windows could be considered, e.g. 1-day and 10-days are
usually mostly used for market related risks while for credit related ones
longer intervals like 1-month and 1-year are analyzed.
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5. Risk Measures

Even though risk managers are interested in the so called profit-and-loss
(P&L) distribution of the portfolio, given by its change in value over the
short time period ∆t, their main concern is with regard to the left tail of the
distribution, that is the probability of large losses. Following the exact same
approach, from now on we will drop the ‘P’ from the previous notation and
we will focus only on the losses. Thus our basic idea will be to estimate the
distribution of

Lt+1 = −∆Vt+1 = −(Vt+1 −Vt) , (5.1)

where Vt+1 is a non-Ft-measurable random variable. For a given t and
a d-dimensional vector of risk factor Zt = (Zt,1, · · · , Zt,d), represented for
example by log-prices of stocks, FX rates or inflation, the function g : R+ ×
Rd → R defines the following mapping

Vt = g(τt,Zt) where τt = t(∆t) . (5.2)

Let Xt−N , · · · ,Xt be a time series of historical risk factor changes where
each term is given by Xt+1 = Zt+1 −Zt. Plugging the last expression into
(5.1) we get

Lt+1 =− (Vt+1 −Vt) ,
=− (g(τt+1,Zt+1)− g(τt,Zt)) ,
=− (g(τ + ∆t,Zt +Xt+1)− g(τt,Zt)) .

(5.3)

Recalling that Zt is Ft-measurable, eq. (5.3) is basically telling us that the
loss Lt+1 is solely driven by the risk factor changes Xt+1. We can finally
define the loss operator at time t as

Lt+1 = l[t](x) = −g(τt + ∆t, zt + x)− g(τt, zt) , (5.4)

where zt is simply a realization of Zt. Depending on the purpose of our
estimation, on the available data and especially on the assumptions we are
making, two different distributions can be estimated:

• Conditional loss distribution: given all the information up to time t, we
can look at the conditional distribution

FLt+1|Ft = P(l[t](Xt+1) ≤ l |Ft) .

Usual case in quantitative finance, where we want to include in our
risk measurement the most recent information about financial markets.
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• Unconditional distribution: the stochastic process (Xs)s≤t is assumed
to be stationary and we are interested in the distribution of the loss
operator l[t](·) under FX , where X is a d-dimensional random vector
with df FX . This approach may be appropriate when the time interval
considered is longer or we would like to perform stress testing during
periods characterized by low volatility.

It is trivial to show that if (Xi)i∈N>0 generate an iid stochastic process then
FLt+1|Ft = FX . The usage of conditional and unconditional distribution
leads to many differences in the risk management process that are well high-
lighted and described in McNeil and Frey [2000].

Most advanced concepts of linear and quadratic operator might have been
introduced in the last part of this section, but they are completely outside
the scope of this master thesis and, if the reader is willing to deepen is
knowledge in this direction, the argument is fully analyzed in McNeil et al.
[2015]. The next section will be dealing with two of the most important
risk measures that are built upon the loss operator concept we have just
introduced. Some standard estimation methods are also presented, together
with some of their most important (and dangerous) theoretical and practical
drawbacks.

5.2 Standard Methods for Risk Measurement

As previously stated, the goal of this section is to estimate the loss distribu-
tion

Lt+1 = l[t](Xt+1) , (5.5)

or an approximation thereof. The estimation problem is composed by three
main parts:

(a) Statistical problem: estimation of the distribution of Xt+1;

(b) Numerical problem: derivation of the distribution of Lt+1;

(c) Evaluation problem: compute a risk measure from FLt+1 .

Three main approaches could be considered in order to face the task and
they are described in the following subsections.

5.2.1 Variance-Covariance method

The Variance-Covariance approach belongs to the class of the analytical
methods that implicitly require a closed-form solution to the problem at
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hand, without deploying any computationally expensive simulation. In or-
der to guarantee an analytical solution, basic (and critical) assumptions to
this approach are:

+ Multivariate normality of the conditional distribution of risk-factor
changes, that is Xt+1|Ft ∼ Nd(µt+1, Σt+1).

+ Sufficiently accurate linear loss operator, l∆
[t](·).

Simplicity of the method comes along with some straightforward drawbacks
encompassed within the assumptions listed above:

- Multivariate normality assumptions may lead to a severe underestima-
tion of the tail of the loss distribution together with the associated risk
measure.

- Linearization of the loss operator may be inaccurate and/or approxi-
mation may be complex and computationally expensive to compute.

To take into account some of the extreme risk we can adapt the method
using multivariate Student t or multivariate hyperbolic risk-factor changes,
but in this case linearization will become even more delicate and crucial.

5.2.2 Historical Simulation

Most of the financial institutions estimate the risk related to their trading
book relying on the historical simulation method. Its basic idea is to esti-
mate the distribution of the loss operator under the empirical distribution
of historical data

F̂Lt+1,n(x) =
1
n

n

∑
i=1

1{L̃t−i+1≤x} , x ∈ R ,

where the process L̃k = L(Xk) = −(g(t + ∆t,Zt +Xk) − g(t,Zt)) shows
what would happen if the past n risk-factor changes were to randomly recur.

+ Easy to implement.

+ No explicit parametric model has to be defined for X and no estima-
tion needed.

- It may be difficult to collect a sufficient amount of data for all the risk
factors.

- Tail risk may be underestimated due to the possible lack of extreme
events in the past time frame considered.

As shown in McNeil et al. [2015], to align our estimation to the tail risk we
are actually exposed to, we may deploy techniques from extreme value theory
in order to estimate the risk of low-probable events, based on the historical
losses Lt−n+1, · · · , Lt.
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5.2.3 Monte Carlo

Monte Carlo method is the most expensive method from a computational
point of view, because inference about the loss L is done by simulating new
risk factor data. In order to do that, Xt+1 is assumed to follow some explicit
parametric model, without any prior assumption concerning the analytical
tractability of the loss operator. To perform a Monte Carlo estimation the
simple steps to follow are:

i. Choose and calibrate a specific model accordingly to some given his-
torical time series of risk-factor data, say Xt−n+1, · · · ,Xt .

ii. SimulateX(1)
t+1, · · · ,X(N)

t+1 for the next time period where each (X
(n)
t+1)

N
n=1

is independent from each other .

iii. Apply the loss operator to the simulated data

Lk = l[t](X
(k)
t+1) , k ∈ {1, · · · , N} .

iv. Infer on the loss distribution FL and estimate the risk measure of in-
terest. Simple empirical quantile could be considered, but, as in the
historical simulation approach, tail risk may be estimated fitting some
extreme value distribution to the simulated data.

Basically any kind of distribution could be considered for Xt+1 making gen-
erality one of the main pro of MC method. On the other side, depending
on the size and the complexity of the portfolio the evaluation of the consid-
ered loss operator may be difficult and computationally expensive. Lastly
but most importantly, this approach does not tackle at all the problem of
finding the distribution of Xt+1.

5.2.4 Measuring risk

Within Basel or Solvency framework, a risk measure for a financial position
with random loss L is basically a real number expressing the amount of capi-
tal required to make a position with loss L acceptable to a regulator, internal
or external. Determine the risk of an insurance contract, limit the amount
of risk of a business unit and define the amount of capital to hold against
unpredictable (and extreme) future losses are only some of the reasons why
the use of risk measure has become some popular in financial industries. Dif-
ferent approaches might be used in order to achieve this riskiness valuation
and they are grouped in

a. Notional-amount approach:

portfolio risk = ∑
i
(notional value of securityi)× (riskiness factori) .
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Simplicity of the method is partially offset by the absence of both net-
ting and differentiation between long and short position.

b. Scenario-based measure: given certain possible future risk-factor changes,
said X = {x1, · · · ,xn} with the corresponding weights (wi)

n
1 , the risk

of a portfolio is,

ψX ,w = max1≤i≤n{wi · L(xi)} .

c. Loss-distribution-based measure: some characteristics of the underlying
(estimated) loss distribution are exploited in order to assess the ex-
posure of a given portfolio, e.g. variance, Value at Risk, Expected
Shortfall.

From now on, our attention will be on the last approach, while for further
details and references on the other methods we invite the reader to refer to
McNeil et al. [2015]. Before giving the formal definition of Value at Risk we
need to introduce the following concept.

Definition 5.1 (Generalized Inverse) For any increasing function T : R → R,
with T(−∞) = limx↓−∞ T(x) and T(∞) = limx↑∞ T(x), the generalized inverse
T← : R→ R̄ of T is defined by

T←(y) = inf {x ∈ R : T(x) ≥ y}, y ∈ R, (5.6)

with the convention that inf ∅ = ∞. If T is a distribution function, T← : [0, 1]→ R̄

is the quantile function of T while if T is continuous and ↑, then T← ≡ T−1.

Hence, we can now finally give the following

Definition 5.2 (Value-at-Risk) The Value-at-Risk of a portfolio at a given confi-
dence level α ∈ (0, 1), is given by the smallest number x such that the probability of
the loss L exceeds x is no larger than (1− α). In mathematical notation that means

VaRα(L) = F←L (α) = inf{x ∈ R : FL(x) ≥ α}.

VaR is basically the α-quantile of the distribution function FL and its sim-
plicity is one of the main reasons for its widely usage in both financial and
non-financial institutions. The concept has been introduced by JP Morgan
in the early 80s by its former CEO Dennis Weatherstone. The framework
became known worlwide only few years later, precisely in 1994, when it
has been published by the bank, through the famous CreditMetrics Techni-
cal Documentation, while recent academic developments in this direction
are given for example in Mina, Xiao, et al. [2001]. Being a frequency-based
measure, unfortunately Value-at-Risk is not assessing and/or providing any
information on the size of the loss that may occur with a probability ≤ 1− α.
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To overcome this issue, other measures, introduced soon, must be deployed.
Before even starting with the estimation process, two main parameters has
to be chosen: ∆t and α. Depending on the risk that is being measured and ac-
cordingly to the specific regulatory framework, we can set those two values
as:

1. Basel II

a) Market Risk: α = 0.99 and ∆t = 10d .

b) Credit Risk: α = 0.999 and ∆t = 1yr .

2. Solvency II

a) α = 0.995 and ∆t = 1yr .

Before moving to the next section, it is worthwhile to introduce another
extremely important risk measure able to overcome some of the theoreti-
cal deficiencies that come together with the Value-at-Risk definition. Those
drawbacks will be shortly presented in section 5.3.

Definition 5.3 (Expected Shortfall) Let L be a loss with distribution function
FL and E(|L|) < ∞. The Expected Shortfall of a portfolio with loss L at confidence
level α ∈ (0, 1) is the average VaR over all u ≥ α. Formally

ESα =
1

1− α

∫ 1

α
F←L (u)du =

1
1− α

∫ 1

α
VaRu(L)du. (5.7)

In comparison to Value-at-Risk, Expected Shortfall looks even further into
the extremes of the loss distribution investigating also in the (1− α) proba-
bility events “hidden” in the tails.

We can now finally move on to the next sections of the chapter, where some
of the major properties of the risk measures are presented together with
some backtesting techniques useful (and crucial) to evaluate the quality of
our estimates.

5.3 Coherence and Convexity

The idea of this third section, it is to introduce and familiarize with some
important properties that a risk measure has to satisfy in order to be con-
sidered a good measure. The following axioms should be considered as
practical tools that may be used to assess, compare and rank all different
risks faced by a financial and non-financial institution.
The first four postulates, were initially introduced by Delbaen [2002], ex-
tended on infinite probability spaces some years later by Delbaen [2002] and
finally defined in a more general (convex) framework by Föllmer and Schied
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[2002]. Let L0(Ω,F , P) be the set of all random variables that are almost
surely finite on (Ω,F ) and letM⊆ L0(Ω,F , P) be a linear space represent-
ing portfolio losses over a fixed time horizon ∆. The setM is often assumed
to be a convex cone, that is

Definition 5.4 (Convex Cone) A given set C ⊆M is said to be a convex cone if
(1− γ)x + γy ∈ C and λx ∈ C for all x, y ∈ C, γ ∈ (0, 1) and λ > 0.

In this framework, a risk measure is defined as a real-valued map defined on
the (convex) coneM as

$ :M→ R ,

where for all L ∈ M, $(L) represents from an economical point of view,
the amount of capital needed to make a position with loss L, acceptable by
internal/external risk controllers. Additionally this measure can be either
positive or negative depending if the risk-free capital must be increased or
can be eventually reduced.

Before introducing the axioms, let’s now consider at time zero a simple
portfolio composed by two basic instruments: a risk-free asset of amount x
and a risky one with the terminal value L. Having no risk associated with
it, at time 1, x is mapped to x · (1 + r f ) where r f represent the risk-free rate.
Thus,

Axiom 1 (Translation invariance)

∀L ∈ M, x ∈ R, $(L + x · (1 + r f )) = $(L)− x . (5.8)

Reasonably, capital requirements are decreased investing a real value x in
the risk-free asset.

Axiom 2 (Sub-additivity)

∀(L1, L2) ∈ M×M, $(L1 + L2) ≤ $(L1) + $(L2) . (5.9)

VaR is in general non sub-additive and using a non-additive measure regula-
tory capital requirements could be easily lowered by any institution splitting
up in subsidiaries. The main idea is that in order to minimize the overall
risk associated with a specific portfolio, a portfolio manager is encouraged
to apply diversification.

Axiom 3 (Positive Homogeneity)

∀L ∈ M, λ ≥ 0, $(λ · L) = λ · $(L) . (5.10)

The main criticism that has been done to this axiom, it is that for large
positive λ liquidity risk comes into play and concentration of risk should be
penalized. Considerations which lead us to consider $(λL) > λ$(L), with
the immediate consequence of contradicting the previous axiom.
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Axiom 4 (Monotonicity)

∀(L1, L2) ∈ M×M such that L1 ≤ L2 (a.s) ,

$(L1) ≤ $(L2) . (5.11)

That means, positions that almost surely lead to higher losses require more
capital.

Now, we can finally give the following

Definition 5.5 (Coherent risk measure) A risk measure $ on the convex cone
M is coherent if it satisfies axioms 1-4.

As already mentioned previously in the section, some of the requirements
that need to be satisfied by a risk measure in order to be defined coherent,
may be relaxed leading to a more general group of measures. Precisely
conditions expressed in axioms 2 and 3 may be softened and substituted by
the weaker property of convexity, defined as

Definition 5.6 (Convex risk measure) A risk measure $ :M→ R is said to be
convex if it is monotone, translation invariant and for all (L1, L2) ∈ M×M and
λ ∈ [0, 1] satisfies

$(λ · L1 + (1− λ) · L2) ≤ λ · $(L1) + (1− λ) · $(L2) . (5.12)

Being the two properties one the generalization of the others, coherence im-
ply convexity, but in general the converse does not hold true. Additionally,
as previously stated VaR is not a coherent risk measure (at least in the gen-
eral case, e.g. with heavy-tailed distributions) whereas Expected Shortfall is.
Detailed proofs and counter-examples, can be found in McNeil et al. [2015].

5.4 Consistent Measures of Risks

Different properties may be analyzed and defined for a given risk measure
and before moving to the final section dealing with backtesting, here we
would like to introduce a different approach that might be a convenient
complement to coherency and convexity.
As introduced and discussed in Malevergne and Sornette [2002] and Malev-
ergne and Sornette [2006] let’s recall the same simplified economic frame-
work previously defined, with the difference that the newly defined risk
measure $̄ is forced by the following axiom to take values only in R≥0

Axiom 5 (Positivity)

∀L ∈ M $̄(L) ≥ 0. (5.13)
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In addition we would like $̄ to be translational invariant, that is, to guarantee
that the fluctuation do not change if any deterministic amount is added to
the random payout of the risky position. Formally

Axiom 6 (Translational Invariance)

∀L ∈ M, ∀x ∈ R $̄(L + x)$̄(L). (5.14)

In order to overcome the liquidity risk that, as previously said, is not prop-
erly tackled by Axiom 3, our risk measure is forced to satisfy the following

Axiom 7 (Positive Homogeneity)

∀L ∈ M, ∀λ ∈ R+, ∃ξ ≥ 1 $̄(λ · L) = λξ · $̄(L). (5.15)

where the liquid market case could be easily retrieved forcing ξ = 1. Various
practical examples of risk measures obeying to axioms 5-7 are analyzed in
Malevergne and Sornette [2006], in which great emphasis has been put on
centered moments (variance in particular) and cumulants. Let’s now move
on to the last section of the chapter where a step-by-step backtest guide will
be presented.

5.5 Backtesting

Whenever a risk measure is estimated by a model, its quality needs to be
evaluated with appropriate backtesting methods. In order to do that we
basically need to define a statistical procedure aiming to assess the validity
of both our model and estimation. The idea is then to compare the predicted
losses against the actual ones realized at the end of the considered time
window. Precisely, we say that an exception has occurred and VaR has been
underestimated, if by that time, our portfolio has experienced a loss greater
than the estimated VaR. In this direction two types of test may be performed
to analyze those kind of events:

- Unconditional Coverage: it determines whether the frequency in the ex-
ceptions during ∆t is in line with the confidence interval that has been
considered. It does not take into account the time of the exception.

- Conditional Coverage: it captures if the different exceptions occurred
independently from each other. It indicates if the model is able to
detect changes in market dynamics like volatility or correlation.

Given the conditional loss distribution FLt+1|Ft let VaRt
α be the Value-at-Risk

at a specific confidence level α. Let’s now consider It+1 = 1{Lt+1>VaRt
α} count-

ing 1 if the violation has happened and 0 if it hasn’t. Assuming continuous
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loss distribution and exploiting the definition of quantile, we have that It+1
is a Bernoulli random variable with probability (1− α), whose sum is

M =
m

∑
t=1

It ∼ Bin(m, 1− α).

If we then assume the timings of the exceptions to be 1 ≤ T1 < · · · <
TM ≤ m with T0 = 0, then Sk = Tk − Tk−1 with k = (1, · · · , M) will be
Geometrically distributed with probability mass function given by

P(Sk = j) = αk−1(1− α), j ∈N.

Both concepts can easily be tested on empirical data, computing for example
Likelihood Ratios defined in Christoffersen [1998] and Kupiec [1995] for
spacings of violations and for their Binomial behaviour, respectively. We
performed both 95% and 99% confidence estimates leading us to reject the
null hypothesis whenever Likelihood Ratio was greater then χ2

1(5%) = 3.841
and χ2

1(1%) = 6.635. In order to consider a mixture of the previous methods
the two ratios can be also combined in a single one. The sum has to be then
compared to a chi-square distribution with two degrees of freedom. Critical
values become χ2

2(5%) = 5.991 and χ2
2(1%) = 9.210.
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Chapter 6

Simulations and Results

This chapter is divided in three main parts and it has been structured with
the idea that each one of them gives a detailed summary of the results for a
specific purpose and method that have been used. Section 6.1 is dedicated
to model simulation and it will present how a synthetic time series has been
able to capture the most important stylized facts observed in real financial
data. First results are then introduced in section 6.2 where the code devel-
oped in Berntsen [2015] is shown to be slightly improved in performance
deploying some Object-Oriented features, while SPSA online estimation pre-
sented in chapter 3, is used to estimate the unknown parameters. Even
though online calibration has produced interesting results and estimation
was quite satisfactory from a statistical point of view, especially for some
parameters, convergence could not be guaranteed for all of them and max-
imum and profile likelihood are then adopted as an alternative calibration
methodology.

6.1 Model simulations

In order to investigate the properties of the model developed by Malevergne
and Sornette [2014] a first analysis has been done by considering 40-year
synthetic time series produced with a set of parameters that has been chosen
in order to simulate what is observed empirically in financial returns. In the
considered framework, discrete observations are made available on a daily
basis while each year consists of 250 trading days. Further remarks should
be made in order to clarify and understand the values that have been chosen
to run the simulation. The first four parameters related to the GARCH(1,1)
dynamics define realized volatility σ̄ and return r̄ respectively equal to 25%
and 7% on an annual basis. Paramters α and β are instead connected to
the dependency of the process on past squared returns and volatility, with
the values fixed at 0.05 and 0.94. Concerning the jump size the value κ
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6. Simulations and Results

has been set to 1/25 = 0.04 expecting to observe average jumps of around
4%. Parameter a has been selected in order to consider a memory of the
mispricing equal to 250 days, that is a = 1− 1/250 = 0.996. Finally, X̄ and
η are fixed to values equal to −5 and 3, respectively. It is worthwhile to
remark, that given eq. (2.26), volatility of the mispricing index Xt, is then
expected to be 30-35 times bigger than the volatility of the returns rt, whilst
its mean to be equal to −5.

With respect to X̄ and η suggestions of Malevergne and Sornette [2014] have
been followed to select their most significant values. Finally the memory of
the model is then uniquely described by the single parameter a that with the
value 0.996, is of the order of 250 trading days. To summarize

r̄ σ̄ α β κ X̄ η a

0.07 0.25 0.05 0.94 0.04 −5.0 3.0 0.996

The above parameter combination produced a time series in line with well
known stylized facts related to empirical log-returns. To begin with, the up-
per plot in figure 6.2 shows the ability of the model to capture volatility clus-
tering while the bottom one illustrates log-returns and squared log-returns
together with their sample autocorrelation functions (ACFs). The confidence
intervals have been estimated using asymptotic theory exploiting, in particu-
lar the well known result, that for long iid time series of length n, estimated
autocorrelation, say ρ̂, is normally distributed with mean zero and variance
inversely proportional to n. Thus the 95% confidence interval is simply
given by ρ̂ ± 1.96/

√
n. Lastly, as an additional check we also measured

skewness and kurtosis of the simulated log-returns, respectively defined as
the third and fourth standardized moments, formally:

skew(X) = E

[(
X−µ

σ

)3
]

, kurt(X) = E

[(
X−µ

σ

)4
]

. (6.1)

Negative skewness (−0.3171) and kurtosis bigger than 3 (7.2141), implied
for our synthetic time series, smaller mean than the median and leptokur-
tic distribution characterized by more concentration around the mean and
slower decay in the tails, in comparison to a normal distribution. All charac-
teristics observable in empirical financial data.

Dependency between log-prices, their explosive growth and crash probabil-
ity are easily observable in figure 6.1. Reading together the top and the bot-
tom plot we can spot how the super-exponential growth in the log-price is
interconnected with the mispricing index and on a second instance with the
crash-hazard rate. Basically 4 different regimes may be observed in the time
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Figure 6.1: Top: simulated log-prices (blue line, left scale) and jumps (red
line, right scale). Bottom: mispricing index (black line, right scale) and crash
probability (red line, left scale) corresponding to the simulated log-price
dynamic showed in the top plot.

frame considered. A pretty flat behaviour is shown up to around 1978-79
followed by an unusual boost in the log-price with an obvious consequent
spike in the crash probability justified by the increased risk the investors
have to bear in order to keep the position open. Just before 1980 as soon
as multiple crashes brought the log-price closer to its fundamental value an-
other change of regime may be easily spotted. An upward trend is indeed
observable in the log-price up to 1988-1989 where a flat period drove both
the mispricing index and the crash-hazard rate to low and reasonable levels.
Frequency of jumps spiked again especially between 1995 and 2000 where
crash probability rose to almost record levels, but also right before the his-
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torical maximum hit by log-prices in 2008-2009. Finally, some jump activity
is observed in the last analyzed decade, but overall the trend remains flat.

As pointed out in chapter 2 the revolutionary and enlightening elements of
Malevergne and Sornette [2014] model are a non-local and self-referencing
mispricing index Xt and a crash-hazard rate λt, joined to the latter through
a non-linear and S-shaped standard logistic function. Xt has been defined
as a process following a normal distribution with mean given by the param-
eter X̄ and standard deviation proportional to the volatility of the simulated
log-returns. The qq-plot in the bottom right corner of figure 6.3 is basically
verifying this behaviour. Quantiles of the mispricing index are indeed plot-
ted against the theoretical quantiles values from a normal distribution. A
linear shaped line proves the analogy of the distributions. On its left side
the scatter plot is showing instead the high correlation between the crash-
hazard rate at time t and t + 1 displaying higher variation in the top-right
corner. Those points relate to events belonging to the time frame when
the crash probability reached its local peak in February 1979 before a sub-
sequent drop in the months ahead. Finally in the top plot in figure 6.3
gaussian kernel smoothing function is used to estimate the density of the
crash-hazard rate clearly matching its theoretical counterpart defined by the
logistic-normal distribution introduced in eq (2.25).
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Figure 6.2: Top: trajectory of the volatility of the simulated jump-diffusion
model. Bottom plots: log-returns and squared log-returns with the corre-
sponding autocorrelation functions up to 50 legs.
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Figure 6.3: Top: normal kernel smoothing function (blue) and theoretical
density (red) of the crash-hazard rate λt of the simulated time series. Bot-
tom left: scatter plot of crash probability at time t vs t + 1 with correspond-
ing least-squared fitted line (red). Bottom right: quantiles of the mispricing
index Xt (blue crosses) versus the theoretical quantiles from a normal distri-
bution (red dashed line).
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6.2 Particle Filter and Online Estimation

We decided to divide this section in two main parts both extremely tied
with the work that has been done in Berntsen [2015] which will be used as a
proxy for some of our results and as a starting point for many considerations.
The simulated time series that has been analysed here is still the same one
displayed in figure 6.1 produced with the set of known parameters given in
section 6.1.

6.2.1 Code Optimization

Taking over the work that has been done in Berntsen [2015], my first task
has been to increase portability and performance of the code. Three versions
already implemented in Berntsen [2015], namely Sequential Importance Re-
sampling (SIR), Auxiliary Particle Filter (APF) and SIR with State Augmen-
tation (SIRSA), were grouped into one single code. A TimeSeries class

was created with such a purpose and, depending on the input, SIR, APF
or SIRSA were performed with a specific number of particles and time se-
ries length. As shown by the black dashed line in the top plot of figure 6.4,
CPU running time was on average, decreased by 18.2% compared to the pro-
cedure developed in Berntsen [2015]. The code has been run on the same
synthetic 10000-step time series of log-prices introduced above and showed
in Figure 6.1.

Exceeding our expectations, the new algorithm has been also able to better
detect the timings of jump arrivals. This result can be seen in the second plot
from the top of Figure 6.4. Blue bars, corresponding to the new algorithm,
in most of the cases exhibit greater height than the red ones, representing
the older version of the code. In that specific plot a bar going all the way
up to 1 represents the ability of the algorithm to fully capture the actual
occurrence of a jump.

Overall all the 83 jumps have been identified by the filter, but a low confi-
dence has been assigned to many of them. Here, confidence is expressed
in probabilistic terms given by the heights of the bars in the second plot of
Figure 6.4. Bottom plots of the same Figure, analyze how well the algorithm
behaved with respect to false and true positive, with respect to changes in
this confidence level. We can indeed consider our filter as a binary classi-
fier giving us the output jump or no jump at a given time t. If the jump is
detected, but no jump actually occurred, we have a false positive. By logic, a
true positive is when the jump is both captured and observed. As shown by
the bottom left plot of Figure 6.4, many false positive results are produced
by the new code when threshold is set to a level below 0.5. With respect to
true positive instead, the new code is always preferred to the old one.
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6.2.2 SPSA Results

Here the assumption of known parameters is relaxed and the estimation
results obtained with the online procedure described in chapter 3 are pre-
sented. In the first place it is worthwhile to specify once more the 8-dimensional
space where the parameters live.

(r̄, κ, X̄, η) ∈ R4, (6.2)

σ̄ ∈ R+, (6.3)

(α, β) ∈ {(x, y) ∈ [0, 1)2, x + y < 1}, (6.4)

a ∈ [0, 1]. (6.5)

The constraints specified above are crucial for the calibration and they must
be satisfied throughout the whole estimation process in order to guarantee
the existence of the dynamics defined by the model. In order to do that,
Spall [1998] simply suggested that given a parameter θ ∈ [θmin, θmax], the
two lines below may be added to SPSA algorithm right after the update step

θ = min(θ, θmax) (6.6)

θ = max(θ, θmin). (6.7)

In our case though this approach was proven to be inefficient due to the fact
that all the particles tend to fall into this imposed boundary condition and
remain there until the end of the estimation procedure. We then decided
to proceed differently. In our second implementation, every time a particle
was perturbed or a parameter was updated, if any of the condition was not
met, the corresponding perturbation or parameter update was recomputed
until all the constraints were satisfied or a maximum number of iterations
was reached. This methodology together with gain sequences specifically
defined to accommodate the different changes of magnitude of each param-
eter from one step to the other, lead us to the results of Figure 6.5.

Constraints within SPSA algorithm

1: while All constraints not satisfied do
2: while All constraints not satisfied do
3: Generate a 8-dimensional simultaneous perturbation vector
4: Parameter Update

As in every optimization procedure, the starting values are crucial in order
to perform a successful and meaningful calibration and achieve any rea-
sonable outcome. Precisely, starting points for κ, η and a have been drawn
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6.2. Particle Filter and Online Estimation

independently for each particle, from a uniform distribution centered in the
corresponding true value. The same technique has been adopted with the
couple (α, β), subject to α + β < 1. r̄ and σ̄ instead have been drawn respec-
tively from a Normal and a Chi-Squared distribution. r̄ describes the uncon-
ditional expected return of the risky asset and drawing its starting values
from a normal distribution with mean and standard deviation equal to the
sample ones, was a straightforward choice. On the other hand concerning
σ̄, that is describing the long-term volatility of the GARCH(1,1) process, we
know that in the case of a Gaussian sample (log-returns in the present case)
its variance follows a χ2

k distribution, where the degrees of freedom (equal
to T− 1 in our case) have to be selected in order to control the spread of the
distribution. Using also the following relationship between chi-squared and
Gamma distributions

χ2
n ∼ Γ

(n
2

, 2
)

and a · χ2
n ∼ Γ

(n
2

, 2a
)
∀a ∈ R>0 (6.8)

we have drawn our starting values from Γ(ā, b̄) where ā = T−1
2 , b̄ = σ2

s · 2
T−1

where T and σ2
s define the length of the time series and the sample variance,

respectively.

Although Spall [1998] and Mina et al. [2001] showed convergence of the
method in similar highly non-linear problems, in our specific case no con-
vergence is guaranteed. Even reducing the uncertainty moving from 8 un-
known parameters to 7 (e.g. assuming parameter a to be given), no im-
provement in the calibration is shown. Against our expectation Figure 6.5
shows indeed that even after 10000 time steps, no reduction is observed in
the volatility of the estimated parameters. No improvement was obtained
increasing or decreasing the number of particles.

In Berntsen [2015] the parameter a was shown to be the most difficult to
calibrate, while our results proved something different. In our framework
indeed, parameter a, together with r̄, σ̄, α, β was either fluctuating around
the corresponding true value or moving towards it. Different behaviour
instead was observed for κ, but especially for X̄ and η, whose calibrated
values were far away from the their true counterparts. During the estima-
tion process values of X̄ and η spanned from -5.5 to -4.5 and from -20 to
+17, respectively. These results showed once more the sloppy nature of our
problem as anticipated in both Malevergne and Sornette [2014] and Berntsen
[2015]. The interesting result was that the problematic parameters have been
identified to be X̄ and η. In the next section, eigenvalues and eigenvectors of
the Hessian of the cost function are analyzed in order to further investigate
our findings.

To conclude, our dual estimation procedure has proved inefficient for the
model at hand. The reason stems from the fact that particle filter and SPSA
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algorithm we implemented failed to disentangle the dependencies between
hyper-parameters and hidden states, leading to highly unstable results.
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Figure 6.4: Red and blue lines/bars represent the old and the new code
respectively. Top: performance improvement with Object Oriented features
analysing 10000-step synthetic time series with different number of particles
and run on a MacBook Pro 2,26 GHz Intel Core 2 Duo with OS X El Capitan.
Dashed line refers to the right y-axis and describe the percentage speed
improvement. Central plots: jump timings (upper plot) and size (lower plot)
filtered using SIR particle filter with number of particles and time steps both
equal to 10000. Black dots and stars respectively represent timings and sizes
of observed jumps. Blue and red bars indicate how well the filer was able to
capture them. In the second plot from the top, bars represent the confidence
in the estimates. Full timing detection is represented by bars with height
equal to 1. Bottom plot: number of false and true positives with respect to
changes in the threshold of confidence.
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Figure 6.5: Parameters estimated online using SPSA algorithm within SIR
particle filter. Purple lines correspond to the mean of the parameter values
assumed by all the particles at each time t while shaded areas represent con-
fidence intervals at 95%. 1000 particles and 10000 time steps are considered.
True value represented by the green lines.
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6.3 Maximum and Profile Likelihood

In this section, a modified and tailored version of the standard maximum
likelihood method is presented together with its results. Given the needs to
better understand the importance of the different parameters with respect
to the cost function, profile likelihood has been also implemented. Finally
due to the statistically insignificant results we obtained while profiling the
likelihood, its modified version introduced in chapter 4 has not been imple-
mented.

6.3.1 Maximum Likelihood

Here we show the results of the likelihood maximization with respect to
our 8-dimensional parameter vector θ = (r̄, σ̄, α, β, κ, X̄, η, a). As is often
the case with optimization problems, we decided to exploit the relationship
arg maxθ f (θ) = arg minθ − f (θ), since most of the optimization libraries
provide only minimization routines. For our purpose DLIB C++ Library is
employed. Namely, the unconstrained minimization function find min is
adopted.

Due to the complexity of the problem we divide the optimization task in
two parts. In the first place GARCH(1,1) estimation is assessed, meaning
that (r̄, σ̄, α, β) are calibrated using the Limited-memory BFGS quasi-Newton
search strategy. Wurtz, Chalabi, and Luksan [2006] showed the efficiency of
the algorithm in a similar framework. The remaining parameters, (κ, X̄, η, a)
are instead tackled in a second instance where newton search strategy is
used. This method gives the possibility to provide analytical gradient and
Hessian, both crucial for algorithm convergence. Those information are
indeed necessary in order to guarantee high computational precision and
avoid being trapped in local maxima. Sadly, DLIB does not support any
float 128 or long double data type and we are forced to use basic double

precision.

To sequentially optimize the problem, but also to speed up the computa-
tion function-objects are also implemented following DLIB documentation.
Boundary conditions of the model are manually forced to be satisfied in
this context simply assigning an unrealistic high value to the log-likelihood
whenever one of the constraints is violated. We take a similar approach
with regards to the gradient. Its closed form solution may not be defined
outside the boundaries and then its numerical approximation is computed
by dlib::derivative function.

Lastly, as a final step of the optimization, a gradient based line-search is
performed. Different directions are given here by the eigenvectors of the
Hessian. The idea of this last step is basically trying to minimize the norm
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of the gradient of the cost function, unless it is not sufficiently small already.
Sufficiency in this case is determined by the following quantity

ε = ∇L(θ∗)T ·Λi (6.9)

where ∇L(θ∗) is the gradient of the log-likelihood evaluated in our op-
timal value, while Λi represents the eigenvector corresponding to the ith-
eigenvalue. In our specific case the threshold for ε is set to 1e-4.

Results

Here the aforementioned procedure is applied on the 40-year synthetic time
series presented in section 6.1 and simulated with the following set of pa-
rameters: r̄ = 0.07, σ̄ = 0.25, α = 0.05, β = 0.94, κ = 0.04, X̄-5.0, η = 3.0 and
a = 0.996. The estimated values together with their corresponding robust
standard errors are displayed below. Calibration procedure took 430 sec on
a MacBook Pro 2,26 GHz Intel Core 2 Duo with OS X El Capitan. With the
minimum eigenvalue equal to 5.35444e-05 the Hessian of the log-likelihood
is shown to be positive definite. This result confirms that the optimal pa-
rameter vector is an actual miminum and not a saddle point in which the
procedure has been trapped. Overall the method performed well and lead to
estimated values close to their true counterpart with small robust standard
errors. Additionally, in contrast with Berntsen [2015] conclusions, parame-
ter a is resulted to be calibrated correctly. On the contrary though, optimal
X̄ and η resulted in having unexpectedly high standard errors, forcing us to
further investigations in this direction.

-L(θ̂) = -2.5950

‖∇L(θ̂)‖ = 5.2638e-04

r̄ = 0.0880 (0.0002) κ = 0.0627 (0.0119)

σ̄ = 0.2386 (0.0006) X̄ = -5.1276 (0.2776)

α = 0.0480 (0.0036) η = 2.6120 (1.3642)

β = 0.9412 (0.0040) a = 0.9936 (0.0045)

6.3.2 Profile Likelihood

In this second part of the section we aim to better understand the inter-
connections between the different parameters. Especially we would like to
understand how important each one of them is with respect to the calibra-
tion process. We already know that the log-likelihood as a function of some

58



6.3. Maximum and Profile Likelihood

of the parameters is very flat and it is with respect to those “sloppy” param-
eters that profile likelihood is performed. The basic idea here is to exploit
some information contained within the Hessian matrix of the log-likelihood.
In order to do that, eigenvalues and eigenvectors are computed at the end
of the full estimation procedure described before. Thus

λ1 = 3484.92 λ2 = 296.64 λ3 = 75.9838 λ4 = 7.5176

λ5 = 3.6071 λ6 = 1.3313 λ7 = 0.0014 λ8 = 5.4e-05

Λ1 =



0.9999
-0.0107
-0.0014
-0.0006
0.0020

-1.2e-05
-6.4e-06
-0.0003


Λ2 =



-0.0103
-0.9873
0.1427
0.0685
0.0008

-0.0004
-6.6e-06
0.0026


Λ3 =



-0.0031
-0.1526
-0.7431
-0.6515
-0.0012
-0.0005
-3.0e-05
-0.0098


Λ4 =



0.0001
0.0004

-0.0185
0.0059
0.0650
0.0032
0.0021
0.9977



Λ5 =



0.0009
0.0421
0.6535

-0.7555
-0.0055
0.0003
0.0001
0.0169


Λ6 =



0.0021
-0.0008
-0.0038
0.0053
0.9974

-0.0308
-0.0017
0.0650


Λ7 =



0.0001
-0.0005
-0.0006
0.0001
-0.0310
0.9978
0.0587
-0.0013


Λ8 =



5.2e-06
1.1e-05
4.8e-06
1.6e-05
-2.2e-06
-0.0587
0.9983
-0.0019


The first thing to notice is the difference in the order of magnitudes between
λ1 and λ8. Additionally, analyzing the corresponding eigenvectors, namely
Λ1 and Λ8 we notice that they are dominated by the first (r̄) and the 7th pa-
rameter (η), respectively. This is telling us that the likelihood of the model
is extremely sensitive to changes in the value assigned to r̄, but on the con-
trary, it will not be affected by any variation made to the parameter η. Same
reasoning holds true with respect to the parameter associated with λ7, i.e.
X̄. By fixing a threshold ε to the value of λi we can now distinguish between
sloppy and rigid parameters. Figure 6.6 shows the results obtained profiling
the cost function following the guidelines given in Chapter 4.2.

Figure 6.6 clearly displays an improvement in the estimate of the calibrated
η before (black dotted line) and after (green dotted line) the profile maxi-
mization. Opposite behaviour is instead observed for the parameter X̄. The
problem with this approach can be seen analysing the relative likelihoods,
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Rp(θ|η) displayed in the second and in the fourth plot. Indeed no cutoff
point can be set in neither of the cases and no probabilistic range can be de-
fined in the parameter space. All the value we spanned lead to a value of the
relative likelihood way above the 95% threshold is usually set. To conclude,
uncertainty of the point estimates remains too high and against our expec-
tations profile likelihood method is proven to be inefficient. A first attempt
was made to implement its modified version described in chapter 3, but
due to time constraints it was not successfully completed. It is believed that
taking into account additional information contained in the Hessian of the
log-likelihood, the method may be helpful for the our specific case. Further
investigation in this direction may be exploited by future researchers.
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Figure 6.6: Profile (Lp) and relative profile (Rp) likelihood estimates with re-
spect to η and X̄. Red dotted line: true values of the parameters. Black dot-
ted line: estimated values of the parameters after the first full 8-parameter
calibration, but before the profile optimization. Green dotted line: values of
the parameter maximizing the profile likelihood.

6.3.3 Monte Carlo Estimation

Monte Carlo estimation has been performed in order to better understand
statistical consistency of the calibration process introduced before. Knowing
that a critical part of the estimation is due to the interconnection and rela-
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6.3. Maximum and Profile Likelihood

tionship between the different parameters any kind of convergence has to be
proven many combination. Theoretically an 8 dimensional grid should have
been produced to exploit as many combinations as possible, but computa-
tional time and power are two constraints that must be always taken into
account. Given our parameter vector θ = (r̄, σ̄, α, β, κ, X̄, η, a), we decided to
freeze the first four component related to the GARCH(1,1) whose estimation
has been shown to be less complicated while the other four were selected
within the following 4-dimensional grid

κ = {0.01, 0.04, 0.1} (6.10)

X̄ = {−1,−4,−7} (6.11)

η = {1, 4, 7} (6.12)

a = {0.98, 0.996, 0.998} (6.13)

81 different combinations were tested. Each one of them has been run 1000
times and new log-price dynamics has been simulated every time. To check
our results we compared our estimator against the theoretical one, known
to be distributed as

θ̂ − θ∗

σ∗
∼ N (0, 1) (6.14)

where θ∗ and σ∗ define respectively the true value and the true standard
deviation of the specific parameter. In order to derive σ∗ the inverse of infor-
mation matrix evaluated in the true set of parameters has been computed. In
practice though, only samples of finite size may be analyzed, leaving us for
certain parameter combinations with a sample estimate of the Hessian not
close enough to its theoretical counterpart. To overcome this issue, for the
critical combinations we averaged the Hessian matrices obtained for each
simulation in order to increase the number of replications and ensure close-
ness between the population Hessian and the one estimated via the sample.

As expected, out of the 1000 simulations that have been run for each combi-
nation, only a percentage completed the estimation. As shown in Figure 6.7
five main “clusters of convergence” has been detected. Analysing those 5
different buckets we came to the conclusion that convergence of the method
was mainly driven by two parameters, namely κ and X̄. Every drastic drop
or surge in the acceptance rate coincides indeed with a change in one of
those two value. No direct impact was related instead to the change in the
other parameters. Table 6.1 highlights the interesting parameters showing
that failure rate is rising or falling whenever specific combinations are set. In
particular (κ, X̄) = (0.04,−1.0), (κ, X̄) = (0.1,−1.0) and (κ, X̄) = (0.1,−4.0)
are proved to be quite unfortunate.
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Figures C.1, C.2, C.3, C.4 and C.5 analyze the convergence of the ones that
exceeded the 91% threshold, defined by the red dashed line in Figure 6.7. As
previously stated we made use of the asymptotic theory in order to conclude
that the standardized estimators are normally distributed with mean zero
and standard deviation 1. From our simulation we can conclude that the
estimators of r̄, σ̄, α and β follow the theory. Same holds true for κ and X̄, but
some exceptions are shown, for example in Figure C.1. Concerning η and a
instead it is clear that in every combination their estimation is far from being
normally distributed. Finally we can conclude that the (synthetic) sample
size with T = 10000 observations is not big enough to guarantee convergence
of the asymptotic theory for all the parameters.

Finally, with respect to the least successful combinations, no evidence has
been produced in order to exclude them from the calibration process. We
expect that slight modification to our estimation procedure, like different
logic for the starting values and a diverse management of the boundary
conditions will help in this direction. Unfortunately, modification has not
been successfully implemented in the time frame of this master thesis.

Comb 1-9 10-18 19-27 28-36 37-45 46-54 55-63 64-72 73-81

κ 0.01 0.01 0.01 0.04 0.04 0.04 0.1 0.1 0.1

X̄ -1.0 -4.0 -7.0 -1.0 -4.0 -7.0 -1.0 -4.0 -7.0

Table 6.1: Combinations used in the Monte Carlo estimation with the specific
values of κ and X̄.
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Figure 6.7: Acceptance ratio for the 81 parameter combinations that have
been selected for the Monte Carlo estimation. A threshold of 91% pass rate
has been set and only combinations that exceeded this level were further
analyzed.
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Chapter 7

Application to financial data

Two different methodologies has been presented in the previous chapter
with maximum likelihood being the most promising one leading to esti-
mated values close to the true ones with small standard errors except the
sloppy ones, namely X̄ and η. The idea of this chapter is to move away
from the known simulated environment and to go into the some real world
application. In this direction the chapter is divided in 2 main parts. The
first one where maximum likelihood is applied to S&P 500 data and the es-
timated values are used to re-engineer and detect (ex-post) past jumps to
measure the practical efficiency of the model. Using the same calibrated
values section 7.2 is comparing instead the general Malevergne and Sornette
[2014] framework against the simpler GARCH(1,1) with historical innova-
tions. Both models are deployed to estimate 1d, 10d and 1y VaR. A general
discussion on the difficulties encountered and some criticism to the model
will finally close the chapter.

7.1 S&P 500 analysis

In order to keep consistency with the analysis done in Malevergne and Sor-
nette [2014] and eventually compare the results we obtained, the same time
series has been considered here. Precisely our analysis has been performed
on Standard & Poor’s 500 data going from 03 January 1950 to 09 June 2014.
Maximum likelihood procedure described in the previous chapter has been
run on the aforementioned time series. The outcome of our tailored calibra-
tion procedure is in line with the one showed in Malevergne and Sornette
[2014] where Expectation Maximization (EM) algorithm has been employed.
Positive-definite Hessian guarantees also that the estimated parameters, say
θ̂ represent an actual maximum and that the procedure did not get stuck at
some saddle point. Robust standard errors computed as the square rooted
diagonal values of the Information matrix evaluated in the θ̂. As expected
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from our previous analysis proving that log-likelihood is sloppy with re-
spect to X̄ and η, standard errors of both those parameters appeared to be
hundreds times higher than the other ones. Below we show the estimated
parameters with the corresponding robust standard errors. Log-likelihood
evaluated in optimal point and smallest Hessian eigenvalue are also shown.

−L(θ̂) = −3.4233

‖∇L(θ̂)‖ = 7.3261e− 04

min λi = 3.7320e− 05

r̄ = 0.1125 (0.0001) κ = 0.0096 (0.0011)

σ̄ = 0.0976 (0.0004) X̄ = -3.0670 (0.2600)

α = 0.0652 (0.0038) η = 2.9791 (1.2849)

β = 0.9235 (0.0042) a = 0.9985 (0.0005)

Calibrated parameters have been then used to estimate ex-post jump activity
of the Index within the considered time window. That means, the following
expectation has been computed

E(It · Jt|Ft) (7.1)

where It and Jt describe respectively arrivals and intensities of the jumps
while Ft represents all the information available at time t. A closed-form
solution to eq. (7.1) is provided in Malevergne and Sornette [2014] and has
been implemented in a C++ framework. Given the estimated jumps and the
estimated crash-hazard rate, empirical γ-quantile has been calculated. Defin-
ing this quantity, we basically wanted to set a threshold j̄, able to separate
the “normal activity jumps” from the most “extreme” ones. In Figure 7.1 γ
was set to 1 minus the average of the crash-hazard rate over the whole time
horizon (in our case equal to 0.9632). In Figure 7.2 instead 99th-percentile
was chosen in order to consider only the 100 most extreme detected jumps.
As in Figure 7.1, black line describes the following theoretical log-price dy-
namic of the index

s̄t =

{
s̄t−1 · exp(µt) if Jt < j̄
st if Jt > j̄

(7.2)

where recalling eq. (2.14) µt = r̄ + κ · λt and st = logSt describes the ob-
served log-price at time t. In words this is exactly like saying that if at
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7.1. S&P 500 analysis

time t the estimated jump would occur and its size would be bigger than
the fixed threshold j̄, then the theoretical log-price, namely s̄(t), will face a
loss proportional to the value of λt, forcing it to match its observed counter-
part given by s(t). On the other side if the intensity of the estimated jump
would be lower then j̄ or no jump activity would be observed at all, s̄(t) will
increase at a rate equal to the expected return conditional on no crash.

Finally cumulative crash probability shown in the bottom plot of Figure 7.2
has been computed following the same logic. Thus

1− q̄t =

{
1− q̄t−1 · (1− λt) if Jt < j̄
λt if Jt > j̄

(7.3)

Accordingly to our ex-post estimation four main jump activities has been
detected. All of them may be attributed correctly to unstable phases in fi-
nancial markets. The crash occurred in 1987 has been detected with high
accuracy. A huge spike in jump activity is indeed captured in the same pe-
riod. On the other hand, the dot-com bubble burst around the 2000-01 and
the 2008 financial crisis have not been properly detected. Both features may
be observed in Figure 7.1 where s̄t (black line) is behaving differently than
its empirical counterpart st (blue line). Those remarks may be connected
to the fact that the behaviour of the index in the years following the peak
reached in 2000-01 is characterized by a fluctuating, but stable regime.

Bottom plot in Figure 7.2 shows (in blue) the cumulative crash probability
resulting from the implementation of eq. (7.3). Being 1-q̄t defined as a
function of λt, we decided to include in the same plot the crash-hazard rate
of the calibrated model in order to give a better comprehension of their tied
relationship. In the plot it is clear how the crash-hazard rate is connected
to the cumulative crash probability and on a second instance to the jump
size. In our framework indeed whenever some jump activity is detected, λt
is not automatically set to zero, but its value decreases proportionally to the
intensity of the crash. Even though from a theoretical point of view eq. (7.3)
should help the comprehension of the risk-return dynamics, in reality on
this specific application no useful information may be extracted. Too many
small activities are indeed detected by the model. Bottom plot in Figure
7.1 resulted then to be too noisy making it difficult to provide any kind of
interpretation. The reason may be attributed to the estimated parameter
κ. Its value equal to 0.0096 indeed, suggests an average jump intensity of
around 1%. Such small value is telling us that in this specific case the model
is not able to differentiate between the “normal” daily stock price dynamic
and the actual jump (or crash) activity. In bottom plot in Figures 7.1 and
7.2 jumps are considered actual jumps only if their intensities are above
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7. Application to financial data

the average. Even though our choice seems logical from a theoretical point
of view, there is no fixed rule with this regards. Since this threshold is
basically arbitrary, an higher one is then considered in Figure 7.2. Precisely
only top 1% of the jumps detected by the model are considered there. As
expected, in the top plot of the figure the process defined by eq. (7.2) and
described by the black line, moves away from its empirical counterpart, since
smaller jumps are now neglected. On the other side the bottom plot is
now less noisy and more comprehensible then before. Different phases can
be now identified throughout the time window analysed. Higher activity
obviously corresponds to periods with higher λt where many actual jumps
are detected. On the contrary, during phases in which the crash-hazard rate
is relatively small the plot shows how this probability is being accumulated.
The arrival time of a jump with sufficiently high intensity might be seen
indeed as a tipping point in which the risk related to the occurrence of a
jump is brought back to its original and theoretical, value given by λt.
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Figure 7.1: Top: observed S&P500 (blue line, left scale) and modified S&P500
(black line, left scale) prices represented in semi-logarithmic scale. Modified
dynamic is computed using eq. (7.2). Red bars refer to right scale and de-
scribe ex-post jump activity computed using equation 7.1. Bottom: jump
probability (black line, right scale) and cumulative jump probability (blue
line, left scale) of the observed time series. Cumulative probability com-
puted using eq. (7.3). In both plots the threshold for the jump intensity is
set to the (1−∑t λt/T)th-percentile of the detected activities
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Figure 7.2: Top: observed S&P500 (blue line, left scale) and modified S&P500
(black line, left scale) prices represented in semi-logarithmic scale. Modified
dynamic is computed using eq. (7.2). Red bars refer to right scale and de-
scribe ex-post jump activity computed using equation 7.1. Bottom: jump
probability (black line, right scale) and cumulative jump probability (blue
line, left scale) of the observed time series. Cumulative probability com-
puted using eq. (7.3). In both plots the threshold for the jump intensity is
set to the 99th-percentile of the detected activities.
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7.2. Risk Estimation

7.2 Risk Estimation

In this last section risk measure estimation is assessed and results from
the model at hand are compared to the one obtained with a GARCH(1,1)
with historical innovations. Even though both methods are generally able to
capture changes in market dynamics, in our framework VaR violations are
proved to occur in clusters. This behaviour is mainly due to the fact that a
static time window is used here to perform the analysis. We further expect
that a slightly more complex approach deploying a rolling window estimate
would lead to a more dynamic procedure able to solve this specific issue.

Figure 7.3: Calibrated model is used to simulate 250 daily returns. 1000
Monte Carlo repetitions are performed. Light grey lines: simulated paths
attached to empirical S&P500 time series starting from June 2013. Black lines
show the 90% confidence interval of the Monte Carlo simulations while its
mean is specified by the black dotted one. Red line: observed S&P500 daily
returns.

7.2.1 VaR

Here Malevergne and Sornette [2014] model is tested in the context of risk
measure estimation in comparison against the well-known GARCH(1,1). Both
the models are calibrated on a time window that is now shrunk down to 63
years. 250 empirical observations are removed compared to the calibration
done in the previous chapter and they are used as out-of-sample data to
backtest our findings. Even though only approximately 1.5% of the sample
data are discarded from the previous procedure, minor discrepancies are
found in the estimated values compared to the ones obtained in the earlier
section. Specifically, this is the case with respect to X̄ and η. This outcome
was anyway expected due to the fact that the log-likelihood is shown to
be flat as a function of those parameters and the can be widely changed
without affecting its value.

Figure 7.3 shows how the simulated paths are able to capture what was ac-
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tually observed in the out-sample year represented by the red line. In the
same figure black continuous and dotted lines illustrate respectively 90%
confidence interval and mean of the Monte Carlo trajectories. VaR95% and
VaR99% are computed for both 10 days and 1 year holding periods. Full
parametric approach is used to simulate new price trajectories from the the
calibrated models. Although 1000, 10000 100000 Monte Carlo repetitions
were performed, in the following figures only the first case is shown since
no remarkable differences are found between them. In the table below esti-
mated parameters are listed together with their robust standard errors.

Full Model

−L(θ̂) = −3.42107

r̄ = 0.1117 (0.0001) σ̄ = 0.0988 (0.0004)

α = 0.0653 (0.0038) β = 0.9237 (0.0042)

κ = 0.0099 (0.0011) X̄ = -3.1366 (0.2644)

η = 3.0741 (1.2933) a = 0.9986 (0.0005)

GARCH(1,1) Model

−L(θ̂) = −3.4174

r̄ = 0.1201 (0.0001) σ̄ = 0.1764 (1.6e-7)

α = 0.0820 (0.0015) β = 0.9115 (0.0022)

Full Model

Estimated VaR95% are displayed in Figure 7.4 by blue dashed lines, while
the 99% cases are represented by the black ones. In the same Figure top 2
plots are related to the 10-day VaR estimation. Holding period of 1-year is
assessed instead in the last two graphs. In every situation we considered
here VaR estimates are exceeded by the observed time series. 95% cases
shows also some high correlation in the timing of the exceedances. Only
one violation is spotted instead when the higher threshold of 99% is selected.
As mentioned in section 5.5 clustered exceedances should not be observed
whenever a good estimator is in place. Indeed the underlying model should
be able to capture changes in the risk factor dynamics. In the specific case of
10-days and 1-year VaR99% both Kupiec’s Proportion of Failures Test (POF)
and Christoffersen’s (IND) Tests did not reject the null hypothesis providing
evidence that the model performs well on average. On the other side when
VaR1yr

95% estimation was tested for independence, alternative hypothesis was
rejected in favor of the null. With respect to the number of observed viola-
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tions instead, no statistical evidence has been provided by the coverage test
in order not to reject the alternative hypothesis.

Garch(1,1)

Here Value-at-Risk is estimated simulating GARCH(1,1) dynamics. In or-
der to generate more realistic scenarios historical innovations are used to
generate the new trajectories. Results are grouped in Table 7.1 and Figure
7.5. GARCH(1,1) has proved to be more conservative with less violations
occurred compared to the previous method. In particular VaR1yr

99% is never
exceeded. With respect to VaR1yr

95% and VaR1yr
99% instead, unconditional cover

tests are proved inefficient in assessing the goodness of the model. Clustered
violation displayed in the bottom plot of Figure 7.5 suggests that the model
is not able to capture changes in the risk factor dynamics, but since for the
analysis a static window is used, such results was expected. Finally, all the
three tests performed on VaR10d

95% and VaR10d
99% provide statistical evidence to

accept the null in favor of the alternative one.

Full Model VaR10d
95% VaR10d

99% VaR1yr
95% VaR1yr

99%

Exceptions 2 1 6 1

Coverage Test 2.7956 2.8896 4.3686 1.1764

Independence Test 1.0205 0.2507 0.2963 0.0081

Combined Test 3.8161 3.1403 4.6649 1.1845

GARCH(1,1) VaR10d
95% VaR10d

99% VaR1yr
95% VaR1yr

99%

Exceptions 1 1 5 0

Coverage Test 0.4130 2.8896 6.0715 5.0252

Independence Test 0.2507 0.2507 0.2049 NaN

Combined Test 0.6637 3.1403 6.2764 NaN

Table 7.1: Backtesting results for VaR estimation in the considered cases.
Bold values highlight situations when critical value of the statistic was ex-
ceeded and null hypothesis rejected. When no violations happened Inde-
pendence Test was not applicable and NaN is shown.
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Figure 7.4: Calibrated full model is used to simulate 10 and 250 daily returns.
1000 Monte Carlo repetitions are performed. Black and blue dashed lines
represent VaR at 99% and 95% confidence, respectively. 10-day VaR95% is esti-
mated around -1.35%, while VaR99% is -2.11%. As expected instead higher es-
timates are shown for the 1-year holding period, namely VaR95% = −1.403%
VaR99% = −2.458%. First and third plot from the top display normalized
histogram of simulated returns for respectively 10 and 250 days. Finally red
lines in the second and fourth graph show S&P500 realized return.
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Figure 7.5: Calibrated GARCH(1,1) model is used to simulate 10 and 250
daily returns. 1000 Monte Carlo repetitions are performed. Black and
blue dotted lines represent VaR99% and VaR95%, respectively. 10-day VaR95%
is estimated around −1.39%, while VaR99% is −2.19%. As expected in-
stead higher estimates are shown for the 1-year holding period, namely
VaR95% = −1.47% VaR99% = −2.81%. First and third plot from the top
display normalized histogram of simulated returns for respectively 10 and
250 days. Finally red lines in the second and fourth graph show S&P500
realized return.
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Chapter 8

Conclusion

The two-fold goal of this master thesis was to calibrate the jump-diffusion
model developed by Malevergne and Sornette [2014] and to extend the work
that has been done in Berntsen [2015]. Strengths and weaknesses of the
model were investigated and highlighted throughout the work. We describe
how synthetically generated data was able to capture dynamics widely ob-
served in financial data. In addition we demonstrate the difficulty in distin-
guishing between regular and abnormal activity.

With regards to the calibration two different procedures were adapted to the
framework. In the first approach the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm developed by Spall [1987] was embedded
within the particle filter implemented in Berntsen [2015]. Convergence of
the method was not guaranteed due to the complicated dependencies be-
tween the hyper-parameters and the latent variables extracted by the filter.
In addition flatness of the likelihood with respect to some of the parameters
made their calibration even more cumbersome.

In a second part of the thesis, offline maximization of the likelihood was
performed. The analytic gradient and Hessian derived in Malevergne and
Sornette [2014] were also implemented in order to guarantee the maximum
possible precision. The offline approach proved to be more stable than the
online counterpart, but still for some of the parameters standard errors are
shown to be too large.

In the next step, a spectral analysis of the Hessian was performed in order
to disentangle the importance of the different parameters. Profile likelihood
showed promise in this direction. Unfortunately no statistical significance
was provided to the estimates, mainly due to the sloppy nature of our prob-
lem, but also to the highly ill-conditioned Hessian of the cost function.

A Monte Carlo calibration approach was finally implemented to analyze 81
different parameter combinations. Success rate of the estimation was proved
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8. Conclusion

to be influenced primarily by two parameters, namely the ones describing
the average jump size and mispricing index. Variation of the other ones
neither improved nor worsened the quality of the estimation.

In the last part of the work the calibration procedure was finally applied
to 64 years of empirical financial data. The model estimates matched the
results obtained in Malevergne and Sornette [2014]. Calibrated parameters
were then used to infer ex-post jump probabilities. The model detected and
recovered some of the past extremes. In particular it was able to fully capture
the 1987 crash. On the contrary many other negative jumps were miserably
missed, namely the ones at the end of dot-com bubble in the early 2000 and
the 2008 subprime crisis. Lastly, Value-at-Risk estimation is assessed to show
applicability of the model in a general risk management environment.

Many difficulties have been encountered in the calibration of the model at
hand. The framework aimed to capture extreme behaviours, but in real-
ity has proved insufficient in distinguishing between regular and abnormal
regimes. Additionally, in this work no attention is paid to the composition
of the analysed index over time. We expect that further investigations in
this direction, may shed lights on the reason why the model has proved
inefficient in certain occasions.

We further notice that in the economy of the model certain parameters are
extremely important, whilst others are not. This difference can be shown in
the high condition number of the Hessian associated to the log-likelihood
of the model and it is crucial in the calibration procedure. In future work
matrix shrinkage approaches, like the one presented in Ledoit and Wolf
[2003], might also prove helpful in this respect.

Another line of research is to implement the adaptive variation of the SPSA
algorithm described in Spall [2000], which is taking into account first and
second derivative of the cost function. Our choice to deploy a gradient-free
method, was based on its suitability for better performance. Unfortunately,
due to the complexity of the model, closed-form gradient and Hessian are
essential in order to perform a meaningful estimation.
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Appendix A

GARCH(1,1)

Here is the procedure has been used to derive and implement the log-
likelihood of the GARCH(1,1) process together with its analytical gradient
and Hessian. Their implementation has been crucial to give a more accurate
comparison of the results obtained by the DLIB optimisation library. Given
the following general settings of a GARCH(1,1) process

εt = vtσt vt ∼ N (0, 1) (A.1)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (A.2)

εt is normally distributed with mean zero and conditional variance equal to
σ2

t , while its density conditionally on the past information is

p(εt|εt−1, · · · , ε0) =
1√

2πσ2
t

e
− ε2

t
2σ2

t (A.3)

Let now θ = (ω, α, β)
′

be the vector containing the unknown parameters.
The log-likelihood function, without constants, reads

l(θ) = −
T

∑
t=2

(
ln σ2

t +
ε2

t
σt

)
(A.4)

Deriving with respect to the parameter vector θ and rearranging the term,
the gradient of the log-likelihood (A.4) is given by

∂l(θ)
∂θ

=
T

∑
t=2

(
ε2

t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t
∂θ

(A.5)
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where

∂σ2
t

∂θ
= (1, ε2

t−1, σ2
t−1)

′
+ β

∂σ2
t−1

∂θ
(A.6)

Re-parametrization

In order to increase the stability of our estimates and to have a gradient
with components having similar order of magnitude, we re-parametrize the
dynamics A.2 using the long-time variance σ̄2 in the following way

σ2
t = σ̄2(1− α− β)︸ ︷︷ ︸

= ω

+αε2
t−1 + βσ2

t−1 (A.7)

The above modification leads to the same analytical gradient shown in (A.5),
beside the last term ∂σ2

t /∂θ that is now equal to

∂σ2
t

∂θ
=

 1− α− β
−σ̄2 + ε2

t−1
−σ̄2 + σ2

t−1

+ β
∂σ2

t−1

∂θ
. (A.8)

Non-central dynamics
Suppose now that the observed process of log-returns is given by

rt = r̄ + εt (A.9)

where εt is described by the aforementioned GARCH(1,1) model, that is

rt ∼ N (r̄, σ2
t ) (A.10)

and accordingly the variance σ2
t is

σ2
t = σ̄2(1− α− β) + α(rt−1 − r̄)2 + βσ2

t−1 (A.11)

Essentially the idea is now to consider the mean of the observed time-series,
say r̄, as an additional parameter that need to be estimated together with
the long-time variance, σ̄2 and the couple (α, β), whose sum is describing
the persistence. Log-likelihood is of course the same as before, while a
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small difference needs to be considered in the gradient construction, due to
the 4th-parameter involved. Precisely, given the vector θnew = (r̄, σ̄2, α, β) the
4 components of the gradient at time t are given by

Version 1

∂lt(θnew)

∂r̄
=

(
ε2

t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t
∂r̄

+
2εt

σ2
t

(A.12)

∂lt(θnew)

∂σ̄2 =

(
ε2

t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t
∂σ̄2 (A.13)

∂lt(θnew)

∂α
=

(
ε2

t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t
∂α

(A.14)

∂lt(θnew)

∂β
=

(
ε2

t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t
∂β

(A.15)

Version 2

∂lt(θnew)

∂θnew
=

(
ε2

t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t
∂θnew

+

(
2εt

σ2
t

, 0, 0, 0
)T

(A.16)

Version 3


∂lt(θnew)/∂r̄

∂lt(θnew)/∂σ̄2

∂lt(θnew)/∂α
∂lt(θnew)/∂β

 =

(
ε2

t

(σ2
t )

2
− 1

σ2
t

)
∂σ2

t
∂θnew

+


2εt/σ2

t
0
0
0

 (A.17)

where, similarly as before, the gradient of the process σ2
t is

∂σ2
t

∂θnew
=


−2αεt−1

1− α− β
−σ̄2 + ε2

t−1
−σ̄2 + σ2

t−1

+ β
∂σ2

t−1

∂θnew
. (A.18)

Hessian
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∂2l(θ)
∂θ∂θ ′

=
T

∑
t=2

[(
1− 2ε2

t

σ2
t

)
1

(σ2
t )

2

∂σ2
t

∂θ

∂σ2
t

∂θ ′
+

(
ε2

t

σ2
t
− 1
)

1
σ2

t

∂2σ2
t

∂θ∂θ ′

]
(A.19)
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Appendix B

SPSA Pseudo-code

A more detailed pseudo-code for the SPSA algorithm implementation is
presented here.

1. Initialization. Given some prior distribution for the starting values of
the parameters, for each particle {i}N−1

0 , simulate

θ
(i)
0 = (r̄(i), σ̄(i), α(i), β(i), κ(i), X̄(i), η(i), a(i)) (B.1)

2. Initialize SPSA parameters c, A, α, r, a

3. Compute (X̂(i)
t , V̂(i)

t ) for each parameter particle θ
(i)
t−1 and simulate new

jump times and sizes

Î(i)t ∼ Bern(L(X̂(i)
t ))

Ĵ(i)t ∼ Exp(1) if Î(i)t = 1

4. Compute SPSA gain sequences ct =
c

(t+1)r and γt =
a

(A+t+1)α .

5. Generate a p-dimensional (p = 8 in our case) simultaneous perturba-
tion vector ∆t following a Bernoulli ±1 distribution with probability 1

2
for each ±1 independently. I built it like

∆t = [∆t,0, · · · , ∆t,N−1︸ ︷︷ ︸
1st parameter

, · · · , ∆t,N(p−1), · · · , ∆t,pN−1︸ ︷︷ ︸
p-th parameter

]

so the N p-dimensional perturbation vectors are given by

∆(0)
t = (∆t,0, ∆t,N , · · · , ∆t,N(p−1))

...

∆(N−1)
t = (∆t,N−1, ∆t,2N−1, · · · , ∆t,pN−1)
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B. SPSA Pseudo-code

6. Compute the perturbed parameter particles

θ
(i)+
t−1 = (θ

(i)
t−1 + ct∆

(i)
t )

θ
(i)−
t−1 = (θ

(i)
t−1 − ct∆

(i)
t )

7. For i = 0:N-1 compute

X̂(i)
± = (1− a±)X̄± + a±X̂t−1 + η±(rt−1 − µ±)

V̂(i)
± = σ̂±(1− α± − β±) + α±(rt−1 − µ±)2 + β±V̂t−1

and sample
Ĩ(i)± ∼ Bern(L(X̂(i)

± ))

J̃(i)± ∼ Exp(1) if Ĩ(i)± = 1

8. Evaluate the cost function (likelihood) for both perturbations

F(θ(i)+t−1 ) = p(rt| Ĩ(i)+ , J̃(i)+ , θ
(i)+
t−1 )

F(θ(i)−t−1 ) = p(rt| Ĩ(i)− , J̃(i)− , θ
(i)−
t−1 )

9. Gradient approximation. For each parameter particle the corrispond-
ing gradient is

∇̂F(θ(i)t−1) = (∇̂F1(θ
(i)
t−1), · · · , ∇̂Fp(θ

(i)
t−1))

where the components of the gradient approximation are

∇̂Fm(θ
(i)
t−1) =

F̂(θ(i)+t−1 )− F̂(θ(i)−t−1 )

2ct∆
(i)
t,m

and ∆(i)
t,m denote the mth component of ∆(i)

t

10. Parameter update.

θ
(i)
t = θ

(i)
t−1 + γt∇̂F(θ(i)t−1)

11. Compute the weights

ω
(i)
t ∝ p(rt| Î(i)t , Ĵ(i)t , θ

(i)
t )

= ϕ(rt|µt + κtL(Xt)− κt Ĵ(i)t Î(i)t , Vt)
(B.2)

where ϕ(x; µ, σ) is the Gaussian density.

82



12. Multinomial re-sampling

z(i) ∼ Mult(N; ω
(0)
t , · · · , ω

(N−1)
t )

and set
Î(i)t = Îz(i)

t Ĵ(i)t = Ĵz(i)
t θ

(i)
t = θ

z(i)
t

Re-assign importance weights ω
(i)
t = 1

N

13. Output. The estimate of the parameters is

θt =
N−1

∑
i=0

ω
(i)
t θ

(i)
t

83





Appendix C

Monte Carlo Estimation Results
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Figure C.1: Gaussian kernel smoothing functions vs theoretical distributions
of the estimated parameters with true values equal to r̄ = 0.07, σ̄ = 0.25,
α = 0.05, β = 0.94, κ = 0.01, X̄ = −1, η = {1, 4, 7}, a = {0.98, 0.996, 0.998}
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C. Monte Carlo Estimation Results

Figure C.2: Gaussian kernel smoothing functions vs theoretical distributions
of the estimated parameters with true values equal to r̄ = 0.07, σ̄ = 0.25,
α = 0.05, β = 0.94, κ = 0.01, X̄ = −4, η = {1, 4, 7}, a = {0.98, 0.996, 0.998}
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Figure C.3: Gaussian kernel smoothing functions vs theoretical distributions
of the estimated parameters with true values equal to r̄ = 0.07, σ̄ = 0.25,
α = 0.05, β = 0.94, κ = 0.04, X̄ = −4, η = {1, 4, 7}, a = {0.98, 0.996, 0.998}
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C. Monte Carlo Estimation Results
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Figure C.4: Gaussian kernel smoothing functions vs theoretical distributions
of the estimated parameters with true values equal to r̄ = 0.07, σ̄ = 0.25,
α = 0.05, β = 0.94, κ = 0.04, X̄ = −7, η = {1, 4, 7}, a = {0.98, 0.996, 0.998}
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Figure C.5: Gaussian kernel smoothing functions vs theoretical distributions
of the estimated parameters with true values equal to r̄ = 0.07, σ̄ = 0.25,
α = 0.05, β = 0.94, κ = 0.1, X̄ = −7, η = {1, 4, 7}, a = {0.98, 0.996, 0.998}
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