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Abstract

Are viral dynamics, the peer-to-peer propagation of ideas and trends, im-
portant in social media systems, compared to external influence? Are such
dynamics quantifiable? Are they predictable? We suspect they are, in at
least some cases, but quantifying how and when such dynamics are signifi-
cant, and how and when we can detect this, remains an open question.

This thesis investigates how to estimate the parameters of branching dy-
namics in a large heterogeneous social media time series data set.

The specific model that I use, the class of Hawkes processes has been used to
model a variety of phenomena characterized by “self-exciting” dynamics -
broadly speaking, time-series where “lots of things happening recently” is
the best predictor of “more things happening soon”, conditional upon the
external input to the system.

Variants have been applied as models of seismic events, financial market dy-
namics, opportunistic crime, epidemic disease spread, and viral marketing.
Detecting self-exciting dynamics is of huge importance in these application
areas, where it can make a large difference in the certainty and accuracy of
prediction, and of the usefulness and practically of interventions to change
behavior of the system.

This data I investigate, documenting the time evolution of Youtube views
counters, was collected by Crane and Sornette [CS08].

The notoriously viral nature of Youtube popularity suggests that this could
supply an opportunity to attempt to quantify these viral dynamics.

The data set has various characteristics which make it a novel source of
insight, both into self exciting phenomena, and into the difficulties of esti-
mating them. The time series exhibit a huge variety of different behavioral
regimes and different characteristics. While this data contains many obser-
vations, it is also incomplete, in the sense that rather than a complete set of
occurrence times, there are only sample statistics for that data available.

These qualities present challenges both to the model I attempt to fit, and
the estimator that I use to fit the model.

This places some constraints upon how how precisely I can identify branch-
ing dynamics, and with how much certainty, and the kind of hypotheses I
can support.

This thesis consists of two major phases.

In the first phase, I attempt to address the question: What component of
the Youtube video views may be ascribed to self-excitation dynamics? In
this regard I will attempt to estimate the parameters of generating Hawkes
process models for various time series to identify the “branching coefficient”
of these models, which is one measure of the significance of viral dynamics.

Based on naive application of the model, I find the evidence is ambiguous.
Whilst I cannot reject the hypothesis of branching dynamics, I show that
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the model class is unidentifiable within this framework due to several prob-
lems.

The first is the unusual form of the dataset; the incompleteness of the time
series leads to missing data problems with no immediate and computation-
ally tractable solution.

But even with complete data, I face a second class of problems due to model
misspecification. For example, we should be surprised to ever fail to find
branching dynamics at work, since branching dynamics is the only explana-
tion permitted for intensity variation in this particular model. The classical
Hawkes model assumes away any other source of time-variability, including
exogenous influences.

The homogeneity assumption is not essential to modeling self-exciting sys-
tems, but merely a convenient assumption in a particular model class.

Therefore, in the second phase of the project I consider how to address
these difficulties by weakening this assumption. I address the most com-
monly mentioned source of inhomogeneous behavior, exogenous influence,
in what I believe to be a novel fashion.

I use penalized semi-parametric kernel estimators to the data to simultane-
ously recover exogenous drivers of system behavior and the system parame-
ter. A simple implementation of this idea recovers model parameters under
plausible values for the dataset.

The particular combination of estimators and penalties I use here is, to the
best of my knowledge, novel, and there are limited statistical guarantees
available. I address this deficit with simulations, and discuss how the results
might be given more rigorous statistical foundation.

When applied to the data set in hand, the Youtube data, I find that there
is support for the significance of branching dynamics; However, the pa-
rameters of the inferred process are different to those o the homogeneous
estimator. This implies it is crucial to consider the driving process in fitting
such models, and the supports the utility of the inhomogeneous methods
such as the one I use here to do so.
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Chapter 1

Background

1.1 Fluctuation in social systems

The notorious unpredictability and variability of social systems has achieved new
levels of prominence, and possibly new extremes, with the rise of the internet.
These unpredictable viral dynamics of social media have variable impact, variable
magnitude and impacts, and little connection between these dimensions. Con-
sider:

1. On the 26th of February 2015, a low-quality photograph of a dress of inde-
terminate color sparking a battle on the internet that garnered 16 million
views within 6 hours on Buzzfeed alone. [Sha15]

2. A 61-million person experiment on peer recommendations by Facebook
found that strategically applied viral peer-to-peer systems can mobilize cit-
izens politicly on a massive scale. The authors estimate that they were able
to garner 280,000 extra votes in the election using this system - enough to
strongly influence the outcome of federal elections in the US. [Bon+12]

3. Religious militant organization Islamic State of Iraq and Syria, ISIS, exploits
viral meme propagation to recruit volunteers and attract funding for its mil-
itary campaigns by peer recommendation on Youtube and Twitter. [Ber14]

Understanding how, and when, and why this kind of viral propagation takes place
is crucial to understanding the function of modern society. Why did that partic-
ular dress photograph have such an impact? For that matter, as impressive as
the scale of the voter experiment is, it took the backing of a multi-billion dol-
lar corporation to produce this effect, and yet the viral dress photo was simply
a thoughtless photograph from a cheap phone camera. And yet, as we see from
ISIS, understanding the dynamics of these peer-to-peer systems is implicated in
global life-and-death struggles and violent political upheaval.

Learning to understand the dynamics of these systems is economically and po-
litically important. And, thanks to the quantification of communication on the
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1. Background

internet, potentially plausible.

One piece of the puzzle of such systems, which I explore here, is the use of models
of self-exciting systems. In such system, activity may be understood to be partly
exogenous, triggered by influences from the outside world, and partly endogenous,
triggered by their own past activity. [SMM02; DS05; CSS10] Concretely, this
stylized description is the kind of dynamic we observe in, for example, financial
markets, where (exogenous) news about a certain company might trigger move-
ment in the price of its stock, but also movement in the price of a company’s stock
could itself trigger further movements as traders attempt to surf the tide. In so-
cial systems, the mysterious popularity of the photograph of a dress viewed 16
million times in a single day is a paradigmatic example of endogenous triggering;
there is no plausible news content attached to it.

The particular self-exciting system that I use here is the linear Hawkes process
This model has been applied to such diverse systems as earthquakes, [Oga88]
product popularity, [DS05; IVV11] financial markets, [HBB13; Fil+14] social me-
dia, [CSS10] crime, [Moh+11] neural firing, [Bro+02] and many others. [Sor06]

If we can successfully explain the dynamics of the data using the Hawkes process
model, then we are a step closer quantitative predictions of the process behavior,
and of future unpredictability by measuring and predicting the importance of the
endogenous versus the exogenous component of such systems.

1.2 Youtube

The particular data that I have was collected from Youtube, the social video shar-
ing website. Youtube is owned by Google and headquartered in the USA. It was
founded in February 2005 and officially launched in November of the same year.

Distribution of popularity of video on Youtube is often claimed to exhibit clas-
sic indicators of the kind of “heavy-tailed” behavior that would indicate certain
kinds of self-exciting process behavior. For example, in 2011 a YouTube software
engineer was asserted to reveal that 30% of videos accounted for 99% of views
on the site. 1 [Whi11]

Shortly before the time that this dataset was collected, YouTube reported that
each day it served 100 million videos and accepted more than 65,000 uploads.
[REU06]. As at January 2012, they reported approximately 4 billion daily video
views. [Ore12] and individual videos with more than 2 billion views. [You14]

They seem, in other words, a perfect test bed to experiment with self exciting
models, if we can get the right sort of data about them, and the right methods to
analyze it. This brings me to the question of inspecting the data.

1 This often-cited statistic a published in British newspaper the Telegraph without references
and I have been unable to find primary sources for its claims. Nonetheless, as I will show later, it
is plausible given my dataset.
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Chapter 2

The data

I present qualitative description of the cleaned data here. Technical details of
the cleaning process are available in the supplement.

As much as possible mathematics and analysis will be reserved for later chapters,
with the exception of some essential terms.

2.1 Nomenclature

The data set comprises many separate time series, each comprising certain sum-
mary statistics for an underlying view-count process.

The underlying process, the increments of the view counter time series for a given
video I will call occurrences. The summaries, of how many view counts have oc-
curred at what time, are observations. Each time series is made of many observa-
tions, and more occurrences. (section 2.1)

I will denote to the underlying view-counter process as Nv(t), where t indexes
time and the subscript v indexes over all time series. Normally I will omit the
subscript, unless I need to distinguish between two time series.

For a given series time, I have only n observations of the value of the view counter,
on an interval [0, T] at times τi1<i≤n where I take τ1 = 0, τn = T. I write such ob-
servation tuples {(τi, N(τi))}1<i≤n. It will always be clear from the context which
time series a given set of timestamps belong to, although it should be understood
that there is an implicit index v, i.e. {(τ(v,i), Nv(τ(v,i)))}1<i≤n(v).

The dataset was gathered from 13. October 2006 until 25. May 2007 for use in an
article published in 2008, [CS08] Information was scraped from Youtube, which
is to say, extracted by machine text processing of web page data by an automated
web browser; The web pages in question, in this case, are the pages for individ-
ual videos displayed on Youtube; To pick one example, the time series encoded
as epUk3T2Kfno is available at https://www.youtube.com/watch?v=epUk3T2Kfno
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2. The data
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Figure 2.1: Model of the observation procedure of the time series

and corresponds to a video entitled Otters holding hands, uploaded on Mar 19, 2007,
with summary information

Vancouver Aquarium: two sea otters float around, napping, holding
hands. SO CUTE!

which is an accurate summary of the 88 second cinematic masterpiece. (Figure 2.2)

Source code for the Youtube sampling is no longer available, and limited commu-
nication with the author has been possible, so I adopt a conservative approach to
interpretation of the available data.

One unusual quality of the data is an administrative one: at the time of data col-
lection, there was no known prohibition against automated data collection from
Youtube. At the time of writing, however, the current Youtube Terms Of Service
agreement for Switzerland (date 2013/4/3) expressly prohibit the use of automated
data collection. Even if I can find a jurisdiction with more permissive Terms of
Service, I would have to circumvent complex software defense mechanisms to
prevent automated data extraction. I am thus precluded from automated verifi-
cation of hypotheses developed from this data; I may, however, legally manually
verify a small number of hypotheses, insofar as that is possible from normal infor-
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2.1. Nomenclature

Figure 2.2: Screen capture of “Otters holding hands”. Content copyright by the Youtube user “Otters
holding hands.”

mation available to the user of a browser. This fact will be significant in discussing
optimal semiparametric regression strategies later on.

Timespans for individual video series span subsets of the overall interval, and are
variously sampled at different rates. The observation interval for a different video
can vary from seconds to days - After my data set cleaning, details of which are
discussed elsewhere Data extraction and cleaning, the rate is approximately 3 obser-
vations per calendar day, but varies apparently randomly over time and between
videos. There is no obvious correspondence between the observation rates of
different videos’ time series, or between the observation rate and qualities of the
video itself, such as popularity.

The timestamp of the ith such increment I take to be τi. One could consider
taking this data as a noisy estimate of the true unobserved observation time τ̂i.
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2. The data

A principled approach to this data decontamination would then be to construct
a stochastic process model for the observation time to reflect the stochastic re-
lationship between recorded counter value and true counter value. One could also
attempt to correct for view rates to allow for the time-zone a video is likely to be
viewed from and when its viewers would be awake and so forth. The sampling
intervals are messy enough that I doubt we could extract such information. An
analysis of the robustness of the estimator under perturbation of timestamps to
estimate the significance of these assumptions would be wise. I leave that to later
work.

As I depend upon asymptotic results in the estimation packages, I cannot learn
much from small time series. I discard all series with less than 200 observa-
tions. This value is somewhat arbitrary, but is chosen to include a “hump” in
the frequency of time series with around 220 observations. This constitutes non-
random censoring of the time series due to the data cleaning process, as discussed
in the technical supplement. The data is likely already censored, however, as
discussed in the technical supplement, and I put this problem aside for future
research.

After filtering, 253, 326 time series remain. These time series exhibit a range of
different behavior, different sampling densities, total number of occurrences, and
view rates. (Figure 2.3)

I approximate the instantaneous rate of views for a given time series by a piece-
wise constant function for visualization.

For compatibility with the notation I use later, I denote this estimate λ̂simple(t),
and define it

λ̂simple(t) :=
n

∑
i=2

N(τi)− N(τi−1)

τi, τi−1

(
I[τi−1−τi)(t)

)
(2.1)

IA is the indicator function for set A. An example is pictured in Figure 2.4.

Finally we are in a position to actually frame questions about this data.

We might ask if the spikes in this video can be explained by endogenous branching
dynamics, or exogenous influence. What could explain the variability in this time
series? Is it a video shared for its intrinsic interest, or it is responding to external
events?

Sleuthing reveals that the subject of the video, Mexican singer-songwriter Valentin
Elizalde, was assassinated at around the upload time of this video. That is a plau-
sible explanation for the initial peak in interest. But the later resurgence?

An biography suggests one hypothesis:

When he was alive, he never had a best-selling album. But less than
four months after his murder and half a year after “To My Enemies”
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2. The data

became an Internet hit, Elizalde made it big. On March 3, when Bill-
board came out with its list of best-selling Latin albums in the United
States, Elizalde occupied the top two spots. [Roi07]

Was it Elizalde’s success in Billboard magazine that lead to the spike in video
views? I will return to this question later.

2.2 Outliers and Dragon Kings

We need to consider whether the kind of behavior that we witness amongst large
time series, in the sense of having many occurrences recorded, are similar to the
results for small time series. For one, this kind of regularity is precisely the kind
of thing that we would like to discover. For another thing, if there is no such
regularity, that would be nice to know too, as the estimators I use scale very poorly
in efficiency with increasing occurrence count.
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Figure 2.5: Cumulative distribution of observations by time series. Dotted red line denotes a the curve
of a hypothetical uniform allocation of observations to time series.

I plot here the distribution of sizes amongst the time series, in Figure 2.5 and
Figure 2.6, and logarithmically in Figure 2.7. We observe an extremely skewed
distribution; 25% of the total occurrences recorded by the (filtered) data set are
contained in only 671 time series. It is tempting to draw comparison with Sor-
nette’s “Dragon King” phenomenon, [Sor09] although given the unknown data
censoring process, I will not attempt to draw conclusion about the population
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2.2. Outliers and Dragon Kings
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Figure 2.6: Cumulative distribution of occurrences by time series. Dotted red line denotes a the curve of
a hypothetical uniform allocation of occurrences to time series.
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Figure 2.7: Cumulative distribution of occurrences by time series, log-log scale. Dotted red line denotes
a the curve of a hypothetical uniform allocation of occurrences to time series.
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2. The data

of Youtube videos from sample here. If we wish to ultimately understand this
data set, the extremely large number of total views concentrated in a small pro-
portion of total videos will be significant in determining a sampling strategy. If
nothing else, the raw number of points in these times series is computationally
challenging for our estimators.

2.3 Lead Balloons

The self-exciting model is interesting precisely because it can produce variable dy-
namics. As such, extreme rate variation within a time series or between time
series is not necessarily a problem for the model. On the other hand, the Max-
imum Likelihood estimators that I develop here are sensitive to outliers, so we
need to see the kind of problems the data presents, especially where they rep-
resent the kind of extreme behavior that will be an outlier with respect to the
model.

There are time series where unambiguous external evidence leads us to suspect
that the process has undergone an exogenous shock, leading to a sudden increase
or decrease in view rate. Sometimes this is due to a clear time limit on a video’s
relevance. (Figure 2.8)
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Samoa Joe actually faces Kurt Angle

Samoa Joe Training To Face Kurt Angle ('zl6hNj1uOkY')

Figure 2.8: A time series with rapid decline

More extreme than sudden loss of interest are the sudden rate “spikes” early in
the life of a time series, containing most of the information There is massive
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2.3. Lead Balloons

activity at the beginning of the time series, and virtually none thereafter. I call
these series lead balloons, after their trajectories. (Figure 2.9)
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Figure 2.9: A time series with enormous early rate spike. The view rate collapses so suddenly that it is
nearly invisible.

It is not immediately clear if these spikes are because of genuine collapses in
popularity of a video, or if they are technical artifact. In the case of the last
example, the initial spike dwarfs all other activity in the time series, although it
never stops entirely. I repeat it on a logarithmic scale, where we can see that the
initial rate is orders of magnitude above later activity. (Figure 2.10)

Presuming these spikes a a real phenomenon, one explanation for one would be
that something, perhaps a mention on television, has promoted interest, but that
the video itself has absolutely no viral potential.

Some sleuthing reveals that this example was video of a notorious brawl at the
2007/3/6 Inter Milan versus Valencia football game leading to a 7 month ban for
Valencia player David Navarro. The video was uploaded shortly after the contro-
versial match. It seems plausible that millions of soccer fans who switched off the
uneventful game resorted to Youtube to watch the fight they missed at the end;
But David Navarro has little viral potential; Once you have seen him brawling
once, that is enough.

The majority of these lead balloons have no metadata available in my data set, and
one cannot often not acquire any additional metadata even with effort, as videos
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Figure 2.10: The lead balloon time series with enormous early rate spike, log vertical scale to show contin-
ued activity.

in this category have often been removed from Youtube. This suggests that per-
haps they represent controversial or illegal content which was briefly wildly pop-
ular but quickly censored. However, the view counter for deleted videos is, at
time of writing, not visible, so we would expect that time series for deleted videos
would simply be truncated entirely, not vastly reduced. There is no easy way of
deciding this here, but I return to the issue later.

Research on similar systems suggests such sudden spikes are likely to be a com-
mon and important part of the dynamics. For example, celebrity mentions affect
book sales [DS05; Sor+04] and natural disasters affect charity donations. [CSS10]

There are other classes of stylized dynamics, but the sorts listed here already
comprise enough complexity and difficulty for one paper, and accordingly I leave
the dataset analysis for the time being.

2.4 Hypotheses

The data has many stylized features of other famous “social contagion” data; It
has variable dynamics, a concentration of much activity into a small number of
members of the data set and so on.

Whether this fits into the particular framework of the Hawkes process is another
question. It seems likely that a branching process fit to such data would be un-
likely to support a single background rate or branching ratio for all the data; We
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2.4. Hypotheses

might hypothesis about the distribution of such parameters, e.g. that the gen-
erating process is an Omori kernel will a certain exponent. The hypothesis that
there might be characteristic timescales or other stylized behavior for such data
also seems reasonable. The question is whether the significance of such effects,
if any, is quantifiable or identifiable with the tools at we have.
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Chapter 3

A quick introduction to point process
theory

I construct the point process theory necessary for the model here informally;
More formal introductions to the field may be found in the standard textbooks.
[DV03; DV08]

I have already introduced basic notation. I return to it here for context.

3.1 Univariate temporal point processes

A temporal point process is a stochastic model for the random placement of
points in time. The N(t) function that I discussed in the context of video view
counter is the obvious example. If N(t) counts the number of views of a video,
and it increments by one every time someone finishes watching a video then we
may associate with each video such a counting function. I call each increment of
the counting function an occurrences. 1 When I consider the generating process
to be a stochastic model I will refer to specific time series as realizations generated
by that model.

I may equivalently represent the information in that function by the list of oc-
currence times 0 = t1, t2, ..., tN =: t1:N , taken to be ordered.

We can see the equivalence by examining N : R 7→ Z+ such that N(t) ≡
∑N

i=1 I{ti<t}. Here we will only be considering simple processes, which means that
for all event indices i, Pr(ti = ti+!) = 0 - so the increments of the series have
size one almost surely.

The Poisson process is the stochastic process whose inter-occurrence times are
identically and independently distributed such that ti − ti−1 ∼ Exp(1/λ). By

1 Referred to in the literature also as events, which is ambiguous, or arrivals, which is an awk-
ward term to describe video views, or epochs, which sounds like it has something to do with the
extinctions of dinosaurs. Occurrences, as used in seismology, seems the least confusing to me.
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3. A quick introduction to point process theory

convention, we set all ti ≥ 0 and thence N(0) = 0 a.s. our counting representa-
tion. It is easy to show that N(t) ∼ Pois(λt).

It is a standard result, that increments of such process have a Poisson distribution.
For tj ≥ ti:

N(tj)− N(ti) ∼ Pois
(
(tj − ti)λ

)
3.2 Conditional intensity processes

Note also the standard result that

λ := lim
h→0

E (N(t, t + h)− N(t))
h

(3.1)

This suggests that we could generalize the Poisson process to have a variable rate
by choosing λ to be a function of time, or even a stochastic process itself. This is
indeed possible. In the former case, we have an inhomogeneous Poisson process,
and in the latter, a doubly stochastic or Cox process, where we might condition the
event upon some σ algebra, S . We call λ(t|S) the conditional intensity process.

The Hawkes process is a particular case of the doubly stochastic Poisson process:
it is a linear self-exciting process. Its conditional intensity process has a partic-
ular form which depends upon the previous values of the process itself. Specif-
ically, given the left-continuous filtration F−

(−∞,t) generated by the occurrences
of {N(s)}s<t, its conditional intensity is given, up to an additive constant back-
ground rate µ, by the convolution of the path of the process with an interaction
kernel ϕ and an “branching ratio” η. The interaction kernel ϕ is taken to be a
probability density absolutely dominated by the Lebesgue measure - i.e. it has
no atoms. To keep the process causal, we require that the interaction kernel has
only positive support. ϕ(t) = 0 ∀t < 0

λ(t|F−
(−∞,t)) = µ + ηϕθ ∗ N (3.2)

= µ + η
∫ ∞

−∞
ϕθ(t − s)dN(s) (3.3)

= µ + η
∫ t

−∞
ϕθ(t − s)dN(s) (3.4)

= µ + η ∑
ti<t

ϕθ(t − ti) (3.5)

(Since we only deal with left-continuous filtrations in temporal point process, I
will suppress the “-” superscript henceforth.)

The interpretation here is that each occurrence increases the probability of an-
other occurrence in the near future, or, equivalently, momentarily increases the
rate of new occurrences. There are several equivalent ways of thinking about this.
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3.3. Kernels

One is the formulation in terms of rate - and this is the basis of the goodness of
fit test used for this model. [Oga88]

Another is as a branching process, [HO74] much like the Galton-Watson model
of reproduction. In this case the branching ratio η is the expected number of
offspring that any given occurrence will have. The offspring may in turn have, on
average, η offspring of their own, and so on.

In this branching formulation, µ is the “immigration rate”, and reflect the rate of
new arrivals to our population of occurrences. The system approaches a station-
ary distribution if µ > 0 and 1 > η ≥ 0. [Haw71]

The importance of this model in the current context is that these models gives us
the possibility that observed occurrence in a point process is exogenously generated
- it is an immigrant, or endogenously generated - it was the offspring of a previous
occurrence. For Youtube, we could think of Youtube views driven by advertising,
or views driven by the recommendations of your peers.

The key parameter in this sense is the branching ratio. Using the usual branching
process generating function arguments, one can show that the expected number
of occurrences due to a single immigrant is 1/(1 − η). As η → 1 the proportion
of occurrences attributed to the endogenous dynamics of the system increases
rapidly, until, when it passes criticality such that η > 1 the system diverges to
infinity with positive probability.

Where we consider realizations on the half line, meaning with no events before
time 0, we usually take by convention t0 = 0 Then we have

λ(t|F(−∞,t)) = λ(t|F[0,t))

and we abbreviate the whole thing to λ(t|Ft), or even λ∗(t).

This is an instantaneous intensity. The greater this intensity at a given moment,
the more likely another occurrence in the immediate future.

λ∗(t) = lim
h→0

E (N(t, t + h)− N(t)|Ft)

h

Inspecting the definition of intensity for the process the Hawkes process, this
means that, as we had hoped, the more occurrences we’ve had recently, the more
we are likely to have soon.

3.3 Kernels

I have left the kernel unspecified up to now. Apart from demanding “causality”,
normalization, and continuity, we have in principle the freedom to choose here,
and even to non parametrically estimate an interaction kernel. [Moh+11; BDM12;
HBB13; BM14a]
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3. A quick introduction to point process theory

There are some classic and widely-supported favorites, however, and I restrict
myself to these here as they are the ones that my software supports.

3.3.1 Exponential kernel

The simplest kernel, and the fastest to calculate, is the exponential.

ϕ(t) :=
e−t/κ

κ

Such a kernel gives the Hawkes process a number of convenient properties, such
as a closed-form linear estimator for the process. [DV03] computationally ef-
ficient parameter estimation, [Oza79; OA82] and a Markovian representation.
[Oak75]

When comparing the effect of this kernel with other kernel shapes we might wish
to ensure that they are operating on “comparable” timescales. We can quantify
the “time scale” of this kernel in various ways. One choice is the “mean delay”,
in the sense that if we take interpret the kernel as a probability density for some
random variable X ∼ ϕExp(κ), then its expected value is EX = κ. We could
alternatively choose the median, which is given by log(2)κ. I ultimately use both.

3.3.2 “Basic” power-law kernel families

The Omori law is a widely used kernel, famous for its long history in earthquake
modeling. [Uts70].

In the current context, I use the modified Omori law with the following parame-
terization, recycling κ as a kernel parameter to economize on limited supplied of
greek letters.

ϕ(t) :=
θκθ

(t + κ)κ+1

The notable feature of this kernel is that for many parameter values it has a power
law tail with shape controlled by the θ parameter.

ϕ(t) ∼
(

t−θ−1
)

, t ≫ 0

Interpreting the Omori law as an interaction kernel, we can expect long-rage
interactions to be comparatively more important than for exponential kernels
with the same branching ratio. If we interpret this kernel as a probability density
we can see that variables draw from this distribution do not necessarily have finite
moments of any order.

The “mean delay” X ∼ ϕOmori, θ > 1 ⇒ EX = κ/(θ − 1). When θ ≤ 1 the
expectation does not exist. A little calculus reveals that the median point for an
Omori-law distributed variable is always defined, and given by κ(21/θ − 1).
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3.4. The Hawkes Process in action

This long range interaction effect, as well as high branching ratio, is implicated
in surprisingly variable behavior in various dynamical systems, so we would like
to know if our model had this kind of kernel. [DS05; GL08]

3.4 The Hawkes Process in action

Having presented the model I present why — I wish to understand how much
of the behavior of a time series is generated by endogenous dynamics, and what
these dynamics are.

To this end, the branching ratio η of the Hawkes process is a plausible choice
to partly quantify this, as it tells me about the criticality and explosive kind of
behavior that we can expect, and in particular, the ratio between endogenous
and exogenously triggered behavior in the system.

I might also be concerned about the timescale and rate of these dynamics, in
which case I will also want to estimate the type and parameters of the influence
kernel. ϕ This will tell me, loosely, how rapidly these dynamics work, and, to an
extent, what kind of evolution we can expect in the system. [DS05].

The background rate, µ seems to be of more instrumental interest. if we truly
regard it as an exogenous factor, then it is a “given” whose effects we wish to un-
derstand. Nonetheless, we might wish to determine, for example, why something
went viral, or did not, or identify the effect of a change in background rate. In
the next section I consider how we might go about this.
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Chapter 4

Estimation of parameters of the
homogeneous Hawkes model

Here I discuss estimating parameters of the Hawkes model.

For the current section, this means the techniques for parameter estimation from
data where the true generating process is a stationary Hawkes process, as imple-
mented by the pyhawkes code which I use for this part. I also cover model selec-
tion procedures for this method, i.e. how well we can choose which generating
model is the correct one given the data.

Later the vicissitudes of using this estimator for the available data, and the limi-
tations of the methods available.

I begin by discussing the case of estimating the parameters of the homogeneous
Hawkes model in the case with complete data. The case of “summary” data, where
we estimate the model from summary statistics, I will examine shortly.

That is, we are given an interval of length T, taken without loss of generality to be
[0, T], and the (monotonic) sequence of occurrence times of the increments of the
observed processed on that interval ti1≤i≤N ≡ t1:N . I say “complete” to denote
the common case for time series data; that we have access to the timestamps of
every occurrence in the time series realization, t1:N .

In this chapter I use θi to denote the generic ith component of the model pa-
rameter, and θ̂i to denote the estimates of it. When I need to be clear, I name
components. In general θ = (µ, η, κ) for background rate, branching ratio η and
some kernel parameters κ depending upon the kernel under consideration. With
the Omori kernel I require an additional kernel parameter, and I occasionally
recycle θ when it is unambiguous from context.
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4. Estimation of parameters of the homogeneous Hawkes model

4.1 Estimating parameters from occurrence timestamps

Parameter estimation for the Hawkes process models is framed as a Maximum
Likelihood (ML) estimation problem. It is not clear that this minimizes predic-
tion error in any norm; for prediction with these models one often uses non-
parametric smoothing instead. [Wer+10; HW14] or weighted model averaging
[Ger+05]. There exist various methods for estimating parameters via second or-
der statistics. [Bac+12; BM14b; SS11; AS09] There are also Bayesian estimators —
see The usual offline methods [Ras13] online sequential Monte Carlo. [MJM13;
SB03]

For now, the classic ML method is my starting point. This is the most widely
used technique, or at least most widely cited technique, [Oza79; Oga78] I sup-
pose for now that we are interested in estimating the “true” parameters θ of the
hypothesized generating model, or as close to that as we can get in some sense,
and that this true generating model is a Hawkes process. We assume that we have
a realization t1:N of all timestamps from a Hawkes model over an interval [0, T]

We consider the hypothesized joint probability density fθ(t1:N) of that model,
here call it the likelihood, and choose the values for the parameter θ which max-
imize the value of the joint likelihood for the observed data t1:N . Practically, we
maximize the log likelihood given the data Lθ(t1:N) := log fθ(t1:N). I will derive
the formula this informally.

θ̂π(t1:N) = argmaxθ Lθ(t1:N)

Using the regular point process representation of the probability density of the
occurrences, we have the following joint log likelihood for all the occurrences, 1

[Oza79]

Lθ(t1:N) := −
∫ T

0
λ∗

θ (t)dt +
∫ T

0
log λ∗

θ (t)dNt (4.1)

= −
∫ T

0
λ∗

θ (t)dt + ∑
tj≤ti

log λ∗
θ (tj) (4.2)

I recall the intensity for the Hawkes process (Equation 3.4)

λ∗(t) = µ +
∫ t

−∞
ηϕ(t − s)dNs (4.3)

1 The full log likelihood on [0, T], pace Ozaki, includes a final extra term to denote the con-
tribution to likelihood by stipulating that no occurrences were in (tn, T), i.e. The likelihood of
N points observed on (0, T], is the joint density of the occurrences {t1 . . . tN}, ti < T and no
occurrences on (tn, T]. It is tedious to write this down here. However one can show that it is
equivalent to the likelihood function of the extended series N′ with an occurrence at time T, such
that N′(t) := (N(t)∧ N(T)) + It>T . For the duration of these estimation theory chapters, when
I refer to N(·) on an interval (0, T], I will really mean N′(·). The difference is in any case small for
my data sets, and the increase in clarity is significant.
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4.2. Estimation from summary statistics

where ϕκ(t) is the influence kernel with parameter κ, η the branching ratio, and
the star λ∗(t) is shorthand for λ∗(t|Ft).

Now it only remains to maximize this

θ̂(t1:N) = argmaxθ Lθ(t1:N)

There is no general closed-form representation for the location of the extrema,
but they are simple to solve by numerical optimization.

While our observations are by no means independently or identically distributed,
this is still recognizably a ML estimator of the sort common in i.i.d. parameter
estimation. Indeed, the same sort of large-sample asymptotic theory as T → ∞
for this kind of estimator does apply, given the assumptions of stationarity and
certain other technical requirements. [Oga78] Note, however that one does not
usually use a large sample theory for these estimators, in the sense of collecting
many time series and trying to estimate shared parameters for all of them.

There are various disadvantages with this estimator. Naïve maximization can be-
come trapped in local extrema, [OA82] or fail to converge over parameter ranges
where the shallow likelihood gradient is dominated by numerical error, [VS08]
under mis-specification, [FS13] or timestamp randomization. [HB14] Techniques
such as Expectation Maximization or logarithmic transformation of the parameters
are sometimes used to improve convergence. [VS08]

In addition to the above-identified problems, the normal criticisms of ML esti-
mation can be made - e.g. lack of small sample guarantees, lack of guarantees
regarding prediction error under various loss functions and so on.

If we assume, for example, an incorrect shape for the kernel then estimates for
the other parameters may become poor. Various researchers have devised non-
parametric or semi-parametric estimates of the kernel shape in order to avoid
this problem. [BDM12; HBB13; FS13; HB14] Rather than implementing such
techniques, I will restrict myself to the “classic” kernel shapes, the exponential
and the Omori law which I introduced in the previous chapter, as these two will
cause me enough trouble as it is.

Set against these is the practical advantage of being simple to estimate, and the
usual benefits of the Maximum Likelihood estimation - specifically, a compre-
hensive asymptotic theory, and model selection procedures based upon it. The
simplicity in particular will turn out to be useful for the current problem, so with
those caveats I move on.

4.2 Estimation from summary statistics

Recalling the data, this estimator is useless without some further development. It
tells us how to estimate parameter values from a time series realization compris-
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4. Estimation of parameters of the homogeneous Hawkes model

ing a sequence of occurrence timestamps {ti}1<i≤N(T). The data here is, in con-
trast, a sequence of observation tuples {(τj, N(τi))}1<j≤n for some n ≪ N(T)
and, under any parameterisation of the Hawkes model, ∀k, ∀j, P(τk = tj) = 0.

I take the domain of each realization to be τ1 = 0, τn = T. (If necessary I
translate the observation timestamps to ensure this)

The problem of estimating the process parameters from such summary statis-
tics is an unusual one. There is much work on estimating the model parameters
from censored data especially in seismology literature [BT05; SCV10] where some
proportion of the timestamp data is missing due to some presumed censoring
process. However, censored data is a different problem than summarized data,
with far less work done upon it. [A+08; Vac11]

It is the latter problem that we face here. There are no occurrence timestamps
available at all, and thus we need to invent some. I will write t̂i for the ithe in-
vented occurrence timestamp.

To be a true ML estimator, we would have to choose all estimates t̂i such that they
maximized the likelihood of the model given the data. This would entail choosing
them differently depending on, for example, kernel parameters. Conducting such
a maximization turns out to be computationally intractable even for tiny numbers
of points, however, and some time series have millions, so we need an alternative
scheme.

To be plausible, the restrictions are that:

1. by the assumptions of the model, increments of the process occur simulta-
neously with probability zero, so we cannot place multiple occurrences at
the one location;

2. We must place all the occurrences, and only the occurrences, that belong
to each interval in that interval, so that τj ≤ t̂i < τj+1, ∀N(τj) ≤ i <
N(τj+1).

Apart from that, there is no a priori reason to prefer any particular scheme. We
could distribute them uniformly at random, or place them equidistantly, or in a
converging sequence etc. I choose uniformly at random. Placing the points uni-
formly at random upon each interval corresponds to a piecewise constant Poisson
rate conditional upon the correct number of occurrences in that time interval.
Thus, the approximation that I introduced earlier for plotting purposes becomes
the actual estimate of the instantaneous intensity of the process, and I interpolate
the occurrences from the observations according to this estimate. See Figure 4.1.

The questions are then: Is this process statistically valid? Can it be improved?

Certainly, applying the Maximum Likelihood estimation software to arbitrarily
interpolated data like this trivially does not produce a Maximum Likelihood esti-
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4.2. Estimation from summary statistics
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Figure 4.1: Estimating of the hypothetical unobserved true intensity λ(t) function by a simple function
λ̂simple(t)
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4. Estimation of parameters of the homogeneous Hawkes model

mator. Maximizing likelihood over all the unknown parameters would addition-
ally include maximizing over the unknown occurrence times. Rather, we guess
those other unknown parameters and do not attempt to optimize with respect
to them.

Working out how well this procedure approximates an actual ML estimate ana-
lytically is not trivial. I will largely ignore this issue here, because that for this
particular research group it is a higher priority to see how far we can get with
the approximation than to spend much time analyzing the approximation ana-
lytically. If we have promising results, then we can attempt to improve the es-
timator, or to correct for its sampling distribution using a bootstrap procedure.
I therefore use simulation to reassure us that the idea is not outright crazy, and
that we are plausibly approaching the ML estimator, and move on. I do suggest
some ways that the problem might be addressed at the end of the chapter.

4.3 Model selection

4.3.1 The Akaike Information Criterion

Here I discuss the classic model selection procedure for this class of models, the
Akaike Information criterion, or AIC. [Aka73; Cla08]

AIC model selection is a well-known procedure for Hawkes-type models. [Oga88]
In the literature it is vastly more common than, for example, the Likelihood Ra-
tio identification test of Rubin, [Rub72] although for the special case of nested
models they are equivalent. [BA04]

The AIC formula, for a model M fit to a given data set X, for estimated parameter
vector ˆθM with log likelihood L and degrees of freedom dM

AIC(X, M) = 2dM − 2LM(X, θ̂M)

The degrees of freedom are usually equivalent to the length of the parameter
vector θ, although this depends upon the model and fitting procedure. [Efr86]

Given two ML fitted models, (M1, θ̂M
1 ) and (M2 θ̂M

2 ), the difference in their AIC
values is an estimate of the relative Kullback-Leibler divergence of the inferred
measures µ̂1, µ̂2 from the unknown true distribution, µ i.e.

AIC(X, M1)− AIC(X, M2) ≃ DKL(µ∥µ̂1)− DKL(µ∥µ̂2)

It suffices for the current purposes that it is an information-theoretically-motivated
measure of relative goodness of model fit to a given dataset. The lower the rel-
ative AIC of a model for a given dataset, the more we prefer it. The decision
procedure using the AIC is to rank all candidate models fit to a given data set by
AIC value, and to select choose the one with the lowest value. Heuristically, we
see that a model is “rewarded” for a higher likelihood fit to a given data set, and
penalized for the number of parameters it requires to attain this fit.
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4.3. Model selection

4.3.2 General difficulties with AIC

There are certain subtleties to the application of this idea.

AIC, as with many ML estimation procedures, is an asymptotic result, relying
on the large-sample limiting distribution of the estimators. Just as with the ML
procedures in general, it is not robust against outlier observations [Cla08] §2 and
we might prefer a robust estimator if the data set has been contaminated by data
not easily explained within the model.

Additionally, unlike many test statistics, there is not necessarily a known sampling
distribution of AIC difference between two models, even asymptotically. The
difference in AIC between two nested models approaches a chi2 distribution under
fairly weak assumptions and it becomes an ordinary likelihood test. [Cla08] In
the case of non-nested models, we have to estimate the statistics’s distribution
by simulation or analytic qualities of the particular models.

The derivation of the AIC does not presume that the true generating model is
in the candidate set, and so we may use to find the “least worst” in such cases.
We could, for example, have several candidate models for a point process, find
that they are all rejected by some significance test at the 0.05 level, and the AIC
will still give us a “winner” from among this set of rejected models. The “win-
ner” in the Kullback-Leibler metric may of course not give us particularly good
performance under other metrics.

More generally Akaike Information Criteria estimates may converge weakly un-
der model misspecification for some models. [KK96] and so our model selection
procedure may be faulty. One may introduce model-misspecification guarantees
using the more general Takeuchi Information Criterion. [KK96; Cla08] A more
commonly preferred solution is simply to expand the candidate set.

Of these difficulties, the problem of model mis-specification will be the more
urgent in the current phase. Problems of small-sample corrections I will ignore
at this point, but when I add more parameters to the model in the second part
of this report, that issue too becomes pressing - see Model selection.

Finally, we also need to recall that although I use an ML-based estimation proce-
dure, due to the interpolation I am are not really doing true ML estimates from
the data, but rather, hoping that my estimates approach the true ML estimates.
I know of no results that extend the AIC to this case. Once again I will use sim-
ulation to see if this procedure is at least plausible, but we do need to bear this
shaky theoretical premise in mind.
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4. Estimation of parameters of the homogeneous Hawkes model

4.4 Experimental hypotheses

4.4.1 Model selection with large data sets

The classic setup for use of the AIC is to propose a candidate set of parametric
models of the data, with varying numbers of parameters, and then use the AIC
to select between them based on the particular tradeoff of goodness-of-fit.

For this Youtube data, for example, we might construct the following set of can-
didates:

1. Each time series Nv is generated by a Poisson process with rate λ (d = 1)

2. Each time series Nv is generated by a renewal process with inter-occurrence
times {Xi}v for some common 2-parameter interval distribution, say Xi ∼
Pareto(α, β). (d = 2)

3. Each time series Nv is generated by a Hawkes process with exponential
kernel, background rate µ, branching ratio η, and kernel parameters κ. (d =
3)

4. Each time series Nv is generated by a Hawkes process with exponential
kernel, background rate µv, branching ratio ηv, and kernel parameters κ,
where µv ∼ Pareto(µmin, αµ) and ηv ∼ Beta(αη , βη).

5. ...

The more data we have, the more complex a hypothesis we can support. We can
include regression here e.g. that the branching ratio is predicted by time of day
of upload, [HG10] or that parameters follow a simple trend etc.

We might also ignore some dimensions if consider some of the parameters to
be nuisance parameters; i.e. we do not care about the distribution of µv, but we
might suspect that κ has a universal value parameter, [GL08; CSS10] or a limited
number of possible values. [CS08].

With the AIC method, the complexity of the hypothesis we can support in-
creases, in general, with the available amount of data. It follows that with this
stupendously large data set would support stupendously complex hypotheses; We
are faced with, in principle, a combinatorial explosion of possible hypotheses and
all of them are computationally expensive to evaluate - and practically, very few
of them are supported by the available software.

We can avoid that issue for now since, I argue, we need to infer models that
can handle the variation within one series adequately before testing composite
hypothesis that couple various parameters together.
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4.4. Experimental hypotheses

4.4.2 Multiple testing considerations

A frequent alternative used, for example, on financial time series, is to give up at-
tempt to finding a small number of universal parameters, and estimate parameters
independently on each time series. Then we report the estimated values.

This has issues of its own. If I wish to report, for example, the confidence inter-
vals for 106 separate estimates fitted to 106 time series, then I am likely to find
something by sheer force of numbers; This is the multiple testing problem. More-
over, if I am relying on bootstrap estimator variance estimates I face potentially
as many bootstrap estimates as I have point estimates. The question of how to
construct and report confidence sets or hypothesis tests in this case is a complex
and active area of research. [BH95; BY05; Abr+06; MMB09; WR09; GW08;
Ben10; MB10; GL11; NG13; Mei14; Gee+14].

While not discounting the importance of these concerns, I argue that there are
other methodological questions about the estimator that need to be addressed
before I can approach a confidence set for a single times series, let alone multiple
ones, and so I set this issue aside.

4.4.3 Goodness-of-fit tests

Traditionally residual analysis is used to diagnose goodness of fit of the Hawkes
process parameters using a time change of the process into a uniform unit-rate
Poisson process. [Oga88] I do not test residuals in this project, since I am aware
of no known test that calculates residuals for the summary statistics used here.

Informally, the residual test for point process intensity estimates examine whether
the process “looks like” a unit rate Poisson process when scaled, according to
estimated intensity, to have unit rate. Since my estimation procedure here in-
volves arbitrary interpolation of the series, we do not have residuals in the per-
occurrence sense assumed by Ogata.

Our residual fit must be a last defense against bad model, and therefore if nothing
else, must be a statistic with some basic guarantees against Type I error. There is
no sense going through the motions of applying such model diagnostics, if they
can provide, at worst, false confidence, and at best, no information.

In any case, I will provide ample alternative sources of evidence that the fitting
procedure is problematic without requiring the goodness of fit test.
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Chapter 5

Simulations for the homogenous
estimator

5.1 Point estimates

Maximum likelihood estimators for complete times series are well studied. [Cox65;
Oga78; Oza79; Sch05] The novel quality of the problem here is the summariza-
tion and interpolation step. I estimate the significance of this by simulation.

As mentioned, the observation interval is variable both within and between time
series, and there is no known model for the intervals. For want of a better alter-
native, in my simulations I will use a constant observation interval with each time
series. I start with the case of estimating the parameters of a Hawkes model with
exponential triggering kernel from data generated by such a process.

I choose 9 different sampling intervals {∆τi}i=1,2,...,9 = {2−4, 2−3, . . . , 23, 24}. I
fix the number of observations per realization at n = 201, the branching ratio η =
0.9 and hold the kernel parameters κ fixed. To keep the number of occurrences
comparable, I choose µ0 = 5.0 and µi = µ0/∆Ti. I pick M = 300 simulations.

For each i ∈ 1, 2, . . . , 9, I simulate a realization of a Hawkes process Nm,i(·) over
the interval [0, 200∆τi]. I construct maximum likelihood estimate θ̂complete for
the parameters from the realization. Next, I reduce this realization to summary
tuples

{(0, Nm,i(0)) , (∆τi, Nm,i(∆τi)) , (2∆τi, Nm,i(2∆τi)) , . . . , (200∆τi, Nm,i(200∆τi))}

I synthesize “complete data” for these summary tuples with a piecewise constant-
rate process to create a new time series N′

m,i(·), and estimate the parameters from
the new series.

Observe that each realization constructed this way has similar number of occur-
rences EN(200∆τi). Due to edge effects we should expect slightly fewer occur-
rences when the time step, and hence the whole simulation interval, is shorter.
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5. Simulations for the homogenous estimator

Each realization has an identical number (201) of observations of those occur-
rences.

I do not resample a single realization with multiple observation intervals, since
that will confound the number of observations with the sample window influence,
but rather, I simulate each time with a different seed for the pseudorandom num-
ber generator.

Over the 300 simulations I get an estimate of the sampling distribution of the
parameter point estimates as the sample step size changes relative to the kernel
size. Equivalently I could change the kernel size and leave the step size constant;
as there is no other inherent scale in the process, the results are equivalent.

The procedure described thus far corresponds to time series started “from zero”,
with no history before the start of the data collection, and thus an initially lower
rate than the stationary process. An alternative is to sample from the station-
ary model, Practically, the “stationary” case corresponds to simulating over the
interval [0, C + 200∆τi] but fitting over the interval [C, C + 200∆τi] for some suf-
ficiently large positive C.

Since ultimately the datasets that I use are themselves usually started “from zero”,
in that the first data point is close to the start of the series the non-stationary
case seems more relevant. I display only the “started from zero” data here. That
estimation from stationary simulated data generally worse, in the sense that the
point estimates have larger bias.

I set κ = 1. This gives a mean delay of 1,

I now plot the inferred sampling distributions against the sampling distribution
of the complete data estimator. Across the 300 simulations, I get an average of
8627 occurrences per realization. (See Figure 5.1, Figure 5.2 and Figure 5.3)

The estimates for the branching ratio are somewhat biased, as are those for back-
ground rate. It would be interesting to know if this the estimates were consistent,
with a bias that vanishes in the large sample limit. That question is irrelevant for
the current data, which has limited sample sizes.

The estimates for the kernel times scale are the most affected by the resampling
process. Compared to the complete data case, almost all estimates have signifi-
cant bias, and the degree of this bias depends upon the scale of the kernel. In the
best case, when the kernel scale is of the same order as the observation interval, it
has acquired a mild upward bias by comparison with the complete data estimates.
In all other cases the bias is large. All re-interpolation, even those whose interval
is much smaller than the supposed timescale, introduce additional variance into
the estimator. The performance is good enough to use as is for the current ex-
periment. When the sampling window hits 16 the estimate is wrong by a factor
of approximately two — but then this estimate is for the parameters of a kernel
that is 1

16 the time scale one might at which one might give up hope of estimating
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5.1. Point estimates
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Figure 5.1: Sampling distribution of branching ratio estimates η̂ under different observation intervals for
the Exponential kernel Hawkes process. The true value is marked by the red line.
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Figure 5.2: Sampling distribution of ratio of background rate estimates to true rate µ̂/µ under different
observation intervals for the Exponential kernel Hawkes process. The true value is marked by the red line.
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Figure 5.3: Sampling distribution of kernel scale κ̂ estimates under different observation intervals for the
Exponential kernel Hawkes process. The true value is marked by the red line.

the parameters at all. Moreover, the bias is regular enough that one could possi-
bly correct bias for a given parameter estimate by bootstrap simulation: On this
range the sample mean point estimate is apparently monotonic, in the sense that,
with high frequency, θ̂∆τi < 2θ̂2∆τi . I will encounter more pressing problems than
correcting this bias however.

These graphs are all of marginal estimator values. Point estimates of compo-
nents of the parameter vector for any given data set are not independent from
the full data estimate in the sense that the Fisher information matrix is not diag-
onal. [Oga78] Likewise we should not expect the different parameter estimates
for fits to the interpolation-based estimator to be independent; For the moment,
marginal distributions of the estimates are informative enough.

I now turn to heavy tailed kernel parameter point estimation.

The Omori kernel has two parameters which determine the time scale. Since it
is standing in for the whole class of heavy-tailed distributions, it seems wise to
test a strongly heavy-tailed parameter set. Accordingly, I choose tail exponent
θ = 3/2. Maintaining same mean delay as the exponential kernel requires me to
choose the other parameter κ = 1/2. Note that heavy tailed kernels such as this
can lead to estimation uncertainty even with complete data, so problems with
this data are likely. [SU09]

Indeed, the variance in the estimates are large. I consider first the branching ratio
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5.1. Point estimates

estimates and background rates Across the 300 simulations, I get an average of
8823 occurrences per realization. See figures 5.4 and 5.5.
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Figure 5.4: Sampling distribution of branching ratio η̂ estimates under different observation intervals for
the Omori kernel Hawkes process. The true value is marked by the red line.

The time scale estimates are bad enough that they present real difficulties in pre-
senting graphically.

Considered individually, the kernel parameter estimates are not consistent, span-
ning many orders of magnitude. The sampling distribution has more in common
with modernist painting than statistical analysis. I show one example in 5.6 al-
though estimates for both parameters are similar.

This problem could be to do with the estimator becoming trapped in local min-
ima, possibly even for pure numerical estimation reasons. Indeed, to save CPU
cycles, I restarted the numerical optimizations with only a small number of initial
points when estimating parameter values.

I posit that the problem with the estimator is that is getting the shape of the
kernel wrong, but that the estimates might still be correct in terms of the time
scale when the kernel parameters are considered together.

I need some care to plot this, since the Omori law does not necessarily have finite
moments of any order, and indeed the estimates often give me a kernel with no
finite moments. It seems that mean delay was not a wise choice. I use the classic
trick with heavy-tailed distribution and consider the median as a measure of cen-
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Figure 5.5: Sampling distribution of ratio of background rate estimates to true rate µ̂/µ under different
observation intervals for the Omori kernel Hawkes process. The true value is marked by the red line.
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Figure 5.6: Sampling distribution of kernel parameter estimates under different observation intervals for
the Omori kernel Hawkes process. The true value is marked by the red line. Note vertical scale.
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5.2. Model selection

tral tendency. I use the plug-in estimator of the median given the estimated pa-
rameters. Plotting the sampling distribution of this reveals some support for this
idea, showing me a somewhat similar picture to the exponential kernel case. (Fig-
ure 5.7).
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Figure 5.7: Sampling distribution of kernel median delay estimates under different observation intervals for
the Omori kernel Hawkes process. The true value is marked by the red line.

Indeed, the Omori kernel has, in an approximate sense informally speaking, “more
information”” destroyed by the randomization process than the Exponential ker-
nel. The parameters change not just the average scale of interaction, but the
relative weighting of local and long-range interaction.

If we suspect heavy-tailed interaction kernels are important for this kind of data,
a different heavy-tailed kernel family might resolve this problem. for now, I will
observe that we should be suspicious of the inferred shapes for Omori kernel
fits. IN particular, our estimate of heaviness of the tail distribution, which is our
motivation for using this kernel, is suspect.

So much for point estimates. I still need to examine the AIC model selection
question.

5.2 Model selection

Here I largely follow the methodology and parameter choices of the previous
sections.
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5. Simulations for the homogenous estimator

At this point, I have 3 different candidate models available: The Hawkes model
with exponential kernel, the Hawkes model with Omori kernel, and the constant
rate Poisson process corresponding to either of the Hawkes models with a zero
branching ratio.

Now, instead of merely fitting the Hawkes process with Omori kernel to data
generated by a Hawkes process with Omori kernel, I am concerned with whether
I can work out which model to fit given only the data.

I simulate and interpolate data as before, but now I fit each of the 3 candidate
models to the same interpolated data set and compare the AIC statistic for each
fit. The goal is to identify the correct model class with high probability.

Even with 3 models there are many permutations here. I will demonstrate only a
couple. The primary difference with the previous section is that I will not show
the statistic distribution with complete data for technical reasons 1

First I consider whether I select the Hawkes process with exponential kernel
when the true model is in fact a constant rate Poisson process.

Reassuringly, the proposed procedure usually gets this right at all observation
intervals, although there is a significant tail of false acceptances of the Hawkes
process. Figure 5.8

In the converse case we also select the correct model, although it should be noted
that if we were to consider the magnitude of the AIC difference as an indicator of
certainty, the larger sampling intervals would give us increasingly spurious confi-
dence. (Figure 5.9)

The case is less clear if we try to identify the correct kernel. Trying to select
between Omori and Exponential kernels the AIC difference depends strongly on
relationship between kernel and observation interval timescales. (Figure 5.10)

Qualitatively, the AIC model selection usually selects a Hawkes model when the
true generating process is a Hawkes process and rejects it for a constant rate
Poisson process. When we need to select between the two different kernel types,
however, the AIC distribution is messy and timescale dependent, and magnitudes
of the difference are generally misleading.

This leaves the interpolation-based estimator in a curious position.

Consider a toy world in which all time series are generated by one of the three
models I have identified, and in which we must use the interpolation-based esti-
mator, and select between models using the AIC.

In this world, for at least the parameter ranges I have used here, and setting aside
the question of the influence of uneven sampling intervals, I can get a good esti-
mate of the presence or absence of self-exciting dynamics. I can get a reasonable

1 I accidentally deleted it.
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Figure 5.8: Sampling distribution of ∆ AIC statistic between estimated Poisson model and Hawkes model
(exponential kernel) for data generated by a Poisson process. The line of indifference is marked in red.
Positive values select the Poisson model.
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Figure 5.10: Sampling distribution of ∆ AIC statistic between estimated Hawkes model with Omori and
exponential kernels for data generated by a Hawkes model with exponential kernel. The line of indifference
is marked in red. Positive values select the exponential kernel.

estimate of the branching ratio, the background intensity, and even some idea of
the characteristic timescale of the process. My ability to estimate specifics of the
kernel shape beyond that is virtually non-existent.

This might be acceptable, depending on our purposes. Certainly, in this world we
have some idea of branching ratio and dynamics for the time series we observe.

I now turn to the question of what happens if we expand the parameters of the
toy world to consider the possibility of time series generated by processes from
outside this class.

5.3 Empirical validation of estimators of inhomogenous data

I turn to the phenomena of isolated spikes in the data, and consider the behavior
that we can expect from the estimators in handling these in articular. We should
of course bear in mind that there are many possible inhomogeneities in the data,
and many plausible generating mechanisms outside the candidate set. We might
nonetheless prefer a restricted candidate model set for easy of interpretation or
computational efficiency, so long as the behavior is reasonable despite the mis-
specification.

I simulate a stylized “lead balloon” spike. This I define as the inhomogeneous
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5.3. Empirical validation of estimators of inhomogenous data

Poisson process N(t) with the rate function

λ(t) =

{
200 t ≤ 1
2 otherwise

I thus have an example of Lead Balloon-type behavior, where the median times-
tamp should occur somewhere around t ≈ 50, or 25% of the series total observa-
tion window, which is not particularly extreme for this data set. Apart from the
single inhomogeneity, the process has zero branching ratio.

Once again I simulate and fit this model 300 times using the estimator. resam-
pling and re-interpolation makes little difference with this piecewise-constant
intensity function, so I do not bother variable observation interval sizes and so
on, but fit using the complete data estimator.

Using the AIC test, the Poisson model comes last all 300 times. That is, we
select a positive branching ratio for some parameters the rest of the time, by a
large margin. I picture the evidence, in the form of AIC difference, in favor of
the Hawkes models. Since I have been using violin plots so far, I will continue
to do that here for consistency, although it should be borne in mind that AIC
comparisons are only meaningly with a single dataset, and these comparisons are
usually between data sets. Nonetheless we can learn something from the ensem-
ble distribution - for example, that this test never prefers the Poisson model for
this kind of data. (Figure 5.11)

The estimation procedure turns out to be reasonably agnostic between the ex-
ponential and Omori laws for the kernel shape, much as with the summarized
data.

We also get low variance estimates of the series parameter, with large bias. Con-
sider the branching ratio, for example, which is always close to 0.54 for Omori
and Exponential kernels. (Figure 5.12) Similarly, the procedure estimates a median
timescale with low sampling variance. (Figure 5.13)

These spurious estimators are data-dependent. By choosing, for example, more
extreme spikes, I can cause the estimator to pick a higher branching ratio.

However, the real point is not to investigate this particular mis-specified model.
Rather, it is to bear in mind that the admirably elegant set set of models that we
can fit with pyhawkes out of the box is too small to plausibly handle the kind of
behavior that the Youtube data suggests, and that all results will be colored by
this fact. Nonetheless, I cross my fingers and hope for moment, and turn to the
data.
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Figure 5.11: Cumulative distribution of ∆ AIC values estimated between paris of candidate model for 300
simulated Lead Balloon realizations. Positive values select the first named model. The zero line, at which we
are indifferent, is marked in red.
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Figure 5.13: Estimated value of median delay for 300 simulated Lead Balloon series.
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Chapter 6

Results for the homogeneous Hawkes
model

Here I discuss the results applied to various subsets of the time series.

One possible option to deal with the problems identified in the simulation stage
would be to manually select some “best” data sets that I believe to be free from
inhomogeneity, and fit the estimator to those. This has the unfortunate quality
that I have no well-specified notion of what the sampling process of selecting data
that “looks like it fits my model” allows me to say about the data more generally.
Certainly, finding datasets that “look” endogenous is a trivial procedure, and I
have fit some as a diagnostic.

I return to the idea of filtering the data-sets to find ones that are tractable in a
principled fashion later, by suggesting that we can simply identify inhomogeneity
using the right sort of estimator.

For now, I restrict myself to random sampling. I estimate model parameters
from time series chosen uniformly without replacement, from the set of Youtube
videos. As discussed earlier, it it not clear if this will give us information about
the population of Youtube vides per se, but the same criticism could be made of
many schemes. I let the computing cluster run through the time series in a ran-
dom order until the batch jobs are terminated by exceeding their time limits. At
the end of the process, there are 92183 time series results.

Using the AIC procedure, I examine the question of which model is selected.

Model selected Count %
No self-excitation 7 0.01
Exponential kernel 42259 45.84
Omori kernel 49917 51.15
Total 92183 100.0

The Poisson distribution is, as expected, rejected apart from a handful of time
series of near constant rate. Much as with the misspecified test data, the kernel
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6. Results for the homogeneous Hawkes model

choice is reasonably evenly divided between two alternative hypothetical kernel
shapes. The data set is too large now for violin plots. However, some histograms
convey the idea. I show a raw histogram of estimated results; it is not, for ex-
ample, weighted by a goodness of fit measure or AIC difference. (Figure 6.1, Fig-
ure 6.2) The distribution is qualitatively similar the “lead balloon” fits earlier. We
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Figure 6.1: Histogram of AIC values for the fit models. Positive numbers select the exponential kernel.

need sharper statistical tools, however, to see if this means anything. Similarly,
the estimates would a suggest high branching ratio, although, as discussed, we
have excluded the alternative implicitly. (Figure 6.3)

The estimated parameters of the Omori kernels are messy, as with the simu-
lated date. Once again I resort to the plugin kernel median estimate to give us
a timescale, and to keep the kernel timescale estimates comparable. The Omori
and exponential kernel fits results for the plugin median estimate are given here.
The distribution is broad but shows, across both types, a peaks at around 0.1-0.2,
corresponding to a median influence decay on the order of 4 hours. This is not
an implausible time-scale to estimate from our data. For comparison I plot also
the histogram of observation intervals. (Figure 6.4)

Note, however, that if we believe these estimates are meaningful, then we need to
recall that the interpolation process has introduced upward bias to these values;
the “real” time scale is likely even shorter. This effect could be estimated by
parametric bootstrap from the estimated parameters.

I might consider how much the estimate might be influenced by the lead bal-
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Figure 6.4: Estimated median kernel delay for Omori and Exponential kernel fits to the Youtube data

loons in particular. A simple statistic to quantify this is the estimated median
occurrence time in the time series, considered as a fraction of the length. (This
is median is the property of a time series as a whole, distinct from the median
interaction time of the estimated influence kernel) If the rate of video views was
constant, we would expect this to cluster at the 50% line. If half the views a
video ever has were to occur in the first 5% of its sampling window, then it would
be at the 5% line. Our videos tend toward the latter type. (Figure 6.5) This preva-
lence of lead-balloons is itself not uniformly distributed with regard to time series
size. Rather, high view-rate time series are disproportionately likely to be lead
balloons. (Figure 6.6)

It seems that early success is not necessarily associated with overall success in
a simple manner. On one had this shows the interest of the data set -there are
clearly non-trivial dynamics in play. On the other hand, these dynamics are ones
that we know to be problematic.

We can informally diagnose at least one type of outlier. We see whether the
distribution of these estimates is determined by the lead-balloon-type outliers, by
filtering out all time series whose median sample point occurs before the 50%
mark. This will restrict the estimates to the 29418 time series that are, by this
informal measure, definitely not lead balloons. We are still in exploratory mode
here, so I show some histograms to visually inspect the differences in the distri-
butions of estimates. (Figure 6.7, Figure 6.8) The alteration is not spectacular;
This particular method of selecting results doesn’t get substantially different set
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Figure 6.5: Distribution of median occurrence time within each time series, by series
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towards sudden collapse
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Figure 6.7: Distribution of estimates of kernel median, with and without lead balloons.
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Figure 6.8: Distribution of estimates of kernel median, with and without lead balloons.
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6.1. Further work

of estimates.

If we return to the time series that I showed at the beginning of this report, there
are signs that individual estimates are indeed misleading. Consider, for example,
the archetypal “lead balloon” that I showed at the beginning, time series of David
Navarro’s fight, which is interesting for two reasons.

First, I note the estimates for this time series with the exponential kernel, which
is selected over the Poisson. We have, to two decimal places µ̂ = 31.8, η̂ =
0.99, κ̂ = 0.01. Sure enough, the estimator has determined that this least viral of
time series is very nearly critical, and it has detected a time scale of approximately
13 minutes. 13 minutes is so far below the sampling window that it seems implau-
sible to resolve. The extreme criticality estimate, however, shows the estimator
is not doing what we’d like. If we believe the model is well specified we can easily
bootstrap ourselves some confidence intervals, but even that seems too faith at
the moment.

The second reason that it is interesting is that I don’t have an Omori kernel esti-
mate for this one. The reason, it turns out, is that the estimation for those kernel
parameters, did not terminate in the permitted time. This time series, with 36198
occurrences, is not especially large, but calculation with such time series is slow,
and this one was too slow. There is, then a degree of censoring in the data re-
garding Omori law kernels We can use alternative estimators that approximate
the Omori kernel - especially if we think that Omori law kernels are implicate
in the extreme behavior of this system On the other hand, since the simulations
lead us to believe that we cannot detect precisely the extreme heavy tailed Omori
kernels that are of interest here, there does not seem to be immediate benefit to
this particular use of CPU cycles.

6.1 Further work

6.1.1 Expanding the candidate set

the case for expanding the class of model we consider in this is clear; It seems
likely that even a simple linear trend model for background intensity might be a
start, and it has a reasonably simple estimator. [MPW96]

It turns out to be not so easy to do this immediately for basic technical reasons;
The software package I use, pyhawkes, and indeed, most of the commonly used
packages for this estimation procedure, have no support for inference of variable
background rate. One can manually simulate a variable background rate by ad hoc
procedures such as time-transformation of the data.

I did in fact attempt this procedure in an earlier stage of the project, but the
problems with goodness of fit and model selection procedures were already severe
enough that I decided not to this particular layer of confusion. If I am commit-
ted to deriving a new estimator then, I need to choose the one with the highest
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6. Results for the homogeneous Hawkes model

practical return on investment, and that would involve a flexible and principled
choice of inhomogeneity modeling. I believe the estimators outlines in the next
chapter are my best chance in that regard.

6.1.2 Summary data estimation

If we are deeply invested in this data set, or ones with similar missing data prob-
lems, we may wish to consider how to reduce the uncertainty due to the data in-
terpolation, since the list of shaky steps in the estimator’s construction is clearly
too long at the moment in the light of the results of the last chapter.

There are many potential ways to do address this.

Without any change to the current estimator, we could aim to improve con-
fidence intervals by using simulation methods robust agains mis-specification-
robust. One can construct confidence intervals, and possibly even bias correc-
tions using the bootstrap; In the case of this model, ideally a nonparametric
bootstrap. [Kün89; Lah93; Lah01; Büh02] This is not trivial time-series with
long-range dependence, but there is work in the area.

We could try to construct an estimator that addressed the missing data problem
analytically. The problem of estimating Hawkes model parameters from summary
statistics is not trivial, but the literature suggests potential solutions. I mention
some of these here.

1. The brute force method :

Maximize the likelihood with respect to parameters and missing time stamps.
Then, at least, we are on firmer ground regarding the use of Maximum like-
lihood estimation theory, since we wil have maximized the likelihood over
all the unknowns and not parameters of interest. This idea, while simple
in principle, results in an optimization over NT + ∥θ∥ unknowns with a
complicated derivative, many constraints and strong coupling between the
parameters. This turned out to be computationally prohibitive in my basic
implementation.

2. Stochastic expectation maximization:

Expectation Maximization (EM) is a common iterative procedure for esti-
mating “missing-data”-type problems in an ML framework. [DLR77; Wu83]
Informally, this estimator alternates between estimating missing data and
estimating parameters based on the missing data. While particular form of
this estimator does not seem to be any more tractable than the brute force
method, stochastic variants [CCD95; DLM99; WT90; KL04] allow us to
sample from much simpler distributions to approximate missing data, and
EM procedures have been used for other problems in Hawkes process in-
ference. [VS08; Hal12] Deriving an estimator for summary Hawkes process
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6.1. Further work

data is address in some recent doctoral research, and the solution ultimately
involves an EM-type procedure. [Vac11]

2. Deconvolution: Cucala gives a deconvolution kernel estimate of point pro-
cess intensity, which gives certain robustness guarantees against uncertain-
ties in measurement time, which might possibly be extended to our case.
[Cuc08]

3. Bayesian inference: There are several attempts to derive Bayesian estimators
for the state of self-exciting processes, both offline in Markov Chain Monte
Carlo settings [Ras13] and online, as Sequential Monte Carlo [MJM13].

4. Summary estimator:

It seems plausible that an estimator could be constructed that used the
observation summary statistics to calculate the full Maximum Likelihood
estimate, by calculating likelihood from the summarized observations di-
rectly without inferring occurrences. There is no known simple closed form
representation for conditional distributions here, but there are certain in-
equalities. For the exponential kernel higher moments have a simple form
[Oak75], and for some other kernels at least a manageable form [BM02;
Bac+12]. We could also consider the use of moderate deviation principles
and such inequalities to bound estimates from subsampled data. [HSG03;
Zhu13]

4. Indirect Inference:

Inference by matching summary statistics between the data and simula-
tions from the hypothesized model is well-established in econometrics.
Smith and Gourieroux introduced such methods for continuous-valued time
series, [GMR93; Smi93] although there are point process versions. [JT04;
CK12] This technique is not purely econometric, having been used in ecol-
ogy as well. [Ken+05] It is theoretically involved and computationally ex-
pensive, but uncontroversial, and comes with its own analogue of the maxi-
mum likelihood estimation theory, including various asymptotic results on
confidence bounds

Asides from the lack of guarantees, a shortcoming of the constant-rate interpo-
lation estimator is that it has bad computational scaling behavior; while a single
Youtube video time series might encompass, say, a hundred thousand views, I
still only have a a few hundred sample points statistics to use for inference. And
yet evaluating the likelihood function involves simulating a hundred thousand
synthetic data points, constructing in turn a kernel density function with a hun-
dred thousand synthetic points, then evaluating that likelihood function at each
of the hundred thousand synthetic data points. The computation cost of naïve
evaluation the likelihood function scales as O(N2) for N occurrences observed
at n times, where in general N ≫ n. Optimizations exist to improve the scaling
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6. Results for the homogeneous Hawkes model

properties for for exponential [Oza79] and Omori kernels, [OMK93] although
only the first of these is implemented in my software.

Ideally, an estimator whose computational cost scaled with number of observa-
tions rather than number of occurrence would be desirable. O(n) ≪ O(N). I
know of no such estimator. Rather, the estimation procedure is slower and has
weak guarantees.

Computational efficiency is, like plumbing, something we would rather work with-
out paying it any attention. Ss with many large data sets, computational efficiency
does become a factor later on in this project when I extend the model.

On potential fix for this problem is exploiting the decomposability of linear sim-
ple point processes such as the Hawkes process We may decompose a point pro-
cess and its intensity function into two simultaneous independent point process.
[Rub72] This suggests that we might be able to “downsample” the time series by
thinning, construct the estimate on the smaller series, and use those estimates to
infer behavior of the larger series. Once again, I leave that for future work.

Regardless, of the method, if we want to handle this data in a principled fashion,
and especially if we care about estimating the heavy-tailed kernel types reliably,
then pursuing a better estimator for this class of data is essential.

6.1.3 Goodness of fit

Finally, although it was logically clear here that the models fit “badly” in some
sense, and thus I didn’t need a goodness of fit test, this absence is pressing for
future work when we would like a statistical guarantee. Without it, we don’t have
a general way of diagnosing the shortcoming of the candidate model class, and so
expanding the candidate model set is a dangerous proposition.
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Chapter 7

Estimating branching effects for
inhomogeneous processes

To recap: before us we have a huge data set of variable quality. It seems pregnant
with possible conclusions, and yet, the tools we have available to extract them,
estimators based upon stationarity assumptions, have limited ability to draw in-
ference from them.

In this section, I extend my toolset in order to solve this problem I relax the
assumptions of homogeneity (and also, implicitly, stationarity) that the previous
section relied upon.

So far I have estimated parameters of lot of data sets, but not managed to reassure
myself that I should have confidence in the estimates corresponding to “true”
values for reasonable generating process. My estimates are restricted by various
assumptions whose plausibility is overstretched:

• that I am sampling time series in the large-T limit from a stationary process

• that, therefore, the process has homogeneous parameter values

• that the self excitation dynamics have a certain parametric forms

• that my interpolation from the summary statistics does not unduly bias
estimates

• ...and so on.

The question is now if the conclusions of interest can be attained by relaxing
some of these assumptions. Does this data set suggest near-critical branching
dynamics under more plausible assumptions?

A great deal of the literature on branching-type dynamics, including prior work
on this data set, suggests that it is crucial to understand them in terms of iso-
lated “exogenous shocks” external influences upon the system which temporarily
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7. Estimating branching effects for inhomogeneous processes

change their behavior. [SH03; Sor+04; DS05; CS08; CSS10; RPL15] Such exter-
nal shocks can be celebrity endorsements, natural disasters, or news events, etc.
The key question is how the model could be extended to account for them. Im-
portance of regime changes in inflating estimates of branching ratio is discussed
much in recent work. [FS13; Fil+14; HB14; FWS15] We are invited to consider es-
timating, for example, the “renormalized” kernel; the mean effect of an imposed
exogenous shock upon the system. [HSG03; BM14a]

There are many ways that this can be done. I concern myself specifically with
inferring deterministic inhomogeneous time-varying background rates µ(t). Al-
lowing other parameters, such as kernel parameters to vary is of course possible.
[HB14] One can also assume the parameters themselves to be stochastic, then
infer the parameters of the underlying distribution. [MSW98; Møl03; OA82;
MJM13; GKM11; DZ11] I try one thing at a time, however.

I have not been able to find many examples of explicitly inhomogeneous fits to
Hawkes models in the literature, although there is some use of estimates of the
parameters on sliding windows of data (e.g [HBB13]). As such, the following work
may be novel.

7.1 Semiparametric kernel density estimation

Observe that the Hawkes process is a kind of kernel estimation, in the sense
of convolution kernels. It is not qualitatively different in this sense from, for
example, kernel density estimators. [Sil82] Using convolution kernels of various
types to estimate point process intensity even for non-Hawkes-type processes is
well-established area. [Dig85; BD89; Lie11; BD89] Admittedly, the particular case
of the Hawkes estimator has unusual features if regarded as a kernel estimation
problem.

Firstly, the convolution kernels are causal; that is, the intensity process is pre-
dictable with respect to the filtration generated by the occurrence times. Equiv-
alently, the kernel has mass only on the positive half-line. The “classic” kernel-
density estimator for example, uses a zero-centered Gaussian density as the ker-
nel.

Secondly, in ML estimation of the Hawkes model parameters, we have an un-
usual bandwidth selection procedure, based on maximum likelihood estimation
of the model’s presumed dynamics. Classic kernel density estimation uses differ-
ent methods, such as rule-of-thumb, or cross-validation procedures. We have, in
fact, a parametric estimation problem, whose form happens resemble the non-
parametric problems that convolutions kernels are used to solve.

I consider, then, what alternate kernel decompositions are plausible, and in par-
ticular the combination of parametric and non parametric estimates. This is pre-
cisely the set-up for semi-parametric estimation methods. I argue that there is
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a particular semi-parametric method that seems particularly appropriate to this
data set.

7.2 The algorithm

Assembling such penalized regression estimators is a job of assembling several dif-
ferent interdependent pieces. Pedagogically it is clearer to introduce each piece
as I need it to explain the overall algorithm, and so I do that here.

I consider estimating the parameters of the Hawkes model where the constant
background rate µ is replaced with inhomogeneous rate µ(t). On one hand, this
is a sacrifice; in the inhomogeneous case we no longer meet Ogata’s sufficient
conditions for asymptotic efficiency and normality of the maximum likelihood
estimator. [Oga78] On the other hand, there is nothing to lose. The insuffi-
ciently general candidate model class was also uncertain ground, and even if it
were better, the composite interpolated data estimator I am constructing has no
such guarantees.. In any case, many point process estimators even with complete
data are used without asymptotic efficiency guarantees [Sch05] or unimodal like-
lihood functions. [FS13]

For technical reasons (see On the complexity of the simplest possible thing) I discard
the pyhawkes library for estimation; I retain it, as a known-good implementation
of the ML estimation procedure, for checking the results of my own implementa-
tion. (Likelihood estimates agree to within numerical precision for all values, and
point estimates usually agree, although my estimator is more prone to numerical
instability)

My non-parametric of choice here will be of convolution kernel type. That is, I
will introduce an additional convolution kernel ψ, and functions of the form

µ(t) = µ + ∑
1≤j≤p

ωiψνj(t − tj)

for some set of kernel bandwidths {νj}1≤j≤p, kernel weights {ωνj}1≤j≤p, kernel
locations {tj}1≤j≤p.

There are many kernels available. For reasons of computational efficiency I would
like to have one with compact support. For reasons of minimizing errors in my
working, I would like to start with the simplest possible option as far as imple-
mentation.

By these criteria, the logical choice is the top hat kernel, the piecewise-constant
function.

ψν(t) :=
I0<t≤ν

ν

Traditionally the top hat kernel is taken to be centered on 0. I choose it to have
positive support because it makes no difference to the working, at this stage but
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that, as with the Hawkes influence kernels, it is causal in the right filtration gener-
ated by the observation times. In particular, this background rate estimate could
be made predictable with respect to the observation process; we could hypothet-
ically do this kind of estimate on an online setting. I stick to the offline setting
here, however.

If we would prefer other qualities, such as smoothness, we may of course choose
different kernels. Indeed, in an offline setting we can also surrender causality.

Weighted combinations of such functions give me simple, i.e. piecewise-constant,
functions.

µ(t) = µ + ∑
1≤j≤p

ωj
I(0,ν](t − tj)

ν

By this point, the parallel should be apparent with the piecewise-constant inten-
sity estimate that I have already used in diagnostic plots;

λ̂simple(t) :=
n

∑
i=2

N(τi)− N(τi−1)

τi − τi−1

(
I[τi−1,τi)(t)

)
Our interaction kernels are in fact kernel estimates of the conditional intensity
function.

This, in turn, suggests a particular form for the nonparametric kernel intensity
function, for observations times {τj}j≤n

µt(t) := µ + ω(t)

where
ω(t) =

n

∑
j=2

ωjI[τj−1,τj)(t)

With only summary observations there doesn’t seem to be any point in trying to
estimate rates on a finer scale than this, and so I adopt it as a starting point.

I write ω for the vector of all ωj values. Now I take the data vector t is taken
to contain the observation times {τj} and the occurrence times {ti} although in
practice these will be interpolated as before, but we are ignoring that for now.
One is free to choose any set of kernel locations - say, one per day or per hour;
the {τj} values are merely convenient.

I augment the parameter vector to include the kernel weights θ′ := (µ, η, κ, ω)
The hypothesized generating model now has conditional intensity process

λθ′(t|Ft) = µ +
n

∑
j=2

ωjI[τj−1,τj)(t) + η ∑
ti<t

ϕκ(t − ti)

To remain well-defined I require ∀t, µ(t) > 0 ⇒ ∀j, ωj > −µ.
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It is not immediately clear what this has gained us, since there are now more
parameters to estimate than data points. Additional restrictions are necessary to
make the estimation problem well-posed.

One such restriction is the regularization, that is, penalization of some parame-
ters. [TG65; HK70] This is often surprisingly effective. Accordingly, I apply an
additional penalty to the log likelihood function to penalize particular undesir-
able sorts of estimates.

For the penalized log likelihood for parameter θ and penalty π, I write

Lπ(t, θ′) := Lπ(t, θ′)− πP(θ′)

P here is a non-negative functional which penalizes certain values of the param-
eter vector, and π ≥ 0 is the penalty weight hyperparameter.

As before, the estimate is defined as the maximizer:

θ̂π(t) = argmaxθ Lπ(t; θ)

For non-parametric extension to a parametric model, one usually penalizes only
the non-parametric extensions to the model, such that they vanish as the penalty
term increases. [Gre87]

lim
π→∞

θ̂′π(t) = θ̂(t)

I follow this practice here, penalizing only the deviations of ω(t) from the para-
metric estimate.

Hereafter, I will drop the prime from the augmented parameter vector and simply
write θ.

Penalization is more frequently presented in the context of generalized linear
regression from i.id. samples, but it also fits within a generalized Maximum Like-
lihood estimation theory.

Many alternative choices are open at this point We could favor low variation in
the background rate by including ∑ |ωi −ωi−1| in the penalty. We could penalize
values of η, or θ etc. Many other loss functionals are possible. If sparsity were not
a priority we could use L2 norms, or mixtures of norms. We could add additional
hyperparameters to weight various penalty functionals differently. This choice
will depend on the assumptions on the background rate process. Verifying such
assumptions is a whole additional question which I will not address here.

For the kind of “signals” we might expect from the examples that I have shown
expect to recover from Youtube data, infrequent spikes, a logical choice penalty
would be a sparsifying L1 penalty on deviations in the background rate. This is the
penalty made famous by Lasso regression, compressive sensing and so on. [Tib96;
Efr+04; CRT06; Don06] and also applied to point process models [GL05]. Its
key feature is favoring estimates of parameter vectors where many entries in that
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vector are zero - in other words, it identifies isolated spikes and yet can typically
be efficiently numerically solved. Since spikes are what I hope to control for, this
sounds like a logical first choice.

P((µ, η, κ, ω)) := ∥ωθ(t)∥1

where ∥ωθ(t)∥1 =
∫ T

0 |ω(t)|dt This quality we do not get for “free”; this penalty
will introduce bias, and it will still be more computationally expensive than the
plain homogenous model. Nonetheless, if the “true” exogenous process is well
represented by a sparse ω vector, this may be what we want. π in this context
interpolates between various assumed levels of sparsity.

I am aware of no off-the-shelf penalized estimation software packages for the
Hawkes model, and cannot find any suitable published derivations, so I must
create my own.

I therefore impose an additional pragmatic restriction: I implement only the ex-
ponential kernel for the Hawkes intensity estimation. The exponential kernel
is simpler than the Omori, and easier for me to debug, and the indications are
anyway that the sparse observation intervals make Omori kernels hard to fit. We
may in any case construct general interaction kernels from combinations of expo-
nential kernels, [HBB13] so this is a logical building block to solving the problem
of more general kernel types.

With this in mind, I develop the penalized log likelihood function for fixed π.
Selection of appropriate penalty π will be left until later.

The derivation of the estimator is an exercise in calculus: Once I have all the
derivatives, I can use them to optimize parameters with respect to the log like-
lihood by gradient ascent (or if you’d prefer, gradient descent for the negative
penalized log likelihood loss) Thus, I write down the penalized version of the log
likelihood (Equation 4.1)

Lπ(t; θ) := −
∫ T

0
λθ(t)dt +

∫ T

0
log λθ(t)dNt − π∥ωθ(t)∥1 (7.1)

Calculating this likelihood is computationally taxing due to the repeated sums in
this likelihood and in the terms of the intensity. (Equation 3.4) Fortunately, we get
partial derivatives nearly “free”, if we preserve the values of these intermediate
sums, so gradient ascent can be done somewhat efficiently.

Following Ozaki, I differentiate with respect to an arbitrary component of the
parameter vector θx [Oza79]

∂
∂θx

Lπ(t; θ) = −
∫ T

0
∂

∂θx
λθ(t)dt +

∫ T

0
∂

∂θx
log λθ(t)dNt − ∂

∂θx
∥ωθ(t)∥1

= −
∫ T

0
∂

∂θx
λθ(t)dt + ∑

0≤ti≤T

∂
∂θx

λθ(ti)

λθ(ti)
− ∂

∂θx
∥ωθ(t)∥1
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By construction, ∂
∂µ∥ωθ(t)∥1 = ∂

∂η∥ωθ(t)∥1 = ∂
∂κ∥ωθ(t)∥1 = 0.

Taking θx = µ,
∂

∂µ λθ(t|Ft) = 1

I use higher derivatives for µ so that I may optimize this component using a
higher order Newton method, since we know that typically the optimal value
is particularly slow to converge for this component [VS08] and the values are
simple.

∂
∂µ Lπ(t; θ) = −T + ∑

0≤ti≤T

1
λθ(ti)

∂2

∂µ2 Lπ(t; θ) = ∑
0≤ti≤T

−1
λ2

θ(ti)

∂3

∂µ3 Lπ(t; θ) = ∑
0≤ti≤T

2
λ3

θ(ti)

Now I handle θx = η,

∂
∂η λθ(t|Ft) = ∑

ti<t
ϕκ(t − ti)

so that

∂
∂η Lπ(t; θ) = −

∫ T

0
∑
ti<t

ϕκ(t − ti)dt + ∑
0≤ti≤T

∑tk<ti
ϕκ(ti − tk)

λθ(ti)

Taking θx = κ, we find

∂
∂κ λθ(t|Ft) = η ∑

ti<t

∂
∂κ ϕκ(t − ti)

and so

∂
∂κ Lπ(t; θ) = −η

∫ T

0
∑
ti<t

∂
∂κ ϕκ(t − ti)dt + ∑

0≤ti≤T

η ∑tk<ti
∂

∂κ ϕκ(ti − tk)

λθ(ti)

As an implementation detail, I take the rate parameterization of the exponential
interaction kernel, β = 1/κ, such that, ϕ = IR+(t)βe−βt, to make the derivative
more compact. It is an easy matter if invert the parameter if you want the more
usual parameterization, and I report κ values in the results section, but internally
I use β. If we are in fact constructing a well-behaved ML estimator, this kind of
smooth invertible transform shouldn’t affect the point estimate.

Suppressing the indicator function - we are only evaluating this kernel on its (non-
negative) support,

∂
∂β ϕβ(t) = e−βt − βte−βt
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and ∫ ti

0
∂

∂β ϕβ(t − i)dt = tie−βti

giving

∂
∂β Lπ(t; θ) = −η ∑

ti<T

[
(t − ti)e−β(t−ti)

]T

t=0∨ti
+ ∑

0≤ti≤T

η ∑tk<ti
e−β(ti−tk)(1 − β(ti − tk)

λθ(ti)
.

One may repeat these steps to produce the Hessian matrix of the parameters
of the homogenous model [Oga78; Oza79] but I did not ultimately implement
algorithms that made use of those.

Finally, I handle the ωj values; these are similar to µ part from the un-penalized
path.

Taking θx = ωj, and defining ∆τj := τj−1 − τj we find

∂
∂ωj

π∥ωθ(t)∥1 = ∂
∂ωj

π
∫ τj

τj−1

∣∣ωj
∣∣ dt

= π∆τj sgn ωj

∂
∂ωj

λθ(t|Ft) = ∆τjI[τj−1,τj)(t)

∂
∂ωj

Lπ(t; θ) = −∆τj − π∆τj sgn ωj + ∑
τj−1≤ti≤τj

1
λθ(ti)

Higher partial derivatives are also analogous to the partial derivatives with respect
to µ, although of course the penalty introduces a discontinuity at ωj = 0. This
last formula is the key to the gradient ascent algorithm.

Note that the ωj values are mutually orthogonal, in the sense that ∂2
∂ωiωj

= 0 if i ̸=
j. I can treat these components, more or less, as separate univariate components
when optimizing, and the Hessian will be sparse off the diagonal.

Note also that although the partial derivative is undefined when ωj = 0, we can
still tell whether to update it in the gradient ascent algorithm by using the elbow
formula: ∣∣∣∣∣∣ ∑

τj−1≤ti≤τj

1
∆τjλθ(ti)

− 1

∣∣∣∣∣∣ ≤ π (7.2)

that the value of ωj is “trapped” at 0, in that we know the sign of the partial
derivative is different on either side of 0, and we don’t need to bother doing any
further updates for that parameter.

That completes the set of derivatives that I need to maximize the penalized like-
lihood for any fixed π, by my choice of numerical optimization method.

This also provides a method for calculating the solution more generally. I now
present an approximate forward stage-wise path algorithm.
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1. Fit the unpenalized parameters of the model with your choice of numerical
optimization method, θ̂(t) = argmaxθ L(t; θ) leaving ω ≡ 0 : math :.
Call this estimate θ̂0. By construction, this is equivalent to taking the
penalty weight π large enough that the regularized fit is the same as the
non-regularized ML fit.

2. By evaluating the elbow formula (Equation 7.2) for each component ωj, we
can find the smallest value of π such that we would not alter the estimated
value for any ω if we used it as the penalty parameter. Call this π0.

3. Now choose a new π1 = π0 − ∆ for ∆ small.

4. By construction, θ̂1 := argmaxθ Lπ1(t; θ) ̸= argmaxθ Lπ0(t; θ). Using θ̂0
as an initial estimate, ascend the penalized log-likelihood gradient until the
new maxima is attained. You can use the elbow formula to check which
ωj values are “stuck” at zero without performing updates once all the non-
zero parameters have been updated. Any non-stuck parameters are now
introduced to the model and their parameters estimated.

5. Choose πi+1 = πi − ∆. Repeat from step 4.

6. When πm = 0 for some m, stop.

The output of this algorithm is the whole regularization path of m different pa-
rameters estimates indexed by the hyperparameter πm Having calculated it, one
can choose from the available set by some model selection criteria.

I am deliberately vague about the choice of gradient ascent technique and the
choice of step size ∆. These penalized regression problems are typically calcu-
lated by using a range of π values and updating the estimates progressively, using
the estimate calculated at each state as an approximation to the next stage,as
the parameter is varied. For linear regression, for example, there are particularly
efficient methods for calculating these regularization paths, and certain guaran-
tees about optimality. [Fri+07; FHT10] Various gradient ascent algorithms are
known to perform well for this kind of problem, and there is a significant litera-
ture on the details. Frequently simple gradient ascent (resp. descent) algorithms
are “good enough”. [Sim+11; WL08].

For the Hawkes model I know of no such specific algorithms, and I have not
proven that my method will approximate the optimal regularization path. More
smaller steps is better, but also more computationally expensive. I could choose
number of steps and size adaptively by some procedure. In practice I use a rule-
of-thumb logarithmic spacing with a number of steps equal to the number of
parameters.

Pragmatically, for performance reasons, my implementation uses a mixed strategy.
My algorithm attempts to update marginal estimates for each ωi parameter more
rapidly first via Newton’s method [Bat92; Oza79] and uses conjugate gradient
descent for the parametric estimates of the Hawkes parameters. If the updates
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steps are small this seems to be stable. There are various tuning parameters to
such algorithms.

Many variants of pathwise regularization and exist, such as backwards stepwise
regularization, versions with random initialization, Least Angle Regression, [Efr+04]
selection with integrated cross validation and so on. [FHT10] For this particular
model I have found few results giving me analytic guarantees, so I use heuristics
and simulation-based verification. I do not declare that this method “best” in
any sense, or that it will find the correct global maximum penalized likelihood
etc. The method, however, is simple enough to prototype rapidly and, as it turns
out, performs well on test data. Simulation results will be presented in the next
chapter.

7.3 Model selection

In an exploratory project such as this, I take an informal approach to the com-
plexities of model selection in high dimensional penalized regression. This is a
current and active area of research; [Don06; CRT06; Mei07; WR09; MY09;
GL11; NG13; ZZ14; Gee+14; Loc+14; BG15] There is, to my knowledge, no pub-
lished prêt-à-porter selection procedure for the particular model family I use here.
I therefore proceed heuristically, which is to say, I will adopt rules of thumb
from the literature, but observe that if one desires formal quantitative guarantees
about confidence intervals, that more work will need to be done. I will assume
that we may ignore the question of whether the model is well-specified, and fur-
ther, I apply use some results derived for the special case of linear regression to
the estimation problem here.

Even proceeding informally, we still need to revisit the AIC model selection pro-
cedure. I recall the AIC definition, for a model with log likelihood L and degrees
of freedom d

AIC(Lθ̂(X)) = 2d − 2 ln(L)

This is known to perform well in the large sample limit, where n ≫ d, but we
should be concerned where d ≃ n. And that is the case here: We have few data
points per time series, and potentially many parameters. The naïve AIC estimate
used so far is asymptotically consistent, but negatively biased for small sample
sizes. [HT89] Where the number of degrees of freedom in the model is on the
same order as the number of parameters, we should expect to see that the use of
the AIC formula favors complex models.

To remedy this, I use Sugiura’s finite-sample-corrected version, the AICc. [Sug78]

AICc := AIC +
2d(d + 1)
N − d − 1

for number of observations N = |X|. Whilst Sugiura originally derived this cor-
rection for linear regression models, it has been shown in practice to function as

66



7.3. Model selection

a good model selection statistic for a broader class. [HT89; Cav97] I therefore
adopt it as an approximation here.

Other alternatives would include correcting for finite sample bias by deriving an
analytic or simulation-based empirical correction e.g. Claeskens and Hjort §6.5
give convenient constructions based on the Hessian of the estimate, which we get
“for free” in this estimator. [Cla08] I leave such refinements for a future project.

Taking N as the number of samples in the data set, this leaves the question of
the effective degrees of freedom p. For the unpenalized Hawkes process with a
single parameter kernel, p = 3. [Oga88] For penalized regression the calculation
of degrees of freedom can be unintuitive, and can even fail entirely to summarize
model complexity. [KR14] However, under certain “niceness” conditions, which I
will assume here without proof, there is a remarkably simple solution: the number
of non-zero coefficients fit under a particular value of the regularization penalty
π in an ℓ1 regression model provides an unbiased estimate of the effective degrees
of freedom of the model and functions as an effective model complexity measure.
[Efr04; ZHT07]

Taking these together, we get the following “rule of thumb” model selection
statistic:

ÂICcπ(X, θ̂π) =
2dπ N

N − dπ − 1
− 2 ln(Lπ(X), X))

where dπ counts the number of non-zero coefficients estimated under regular-
ization coefficient π.

As with the usual asymptotic AIC, we may choose between models within this
regularization path based on this criteria.

πopt = argminπ AICcπ

Finally, I note that this estimator is both discontinuous and non-monotonic in π
by construction, and thus itself could be tricky to optimize. Finally, optimizing
ÂICcπ with respect to a continuum of π values is tedious, so I will evaluate this
statistic only at specified finite set of values of {πi}, and choose models from this
subset of all possible values of π. The estimated optimal π value is then,

p̂iopt = argminπ∈{πi} ÂICcπ (7.3)

Various alterations to this scheme are possible, such as choosing the regulariza-
tion parameters over the entire data set, using cross-validation or choosing {πi}
adaptively during model fit [Ber+11] and so on. A thoroughgoing theoretical treat-
ment of the estimator is, however, inappropriate for this data-driven exploration,
and so I move on.
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Chapter 8

Simulations for the inhomogeneous
estimator

8.1 Empirical validation on simulated data

To summarize the proposed scheme:

My composite estimator combines the interpolated estimator used in the previ-
ous chapter with a ℓ1 penalized estimate of inhomogeneous background rate. The
single hyper-parameter, the regularization penalty π is chosen by AIC or AICc,
depending which works better. The kernel boundaries are chosen to match the
sampling boundaries in the data.

It is time to see if this estimates anything like what we would wish. It turns out
that this procedure performs well on simulated data, as I will demonstrate with
examples, and with aggregate statistics from simulations.

I begin with a single time series to visualize the kind of output we should expect.

The parameters of the test model are: µt = 2 + 8I149<t≤150, η = 0.95, κ = 1.0.
I simulate this time series over 300 time units, quantize this time series into unit
intervals, and fit on randomly interpolated time series based on these intervals.

First, consider the following realization of our generating process, one where it
has nearly homogeneous parameters. (Figure 8.1)

In this case the homogenous fit is good, returning µ̂ = 1.945, η̂ = 0.956, κ̂ =
1.010

In this situation is is not a priori clear that we want to bother with inhomogeneous
estimators, and indeed that it could be risky to do so, introducing increased esti-
mation variance for no benefit.

Fitting this model using the vanilla AIC indeed results in a significant over-fitting
of background rate fluctuations, and also poor matches to the homogeneous pa-
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Figure 8.1: µt and a realization of the resulting quantized intensity process. η = 0.95, κ = 1.0.

rameters, with a concomitant underestimation of the branching ratio. (Figure 8.2)

On the other hand, the finite-sample AICc correction chooses a model which not
only recovers the original parameters well, but also estimates the background rate
with high accuracy. (Figure 8.3)

Based on this particular graph, and ensemble simulations, it seems that AICc gen-
erally performs acceptably in selecting the model, and certainly performs better
than the AIC itself. For the remainder of this section I will continue to use it in
preference to the AIC.

I reiterate, these point estimates are presented without guarantees or confidence
intervals at this stage. It is not immediately clear what the confidence intervals of
the complete estimator are, especially in combination with the AIC based model
selection.

A single graph is not representative; by changing the seed value I can get results
both more and less optimistic than this. In this case, for example, there was a
random decline in unconditional intensity in this realization immediately before
the spike which intuitively should make the spike “easier” to detect. We will need
more comprehensive tests to be persuasive.

I construct a simulation test that looks somewhat like kind of time series I find
in the Youtube data set. I choose µt = 2 + 398I149<t≤150, η = 0.8, κ = 1.0 This
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8.1. Empirical validation on simulated data
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Figure 8.2: µt recovery under vanilla AIC. η = 0.95, κ = 1.0.η̂AIC = 0.688, κ̂AIC = 3.358
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Figure 8.3: µt recovery under finite-sample-penalized AICc. η = 0.95, κ = 1.0, η̂AICc =
0.953, κ̂AICc = 1.051
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8. Simulations for the inhomogeneous estimator

corresponds to µ = 2, ω149 = 398, and ωi = 0∀i ̸= 149. I repeat the simulation
100 times, and compare error in estimates. 1

Performance is variable but generally superior to the inhomogenous test on the
same data. (Figure 8.4, Figure 8.5, Figure 8.6)

Inhomogenous Homogeneous
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1.0

1.5

2.0

2.5

3.0

3.5

µ̂

Figure 8.4: µ recovery under finite-sample-penalized AICc.

This inhomogeneous rate estimator still only captures the true value a small frac-
tion of the time, and yet clear it is less biased than the homogenous estimator.

Whether this is what we want is context dependent. We might be especially
concerned with “true” values of the parameters of the generating process, or we
might be concerned with recovering the “true” background rate. It’s hard to plot
estimates for whole functions. Instead I will plot the error functional using L1
norm - specifically Err∥µ̂t − µt∥1/T . Note that since the homogeneous estima-
tor assumes that µt ≡ µ but the true generating process is not constant, that the
homogeneous estimate cannot attain zero error by this metric. (Figure 8.1)

The last one is most disappointing; it seems that with this estimator the back-
ground rate estimates are sometimes worse, when better background rate esti-
mation was a selling point of this estimator.

1 For this comparison to be fair, I would have used the same parameters as with the “lead
balloon” test, i.e. 200 steps, initial spike, and 300 repetitions. The reason for the discrepancy is
that the simulations were too CPU intensive to repeat once I had entered the wrong parameters.
Fixing this in future work should be trivial, however.
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8.1. Empirical validation on simulated data
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Figure 8.5: η recovery under finite-sample-penalized AICc.
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Figure 8.6: κ recovery under finite-sample-penalized AICc.
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Figure 8.7: Overall error in background rate estimate Err∥µ̂t − µt∥1/T

Alternatively, consider the possibility that the estimator is identifying background
rate peaks in terms of size, but it placing them at the incorrect location - say,
µ̂t = 2 + 398I148<t≤149 instead of µt = 2 + 398I149<t≤150. In the L1 penalty, this
is more heavily penalized than µ̂t = 2, which may not be desired behavior.

To diagnose this, I try an alternative error metric for this background rate, based
on comparing the background rate and estimate using some smoothing kernel δ.

Errs(µ̂t) := ∥µ̂t ∗ δ − µt ∗ δ∥1/T

I pick the arbitrary value

δ(t) :=
1
5

I[− 5
2 , 5

2 )

Indeed, this smoothed loss function shows the inhomogeneous estimator in a
better light, performing nearly always better than the homogeneous competitor.
Whether the smoothed version is a more appropriate error metric will depend
upon the purpose. (Figure 8.8)

It seems that the inhomogeneous estimator is in fact selecting “good” parameters
for this model. To understand what is happening here, I show the estimation
paths for all the models in the simulation set for two of the parameters, once
again with µt = 2 + 398I149<t≤150, η = 0.8, κ = 1.0 (Figure 8.9)

As the penalty parameter increases, the estimates of the branching parameters
are gradually perturbed over their ranges. Using the AICc selection criteria cor-
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Figure 8.8: Error in smoothed background rate Errs(µ̂t)
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Figure 8.9: Estimated parameter values and AICc for different penalty parameters
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8. Simulations for the inhomogeneous estimator

responds to presuming that the model’s estimates are optimal at the minimum of
this AICc estimate. The graph might reassure us of this.

It also shows a potential problem with this procedure, which is that the AICc
minimum for any given estimation path is very flat - hardly visible to the naked
eye at this scale. It is also not clear whether the minimum necessarily corresponds
to the oracle estimates in general. We could possibly do better by choosing some
method of choosing the penalty, such as cross validation. For now, the AICc
functions well enough for my purposes, and I will consider that question no fur-
ther.

Now, let us consider the case that was especially poorly handled by the homo-
geneous estimator - the case of a non-branching, purely heterogeneous process,
the “lead balloon” I set η = 0, and rerun the previous batch of simulations. (Fig-
ure 8.10, Figure 8.11, Figure 8.12), Figure 8.13)
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Figure 8.10: µ recovery under finite-sample-penalized AICc.

Once again, the approximation to the oracle values due to the inhomogeneous
estimator are imperfect, but superior to the homogenous ones.

The negative values estimated for η̂ and η̂ are indications that I should constrain
the estimator values to meaningful ranges, which is am omission in my coding.

More, I might improve this result by embedding this estimate in a selection pro-
cedure that will reject the Hawkes model entirely when there is no branching,
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8.1. Empirical validation on simulated data
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Figure 8.11: η recovery under finite-sample-penalized AICc.
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Figure 8.12: κ recovery under finite-sample-penalized AICc.
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8. Simulations for the inhomogeneous estimator
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Figure 8.13: Estimation error in smoothed background rate Errs(µ̂t)

much as in the homogeneous case we could reject the Hawkes mode in favor of
a constant-rate Poisson process.

However, this is enough to begin.

There are many more steps in evaluating a new estimator than these simulations.
I should also test the performance on data generated by non sparse-background
rate processes µt, and variable bin width, and investigate the influence of obser-
vation interval, test alternative kernels and interpolation schemes, and so on.

For now, I have demonstrated that unlike the homogenous estimator, there is at
least some hope for Youtube-type data, and I move on.
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Chapter 9

Results for the inhomogeneous Hawkes
model

Once again, I fit the estimator to selected times series from within the Youtube
data set, withholding for the moment concrete hypotheses, and report the esti-
mates.

My limits in this section are sharper. My algorithm is far more computationally
intensive, and my code far less highly optimized, than pyhawkes. I will thus, in an
exploratory mode, fit parameters to small subsets to validate that this idea in fact
gets us somewhere, and see what further directions are supported for this kind
of analysis.

9.1 Single time series detailed analysis

Turning to specific examples, I recall the time series -2IXE5DcWzg, Valentin Elizalde,
Volvere a amar. The question I posed at the start was whether his biographer’s hy-
pothesized milestone was the cause of the spike in the data. Did this singer get
more views on Youtube because of Billboard magazine listing him, or did Bill-
board magazine list him because of his surging popularity? Until this moment
we’ve had no tools that could even hint at the answer to this kind of question.

I fit the inhomogeneous estimator to the data. Using AICc, I select the penalty
π = 0.466, corresponding to µ̂ = 5.59, η̂ = 0.963, κ̂ = 0.186. (Figure 9.1) Con-
trast with the homogeneous fit: µ̂ = 11.3, η̂ = 0.688, κ̂ = 0.992, the model
now selects a far more “viral” model for the view-rate growth, with a much shorter
timescale and less mean background rate.

Graphing the estimated background intensity, I find that the model does esti-
mate an increased intensity at around the start of that surge in interest. How-
ever, the date it suggests is 2007-02-21, substantially before the Billboard on list-
ing 2007-03-3. This model suggests we need to look elsewhere to find an ex-
ogenous trigger. At the same time, it suggests that the singer was highly viral,
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9. Results for the inhomogeneous Hawkes model
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Figure 9.1: Penalized background rate and view-rate estimates λ̂simple(t), for time series Valentin Elizalde,
Volvere a amar

with an branching ratio close to critical. Thanks to simulations, we can argue
that this near-criticality is not (necessarily) merely an artifact of inhomogenous
background spiking. The estimator is giving plausible results here - It remains to
validate them.

9.2 Aggregate analysis

Turning to bulk analysis, I try to fit as many models as possible.

One cost of my improvements in the estimator is a high computational burden.
Running the software estimator through the random list of time series, I find
that I have only estimated parameters for 913 models before termination of my
batch jobs. Note that this also implies a degree of censoring of long time series,
since those batch jobs were more likely to be terminated. I give summaries of
these here, for illustrative purposes. I do need to know more about the sampling
distribution of the estimator estimates in order to draw strong conclusions about
population properties, even before I consider how to address the various other
difficulties with the data. (Figure 9.2, Figure 9.3, Figure 9.4) As it turns out, the
difference in ensemble distribution of estimates is not large, at least to visual
inspection.

Despite the significant of the differences considering background rate makes on
selected time series, over the ensemble my innovations turn out to make little
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9.2. Aggregate analysis
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Figure 9.2: Branching ratio estimates for the inhomogeneous estimator

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Kernel median decay

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Homogeneous fit
Inhomogeneous estimates

Figure 9.3: Kernel delay estimates for the inhomogeneous estimator.
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Figure 9.4: Branching ratio estimates in homogenous and inhomogenous cases, showing relationship of
estimates.

different to the sampling distribution of randomly chosen series from the data.
What is happening here?

We have a couple of possibilities. Firstly, that the problematic “lead balloon”,
and “spiky” time series I have chosen to test the estimator are not significant
considered on the scale of the population. As I mentioned at the start, we do
need a principled way of making such selections. Or we might be missing other
significant types of inhomogeneity, such as slowly varying fluctuations, or that
the estimator is often getting trapped in local optima on the messier real data.
It could be that the this random sampling is not representative of the popula-
tion qualities. Or it could be that the censoring of large time series due to their
relatively higher computational requirements is discarding interesting results

We might consider improving this constraining our search space, by hypothesiz-
ing that the influence kernel of these videos has universal decay time, so that we
could exploit the huge amount of data available; Once we are only estimating the
background rate and branching ratio but not all the other parameters anew for
each individual time series we can exploit the data more effectively. We can also
consider optimizing the penalty hyper-parameter over the whole population.

All these require time, of course. The most logical next step, however, would be
to set the estimator running on a database of the most problematic sets of time
series in the database, and then, while the computing cluster is humming away,
get out a pencil and derive new goodness-of-fit test for the model so I can provide
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9.2. Aggregate analysis

stronger and principled diagnostics diagnostics of these results.
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Chapter 10

Conclusions

The Youtube data is both promising and troubling, as far as revealing the secrets
of endogenously triggered dynamics. The kinds of problems and promise that it
shows are, I believe of general importance, and I encountered many of them in
the course of this thesis.

First I presented the seismically inspired Hawkes self exciting process as a poten-
tial model for viral dynamics in social media, and mentioned how its parameters
might quantify endogenous dynamics in the system. I then presented the meth-
ods to estimate such a model, which are uncontroversial.

Ultimately I was not able to recommend tenable estimates for the parameters for
this model, however for two reasons.

Firstly, the data is sparsely observed, and the ad hoc interpolation scheme used to
approximate the missing information destroys some times of timing information,
removing our ability to estimate kernel parameters in the important Omori law
case.

Secondly, inhomogeneity in the data lead to extremely poor model identifica-
tion for the estimator, and the distribution of the estimates so compiled is not a
credible predictor of “true” parameters. Using the homogeneous model for this
system may give good results for earthquake modeling, where there is no exoge-
nous influence to control for. But where we are concerned with the interaction of
endogenous and exogenous factors, these methods are not flexible enough. We
cannot meaningfully find the “true” values for the parameter in the model when
it is too ill-specified for the estimates of those true values to be informative.

At the same time, the model behind the branching process is much more gen-
eral than the version we typically fit using off-the-shelf estimators, and I have
shown that estimation procedures can be extended to estimate these more gen-
eral models. My attempt to extend the estimator is not the only such attempt,
and there are many diverse ways that it might be done. I have demonstrated that
this method can solve certain problems, removing the bias due to large spikes,
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10. Conclusions

and potentially identifying exogenous triggers from noisy data. There are clearly
other issues to solve. At the same time, the method of penalized regression I have
proposed is flexible and could provide the basis for many other such methods by
different choice of kernel parameters, penalty functions and so on.

There remains much work to be done; Not only could the estimator be general-
ized with various penalties and kernel types, but it would also benefit from analy-
sis regarding the sampling distribution, stability and model selection procedures.
A practical demonstration, as I give here, is a necessary justification to invest in
such work.

In short, whilst I cannot say right now that I have identified the parameters of
the generating process of Youtube, I have shown that our evidence before now
was indeterminate, and I have given a possible methods that, with a little more
work, we could make a claim to identifying these parameters.
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Appendix A

Technical Notes

A.1 Data extraction and cleaning

One problem with the data set is the size alone; I begin with an undocumented
MySQL database with a disk footprint of approximately 40 gigabytes; Although
certain queries run rapidly, most aggregate and summary statistics do not, either
terminating due to resource-usage- errors. Based on naming conventions, I iden-
tify tables of particular interest; one apparently containing metadata for partic-
ular videos, and one containing time series information of video activity. These
tables I store as plain Hierarchical Data Format files, divided into 256 “shards”
based on the hash value video identifier.

The metadata table is of limited use because of various problems with incomplete
or inconsistent data. Metadata about many time series is not available, or con-
tains various types of corrupt or invalid data. Encoding is messy enough that I
will not battle LaTeX to try to display it here. In any case, many records have ap-
parently no metadata available, or if it is available, would require more extensive
excavation from the database to extract it. Where available I use this metadata,
but I do not restrict my investigation only to data points with available metadata.

Leaving metadata aside, I turn to the time series themselves.

I retrieve 676, 638, 684 distinct records from the database, corresponding to 4, 880, 136
distinct videos. Dividing these figures by one another might suggest I have nearly
5 million individual time series, each with more than a thousand observations.

This is not so, for two reasons:

1. Random sampling of time series reveals that time series are not all similarly
long. In fact, the data set is dominated by short data-sets, on the order of
10 data points.

2. Even the remaining series can in fact be shorter than expected; The major-
ity of the recorded observations are spurious and must be discarded, as will
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A. Technical Notes

video_id run_time view_count
... ... ... ...
10 -2IXE5DcWzg 1165050318 921
11 -2IXE5DcWzg 1165081008 1035
12 -2IXE5DcWzg 1165084724 1035
13 -2IXE5DcWzg 1165115641 1306
14 -2IXE5DcWzg 1165139660 1662
15 -2IXE5DcWzg 1165146641 1726
16 -2IXE5DcWzg 1165177526 1756
17 -2IXE5DcWzg 1165177671 1756
18 -2IXE5DcWzg 1165191787 1876
19 -2IXE5DcWzg 1165209383 1876
20 -2IXE5DcWzg 1165235421 2001
21 -2IXE5DcWzg 1165241236 2001
22 -2IXE5DcWzg 1165243133 2001
23 -2IXE5DcWzg 1165264017 2067
24 -2IXE5DcWzg 1165274487 2067
25 -2IXE5DcWzg 1165306214 2349
... ... ... ...

Table A.1: Filtered time series

be explained below.

The cleaning and analysis that each dataset requires is complex enough that I
cannot query these series per se. Instead, I download them all and inspect each
individually. (Table A.1)

run_time I take to correspond to τi values. I assume it to be measured in epoch
timestamps - the number of seconds since new year 1970 UTC. I convert this mea-
sure to “days” for convenient in the analysis however. view_count I take to denote
Nv(τi) and video_id is a unique index v of the time series.

Note that many view_count values are repeated. Analysis of the data reveals many
series like this, with repeated values. This could be evidence that no views oc-
curred in a given time window. However, based on partial notes from the original
author, and the sudden extreme increments that are interspersed between these
“null increments”, there is a more probably explanation: These are “cache hits”:
stale data presented to the user by the network, for performance reasons, in lieu
of current information. I preprocess each time series to remove all non (strictly)
monotonic increments, and discard the rest.

With these caveats, I repeat the time series excerpt for video -2IXE5DcWzg after
preprocessing. (Table A.1)

I have effectively discounted all view increments of size zero. I am effectively
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A.2. On the complexity of the simplest possible thing

video_id run_time view_count
... ... ... ...
10 -2IXE5DcWzg 1165036079 921
11 -2IXE5DcWzg 1165081008 1035
13 -2IXE5DcWzg 1165115641 1306
14 -2IXE5DcWzg 1165139660 1662
15 -2IXE5DcWzg 1165146641 1726
16 -2IXE5DcWzg 1165177526 1756
18 -2IXE5DcWzg 1165191787 1876
20 -2IXE5DcWzg 1165235421 2001
23 -2IXE5DcWzg 1165264017 2067
25 -2IXE5DcWzg 1165306214 2349
... ... ... ...

Table A.2: Time series with repeated timestamps filtered

also censoring all inactive time series; We cannot “see” any time series with only
only zero or one observations - there must least two different view counts to
interpolate. There is no clear way to estimate how significant this proportion is
given what I know about the data; There is no way of measuring the significance
of this choice precisely It could easily be the vast majority of videos which fall
into this category. After all, the phrase “long tail” was notoriously popularized
by Wired in 2004 to describe the preponderance of asymmetric distributions of
popularity online [And04] and we should suspect that Youtube is such a system.
It would be entirely possible that most of the videos are never viewed, and that
this data cleaning has censored such videos from the analysis. The simple solution
is to exclude this unknown proportion from our analysis. Therefore, throughout
this work, it should be understood that the estimates I construct are all conditional
on sustained activity.

A.2 On the complexity of the simplest possible thing

The first half of the analysis in this report uses the statistical library pyhawkes,
and the second half hand-built code. The reason for this is technical rather than
mathematical.

pyhawkes is an amazing project; optimized and featureful, it supports a wide va-
riety of density kernel types, has mathematically and technically sophisticated
optimizations and so on. It support multivariate and marked processes, a variety
of different kernels etc.

It is also the kind of specialized racing vehicle that requires expert maintenance
by qualified service personnel.

I did try to use it for the semi-parameteric regression, but ultimately, when my
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needs were simple — optimizing parameters with respect to a simple loss function
— I found myself introducing bugs rather than removing them.

When I added features it got messier, in that I encountered different problems.
I tried to implement the non-parametric background rate using an off-the-shelf
Gaussian Kernel Density Estimator library; The performance of that library was
poor, its support for variable width and shape kernels was limited, and to take
derivatives with respect to the kernel parameters required me to re-implement
large parts of that library.

In the end, rather than modifying and combining and partially reimplementing
two high complexity libraries to achieve a mathematically simple end, I judged it
safer course to stitch together simple components to achieve a simple end.

The upshot is that my code - let us call it excited - is not API compatible with py-

hawkes. Not even close. It uses Python mostly, with numba to dynamically com-
pile the inner loop. It exploits the Scipy library Newton’s method and L-BFGS
solvers to find optima, which are technical innovations over pyhawkes. On the
other hand, it does not implement Akaike’s recursion relation to optimize calcu-
lation of exponential kernels, and is missing the other response kernels available
in pyhawkes.

This situation is not ideal; In a perfect world, these features would all be com-
bined into one package. In the real world, however, I am enrolled in a statistics
program rather than software engineering, and would be punished accordingly if I
sacrificed thoroughness in my statistical analysis in order to observe niceties of
software development.

It turned out that the simplest possible bit of code that could solve my statistical
problem was in fact complex. Thus, although, access to the code is available upon
request, consider yourself warned.

90

http://numba.pydata.org/


Bibliography

[A+08] Shariar Azizpour, Kay Giesecke, et al. Self-exciting corporate defaults:
contagion vs. frailty. Stanford University working paper series, 2008.
url: http://web.stanford.edu/dept/MSandE/cgi-bin/people/
faculty/giesecke/pdfs/selfexciting.pdf (visited on 03/16/2015).

[Abr+06] Felix Abramovich et al. “Adapting to unknown sparsity by control-
ling the false discovery rate”. In: The Annals of Statistics 34.2 (Apr.
2006), pp. 584–653. issn: 0090-5364, 2168-8966. doi: 10.1214/009053606000000074.
url: http://projecteuclid.org/euclid.aos/1151418235 (visited
on 04/01/2015).

[Aka73] Hirotogu Akaike. “Information Theory and an Extension of the Max-
imum Likelihood Principle”. In: Proceeding of the Second International
Symposium on Information Theory. Ed. by Petrovand F Caski. Budapest:
Akademiai Kiado, 1973, pp. 199–213. isbn: 978-1-4612-7248-9, 978-1-
4612-1694-0. url: http://link.springer.com/chapter/10.1007/
978-1-4612-1694-0_15 (visited on 04/06/2015).

[And04] Chris Anderson. “The Long Tail”. In: Wired 12.10 (Oct. 2004). url:
http://archive.wired.com/wired/archive/12.10/tail.html.

[AS09] Giada Adelfio and Frederic Paik Schoenberg. “Point process diag-
nostics based on weighted second-order statistics and their asymp-
totic properties”. In: Annals of the Institute of Statistical Mathematics
61.4 (Dec. 1, 2009), pp. 929–948. issn: 0020-3157, 1572-9052. doi:
10.1007/s10463-008-0177-1. url: http://link.springer.com/
article/10.1007/s10463-008-0177-1 (visited on 01/08/2015).

[BA04] Kenneth P. Burnham and David R. Anderson. “Multimodel Infer-
ence Understanding AIC and BIC in Model Selection”. In: Sociolog-
ical Methods & Research 33.2 (Nov. 1, 2004), pp. 261–304. issn: 0049-
1241, 1552-8294. doi: 10.1177/0049124104268644. url: http://smr.
sagepub.com/content/33/2/261 (visited on 03/27/2015).

91

http://web.stanford.edu/dept/MSandE/cgi-bin/people/faculty/giesecke/pdfs/selfexciting.pdf
http://web.stanford.edu/dept/MSandE/cgi-bin/people/faculty/giesecke/pdfs/selfexciting.pdf
http://dx.doi.org/10.1214/009053606000000074
http://projecteuclid.org/euclid.aos/1151418235
http://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
http://link.springer.com/chapter/10.1007/978-1-4612-1694-0_15
http://archive.wired.com/wired/archive/12.10/tail.html
http://dx.doi.org/10.1007/s10463-008-0177-1
http://link.springer.com/article/10.1007/s10463-008-0177-1
http://link.springer.com/article/10.1007/s10463-008-0177-1
http://dx.doi.org/10.1177/0049124104268644
http://smr.sagepub.com/content/33/2/261
http://smr.sagepub.com/content/33/2/261


Bibliography

[Bac+12] Emmanuel Bacry et al. “Scaling limits for Hawkes processes and ap-
plication to financial statistics”. In: (Feb. 3, 2012). arXiv: 1202.0842.
url: http://arxiv.org/abs/1202.0842 (visited on 06/18/2014).

[Bat92] Roberto Battiti. “First-and second-order methods for learning: be-
tween steepest descent and Newton’s method”. In: Neural computa-
tion 4.2 (1992), pp. 141–166. issn: 0899-7667. doi: 10.1162/neco.
1992.4.2.141. url: http://rtm.science.unitn.it/~battiti/
archive / FirstSecondOrderMethodsForLearning . PDF (visited on
03/20/2015).

[BD89] Mark Berman and Peter Diggle. “Estimating Weighted Integrals of
the Second-Order Intensity of a Spatial Point Process”. In: Journal of
the Royal Statistical Society. Series B (Methodological) 51.1 (Jan. 1, 1989),
pp. 81–92. issn: 0035-9246. url: https://publications.csiro.au/
rpr/pub?list=BRO%5C&pid=procite:d5b7ecd7-435c-4dab-9063-

f1cf2fbdf4cb (visited on 03/31/2015).
[BDM12] E. Bacry, K. Dayri, and J. F. Muzy. “Non-parametric kernel esti-

mation for symmetric Hawkes processes. Application to high fre-
quency financial data”. In: The European Physical Journal B 85.5 (May 1,
2012), pp. 1–12. issn: 1434-6028, 1434-6036. doi: 10 . 1140 / epjb /
e2012-21005-8. arXiv: 1112.1838. url: http://arxiv.org/abs/
1112.1838 (visited on 06/18/2014).

[Ben10] Yoav Benjamini. “Simultaneous and selective inference: Current suc-
cesses and future challenges”. In: Biometrical Journal 52.6 (Dec. 1,
2010), pp. 708–721. issn: 1521-4036. doi: 10.1002/bimj.200900299.
url: http : / / onlinelibrary . wiley . com / doi / 10 . 1002 / bimj .
200900299/abstract (visited on 03/31/2015).

[Ber+11] James S. Bergstra et al. “Algorithms for hyper-parameter optimiza-
tion”. In: Advances in Neural Information Processing Systems. Curran As-
sociates, Inc., 2011, pp. 2546–2554. url: http://papers.nips.cc/
paper/4443- algorithms- for- hyper- parameter- optimization

(visited on 03/27/2015).
[Ber14] J. M. Berger. How ISIS Games Twitter. The Atlantic. June 16, 2014.

url: http : / / www . theatlantic . com / international / archive /
2014/06/isis-iraq-twitter-social-media-strategy/372856/

(visited on 04/10/2015).
[BG15] Peter Bühlmann and Sara van de Geer. “High-dimensional inference

in misspecified linear models”. In: (Mar. 22, 2015). arXiv: 1503.06426.
url: http://arxiv.org/abs/1503.06426 (visited on 03/27/2015).

92

http://arxiv.org/abs/1202.0842
http://arxiv.org/abs/1202.0842
http://dx.doi.org/10.1162/neco.1992.4.2.141
http://dx.doi.org/10.1162/neco.1992.4.2.141
http://rtm.science.unitn.it/~battiti/archive/FirstSecondOrderMethodsForLearning.PDF
http://rtm.science.unitn.it/~battiti/archive/FirstSecondOrderMethodsForLearning.PDF
https://publications.csiro.au/rpr/pub?list=BRO%5C&pid=procite:d5b7ecd7-435c-4dab-9063-f1cf2fbdf4cb
https://publications.csiro.au/rpr/pub?list=BRO%5C&pid=procite:d5b7ecd7-435c-4dab-9063-f1cf2fbdf4cb
https://publications.csiro.au/rpr/pub?list=BRO%5C&pid=procite:d5b7ecd7-435c-4dab-9063-f1cf2fbdf4cb
http://dx.doi.org/10.1140/epjb/e2012-21005-8
http://dx.doi.org/10.1140/epjb/e2012-21005-8
http://arxiv.org/abs/1112.1838
http://arxiv.org/abs/1112.1838
http://arxiv.org/abs/1112.1838
http://dx.doi.org/10.1002/bimj.200900299
http://onlinelibrary.wiley.com/doi/10.1002/bimj.200900299/abstract
http://onlinelibrary.wiley.com/doi/10.1002/bimj.200900299/abstract
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization
http://www.theatlantic.com/international/archive/2014/06/isis-iraq-twitter-social-media-strategy/372856/
http://www.theatlantic.com/international/archive/2014/06/isis-iraq-twitter-social-media-strategy/372856/
http://arxiv.org/abs/1503.06426
http://arxiv.org/abs/1503.06426


Bibliography

[BH95] Yoav Benjamini and Yosef Hochberg. “Controlling the False Discov-
ery Rate: A Practical and Powerful Approach to Multiple Testing”.
In: Journal of the Royal Statistical Society. Series B (Methodological) 57.1
(Jan. 1, 1995), pp. 289–300. issn: 0035-9246. JSTOR: 2346101.

[BM02] P. Brémaud and L. Massoulié. “Power spectra of general shot noises
and Hawkes point processes with a random excitation”. In: Advances
in Applied Probability 34.1 (Mar. 2002), pp. 205–222. issn: 0001-8678,
1475-6064. doi: 10.1239/aap/1019160957. url: http://icwww.
epfl.ch/~bremaud/spectra_hawkes.ps (visited on 03/16/2015).

[BM14a] Emmanuel Bacry and Jean-Francois Muzy. “Second order statistics
characterization of Hawkes processes and non-parametric estima-
tion”. In: (Jan. 5, 2014). arXiv: 1401.0903. url: http://arxiv.org/
abs/1401.0903 (visited on 01/19/2015).

[BM14b] Emmanuel Bacry and Jean-François Muzy. “Hawkes model for price
and trades high-frequency dynamics”. In: Quantitative Finance 14.7
(2014), pp. 1147–1166. issn: 1469-7688. doi: 10 . 1080 / 14697688 .
2014.897000. url: http://www.cmap.polytechnique.fr/~bacry/
ftp/papers/neo13.pdf (visited on 06/18/2014).

[Bon+12] Robert M. Bond et al. “A 61-million-person experiment in social
influence and political mobilization”. In: Nature 489.7415 (Sept. 13,
2012), pp. 295–298. issn: 0028-0836. doi: 10 . 1038 / nature11421.
url: http://www.nature.com/nature/journal/v489/n7415/full/
nature11421.html (visited on 04/13/2015).

[Bro+02] ERVRL Brown et al. “The time-rescaling theorem and its applica-
tion to neural spike train data analysis”. In: Neural computation 14.2
(Feb. 2002), pp. 325–346. issn: 0899-7667. doi: 10.1162/08997660252741149.
url: http://www.stat.cmu.edu/~kass/papers/rescaling.pdf
(visited on 01/08/2015).

[BT05] Adrian Baddeley and Rolf Turner. “Spatstat: an R package for an-
alyzing spatial point patterns”. In: Journal of statistical software 12.6
(2005), pp. 1–42.

[Büh02] Peter Bühlmann. “Bootstraps for Time Series”. In: Statistical Science
17.1 (Feb. 1, 2002), pp. 52–72. issn: 0883-4237. url: ftp : / / stat .
ethz.ch/Research-Reports/87.pdf (visited on 02/03/2015).

[BY05] Yoav Benjamini and Daniel Yekutieli. “False Discovery Rate–Adjusted
Multiple Confidence Intervals for Selected Parameters”. In: Jour-
nal of the American Statistical Association 100.469 (Mar. 2005), pp. 71–
81. issn: 0162-1459, 1537-274X. doi: 10.1198/016214504000001907.
url: http://www.math.tau.ac.il/~yekutiel/papers/JASA%
20FCR%20prints.pdf (visited on 03/31/2015).

93

http://www.jstor.org/stable/2346101
http://dx.doi.org/10.1239/aap/1019160957
http://icwww.epfl.ch/~bremaud/spectra_hawkes.ps
http://icwww.epfl.ch/~bremaud/spectra_hawkes.ps
http://arxiv.org/abs/1401.0903
http://arxiv.org/abs/1401.0903
http://arxiv.org/abs/1401.0903
http://dx.doi.org/10.1080/14697688.2014.897000
http://dx.doi.org/10.1080/14697688.2014.897000
http://www.cmap.polytechnique.fr/~bacry/ftp/papers/neo13.pdf
http://www.cmap.polytechnique.fr/~bacry/ftp/papers/neo13.pdf
http://dx.doi.org/10.1038/nature11421
http://www.nature.com/nature/journal/v489/n7415/full/nature11421.html
http://www.nature.com/nature/journal/v489/n7415/full/nature11421.html
http://dx.doi.org/10.1162/08997660252741149
http://www.stat.cmu.edu/~kass/papers/rescaling.pdf
ftp://stat.ethz.ch/Research-Reports/87.pdf
ftp://stat.ethz.ch/Research-Reports/87.pdf
http://dx.doi.org/10.1198/016214504000001907
http://www.math.tau.ac.il/~yekutiel/papers/JASA%20FCR%20prints.pdf
http://www.math.tau.ac.il/~yekutiel/papers/JASA%20FCR%20prints.pdf


Bibliography

[Cav97] Joseph E. Cavanaugh. “Unifying the derivations for the Akaike and
corrected Akaike information criteria”. In: Statistics & Probability Let-
ters 33.2 (Apr. 30, 1997), pp. 201–208. issn: 0167-7152. doi: 10.1016/
S0167-7152(96)00128-9. url: http://www.sciencedirect.com/
science/article/pii/S0167715296001289 (visited on 03/27/2015).

[CCD95] Gilles Celeux, Didier Chauveau, and Jean Diebolt. On Stochastic Ver-
sions of the EM Algorithm. report. 1995. url: https://hal.inria.fr/
inria-00074164/document (visited on 03/05/2015).

[CK12] D. R. Cox and Christiana Kartsonaki. “The fitting of complex para-
metric models”. In: Biometrika 99.3 (Sept. 1, 2012), pp. 741–747. issn:
0006-3444, 1464-3510. doi: 10.1093/biomet/ass030. url: http:
//biomet.oxfordjournals.org/content/99/3/741 (visited on
12/23/2014).

[Cla08] Gerda Claeskens. Model selection and model averaging. In collab. with
Nils Lid Hjort. Cambridge series in statistical and probabilistic math-
ematics. Cambridge ; New York: Cambridge University Press, 2008.
312 pp. isbn: 9780521852258.

[Cox65] D. R. Cox. “On the Estimation of the Intensity Function of a Sta-
tionary Point Process”. In: Journal of the Royal Statistical Society. Series
B (Methodological) 27.2 (Jan. 1, 1965), pp. 332–337. issn: 0035-9246. JS-
TOR: 2984202.

[CRT06] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. “Stable
signal recovery from incomplete and inaccurate measurements”. In:
Communications on Pure and Applied Mathematics 59.8 (Aug. 1, 2006),
pp. 1207–1223. issn: 1097-0312. doi: 10.1002/cpa.20124. url: http:
//arxiv.org/abs/math/0503066 (visited on 08/17/2014).

[CS08] Riley Crane and Didier Sornette. “Robust dynamic classes revealed
by measuring the response function of a social system”. In: Proceed-
ings of the National Academy of Sciences 105.41 (Oct. 14, 2008), pp. 15649–
15653. issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.0803685105.
pmid: 18824681. url: http://www.pnas.org/content/105/41/
15649 (visited on 04/06/2014).

[CSS10] Riley Crane, Frank Schweitzer, and Didier Sornette. “Power law sig-
nature of media exposure in human response waiting time distri-
butions”. In: Physical Review E 81.5 (May 3, 2010), p. 056101. doi:
10.1103/PhysRevE.81.056101. url: http://link.aps.org/doi/
10.1103/PhysRevE.81.056101 (visited on 04/06/2014).

[Cuc08] Lionel Cucala. “Intensity Estimation for Spatial Point Processes Ob-
served with Noise”. In: Scandinavian Journal of Statistics 35.2 (June 1,
2008), pp. 322–334. issn: 1467-9469. doi: 10.1111/j.1467-9469.

94

http://dx.doi.org/10.1016/S0167-7152(96)00128-9
http://dx.doi.org/10.1016/S0167-7152(96)00128-9
http://www.sciencedirect.com/science/article/pii/S0167715296001289
http://www.sciencedirect.com/science/article/pii/S0167715296001289
https://hal.inria.fr/inria-00074164/document
https://hal.inria.fr/inria-00074164/document
http://dx.doi.org/10.1093/biomet/ass030
http://biomet.oxfordjournals.org/content/99/3/741
http://biomet.oxfordjournals.org/content/99/3/741
http://www.jstor.org/stable/2984202
http://dx.doi.org/10.1002/cpa.20124
http://arxiv.org/abs/math/0503066
http://arxiv.org/abs/math/0503066
http://dx.doi.org/10.1073/pnas.0803685105
18824681
http://www.pnas.org/content/105/41/15649
http://www.pnas.org/content/105/41/15649
http://dx.doi.org/10.1103/PhysRevE.81.056101
http://link.aps.org/doi/10.1103/PhysRevE.81.056101
http://link.aps.org/doi/10.1103/PhysRevE.81.056101
http://dx.doi.org/10.1111/j.1467-9469.2007.00583.x
http://dx.doi.org/10.1111/j.1467-9469.2007.00583.x


Bibliography

2007.00583.x. url: http://onlinelibrary.wiley.com/doi/10.
1111/j.1467-9469.2007.00583.x/full (visited on 03/03/2015).

[Dig85] Peter Diggle. “A Kernel Method for Smoothing Point Process Data”.
In: Journal of the Royal Statistical Society. Series C (Applied Statistics) 34.2
(Jan. 1, 1985), pp. 138–147. issn: 0035-9254. doi: 10.2307/2347366.
url: http://www.maths.tcd.ie/~mnl/store/Diggle1985a.pdf
(visited on 02/24/2015).

[DLM99] Bernard Delyon, Marc Lavielle, and Eric Moulines. “Convergence
of a stochastic approximation version of the EM algorithm”. In: The
Annals of Statistics 27.1 (Mar. 1999), pp. 94–128. issn: 0090-5364, 2168-
8966. doi: 10.1214/aos/1018031103. url: http://projecteuclid.
org/euclid.aos/1018031103 (visited on 03/05/2015).

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likeli-
hood from Incomplete Data via the EM Algorithm”. In: Journal of the
Royal Statistical Society. Series B (Methodological) 39.1 (Jan. 1, 1977). Ar-
ticleType: research-article / Full publication date: 1977 / Copyright
© 1977 Royal Statistical Society, pp. 1–38. issn: 0035-9246. JSTOR:
2984875.

[Don06] D.L. Donoho. “Compressed sensing”. In: IEEE Transactions on Infor-
mation Theory 52.4 (Apr. 2006), pp. 1289–1306. issn: 0018-9448. doi:
10.1109/TIT.2006.871582.

[DS05] Fabrice Deschâtres and Didier Sornette. “Dynamics of book sales:
Endogenous versus exogenous shocks in complex networks”. In: Phys-
ical Review E 72.1 (2005), p. 016112. issn: 1539-3755, 1550-2376. doi:
10.1103/PhysRevE.72.016112. url: http://link.aps.org/doi/
10.1103/PhysRevE.72.016112 (visited on 05/21/2014).

[DV03] Daryl J. Daley and D. Vere-Jones. An introduction to the theory of point
processes. 2nd ed. Vol. 1. Elementary theory and methods. New York:
Springer, 2003. isbn: 0387215646 9780387215648 0387955410 9780387955414.
url: http://ebooks.springerlink.com/UrlApi.aspx?action=
summary%5C&v=1%5C&bookid=108085 (visited on 11/11/2014).

[DV08] Daryl J. Daley and David Vere-Jones. An introduction to the theory of
point processes. 2nd ed. Vol. 2. General theory and structure. Probabil-
ity and Its Applications. New York: Springer, Jan. 1, 2008. isbn: 978-
0-387-21337-8, 978-0-387-49835-5. url: http://link.springer.com/
chapter/10.1007/978-0-387-49835-5_7 (visited on 11/11/2014).

[DZ11] Angelos Dassios and Hongbiao Zhao. “A dynamic contagion pro-
cess”. In: Advances in Applied Probability 43.3 (Sept. 2011). Zentral-
blatt MATH identifier 05955087 , Mathematical Reviews number
(MathSciNet) MR2858222, pp. 814–846. issn: 0001-8678, 1475-6064.

95

http://dx.doi.org/10.1111/j.1467-9469.2007.00583.x
http://dx.doi.org/10.1111/j.1467-9469.2007.00583.x
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9469.2007.00583.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9469.2007.00583.x/full
http://dx.doi.org/10.2307/2347366
http://www.maths.tcd.ie/~mnl/store/Diggle1985a.pdf
http://dx.doi.org/10.1214/aos/1018031103
http://projecteuclid.org/euclid.aos/1018031103
http://projecteuclid.org/euclid.aos/1018031103
http://www.jstor.org/stable/2984875
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1103/PhysRevE.72.016112
http://link.aps.org/doi/10.1103/PhysRevE.72.016112
http://link.aps.org/doi/10.1103/PhysRevE.72.016112
http://ebooks.springerlink.com/UrlApi.aspx?action=summary%5C&v=1%5C&bookid=108085
http://ebooks.springerlink.com/UrlApi.aspx?action=summary%5C&v=1%5C&bookid=108085
http://link.springer.com/chapter/10.1007/978-0-387-49835-5_7
http://link.springer.com/chapter/10.1007/978-0-387-49835-5_7


Bibliography

doi: 10.1239/aap/1316792671. url: http://projecteuclid.org/
euclid.aap/1316792671 (visited on 03/05/2014).

[Efr+04] Bradley Efron et al. “Least angle regression”. In: The Annals of Statis-
tics 32.2 (Apr. 2004), pp. 407–499. issn: 0090-5364, 2168-8966. doi:
10.1214/009053604000000067. url: http://arxiv.org/abs/math/
0406456 (visited on 03/20/2015).

[Efr04] Bradley Efron. “The Estimation of Prediction Error”. In: Journal of
the American Statistical Association 99.467 (Sept. 1, 2004), pp. 619–632.
issn: 0162-1459. doi: 10.1198/016214504000000692. url: http://
www.cs.berkeley.edu/~jordan/sail/readings/archive/efron_

Cp.pdf (visited on 03/19/2015).
[Efr86] Bradley Efron. “How biased is the apparent error rate of a prediction

rule?” In: Journal of the American Statistical Association 81.394 (June 1,
1986), pp. 461–470. issn: 0162-1459. doi: 10.1080/01621459.1986.
10478291. url: http : / / www . stat . washington . edu / courses /
stat527/s13/readings/j_am_stat_assoc1986.pdf (visited on
02/08/2015).

[FHT10] Jerome Friedman, Trevor Hastie, and Rob Tibshirani. “Regulariza-
tion Paths for Generalized Linear Models via Coordinate Descent”.
In: Journal of statistical software 33.1 (2010), pp. 1–22. issn: 1548-7660.
pmid: 20808728. url: http : / / www . ncbi . nlm . nih . gov / pmc /
articles/PMC2929880/ (visited on 03/20/2015).

[Fil+14] Vladimir Filimonov et al. “Quantification of the high level of en-
dogeneity and of structural regime shifts in commodity markets”.
In: Journal of International Money and Finance. Understanding Inter-
national Commodity Price Fluctuations 42 (Apr. 2014), pp. 174–192.
issn: 0261-5606. doi: 10.1016/j.jimonfin.2013.08.010. url:
http://www.sciencedirect.com/science/article/pii/S0261560613001125

(visited on 11/20/2014).
[Fri+07] Jerome Friedman et al. “Pathwise coordinate optimization”. In: The

Annals of Applied Statistics 1.2 (Dec. 2007), pp. 302–332. issn: 1932-
6157, 1941-7330. doi: 10.1214/07-AOAS131. url: http://projecteuclid.
org/euclid.aoas/1196438020 (visited on 03/20/2015).

[FS13] Vladimir Filimonov and Didier Sornette. Apparent criticality and cal-
ibration issues in the Hawkes self-excited point process model: application to
high-frequency financial data. SSRN Scholarly Paper ID 2371284. Rochester,
NY: Social Science Research Network, Aug. 30, 2013. arXiv: 1308.
6756. url: http://arxiv.org/abs/1308.6756 (visited on 06/10/2014).

96

http://dx.doi.org/10.1239/aap/1316792671
http://projecteuclid.org/euclid.aap/1316792671
http://projecteuclid.org/euclid.aap/1316792671
http://dx.doi.org/10.1214/009053604000000067
http://arxiv.org/abs/math/0406456
http://arxiv.org/abs/math/0406456
http://dx.doi.org/10.1198/016214504000000692
http://www.cs.berkeley.edu/~jordan/sail/readings/archive/efron_Cp.pdf
http://www.cs.berkeley.edu/~jordan/sail/readings/archive/efron_Cp.pdf
http://www.cs.berkeley.edu/~jordan/sail/readings/archive/efron_Cp.pdf
http://dx.doi.org/10.1080/01621459.1986.10478291
http://dx.doi.org/10.1080/01621459.1986.10478291
http://www.stat.washington.edu/courses/stat527/s13/readings/j_am_stat_assoc1986.pdf
http://www.stat.washington.edu/courses/stat527/s13/readings/j_am_stat_assoc1986.pdf
20808728
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
http://dx.doi.org/10.1016/j.jimonfin.2013.08.010
http://www.sciencedirect.com/science/article/pii/S0261560613001125
http://dx.doi.org/10.1214/07-AOAS131
http://projecteuclid.org/euclid.aoas/1196438020
http://projecteuclid.org/euclid.aoas/1196438020
http://arxiv.org/abs/1308.6756
http://arxiv.org/abs/1308.6756
http://arxiv.org/abs/1308.6756


Bibliography

[FWS15] Vladimir Filimonov, Spencer Wheatley, and Didier Sornette. “Ef-
fective measure of endogeneity for the Autoregressive Conditional
Duration point processes via mapping to the self-excited Hawkes
process”. In: Communications in Nonlinear Science and Numerical Simu-
lation 22.1–3 (May 2015), pp. 23–37. issn: 1007-5704. doi: 10.1016/
j.cnsns.2014.08.042. url: http://arxiv.org/abs/1306.2245
(visited on 03/30/2015).

[Gee+14] Sara van de Geer et al. “On asymptotically optimal confidence re-
gions and tests for high-dimensional models”. In: The Annals of Statis-
tics 42.3 (June 2014), pp. 1166–1202. issn: 0090-5364. doi: 10.1214/
14-AOS1221. arXiv: 1303.0518. url: http://arxiv.org/abs/1303.
0518 (visited on 12/18/2014).

[Ger+05] Matthew C. Gerstenberger et al. “Real-time forecasts of tomorrow’s
earthquakes in California”. In: Nature 435.7040 (May 19, 2005), pp. 328–
331. issn: 0028-0836, 1476-4679. doi: 10.1038/nature03622. url:
http://www.nature.com/doifinder/10.1038/nature03622 (visited
on 02/24/2015).

[GKM11] K. Giesecke, H. Kakavand, and M. Mousavi. “Exact Simulation of
Point Processes with Stochastic Intensities”. In: Operations Research
59.5 (Oct. 1, 2011), pp. 1233–1245. issn: 0030-364X. doi: 10.1287/
opre.1110.0962. url: http://pubsonline.informs.org/doi/abs/
10.1287/opre.1110.0962 (visited on 01/08/2015).

[GL05] Jiang Gui and Hongzhe Li. “Penalized Cox regression analysis in
the high-dimensional and low-sample size settings, with applications
to microarray gene expression data”. In: Bioinformatics 21.13 (July 1,
2005), pp. 3001–3008. issn: 1367-4803, 1460-2059. doi: 10.1093/
bioinformatics/bti422. pmid: 15814556. url: http://bioinformatics.
oxfordjournals.org/content/21/13/3001 (visited on 03/20/2015).

[GL08] G. Grinstein and R. Linsker. “Power-law and exponential tails in a
stochastic priority-based model queue”. In: Physical Review E 77.1
(Jan. 7, 2008), p. 012101. doi: 10.1103/PhysRevE.77.012101. url:
http://link.aps.org/doi/10.1103/PhysRevE.77.012101 (visited
on 04/08/2015).

[GL11] Sara van de Geer and Johannes Lederer. “The Lasso, correlated de-
sign, and improved oracle inequalities”. In: (July 1, 2011). arXiv: 1107.
0189. url: http://arxiv.org/abs/1107.0189 (visited on 03/27/2015).

[GMR93] C. Gourieroux, A. Monfort, and E. Renault. “Indirect Inference”. In:
Journal of Applied Econometrics 8 (Dec. 1, 1993), S85–S118. issn: 0883-
7252. JSTOR: 2285076.

97

http://dx.doi.org/10.1016/j.cnsns.2014.08.042
http://dx.doi.org/10.1016/j.cnsns.2014.08.042
http://arxiv.org/abs/1306.2245
http://dx.doi.org/10.1214/14-AOS1221
http://dx.doi.org/10.1214/14-AOS1221
http://arxiv.org/abs/1303.0518
http://arxiv.org/abs/1303.0518
http://arxiv.org/abs/1303.0518
http://dx.doi.org/10.1038/nature03622
http://www.nature.com/doifinder/10.1038/nature03622
http://dx.doi.org/10.1287/opre.1110.0962
http://dx.doi.org/10.1287/opre.1110.0962
http://pubsonline.informs.org/doi/abs/10.1287/opre.1110.0962
http://pubsonline.informs.org/doi/abs/10.1287/opre.1110.0962
http://dx.doi.org/10.1093/bioinformatics/bti422
http://dx.doi.org/10.1093/bioinformatics/bti422
15814556
http://bioinformatics.oxfordjournals.org/content/21/13/3001
http://bioinformatics.oxfordjournals.org/content/21/13/3001
http://dx.doi.org/10.1103/PhysRevE.77.012101
http://link.aps.org/doi/10.1103/PhysRevE.77.012101
http://arxiv.org/abs/1107.0189
http://arxiv.org/abs/1107.0189
http://arxiv.org/abs/1107.0189
http://www.jstor.org/stable/2285076


Bibliography

[Gre87] Peter J. Green. “Penalized Likelihood for General Semi-Parametric
Regression Models”. In: International Statistical Review / Revue Inter-
nationale de Statistique 55.3 (Dec. 1, 1987), pp. 245–259. issn: 0306-
7734. doi: 10.2307/1403404. url: http://www.maths.bris.ac.
uk/~mapjg/papers/green_isr_87.pdf (visited on 03/01/2015).

[GW08] Christopher Genovese and Larry Wasserman. “Adaptive confidence
bands”. In: The Annals of Statistics 36.2 (Apr. 2008), pp. 875–905. issn:
0090-5364, 2168-8966. doi: 10 . 1214 / 07 - AOS500. url: http : / /
projecteuclid.org/euclid.aos/1205420522 (visited on 03/27/2015).

[Hal12] Peter F. Halpin. “An EM algorithm for Hawkes process”. In: Psy-
chometrika 2 (2012). url: https : / / www . steinhardt . nyu . edu /
scmsAdmin/uploads/007/126/Halpin_Proceedings_Submit.pdf

(visited on 11/18/2014).
[Haw71] Alan G. Hawkes. “Point spectra of some mutually exciting point pro-

cesses”. In: Journal of the Royal Statistical Society. Series B (Methodologi-
cal) 33.3 (Jan. 1, 1971), pp. 438–443. issn: 0035-9246. JSTOR: 2984686.

[HB14] Stephen J. Hardiman and Jean-Philippe Bouchaud. “Branching-ratio
approximation for the self-exciting Hawkes process”. In: Physical Re-
view E 90.6 (Dec. 11, 2014), p. 062807. doi: 10.1103/PhysRevE.90.
062807. arXiv: 1403.5227. url: http://arxiv.org/abs/1403.5227
(visited on 03/15/2015).

[HBB13] Stephen J. Hardiman, Nicolas Bercot, and Jean-Philippe Bouchaud.
“Critical reflexivity in financial markets: a Hawkes process analysis”.
In: The European Physical Journal B 86.10 (Oct. 1, 2013), pp. 1–9. issn:
1434-6028, 1434-6036. doi: 10.1140/epjb/e2013- 40107- 3. url:
http://arxiv.org/abs/1302.1405 (visited on 03/05/2014).

[HG10] Asif-ul Haque and Paul Ginsparg. “Last but not least: Additional
positional effects on citation and readership in arXiv”. In: Journal of
the American Society for Information Science and Technology 61.12 (Dec. 1,
2010), pp. 2381–2388. issn: 1532-2890. doi: 10.1002/asi.21428. url:
http://arxiv.org/abs/1010.2757 (visited on 04/08/2015).

[HK70] Arthur E. Hoerl and Robert W. Kennard. “Ridge Regression: Bi-
ased Estimation for Nonorthogonal Problems”. In: Technometrics 12.1
(Feb. 1, 1970), pp. 55–67. issn: 0040-1706. doi: 10.1080/00401706.
1970.10488634. url: http://math.arizona.edu/~hzhang/math574m/
Read/Ridge.pdf (visited on 04/04/2015).

[HO74] Alan G. Hawkes and David Oakes. “A cluster process representa-
tion of a self-exciting process”. In: Journal of Applied Probability 11.3
(Sept. 1974), p. 493. issn: 00219002. doi: 10.2307/3212693. JSTOR:
3212693.

98

http://dx.doi.org/10.2307/1403404
http://www.maths.bris.ac.uk/~mapjg/papers/green_isr_87.pdf
http://www.maths.bris.ac.uk/~mapjg/papers/green_isr_87.pdf
http://dx.doi.org/10.1214/07-AOS500
http://projecteuclid.org/euclid.aos/1205420522
http://projecteuclid.org/euclid.aos/1205420522
https://www.steinhardt.nyu.edu/scmsAdmin/uploads/007/126/Halpin_Proceedings_Submit.pdf
https://www.steinhardt.nyu.edu/scmsAdmin/uploads/007/126/Halpin_Proceedings_Submit.pdf
http://www.jstor.org/stable/2984686
http://dx.doi.org/10.1103/PhysRevE.90.062807
http://dx.doi.org/10.1103/PhysRevE.90.062807
http://arxiv.org/abs/1403.5227
http://arxiv.org/abs/1403.5227
http://dx.doi.org/10.1140/epjb/e2013-40107-3
http://arxiv.org/abs/1302.1405
http://dx.doi.org/10.1002/asi.21428
http://arxiv.org/abs/1010.2757
http://dx.doi.org/10.1080/00401706.1970.10488634
http://dx.doi.org/10.1080/00401706.1970.10488634
http://math.arizona.edu/~hzhang/math574m/Read/Ridge.pdf
http://math.arizona.edu/~hzhang/math574m/Read/Ridge.pdf
http://dx.doi.org/10.2307/3212693
http://www.jstor.org/stable/3212693


Bibliography

[HSG03] A. Helmstetter, D. Sornette, and J.-R. Grasso. “Mainshocks are af-
tershocks of conditional foreshocks: How do foreshock statistical
properties emerge from aftershock laws”. In: Journal of Geophysical
Research 108 (B1 2003), p. 2046. issn: 0148-0227. doi: 10 . 1029 /
2002JB001991. arXiv: cond-mat/0205499. url: http://arxiv.org/
abs/cond-mat/0205499 (visited on 02/11/2015).

[HT89] Clifford M. Hurvich and Chih-Ling Tsai. “Regression and time series
model selection in small samples”. In: Biometrika 76.2 (June 1, 1989),
pp. 297–307. issn: 0006-3444, 1464-3510. doi: 10.1093/biomet/76.
2.297. url: http://biomet.oxfordjournals.org/content/76/2/
297 (visited on 03/27/2015).

[HW14] A. Helmstetter and M. J. Werner. “Adaptive Smoothing of Seis-
micity in Time, Space, and Magnitude for Time-Dependent Earth-
quake Forecasts for California”. In: Bulletin of the Seismological Society
of America 104.2 (Apr. 1, 2014), pp. 809–822. issn: 0037-1106. doi:
10.1785/0120130105. url: http://www.bssaonline.org/cgi/doi/
10.1785/0120130105 (visited on 02/24/2015).

[IVV11] Raghuram Iyengar, Christophe Van den Bulte, and Thomas W. Va-
lente. “Opinion leadership and social contagion in new product dif-
fusion”. In: Marketing Science 30.2 (2011), pp. 195–212. issn: 0732-2399.
doi: 10.1287/mksc.1100.0566. url: http://pubsonline.informs.
org/doi/abs/10.1287/mksc.1100.0566 (visited on 05/21/2014).

[JT04] Wenxin Jiang and Bruce Turnbull. “The Indirect Method: Inference
Based on Intermediate Statistics—A Synthesis and Examples”. In:
Statistical Science 19.2 (May 2004), pp. 239–263. issn: 0883-4237, 2168-
8745. doi: 10.1214/088342304000000152. url: http://www.planchet.
net/EXT/ISFA/1226.nsf/769998e0a65ea348c1257052003eb94f/

bf9e68719dd7b5f8c1256f560032680f/$FILE/Indirect%20Method%

20-%20JIANG%20TURNBULL.pdf (visited on 12/23/2014).
[Ken+05] Bruce E. Kendall et al. “Population cycles in the pine looper moth:

Dynamical tests of mechanistic hypotheses”. In: Ecological Monographs
75.2 (May 1, 2005), pp. 259–276. issn: 0012-9615. url: http://www.
sysecol2.ethz.ch/Refs/EntClim/K/Ke169.pdf (visited on 12/23/2014).

[KK96] Sadanori Konishi and Genshiro Kitagawa. “Generalised information
criteria in model selection”. In: Biometrika 83.4 (Dec. 1, 1996), pp. 875–
890. issn: 0006-3444, 1464-3510. doi: 10.1093/biomet/83.4.875.
url: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.127.1018%5C&rep=rep1%5C&type=pdf (visited on 02/24/2015).

[KL04] Estelle Kuhn and Marc Lavielle. “Coupling a stochastic approxima-
tion version of EM with an MCMC procedure”. In: ESAIM: Prob-
ability and Statistics 8 (Sept. 2004), pp. 115–131. issn: 1262-3318. doi:

99

http://dx.doi.org/10.1029/2002JB001991
http://dx.doi.org/10.1029/2002JB001991
http://arxiv.org/abs/cond-mat/0205499
http://arxiv.org/abs/cond-mat/0205499
http://arxiv.org/abs/cond-mat/0205499
http://dx.doi.org/10.1093/biomet/76.2.297
http://dx.doi.org/10.1093/biomet/76.2.297
http://biomet.oxfordjournals.org/content/76/2/297
http://biomet.oxfordjournals.org/content/76/2/297
http://dx.doi.org/10.1785/0120130105
http://www.bssaonline.org/cgi/doi/10.1785/0120130105
http://www.bssaonline.org/cgi/doi/10.1785/0120130105
http://dx.doi.org/10.1287/mksc.1100.0566
http://pubsonline.informs.org/doi/abs/10.1287/mksc.1100.0566
http://pubsonline.informs.org/doi/abs/10.1287/mksc.1100.0566
http://dx.doi.org/10.1214/088342304000000152
http://www.planchet.net/EXT/ISFA/1226.nsf/769998e0a65ea348c1257052003eb94f/bf9e68719dd7b5f8c1256f560032680f/$FILE/Indirect%20Method%20-%20JIANG%20TURNBULL.pdf
http://www.planchet.net/EXT/ISFA/1226.nsf/769998e0a65ea348c1257052003eb94f/bf9e68719dd7b5f8c1256f560032680f/$FILE/Indirect%20Method%20-%20JIANG%20TURNBULL.pdf
http://www.planchet.net/EXT/ISFA/1226.nsf/769998e0a65ea348c1257052003eb94f/bf9e68719dd7b5f8c1256f560032680f/$FILE/Indirect%20Method%20-%20JIANG%20TURNBULL.pdf
http://www.planchet.net/EXT/ISFA/1226.nsf/769998e0a65ea348c1257052003eb94f/bf9e68719dd7b5f8c1256f560032680f/$FILE/Indirect%20Method%20-%20JIANG%20TURNBULL.pdf
http://www.sysecol2.ethz.ch/Refs/EntClim/K/Ke169.pdf
http://www.sysecol2.ethz.ch/Refs/EntClim/K/Ke169.pdf
http://dx.doi.org/10.1093/biomet/83.4.875
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.1018%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.1018%5C&rep=rep1%5C&type=pdf


Bibliography

10.1051/ps:2004007. url: http://www.esaim-ps.org/action/
article_S1292810004000072 (visited on 03/05/2015).

[KR14] S. Kaufman and S. Rosset. “When does more regularization imply
fewer degrees of freedom? Sufficient conditions and counterexam-
ples”. In: Biometrika 101.4 (Dec. 1, 2014), pp. 771–784. issn: 0006-
3444, 1464-3510. doi: 10.1093/biomet/asu034. url: http://biomet.
oxfordjournals.org/content/101/4/771 (visited on 02/08/2015).

[Kün89] Hans Rudolf Künsch. “The Jackknife and the Bootstrap for Gen-
eral Stationary Observations”. In: The Annals of Statistics 17.3 (Sept. 1,
1989), pp. 1217–1241. issn: 0090-5364. url: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.28.924%5C&rep=rep1%

5C&type=pdf (visited on 02/03/2015).
[Lah01] S N Lahiri. “Effects of block lengths on the validity of block resam-

pling methods”. In: Probability Theory and Related Fields 121 (2001),
pp. 73–97. doi: 10.1007/PL00008798.

[Lah93] S N Lahiri. “On the moving block bootstrap under long range de-
pendence”. In: Statistics & Probability Letters 18.5 (1993), pp. 405–413.
doi: 10.1016/0167-7152(93)90035-H.

[Lie11] Marie-Colette N. M. van Lieshout. “On Estimation of the Inten-
sity Function of a Point Process”. In: Methodology and Computing in
Applied Probability 14.3 (Aug. 4, 2011), pp. 567–578. issn: 1387-5841,
1573-7713. doi: 10.1007/s11009-011-9244-9. url: http://link.
springer.com/article/10.1007/s11009-011-9244-9 (visited on
02/26/2015).

[Loc+14] Richard Lockhart et al. “A significance test for the lasso”. In: The
Annals of Statistics 42.2 (Apr. 2014), pp. 413–468. issn: 0090-5364,
2168-8966. doi: 10.1214/13- AOS1175. url: http://arxiv.org/
abs/1405.6805 (visited on 01/21/2015).

[MB10] Nicolai Meinshausen and Peter Bühlmann. “Stability selection”. In:
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
72.4 (Sept. 1, 2010), pp. 417–473. issn: 1467-9868. doi: 10.1111/j.
1467-9868.2010.00740.x. arXiv: 0809.2932. url: http://arxiv.
org/abs/0809.2932 (visited on 07/18/2014).

[Mei07] Nicolai Meinshausen. “Relaxed Lasso”. In: Computational Statistics &
Data Analysis 52.1 (Sept. 15, 2007), pp. 374–393. issn: 0167-9473. doi:
10.1016/j.csda.2006.12.019. url: http://stat.ethz.ch/
~nicolai/relaxo.pdf (visited on 03/27/2015).

100

http://dx.doi.org/10.1051/ps:2004007
http://www.esaim-ps.org/action/article_S1292810004000072
http://www.esaim-ps.org/action/article_S1292810004000072
http://dx.doi.org/10.1093/biomet/asu034
http://biomet.oxfordjournals.org/content/101/4/771
http://biomet.oxfordjournals.org/content/101/4/771
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.924%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.924%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.28.924%5C&rep=rep1%5C&type=pdf
http://dx.doi.org/10.1007/PL00008798
http://dx.doi.org/10.1016/0167-7152(93)90035-H
http://dx.doi.org/10.1007/s11009-011-9244-9
http://link.springer.com/article/10.1007/s11009-011-9244-9
http://link.springer.com/article/10.1007/s11009-011-9244-9
http://dx.doi.org/10.1214/13-AOS1175
http://arxiv.org/abs/1405.6805
http://arxiv.org/abs/1405.6805
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://arxiv.org/abs/0809.2932
http://arxiv.org/abs/0809.2932
http://arxiv.org/abs/0809.2932
http://dx.doi.org/10.1016/j.csda.2006.12.019
http://stat.ethz.ch/~nicolai/relaxo.pdf
http://stat.ethz.ch/~nicolai/relaxo.pdf


Bibliography

[Mei14] Nicolai Meinshausen. “Group bound: confidence intervals for groups
of variables in sparse high dimensional regression without assump-
tions on the design”. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) (Nov. 1, 2014), n/a–n/a. issn: 1467-9868. doi:
10.1111/rssb.12094. arXiv: 1309.3489. url: http://arxiv.org/
abs/1309.3489 (visited on 04/08/2015).

[MJM13] James S. Martin, Ajay Jasra, and Emma McCoy. “Inference for a class
of partially observed point process models”. In: Annals of the Insti-
tute of Statistical Mathematics 65.3 (June 1, 2013), pp. 413–437. issn:
0020-3157, 1572-9052. doi: 10.1007/s10463- 012- 0375- 8. arXiv:
1201.4529. url: http://arxiv.org/abs/1201.4529 (visited on
01/08/2015).

[MMB09] Nicolai Meinshausen, Lukas Meier, and Peter Bühlmann. “p-Values
for High-Dimensional Regression”. In: Journal of the American Sta-
tistical Association 104.488 (Dec. 1, 2009), pp. 1671–1681. issn: 0162-
1459. doi: 10.1198/jasa.2009.tm08647. url: http://arxiv.org/
abs/0811.2177 (visited on 03/19/2015).

[Moh+11] G. O. Mohler et al. “Self-exciting point process modeling of crime”.
In: Journal of the American Statistical Association 106.493 (Mar. 1, 2011),
pp. 100–108. issn: 0162-1459. doi: 10.1198/jasa.2011.ap09546.
url: http://amstat.tandfonline.com/doi/abs/10.1198/jasa.
2011.ap09546 (visited on 11/11/2014).

[Møl03] Jesper Møller. “Shot noise Cox processes”. In: Advances in Applied
Probability 35.3 (Sept. 2003), pp. 614–640. issn: 0001-8678, 1475-6064.
doi: 10.1239/aap/1059486821. url: http://www.maphysto.dk/
publications/MPS-RR/2002/18.pdf (visited on 12/12/2014).

[MPW96] William A. Massey, Geraldine A. Parker, and Ward Whitt. “Estimat-
ing the parameters of a nonhomogeneous Poisson process with lin-
ear rate”. In: Telecommunication Systems 5.2 (Sept. 1, 1996), pp. 361–388.
issn: 1018-4864, 1572-9451. doi: 10.1007/BF02112523. url: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.365

(visited on 05/12/2014).
[MSW98] Jesper Møller, Anne Randi Syversveen, and Rasmus Plenge Waagepetersen.

“Log Gaussian Cox Processes”. In: Scandinavian Journal of Statistics
25.3 (Sept. 1, 1998), pp. 451–482. issn: 1467-9469. doi: 10 . 1111 /
1467-9469.00115. url: http://onlinelibrary.wiley.com/doi/
10.1111/1467-9469.00115/abstract (visited on 02/26/2015).

[MY09] Nicolai Meinshausen and Bin Yu. “Lasso-type recovery of sparse
representations for high-dimensional data”. In: The Annals of Statis-
tics 37.1 (Feb. 2009), pp. 246–270. issn: 0090-5364, 2168-8966. doi:
10.1214/07- AOS582. url: http://projecteuclid.org/euclid.
aos/1232115934 (visited on 03/27/2015).

101

http://dx.doi.org/10.1111/rssb.12094
http://arxiv.org/abs/1309.3489
http://arxiv.org/abs/1309.3489
http://arxiv.org/abs/1309.3489
http://dx.doi.org/10.1007/s10463-012-0375-8
http://arxiv.org/abs/1201.4529
http://arxiv.org/abs/1201.4529
http://dx.doi.org/10.1198/jasa.2009.tm08647
http://arxiv.org/abs/0811.2177
http://arxiv.org/abs/0811.2177
http://dx.doi.org/10.1198/jasa.2011.ap09546
http://amstat.tandfonline.com/doi/abs/10.1198/jasa.2011.ap09546
http://amstat.tandfonline.com/doi/abs/10.1198/jasa.2011.ap09546
http://dx.doi.org/10.1239/aap/1059486821
http://www.maphysto.dk/publications/MPS-RR/2002/18.pdf
http://www.maphysto.dk/publications/MPS-RR/2002/18.pdf
http://dx.doi.org/10.1007/BF02112523
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.365
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.365
http://dx.doi.org/10.1111/1467-9469.00115
http://dx.doi.org/10.1111/1467-9469.00115
http://onlinelibrary.wiley.com/doi/10.1111/1467-9469.00115/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1467-9469.00115/abstract
http://dx.doi.org/10.1214/07-AOS582
http://projecteuclid.org/euclid.aos/1232115934
http://projecteuclid.org/euclid.aos/1232115934


Bibliography

[NG13] Richard Nickl and Sara van de Geer. “Confidence sets in sparse re-
gression”. In: The Annals of Statistics 41.6 (Dec. 2013), pp. 2852–2876.
issn: 0090-5364, 2168-8966. doi: 10.1214/13-AOS1170. url: http:
//arxiv.org/abs/1209.1508 (visited on 03/27/2015).

[OA82] Yosihiko Ogata and Hirotugu Akaike. “On linear intensity models
for mixed doubly stochastic Poisson and self-exciting point processes”.
In: Journal of the Royal Statistical Society, Series B 44 (1982), pp. 269–
274. doi: 10.1007/978-1-4612-1694-0_20. url: http://bemlar.
ism.ac.jp/zhuang/Refs/Refs/ogata1982.pdf (visited on 11/24/2014).

[Oak75] David Oakes. “The Markovian self-exciting process”. In: Journal of
Applied Probability 12.1 (Mar. 1975), p. 69. issn: 00219002. doi: 10.
2307/3212408. JSTOR: 3212408.

[Oga78] Yoshiko Ogata. “The asymptotic behaviour of maximum likelihood
estimators for stationary point processes”. In: Annals of the Institute
of Statistical Mathematics 30.1 (Dec. 1, 1978), pp. 243–261. issn: 0020-
3157, 1572-9052. doi: 10 . 1007 / BF02480216. url: http : / / users .
iems . northwestern . edu / ~armbruster / 2007msande444 / ogata -

78.pdf (visited on 08/19/2014).
[Oga88] Yosihiko Ogata. “Statistical models for earthquake occurrences and

residual analysis for point processes”. In: Journal of the American Sta-
tistical Association 83.401 (Mar. 1, 1988), pp. 9–27. issn: 0162-1459.
doi: 10.1080/01621459.1988.10478560. url: http://amstat.
tandfonline.com/doi/abs/10.1080/01621459.1988.10478560

(visited on 11/11/2014).
[OMK93] Yosihiko Ogata, Ritsuko S. Matsu’ura, and Koichi Katsura. “Fast

likelihood computation of epidemic type aftershock-sequence model”.
In: Geophysical Research Letters 20.19 (Oct. 8, 1993), pp. 2143–2146.
issn: 1944-8007. doi: 10.1029/93GL02142. url: http://onlinelibrary.
wiley.com/doi/10.1029/93GL02142/abstract (visited on 12/02/2014).

[Ore12] Alexei Oreskovic. Exclusive: YouTube hits 4 billion daily video views.
Jan. 23, 2012. url: http://uk.reuters.com/article/2012/01/23/
us-google-youtube-idUSTRE80M0TS20120123 (visited on 03/16/2015).

[Oza79] T. Ozaki. “Maximum likelihood estimation of Hawkes’ self-exciting
point processes”. In: Annals of the Institute of Statistical Mathematics
31.1 (Dec. 1, 1979), pp. 145–155. issn: 0020-3157, 1572-9052. doi: 10.
1007/BF02480272. url: http://www.ism.ac.jp/editsec/aism/
pdf/031_1_0145.pdf (visited on 04/09/2014).

[Ras13] Jakob Gulddahl Rasmussen. “Bayesian inference for Hawkes pro-
cesses”. In: Methodology and Computing in Applied Probability 15.3 (Sept. 1,
2013), pp. 623–642. issn: 1387-5841, 1573-7713. doi: 10.1007/s11009-

102

http://dx.doi.org/10.1214/13-AOS1170
http://arxiv.org/abs/1209.1508
http://arxiv.org/abs/1209.1508
http://dx.doi.org/10.1007/978-1-4612-1694-0_20
http://bemlar.ism.ac.jp/zhuang/Refs/Refs/ogata1982.pdf
http://bemlar.ism.ac.jp/zhuang/Refs/Refs/ogata1982.pdf
http://dx.doi.org/10.2307/3212408
http://dx.doi.org/10.2307/3212408
http://www.jstor.org/stable/3212408
http://dx.doi.org/10.1007/BF02480216
http://users.iems.northwestern.edu/~armbruster/2007msande444/ogata-78.pdf
http://users.iems.northwestern.edu/~armbruster/2007msande444/ogata-78.pdf
http://users.iems.northwestern.edu/~armbruster/2007msande444/ogata-78.pdf
http://dx.doi.org/10.1080/01621459.1988.10478560
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1988.10478560
http://amstat.tandfonline.com/doi/abs/10.1080/01621459.1988.10478560
http://dx.doi.org/10.1029/93GL02142
http://onlinelibrary.wiley.com/doi/10.1029/93GL02142/abstract
http://onlinelibrary.wiley.com/doi/10.1029/93GL02142/abstract
http://uk.reuters.com/article/2012/01/23/us-google-youtube-idUSTRE80M0TS20120123
http://uk.reuters.com/article/2012/01/23/us-google-youtube-idUSTRE80M0TS20120123
http://dx.doi.org/10.1007/BF02480272
http://dx.doi.org/10.1007/BF02480272
http://www.ism.ac.jp/editsec/aism/pdf/031_1_0145.pdf
http://www.ism.ac.jp/editsec/aism/pdf/031_1_0145.pdf
http://dx.doi.org/10.1007/s11009-011-9272-5
http://dx.doi.org/10.1007/s11009-011-9272-5


Bibliography

011-9272-5. url: http://vbn.aau.dk/ws/files/45838419/R_
2011_03.pdf (visited on 11/18/2014).

[REU06] REUTERS. “YouTube serves up 100 million videos a day online”.
In: (July 16, 2006). url: http://usatoday30.usatoday.com/tech/
news/2006-07-16-youtube-views_x.htm.

[Roi07] Manuel Roig-Franzia. “Mexican Drug Cartels Leave a Bloody Trail
on YouTube”. In: The Washington Post. World (Apr. 9, 2007). issn:
0190-8286. url: http://www.washingtonpost.com/wp-dyn/content/
article/2007/04/08/AR2007040801005_2.html (visited on 04/06/2015).

[RPL15] Marcello Rambaldi, Paris Pennesi, and Fabrizio Lillo. “Modeling FX
market activity around macroeconomic news: a Hawkes process ap-
proach”. In: Physical Review E 91.1 (Jan. 26, 2015), p. 012819. doi:
10.1103/PhysRevE.91.012819. arXiv: 1405.6047. url: http://
arxiv.org/abs/1405.6047 (visited on 01/21/2015).

[Rub72] Izhak Rubin. “Regular point processes and their detection”. In: IEEE
Transactions on Information Theory 18.5 (Sept. 1972), pp. 547–557. issn:
0018-9448. doi: 10.1109/TIT.1972.1054897.

[SB03] A Smith and E Brown. “Estimating a state-space model from point
process observations”. In: Neural Computation 15.5 (May 2003), pp. 965–
991. issn: 0899-7667. doi: 10.1162/089976603765202622. url: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6789993.

[Sch05] Frederic Paik Schoenberg. “Consistent parametric estimation of the
intensity of a spatial–temporal point process”. In: Journal of Statistical
Planning and Inference 128.1 (Jan. 15, 2005), pp. 79–93. issn: 0378-3758.
doi: 10.1016/j.jspi.2003.09.027. url: http://escholarship.
org/uc/item/6584c641 (visited on 02/24/2015).

[SCV10] Frederic Paik Schoenberg, Annie Chu, and Alejandro Veen. “On the
relationship between lower magnitude thresholds and bias in epidemic-
type aftershock sequence parameter estimates”. In: Journal of Geo-
physical Research: Solid Earth 115 (B4 Apr. 1, 2010), B04309. issn: 2156-
2202. doi: 10.1029/2009JB006387. url: http://onlinelibrary.
wiley . com / doi / 10 . 1029 / 2009JB006387 / abstract (visited on
02/24/2015).

[SH03] D Sornette and A Helmstetter. “Endogenous versus exogenous shocks
in systems with memory”. In: Physica A: Statistical Mechanics and its
Applications 318.3–4 (Feb. 15, 2003), pp. 577–591. issn: 0378-4371. doi:
10.1016/S0378-4371(02)01371-7. url: http://arxiv.org/abs/
cond-mat/0206047 (visited on 05/21/2014).

[Sha15] Leslie Shaffer. “The dress that broke the Internet 16 million views
in 6 hours.” In: (Feb. 27, 2015). url: http://www.cnbc.com/id/
102461771 (visited on 03/13/2015).

103

http://dx.doi.org/10.1007/s11009-011-9272-5
http://dx.doi.org/10.1007/s11009-011-9272-5
http://vbn.aau.dk/ws/files/45838419/R_2011_03.pdf
http://vbn.aau.dk/ws/files/45838419/R_2011_03.pdf
http://usatoday30.usatoday.com/tech/news/2006-07-16-youtube-views_x.htm
http://usatoday30.usatoday.com/tech/news/2006-07-16-youtube-views_x.htm
http://www.washingtonpost.com/wp-dyn/content/article/2007/04/08/AR2007040801005_2.html
http://www.washingtonpost.com/wp-dyn/content/article/2007/04/08/AR2007040801005_2.html
http://dx.doi.org/10.1103/PhysRevE.91.012819
http://arxiv.org/abs/1405.6047
http://arxiv.org/abs/1405.6047
http://arxiv.org/abs/1405.6047
http://dx.doi.org/10.1109/TIT.1972.1054897
http://dx.doi.org/10.1162/089976603765202622
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6789993
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6789993
http://dx.doi.org/10.1016/j.jspi.2003.09.027
http://escholarship.org/uc/item/6584c641
http://escholarship.org/uc/item/6584c641
http://dx.doi.org/10.1029/2009JB006387
http://onlinelibrary.wiley.com/doi/10.1029/2009JB006387/abstract
http://onlinelibrary.wiley.com/doi/10.1029/2009JB006387/abstract
http://dx.doi.org/10.1016/S0378-4371(02)01371-7
http://arxiv.org/abs/cond-mat/0206047
http://arxiv.org/abs/cond-mat/0206047
http://www.cnbc.com/id/102461771
http://www.cnbc.com/id/102461771


Bibliography

[Sil82] B. W. Silverman. “On the Estimation of a Probability Density Func-
tion by the Maximum Penalized Likelihood Method”. In: The Annals
of Statistics 10.3 (Sept. 1982), pp. 795–810. issn: 0090-5364, 2168-8966.
doi: 10.1214/aos/1176345872. url: http://oai.dtic.mil/oai/
oai?verb=getRecord%5C&metadataPrefix=html%5C&identifier=

ADA103875 (visited on 03/06/2015).
[Sim+11] Noah Simon et al. “Regularization Paths for Cox’s Proportional Haz-

ards Model via Coordinate Descent”. In: Journal of Statistical Software
39.5 (Mar. 2011). url: http://www.jstatsoft.org/v39/i05/paper
(visited on 03/20/2015).

[Smi93] A. A. Smith. “Estimating nonlinear time-series models using sim-
ulated vector autoregressions”. In: Journal of Applied Econometrics 8
(S1 1993), S63–S84. issn: 1099-1255. doi: 10.1002/jae.3950080506.
url: http://www.econ.yale.edu/smith/2285075.pdf (visited on
01/21/2015).

[SMM02] D. Sornette, Y. Malevergne, and J. F. Muzy. “Volatility fingerprints
of large shocks: Endogeneous versus exogeneous”. In: (Apr. 30, 2002).
What causes crashes? Risk Volume 16 (2), 67-71 (February 2003).
arXiv: cond- mat/0204626. url: http://arxiv.org/abs/cond-
mat/0204626 (visited on 04/06/2014).

[Sor+04] Didier Sornette et al. “Endogenous versus exogenous shocks in com-
plex networks: An empirical test using book sale rankings”. In: Phys-
ical Review Letters 93.22 (Nov. 22, 2004), p. 228701. issn: 0031-9007,
1079-7114. doi: 10 . 1103 / PhysRevLett . 93 . 228701. url: http :
/ / prl . aps . org / abstract / PRL / v93 / i22 / e228701 (visited on
05/21/2014).

[Sor06] Didier Sornette. “Endogenous versus exogenous origins of crises”.
In: Extreme events in nature and society. The Frontiers Collection. Springer,
2006, pp. 95–119. arXiv: physics/0412026. url: http://arxiv.org/
abs/physics/0412026 (visited on 05/21/2014).

[Sor09] Didier Sornette. “Dragon-Kings, Black Swans and the Prediction
of Crises”. In: 2.1 (July 24, 2009). arXiv: 0907 . 4290. url: http :
//arxiv.org/abs/0907.4290 (visited on 04/06/2015).

[SS11] A. Saichev and D. Sornette. “Hierarchy of temporal responses of
multivariate self-excited epidemic processes”. In: (Jan. 8, 2011). arXiv:
1101.1611. url: http://arxiv.org/abs/1101.1611 (visited on
04/06/2014).

[SU09] D. Sornette and S. Utkin. “Limits of declustering methods for dis-
entangling exogenous from endogenous events in time series with
foreshocks, main shocks, and aftershocks”. In: Physical Review E 79.6
(June 16, 2009), p. 061110. doi: 10 . 1103 / PhysRevE . 79 . 061110.

104

http://dx.doi.org/10.1214/aos/1176345872
http://oai.dtic.mil/oai/oai?verb=getRecord%5C&metadataPrefix=html%5C&identifier=ADA103875
http://oai.dtic.mil/oai/oai?verb=getRecord%5C&metadataPrefix=html%5C&identifier=ADA103875
http://oai.dtic.mil/oai/oai?verb=getRecord%5C&metadataPrefix=html%5C&identifier=ADA103875
http://www.jstatsoft.org/v39/i05/paper
http://dx.doi.org/10.1002/jae.3950080506
http://www.econ.yale.edu/smith/2285075.pdf
http://arxiv.org/abs/cond-mat/0204626
http://arxiv.org/abs/cond-mat/0204626
http://arxiv.org/abs/cond-mat/0204626
http://dx.doi.org/10.1103/PhysRevLett.93.228701
http://prl.aps.org/abstract/PRL/v93/i22/e228701
http://prl.aps.org/abstract/PRL/v93/i22/e228701
http://arxiv.org/abs/physics/0412026
http://arxiv.org/abs/physics/0412026
http://arxiv.org/abs/physics/0412026
http://arxiv.org/abs/0907.4290
http://arxiv.org/abs/0907.4290
http://arxiv.org/abs/0907.4290
http://arxiv.org/abs/1101.1611
http://arxiv.org/abs/1101.1611
http://dx.doi.org/10.1103/PhysRevE.79.061110


Bibliography

arXiv: 0903.3217. url: http://arxiv.org/abs/0903.3217 (visited
on 06/18/2014).

[Sug78] Nariaki Sugiura. “Further analysts of the data by Akaike’ s Infor-
mation Criterion and the finite corrections”. In: Communications in
Statistics - Theory and Methods 7.1 (Jan. 1, 1978), pp. 13–26. issn: 0361-
0926. doi: 10.1080/03610927808827599. url: http://dx.doi.org/
10.1080/03610927808827599 (visited on 03/27/2015).

[TG65] A. N. Tikhonov and V. B. Glasko. “Use of the regularization method
in non-linear problems”. In: USSR Computational Mathematics and Math-
ematical Physics 5.3 (1965), pp. 93–107. issn: 0041-5553. doi: 10.1016/
0041-5553(65)90150-3. url: http://www.sciencedirect.com/
science/article/pii/0041555365901503 (visited on 04/05/2015).

[Tib96] Robert Tibshirani. “Regression Shrinkage and Selection via the Lasso”.
In: Journal of the Royal Statistical Society. Series B (Methodological) 58.1
(Jan. 1, 1996), pp. 267–288. issn: 0035-9246. url: http://statweb.
stanford.edu/~tibs/lasso/lasso.pdf (visited on 04/06/2015).

[Uts70] Tokuji Utsu. “Aftershocks and earthquake statistics (1): Some pa-
rameters which characterize an aftershock sequence and their in-
terrelations”. In: Journal of the Faculty of Science, Hokkaido University.
Series 7, Geophysics 3.3 (1970), pp. 129–195. url: http://eprints2008.
lib.hokudai.ac.jp/dspace/handle/2115/8683 (visited on 04/12/2015).

[Vac11] Anca Patricia Vacarescu. “Filtering and parameter estimation for
partially observed generalized Hawkes processes”. PhD thesis. Stan-
ford University, 2011. url: http://oatd.org/oatd/record?record=
oai%5C:purl.stanford.edu%5C:tc922qd0500 (visited on 01/08/2015).

[VS08] Alejandro Veen and Frederic P Schoenberg. “Estimation of Space–
Time Branching Process Models in Seismology Using an EM–Type
Algorithm”. In: Journal of the American Statistical Association 103.482
(June 1, 2008), pp. 614–624. issn: 0162-1459. doi: 10.1198/016214508000000148.
url: http://www.stat.ucla.edu/~frederic/papers/em.pdf (vis-
ited on 01/19/2015).

[Wer+10] Maximilian J Werner et al. “Adaptively smoothed seismicity earth-
quake forecasts for Italy”. In: Annals of Geophysics 3 (Nov. 5, 2010).
issn: 2037416X. doi: 10.4401/ag-4839. url: http://www.annalsofgeophysics.
eu/index.php/annals/article/view/4839 (visited on 02/24/2015).

[Whi11] Ben Whitelaw. “Almost all YouTube views come from just 30% of
films”. In: (Apr. 20, 2011). url: http://www.telegraph.co.uk/
technology/news/8464418/Almost- all- YouTube- views- come-

from-just-30-of-films.html (visited on 03/16/2015).

105

http://arxiv.org/abs/0903.3217
http://arxiv.org/abs/0903.3217
http://dx.doi.org/10.1080/03610927808827599
http://dx.doi.org/10.1080/03610927808827599
http://dx.doi.org/10.1080/03610927808827599
http://dx.doi.org/10.1016/0041-5553(65)90150-3
http://dx.doi.org/10.1016/0041-5553(65)90150-3
http://www.sciencedirect.com/science/article/pii/0041555365901503
http://www.sciencedirect.com/science/article/pii/0041555365901503
http://statweb.stanford.edu/~tibs/lasso/lasso.pdf
http://statweb.stanford.edu/~tibs/lasso/lasso.pdf
http://eprints2008.lib.hokudai.ac.jp/dspace/handle/2115/8683
http://eprints2008.lib.hokudai.ac.jp/dspace/handle/2115/8683
http://oatd.org/oatd/record?record=oai%5C:purl.stanford.edu%5C:tc922qd0500
http://oatd.org/oatd/record?record=oai%5C:purl.stanford.edu%5C:tc922qd0500
http://dx.doi.org/10.1198/016214508000000148
http://www.stat.ucla.edu/~frederic/papers/em.pdf
http://dx.doi.org/10.4401/ag-4839
http://www.annalsofgeophysics.eu/index.php/annals/article/view/4839
http://www.annalsofgeophysics.eu/index.php/annals/article/view/4839
http://www.telegraph.co.uk/technology/news/8464418/Almost-all-YouTube-views-come-from-just-30-of-films.html
http://www.telegraph.co.uk/technology/news/8464418/Almost-all-YouTube-views-come-from-just-30-of-films.html
http://www.telegraph.co.uk/technology/news/8464418/Almost-all-YouTube-views-come-from-just-30-of-films.html


Bibliography

[WL08] Tong Tong Wu and Kenneth Lange. “Coordinate descent algorithms
for lasso penalized regression”. In: The Annals of Applied Statistics 2.1
(Mar. 2008), pp. 224–244. issn: 1932-6157, 1941-7330. doi: 10.1214/
07-AOAS147. url: http://arxiv.org/abs/0803.3876 (visited on
03/20/2015).

[WR09] Larry Wasserman and Kathryn Roeder. “High-dimensional variable
selection”. In: Annals of statistics 37.5A (Jan. 1, 2009), pp. 2178–2201.
issn: 0090-5364. doi: 10.1214/08-AOS646. pmid: 19784398. url:
http : / / www . ncbi . nlm . nih . gov / pmc / articles / PMC2752029/

(visited on 03/27/2015).
[WT90] Greg C. G. Wei and Martin A. Tanner. “A Monte Carlo Implemen-

tation of the EM Algorithm and the Poor Man’s Data Augmen-
tation Algorithms”. In: Journal of the American Statistical Association
85.411 (Sept. 1, 1990), pp. 699–704. issn: 0162-1459. doi: 10.1080/
01621459.1990.10474930. url: http://www.biostat.jhsph.edu/
~rpeng / biostat778 / papers / wei - tanner - 1990 . pdf (visited on
03/05/2015).

[Wu83] C. F. Jeff Wu. “On the Convergence Properties of the EM Algo-
rithm”. In: The Annals of Statistics 11.1 (Mar. 1983), pp. 95–103. issn:
0090-5364, 2168-8966. doi: 10.1214/aos/1176346060. url: http:
//www.stanford.edu/class/ee378b/papers/wu-em.pdf (visited on
02/11/2015).

[You14] Youtube. We never thought a video would be watched in numbers greater
than a 32-bit integer. Dec. 1, 2014. url: https://plus.google.com/
+youtube/posts/BUXfdWqu86Q (visited on 04/13/2015).

[ZHT07] Hui Zou, Trevor Hastie, and Robert Tibshirani. “On the “degrees
of freedom” of the lasso”. In: The Annals of Statistics 35.5 (Oct. 2007),
pp. 2173–2192. issn: 0090-5364, 2168-8966. doi: 10.1214/009053607000000127.
url: http://projecteuclid.org/euclid.aos/1194461726 (visited
on 03/18/2015).

[Zhu13] Lingjiong Zhu. “Moderate deviations for Hawkes processes”. In: Statis-
tics & Probability Letters 83.3 (Mar. 2013), pp. 885–890. issn: 0167-
7152. doi: 10.1016/j.spl.2012.12.011. url: https://ideas.
repec.org/a/eee/stapro/v83y2013i3p885-890.html (visited on
02/16/2015).

[ZZ14] Cun-Hui Zhang and Stephanie S. Zhang. “Confidence intervals for
low dimensional parameters in high dimensional linear models”. In:
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
76.1 (2014), pp. 217–242. issn: 1467-9868. doi: 10.1111/rssb.12026.
url: http : / / onlinelibrary . wiley . com / doi / 10 . 1111 / rssb .
12026/abstract (visited on 12/18/2014).

106

http://dx.doi.org/10.1214/07-AOAS147
http://dx.doi.org/10.1214/07-AOAS147
http://arxiv.org/abs/0803.3876
http://dx.doi.org/10.1214/08-AOS646
19784398
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752029/
http://dx.doi.org/10.1080/01621459.1990.10474930
http://dx.doi.org/10.1080/01621459.1990.10474930
http://www.biostat.jhsph.edu/~rpeng/biostat778/papers/wei-tanner-1990.pdf
http://www.biostat.jhsph.edu/~rpeng/biostat778/papers/wei-tanner-1990.pdf
http://dx.doi.org/10.1214/aos/1176346060
http://www.stanford.edu/class/ee378b/papers/wu-em.pdf
http://www.stanford.edu/class/ee378b/papers/wu-em.pdf
https://plus.google.com/+youtube/posts/BUXfdWqu86Q
https://plus.google.com/+youtube/posts/BUXfdWqu86Q
http://dx.doi.org/10.1214/009053607000000127
http://projecteuclid.org/euclid.aos/1194461726
http://dx.doi.org/10.1016/j.spl.2012.12.011
https://ideas.repec.org/a/eee/stapro/v83y2013i3p885-890.html
https://ideas.repec.org/a/eee/stapro/v83y2013i3p885-890.html
http://dx.doi.org/10.1111/rssb.12026
http://onlinelibrary.wiley.com/doi/10.1111/rssb.12026/abstract
http://onlinelibrary.wiley.com/doi/10.1111/rssb.12026/abstract


 
 
 
Declaration of originality 
 
The  signed  declaration  of  originality  is  a  component  of  every  semester  paper,  Bachelor’s  thesis,  
Master’s  thesis  and  any  other  degree  paper  undertaken  during  the  course  of  studies,  including  the  
respective electronic versions. 
 
Lecturers may also require a declaration of originality for other written papers compiled for their 
courses. 
__________________________________________________________________________ 
 
I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it 
in my own words. Parts excepted are corrections of form and content by the supervisor. 
 
Title of work (in block letters): 
 

 
 
Authored by (in block letters): 
For papers written by groups the names of all authors are required. 
 
Name(s): First name(s): 
   

   

   

   

   

 
With my signature I confirm that 
− I have  committed  none  of  the  forms  of  plagiarism  described  in  the  ‘Citation etiquette’  information  

sheet. 
− I have documented all methods, data and processes truthfully. 
− I have not manipulated any data. 
− I have mentioned all persons who were significant facilitators of the work. 

 
I am aware that the work may be screened electronically for plagiarism. 
 
Place, date Signature(s) 
   

   

   

   

   

  
 For papers written by groups the names of all authors are 

required. Their signatures collectively guarantee the entire 
content of the written paper. 


	Contents
	Background
	Fluctuation in social systems
	Youtube

	The data
	Nomenclature
	Outliers and Dragon Kings
	Lead Balloons
	Hypotheses

	A quick introduction to point process theory
	Univariate temporal point processes
	Conditional intensity processes
	Kernels
	Exponential kernel
	``Basic'' power-law kernel families

	The Hawkes Process in action

	Estimation of parameters of the homogeneous Hawkes model
	Estimating parameters from occurrence timestamps
	Estimation from summary statistics
	Model selection
	The Akaike Information Criterion
	General difficulties with AIC

	Experimental hypotheses
	Model selection with large data sets
	Multiple testing considerations
	Goodness-of-fit tests


	Simulations for the homogenous estimator
	Point estimates
	Model selection
	Empirical validation of estimators of inhomogenous data

	Results for the homogeneous Hawkes model
	Further work
	Expanding the candidate set
	Summary data estimation
	Goodness of fit


	Estimating branching effects for inhomogeneous processes
	Semiparametric kernel density estimation
	The algorithm
	Model selection

	Simulations for the inhomogeneous estimator
	Empirical validation on simulated data

	Results for the inhomogeneous Hawkes model
	Single time series detailed analysis
	Aggregate analysis

	Conclusions
	Technical Notes
	Data extraction and cleaning
	On the complexity of the simplest possible thing

	Bibliography

