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Abstract

This work sets the stage for determining the degree of self-excitation in Twitter by treating
tweets triggering retweets as a self-excited Hawkes process. In this context the degree of
self-excitation can be regarded as the criticality of the system of users tweeting about a
certain topic, in our case the student protests in Austria in 2009. Ultimately, this could
serve as a precursor for such protests. The key ingredients of the Hawkes model are
the unconditional intensity for the arrival of the exo-events and the memory kernel for
triggering endo-events (retweets). The former could be detrended via a smoothing spline
fit per day. Via causally linking tweets and retweets, the latter was found to be of long
memory with a power law fit resulting in a scaling parameter of α ∈ [1.538; 1.856]. In the
calm aftermath of the protests the memory became shorter, i.e. α = 2.237 ± 0.047. In
order to actually be able to quantify the degree of self-excitation, key criteria for the data
and further steps have been identified.
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1 Motivation

In complex systems, like human societies or neuronal networks, a large number of strongly
interacting subsystems or agents is crucial for the emergence of counter-intuitive phenom-
ena from within the system. These internal feedback mechanisms are complemented by
external impacts on the system, that allow the system to leave its state of equilibrium
and to continuously evolve and adapt to those external impacts. This interplay of internal
and external or endogenous and exogenous forces is of great interest in understanding the
dynamics of information in complex systems. One of the crucial questions is whether it is
possible to separate and quantify the influence of those endo- and exo-factors. Being able to
quantify the former, gives insight into the robustness of a system to external influences. A
system in which external excitations are coupled to and enhanced by internal self-excitation
is likely to be in a more fragile or critical state. Hence, the degree of self-excitation can
be regarded as a measure of the criticality of a system. An early example of this can be
found in the physics of earthquakes. Here aftershocks (endogenous) are triggered by shocks
(exogenous). If sufficiently many aftershocks per shock are set off, the system is in a critical
state: a series of sudden, strong shocks, i.e. an earthquake, can occur.

In [1] V. Filimonov and D. Sornette proposed a method of quantitative estimation of
the impact of the self-excitation, based on the so-called “self-excited conditional Hawkes
process”, a generalization of a Poisson process which effectively combines exogenous influ-
ences with endogenous dynamics. This method was applied on data of financial markets
in [1]. As shocks trigger aftershocks, in the financial context price changes can trigger
price changes. A critical state would then be characterized by sufficiently many internally
triggered price changes, i.e. a high volatility of the market, which may lead to financial
crashes.

This paper tackles the question of whether it is possible to apply this concept and
method to the dynamics of information in social networks. Concretely, we apply the method
proposed in [1] on Twitter data. Twitter is a main tool of self-organization of social groups,
especially during riots and unstable periods. Here messages or “tweets” are publically
visible and may be re-posted and thus spread by other users as so-called “retweets.” In
allusion to the terminology used in the Hawkes model, we will refer to this re-posting as
“mother tweets” triggering retweets. According to the scheme above a critical state would
be marked by a high retweeting activity. Since we are limiting ourselves to a specific topic,
i.e. “hash-tag” of tweets, this criticality would refer to that specific topic only. Loosely
speaking, one could then call criticality in this context “emotional ladenness” with regards
to a certain e.g. political topic. This emotional ladenness could, if supercritical, manifest in
protests or riots outside of Twitter. When speaking of the emotion anger, at some point too
much accumulated anger will be released and expressed in violence, for example. It has to
be noted, though, that no semantic analysis of the actual (emotional) content of the tweet
is applied in this method. Merely the connections of tweets triggering retweets triggering
retweets, are traced over time such that the degree of self-excitation or criticality over
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time can be investigated. Here it is of particular interest whether there are supercritical
phases that could be matched to actual emergent physical protest. Ultimately, detecting
criticality with regards to certain topics as necessary ingredient for protests could become
a precursor for such.

In this paper, the first steps are performed towards a methodology determining the
criticality of the system of users tweeting about a certain topic. A key step in doing so is
to determine the memory of the system, i.e. how long information is kept in the system and
able to contribute to triggering future tweets. Intuitively, a long memory of tweets would
add to the tendency to criticality of the system. The memory of the system enters the
above-mentioned methodology as the “memory kernel” of the self-excited Hawkes process,
which is described in detail in the next section.

2 Theoretical Background

2.1 Self-Excited Hawkes Processes

The process of tweeting can be regarded as a discontinuous point process, in which events,
i.e. tweets, arrive with a certain rate. This arrival rate is generally referred to as the
intensity λ of the process and takes different functional forms. The simplest point process
is the Poisson process where the intensity is a simple constant. This means that events
occur homogeneously, i.e. independent of each other. However, the intensity of an inho-
mogenous Poisson process has further dependencies, for example time. The self-excited
Hawkes process is a generalization of an inhomogeneous Poisson process, which not only
depends on time but als on the history of the process [2]. The intensity of the self-excited
Hawkes process can be written as follows

λ(t) = µ(t) +

∫ t

−∞
φ(t− s) dN(s) (1)

Here the first addend µ(t) denotes the background or unconditional intensity describing
the arrival rate of exogenous events (exo-events). Due to the time-dependence, µ(t) alone
would make a simple inhomogeneous Poisson process. The second addend refers to the
intensity conditional on the history of the process, ranging from −∞ to the present t
via the integrational variable s. The integrand φ(t − s) denotes the so-called memory
kernel which describes the positive effect of past events at s on the current instantaneous
intensity at t of the endogenous events (endo-events) [3]. Generally, the further events at
t and s are apart, the smaller φ will be, which corresponds to more distant events being
“remembered” less by the system. Hence, the conditional intensity can be regarded as a
sum of the instantaneous number of events having happened at s, i.e. dN(s), weighted by
their influence on the present events at t via the memory kernel. Note that, even though
we are dealing with discrete events, we are keeping the integral form for more convenient
handling in the following. Considering the precision of the data of seconds and a total
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duration of weeks and months, this is a sensible approximation. Assuming stationarity of
the process as well as requiring that µ(t) = µ, an average total intensity Λ can be calculated
by taking the expectation value on both sides of equation 1 [4].

Λ = 〈λ(t)〉 =

〈
µ+

∫ t

−∞
φ(t− s) dN(s)

〉
=

= 〈µ〉+

∫ t

−∞
φ(t− s) 〈λ(s)〉 ds =

= µ+ Λ

∫ ∞
0
φ(τ) dτ. (2)

Here the fact that dN(s)/ds = λ(s) was used. To obtain the last equality the substi-
tution τ := t − s was performed. The interpretation of τ would then be the time it took
for an endo-event to be triggered after the arrival of the triggering event. In our case of
Twitter, this would correspond to the time between tweet and retweet, i.e. the response
time. Now using the definition,

n :=

∫ ∞
0
φ(τ) dτ, (3)

the average intensity can finally be written as

Λ =
µ

1− n
. (4)

Since we were requiring that the history of events must have a positive effect on the
present intensity, this equation is meaningful only for the case of n < 1, such that Λ ≥ µ.
When n = 0, the process becomes independent of history and thus a simple inhomogenous
Poisson process. For the case of n > 1, the intensity as defined by equation 1 may explode
[3]. The case of n = 1 can therefore be regarded as the critical case, separating the
subcritical and the supercritical regime.

Now what is the meaning of n? As equation 3 shows, a memory kernel with long memory
would result in a larger value for n. As explained before such a memory kernel results in
an increased instantaneous intensity. The parameter n must therefore be related to how
many events a single event is likely to trigger in the future. The entirety of events triggering
further events can be regarded as a branching process. In fact, it is well-known that Hawkes
processes can be mapped into such a branching processes, in which all events are either
exogenous (“mother”) or endogenous (“daughter”) events of different generations. In this
language a mother event would trigger a daughter event and so on, forming a “family tree.”
Now n would indeed be the average number of first-generation daughters of a single mother
[1]. With this interpretation and the stationarity assumption, we can calculate an average
endogenous (or self-excited or conditional) intenstity Λendo. The following calculation is
mostly adopted from [5]. Generally, the intensity of i-th order events can be written as
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λi(t) =

∫ t

−∞
λi−1(s)φ(t− s) ds, i ∈ N, (5)

where λ0(t) ≡ µ(t). Now if we require µ(t) = µ, as we have already done in equation 2,
equation 5 would for the case of the intensity of first-generation daughter events simplify to
λ1 = nµ. The intensity of the second-generation daughter events would likewise be given
by λ2 = nλ1 = n2µ. Continuing this to inifinity we get for the additional requirement of
n < 1 the following.

Λendo =

∞∑
i=1

λi = µ

∞∑
i=1

ni

Λendo = µ
n

1− n
(6)

In equation 4 we have calculated the total average intensity, for which Λ = µ + Λendo
must hold. Taking the result from equation 6, this is indeed the case. Now we can calculate
the overall proportion of endogenous events to all events.

Λendo
Λ

=
n/(1− n)

1/(1− n)
= n (7)

Therefore in the subcritical regime (n < 1) and in the case of a constant unconditional
intensity [µ(t) = µ], the branching ratio n as average number of first-generation daughters
per mother can be interpreted as the proportion of endogenous events among all events.
The branching ratio thus is a direct quantitative estimate of the degree of endogeneity, i.e.
self-excitation.

As mentioned in section 1 this paper aims to set the stage for determining the criticality
in the system of users tweeting about a certain topic. For this, a major part of this work will
be concerned with detrending the data such that the condition of a constant unconditional
intensity is fulfilled. The resulting simpler form of the Hawkes process will allow a more
practical numerical treatment of its intensity. The theory behind this step will be explained
in the subsection 2.3. In a next step, the other major part will be on determining the
memory kernel φ(τ). There are in principle many functional forms, the most common
being an exponential kernel of shorter memory like it was used in [1], i.e. αe−βτ , and a

power law kernel of longer memory like it was used in [3], i.e. ϕ0
τεmin
τ1+ε

(Here we do not
include a short-time cutoff, though). In both versions α and ϕ0 are scale parameters, β
and ε are shape parameters. Note that in this work we will use a different notation for these
parameters as will be explained in the next subsection 2.2. However, τmin as lower bound
paremeter will be kept. In order to determine the memory kernel, τ must be extracted
and sampled from the data. We need to get these response times by connecting “mother
tweets” and retweets:
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τj = tiRT − tiMT , (8)

where tiRT and tiMT denote the time stamps of the retweet and its mother tweet,
respectively. Obtaining those is not trivial and will fill a major part of this work. While in
the context of financial markets or earth quakes it is highly impractical if not impossible
to make a causal link between mother and daughter event, such that the functional form
has to be basically guessed, in the context of Twitter there actually is the possibility to
make this causal link through various means to be explained in methods section 4. We are
therefore in a very good position to determine a well-founded memory kernel.

All in all in this work the following is performed. Firstly, the unconditional intensity
µ(t) is determined in order to turn it into µ = const. via detrending. Secondly, the
conditional intensity, i.e. the memory kernel φ(τ) is determined. This sets the stage for
further investigations of the branching ratio n, which is, however, not performed in this
work.

2.2 Power Laws

In [1] the memory kernel was chosen to be an exponential distribution. However, in this
work we are dealing with a longer memory of the system, which will be empirically shown
in section 5.2.1. In this part of the theory section the power law (PL) distribution that
will be used to fit the data, will be elaborated on. In principle there are of course many
different kinds of PL and other distributions that are heavy-tailled. However, focussing on
the tails of the distribution, the PL distribution is a very common and simple one, giving
a good first idea for further distributions to be tested.

The following explanations and arguments in this subsection are adopted from [6], which
provides a more robust measure to determine PL distributions in empirical data. Though
the variable whose distribution we are interested in, i.e. the response time τ , is discrete
due to the precision of measurement (seconds), we treat it as continuous variable for three
reasons. Firstly, response time is in fact continuous and only the measurement makes it
discrete. Secondly, we are considering very large response times up to the order of months
in comparison to which seconds are very small. Thirdly, the mathematical treatment is
much simpler, though still providing a good approximation.

Now, a continuous PL distribution of τ is described by a probability density function
(PDF) p(τ) such that

p(τ)dτ = Pr(τ ≤ T < τ + dτ) = Cτ−αdτ, (9)

where α is scaling parameter, T is the observed value of τ and C is the normalization
constant. The latter will take care of not allowing the density to diverge at τ → 0 via
including a lower bound τmin for τ . Using the normalization condition of

∫∞
τmin

p(τ) dτ = 1
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as well as requiring α > 1, the functional of form of the PL investigated here turns out to
be

p(τ) =
α− 1

τmin

(
τ

τmin

)−α
. (10)

Thus in this work some of the main results will be the scaling parameter α and the
lower bound τmin along with the respective errors. A larger α corresponds to a faster decay
of τ , in the context of the memory kernel a shorter memory. Note that the case of α ≤ 1
is not normalizable and as such cannot occur in nature. A well-defined mean only exists
if α > 2. Often times it is useful to consider the complementary cumulatative distribution
function (CCDF) of a PDF. The CCDF which will be denoted as P (τ) is defined as

P (τ) = Pr(T ≤ τ) = 1− Pr(T ≥ τ). (11)

In our case with requiring a lower bound, the CCDF turns out to be

P (τ) = 1−
∫ τ

τmin

p(τ ′) dτ ′ =

(
τ

τmin

)−α+1

. (12)

In this work the fits for the extraction of the PL parameters and errors will be performed
on the CCDFs according to the procedure suggested by [6], which were implemented using
A. Clauset’s codes on [7]. Note that according to this procedure, for a given τmin the
scaling parameter α can be approximated via

α = 1 + n

[
n∑
i=1

ln
τi
τmin

]−1
, (13)

where τi are the observed values of the response times and the approximation of the true
α becomes better for larger n, i.e. more data points. Equation 13 is equivalent to the
well-known Hill estimator [8].

2.3 Detrending per Integration

In subsection 2.1 it was argued that the unconditional intensity µ needs to be made constant
via detrending such that we can use the branching ratio n as measure of the degree of self-
excitation of the system. Generally, if we were to not perform detrending on the event rate
R(t), a variation of this rate would always be attributed to the shape of the memory kernel
of the Hawkes process, i.e. exo-events treated as endo-events. This would of course result
in a wrong memory kernel with a generally higher memory. Therefore in this section the
chosen principle procedure for detrending will be elaborated on.

Detrending “transforms” the time the stamps. That means with unaltered or original
time stamps for the events the respective event rate will follow a trend line. Transformed
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time stamps for the same events will result in a constant trend line, i.e. no trend. Intensity
deviations from this trend line will then be due to endogenous processes. Detrending is a
method that works backwards from a detected trend in or order to obtain the transformed
times. In this work unaltered time stamps will be denoted as ti whereas transformed time
stamps will be denoted as t∗i . In many other works the latter is denoted as τi. Here,
however, this is reserved for the response times τj , where j indicates that the number of
response times does not generally equal the number of time stamps (different subscript i).
Analogously, τ∗j denotes the transformed response times. This transformation generally
looks like

t∗i =

∫ ti

0
λ(s) ds, (14)

where it becomes clear that the process of detrending or time transformation is a 1:1-
mapping such that the number of elements in {t∗i } is the same as in {ti}. It is well-known
that the respective counting process N({ti}) will be a homogeneous Poisson process with
constant intensity λ = 1, i.e. the complete process has been detrended [4]. Moreover, the
distribution of interevent times will behave like P (∆t∗) = exp(−∆t∗), where ∆t∗ = t∗i+1−t∗i ,
for i = 1...(N − 1) [3]. Checking whether these two corollaries hold, give insight into
whether the chosen form of λ(t) can actually produce the observed point process. This
has, for example, been applied in [3] and [9].

On the contrary, in this work we do not want the complete process to be detrended in
order to check those two corollaries. Instead we want to detrend the unconditional part of
the process such that µ = const. Moreover, we want to ensure that the transformed times

are matched to the scale of the unaltered time stamps, i.e. t∗max
!

= tmax. Therefore, the
transformation was chosen to be of the form

t∗i =
1

K

∫ ti

0
µ(s) ds, (15)

where K = t∗max/tmax is the normalization factor, such that the respective point process
is homogenous with µ = f(K) = const. The challenge of this procedure lies in finding a
good form of µ(t) which is per definition based on exo-events only. The following section
on the data set used in this work will reveal that it is not trivial to discern between exo-
and endo-events.

3 The Data Sets

In order to tackle the questions posed in the previous sections, an appropriate data set
had to be chosen which not only has a high tweeting and retweeting activity but which
also captures a period of dissatisfaction and protests of the Twitter users. The student
protests in Austria in 2009 were one of the largest protests on education in recent years
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and for the first time mainly organized by social media such as Twitter and Facebook [10].
In times where most relevant information and news are available on and thus shareable
via the internet, using social media to connect and coordinate grassroots movements have
become very popular [11].

When using Twitter as means to organize a group and provide relevant information,
so-called hash-tags are used to label the tweets (multiple hash-tags are possible)[12]. In the
case of the student protests of Austria in 2009 the hash-tag “#unibrennt” (engl.: university
burns) was primarily used along with others such as “#unsereuni (engl.: our university)”.
In this work the data sets comprise tweets labelled with the former, more prominent hash-
tag. Each tweet can come with a host of meta-data, most notably the author, time stamp,
geo-tag, and retweet data.

There are many types of tweets triggered by different mechanisms. First and foremost
there are original tweets that may or may not be re-posted by other users as so-called
“retweets (RTs)” [13]. In allusion to the terminology used in the Hawkes model with
exogenous “mother events” and endogenous “daughter events,” we will call original tweets
“mother tweets (MTs).” Strictly speaking, though, mother tweets do not necessarily all
have to be exogenous events. They themselves can in principle be triggered by truly
exogenous events, such as relevant news releases in the media. The definition of exo-
events as opposed to endo-events is very crucial and not straight-forward as the system
boundaries are not clear-cut. For simplicity, we make a basic assumption in this work: The
vast majority of MTs are true exo-events. It is highly impractical if not impossible to trace
MTs back to a common source or trigger e.g. in the media. We are therefore in principle
able to determine the unconditional intensity as stated in equation 15 well enough, being
able to draw conclusions on the exo-to-endo process in Twitter. On the contrary, there is
no ambiguity in RTs as they are per definition endo-events. RTs are meant to multiply
and spread content quickly to the followers of the retweeting user. There are several ways
to perform retweeting, which require different methods of detecting them and linking them
back to their MTs. This will be described in detail in the methods section 4.

There are two data sets examined in this work. The data set focussed on in this work
dates back to the high-activity period of the student protest, consisting of 51,114 tweets
in 33 days. Since this seems to be a rather limited time window that could potentially
exhibit finite-size effects, a much longer period of 939 days, was analyzed as well. This
second data set, however, is logically of a low-activity period (19,265 tweets), reaching up
to present times. Both of these data sets will be further characterized in the following
two subsections. Only in the following section 4 thereafter, it will be described how the
respective data sets were actually analyzed.

3.1 Past Data

The past data set, being the high-activity set, is of actual interest in this work. It comprises
51,114 tweets of which about 15%, i.e. 7,740, are RTs. How these were detected is described
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in detail in section 4.1.1. The time period in which those were tweeted goes from October
23, 2009 until November 24, 2009, which makes 31 days in which it was tweeted through
out the entire day. Each tweet in the data contained the following.

• Unique tweet-ID (assigned by Twitter)

• User/author

• Tweet itself (limited to 140 characters)

• Time stamp with a precision of seconds

• Geo-tag, i.e. longitude and latitude (if applicable)

For the self-excited Hawkes model the time stamps of the event are of main interest as
stated in section 2.1. The author and his/her tweet become important when establishing
the links between MT and RT. The other two pieces of information are not relevant in
this work but could be used for further analyses, also including spatial on top of temporal
dimensions. The unique tweet-ID could be used to obtain further information on the tweet,
using the Twitter API.

The way retweeting was performed in this data set, has important implications on the
memory kernel of the Hawkes model. This becomes evident, when thinking of the case of
a RT being retweeted, i.e.

MTi → RT 1
i → RT 2

i → ...RT ki , k ∈ N

Here i denotes a unique identifier of the MT, e.g. the unique tweet-ID. Now in principle,
it would be possible to either link RT ki to its immediate MT, i.e. RT k−1i , or to the original
MT, i.e. MTi. In the latter case this would result in a renormalized memory kernel, in
the former in a bare memory kernel. For the same process both kernels will follow the
same law but have different exponents, i.e. bare versus renormalized kernels [14]. Since
the renormalized kernel captures higher-order descendants, the memory is larger, which
manifests in the altered scaling exponent, i.e. smaller α. In principle, the retweeter is free
to alter the MT, e.g. adding personal comments or additional hash-tags. In the past data
retweeting was performed by simply copying and pasting the MT and manually adding
a reference to the original tweeter, i.e. “RT @username.” However, it can also be the
case that several of these references are given, i.e. RTs of RTs, which make it difficult to
identify the most original MT. We refer to this type of retweeting via copying and pasting
as “manual RTs.” Now Twitter is not able to automatically draw this connection between
MT and manual RT. However, by text analysis some MT can in principle be found but
the generation of the MT remains not absolutely certain. Since credit is usually given to
the most original tweeter [15], it is sensible to assume a renormalized memory kernel for
the purpose of further analyses.
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3.2 Present Data

One would intuitively assume that in such a fast-lived platform like Twitter the memory
of the system is rather short, i.e. RTs occur in a timely manner, like weeks at most.
However, in order to really check for this, a much larger time period of tweets was also
analyzed. The “present data” comprises 939 days from November 30, 2010 until May 16,
2013, a very long time span in which virtually all extreme events, i.e. very late RTs,
should be captured. There are 19,265 tweets and 8,213 RTs (ca. 43%) in this data set.
Obviously, this is a very low-activity with respect to the past data since the main protests
have long been finished. The tweet-IDs were obtained manually from the Twitter web-
site by parsing the html-file of the search results of tweets with the hash-tag #unibrennt
(https://twitter.com/search?q=%23unibrennt). These were then fed into the online
Twitter API via a Python script (t get.py by V. Filimonov) in order to extract further
information on those tweets. Each tweet obtained this way contained the following.

• Unique tweet-ID (assigned by Twitter)

• Unique tweet-ID of MT (if applicable)

• Time stamp with a precision of seconds

• Unique user-ID (2400 users)

• Number of RTs (if not RT itself)

The form of the data indicates that there is no need to employ a textual analysis for
finding MTs of RTs because this information is already provided. As stated in the previous
subsection, however, Twitter is not able to capture manual RTs. And indeed, those are
not reflected in the data. Yet there is a different kind of RTs recorded, i.e. the “automatic
RTs,” which uses the in-built function of Twitter to retweet any tweet. By using this
function the RT of any generation will always refer back to the original MT. Hence, the
resulting memory kernel will strictly be renormalized in this data set.

Both basic types of retweeting, i.e. manual and automatic RTs, are widely used. Which
type is chosen by the retweeter depends on the MT. If the retweeter wants the MT to go
viral, it is more conducive to use automatic retweeting. If the retweeter wants to add
personal comments or actively engage with the mother tweeter, manual RTs are more
conducive. In this work we assume that both types of retweeting follow the same mechanism
and it is therefore legitimate to use only manual RTs for the past data and automatic RTs
for the present data. This assumption, however, needs more rigorous justification and it
would be beneficial to combine the approaches of detecting both manual and automatic RTs
for each of the data sets. How these approaches are realized, is explained in the following
section.
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4 Methods

4.1 Extracting Response Times

The key variable for investigating the memory of the system is the response time, i.e. the
time needed for a RT to follow its MT. Unlike in [1], with Twitter data we are able to
causally link mother and daughter events, i.e. RTs and MTs. This puts us in a good posi-
tion to robustly determine the memory kernel of the Hawkes process. The memory kernel
will simply be the law underlying the responses time distribution. How this underlying law
is found is based on section 2.2, in particular on [6].

The main script MainScript.m processes both past and present data. In the follow-
ing two subsections the respective structures and called functions are explained with the
help of pseudo-codes. All codes used can be found on the author’s GitHub directory
(https://github.com/SRustler/Towards Quantyfing Self-Excitation in Twitter Messaging).
In all subsections the following notation is employed: t refers to time stamps, while τ refers
to response times. Adding an asterix ∗ denotes a variable transformed via detrending.

4.1.1 Past Data

As described in section 3.1 textual analysis of the tweets has to be employed in order to
perform the MT-RT-linking and to then obtain the response times. This textual analysis
is based on the assumption that the retweeting convention is predominantly followed. In
this convention a RT is generally built up as follows:

“[addition 1] RT @[retweeted user]: [MT] [addition 2]” (or space instead of semicolon)

RTs are then identified by looking for the string “RT @” in the tweet. Then the MT,
[MT], and its user, [retweeted user], are reconstructed in order to find the MT together
with its time stamp in the data. When trying to link the reconstructed MT with the actual
MT, the crucial criterion is the so-called Levenshtein distance, a variable that quantifies
the disagreement between two strings of characters. The Levenshtein distance between two
strings of characters is defined as the minimum number of single-character edits required
to change one string into the other [16]. So each time a character from the one string has to
be removed or added in order to get “closer” to the other string, the Levenshtein distance
is increased by 1. For example the Levenshtein distance between ‘ABCD’ and ‘DABC’
would be 2 because ‘D’ would first have to be removed and then added. Since tweets have
a maximum character length of 140, the maximal Levenshtein distance is also 140. Now
one could expect that there is no need to allow for a slight disagreement, i.e. a nonzero
Levenshtein distance, between reconstructed and actual MT. However, as stated earlier,
the retweeter can in principle change the MT. This is likely to happen if, for example, only
certain parts of the MT are relevant. Hence, allowing for a variable Levenshtein distance
allows for detecting more MT-RT-links. It is not obvious what Levenshtein distance is the
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optimal one. On the one hand, a too low Levenshtein distance might be too restrictive and
dramatically reduce the number of MT-RT-links found and thus response times obtained,
such that the statistical analysis of the latter becomes weaker. On the other hand, a too
high Levenshtein distance might falsely attribute some later tweet as MT to a detected RT,
skewing the response time distribution. Another peculiarity is the following. Consider the
reconstructed MT “[Message] [some URL 2]” and its potential MT “[Some URL 1][Mes-
sage]”. Since the actual core message is the same in both tweets ([Message]), the potential
MT can in fact very well be the actual MT. However, the Levenshtein distance will be very
high as first [some URL 1] would have to be removed and then [some URL 2] would have
to be added character by character. So a high Levenshtein distance does not necessarily
mean that the linked MT and RT are very different. This is another reason that justifies
using not only nonzero but also very high Levenshtein distances.

For all these reasons, when analyzing the past data, the response time distributions of
the full range Levenshtein distances ` ∈ [0; 140], will be examined in this work in hope to
find an optimal Levenshtein distance for MT-RT-linking.

The overall structure of the script part extracting the response times from the past
data is as follows. Called functions are explained as pseudo codes in the appendix.

1. Get original time stamps of all tweets, i.e. {ti}.

2. For different Levenshtein distances `: Detect and link RTs with MTs to get response
times via get taus past.m:

∀` : {t`,i} → {τ`,j}

3. Detrend original time stamps to get transformed time stamps via detrend anyFit.m

{ti} → {t∗i }

4. Process transformed time stamps {t∗i }

• For different Levenshtein distances `, acquire response times via ts2taus.m:

{t∗`,i} → {τ∗`,j}

• For different Levenshtein distances `, perform power law fit via plfit.m and
plvar.m.

P`(τ)→ α`, τmin,`

• Plot and compare response times for detrended versus undetrended and ` = 0
versus ` = 140.
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4.1.2 Present Data

Unlike in the past data in the present data no textual analysis can be applied and does
not have to be. As described in section 3.2,the MT-RT-linking is unambiguous and always
referring back to the most original MT. Consequently, the response time ditribution will
be the renormalized memory kernel. In addition, a user specific analysis is performed
for this data. The most active tweeters or retweeters can be isolated and their extreme,
longest, response times removed. The then re-aggregated response times of those uses can
be further analyzed.

The overall structure of the script part handling the past data is as follows. Called
functions are explained as pseudo codes in the appendix.

1. Get original time stamps of all tweets, i.e. {ti}.

2. Detrend original time stamps to get transformed time stamps via detrend anyFit.m:

{ti} → {t∗i }

3. Process transformed time stamps {t∗i }

• Detect and link RTs with MTs to get response times via get taus pres.m:

{t∗i } → {τ∗j }

• Perform power law fit via plfit.m and plvar.m.

• Get response times of users via get user taus.m:

{τ∗i } → {τ∗user,j}

4. Process original time stamps {ti}

• Again use get taus pres.m and get user taus.m, however, on original time
stamps:

{ti} → {τj}

{τj} → {τuser,j}

• Perform power law fit via plfit.m and plvar.m.

P (τ∗)→ α, τ∗min

• Compare transformed and untransformed response times

{τ∗j } ↔ {τj}

{τ∗user,j} ↔ {τuser,j}
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4.2 Detrending Tweet Activity

As stated in section 2.3, the key challenge of detrending lies in determining the uncondi-
tional intensity µ(t) as given in equation 15. For this, ideally the events would be clearly
separable into immigrant and descendant events such that we could directly extract µ(t)
from the rate of purely immigrant tweets. However, as explained in section 3 it is only
possible to unambiguously identify the descendant events, i.e. the RTs. The MTs, on the
contrary, are comprised of both immigrant and descendant events (MTs triggered by true
exo-events like common news media releases), with the assumption that the former dom-
inates strongly. So it is not possible to perform a perfect fit on a purely immigrant rate.
However, the complete tweet rate R(t) can be filtered from most of its descendant events,
i.e. all the RTs. So the remaining MT rate RMT (t) might still have some descendant MTs
left but a “low-order” fit to RMT (t) should be able to approximate the behavior of the
unconditional intensity. The rationale of this low-order fit is based on the notion that an
external variation of the tweet rate, i.e. µ(t), should happen rather smoothly, i.e. not as
quickly as the variation due to endogenous mechanisms. In this sense the smaller number
of descendants would be contained in the higher orders of the fit.

This low-order fit was chosen to be a smoothing spline fit (MATLAB function
fit(x,y,’smoothingspline’)) with manual smoothing parameter. A spline fit per se or
spline interpolant would fit a piece-wise defined (cubic) polynomial through the data points.
A smoothing spline fit, on the contrary, is more appropriate for very noisy data because
it does not vary as fast as the data points but to a degree determined by a smoothing
parameter p ∈ [0; 1]. For p = 0 a least-squares straight-line fit to the data is produced,
while p = 1 produces a cubic spline interpolant [17]. In a way the smoothing parameter
specifies how low our low-order fit will be. The smoothing spline s is constructed for the
specified smoothing parameter p. The smoothing spline minimizes

p
∑
i

[yi − s(xi)]2 + (1− p)
∫ (

d2s

dx2

)2

dx. (16)

Figure 1 shows an instructive example of this smoothing spline fit of the MT rate
RMT (t), represented by the blue bars, with a smoothing parameter of p = 0.3. This value
was chosen by visual judgment for all days such that the degree of variation of the spline
fit could in principle be justified with a varying external daily tweet activity that is in line
with people’s day time activities (sleep, lunch breaks, after-work). See section 5.1 on the
results of µ(t)-fitting for further elaboration on this. The red bars represent the RTs of
each bin. The entire stacked bars thus make up the complete process R(t) to be detrended.
Now deviations of the tweet activity of the complete process with λ(t) from that of the
unconditional external process with µ(t) would be due to endogeneous mechanisms, i.e.
self-excitiation.

The pseudo code of detrend anyFit.m for obtaining the transformed times, is based
on section 2.3 and addresses all the considerations above. It can be found in the appendix.
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Figure 1: Instructive example of the spline fit of the unconditional intensity µ(t) of order
lower that the complete intensity λ(t) of higher variability and order. We assume that the
external tweet rate variation is much slower than the internal one. In this sense exogenous
events are expressed in the higher order deviations from the spline fit. The red curve
depicts the smoothing spline fit with smoothing parameter p = 0.3. The fit was performed
on the RT-filtered process RMT (t) (blue bars), whereas the detrending was performed on
the complete process R(t) including the RTs (red stacked bars).
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4.3 Power Law Fitting

Taking the logarithm on both sides of equation 10 shows that plotting lnp(τ) = −αlnτ +
const. of PL-distributed data will be of linear form in a log-log-plot. It is hence tempting
to create a histogram of the data and perform a linear fit of the data in a log-log-plot
with the slope being α. This, however, has several flaws, resulting in systematic offsets, as
explained in detail in [6]. Instead we will determine the PL parameters via a more reliable
method of combining maximum-likelihood-estimations with goodness-of-fit tests based on
the Kolmogorov-Smirnov statistic and likelihood ratios as proposed by [6]. The results of
these tests will be visualized not on the PDF but on the respective CCDF.

The MATLAB codes plfit.m and plvar.m estimate τmin and α, and respectively their
errors, according to the goodness-of-fit based method described in [6]. The log-likelihood L
can also be computed. From the description of the codes from [7]: “The fitting procedure
works as follows:

• For each possible choice of xmin [τmin], we estimate alpha via the method of maximum
likelihood, and calculate the Kolmogorov-Smirnov goodness-of-fit statistic D.

• We then select as our estimate of xmin [τmin], the value that gives the minimum value
D over all values of xmin [τmin].”

Here xmin denotes the lower bound of the random variable above which the power law is
fitted. In our case this is τ∗min. α denotes the power law exponent or scaling parameter as
already used in section 2.2. Note that α and its error will be displayed on the “linear” fit
of the CCDF-curve, which actually, however, has a slope of −α+ 1 because of the chosen
definition in equation 10.

5 Results

5.1 Unconditional Intensity

As argued in section 2.1, in order for n to be interpreted as branching ratio, we need
to make the history-independent part of the intensity, i.e. the unconditional intensity
µ(t), independent of time also. Again, this procedure is referred to as detrending the
unconditional intensity with respect to time. Logically, detrending requires to look for
trends. In this section we qualitatively examine the daily and weekly patterns of the tweet
activity or rate R(t) of the MTs only. Since what we aim for, are external variations,
i.e. variations that are attributed to natural variations unrelated to tweet activity from
within the system. Therefore RTs which are per definition endogenous events have to be
filtered out for this analysis. Only external variations can be reflected in the unconditional
intensity. We limit this examination to the past data because the present data spans over
a much larger time span with much more heterogeneous tweet activity. Hence the present
data is much less likely to exhibit overall trends.
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Figure 2: Calendar view of the daily tweet rate R(t) with bins of 10 min and spline fits. For
all days the axes dimensions are number of tweets versus day time in hours. Note that the
first and last day of the overall period, i.e. day 1 and 33, are omitted because they are only
partially filled with tweets. Neither a daily nor a weekly trend is visible.
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In figure 2 the daily tweet rates R(t) are displayed in a calendar view. This allows for
getting a first impression on the daily as well as weekly trends. The bins of the tweet rate
were chosen to be 10 min. This size turns out to both allow for sufficient detail and prevent
too many isolated bins, which is what we need for a meaningful spline fit. The spline fits
themselves are depicted in the daily plots, too, and were chosen to have a smoothing
parameter of 0.3, a value that fits to the detail determined by the bin size. Also note that
the range of the tweet rate is oriented at the maximum value per day and varies across
different days. When checking figure 2 across days, a rough general trend can be identified.
Firstly, the tweet activity is higher during the day and lower during the night, with the
minimum being between 3am and 6am. Secondly, there are several peaks throughout the
day, above all a lunch peak between 12pm and 2pm and an “afterwork” peak between 5pm
and 8pm. Overall it seems that tweet activity coincides with the daytime activity. However,
this is very crude and qualitative because the peaks and lows are tough to be attributed to
smaller ranges within the day. In fact, in this critical period of student protests, the exact
times of the peaks are likely to be also influenced by external factors such as news releases
etc. and not merely due to the regular daytime activity. Performing a spline fit against
the aggregated daily rates, which would be based on the asumption that the tweet activity
is reoccurring with a period of one day, therefore makes little sense. A weekly trend, on
the contrary, is less restrictive and sensible considering weekly schedules of students, who
arguably were the main contributors to the topic. First one can look at week days versus
weekends. What strikes here is that the overall tweet amount, i.e. area under the rate
curves, seems to be generally less during the weekends. Moreover, lunch peaks seem to
be less pronounced and “after-work” occurring later than during the week. Again, this is
crude and there are exceptions. However, it fits the previous observation that tweet activity
coincides with daytime activity. It’s even less restrictive when looking across certain days
of the week, i.e. columns of the calendar. However, again there is not any trend to be
found that is more distinct than what has been observed above. Hence, at this point it
can be concluded that the external variation of tweet activity is not predominant enough,
neither across days nor across weeks, to justify a spline fit of the unconditinal intensity
µ(t) performed on tweet rates aggregated over more than one day. Instead we perform
the spline fit on a daily basis, assuming that the daily unconditional intensity follows a
low-order fit as described in section 4.2.
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Figure 3: Examplary plots on the detrending of day 3. The first subplot contains the
complete tweet rate of this day R(t), while the spline fit was performed on the mother
tweet rate RMT (t). The second subplot shows the tweet rate after detrending R(t∗) and
the constant unconditional intensity µ. The third subplot compares the different counting
processes: the original complete process corresponds to the primitive function of λ(t), the
original unconditional process corresponds to the primitive function of the spline-fitted
µ(t), the transformed complete process with the intensity λ(t∗), and the homogeneous
Poisson process with constant intensity λ.
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The results of the detrending performed via daily spline fits are presented with an
example of some day out of the entire 31 days. This day (third day) behaves in principle like
all the other days but has some features to better illustrate the effect of detrending. Figure
3 on day 3 depicts the unaltered and transformed tweet rate as well as the corresponding
counting processes. Note that we do not yet state the effects of the detrending on the
response times distributions, i.e. the memory kernel. This will be discussed in the next
subsection. Let’s turn our attention to the top graph of figure 3. Recalling that the
spline fit itself was performed on the MTs only, we first notice that the spline fit does
indeed not quite follow the course of the R(t)-histogram (entailling both RTs and MTs)
especially at the two peaks at about 11am and 7pm. This is in line with the explanations
in 4.2. The position of the spline-fit peaks agrees with the general observations across days
in the calendar view. However, there are very clear peaks resulting from RTs only, for
example at 3pm. Now how does the process of detrending act upon these? Looking at the
center graph of figure 3, the three peaks from the upper graph seem to remain, however
at different positions: approximately 3-4am, 7-8am and 2-4pm. Recalling equation 15 it
becomes clear that the transformed time is proportional to the area under the spline-fit-
curve. Consequently, the tweet rate R(t) is spread out more evenly across the day: Periods
with low tweet activity will be “filled” with events from higher activity. For example, the
first two peaks of day 3 are transferred to earlier in the morning. On the contrary periods
with high tweet activity will be “flattened” to periods of lower activity. The third peak
at 7pm will, for example, be moved and spread to 2-4pm. The constant unconditional
intensity µ obtained from taking the average of the spline fit is plotted, too.

The effect of detrending also becomes clearer when considering the respective counting
processes Nλ(t) of the different intensities λ(t). From section 2.1 we recall that dN(t)/dt =
λ(t) and thus

Nλ(t) =

∫ t

0
λ(s) ds. (17)

Obviously N(t) is and must be monotonically increasing. The bottom graph of figure
3 depicts these counting processes obtained from integrating different intensities and rates.
The original complete process with the general intensity λ(t) was obtained by simply inte-
grating R(t) according to equation 17 (rate as intensity), while the external process with
the unconditional intensity µ(t) was obtained from integrating the spline fit. What strikes
here, is that the regions of greatest deviations between those two curves coincide with the
three peaks of R(t) in the upper graph. This is in agreement with equation 17. Now the
transformed process after detrending, was obtained from integrating λ(t∗), i.e. the com-
plete intensity with the transformed times. It roughly follows the homogeneous Poisson
process of constant unconditional intensity, which happens to be λ ≈ 83.7 [tweets/h] for
day 3. This value is directly derived from the total number of tweets in that day. The
transformed process roughly following the homogeneous process, agrees with the former
process now having a constant unconditional intensity. Again, we do not want a perfect
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match of the two processes. Otherwise the self-excitation would falsely be eliminated. Also

note that due to the imposed condition of t∗max
!

= tmax the curves of all counting processes
end in the same point at 12pm.

All in all having detrended the unconditional intensity, i.e. µ(t) → µ, and hence
transformed the time stamps, i.e. {ti} → {t∗i }, we can now turn our attention to analyzing
the memory kernel φ(τ∗).

5.2 Memory Kernel

5.2.1 Past Data

Analyzing the response times distribution for the critical protest period, i.e. the past data,
is the focus of this work. In section 4.1.1 the challenge of causally linking MTs and RTs
was outlined. The crucial parameter here is the Levenshtein distance between a RT and
its MT, whose exact optimal value is not straightforward to choose. In this section we
present the results for different Levenshtein distances on the memory kernel. First of all
we recall that a large Levenshtein distance is less restrictive for accepting a potential MT
as actual MT of a RT detected. We would therefore expect many more RT-MT-links to
be found if the Levenshtein distance is large. In figure 4 this is exactly visible: With
a small Levenshtein distance of 15 (top graphs) much less RT-MT-links represented by
the red circles are found. When looking at the axes borders, a maximal response time of
about 19 days can be seen. In contrast, with a large Levenshtein distance of 135 (bottom
graphs) many more RT-MT-links are found. Here the maximal response time was about
25 days. So not only were there more RT-MT-links detected but also a different response
time range. This already indicates that there will be an effect of the Levenshtein distance
` on the memory kernel, in particular the scaling parameter α.

To more closely examine this, we draw our attention to figure 5, where we include
both the log-log-histogram as well as the CCDF of the response times between the RTs
and their MTs as given by the detected RT-MT-links. An increment of 15 was chosen to
investigate the whole range of Levenshtein distance from 0 to 140. As explained in section
4.3 it is tempting to fit a straight line through the log-log-histogram in order to obtain
α. And indeed the data seems to very well resemble a straight line. However, in addition
to the flaws explained in [6] it is very visible that the long tail is especially noisy and
wide-spread. This is alleviated by plotting the CCDF of the same data. Clearly, increasing
the Levenshtein distance has an effect on the response times distribution. It unbends the
CCDF-curve, which corresponds to shortening the memory. This is in agreement with
intuition: a large Levenshtein distance means that a later tweet of the retweeted user will
be accepted as MT, artificially shortening the memory. However, when looking closely
on the behavior of the CCDF-curves, one can see that the trend of Levenshtein distance
negatively correlating with the memory does not hold across all Levenshtein distances. This
becomes immediately evident when looking at the two outermost CCDF-curves. They do
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Figure 4: RT statistics for very small and very large Levenshtein distance. What can
be immediately seen is that the larger Levenshtein distance is less restrictive, resulting in
many more RT-MT-links to be detected. Note that the indices for both the MTs and RTs
range from 1 to 51,114, which is the total number of tweets in the data set.
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` α τmin[days] τmin[h]

0 1.644± 0.034 0.008993± 0.000068 0.2158± 0.0016
15 1.773± 0.020 0.025405± 0.000044 0.6097± 0.0011
30 1.753± 0.018 0.026725± 0.000025 0.64141± 0.00055
45 1.718± 0.015 0.027465± 0.000021 0.65916± 0.00051
60 1.634± 0.014 0.027153± 0.000023 0.65167± 0.00055
75 1.581± 0.011 0.022836± 0.000010 0.54806± 0.00024
90 1.548± 0.010 0.018194± 0.000016 0.43666± 0.00038
105 1.554± 0.010 0.018345± 0.000019 0.44028± 0.00046
120 1.825± 0.031 0.26185± 0.00048 6.284± 0.012
135 1.798± 0.029 0.21909± 0.00071 5.258± 0.017

Table 1: Scaling parameters α and lower bounds τmin versus different Levenshtein distances
`. The values were obtained using [7] and are visualized in figure 6.

not correspond to the most extreme Levenshtein distances, i.e. 15 and 135. This is also
confirmed when looking at the α values in table 1. This table was obtained by PL-fitting
of each of the Levenshtein distance, which is depicted in figure 6. This will be discussed
shortly. There is another peculiarity in the CCDF-curves: the long tails of some of them
exhibit truncations, e.g. at 24 days for ` = 135 or at 20 days for ` = 90. This simply
corresponds to the maximum response time found in the finite-sized set of 31 days. For
the Levenshtein distances for which the CCDF-curve is bent such that this boundary is
not touched, e.g. for ` = 45, no such finite size effects, i.e. sharp kinks, are observed.
However, in order to eliminate those finite size effects, the present data, which spans over
a much larger time span and which therefore will provide more data on the long tail, is
investigated in the next subsection on the present data.

To better judge which Levenshtein distance to choose, each of them has been fitted to
PLs according to the procedure given in section 4.3. The visualization of this can be found
in figure 6 with the respective extracted values for α, τmin and their respective errors given
in table 1. Judging by the agreement of the curves with PL-fits as well as the errors of
both α and τmin, there is not a single Levenshtein distance that strikes out. Of course
this is based on the assumption that a PL is indeed the underlying mechanism, which
at this point cannot be confirmed. In fact the agreement of the curves with the PL-fits
becomes poorer towards the far end of the tails. This might be due to the application of
the KS test which puts more weight towards the head of the distribution. Neither do the
scaling parameter values cluster around a small range, which would have indicated that the
Levenshtein distance did not matter that much after all. In conclusion we cannot identify
a single best Levenshtein distance for the detection of RT-MT-links. Instead we have to
present the result of this subsection as a range for the scaling parameter:
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Figure 5: Log-log-histogram and CCDF of response times τ . The former suggests a straight
line but is very noisy and wide-spread at the long tail. The latter suggests that the a larger
Levenshtein distance unbends the CCDF, shortening the memory. However, when looking
closely on the behavior of the CCDF-curves, one can see that the trend of Levenshtein
distance negatively correlating with the memory does not hold across all Levenshtein dis-
tances. This becomes also evident when looking at the two outermost CCDF-curves. They
do not correspond to the most extreme Levenshtein distances, i.e. 15 and 135.
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Figure 6: PL fit of response times (manual RTs) distribution for different Levenshtein
distances. Recall that the larger the Levenshtein distance the weaker the condition to
accept a potential MT as actual MT of a RT detected. The Levenshtein distance of 135
virtually takes the last tweet of the retweeted user. Recall that the maximal tweet length
is 140 characters. The PL fits themselves have been performed according to [7]. The
respective values for α and τmin can be found in table 1.
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α ∈ [1.538; 1.856]

τmin ∈ [0.2142 h; 6.296 h].

So α seems to be definitely less than 2, meaning that a well-defined mean does not
exist. Moreover, it is not smaller than 1, a case that was excluded in the theory section
2.2. However, due to the seemingly poor fit at the farther end of the tails, it is likely that
the PL fit is in fact steeper, resulting in an α potentially larger than 2. What can be
further concluded is that indeed we are dealing with a long memory of the system due to
heavy-tailedness of the distribution. This is a non-trivial finding. Intuitively, one would
expect a rather short memory of such a fast-paced online platform like Twitter and even
more so in such highly active and criticial periods. Newsfeeds of users are limited and
display only the most recent tweets on the topic or hash-tag. Yet Twitter users seem to
react to older, potentially more important, tweets, too. However, despite the relatively low
errors in α it cannot be concluded that the memory kernel indeed follows a PL. In order
to corroborate this, further tests of both PL and other statistical distributions that might
have better goodness-of-fit-statistics would have to be investigated, too. A better PL test
could be based on the Anderson-Darling test, for example.

5.2.2 Present Data

The initital motivation to also analyze the present data which has a much lower tweet
activity but a much longer overall time span, was to also allow for more extreme events to
be detected, i.e. response that take longer than the maximal time span of the past data.
This motivation was corroborated by some of the findings above, where it was clearly
visible that for some Levenshtein distances finite size effects occurred in form of truncated
memory kernels. In this section the results for the memory kernel of the present data is
presented.
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Figure 7: Four subplots visualizing the RT-statistics: MT-index versus τ , MT-index versus
RT-index, log-log-histogram and CCDF of τ . The top two graphs indicate the relatively
low number of RTs found, when comparing them to figure4. In the CCDF it is visible that
the truncation of events due the finite smaller size of the past data set is resolved. Note
that the indicies for both the MTs and RTs range from 1 to 19, 265, which is the total
number of tweets in the data set.
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Recall that in the present data set there is no ambiguity in the RT-MT-linking since this
information is contained in the very data. However, this linking is confined to automatic
RTs only, i.e. not manual RTs. In analogy to the past data, the top graphs of figure 7
show the RT statistics with the indices of tweets going up to only 19, 265 as opposed to
51, 114 for the past data. First of all, by visual judgement we notice that there are much
less RTs in the present data than in the past data. Intuitively this makes sense, considering
that we are comparing a low-activity with a high-activity period. Note, however, that here
we are comparing the number of automatic RTs with that of manual RTs. Comparing
automatic and manual RTs, respectively, might in fact look different. Unfortunately, the
data available did not allow to check this. Second of all, the maximal response time
found in the present data exceeds the entire duration of the past data by far: the longest
response took about 250 days with the entire duration of the present data being 899 days.
The bottom graphs of figure 7 show the log-log-histogram and the CCDF of the response
times. We notice that the truncation of the CCDF that occurred in the past data is indeed
resolved now. The question is, do those ? Now performing the PL-fit of [7] on the present
data results could show whether the now longer tail follows the same law. The results of
this are

α = 2.237± 0.047

τmin = 1.4518± 0.0011 days

and are given in figure 8. The scaling parameter is significantly larger than for the past
data, which corresponds to a shorter memory. Moreover, this time there is a well-defined
mean because α > 2. From visual judgement of figure 8 the PL fit extends well into the
long tail. Also, the error of the both α and τmin but more importantly the log-likelihood
is very low: −1.2481 · 103 (Likelihood L ≈ 0.9988). This seems rather robust at first sight.
However, it is unlikely that these retweets happened from MTs being read one the news
feed, which is updated on a daily basis. Even when taking the low activity into account,
tweets visible in a user’s news feed still should not be older than weeks. Yet RTs occured
in the order of months. It might be sensible to assume that this must be due to a different
way of encountering MTs to be retweeted, e.g. by manual searches of tweets. Therefore, a
different mechanism and hence a different regime in the memory kernel might need to be
included. This, however, needs further analyses and is not subject of this paper. How does
this fit together with the shorter memory of the system in the present data? If there were
indeed two mechanisms of encountering tweets to be retweeted, the only explanation would
be that in periods of low-activity, users retweet tweets encountered in their newsfeed with
a much higher frequency than tweets encountered by manual search. To further investigate
this, the different ways of encountering tweets as well as the crude algorithm of which
tweets show up in the newsfeed would have to be elucidated. Also the question of whether
the memory of the system in the past data is really that long would have to be examined
further.
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Figure 8: PL fit to the response times in the present data (automatic RTs). We notice
that the truncation of the CCDF that occurred in the past data is indeed resolved now.
The long tail seems to follow a PL with a small error in the scaling parameter. The PL
fits themselves have been performed according to [7].
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Memory kernel of ... α τmin [days]

All users and responses 2.237± 0.048 34.844± 0.027
Extreme responses of most active RTers omitted 2.520± 0.086 29.092± 0.20
Extreme responses of remaining RTers omitted 3.03± 0.15 30.093± 0.098
Extreme responses of most active tweeters omitted 2.473± 0.080 28.53± 0.21
Extreme responses of remaining tweeters omitted 3.03± 0.15 30.093± 0.096

Table 2: Results of the PL fits on the different CCDFs according to [7].

5.2.3 Individual User Data

In the present data it is possible to efficiently discriminate amongst individual users. The
question here is how the memory kernels of individual users resemble that of the entire
system. Do they follow the same law same distribution? Are they also of long memory as
it was concluded for the entire system in the previous subsections? For this we first draw
our attention to the most active users in terms of their (re-)tweeting activity as they per
definition have lots of responses, i.e. data points in their memory kernel.

The top and bottom graphs of figure 9 depict the same user statistics but with trans-
formed and unaltered response times, respectively. This is simply to show that detrending
smoothens the CCDFs as intended. Now looking at the top graph of figure 9, the individual
memory kernels of the five most active RTers (at least 300 RTs) are shown. Clearly, each
user has their very own memory when looking at the slops and the most extreme events.
Only collectively they form a long memory. The CCDFs of the five users might very well
follow a PL. However, the last response seems to be a bit off. What happens to the overall
memory of the system if these extreme events are cut off and the remaining response times
re-aggregated? Are these responses the main contributors to the overall memory? Rather
than determining individual user scaling parameters, we determine the scaling parameters
of the CCDFs re-aggregated after cutting of the most extreme responses of the most active
users. The results for this are presented in figure 10 and in table 2.

We can define active tweeters in terms of number of tweets as well as number of RTs.
For both types in figure 10, the five most active users have been cut off of their two most
extreme responses. Judging from both the CCDFs in the figure and the scaling parameters
α = 2.520, 2.473 in table 2, the memory of the re-aggregated system is shorter. Of course
this was to be expected when removing the longest responses. The more interesting question
is now, how the memory is altered if the two most extreme responses of the remaining 2395
users are removed instead. The CCDF-curve of the response times after this removal is also
presented in the same figure and table. Again the memory is significantly shortened and
- as intuitively expected - even more so than after removing the extreme responses of the
much fewer most active tweeters. One could play this exercise further to see at which point
- varying the number of cut-off extreme events and the number of most active tweeters -
the memory reduction of the most active equals that of the remaining less active users. A
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Figure 9: Detrended statistics of users with at least 300 RTs. The top graph was obtained
with, the bottom graph without detrending. It is clearly visible that each of the five users
have their individual memory expressed in different slopes of their CCDFs. However, the
memory for these five users is not related to neither there number of tweets nor RTs.
Comparing the top with the bottom graph, it is visible that detrending has the intended
smoothing effect.
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Figure 10: PL fit according to [7] of the response times with user discrimination. Extreme
response of most active tweeters and RTers as well as of the remaining users were removed
in order to check their effect on the overall memory of the system. The unaltered CCDF
of the response times of the present is included for comparison. The respective fitted
values can be found in table 2. Generally removing extreme events shortens the memory
as expected. Also removing those events from either active tweeters or RTers does not
seem to play a big role.
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likely outcome is that a smaller number of active users contribute most significantly to the
memory of the entire system.

6 Conclusion

The initial motivation of this paper was to set the stage for determining the degree of
self-excitation of Twitter messaging, i.e. the emotional ladenness with respect to a certain
topic, in our case the student protest in Austria of fall 2009. We have identified the key
ingredients to perform this. Equation 1 of the intensity of the self-excited Hawkes process
provides these: the unconditional intensity µ(t) and the memory kernel φ(τ).

An unconditional intensity based on reoccurring daily or weekly patterns attributable
to external influences, could not be constructed. Instead a daily low-order fit to the RT-
filtered, immigrant-dominated MT-intensity had to be performed, assuming that the en-
dogenous events are represented in the higher-order variations of the tweet rate. With this,
the unconditional intesity could be detrended such that µ(t)→ µ =const.

Robustly determing the memory kernel seemed within reach when considering the fact
that RT and MT are causally linked. However, the two principal ways of RTing, i.e. manual
and automatic, were only individually detectable in the past and present data set, respec-
tively. While for the automatic RTing drawing the RT-MT-links is unambiguous, doing
this for the manual RTs is far more difficult. The reason for this is that the Levenshtein
distance, the string distance between the MT reconstructed from a detected RT and the
actual MT, is in fact a suboptimal criterion for an automized RT-MT-link detection. Nev-
ertheless, in both past and present data a long overall memory could be identified, though a
short memory had initially been expected. PL fits of the CCDFs, i.e. the memory kernels,
revealed that for the past data a range of the scaling parameter α ∈ [1.538; 1.856] could be
determined, for the present a more exact value of α = 2.237±0.047 with a log-likelihood of
−1.2481 · 103. Hence the past data of the high-activity period is in fact of longer memory,
which is counter-intuitive. Though the PL fit seems to do justice to the long-memory,
further models have to be tested for a more robust conclusion on the underlying laws.

In the following, we want to dive a bit deeper into the shortcomings and limitations,
giving suggestions as to how to alleviate them in order to make bigger steps towards
quantifying self-excitation in Twitter messaging.

Improve detection of manual RTs
As already discussed when introducing the Levenshtein distance and as the results

for the different Levenshtein distances show, choosing this criterion for RT-MT-linking is
suboptimal. Simple reorderings of words and parts of the tweet increase the Levenshtein
distance, even though the content has in fact not been changed significantly. Generally,
reconstructing MTs from detected RTs is a delicate and sensitive undertaking that, how-
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ever, bears potential for great improvements in automizing the RT-MT-linking of large
data sets.

Combine detection of automated and manual RTs
Twitter with its tweets and causally connected retweets does in principle make a robust

analysis on the functional form of the memory kernel very possible. However, this work
showed that correctly linking RTs to their correct MTs is of utmost importance. The
different ways of retweeting, i.e. automatically and manually, require different methods of
detection, which in the best case need to be combined for the same data set. The ideal
data set would combine the information that was given in the past and present data such
that all types of retweets can be found in the same data set. In concrete that would mean
to have data set that includes at least the following:

• Username and user-ID (for individual user statistics)

• Tweet message (for the detection manual RTs)

• Meta-data on RT/MT (for the detection of automatic RTs)

• Time stamp (for the acquisition of response times)

Increase size of data set
The rather limited size of the past data show that due to the possibility of long-memory,

the events at the long tail become important, potentially being truncated away. In order to
prevent this, larger time spans have to be considered. In our case the two data sets of the
past and the present were separated in time. It would be ideal to have one coherent large
data set that entails both the high- and low-activity period of a social protest, for example.
Also, we have been looking at one particular hash-tag of limited size only. Considering
the fact that there may be several hash-tags for one and the same topics, extending the
analyses preferably to all of these hash-tags would be a better way for truly capturing the
emotional ladenness of this topic. Lastly, generally only about 1% of Twitter data is freely
available. By manually crawling data this percentage can be increased. When wanting to
connect RTs to MTs potentially in the remaining 99%, many connections might not be
drawn. So overall increasing the data set both in time and density is preferable and crucial.

Extend models for fitting the memory kernels
Again, the PL fit seemed to do justice to the long-memory of the tweet system. However,

the extreme events in the present data indicate that there might be different mechansims
at work in different regimes. Here it is crucial to elucidate the different ways a Twitter
user could encounter tweets to be retweeted. Individually checking extreme RTs and their
MTs could provide hints for this. In order to account for potential regime transitions,
it is possible to treat the PL as family member of a stretched exponential (SE) and/or
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log-normal (LN) distributions. Here additional parameters smoothly let PL transition into
SE and LN, respectively.
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8 Appendix

Functions called by the main script:

1. get taus past

• Function: {t∗i } → {τ∗j }
• Input:

– pastC: Cell of past data that contains time stamp, tweet message, and
username.

– LevenshteinDist: Vector of Levenshtein distances to loop through. Min-
imum distance is zero (no agreement of strings), the maximum 140 (full
agreement of 140-character tweets). The distance defines the criterion for a
potential MT to be accepted as actual MT of a RT found.

• Output:

– RTMTtau pastvsLeven: Cell of past data that for each element of LevenshteinDist
contains the matrix with RT-index, the respective MT-index and {τ∗j }, i.e.
response time between the MT and its RT. Note that index refers to index
of the matrix, whereas ID refers to the actual ID of the tweet.

• Pseudo code:

(a) Loop through each Levenshtein distance as given by LevenshteinDist.

(b) For each Levenshtein distance loop through all tweets as given by pastC.

(c) For each tweet complement username and tweet itself by spaces such that
string lengths are uniform and thus better comparable.
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(d) In each tweet search for the string part “RT @” based on the convention
that RTs have the following general form: “[addition 1] RT @[retweeted
user]: [MT] [addition 2]” (or space instead of semicolon).

(e) Extract [retweeted user] from RT by taking the characters between the “@”
and the semicolon (or space).

(f) Extract and reconstruct [MT] from RT by taking everything after the semi-
colon. Note that there it is currently not implemented to discriminate be-
tween [MT] and [addition 2].

(g) Complement each reconstructed MT with spaces for better string compari-
son.

(h) Store time stamp of RT in time RT and search for its respective MT in the
previous tweets:

i. Only check RTs of [retweeted user], i.e. RTd user in the code.

ii. Check his/her tweet and compare it with [MT], i.e. MT in the code.

iii. If Levenshtein distance criterion is fulfilled, accept this MT as MT of
the found RT.

iv. Subtract time stamp of MT time MT from stored time stamp of RT
time RT to obtain response time τ∗j .

v. Also store the index with respect to the time series, i.e. i of {t∗i }, for
both RT and MT. E.g. 51,000-th tweet is the RT of the 50,000-th tweet
(MT).

(i) Store matrix with RT-indices, the respective MT-indices and {τ∗j }, i.e. re-
sponse time between the MTs and their RTs, into RTMTtau pastvsLeven

with cell index for the current Levenshtein distance.

(j) Return RTMTtau pastvsLeven after looping through all Levenshtein dis-
tances.

2. detrend anyFit.m

• Function: {ti} → {t∗i }
• Input:

– binsize: Bin size for tweet rate R(t) in minutes. Default values: 240 [min]
for present data, 10 [min] for past data.

– unit: Unit of time in R(t) on which spline is fitted. Default values: ‘month’
for present data, ‘day’ for past data.

– idx: Indices of unit which are looped through. Default values: 1:31 (31
calendar months) for present data, 1:33 (33 calendar days) for past data.

– tMT: RT-filtered time stamps {ti}MT .

– tALL: Unfiltered time stamps {ti}.
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– visual: Boolean for visualizing results.

• Output:

– tstartot: Total transformed time stamps of tweets {t∗i } in units of hours.

– gofcell: Goodness of fit values (Detrendings uses spline-fit). Note that a
too high goodness is not aspired (recall subsection 2.3).

– If visuals on, four graphs for each detrended basic unit: R(t) with spline-fit,
R(t∗) with mean of spline-fit, N(t) for different intensities, residuals with
quantiles.

• Pseudo code:

(a) Splits {ti} and {ti}MT into basic units, e.g. {ti}MT,month via function
get timeperunit.m

(b) Check unit to define different smoothing parameters and fitting ranges Tmax
for the spline fit.

(c) Loop through each unit, i.e. day or month, to perform detrending on each.

– From {ti}MT,unit obtain tweeting rate R(t)unit in units of 1/binsize
[min].

– Perform smoothing spline fit on R(t) and integrate the fitted function
to obtain {t∗i }unit.

– Store goodness of spline-fit statistics into gofcell{i}.
– Normalize {t∗i }unit such that t∗max,unit

!
= tmax,unit

– Concatenate current {t∗i }unit to the previous {t∗i }1...unit−1
– If visuals are on, plot and save the four graphs mentioned under “Out-

put”.

(d) Return {t∗i } and gofcell.

3. ts2taus.m

• Function: {ti} → {τj} (or with asterix ∗)
• Input:

– tevnts: Detrended or undetrended time stamps.

– RTMTtau past: Matrix that contains the RT- and MT-indices w.r.t. the
original time stamps vector tevnts. It also contains the taus but we are
interested in calculating the taus from a different set of tevnts (e.g. tstars).

• Output: Response times, taus.

• Pseudo code:

(a) Loop through all MT-RT-links, i.e. all rows of RTMTtau past.

(b) Obtain the indices of the RT and its MT with respect to the time stamp
vector tevnts.
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(c) Subtract the respective time stamps as given by tevnts to obtain the re-
sponse times.

(d) Return response times taus.

4. get taus pres.m

• Function: {t∗i } → {τ∗j }
• Input:

– presC: Cell of present data that contains MT-ID (if applicable), tweet-ID,
time stamp, user-ID, and RT-count (-1 if RT)

– tevnts: Transformed (or original) time stamps of present data in units of
hours, i.e. {t∗i } (or {ti}).

• Output:

– RTMTtau pres: Matrix of present data that contains RT-index, the respec-
tive MT-index, and {τ∗i j}, i.e. response time between the MT and its RT.
Note that index refers to index of the cell, whereas ID refers to the actual
ID of the tweet.

• Pseudo code:

(a) Loop through all tweets to search for RTs which are marked by -1 in the
RT-count column.

(b) If a RT is found, store its time stamp and MT-index and look for this its
MT in inner loop:

– If correct MT is found, store its time stamp to get the response time τ∗i
– Store RT-index, MT-index and τ∗j into RTMTtau pres.

– Break inner loop.

(c) Print progress as fraction all tweets.

(d) Return RTMTtau pres which contains key variable {τ∗j }.

5. get user taus.m

• Function: {τ∗j } → {τ∗user,j}
• Input:

– presC: Cell of present data that contains MT-ID (if applicable), tweet-ID,
time stamp, user-ID, and RT-count (-1 if RT)

– RTMTtau: Cell of present data that contains RT-index, the respective MT-
index, and {τj}, i.e. response time between the MT and its RT.

• Output:
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– user taus: Cell in which each row contains corresponds to one user with
unique user-ID, number of active RTs, number of tweets, vector of individual
response times.

• Pseudo code:

(a) Get vector with unique user IDs and loop through all users:

– Set RT and tweet counter to zero.

– For each user scan whole data set to find and count his/her tweets.

– If tweet is a RT, find the corresponding response time in RTMTtau.

– Store the following into user taus: user ID, RT count, tweet count,
individual response times.

(b) Print progress as fraction all users (2400).

(c) Return user taus.

43


	Motivation
	Theoretical Background
	Self-Excited Hawkes Processes
	Power Laws
	Detrending per Integration

	The Data Sets
	Past Data
	Present Data

	Methods
	Extracting Response Times
	Past Data
	Present Data

	Detrending Tweet Activity
	Power Law Fitting

	Results
	Unconditional Intensity
	Memory Kernel
	Past Data
	Present Data
	Individual User Data


	Conclusion
	References
	Appendix

