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Abstract

The impact of the memory length of noise traders on the frequency and size of bubbles, on
volatility clustering and on market endogeneity is analyzed in an agent-based model where a
risky and a risk-free asset are traded by fundamentalists and noise traders. A heterogeneity of
memories is later introduced and its impact quantified.

Noise traders with a 1 day memory tend to create more bubbles than all other memories, but
with the lowest average drawdown. This memory produces the least volatility clustering and
the least endogenous markets. Longer memory lengths reduce the number of bubbles, enlarge
their drawdown, produce more volatility clustering and more endogenous markets. We show
that noise traders with no memory behave as if their memory was infinite.

Introducing a heterogeneity of two memories increases the number of bubble by 25.2 ± 0.2%
and decreases their drawdown by 30%, compared to a market with all the noise traders sharing
the heterogeneous market average memory. Making the same comparison, such a heterogeneity
decreases the volatility clustering by 36% when quantified through the decay of the autocorre-
lation coefficients of absolute returns. This heterogeneity decreases the market endogeneity by
4.54± 0.07%, when computed through a non parametric approximation of the branching ratio
for self-exciting Hawkes point processes. Higher heterogeneities behave closer to a market with
all noise traders sharing the heterogeneous market average memory.
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Introduction

Which role plays the memory length of speculative traders on the frequency and size of financial
bubbles? How much does their memory influence volatility clustering and market endogeneity?
Understanding the causes of these phenomena observed in financial returns is essential to build
models describing most accurately the market dynamics.

These questions are tackled by the present work with the agent-based model (ABM)* developed
by Kaizoji et al. (2015). In the artificial market considered, fundamentalist traders establish their
positions based on a value analysis of the market, while speculative traders herd and act on price
momentum. The model is able to reproduce financial bubbles regimes as well as the main stylized
facts displayed in financial markets.

The current ABM offers a natural framework to study the impact of the look back window of
speculative traders on the frequency and size of bubbles. Indeed, the long standing research of the
current work advisor on critical phenomena (Sornette (1998), Sornette (2006)) and their application
to the prediction of financial bubbles (Sornette et al. (1996), Sornette (2017), Jiang et al. (2010), Harras
and Sornette (2011)) stresses the impact of herding of the market participants on the growth and
subsequent crash of financial bubbles.

Volatility clustering, the tendency of large absolute returns to be followed by large absolute returns
and small absolute returns followed by small absolute returns, is present throughout many asset
classes (Bollerslev et al. (1992), Diebold and Nerlove (1989)). Investor focused on the long term
outlook of the market interacting with speculative traders concentrated on short term gains may be
a rationale for such a behavior. Understanding its exact origin is primordial for building models
describing most accurately the underlying dynamics and lessen the resulting instabilities. This
stylized fact has been widely researched through computational models and offers a vast literature.
Among them, LeBaron (2000) introduces multiple time scales and shows that both long and short
term memory lengths of the market participants entail higher volatility. Lux and Marchesi (2000)
demonstrate that volatility clustering is linked to temporary regimes of market instability in an
ABM where all traders can switch between a fundamentalist or a speculative approach. LeBaron

*An ABM is a computational model to simulate the interactions of participants (agents). By varying the rules govern-
ing the agents’ behaviors, analytical insight on the consequences of their interplay can be gained.
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Contents

(2006) shows that at least two different time scales are necessary to produce volatility persistence.
Hommes (2006), LeBaron (2006), Samanidou et al. (2007) and Cont (2007) offer a meta analysis of
the models studying volatility clustering.

The systematic study of the impact of different memory lengths of the speculative traders on the
frequency and size of bubbles and on the amount of volatility clustering is not present in the litera-
ture. As noted in LeBaron (2000), the challenge of complex agent-based models is to clarify which
aspect of the model is responsible for the stylized facts observed. In this regard, by only varying
the memory length of the speculative traders while keeping all the other market variables fixed, its
impact can be quantified. Subsequently, the outcome of a hierarchical structure of memories of the
speculative traders is analyzed by extending the ABM.

The next chapter introduces the market model. Chapter 2 offers a new metric to pinpoint bubble
peaks out of sample. The impact of varying the memory of the noise traders on the frequency and
size of bubbles is then analyzed. Chapter 3 quantifies the volatility clustering generated by 18 dif-
ferent memory lengths through the analysis of the decay of the autocorrelations coefficients of the
absolute returns. A more innovative approach to quantify volatility clustering, via the moments of
the frequency distribution of large absolute returns, is presented in chapter 4. The tools developed
are then used to probe the endogeneity of the market through a non parametric approximation of
the branching ratio. Then, chapter 5 extends the ABM model to allow for a heterogeneity of time
scales in the investment decision of the noise traders. The metrics developed in the preceding chap-
ters are used to analyze the impact of six levels of market heterogeneity on the frequency and size
of bubbles, volatility clustering, and on market endogeneity. An appendix offers an introduction to
time series analysis.
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Chapter 1

The Market Model

The current chapter presents the agent-based model (ABM) developed by Kaizoji et al. (2015), com-
posed of two assets and two types of agents. A risky asset paying a dividend and a risk free asset
paying a fixed interest rate are traded by fundamentalists and noise traders. These assets and trader
types are described in the following chapters.

1.1 The two assets and the dividend process

The risk free asset can be viewed as a government bond with perfect elastic supply, returning a fixed
risk-free annual interest rate R f . The risky asset, which can be considered as a stock, is defined to
pay a dividend dt at each period t. The dividend process is represented as a multiplicative stochastic
growth process as in Kohrt (2016)

dt+1 := (1 + rt) · dt , (1.1)

with the stochastic growth rate rt being a Gaussian process with mean value rd ∈ (0, ∞) and variance
σ2

t

rt := rd + σrut . (1.2)

The random variable ut is i.i.d. with mean zero and unit variance

ut ∼ N (0, 1) . (1.3)

The expected value and variance of dt+1 are then

Et[dt+1] = dt(1 + rd) (1.4)

Vart[dt+1] = d2
t σ2

r . (1.5)
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1.2. The fundamentalist trader

The excess return obtained by investing in the risky asset versus in the risk free rate R f is defined
as

Rexcess,t+1 := Rt+1 − R f +
dt+1

Pt
, (1.6)

where Pt is the price of the risky asset at time t, and Rt+1 :=
Pt+1

Pt
− 1 is the return of capital. As

can be seen in Equation 1.6 two revenue streams contribute to the excess return of the risky asset
versus the risk free rate: the return generated by the capital and the one generated by the dividend
of the risky asset.

1.2 The fundamentalist trader

The fundamentalist trader is a risk adverse rational value investor investing at each time step a
proportion x f

t - called the risky fraction - of its current wealth in the risky asset, and the remaining
wealth in the risk-free asset. The risky fraction is found by maximizing the expected utility of the
expected wealth W f

t+1 under a constant relative risk aversion (CRRA) utility function. As all the
fundamentalist traders have the same utility function and expectations, they are considered to be
identical. Their behavior is represented by a single fundamentalist.

The evolution of the wealth can be decomposed into a risky and risk free component. Considering
the current wealth W f

t , the price Pt+1 of the risky asset, the fraction of the wealth invested in the
risky asset x f

t and in the risk free asset (1− x f
t ), the wealth of the fundamentalist at the next time

step W f
t+1 is

W f
t+1 = W f

t + R f (1− x f
t )W

f
t︸ ︷︷ ︸

Wrisk free
t

+
(Pt+1 − Pt

Pt
+

dt+1

Pt

)
x f

t W f
t︸ ︷︷ ︸

Wrisky
t

1.6
= W f

t + W f
t [R f + x f

t Rexcess,t+1] . (1.7)

To determine the risky fraction, the fundamentalist maximizes the utility of its expected wealth at
the next period

max
x f

t

Et[U(W f
t+1)] , (1.8)

where the utility function U(W) is defined as

U(W) =


log(W) for γ = 1

W1−γ

1− γ
for γ 6= 1

(1.9)
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1.2. The fundamentalist trader

with the constant relative risk aversion parameter γ

γ := −W f
t U′′(W f

t )

U′(W f
t )

. (1.10)

Expanding Et[U(W f
t+1)] in a Taylor expansion and using Equation 1.7 gives, neglecting higher order

terms,

Et[U(W f
t+1)] = Et[U(W f

t ) + U′(W f
t )(W

f
t+1 −W f

t ) +
1
2

U′′(W f
t )(W

f
t+1 −W f

t )
2]

= Et[U(W f
t ) + U′(W f

t )W
f

t (R f + x f
t Rexcess,t+1)

+
1
2

U′′(W f
t )(W

f
t )

2(R f + x f
t Rexcess,t+1)

2] .
(1.11)

The wealth W f
t is assumed to not change much over one time step. Thus R f , Rexcess,t+1 � 1 holds

and it follows

Et[U(W f
t+1)] = U(W f

t ) + U′(W f
t )W

f
t (R f + x f

t E[Rexcess,t+1])

+
1
2

U′′(W f
t )(W

f
t )

2 E[(R f + x f
t Rexcess,t+1)

2]︸ ︷︷ ︸
Vart[Rexcess,t+1]

. (1.12)

The last expected value can be rewritten as a variance due to the above assumption of small returns.
Maximizing this equation with regards to x f

t yields

x f
t =

1
γ

Et[Rexcess,t+1]

Vart[Rexcess,t+1]
, (1.13)

In Equation 1.13, the numerator expresses the expected value of the excess return of capital (and
dividend) over an investment in the risk free rate. The fundamentalists are considered to be myopic
traders that do not learn and only invest w.r.t. the fundamental valuation. Based on the long term
behavior of stock markets, they expect a constant growth rate. This implies that the expected value
of the price return ERt := Et[Rt+1] is constant. It follows

Et[Rexcess,t+1] = ERt − R f +
Et[dt+1]

Pt

1.4
= ERt − R f +

dt(1 + rd)

Pt
= constant . (1.14)

As is discussed in Boswijk et al. (2007) and Chiarella et al. (2009), the variance can be assumed to
be constant as long as the fundamentalist stays myopic,

5



1.3. The noise trader

Vart[Rexcess,t+1] := σ2
excess . (1.15)

The risky fraction is then, as presented in Ollikainen (2016),

x f
t =

ERt − R f +
dt
Pt
(1 + rd)

γσ2
excess

= x f
min +

dt

Pt

1 + rd

γσ2
excess

, (1.16)

with the minimum risky fraction

x f
min :=

ERt − R f

γσ2
excess

. (1.17)

Equation 1.16 shines a light on the behavior of the fundamentalist trader: a minimal fraction of his
wealth is invested in the risky asset at each time step regardless of the market condition. This is
based on his long term view of the market and is not influenced by short term market fluctuations.
Moreover, the fundamentalist analyzes the dividend-price ratio at each time step to see if the market
currently under- or overvalues the risky asset. In case of a high dt

Pt
(low price) the fundamentalist

buys more of the risky asset, and sells it at a low dt
Pt

(high price).

1.3 The noise trader

The second agent represents the “noise traders”. The term was coined by Kyle (1985) to describe
irrational market participants whose actions are not based on a fundamental analysis. Modeling
their impact on financial bubbles and crashes was first done by de Long et al. (1990) where they
showed that fundamentalist actions set off positive feedback trading by noise traders leading to
bubble regimes and excess volatility. In their model, this generates positive auto-correlation of
returns over a length determined by the look back period of noise traders. Campbell and Kyle
(1993) have also shown that noise traders interactions with fundamentalist move the price away
from its fundamental value and may explain the excess volatility.

In the present model, each individual noise trader has a bipolar nature: he is either fully invested
in the risky asset and not at all in the risk free asset or the opposite. His investment decision
relies on social influence and historical price movements. In this sense, he represents the lack
of diversification puzzle (Statman (2004)), the trend-following (Hurst et al. (2017)) and herding
mentality (Bikhchandani and Sharma (2000)) observed in the financial market. As opposed to
the fundamentalists that all share the same utility function and have the same expectations, each
individual noise trader may behave differently.

The number of noise traders is referred to as Nn. At time t, N+
t ∈ [0, Nn] are fully invested in the

risky asset and N−t := Nn − N+
t in the risk free asset. At each time step, every trader can indepen-

dently and probabilistically switch from one asset class to the other. The switching probabilities are
influenced by the social interaction, which is divided in two categories: the price momentum and
the imitating behavior of the trader. These two factors are now detailed.
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1.3. The noise trader

The price momentum is defined as an exponential moving average of past price returns

Ht+1 = θHt + (1− θ)Rt+1 . (1.18)

The higher the smoothing factor θ ∈ [0, 1), the longer the trader memory τ

τ ∼ 1/(1− θ) . (1.19)

Throughout the next chapters, the impact of τ on the frequency and size of bubbles and on the
volatility clustering will be analyzed.

To quantify the imitating behavior, the opinion index

st :=
N+

t − N−t
Nn

∈ [−1, 1] (1.20)

is introduced. It represents the average opinion among all noise traders w.r.t. the risky asset. For
st > 0 an overall bullish spirit reigns, whereas bearishness prevails for st < 0.

The strength of the social interaction is represented by the time dependent coupling strength κt, also
named herding propensity. It can either be constant, or modeled as an Ornstein-Uhlenbeck (OU)
process which per definition satisfies the stochastic differential equation

κt+1 = κt + ηκ(µκ − κt) + σκvt+1 , (1.21)

with ηκ > 0 the mean reversion rate, µκ the mean reversion level and σκ the step size of the Wiener
process generated by the i.i.d. random variables vt+1 ∼ N (0, 1).

The probabilities to switch from the risky to the risk free asset (p+t ) and from the risk free to the
risky asset (p−t ) for the interval (t, t + 1) are

p±t :=
p±

2
(1∓ κt(st + Ht)) , (1.22)

where p± ∈ [0, 1] controls the average holding time of each asset class when neither imitation nor
trend following occurs (κt = 0). In this case, a position has an expected length of ∼ 2/p±.

Harras and Sornette (2011) and Kaizoji et al. (2015) have shown that the dynamics of such noise
traders can be understood as an Ising model. Disorganized phases occur when the opinions (to buy
or sell the risky asset) of all the individual noise traders cancel each other out, leading to a price
path based on the fundamental value. The organized phases are due to all noise traders having the
same opinion due to a positive feedback mechanism, sustaining either a super-exponential growth
of the risky asset or its collapse. The presence of this spontaneous symmetry breaking and the
proximity to the critical point has been shown to have an influence on the excess volatility (Harras
et al. (2012)).
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1.3. The noise trader

The critical point in the present model is embodied by the average holding time p. In this regard,
the interesting case occurs when the mean reversion rate is just below the average holding time:
µk . p±, allowing the social interaction κt to enter the regime of super-exponential growth µk > p±

due to the stochastic nature of the OU process. As an OU process is a stationary Gaussian process, it
is fully described by its first two moments, which converge over long periods so that κt is specified
by

κt ∼ N
(

µ,
σκ√
2η

)
. (1.23)

The expected time needed ∆t for the social imitation strength to exit the critical regime (in which
κt ≡ κ0 > p) and revert to the subcritical regime (κt < p) can be derived from the first moment.
Citing Kaizoji et al. (2015),

∆T =
1
η

log
(κ0 − µκ

p− µκ

)
. (1.24)

How does the system evolve in time? Let us first look at the number of noise traders invested in
the risky asset at time t, N+

t . At time t, each individual noise trader belonging to this group has
the possibility to stay invested in the risky asset, or sell all of it to be completely invested in the
risk free asset. For a noise trader k in N+

t , their decision to switch or not is embodied in the i.i.d.
Bernoulli random variable ξk(p+t ), with takes the value 1 (sell the risky asset, buy the risk free one)
with probability p+t , and value 0 (stay invested in the risky asset) with probability (1− p+t ).

The situation is similar for the noise traders invested in the risk free asset at time t, N−t . The behavior
of a noise trader j that does not own the risky asset at time t is represented by ξ j(p−t ), which takes
the value 1 (switch to a risky investment) with probability p−t , and the value 0 (stay invested in the
risk free asset) with probability (1− p−t ).

Combining these behaviors results in

N+
t+1 =

N+
t

∑
k=1

[1− ξk(p+t )] +
N−t

∑
j=1

ξ j(p−t )

N−t+1 =
N+

t

∑
k=1

ξk(p+t ) +
N−t

∑
j=1

[1− ξ j(p−t )] .

(1.25)

Here, even though each noise trader can act independently from all the other noise traders, we
are not interested in describing their discrete behavior. Rather, we aim to derive their cumulative
impact. We thus consider a representative noise trader agent with wealth Wn

t , with each noise trader
having an equal portion of it.

From a statistical mechanics point of view, each individual noise trader can be seen as a microstate
defining the macrostate xn

t , the representative noise trader agent risky fraction

8



1.4. The equilibrium market price

xn
t :=

N+
t

N+
t + N−t

=
N+

t
Nn
∈ [0, 1] . (1.26)

This translates to a continuous macroscopic investment weight. We see that xn
t represents the frac-

tion of their total wealth invested in the risky asset. This allows to gauge their bullishness on the
market, as did the opinion index 1.20.

The risky fraction evolves as

xt+1 =
1

Nn

(
N+

t

∑
k=1

[1− ξk(p+t )] +
N−t

∑
j=1

ξ j(p−t )

)
. (1.27)

Equation 1.27 and Equation 1.22 show that the noise traders do not take the price at time t + 1 into
consideration, which differs strongly from the approach of the fundamentalist (Equation 1.16).

The total wealth of the noise trader agent at the next time step Wn
t+1, considering the current wealth

Wn
t , the price Pt+1, the fraction of his wealth invested in the risky asset xn

t and in the risk free asset
(1− xn

t ) can be derived very similarly to Equation 1.7. We have

Wn
t+1 = Wn

t + R f (1− xn
t )W

n
t +

(Pt+1 − Pt

Pt
+

dt+1

Pt

)
xn

t Wn
t

1.6
= Wn

t + Wn
t [R f + xn

t Rexcess,t+1] . (1.28)

1.4 The equilibrium market price

The price of the risky asset Pt+1 is defined by the market clearing condition: the total excess demand
summed over the noise and fundamentalist traders must vanish. We thus postulate a perfect balance
of supply and demand, where the buy orders of the noise traders compensate the sell orders of the
fundamentalists.

The number of shares of the risky asset owned at time t is

ni
t :=

xi
tW

i
t

Pt
, (1.29)

where i ∈ { f , n} represents both types of traders.

The excess demand of the risky asset for trader i from time t to t + 1 is then

9



1.4. The equilibrium market price

∆Di
t→t+1 = ni

t+1 − ni
t

=
xi

t+1W i
t+1

Pt+1
− xi

tW
i
t

Pt

1.7,1.28
= W i

t

{
xi

t+1

Pt+1
(1 + R f + xi

tRexcess,t+1)−
xi

t
Pt

}
. (1.30)

The market clearing condition can now be written as

∆Dn
t→t+1 + ∆D f

t→t+1 = 0 . (1.31)

Plugging 1.30 in 1.31 and substituting for the fundamentalist risky fraction with 1.16 gives a
quadratic equation for the equilibrium market price Pt+1

at+1P2
t+1 + bt+1Pt+1 + ct+1 = 0 , (1.32)

with the parameters (as in Ollikainen (2016))

at+1 =
1
Pt

[
ν

n f
t xn

t (xn
t+1 − 1) + x f

t

(
x f

min − 1
)]

(1.33)

bt+1 = x f
t

1
γσ2

Rex

dt+1(1 + rd)

Pt
+ x f

min

[
x f

t

(
dt+1

Pt
− R f

)
+ R f

]
+ ν

n f
t xn

t+1

[
xn

t

(
dt+1

Pt
− R f

)
+ R f

]
(1.34)

ct+1 =
dt+1(1 + rd)

γσ2
Rex

[
x f

t

(
dt+1

Pt
− R f

)
+ R f

]
, (1.35)

where

ν
n f
t :=

Wn
t

W f
t

(1.36)

defines the wealth ratio. Equation 1.32 has the two solutions

P±t+1 =
−bt+1 ±

√
b2

t+1 − 4at+1ct+1

2at+1
. (1.37)

We refer to (Conti, 2018, p. 16-18) for the derivation of the signs of the parameters. It follows that
the only solution yielding positive prices is
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1.5. Numerical parameters of the simulations

Pt+1 =
−bt+1 −

√
b2

t+1 − 4at+1ct+1

2at+1
=

bt+1 +
√

b2
t+1 + 4|at+1|ct+1

2|at+1|
. (1.38)

The causal flow for the new price Pt+1 goes as follows. First, the noise traders update their risky
fraction based on price momentum Ht and the imitating behavior st, but independently of the price
Pt. Simultaneously, the fundamentalists update their risky fraction based on maximization of the
CRRA utility function, subject to the price Pt, thus taking part in a Walrasian auction. Secondly, the
noise and the fundamentalist traders give their risky fraction to the market. With this information,
the new price Pt+1 is fixed through Equation 1.38.

1.5 Numerical parameters of the simulations

The numerical values chosen for the simulations are taken from in Kaizoji et al. (2015) and Westphal
and Sornette (2019) and listed in Table 1.1. Notably, the parameters r f , d0, rd, σd, P0 and σr are
chosen such that one time step corresponds to 1 day. A simulation length of 20000 time steps
represents 80 trading years, and 500000 time steps 2000 trading years. The asymmetry between
p+ and p− (Equation 1.22) represents the fact that there are more positive bubbles than negative
ones in real markets. Their values (≈ 0.2) infer an average holding time of each asset class of 10
days, when neither imitation nor trend following occurs (κt = 0). The parameter κt (Equation 1.23)
is chosen close to p± allowing the social interaction κt to enter the regime of super-exponential
growth κk > p± due to the stochastic nature of the OU process. The mean reversion rate ηκ and
the step size of the Wiener process σκ are chosen such that a deviation of 2σκ of κt above µk will
revert from the supercritical regime in ∆T = 21 days (Equation 1.24). Both representative agents
have the same initial wealth and the same initial fraction of their wealth invested in the risky asset
(xn

0 = x f
0 = 0.3).

An snapshot of the simulation for seed 113641 and with the noise traders memory set to 610 days is
shown in Figure 1.1. The top panel presents the price path between the time steps 5000 and 10000,
corresponding to 20 trading years. The fourth panel displays the evolution of the risky fraction of
the noise traders xn

t and of the risky fraction of the fundamentalist x f
t . The panel shows that the

regimes where xn
t displays a rapid growth are linked to the risky asset being more highly valued

(3rd panel displaying the dividend price ratio dt/Pt), and a decrease of the fraction of the wealth of
the fundamentalist invested in the risky asset x f

t .
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1.5. Numerical parameters of the simulations
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Figure 1.1: Overview of the simulation with seed 113641 and with the noise traders memory set to
610 days. The top panel presents the price path between time steps 5000 and 10000, corresponding
to 20 trading years. The fourth panel displays the evolution of the risky fraction of the noise traders
xn

t and of the risky fraction of the fundamentalist x f
t . This panel shows that the regimes where xn

t
displays a rapid growth are linked to the risky asset being more highly valued (3rd panel displaying
the dividend price ratio dt/Pt), and a decrease of the fraction of the wealth of the fundamentalist
invested in the risky asset x f

t . The lower panel shows the coupling strength κt modeled as an
Ornstein-Uhlenbeck process satisfying Equation 1.21, with the numerical values of the parameters
given in Table 1.1.
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1.5. Numerical parameters of the simulations

Parameter name Explanation Value

Market
T Simulation length 20000, 500000
seed Random seed 6 digit number
Assets
r f Risk free interest rate 0.01/250=0.00004
d0 Initial dividend 0.04/250=0.00016
rd Expected growth rate of the dividend 0.04/250=0.00016
σd Expected standard deviation of the dividend growth rate 0.000016
P0 Initial price of the risky asset 1
σr Expected standard deviation of the risky asset price

√
0.10/250 = 0.02

Nr Number of risky assets 1
Noise traders
xn

o Initial fraction of the risky asset held by the noise traders 0.3
Wn

0 Initial wealth of the noise traders 109

p+ Switching probability when holding the risky asset 0.199375
p− Switching probability when not holding the risky asset 0.200625
θ Memory parameter 0.8, variable
H0 Initial momentum 0.00016
Nn Number of noise traders 5000
Nn

G Number of groups of noise traders 1
Fundamentalists
x f

0 Initial fraction of the risky asset held by the fundamentalists 0.3
W f

0 Initial wealth of the fundamentalists 109

ERt Expected return of the risky asset 0.00016
Social coupling strength
κ0 Initial social coupling strength 0.98 · 0.199375
µκ Mean of the OU social coupling strength 0.98 · 0.199375
ηκ Mean reversion of the OU social coupling strength 0.11
σκ Standard deviation of the OU social coupling strength 0.001

Table 1.1: Parameters used in the simulations of the ABM. The values of r f , d0, rd, σd, P0 and σr
(listed in the the Assets row) are given as per time step. Their values imply that each time step
corresponds approximately to 1 day. A simulation length of 20000 time steps represents thus 80
trading years, and 500000 time steps 2000 trading years. The impact of the memory parameter of
the noise traders (bold) will be extensively analyzed in the following chapters
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Chapter 2

Impact of the Noise Traders’ Memory on the
Frequency and Size of Bubbles

In a financial bubble, the expectations of future returns and social influence shadow the assets real
value in the decision making process of participants. Kaizoji et al. (2015) showed the influence of
social interaction on the price formation in an agent based model formed of fundamentalists and
noise traders, as described in chapter 1. Within this framework, we demonstrate the impact of
the memory τ (1.18) of the noise trader agent on the frequency and size of bubbles. To do so, 18
different memory lengths are chosen. Their values, listed in Table 2.1, follow the Fibonacci sequence.
This choice has the advantage to produce a converging scaling between two successive lengths.

The metric used in Westphal and Sornette (2019) to detect bubbles out of sample is mentioned.
A more representative metric is then introduced. The robustness and stability of the new metric
parameters are investigated by generating 1000 simulations of 20000 time steps for each memory
τ. Section 2.5 presents the results for simulations of 495000 time steps computed with the robust
parameters of the metric.

2.1 Identification of peaks and valleys and computation of drawdowns

In Westphal and Sornette (2019), a peak occurs at the time steps ti if the price Pti is the maximum
of the 250 previous and future prices

Pti ≥ Ptj ∀tj ∈ [ti − 250, ti + 250] . (2.1)

This insures a minimum of 250 days between two consecutive peaks. However, this does not imply
that a peak is found at every 500 time steps. If the price shows an upwards trend, there will be
a higher price in the next 250 time steps for all prices leading to the real peak however long the
upward trend is. Yet, in a flat market this approach will detect peaks that are not part of a real

*Equation 1.19 does not yield a finite value in this case. Thus the price momentum defined in Equation 1.22 is set to
Ht = 0.
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2.1. Identification of peaks and valleys and computation of drawdowns

Memory length in days τ Value of the memory parameter θ in Table 1.1

0 Ht = 0 *

1 0
2 0.5
3 0.666666666666667
5 0.8
8 0.875
13 0.923076923076923
21 0.952380952380952
34 0.970588235294118
55 0.981818181818182
89 0.98876404494382
144 0.993055555555556
233 0.995708154506438
377 0.997347480106101
610 0.998360655737705
987 0.998986828774063
1597 0.999373825923607
2584 0.999613003095975

Table 2.1: List of the 18 different memory parameters τ (Equation 1.19) used in this chapter, chap-
ter 4 and chapter 3. The numbers of days corresponding to the value of τ follow the Fibonacci
numbers, producing a converging scaling between two successive memory lengths. The numbers
for θ are given with a 15 digits precision such that the program rounds the value of τ, obtained by
Equation 1.19, to the value of τ listed here.

bubble but just local maxima of the flat market. Using this metric results in counting too many
peaks and yielding an average drawdown per peak not representative of the drawdown following
the real bubbles in the time series studied. Comparing the results from many simulations using
such a metric is coherent, as long as no absolute numbers is presented such as the average number
of days between two consecutive bubbles. Also, arguing that a model yields a similar average
drawdown as bubbles do in real markets does not hold as the metric skews the drawdown of the
true bubbles generated by the model.

In this regard a metric at to detect peaks out of sample is proposed. A bubble is defined as an
abnormal rise and a following drawdown. The value of the metric at is computed as

ati(s) =
1
Pi

1
2s

s

∑
j=1

(2Pi − Pi−j − Pi+j) ∀ti ∈ [s, T − s] , (2.2)
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2.2. Robustness of the metric

for a price time series of length T, and a maximal bubble length s . The factor
1
Pi

allows to interpret

ati as the average percentage difference of the price Pi w.r.t. its s left and s right neighbors. In
addition, the metric at scales with the price and does not generate more bubbles in latter years.

The metric ati is subsampled by keeping only the time steps ti that have a value higher than a given
threshold thresh. Subsequently, ati is subsampled again such that the minimum number of days
between two bubbles is 250 trading days, as in Westphal and Sornette (2019). With the definition of
at, the parameter thres represents the minimal percentage difference between the detected peak and
the average price of its 2s neighbors. The metric proposed is related to a negative acceleration. A
peak has a maximum downward curvature (maximum negative acceleration), which is quantified
through at (see Ardila et al. (2015) for the stronger explanatory power of the acceleration versus the
momentum)

As in Westphal and Sornette (2019), the troughs are defined as the minimum price between two
consecutive peaks, and the drawdown between a peak and the following trough is computed as

dti = log(Ptpeak=ti)− log(Ptvalley) . (2.3)

2.2 Robustness of the metric

The implications and robustness of the parameter s on the number of bubbles generated by the
metric presented in Equation 2.2 are investigated on time series of 20000 time steps.

A bubble is detected at time ti if the metric ati is the local maximum on the range [Pti − s, Pti + s]
and the price Pti is the maximum over the range [ti − 250, ti + 250] (minimum distance between two
bubbles fixed at k = 250 days). The parameter s can thus be interpreted as a cut-off for the maximal
length of a bubble. As will be shown, this parameter has a significant impact on the number of
bubbles detected. As no more than one bubble can occur in 250 days, s ≤ 250.

A first problem due to a small s can be seen for s = 50 in Figure 2.1: at least two clear bubbles
between time steps 2500 and 5000 as well as one bubble around time-step 10500 are not detected.
Figure 2.2 is a zoom of Figure 2.1 with the value of at plotted in green. With a s = 50, each price is
compared to its 50 left and right neighbors. The bubble around time-step 10500 takes more than 50
days to form and explode, hence at has a lower value. From the construction of at, a small s is not
equipped to detect bubbles forming over periods larger than s. This impacts the number of bubbles,
the average time between bubbles and the average drawdown per bubble. If the bubbles’ build up
and consequent crash were symmetric, the average drawdown would not be affected. However the
evolution of the bubbles generated by the present ABM is found to be asymmetric†.

A second artifact of a small s is revealed when n bubbles occur in a row. Then, only the peak
preceding the largest of the n drawdowns will be defined as the peak of the bubble regime. The
peak so defined is not representative of the true maximum price of the bubble regime. Such a

†As can be deduced from the asymmetric switching probabilities, which comes from the impact of the dividend on
the price momentum.
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2.2. Robustness of the metric
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Peaks for s = 50, thres = 0.4 Valleys Drawdown Price Path for = 89 days

Figure 2.1: A price path generated with the noise traders’ memory set to 2 days. The peaks and
valleys are selected with thres = 40%, s = 50 days and the minimal amount of time steps between
two consecutive bubbles k = 250. Clear bubbles between time steps 2500 and 5000 as well as one
bubble around time-step 10500 are not detected. Note also the bubble regime around time-step
13000 where only the last and lowest bubble peak is counted. The simulation is run for the values
listed in Table 1.1, with the random seed 113641 and the memory parameter set to 89 days.

behavior can be seen Figure 2.1 and Figure 2.2 in the bubble regime around time-step 13000. First,
note that this bubble regime has 3 peaks. As they all occur within 250 days, a maximum of one
bubble can be counted. Secondly, we see on Figure 2.2 that there is a relatively smaller drawdown
following the first peak compared to the drawdown of the rightmost peak of this bubble regime
(pinpointed with a red triangle). As ati is the average percentage difference of the price Pi w.r.t. its
s left and s right neighbors, its value is smaller for the first two peaks than for the third.

Let us now compare these results with the similar price path, same threshold thres = 0.4 but s = 250
(the maximum allowed value for a maximum of one bubble every 250 days, and the value used in
Westphal and Sornette (2019)). Figure 2.3 and the corresponding zoom in Figure 2.4 show that a
higher value for s resolves both mentioned artifacts. We conclude that for a given threshold, a larger
s will yield more bubbles and more importantly will be more representative.

The parameters selected in Table 1.1 imply that the price will revert from a deviation to the supercrit-
ical regime in ∆T = 21 days. On symmetry ground, it can be argued that the minimum duration of
a bubble is 42 days. However, through the herding behavior of the noise traders, organized phases
tend to last longer.
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2.3. Impact of the metric on the bubble count and drawdown sizes
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Figure 2.2: Zoom of Figure 2.1. The value of at is computed as defined in Equation 2.2. The values
of at above the threshold thres = 0.4 are highlighted. As described in the text, the value of at is on
average lower for smaller s, which makes it miss bubbles forming over longer periods than s time
steps. The simulation is run for the values listed in Table 1.1, with the random seed 113641 and the
memory parameter set to 89 days.

2.3 Impact of the metric on the bubble count and drawdown sizes

We demonstrated in the previous section the importance and impact of the parameter s on the
number of peaks detected. To quantify this impact, we fix thres = 0.4 and compute the average
number of peaks for s ∈ {50, 100, 150, 200, 250} over 1000 different price paths for each memory
presented in Table 2.1. Each price path comprising of 20000 time steps. We thus have an average
number of bubbles for the 18 different memory lengths and the 5 different s values. For each value,
the error is computed as the standard error of the mean as we are in a counting process. The results
presented in Figure 2.5 show the statistically significant impact of s. Except for a memory of 0 day,
the shortest memory lengths seem to create the most bubbles. Numerical values will be presented
and commented in section 2.5.

As shown in section 2.2, only bubbles narrower than a given s days will be detected at all. This
influences the average drawdown per bubble: for small s only very narrow and thus steep bubbles
will be detected. Smaller, slower forming bubbles are not detected which artificially yields a higher
average drawdown. Moreover, a small s will misattribute the true peak of a large bubble regime.
These two effects have thus an impact on the average drawdown per peak. The results are presented
in Figure 2.6, where the drawdowns are computed as in Equation 2.3. Overall, a memory length
of 1 day seems to create the smallest drawdown. For each value, the error bar is computed as the
standard deviation of the distribution of the log drawdown. Even though the difference between
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2.4. Impact of the threshold parameter on the bubbles count and drawdown sizes
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Figure 2.3: A price path generated with the noise traders’ memory set to 89 days. The peaks and
valleys are selected with k = 250 days, thres = 40%, and s = 250 days. In comparison with the
s = 50 case in Figure 2.2 where 5 bubbles were detected, 12 bubbles are detected here. Also, the
peak of the bubble regime around time-step 13000 is more precisely pinpointed. The simulation is
run for the values listed in Table 1.1, with the random seed 113641 and the memory parameter set
to 89 days.

different s are not statistically significant, we note a systematic clear and non-overlapping trend.
The standard deviation is thus too pessimistic.

2.4 Impact of the threshold parameter on the bubbles count and draw-
down sizes

With our redefinition of Equation 2.2, interpreting the parameter tresh is straightforward: it rep-
resent the minimal percentage difference between the detected peak and its 2s neighbors. Setting
thres = 0.4 selects the bubbles whose peak has a price at least 40% higher than the average price of
its 2s neighbors. Thus, a higher thres yields less bubbles but with a higher drawdown average.

Figure 2.7 demonstrates the impact of the threshold parameter on the average number of bubbles,
where the parameter s is set to 250 days. We proceed as in section 2.3 to quantify the impact
of the thres parameter. We fix s = 250 and compute the average number of peaks for thres ∈
{0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6} over 1000 different price paths for each memory
presented in Table 2.1, with each price path comprising of 20000 time steps. We thus have an
average number of bubbles for the 18 different memory lengths and the 11 different thres values.
For each value, the error is computed as the standard error of the mean as we are in a counting
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Figure 2.4: Zoom of Figure 2.3. The value of at is computed as defined in Equation 2.2. The values
of at above the threshold thres = 0.4 are highlighted. In comparison with Figure 2.2 where s = 50,
the value of at with s = 250 depicts much more truthfully the sharp movements of the underlying
price path. The simulation is run for the values listed in Table 1.1, with the random seed 113641
and the memory parameter set to 89 days.

process. We disregard the results for thres = 0.6 as not enough bubbles are formed for this regime
in a price path of 20000 time steps. For thres ∈ [0.2, 0.5), the shorter memories (greater than 0 day)
yield the most bubbles. We conclude that for a simulation of length 20000, the number of bubbles
computed with the metric at is robust to a varying thres ∈ [0.2, 0.5).

Similarly, Figure 2.8 demonstrates the impact of the threshold parameter on the average drawdown
per bubble. The parameters s and k are set to 250 days. For each value, the error bars are computed
as the standard deviation of the distribution of the log drawdown. As for the previous section, the
error bars are too pessimistic as the trend is smooth and the mean drawdowns for each thres do
not overlap another. As expected, a smaller thres yields smaller drawdown. More importantly, the
behavior for noise traders with memory 0 and 1 day presented in section 2.3 are robust from a
threshold of 0.2 to 0.6.

An important difference between the impact of s and thres is that the thres parameter subsets the
bubbles that have a peak with price at least thres% above the average price of its 2s neighbors. The
choice of thres is not relevant for the robustness of the analysis, as long as enough bubbles form the
subset (based on the results displayed in Figure 2.7 we would not recommend going above 0.5 with
such a simulation length). The parameter thres does not subset the bubbles by the regime they are
in or the time they take to reach their peak. The parameter s however is more problematic as a small
s hides bubbles from the analysis, such as the ones depicted in Figure 2.1. Within our framework of
one trade per time-step, s = 250 depicts the best the reality.
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2.5. Number of bubbles for longer simulations
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Figure 2.5: For a fixed thres = 0.4, the number
of bubbles counted depends strongly and very
significantly on the parameter s. Each point is
the arithmetic mean of the number of bubbles
over 1000 price paths. The error bars represent
the standard error of the mean. The simula-
tions are run for the values listed in Table 1.1,
with the random seed and the memory parame-
ters changing. In each simulation, all the noise
trader agents have the same memory length.
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Figure 2.6: For a fixed thres = 0.4, the aver-
age drawdown for a given s and a given noise
trader’s memory is computed. Each point is the
average drawdown per bubble. The error bars
represent the standard deviation as error of the
drawdown. The simulations are run for the val-
ues listed in Table 1.1, with the random seed
and the memory parameters changing. In each
simulation, all the noise trader agents have the
same memory length.

2.5 Number of bubbles for longer simulations

We here present the number of bubbles obtained by running our analysis on 1000 seeds for each τ
parameter, with each seed generating a price path of 495000 steps‡ as (compared to 20000 for the
preceding subsections). These results bring more significance as the price paths are 25 times longer,
and it will allow us to compare on the same footing the results obtained in the next chapters. We
here fix s = 250, thres = 0.4, k = 250.§

The number of bubbles created for each τ is plotted in Figure 2.9, with the numerical values given
in Table 2.2. We note that the traders with shorter memory (bigger than 0 day) tend to create
more bubbles with a maximum for 1 day with 473.3±0.7 bubbles. The memories that create the
least bubbles are 0 day (350.4±0.6 bubbles), 144 days (361.1±0.6 bubbles) and 233 days (361.8±0.6
bubbles). The bubbles created by noise traders with a memory length of 1 day have a relatively lower

‡We generate 500000 steps from which we disregard the first 5000 (burn in period).
§The coupling strength of the noise traders depend on the memory length τ. Hence, the duration of the bubbles may

also depend on τ. A smaller memory could tend to create bubbles faster as the noise traders agent only remember the
immediate past. Hence, a smaller value of s might already be significant for shorter strictly positive memories. A variable
s for each τ was not analyzed. The results shown in Figure 2.5 prove that memory lengths longer than 250 (the value of
s) create more bubbles than memories of 89, 144 and 233 days.
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Figure 2.7: Evolution of the number of bubble
w.r.t. the thres parameter for s = 250. For
thres ∈ [0.2, 0.5), the shorter memory (greater
than 0 day) yield the most bubbles. The curve
for thres = 0.4 is the same as the curve s = 250
in Figure 2.5. The simulations are run for the
values listed in Table 1.1, with the random seed
and the memory parameters changing. In each
simulation, all the noise trader agents have the
same memory length.
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Figure 2.8: Evolution of the average drawdown
w.r.t. the thres parameter for s = 250. A
small thres is futile as it captures too many
price movements and cannot pinpoint the bub-
bles. Starting from thres = 0.2 we see a non triv-
ial trend forming, with the smallest drawdown
attributed to a memory of 1 day. The simula-
tions are run for the values listed in Table 1.1,
with the random seed and the memory parame-
ters changing. In each simulation, all the noise
trader agents have the same memory length.

drawdown (1.4±0.3) than the other memory lengths (Figure 2.10, leftmost column of Table 2.2). This
is also the memory generating the most bubbles.

Looking at the number of years between bubbles (rightmost column of Table 2.2), we see that we
have much less bubbles for all τ than what Westphal and Sornette (2019) reported for the same
ABM but with a third agent acting as a Dragon Rider (DR) (2.5 years in average between bubbles
in their simulations). Also, the average drawdowns in our simulation without the DR agent are up
to 3 times higher than what Westphal and Sornette (2019). As mentioned above, the higher number
of bubbles and the lower average drawdown in Westphal and Sornette (2019) may be linked to
their metric choice (Equation 2.1). A comparison with the results obtained in the present work can
therefore not be made.

The noise traders with no memory, τ = 0, have shown to behave as if they were embodied by a
very long memory. Analyzing Equation 1.18 for an infinite memory θ → 1 shows that the recent
price return has no impact on the momentum and the momentum behaves as a constant (after a
large enough number of time steps). It follows that the switching probabilities (Equation 1.22) do
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2.5. Number of bubbles for longer simulations

not depend on the previous value of the momentum in the limit θ → 1. This is in accordance with
the implementation of the noise traders with no memory (Table 2.1) where the momentum is set to
Ht = 0. Therefore, it is expected for the noise traders with no memory to have the social coupling
strength of noise traders with a very long memory, up to a constant equal to the expected value of
the returns, the growth rate of the dividends rd (Equation 1.2). Indeed, the expected value of the
price returns is constant (Equation 1.14) and should, reasonably, be equal to the long term growth
rate. See Westphal and Sornette (2019) for the verification that the long term growth rate of the
price is equal to the growth rate of the dividends. Plugging Equation 1.18 in Equation 1.22 yields

p±t =
p±

2
(1∓ κt(st + θHt−1 + (1− θ)Rt) ,

θ→1
=

p±

2
(1∓ κt(st + Ht−1)) ,

≈ p±

2
(1∓ κt(st + rd)) .

(2.4)
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Figure 2.9: Average number of bubbles created for each memory parameter listed in Table 2.1
over 1000 simulations of 495000 time steps. The metric applied to detect the peaks is given in
Equation 2.2. The errors (not visible at this scale) are computed as the standard error of the mean
as we are in a counting process. Noise traders with a 1 day memory produce more bubbles than all
other memories. As it can be seen, the shorter the memory (except for no memory at all) the more
bubbles are created. Numerical values as well as the average number of years between bubbles are
given in Table 2.2. The simulations are run for the values listed in Table 1.1, with the random seed
and the memory parameters changing. In each simulation, all the noise trader agents have the same
memory length.
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Figure 2.10: Average drawdown of bubbles created for each memory parameter listed in Table 2.1
over 1000 simulations of 495000 time steps. The metric applied to detect the peaks is given in Equa-
tion 2.2. The drawdowns are computed as in Equation 2.3. The noise traders with a 1 day memory
create the bubbles with the smallest drawdown but also the most bubbles (Figure 2.9). The errors
are computed as the standard deviation of the distribution of the log drawdowns. The values of the
drawdowns are not statistically different. However, the computation of the drawdowns for different
value of s (Figure 2.6) displayed a systematic clear and non-overlapping trend. The standard devia-
tion may thus be too pessimistic. The values plotted are listed in Table 2.2. The simulations are run
for the values listed in Table 1.1, with the random seed and the memory parameters changing. In
each simulation, all the noise trader agents have the same memory length.
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2.5. Number of bubbles for longer simulations

τ Drawdown Number of bubbles Number of years between bubbles
s = 250, thres = 0.4 s = 250, thres = 0.4 s = 250, thres = 0.4

0 1.9 ± 0.8 350.4 ± 0.6 5.650 ± 0.010
1 1.4 ± 0.3 473.3 ± 0.7 4.183 ± 0.006
2 1.5 ± 0.4 471.6 ± 0.7 4.199 ± 0.006
3 1.6 ± 0.4 466.8 ± 0.7 4.241 ± 0.006
5 1.7 ± 0.5 458.0 ± 0.7 4.323 ± 0.006
8 1.8 ± 0.5 446.2 ± 0.7 4.438 ± 0.007
13 1.9 ± 0.6 430.9 ± 0.7 4.595 ± 0.007
21 2.0 ± 0.7 412.5 ± 0.6 4.800 ± 0.007
34 2.0 ± 0.7 393.9 ± 0.6 5.027 ± 0.008
55 2.0 ± 0.7 377.3 ± 0.6 5.248 ± 0.009
89 2.0 ± 0.7 365.9 ± 0.6 5.412 ± 0.009

144 1.9 ± 0.7 361.1 ± 0.6 5.483 ± 0.009
233 1.9 ± 0.7 361.8 ± 0.6 5.473 ± 0.009
377 1.9 ± 0.7 365.9 ± 0.6 5.411 ± 0.009
610 1.9 ± 0.7 371.1 ± 0.6 5.336 ± 0.009
987 1.9 ± 0.7 374.8 ± 0.6 5.282 ± 0.009
1597 1.9 ± 0.7 378.2 ± 0.6 5.235 ± 0.009
2584 1.9 ± 0.7 380.3 ± 0.6 5.207 ± 0.008

Table 2.2: Numerical values for the results shown in Figure 2.9 and Figure 2.10. The simulations for
each τ are run over 495000 time steps for each of the 1000 seeds . This represents 1980 trading years
for each seed of each τ. The error on the drawdown is taken as the standard deviation, whereas
the error for the number of bubbles is the standard error of the mean. The noise traders with a
memory of 1 day create the most bubbles but with the lowest average drawdown. The values of the
drawdown, plotted in Figure 2.10, are not statistically different. However, the computation of the
drawdowns for different value of s (Figure 2.6) displayed a systematic clear and non-overlapping
trend. The standard deviation may thus be too pessimistic. The simulations are run for the values
listed in Table 1.1, with the random seed and the memory parameters changing. In each simulation,
all the noise trader agents have the same memory length.
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Chapter 3

Time Series Analysis

As mentioned, volatility clustering is the tendency of large absolute returns to be followed by large
absolute returns, and small absolute returns followed by small absolute returns.

It is known that multiple time scales are needed for the emergence of volatility clustering (LeBaron
(2006)). The present ABM fulfills this criterion. The fundamentalist bases his investment decision
on his long term view of the market and is not influenced by short term market fluctuations. The
noise traders has a memory of length τ, which is varied in the present work between 0 day and
2584 days. Furthermore, the social imitation strength governed by the Ornstein-Uhlenbeck process
has an expected reverting time from the critical to the subcritical regime of 21 days.

A classical approach to quantify volatility clustering is through time series analysis. Cont (2007)
demonstrates that volatility clustering translates to signed returns rt showing no autocorrelation at
all lags while the powers of the returns |rt|d show a slowly decaying autocorrelation function. Ding
et al. (1993) argue this behavior can characterize a ”long memory” and is the strongest for d close
to 1.

The present chapter is structured as follows: section 3.1 analyzes the autocorrelations and the partial
autocorrelations of the signed returns generated by the ABM presented in chapter 1. The section 3.2
studies the autocorrelation of the absolute returns. As LeBaron (2000) pinpoints, the challenge of
complex agent-based models is to clarify which aspect of the model is responsible for the stylized
facts observed. In this regard, the simulations are run varying only the memory parameter τ of the
noise traders for the values listed in Table 2.1, while keeping all the other market variables fixed
(except for the random seed). In each simulation, all the noise trader agents have the same memory
length.

The analysis presented in the following sections rely on key concepts of time series analysis. Ap-
pendix A presents an introduction to the key definitions and equations used in this chapter. The
shortcomings and pitfalls of the considered approximation methods are highlighted.
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3.1. Autocorrelation of the signed returns

3.1 Autocorrelation of the signed returns

Real markets exhibit significant autocorrelations for very short time scales only (Malkiel and Fama
(1970), Fama (1991), Pagan (1996), Cont et al. (1997)). The correlation period represents the delay
needed for the market to react to the information (Cont (2001)), or that arbitraging the remaining
trend is not cost efficient.

In the present artificial market no fees are taken into considerations, but the data generated and an-
alyzed is on the finest information time scale as no exchange of information or opinion is possible
between two consecutive returns. A delay in the arbitrage is thus compatible to some extent. How-
ever, as will be shown, significant coefficients are found up to lag 100. The first negative lags can
partially be explained by noise traders switching too promptly from a bullish to a bearish behavior
(and vice-versa). Nonetheless, it has to be raised that the current artificial market does not show typ-
ical market behavior for the autocorrelation of signed returns at small lags and could benefit from
an additional agent arbitraging the autocorrelations. Such an agent could use a Kalman-Levy filter
to fit an ARMA process to account for the remaining nonconstant conditional mean and constant
conditional variance* as a trend following strategy. In the current setting, returns exhibit strong non
stationarity which might imply an underlying bias in the results presented in the current chapter.

The coefficients of the autocorrelation function (ACF)† are presented in Figure 3.1. The autocor-
relation coefficient for a specific lag and τ is the average coefficient for this lag taken over 1000
simulations of 494999 returns generated for this memory parameter‡. The red horizontal dashed
lines represent the 95% confidence level to accept null hypothesis that the coefficients are i.i.d.,
i.e. coefficients within the dashed lines can be considered to be 0. The interval is given by
±1.96/

√
494999 = ±0.0027 (see section A.2). The errors bars (hardly visible at this scale) represent

the standard deviation of the coefficients. The coefficients of the partial autocorrelation function
(PACF) are displayed in Figure 3.2. Their values and standard deviation are obtained similarly
to the ACF coefficients. The ACF shows an exponential decay while the PACF has a clear cut-off
between lag 2 and 7 depending on the memory of the noise traders. The cut-off values, lowest
coefficient and the lag of the lowest coefficient for the ACF and PACF are given in Table C.3. As
expected§, longer memories are linked to an autoregressive process of higher lags. Based on the
insights from section A.7 these out of sample observations support an AR(p) model, though an
ARMA(p, q) could be more parsimonious.

*To account for a remaining nonconstant conditional variance (known as conditional heteroskedasticity), a GARCH
model would be preferred.

†The ACF coefficients are computed with a Fast Fourier Transform convolution (order n log n), instead of the brute
force method (of order n2), speeding the process by a factor 37750.

‡As for section 2.5 and chapter 4, each simulation generates a price path of 500000 time steps of which we remove a
burn in period of 5000 returns. This yields 494999 returns.

§See section A.2 and section A.6 for the intuition behind it. Also, this can be traced back to the price momentum
part of the social interaction of the noise traders (Equation 1.18). A higher τ leads to older price returns taken into
consideration.
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Figure 3.1: ACF coefficients of signed returns up to lag 1000 (left) with a zoom on the first 100 lags
(right), for each memory τ. The simulations are run varying only the memory parameter τ of the
noise traders for the values listed in Table 2.1, while keeping all the other market variables fixed
(except for the random seed). In each simulation, all the noise trader agents have the same memory
length. The red horizontal dashed lines represent the 95% confidence level to accept null hypothesis
that the coefficients are i.i.d. Significant coefficients are found up to lag 100, indicating a strong non
stationarity in the returns generated. The cut-off lag (first lag to cross the i.i.d. null hypothesis),
lowest coefficient and the lag of the lowest coefficient are given for each τ in Table C.3.
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Figure 3.2: PACF coefficients of signed returns up to lag 100 (left) with a zoom on the first 10
lags (right). The simulations are run varying only the memory parameter τ of the noise traders
for the values listed in Table 2.1, while keeping all the other market variables fixed (except for the
random seed). In each simulation, all the noise trader agents have the same memory length. The
red horizontal dashed lines represent the 95% confidence level to accept null hypothesis that the
coefficients are i.i.d. The cut-off lag (first lag to cross the i.i.d. null hypothesis), lowest coefficient
and the lag of the lowest coefficient are given for each τ in Table C.3

.
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3.2. Autocorrelation of the absolute returns
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Figure 3.3: ACF coefficients of the absolute returns up to lag 1000 (left) with a zoom on the first
20 lags (right). The simulations are run varying only the memory parameter τ of the noise traders
for the values listed in Table 2.1, while keeping all the other market variables fixed (except for the
random seed). In each simulation, all the noise trader agents have the same memory length. The
coefficients and the standard errors are computed similarly to the signed returns (section 3.1). The
red horizontal dashed lines represent the 95% confidence level to accept null hypothesis that the
coefficients are i.i.d. A slower decay indicates stronger volatility clustering.

3.2 Autocorrelation of the absolute returns

The slow decay of the autocorrelation coefficients of the absolute returns is an evidence of volatility
clustering (Cont (2007)). The slower the decay, the more volatility clustering is present (Ding et al.
(1993)). Figure 3.3 displays the decay for the different memory parameters. The analysis of the
impact of the memory parameter on this decay can offer an alternative metric of volatility clustering
to the one presented in chapter 4.

It is known from Equation A.34 that the sum of the coefficients of a GARCH(p, q) fit on the signed
returns quantifies the decay of the autocorrelation of absolute returns. A GARCH(1,1) model is
fitted on every simulation. The sum of the two GARCH coefficients is averaged over the 1000
simulations. The error is taken as the standard deviation of the distribution of the sums. The
results displayed in Figure 3.4 do not allow any clear interpretation. Note that the mean of the sum
is below but close to the critical value 1.0 (Equation A.32) for all memory lengths¶, indicating a
variance marginal distribution close to infinite. Mikosch et al. (2000) argue at length that in such
a case the sample autocorrelations are deceptive estimators for the signed and absolute returns.
The ACF of the GARCH(1,1) is an unreliable estimator (tardy convergence), becomes senseless, and
one should deflect drawing conclusions from the ACF of the absolute returns (see also Resnick
(1998) and Cont (2007)). The non-stationarity of the returns (Figure 3.1) may also play a part (see
Equation A.25 and more generally section A.8 where εt is always defined as WN(0,1)).

Another approach to quantify the power decay is its decay exponent β. The objective is to find a
subset of lags for which the power decay exponent is constant and representative. Let (xτ, yτ) be a

¶The confidence bands of some memories overlap with the critical value.
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Figure 3.4: Average sum of the two GARCH(1,1) coefficients for each memory parameter. The error
bars are the standard deviations of the distributions of the sums. The simulations are run varying
only the memory parameter τ of the noise traders for the values listed in Table 2.1, while keeping
all the other market variables fixed (except for the random seed). In each simulation, all the noise
trader agents have the same memory length. All values are close to the critical point 1.0, with some
error bars including it. No clear trend can be deduced and these results are not investigated further.

point with yτ representing the average coefficient for the lag xτ, computed over 1000 simulations.
A null hypothesis for each τ is generated by the least squares linear fit of the points (xτ, log(yτ)).
Each point (xτ, yτ) is assigned a p-value w.r.t. the corresponding null hypothesis (xτ, yτ,pred). To test
the quality of the power law exponent β (slope of the linear fit), Fisher’s combined probability test
is used (Kost and McDermott (2002), DeGroot and Schervish (2012)). The test is based on the fact
that a sum of k variables with a χ2 distribution is χ2

ν with ν = 2k degrees of freedom. First, note
that the exponential distribution has the cumulative distribution function (cdf)

F(x, λ) = (1− e−λx) · H(x) , (3.1)

where H(x) is the Heaviside step function. The quantile function is then

x = F−1(p, λ)−1 =
− log(1− p)

λ
=
− log p

λ
, 0 ≤ p < 1 . (3.2)

The cdf of the χ2
ν distribution for ν = 2 is the cdf of the exponential distribution with rate λ = 1

2
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3.2. Autocorrelation of the absolute returns

F(x, ν = 2) =

∫ x
2

0 t
2
2−1e−tdt

( 2
2 − 1)!

= 1− e−
x
2 . (3.3)

To combine the product of p-values, the sum is taken and multiplied by 2 to get the 1
2 rate parameter.

The test statistics is then

χ2
2k ∼ −2

k

∑
i=1

log pi , (3.4)

where k indicates the number of lags fitted and pi the p-value for the null hypothesis at lag i. From
the null hypothesis, a large combined p-value is interpreted as a confirmation of a significant fit.

To pinpoint a constant and representative exponent β, the combined p-value for different ranges
are probed. The ranges have a starting lag sτ and end lag fτ. The ranges are then shrunken by
keeping fτ fixed and increasing sτ up to fτ −m, where m is the minimal amount of lag to be fitted.
In Figure 3.5 (zoom of Figure 3.3 on a semilogy scale), the lags up to lag 20 display a faster decay.
They are disregarded and the initial lag set at sHi = 20 (black dashed vertical line in Figure 5.7) To
determine the end lag fτ is more difficult as some memories τ seem to cross the i.i.d. null hypothesis
(red horizontal dashed line at 0.0027 as computed in section 3.1) at much lower lags than others.
Evidently, fτ depends on τ. In a first approach, fτ is naively defined as the lag preceding the first
lag for which the ACF coefficient is below the i.i.d. null hypothesis for a given τ.

Imposing a minimum of m = 200 lags to be fitted||, no ranges, for any τ, yields a combined p-
value above 0**. This confirms the visual intuition that the i.i.d. null hypothesis is not the cut-off
corresponding to the end of the constant decay regime. The cut-offs 0.01, 0.02, 0.03, 0.04 for m = 200,
m = 100 did not yield at least one range for every τ with a positive combined p-value. Shifting fτ

for all the mentioned cut-offs to the 50th and 100th lag preceding the first lag for which the ACF
coefficient is below the cut-off turned out to be unsuccessful as well (for m = 200 and 100). The
cut-off set at 0.01 (black dashed-line in Figure 3.5) and m = 50 were the least restrictive parameters
for which all 18 memories had at least one range yielding a non zero combined p-value. The lower
value of m may raise doubts on the intrinsic value of the results. It is stressed that m only influences
the size of the final ranges tested. To support this, the evolution of β will be analyzed.

Equipped with at least one range for each memory parameter displaying a significant fit of the
power decay, the robustness of these ranges are analyzed. The evolution of the combined p-value
displays an unexpected percolating behavior for all memories (Figure 3.6, left) with an irreversible
and sharp transition from a combined p-value of 0 to a combined p-value of 1. The percolation
thresholds pc

τ (vertical dashed lines) are the mean lag between the highest lag with a combined
p-value below 0.01 and the lowest lag with a combined p-value above 0.99. Note that for all values

||This means that the last range to be fitted is [ fτ − 200, fτ].
**Concretely, the decay of the memory parameter τ = 0 (1 day) is above the i.i.d. null hypothesis up to lag 490. For

this parameter, a linear fit is computed on the ranges [i, 490] for i ∈ [20, 490− 200], and the combined p-value is computed
for each range.
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Figure 3.5: ACF coefficients of the absolute returns for all memory parameters up to lag 800 (zoom
of Figure 3.3 on a semilogy scale). The simulations are run varying only the memory parameter τ of
the noise traders for the values listed in Table 2.1, while keeping all the other market variables fixed
(except for the random seed). In each simulation, all the noise trader agents have the same memory
length. The red horizontal dashed line represents the upper band of the 95% confidence level to
accept the null hypothesis that the coefficients are i.i.d. (see section A.2). The black vertical dashed
line is at lag 20, the start lag sτ used to pinpoint a range of lags yielding a positive combined p-value.
The black horizontal dashed line corresponds to ACF coefficients with value 0.01. This cut-off is the
fix end lag fτ of the ranges used to pinpoint a positive combined p-value. A slower decay of the
ACF of the absolute returns implies stronger volatility clustering.
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Figure 3.6: The left figure shows the evolution of the combined p-value of the linear fit on the range
[log (yτ(xsτ )), log (yτ(x fτ

))] of the points (xτ, log (yτ)) displayed in Figure 3.5, for the starting lags
sτ ∈ [20, fτ − m] given on the x-axis of the present plot, the final lag fτ corresponding to the lag
preceding the first lag for which the ACF coefficient is below 0.01 (black dashed line in Figure 3.5)
for a given τ, and minimal amount of lags fitted m = 50. The evolution of the combined p-value for
each τ displays an unexpected percolating behavior with an irreversible and sharp transition from a
combined p-value of 0 to a combined p-value of 1 at the percolation thresholds pc

τ (vertical dashed
lines). The value pc

τ is the mean lag between the highest lag sτ for which the combined p-value
is below 0.01 and the lowest lag sτ with combined p-value of at least 0.99. The plot on the right
displays the percolation thresholds. The values of pc

τ are listed in Table 3.1. The data on which the
ACF of absolute returns are computed in Figure 3.5 are simulations run varying only the memory
parameter τ of the noise traders for the values listed in Table 1.1, while keeping all the other market
variables fixed (except for the random seed). In each simulation, all the noise trader agents have the
same memory length.

of fτ and m analyzed, the memories for which at least one range yielded a non-zero combined
p-value systematically displayed the same behavior††. The percolation thresholds are the tipping
points at which the decays turn to a constant power decay. The percolation thresholds appear to be
an intrinsic property of the decays analyzed.

The values of pc
τ and fτ are listed in Table 3.1. It shows that for τ ∈ {33, 55, 89, 144, 233}, the

maximal range with a statistically significant fit consists of less than 100 lags. This sustains why the
18 memories all showed a positive combined p-value only for m = 50. The small number of lags for
these memories motivates us to disregard the power decay exponent associated with them. For the
exponent to be representative, it must embody a legitimate part of the decay.

The evolution of the decay exponents β for all ranges analyzed is displayed in Figure 3.7 (left). The
numerical values of β are given in Table 3.1. The decay exponents show a downward trend for

††The cut-off at 0.01 and m = 50 are the least restrictive parameters yielding at least one range with a combined
p-value above 0 for all memory parameters, but some of the other choices cut-offs (0.02, 0.03, 0.04 and the shifts of 50 and
100 lags for each of them) and m (200, 100, 50) had some memories, not all, that had at least a range with a statistically
significant fit. In each case, a similar percolating behavior was displayed.

34



3.2. Autocorrelation of the absolute returns

0 100 200 300 400 500
First lag of the fit

0.014

0.012

0.010

0.008

0.006

D
ec

ay
 e

xp
on

en
t

Decay exponent evolution

= 0 day
= 1 day
= 2 days

= 3 days
= 5 days
= 8 days

= 13 days
= 21 days
= 34 days

= 55 days
= 89 days
= 144 days

= 233 days
= 377 days
= 610 days

= 987 days
= 1597 days
= 2584 days

=
0 

da
y

=
1 

da
y

=
2 

da
ys

=
3 

da
ys

=
5 

da
ys

=
8 

da
ys

=
13

 d
ay

s
=

21
 d

ay
s

=
34

 d
ay

s
=

55
 d

ay
s

=
89

 d
ay

s
=

14
4 

da
ys

=
23

3 
da

ys
=

37
7 

da
ys

=
61

0 
da

ys
=

98
7 

da
ys

=
15

97
 d

ay
s

=
25

84
 d

ay
s

Memory length of the noise traders

0.010

0.009

0.008

0.007

0.006

D
ec

ay
 e

xp
on

en
t

Decay exponent

Figure 3.7: The left figure shows the values of the decay exponent β of the linear fit on the range
[log (yτ(xsτ )), log (yτ(x fτ

))] of the points (xτ, log (yτ)) displayed in Figure 3.5, for the starting lags
sτ ∈ [20, fτ −m] given on the x-axis of the plot, the final lag fτ corresponding to the lag preceding
the first lag for which the ACF coefficient is below 0.01 (black dashed line in Figure 3.5) for a given τ,
and m = 50. The evolution of the combined p-value for each τ displays an unexpected percolating
behavior with an irreversible and sharp transition from a combined p-value of 0 to a combined
p-value of 1 at the percolation thresholds pc

τ (vertical dashed lines). The value pc
τ is the mean lag

between the highest lag sτ for which the combined p-value is below 0.01 and the lowest lag sτ with
combined p-value of at least 0.99. The plot on the right displays the decay exponent computed
on the range [pc

τ + 1, fτ]. The values of β yielding a non representative behavior of the overall
decay due to an insufficient number of lags fitted are not displayed (τ ∈ {34, 55, 89, 144, 233}). The
values of β are listed in Table 3.1. The data on which the ACF of absolute returns are computed in
Figure 3.5 are simulations run varying only the memory parameter τ of the noise traders for the
values listed in Table 1.1, while keeping all the other market variables fixed (except for the random
seed). In each simulation, all the noise trader agents have the same memory length.

higher starting lags sτ which is explained by increasingly shorter ranges of points fitted and an
acceleration of the decay for lags approaching the i.i.d. null hypothesis, as seen in Figure 3.5. The
memories τ ∈ {34, 55, 89, 144, 233} days display the strongest acceleration. This confirms that, even
though these memories have a range of the decay with a positive combined p-value, these ranges
are too short (Table 3.1) to be significant and are non representative of the overall decay of the
ACF of absolute returns by being in an accelerating phase of the decay‡‡. For all other memories
the decay exponent is stable. To quantify volatility clustering, β is computed for the remaining
memories on the range [pc

τ + 1, fτ], the largest range displaying a positive combined p-value, and is
shown in Figure 3.7 (right). Cont (2001) cites [0.2, 0.4] for the exponent of the decay of the ACF on
absolute return in real markets. The results obtained show much slower decay, hence more volatility
clustering.

Based on the strong non stationarity of the autocorrelation coefficicients of the signed returns, the
results obtained through the GARCH approach and their implications (Resnick (1998), Mikosch

‡‡Note that, as mentioned, higher cut-offs were also tested and did not show ranges of a significant fit for these
memories.
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3.2. Autocorrelation of the absolute returns

et al. (2000), Cont (2007)), the difficulty to find a clear power decay of the coefficients of the abso-
lute returns, the results presented in Figure 3.7 (right) as representative of the volatility clustering
must be taken with caution. The evidences suggests that most memories have an oscillating be-
havior around a constant power decay up to their percolation threshold (Figure 3.6, with the decay
exponent staying constant in Figure 3.7 for τ 6∈ {34, 55, 89, 144, 233}). It might be argued that the
percolation threshold, in this artificial market, embodies more significantly the volatility clustering
(compare Figure 3.6 (right) with Figure 4.8) than the decay exponent β. Under these considerations,
short strictly positive memories display a faster decay and thus less volatility clustering than longer
memories. The memory producing the least amount of volatility clustering is found at τ = 21. For
τ > 377, the longer the memories the more volatility clustering is present. The noise traders with
τ = 0 behave as expected as if they had an infinite memory (Equation 2.4).
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3.2. Autocorrelation of the absolute returns

τ Percolation lag pc
τ End lag fτ Number of lags fitted Decay exponent β

0 346 534 188 -0.006
1 254 393 139 -0.008
2 256 389 133 -0.008
3 241 384 143 -0.008
5 236 372 136 -0.009
8 139 357 218 -0.009

13 144 340 196 -0.009
21 138 322 184 -0.010
34 217 311 94 -0.012*
55 254 324 70 -0.014*
89 292 358 66 -0.013*
144 326 402 76 -0.012*
233 365 452 87 -0.010*
377 382 505 123 -0.008
610 379 533 154 -0.007
987 366 548 182 -0.006
1597 294 545 251 -0.006
2584 349 538 189 -0.006

Table 3.1: The range [log (yτ(xsτ )), log (yτ(x fτ
))] of the points (xτ, log (yτ)) displayed in Figure 3.5

are fitted for varying starting lag sτ. The evolution of the combined p-value for each τ displays
an unexpected percolating behavior with an irreversible and sharp transition from a combined p-
value of 0 to a combined p-value of 1 at the percolation thresholds pc

τ (vertical dashed lines). The
percolation thresholds pc

τ are the mean lag between the highest starting lag for which the range
yields a combined p-value below 0.01 and the lowest starting lag for which the range yields a
combined p-value above 0.99. See Figure 3.6. The end lag fτ represents the lag preceding the first
lag for which the ACF coefficients of the absolute returns are below the cut-off 0.01. The number
of lag fitted is the difference between the end lag and the percolation lag. The decay exponent
β is computed on the ranges [pc

τ + 1, fτ]. The asterisk * shows the values of β yielding a non
representative behavior of the overall decay due to an insufficient number of lags fitted. The data
on which the ACF of absolute returns are computed in Figure 3.5 are simulations run varying only
the memory parameter τ of the noise traders for the values listed in Table 1.1, while keeping all the
other market variables fixed (except for the random seed). In each simulation, all the noise trader
agents have the same memory length.
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Chapter 4

Impact of Noise Traders’ Memory on Volatility
Clustering

In chapter 3, the impact of each parameter τ listed in Table 2.1 on volatility clustering was quantified
through the decay of the autocorrelation coefficients of the absolute returns. This approach proved
difficult, and did not yield a significant result for 5 of the 18 memories. The present chapter offers a
more innovative approach to quantify volatility clustering based on the moments of the frequency
distribution of the large absolute returns.

The first section studies the probability of each memory to create large absolute returns. The fol-
lowing section presents an novel approach to quantify volatility clustering. Finally, the endogeneity
of the market is analyzed through a non parametric approximation of the branching ratio for self-
exciting Hawkes point processes in one dimension.

4.1 Distribution of returns

In this section, the unconditional probability for a market with the noise traders memory length τ
to produce large absolute returns is studied. Then, the conditional probability of generating a large
absolute returns rt above v given that the previous return rt−1 is a large absolute return above v is
presented. The thresholds v = 1σ and v = 2σ are used. An example of the subset of returns above
each threshold is depicted in Figure 4.1.

4.1.1 Unconditional probability

In a Gaussian distribution, the unconditional probability that the absolute value of the next step is
outside 1σ is 1− P(µ− 1σ ≤ X ≤ µ + 1σ) ≈ 1− 0.6827 ≈ 0.3137. For 2σ, we have 1− P(µ− 2σ ≤
X ≤ µ + 2σ) ≈ 1− 0.9545 ≈ 0.0455. To familiarize ourselves with the distribution of the returns in
the current artificial market, the ratio of returns larger in absolute value than a threshold v for all
memory lengths depicted in Table 2.1 is computed. This ratio is the unconditional probability to
find a return with absolute value above v. It is referred to it as pv

u.
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4.1. Distribution of returns
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Figure 4.1: Overview of the 1σ and 2σ thresholds for a simulation with the noise traders memory
fixed at 89 days. The 1σ threshold is represented by the black and red dots. This threshold includes
many returns that are not part of the largest clusters. The 2σ threshold is depicted by the black dots
only.

For each τ, 1000 price paths of 494999 returns are generated*. The distributions of p1σ
u and p2σ

u for
each τ are presented in Figure 4.2 where the dashed lines highlight the mean values of pv

u. The
numerical values of the means are given in Table 4.1. The memory parameter has an impact on p1σ

u
and p2σ

u , with longer memories having the most central values. Note that p1σ
u > p2σ

u ∀τ.

As comparison, the NASDAQ composite Index has on average 28.4% of its return above 1σ and
10.1% above 2σ for the period 1973-01-02 to 2018-12-31. For both thresholds the results obtained
are smaller than the index, indicating less volatility. Also, this indicates that the distributions of the
returns for the NASDAQ has longer tails than the Gaussian distributions but shorter tails than the
distribution of the returns generated by the ABM.

The threshold v = 1σ yields values much smaller than for a Gaussian distribution while values for
v = 2σ are already much closer to the value found for a Gaussian distribution. This indicates the
distribution of the returns has longer tails than the Gaussian distribution.

*As for section 2.5, each simulation generates a price path of 500000 time steps of which we remove a burn in period
of 5000 returns. This yields 494999 returns.
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Figure 4.2: Distribution of the absolute returns above v = 1σ, p1σ
u (left) and above v = 2σ, p2σ

u
(right). The computation is run over 494999 returns for each of the 1000 seeds for each τ and v. The
simulations are run varying only the memory parameter τ of the noise traders for the values listed
in Table 2.1, while keeping all the other market variables fixed (except for the random seed). In each
simulation, all the noise trader agents have the same memory length. The dashed lines represent
the means of the distributions. The numerical values of the means and their errors (the standard
deviation of the corresponding distribution) can be found in Table 4.1 and are plotted in Figure B.2.
The threshold v = 1σ yields values much smaller than for a Gaussian distribution while v = 2σ
is already much closer. This may indicate the distribution of the returns has longer tails than the
Gaussian distribution.

4.1.2 Conditional probability

We now compute the conditional probability pv
c that, given the absolute return at time t is larger than

v, the absolute return at time t + 1 is also larger than v. Let A denote the set formed by all returns
rt for which |rt| > v, B the set of all returns rt for which |rt| > v and |rt−1| > v, and C the number
of uninterrupted sequences of returns |rt| > v †. For a simulation of length T, E[|A|] = T · pv

u. The
cardinality of C depicts the number of sequences of returns above v. It follows |A| = |B|+ |C| and

pv
c = Pr(|rt+1| > v | |rt| > v) =

|B|
|A| = 1− |C||A| . (4.1)

The distributions of p1σ
c and p2σ

c for each τ are presented in Figure 4.3a and Figure 4.3b where the
dashed lines highlight the mean value of each distribution. The numerical values of the means are
listed in Table 4.1 and plotted in Figure B.3. As in the previous section, each mean is computed over
494999 returns for each of the 1000 seeds for each τ and v.

†As an example, consider the sequence 1111 00 11 0 1 00 111, where 1 represents a return with absolute value above
v. Then |A| = 10, |B| = 6, |C| = 4.
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Figure 4.3: Distribution of the absolute returns above v when the preceding absolute return is also
above v, for v = 1σ (left), v = 2σ (right). The computation is run over 494999 returns for each of
the 1000 seeds for each τ and v. The simulations are run varying only the memory parameter τ of
the noise traders for the values listed in Table 2.1, while keeping all the other market variables fixed
(except for the random seed). In each simulation, all the noise trader agents have the same memory
length. The dashed lines represent the mean of each τ. The dashed line for τ = 0, v = 2σ is the red
vertical line at 0.647, see Figure B.3 for a plot of the means and their errors (the standard deviation
of the corresponding distribution), and Table 4.1 for the numerical values. Shorter memories tend
to increase the probability to find two high absolute returns in a row.

Figure 4.3 shows that lower values of τ yield higher conditional probabilities, except for the case of
no memory that behaves as for noise traders with an infinite memory (Equation 2.4). Comparing
Figure 4.3 and Figure 4.2, or more straightforwardly Figure B.3 and Figure B.2, the means of p2σ

c are
larger than p1σ

c for all memories, whereas p2σ
u are smaller than p1σ

u . This behavior can be quantified
by

qv =
pv

c
pv

u
, (4.2)

the ratio between the conditional and the unconditional probability for a threshold v. The larger
qv, the further away the conditional probability is from the unconditional probability. A higher qv
represents a stronger absolute probability of a second high absolute return in a row. In other words,
for two memories with the same unconditional probability pv

u, the memory with the highest qv has
the highest probability to create a second absolute return above v. In this sense, qv depicts the
strength of the market to stay in a volatility cluster of size two‡. The values for q1σ and q2σ are given

‡For the analysis of a more persistent behavior, the dependency of the endogeneity of the market on the memory
parameter will be analyzed in section 4.3 through a branching ratio approximation of the self-exciting Hawkes process.
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in Table 4.1 and plotted in Figure 4.4.

For q1σ, the ratio follows again the trend depicted in Figure 2.9 with the highest values for the
shortest strictly positive memories. The q2σ case is more interesting: the memory lengths between
1 and 13 days show an opposite behavior to Figure 2.9. For a given return absolute above v, the
memories that have the highest probabilities to keep the market in a regime of large absolute returns
of at least two days are 13 and 22 days.
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Figure 4.4: Ratio of the conditional probability pv
c of the absolute return at time t + 1 to be above

v when the absolute return at time t is also above v, over the unconditional probability pv
u to have

an absolute return above v, for v = 1σ (left) and v = 2σ (right). The values plotted for v = 1σ are
listed in the third column of Table 4.1, and for v = 2σ in the last column of Table 4.1. The error bars
are the error propagation of the errors computed for pv

c and pv
u, both of which were the standard

deviation of the corresponding distributions for each τ and v. The simulations are run varying only
the memory parameter τ of the noise traders for the values listed in Table 2.1, while keeping all the
other market variables fixed (except for the random seed). In each simulation, all the noise trader
agents have the same memory length.

The NASDAQ composite Index has an average of 42.4% of its return above 1σ when the preceding
return is also above 1σ, and 29% for the 2σ threshold, for the period 1973-01-02 to 2018-12-31. We
find q1σ = 1.49 and q1σ = 2.87. The values of qv are much lower than the values found in our
simulations. Combined with the values p1σ

u , p2σ
u of the index mentioned in subsection 4.1.1 we

conclude that the simulated market with only a noise trader and a fundamentalist agent creates less
volatility than the NASDAQ index, while generating stronger clustering regimes of at least 2 days.
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4.1. Distribution of returns

τ p1σ
u p1σ

c q1σ =
p1σ

c
p1σ

u
p2σ

u p2σ
c q2σ =

p2σ
c

p2σ
u

0 0.106 ± 0.002 0.528 ± 0.012 5.0 ± 0.1 0.037 ± 0.001 0.647 ± 0.005 17.7 ± 0.7
1 0.116 ± 0.002 0.640 ± 0.006 5.5 ± 0.1 0.044 ± 0.001 0.733 ± 0.003 16.8 ± 0.5
2 0.114 ± 0.002 0.625 ± 0.007 5.5 ± 0.1 0.043 ± 0.001 0.736 ± 0.004 17.0 ± 0.5
3 0.113 ± 0.002 0.613 ± 0.008 5.4 ± 0.1 0.043 ± 0.001 0.731 ± 0.004 17.1 ± 0.5
5 0.110 ± 0.002 0.597 ± 0.008 5.4 ± 0.1 0.041 ± 0.001 0.720 ± 0.004 17.4 ± 0.5
8 0.108 ± 0.002 0.581 ± 0.008 5.4 ± 0.1 0.040 ± 0.001 0.706 ± 0.004 17.8 ± 0.6

13 0.105 ± 0.002 0.565 ± 0.009 5.4 ± 0.1 0.038 ± 0.001 0.691 ± 0.004 18.1 ± 0.6
21 0.104 ± 0.002 0.555 ± 0.009 5.4 ± 0.1 0.037 ± 0.001 0.678 ± 0.004 18.1 ± 0.6
34 0.103 ± 0.002 0.549 ± 0.010 5.3 ± 0.1 0.037 ± 0.001 0.667 ± 0.005 17.9 ± 0.6
55 0.104 ± 0.002 0.547 ± 0.010 5.3 ± 0.1 0.037 ± 0.001 0.660 ± 0.005 17.6 ± 0.6
89 0.105 ± 0.002 0.547 ± 0.010 5.2 ± 0.1 0.038 ± 0.001 0.655 ± 0.004 17.3 ± 0.6
144 0.106 ± 0.002 0.547 ± 0.010 5.2 ± 0.1 0.038 ± 0.001 0.651 ± 0.004 17.0 ± 0.6
233 0.107 ± 0.002 0.547 ± 0.010 5.1 ± 0.1 0.039 ± 0.001 0.649 ± 0.005 16.8 ± 0.6
377 0.108 ± 0.002 0.547 ± 0.010 5.0 ± 0.1 0.039 ± 0.001 0.647 ± 0.005 16.7 ± 0.6
610 0.109 ± 0.002 0.546 ± 0.010 5.0 ± 0.1 0.039 ± 0.001 0.646 ± 0.005 16.6 ± 0.6
987 0.110 ± 0.002 0.546 ± 0.010 5.0 ± 0.1 0.039 ± 0.001 0.645 ± 0.005 16.5 ± 0.6
1597 0.110 ± 0.002 0.546 ± 0.010 4.9 ± 0.1 0.039 ± 0.001 0.644 ± 0.005 16.5 ± 0.6
2584 0.110 ± 0.002 0.545 ± 0.010 4.9 ± 0.1 0.039 ± 0.001 0.644 ± 0.005 16.5 ± 0.6

Nasdaq 0.284 0.424 1.5 0.101 0.290 2.9

Table 4.1: Unconditional probability pv
u and conditional probability pv

c to have the absolute return
of the next time step higher than v = 1σ (columns 2 to 4) or than v = 2σ (3 rightmost columns).
The column τ has the number of days corresponding to the value of θ (Table 2.1). The simulations
are run varying only the memory parameter τ of the noise traders for the values listed in Table 2.1,
while keeping all the other market variables fixed (except for the random seed). In each simulation,
all the noise trader agents have the same memory length. The values of p1σ

u represent the vertical
dashed lines in Figure 4.2 (left) and are plotted in Figure B.2 (left). The values of p1σ

c represent
the vertical the dashed lines in Figure 4.3 (left) and are plotted in Figure B.3 (left). The ratios q1σ

are plotted in Figure 4.4 (left). For v = 2σ, the values of p2σ
u represent the vertical dashed lines in

Figure 4.2 (right) and are plotted in Figure B.2 (right). The values of p2σ
c represent the vertical the

dashed lines in Figure 4.3 (right) and are plotted in Figure B.3 (right). The ratios q2σ are plotted in
Figure 4.4 (right). For each τ, the values pv

u and pv
c are computed over 1000 simulations of 494999

returns for each value of τ and v. The errors for pv
u and pv

c correspond to the standard deviation of
the corresponding distribution. The errors for qv are the propagation of the errors of pv

u and pv
c .
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4.2. Clustering index

4.2 Clustering index

4.2.1 Frequency distribution

We propose here a metric to quantify volatility clustering, developed independently from Tseng and
Li (2012).

A window of length m is applied on the first T̃ := T − (T mod m) price returns of a simulation j

of length T. There are L :=
⌊

T
m

⌋
=

T̃
m

non-overlapping § windows of length m. In each window,

the number of daily returns above a threshold v is given by a discrete random variable X : Ω→ Ω,
with domain and image Ω = {0, 1, 2, · · · , m} ⊂ N. Recording the L realizations of X yields the
probability distribution of X whose moments quantify the volatility clustering. Indeed, if the price
returns were generated by a Gaussian distribution, we would expect E(X) ≈ 0.3137 ·m (for v = 1σ),
i.e. in average one third of the m days in each window would have a return above 1σ. When
volatility clustering is present however, most windows have a much smaller number of returns
above 1σ, but some windows have almost all of their returns above 1σ. Thus, the more volatility
clustering is present, the lower the mean of the distribution and the higher its variance¶.

Let us take a closer look at how to compute the moments of the distribution. Let ~h = (0 1 2 ··· m) T

with h = {0, 1, 2, · · · , m} the set including all the components of ~h. In each simulation j, each
window i yields one realization of X, an integer xj,i ∈ h ⊂ N. The results from all the windows
of the simulation j are gathered in the simulation-sample vector ~xj of dimension (L× 1), xj,i ∈ ~xj.
For each ~xj, we build a new vector ~wj of dimension (m + 1× 1) with elements wj,i = ∑L

k=1[xj,k =
(i− 1)], ∀i ∈ [1, m + 1], where the first square brackets [...] in the sum are the Iverson brackets with
[P] = 1 if P is true, 0 otherwise. We see that wj,i contains the number of windows that have hi days
above v in the simulation j. The vector ~wj captures the frequency distribution of the simulation j.
Note that ∑m+1

i=1 wj,i = L ∀j.

There are two ways to approach the computations of the moments of the frequency distribution and
their errors for N independent simulations.

Method 1. Appending simulations

We see the N simulations as forming one sample of size T̃ · N.

Definition 4.1 The sample mean of the combined N simulations is

µ =
1

L · N
N

∑
j=1

L

∑
i=1

xj,i . (4.3)

§Using T + 1−m overlapping windows does not yield independent observations.
¶With higher volatility clustering comes longer regimes of low volatility, hence the frequency of windows with no

absolute returns higher than v is higher which skews the mean of the distribution towards m = 0. At the same time and
for symmetric reasons, the number of windows of size m with close to m absolute returns above v is higher, enlarging
the variance of the frequency distribution.
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4.2. Clustering index

We can also compute µ with the frequency weights. Let~h, ~wj be defined as above, ~W = ∑N
j=i ~wj with

∑n+1
i=1 Wi = L · N. Then

µ =
∑m+1

i=1 Wi · hi

∑n+1
i=1 Wi

. (4.4)

Definition 4.2 The sample variance of the combined N simulations is

σ2 =
1

L · N
N

∑
j=1

L

∑
i=1

(xj,i − µ)2 . (4.5)

The sample mean, variance and standard deviation are random variables with their respective sam-
pling distribution. We compute the expected value of the sample variance. For more clarity, the
L · N realizations xj,i of the random variable X are represented by X1, · · · , XL·N .

E[σ2] = E

[
1

L · N
L·N
∑
k=1

(
Xk −

1
L · N

L·N
∑
l=1

Xl

)2
]

=
1

L · N
L·N
∑
k=1

E

[
X2

k −
2

L · N
L·N
∑
l=1

XlXk +
1

(L · N)2

L·N
∑

l1=1

L·N
∑

l2=1
Xl1 Xl2

]

= (σ2 + µ2)− 2
L · N

(
(L · N − 1)µ2 + σ2 + µ2

)
+

L · N(L · N − 1)µ2 + L · N(σ2 + µ2)

(L · N)2

= σ2 L · N − 1
L · N (4.6)

Definition 4.3 The unbiased sample variance is defined as

s2 =
L · N

L · N − 1
σ2 =

1
L · N − 1

N

∑
j=1

L

∑
i=1

(xj,i − µ)2 , (4.7)

with E[s2] = σ2.

Definition 4.4 The sample standard deviation is defined as

s =

√√√√ 1
L · N − 1

N

∑
j=1

L

∑
i=1

(xj,i − µ)2 . (4.8)

As the square root in Equation 4.8 does not commute with the expectation operator, bias is reintro-
duced. For a non normal distribution, there exists no exact correction for this bias (Gurland and
Tripathi (1971)). We will thus work with s as defined above.
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4.2. Clustering index

The errors of these three moments are now derived. The measure of uncertainty of the sample mean
is the standard deviation of the sampling distribution of the sample mean, which is referred to as
the standard error.

Definition 4.5 The standard error of the sample mean is

seµ =
s√

L · N
, (4.9)

where s is the sample standard deviation||.

To compute the standard error of the unbiased sample variance, we first compute the variance of
the sample variance. The idea is to see the following decomposition

Var(s2) = E[s4]−E[s2]

= E[(s2)2]− σ4

= E[(E[X2]−E[X]2)2]− σ4

= E

[(
1

L · N
L·N
∑
k=1

X2
k −

(
1

L · N
L·N
∑
k=1

Xk

)2)2]
− σ4 . (4.10)

Definition 4.6 The unbaised variance of the unbiased sample variance for any distribution is defined as

Var(s2) =
1

L · N

(
µ4 −

L · N − 3
L · N − 1

σ4
)

, (4.11)

where µ4, the fourth central moment, has to be finite. The standard error of the unbiased sample variance is
therefore

ses2 =

√
1

L · N

(
µ4 −

L · N − 3
L · N − 1

σ4

)
. (4.12)

Equation 4.12 agrees with (Rao et al., 1973, p. 438), Cho et al. (2005) and Cho (2018).

There does not exist any general equation for the standard error of the standard deviation. We can
however use the large sample solution presented in (Rao et al., 1973, p. 386), Equation 6a-2-4 with
τ = s2, g(r) =

√
r. Correcting for the missing absolute values in Rao’s Equation 6a-2-4, we have

se(g(τ)) ≈ |g′(τ)| · se(τ) (4.13)

and

ses ≈
1

2σ
· ses2 . (4.14)

||Equation 4.9 can be easily derived by computing Var(µ) and applying basic properties of the variance.
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Method 2. Sampling distribution

Each simulation is considered as a sample. We compute the mean, variance and standard deviation
of each simulation and form a sampling distribution for each statistic.

Definition 4.7 The sample mean for simulation j is

µj =
1
L

L

∑
i=1

xj,i . (4.15)

The unbiased sample variance for simulation j is

s2
j =

1
L− 1

L

∑
i=1

(xj,i − µj)
2 , (4.16)

with E[s2
j ] = σ2

j .

The sample standard deviation for simulation j is

sj =

√√√√ 1
L− 1

L

∑
i=1

(xj,i − µj)2 . (4.17)

As previously mentioned, the measure of uncertainty of the sample mean is referred to as the
standard error.

Definition 4.8 The mean of the sample means is defined in Equation 4.3 as µ. The standard error of Equa-
tion 4.15 is

se(µj) =

√√√√ 1
N

N

∑
j=1

(µj − µ)2 . (4.18)

The mean of the unbiased sample variance over the N simulations is defined as s2
j . The standard error of

Equation 4.16 is

se(s2
j ) =

√√√√ 1
N

N

∑
j=1

(s2
j − s2

j )
2 . (4.19)

The mean of the sample standard deviation over the N simulations is defined as sj. The standard error of
Equation 4.17 is

se(sj) =

√√√√ 1
N

N

∑
j=1

(sj − sj)2 . (4.20)
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In summary, the first method supposes that the moments do not depend on the simulation seed.
The second method takes into account that each simulation forms a specific sample. Let us take
a numerical example to highlight the difference between the two methods: take T = 494999, a
window of length m = 200 and the threshold v = 1σ. This yields L = 2474 realizations of the
random variable per simulation. For N = 1000 simulations, both method 1 and 2 yield similar
moments, as expected. However the standard errors computed from method 1 and method 2 differ
significantly with method 2 having standard errors about 17 times as large as method 1. This artifact
comes from the fact that the number of simulations has a large impact on the standard errors in
method 2 (by construction). As the results should asymptotically not depend on the simulation
seed, and because it is faster in the current artificial market to have longer simulations (larger T,
hence larger L) than more simulations (larger m), method 1 will be used.

4.2.2 Moments of the frequency distribution

The frequency distribution for m = 200 days, v = 1σ, N = 1000 simulations is plotted in Figure 4.5
for each value of τ given in Table 2.1 and for Gaussian returns. For each point (xτ, yτ), yτ represents
how many of the 2474 · 1000 non-overlapping windows of size 200 had xτ days above 1σ. The
corresponding error bar is the square root of the count xτ as we are in a counting process. The
vertical dashed lines represent the sample mean given by Equation 4.3. The frequency distributions
clearly depict the volatility clustering present in the time series. Most windows have very few days
(out of 200) with a return above 1σ while a significant number of windows has more than 150 days
above 1σ for each τ. Volatility clustering can be quantified through the standard deviation of the
frequency distribution (Equation 4.8).

Figure 4.6 depicts the dependency of the standard deviation on small window sizes. For each
window size, the standard deviations are scaled to the first value (memory of 0 day). The trend
for τ ≥ 1 day is robust w.r.t. the window size m and the threshold v. The case τ = 0 is more
erratic. For v = 1σ, a change of regime occurs at m = 150, with smaller window sizes yielding less
volatility clustering for this memory than all the other ones. For m > 150, this agent produces more
volatility clustering than the next memory lengths. For v = 2σ, a similar phenomenon is observed,
with the change of regime for τ = 0 occurring at m = 33. For both thresholds, the trend stabilizes
with higher window sizes. The standard deviation as a metric of the volatility clustering developed
here does not yield an absolute value for the volatility clustering but allows for a robust comparison
between all memories for sufficient large windows.

Figure 4.7 extends the snapshot of Figure 4.6 and shows the evolution of the standard deviation
from a window of size m = 5 up to m = 10000. The simulations are run for every m ∈ [5, 1000],
then for every multiple of 1000 for m ∈ [1000, 10000]. The change of symmetry highlighted in
Figure 4.6 (left) can be seen at m = 150 on Figure 4.7 (left) and m = 33 on Figure 4.7 (right). From
this point, the standard deviations do not overlap each other for all m up to m = 10000. Figure 4.8
presents the values of the standard deviation for m = 10000. As expected from the construction of
the metric, the values for v = 2σ are lower than for v = 1σ (Figure 4.2 showed that returns above
2σ are scarcer than above 1σ for all τ). The results demonstrate that for large enough window sizes,
this metric of volatility clustering is robust for both v and all τ.
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Figure 4.5: Frequency distribution of absolute returns above v = 1σ in a window of size m = 200.
For each value of τ, 1000 simulations of 494999 returns are generated. The simulations are run
varying only the memory parameter τ of the noise traders for the values listed in Table 2.1, while
keeping all the other market variables fixed (except for the random seed). In each simulation, all
the noise trader agents have the same memory length. For comparison, the distribution obtained
by running the analysis on Gaussian returns is shown in blue. For each point (xτ, yτ), yτ represents
how many of the 2474 · 1000 non-overlapping windows of size 200 had xτ days above 1σ. The
corresponding error bar is the square root of the count xτ as we are in a counting process (vertical
error bar at each point (xτ, yτ), more visible for large window sizes). The vertical dashed lines (left
of m = 25 for all values of τ, in blue for the Gaussian distribution) represent the sample mean
given by Equation 4.3. The frequency distributions clearly depict the volatility clustering present
in the time series. Most windows have very few days (out of 200) with a return above 1σ while a
significant number of windows has more than 150 days above 1σ for each τ. Volatility clustering
can be quantified through the standard deviation of the frequency distribution (Equation 4.8).
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Figure 4.6: Dependency of the standard deviation (Equation 4.8) on small window sizes m for
absolute returns above v = 1σ (left) and v = 2σ (right). For each m, the trend is scaled to its value at
τ = 0 for easier comparison. Both thresholds show a trend inversion for τ = 0. The metric is robust
for large enough window sizes. The simulations are run varying only the memory parameter τ of
the noise traders for the values listed in Table 2.1, while keeping all the other market variables fixed
(except for the random seed). In each simulation, all the noise trader agents have the same memory
length. For each value of τ, 1000 simulations of 494999 returns are generated.

For returns above 1σ, the memories producing the least clustering are 13 and 22 days (Figure 4.8,
left). These memory lengths also produce the least volatility clustering above 2σ (Figure 4.8, right),
along with τ = 1 day. For both thresholds, the longer the memory length, the more clustering is
generated. Noise traders with no memory behave again as if they had an infinite memory.

The three moments of the frequency distribution depend on the window size m, the memory param-
eter τ and threshold v. However, it is found that the sample mean µ (Equation 4.3) depends only on
the window size and can be considered as a scaling function. Figure 4.9 shows the corresponding
data collapse. The critical exponent is a = 1.00± 10−12, thus µ = expa log m+b = m · c.

Analyzing the ratio of the mean µ to the variance s2 (Equation 4.7) quantifies the heterogeneity
generated by each memory length. Indeed, if the data were produced by an homogeneous Pois-
son point process, its mean and variance would be equal. We propose to quantify the degree of
reflexivity of the market through

R = 1− µ

s2 . (4.21)

As will be shown in the next section, a slight modification to Equation 4.21 allows to compute an
approximation of the branching ratio.
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Figure 4.7: Evolution of the standard deviation over increasingly larger window sizes m for absolute
returns above v = 1σ (left) and v = 2σ (right). The density of lines changing at m = 1000 is due
to computing the standard deviation (and the error bars) for window sizes that are multiples of
1000 above m = 1000. From m = 5 to m = 1000, every window size is computed. The simulations
are run varying only the memory parameter τ of the noise traders for the values listed in Table 2.1,
while keeping all the other market variables fixed (except for the random seed). In each simulation,
all the noise trader agents have the same memory length. For each value of τ, 1000 simulations of
494999 returns are generated.
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Figure 4.8: Volatility clustering measured through the sample standard deviation of the frequency
distribution for absolute returns above v = 1σ (left) and v = 2σ (right). Longer memory lengths
generate more clustering. Memories of 1, 2, 3, 5, 8 days are non robust w.r.t. v. The simulations
are run varying only the memory parameter τ of the noise traders for the values listed in Table 2.1,
while keeping all the other market variables fixed (except for the random seed). In each simulation,
all the noise trader agents have the same memory length. For each value of τ, 1000 simulations of
494999 returns are generated.
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Figure 4.9: Evolution of the sample mean showing data collapse for all τ and for absolute returns
above v = 1σ (left) and v = 2σ (right). The data collapsed the critical exponent a = 1.00± 10−12,
thus µ = expa log m+b = m · c. The simulations are run varying only the memory parameter τ of the
noise traders for the values listed in Table 2.1, while keeping all the other market variables fixed
(except for the random seed). In each simulation, all the noise trader agents have the same memory
length. For each value of τ, 1000 simulations of 494999 returns are generated.

4.3 Non parametric approximation of the Hawkes process

The presence of volatility clustering implies a strong endogenous underlying process. Filimonov
and Sornette (2012) were the first to propose a measure to quantify how much of the variation of
the price change was due to an endogenous process. Their measure, to be detailed later, is based
on a calibrated self-excited conditional Hawkes point process. The Hawkes process was introduced
in Hawkes (1971a) and Hawkes (1971b), and has been used in contexts ranging from earthquake
prediction (Hawkes (1973), Helmstetter and Sornette (2002)) to clustering of order arrivals in high
frequency markets (Hewlett (2006)).

The Hawkes process is a self-exciting point process. A point process is a set of random points in a
mathematical subspace. The simplest point process is the Poisson point process for which all events
are independent from one another and are produced with constant event arrival rate λ (also called
intensity). The Hawkes process extends the Poisson point process with a time dependent intensity
λ(t)

λ(t) = µ(t) + ∑
ti<t

h(t− ti) . (4.22)

The expected number of events in the time interval [t, t + dt) is λ(t)dt. The function h(t) is the
memory kernel and embodies the dependence on past events, which captures the endogenous
feedback of the process. The memory kernel µ(t) represents the background intensity, i.e. the
exogeneity. Note the independence of the two factors.
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4.3. Non parametric approximation of the Hawkes process

Harris (2002) showed that the Hawkes process can be mapped to the branching ratio. In a branching
process, each event is labeled either as an immigrant or descendant. The immigrants represent the
exogenous events and occur with intensity µ. Each immigrant may generate descendants, which
in turn may produce further generations of descendants**. By definition, the descendants have an
endogenous origin. The average number of descendants per immigrant (endogenous events per
exogenous event) is the branching ratio m. As for its nuclear physics counterpart, the branching
ratio can be divided into 3 regimes, subcritical (n < 1), critical (m = 1) and explosive (n > 1). In one
dimension, the average event rate of Equation 4.22 is (see among others Helmstetter and Sornette
(2002), Bacry et al. (2015))

aΛ =
µ

(1− n)
. (4.23)

The branching ratio n can be computed by reverse engineering every point to its corresponding
zeroth-generation immigrant, see for example Zhuang et al. (2002). The limitations of this approach
are highlighted in Sornette and Utkin (2009). From Equation 4.22 and Equation 4.23 it can be seen
that the L1 norm of the memory kernel h(t) satisfies ‖h(t)‖ =

∫
R
|h(t)|dt = n. As the log-likelihood

function for the Hawkes process is known in close form (Ogata (1978)), h(t) can be predicted with
a maximum likelihood estimation.

Using an exponential kernel, Filimonov and Sornette (2012) showed that the level of endogeneity
on the E-mini S&P500 futures contracts (on a high frequency timescale) significantly increased from
1998 to 2010. Hardiman et al. (2013) criticized this approach noting that Bacry et al. (2012) found
that the self-excitation regimes in these timescales showed a long range memory. Therefore, the
Hawkes kernel should be calibrated with a power-law decay. In response, Filimonov and Sornette
(2015) highlighted the pitfalls of a power-law approach, showing the impact of outliers, strong edge
effect and the impact of the regularization of the power-law kernel. Wheatley et al. (2019) show the
impact of the treatment of trends and external shocks (endo-exo problem) in the computation of the
branching ratio. To bypass the selection of the kernel, Hardiman and Bouchaud (2014) presented
an approximation of the branching ratio for self-exciting Hawkes point processes in one dimension
depending only on the variance and mean of the event count in very large windows. They find the
relation

n ≈ 1−

√
E[NW ]

Var[NW ]
. (4.24)

This result overlaps greatly with our approach derived in subsection 4.2.2, and in particular Equa-
tion 4.21. It is worth noting that the debate between Filimonov and Sornette and Hardiman and
Bouchaud is based on high-frequency data, whereas our market has a clock of about one day per
time-step (with the parameter choice given in Table 1.1). However, the measure proposed in Equa-
tion 4.24 depends only on the window size. Also, our data is as for high frequency data on the
finest information time scale as no exchange of information or opinion is possible between two
consecutive returns. Note that the estimator in Equation 4.24 is noisy and has little power.

**In Earthquake terminology, the immigrant can be seen as the main event and the descendants as aftershocks.
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4.3. Non parametric approximation of the Hawkes process

Figure 4.10 shows a smooth evolution of the branching ratio n(τ) over larger window sizes. Note
that the Hawkes processes are calibrated on the absolute returns above v = 1σ (left) and on the
absolute returns above v = 2σ (right). As in subsection 4.2.2, the simulations are run for every m ∈
[5, 1000], then for every multiple of 1000 for m ∈ [1000, 10000]. The endogeneity grows steadily up to
a window size of 1000 days after which the trend flattens and even slightly decreases. Window sizes
larger than 10000 were not investigated in details, due to time and computation power constraints.
The window size 100000 was computed for v = 2σ and is shown in Figure B.1 (page 91). The
values are slightly lower than for a window of size 10000 for all memory parameters but present
the same trend. The branching ratio, approximated with Equation 4.24, shows a consistent and
converging behavior at very large windows. The necessity for the approximation of the branching
ratio to converge only for large window sizes may be tracked back to the necessity to cover all the
correlation of the returns.

For both thresholds and all memory parameters, the branching ratio is high but sub critical. The
values are presented in Figure 4.11 and given in Table 4.2. Consistently with the results shown in the
preceding chapters, the noise traders with no memory seem behave as noise traders with a very long
memory (see Equation 2.4). The shorter strictly positive memories create the least endogeneity. The
longer memories tend to create the most endogenous markets, regardless of the select thresholds v.

The trend of the branching ratio is very similar to our metric for volatility clustering (Figure 4.8)
for both v. Using the Fisher transformation, the correlation for v = 1σ between the branching ratio
and our metric of volatility clustering is ρ = 0.981+0.012

−0.007 with a z-score of 9.0, statistically confirming
the visual intuition and rejecting the null hypothesis at 9σ. For v = 2σ, we find ρ = 0.96+0.02

−0.01 and a
z-score of 7.8. These results can be attributed to the scaling behavior of the mean.
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4.3. Non parametric approximation of the Hawkes process

τ Branching ratio Branching ratio
v = 1σ v = 2σ

0 0.8802 ± 0.0004 0.8701 ± 0.0004
1 0.8562 ± 0.0005 0.8233 ± 0.0006
2 0.8568 ± 0.0005 0.8283 ± 0.0005
3 0.8559 ± 0.0005 0.8298 ± 0.0005
5 0.8543 ± 0.0005 0.8315 ± 0.0005
8 0.8523 ± 0.0005 0.8324 ± 0.0005

13 0.8517 ± 0.0005 0.8350 ± 0.0005
21 0.8528 ± 0.0005 0.8384 ± 0.0005
34 0.8554 ± 0.0005 0.8427 ± 0.0005
55 0.8594 ± 0.0005 0.8473 ± 0.0005
89 0.8642 ± 0.0004 0.8523 ± 0.0005
144 0.8682 ± 0.0004 0.8558 ± 0.0005
233 0.8725 ± 0.0004 0.8595 ± 0.0004
377 0.8756 ± 0.0004 0.8620 ± 0.0004
610 0.8781 ± 0.0004 0.8641 ± 0.0004
987 0.8791 ± 0.0004 0.8653 ± 0.0004
1597 0.8804 ± 0.0004 0.8661 ± 0.0004
2584 0.8807 ± 0.0004 0.8665 ± 0.0004

Table 4.2: Asymptotic values for the branching ratio, approximated with Equation 4.24, for a win-
dow of size 10000 (yielding 49 windows in each of the 1000 simulations), calibrated on the absolute
returns above v = 1σ (left) and v = 2σ (right). For both thresholds and all memory parameters, the
branching ratio is high but sub critical. The values are plotted in Figure 4.11. Consistently with the
results shown in the preceding chapters, the noise traders with no memory seem to behave as noise
traders with a very long memory (see Equation 2.4). The shorter strictly positive memories create
the least endogeneity. The longer memories tend to create the most endogenous markets, regardless
of the select thresholds v. The trend of the branching ratio is very similar to our metric for volatility
clustering (Figure 4.8) for both v. The trend for a window of size 100000 is shown in Figure B.1,
page 91. The proximity of the results for both thresholds might tracked back to the similarity of the
trend of the sample standard deviation for both thresholds (Figure 4.8). Also, the set of absolute
returns above v = 2σ is included in the set of absolute returns above v = 1σ. For the proportion
of absolute returns above 1σ that are also above 2σ, see Figure 4.2 and Figure B.2. The simulations
are run varying only the memory parameter τ of the noise traders for the values listed in Table 2.1,
while keeping all the other market variables fixed (except for the random seed). In each simulation,
all the noise trader agents have the same memory length. For each value of τ, 1000 simulations of
494999 returns are generated.
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Figure 4.10: Evolution of the branching ratio (Equation 4.24) over very long windows. The Hawkes
process is calibrated on absolute returns above v = 1σ (left) and v = 2σ (right). The trend stabilizes
from window size 1000. A snapshot of the values for window size 10000 is presented in Figure 4.11.
The necessity for the approximation of the branching ratio to converge only for large window sizes
may be tracked back to the necessity to cover all the correlation of the returns. The proximity of the
results for both thresholds might tracked back to the similarity of the trend of the sample standard
deviation for both thresholds (Figure 4.8). Also, the set of absolute returns above v = 2σ is included
in the set of absolute returns above v = 1σ. For the proportion of absolute returns above 1σ that
are also above 2σ, see Figure 4.2 and Figure B.2. The simulations are run varying only the memory
parameter τ of the noise traders for the values listed in Table 2.1, while keeping all the other market
variables fixed (except for the random seed). In each simulation, all the noise trader agents have the
same memory length. For each value of τ, 1000 simulations of 494999 returns are generated.
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Figure 4.11: Asymptotic values for the branching ratio, approximated with Equation 4.24, for a
window of size 10000 (yielding 49 windows in each of the 1000 simulations), for v = 1σ (left)
and v = 2σ (right). For both thresholds and all memory parameters, the branching ratio is high
but sub critical. The values are listed in Table 4.2. Consistently with the results shown in the
preceding chapters, the noise traders with no memory behave as embodied by a infinite memory
(see Equation 2.4). The shorter strictly positive memories create the least endogeneity. The longer
memories tend to create the most endogenous markets, regardless of the select thresholds v. The
trend of the branching ratio is very similar to our metric for volatility clustering (Figure 4.8) for
both v. The trend for a window of size 100000 is shown in Figure B.1, page 91. The simulations
are run varying only the memory parameter τ of the noise traders for the values listed in Table 2.1,
while keeping all the other market variables fixed (except for the random seed). In each simulation,
all the noise trader agents have the same memory length. For each value of τ, 1000 simulations of
494999 returns are generated.

57



Chapter 5

Impact of Noise Traders with Heterogeneous Time
Scales on the Frequency and Size of Bubbles,

Volatility Clustering and Endogeneity

The time scales present in real markets have a strong impact on the volatility clustering. It is
known that at least two different time scales are necessary to produce volatility persistence (LeBaron
(2006))*. Also, Guillaume et al. (1997) show that high frequency markets are composed of hetero-
geneous agents whose different time horizons are linked to the volatility clustering. Guillaume
and Pictet (1995) demonstrate that the presence of the interplay of many memories in real markets.
Tumminello et al. (2012) establish that the behaviors of investors tend to cluster w.r.t. their memory.

All of these observations lead us to extend the properties of the noise trader agent of the ABM
presented in chapter 1. In the preceding chapters, all noise traders shared the same memory. The
noise trader agents are now split into Nn

G groups with different memory lengths. Within each group,
all noise traders share the same memory length τ (Equation 1.19). All noise traders share the same
coupling strength, regardless of their memory length.

This finer grid of memory lengths enhances the heterogeneity of time scales, permitting to probe
its impact on the number of bubbles and their size (section 5.3), on the autocorrelations of the
signed returns (subsection 5.4.1), on the decay of the autocorrelations coefficients of the absolute
returns (subsection 5.4.2), on volatility clustering measured through the standard deviation of the
frequency distribution and on the endogeneity of the heterogeneous markets (section 5.5). Initial
results for markets where each group of noise traders sharing the same memory is endowed by its
own coupling strength are presented in section 5.6.

5.1 Wealth dynamics

To study the impact of the heterogeneity of time scales on the number of bubbles and volatility
clustering, six different markets are analyzed. The markets are referred to as H2, H3, H5, H9,

*The market defined in chapter 1 fulfilled this criterion with two different time scales, the fundamentalist basing their
decision on the long term view of the market, and all noise traders sharing the same predefined memory length.
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5.2. Considered heterogeneities of noise traders

H17, H40. Each market Hi is composed of one fundamentalist agent and i groups of noise traders.
All fundamentalists share the same utility function and expectations and are thus considered to
be identical, as in chapter 1. Their behavior is represented by a single fundamentalist. The noise
traders are split into Nn

G groups. Within each group, all noise traders share the same memory length
τ (Equation 1.19). Noise traders cannot switch between groups and keep the memory assigned to
them. The market Hi is constituted of noise traders with i different memories. The wealth of each
group of noise traders is Wni

. The sum of the initial wealths of all the noise traders groups is equal
to the initial wealth of the fundamentalist. Note that all the noise traders share a common coupling
strength κt (Equation 1.21), regardless of their memory length.

With Nn
G noise trader agents, the market clearing condition (Equation 1.31) evolves to

Nn
G

∑
i=1

∆Dni

t→t+1 + ∆D f
t→t+1 = 0 . (5.1)

The quadratic equation for the equilibrium market price Pt+1

at+1P2
t+1 + bt+1Pt+1 + ct+1 = 0 , (5.2)

has the new parameters

at+1 =
1
Pt

[ Nn
G

∑
i=1

ν
n f
t xni

t (xn
t+1 − 1) + x f

t

(
x f

min − 1
)]

(5.3)

bt+1 = x f
t

1
γσ2

Rex

dt+1(1 + rd)

Pt
+ x f

min

[
x f

t

(
dt+1

Pt
− R f

)
+ R f

]
+

Nn
G

∑
i=1

ν
n f
t xni

t+1

[
xn

t

(
dt+1

Pt
− R f

)
+ R f

]
(5.4)

ct+1 =
dt+1(1 + rd)

γσ2
Rex

[
x f

t

(
dt+1

Pt
− R f

)
+ R f

]
. (5.5)

5.2 Considered heterogeneities of noise traders

The distribution of the time scales present in the six markets considered is listed in Table 5.1. The
market Hi is formed of Nn

G = i noise trader groups and has i different memory lengths. In this
regard, the market presented in chapter 1 and used in all the preceding chapters will be referred to
as H1(τ), τ representing the common memory assigned to all the noise traders.

The number of days for the memories of the 17 groups of noise traders in the market H17 are chosen
to follow the Fibonacci sequence, producing a converging scaling between two successive memory
lengths. Also, these are the memories, with τ = 0, analyzed in the preceding chapters. Then, the
memories for the markets H9, H5, H3 and H2 are selected as increasingly smaller subsets of the
market H17 such that the scaling between the memories within each market remains constant, and
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5.3. Impact of market heterogeneity on the frequency and size of bubbles

the shortest and longest memories are shared for all markets. After running the analysis on these
5 markets, it became apparent that a market with a larger heterogeneity should be considered. In
this regard, the market H40 was created with memories spanning the same range as the existing
markets, but on a finer grid†.

The average memory length of the different memories of the noise trader agents of market Hi,
denoted τ(Hi), differs greatly between the markets considered (last row of Table 5.1). The choice
to construct markets with a constant scaling between each successive memory rather than with a
constant market average memory was motivated by the fact that it is straightforward to compare the
results obtained for each market Hi with a market formed as in chapter 1 with one fundamentalist
and one noise trader agent with memory τ(Hi). On the other hand, comparing markets with equal
average memory but different intrinsic structures requires creating many different markets with
different distributions of the memories for each level of heterogeneity‡.

The market composed of one fundamentalist trader and of noise traders all sharing the same mem-
ory length τ(Hi) is referred to as H1(τ(Hi)).

5.3 Impact of market heterogeneity on the frequency and size of bubbles

The impact of the heterogeneity of time scales of the noise traders on the frequency and size of
bubbles is analyzed. The metric used is defined in Equation 2.2. The minimal number of days
between two peaks is constant and set to k = 250 days. The parameters s = 250 and thres = 0.4 of
the metric are as in section 2.5.

As mentioned, for the analysis to be robust each level of heterogeneity should be analyzed with
different underlying average memory and different distributions of these memories. However, by
comparing the results for Hi with a market representing the average memory of Hi, the results
strongly gain significance.

Figure 5.1 (left) shows the average number of bubbles for each level of heterogeneity given in
Table 5.1. The values are calculated over 1000 simulations of 494999 returns generated for the
corresponding market. The error bars are the standard deviation of the distribution of the number
of bubbles. Figure 5.1 (right) displays the average number of bubbles for the six markets H1(τ(Hi)).
The results obtained in section 2.5 for long memories agree with the trend observed in Figure 5.1
(right)§.

†Creating a sixth market as an extension of market H17 with the memories scaling as the Fibonacci sequence would
rapidly yield very long memories. When an approach for a sixth market with a larger number of agents was first
considered, the simulations were run on simulations of 15000 time steps (20000 minus a burn in period of 5000), making
the impact of very large memories statistically insignificant. Even though all noise traders trade at every time step,
regardless of their memory, the noise traders with memory 2584 · 1.63 = 10584 would only yield a behavior that could be
attributed to his memory for the last 4416 time steps, i.e. 1/3 of the price path.

‡Constructing different markets with a common shortest and longest memory, a constant average memory and
a constant scaling within each market is not feasible (with integer memory lengths). Say we start with a market of
heterogeneity 2, with the memories 1 day and 2584 days. The next market (H3) would have to have memories of 1, 1293,
2584. After a few rounds it becomes obvious that the high memories cannot be compensated with many small memories
while keeping a scale factor between the memories.

§See the values of τ(Hi) in the last row of Table 5.1
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5.3. Impact of market heterogeneity on the frequency and size of bubbles

Heterogeneity H2 H3 H5 H9 H17 H40
Number of noise trader groups 2 3 5 9 17 40

Scaling ratio between 2 successive memories 2584 ≈ 50 ≈ 6.85 ≈ 2.64 ≈ 1.618 ≈ 1.2

Memory length τ

1 1 1 1 1 1
2 2

3 3 3
4
4

5 5
6
7

8 8 8
9

11
13 13

15
19

21 21
22
27
32

34
39
46

55 55 55 55 55
67
80

89
96
115
138

144 144
166
199

233
238
286
343

377 377 377
412
495
593

610
712
855

987 987
1025
1231
1477

1597
1772
2126

2584 2584 2584 2584 2584 2584
Average Memory τ(Hi) 1293 880 605 464 398 383

Table 5.1: Each column Hi lists the i memories of the i noise trader groups forming the market Hi.
The memories within each market have a constant scaling between them, given in the second row.
The average of all the memories for the market Hi is referred to as τ(Hi) and is given in the last
row.
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Figure 5.1: Left: number of bubbles for markets Hi with one fundamentalist agent and i group
of noise traders with i different memories. Right: number of bubbles for markets H1(τ(Hi)) com-
posed of one fundamentalist and one noise trader agent (as in the ABM presented in chapter 1 and
analyzed in chapter 2) with memory τ(Hi), the average memory of each market Hi (right). The
ratio between both results is presented in Figure 5.3 (left). For both cases (the 6 markets Hi and the
6 markets H1(τ(Hi)) ), The simulations are run for the values listed in Table 1.1, with the number
of noise trader groups (given in Table 5.1), the memory of the noise traders and the random seed
changing. For each market, 1000 simulations of 494999 returns are generated.

Figure 5.2 shows the average log drawdown computed with Equation 2.3 for each market Hi (left)
and for a market with the corresponding average memory (right). No clear trend appears for both
analyses. A similar conclusion was drawn for the longer memories in Figure 2.10.

To grasp the intrinsic impact of the heterogeneity of the market Hi, the average number of bubbles
and log drawdown for each Hi is divided by the values obtained for the corresponding market
H1(τ(Hi)). The values are listed in Table 5.2 and shown in Figure 5.3. The results for the number
of bubbles show that a higher heterogeneity of memories in the market increases the number of
bubbles created up to a heterogeneity of 17 time scales for the noise traders. For the market with
two groups of noise traders (H2), the number of bubble is 25.2± 0.2% higher than for the market
H1(τ(H2)) (a market with one group of noise traders with the memory set to the average of the
memories present in H2). This increase of heterogeneity (doubling the number of memories of the
noise traders from 1 to 2) has a higher impact on the number of bubbles than all the other increases
of heterogeneity considered. For example, a heterogeneity of 5 memories (H5) generates 27.5± 0.2%
more bubbles than the market H1(τ(H5)). This represents however only ≈ 1% more bubbles
than the market H2. Figure 5.3 (right) shows that the average drawdowns, though statistically
indifferent between heterogeneities, is on average 20% lower than when noise traders all share the
same memory.
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Figure 5.2: Left: average log drawdown for markets Hi with one fundamentalist agent and i group
of noise traders with i different memories. Right: average log drawdown for markets H1(τ(Hi))
composed of one fundamentalist and one noise trader agent (as in the ABM presented in chapter 1
and analyzed in chapter 2) with memory τ(Hi), the average memory of each market Hi. The ratio
between both results is presented in Figure 5.3 (right). For both cases (the 6 markets Hi and the 6
markets H1(τ(Hi)) ), The simulations are run for the values listed in Table 1.1, with the number
of noise trader groups (given in Table 5.1), the memory of the noise traders and the random seed
changing. For each market, 1000 simulations of 494999 returns are generated.

i=2 i=3 i=5 i=9 i=17 i=40
Heterogeneity of the noise traders

1.25

1.26

1.27

1.28

1.29

1.30

nb
(H

i) 
/ n

b(
H1

(
(H

i))
)

Impact of heterogeneity on the number of bubbles

i=2 i=3 i=5 i=9 i=17 i=40
Heterogeneity of the noise traders

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

d(
Hi

) /
 d

(H
1(

(H
i))

)

Impact of heterogeneity on the log drawdown

Figure 5.3: Ratio of the number of bubbles (left) and of the log drawdowns (right) obtained for
the markets Hi (formed of i groups of noise traders with i different memories, see Table 5.1) with
the results obtained for markets H1(τ(Hi)) with all the noise traders sharing the same memory
with their memory set to the average memory τ(Hi) of the heterogeneous market Hi. See the text
and Table 5.2 for an analysis of the results. For both cases (the 6 markets Hi and the 6 markets
H1(τ(Hi)) ), The simulations are run for the values listed in Table 1.1, with the number of noise
trader groups (given in Table 5.1), the memory of the noise traders and the random seed changing.
For each market, 1000 simulations of 494999 returns are generated.
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i = 2 i = 3 i = 5 i = 9 i = 17 i = 40

Nb(Hi)
Nb(H1(τ(Hi)))

1.252± 0.002 1.265± 0.002 1.275± 0.002 1.284± 0.002 1.295± 0.002 1.295± 0.002

d(Hi)
d(H1(τ(Hi)))

0.7± 0.3 0.7± 0.3 0.7± 0.3 0.7± 0.3 0.7± 0.3 0.7± 0.3

Table 5.2: Ratio of the number of bubbles (Nb) and of the log drawdowns (d) obtained for the
markets Hi (formed of i groups of noise traders with i different memories, see Table 5.1) with the
results obtained for markets H1(τ(Hi)) with all the noise traders sharing the same memory with
their memory set to the average memory τ(Hi) of the heterogeneous market Hi. The values listed
here are plotted in Figure 5.3. Doubling the number of different memories for the noise traders agent
from one to two increases the number of bubbles by 25.2± 0.2%. This increase of heterogeneity has
a higher impact on the number of bubbles than all the other increases considered. For example, a
heterogeneity of 5 memories generates ≈ 1% more bubbles than a market with only two memories.
Heterogeneous markets tend to lower the size of the bubbles by 30%, though the results are not
significant. For both cases (the 6 markets Hi and the 6 markets H1(τ(Hi)) ), The simulations are
run for the values listed in Table 1.1, with the number of noise trader groups (given in Table 5.1),
the memory of the noise traders and the random seed changing. For each market, 1000 simulations
of 494999 returns are generated.

5.4 Time series analysis

5.4.1 Autocorrelation of the signed returns

The autocorrelations functions of the signed returns generated by the six markets H2, H3, H5, H9,
H17 and H40 are analyzed.

In section 3.1, all the memories displayed significant autocorrelation coefficients up to lag 100. Mar-
kets with a higher heterogeneity of time scales also produce significant autocorrelation coefficients
up to lag 100 (Figure 5.4). The partial autocorrelation coefficients (PACF) of the signed returns are
pictured in Figure 5.5.

Table C.1 (page 101) presents a closer look at the behavior of the coefficients near the crossing of the
i.i.d. null hypothesis (cut-off lag). All markets Hi display the same cut-off lag. Also, their lowest co-
efficient is consistently at lag 20 with a value almost identical between the different heterogeneities.
A similar behavior is found for the markets H1(τ(Hi)), see Figure B.5 and Table C.2. Comparing
Table C.1 with Table C.2 shows that the PACF coefficients have a faster decay in markets Hi than in
markets H1(τ(Hi)). Even though the PACF coefficients reach lower values in the markets Hi than
in markets H1(τ(Hi)), these minima occur much earlier (at lag 3 for Hi, between lag 11 and 12 for
H1(τ(Hi))). This out of sample analysis shows that market with a higher heterogeneity of time
scales may correspond to an ARMA(p,q) dynamic with lower p, q coefficients than H1 markets.
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Figure 5.4: ACF coefficients of signed returns up to lag 1000 (left) with a zoom on the first 100 lags
(right), for each market Hi listed in Table 5.1. The coefficients displayed correspond to the average
coefficient over 1000 simulations of 494999 returns generated for each Hi. The errors, not clearly
visible at this scale, are the standard error of the distribution of the 1000 coefficients for each lag.
The red horizontal dashed lines represent the 95% confidence level to accept null hypothesis that
the coefficients are i.i.d. The first 100 lags are significantly non vanishing, indicating a strong non
stationarity in the returns generated. The first lag for which the ACF coefficient is zero for each Hi
and the lag with the lowest coefficients and its value are given in Table C.1, along with an analysis
of the difference with the results obtained for markets H1(τ(Hi)). For both cases (the 6 markets Hi
and the 6 markets H1(τ(Hi)) ), The simulations are run for the values listed in Table 1.1, with the
number of noise trader groups (given in Table 5.1), the memory of the noise traders and the random
seed changing. For each market, 1000 simulations of 494999 returns are generated.

5.4.2 Autocorrelation of the absolute returns

The ACF of the absolute returns for each market Hi are displayed in Figure 5.6 and Figure 5.7.
Figure B.4 shows the decay of the absolute returns for the markets H1(τ(Hi)). The markets Hi
have lower cut-off lags and thus a faster decay than H1(τ(Hi)) for all heterogeneities analyzed. As
discussed in chapter 3, this is a mark that less volatility clustering is present in the markets Hi than
in their H1 counterparts. To quantify this decrease of volatility clustering, the decays exponent β
are computed as in section 3.2¶.

To pinpoint a constant and representative decay exponent β, the combined p-value for different
ranges are probed. The ranges have a starting lag sHi and end lag fHi. The ranges are then shrunk
by keeping fHi fixed and increasing sHi up to fHi − m, where m is the minimal amount of lag to
be fitted. As in section 3.2 (Figure 3.5), the lags up to lag 20 display a faster decay. They are
disregarded and the initial lag set at sHi = 20 (black dashed vertical line in Figure 5.7). At first, fHi
is naively defined as the lag preceding the first lag for which the ACF coefficient is below the i.i.d.
null hypothesis for a given Hi (red horizontal dashed line in Figure 5.7). For m = 200 and m = 100,
for any market Hi, no range yields a combined p-value above 0. Setting the cut-off at 0.01 (black

¶The results of the GARCH analysis, as described in section 3.2, on the markets Hi and H1(τ(Hi)) are shown in
Figure B.6. As for the results presented in section 3.2 (Figure 3.4), no clear trend can be deduced and the results are not
investigated further.
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Figure 5.5: PACF coefficients of signed returns up to lag 100 (left) with a zoom on the first 10 lags
(right), for each market Hi listed in Table 5.1. The coefficients displayed correspond to the average
coefficient over 1000 simulation of 494999 returns generated for each Hi. The errors, not clearly
visible at this scale, are the standard error of the distribution of the 1000 coefficients for each lag.
The red horizontal dashed lines represent the 95% confidence level to accept null hypothesis that the
coefficients are i.i.d. The first lag for which the PACF coefficient is zero for each Hi and the lag with
the lowest coefficients and its value are given in Table C.1, along with an analysis of the difference
with the results obtained for markets H1(τ(Hi)). For both cases (the 6 markets Hi and the 6 markets
H1(τ(Hi)) ), The simulations are run for the values listed in Table 1.1, with the number of noise
trader groups (given in Table 5.1), the memory of the noise traders and the random seed changing.
For each market, 1000 simulations of 494999 returns are generated.
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Figure 5.6: ACF coefficients of absolute returns up to lag 1000 (left) with a zoom on the first
20 lags (right), for each market Hi listed in Table 5.1. The simulations are run for the values
listed in Table 1.1, with the number of noise trader groups (given in Table 5.1), the memory of the
noise traders and the random seed changing. The coefficients displayed correspond to the average
coefficient over 1000 simulation of 494999 returns generated for each Hi. The errors, not clearly
visible at this scale, are the standard error of the distribution of the 1000 coefficients for each lag.
The red horizontal dashed lines represent the 95% confidence level to accept null hypothesis that
the coefficients are i.i.d.. The decay of the first 800 lags are shown in a semilogy scale in Figure 5.7.
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Figure 5.7: ACF coefficients of the absolute returns for all memory parameters up to lag 800 (zoom
of Figure 5.6 (left) on a semilogy scale). The simulations are run for the values listed in Table 1.1,
with the number of noise trader groups (given in Table 5.1), the memory of the noise traders and
the random seed changing. The red horizontal dashed line represents the upper band of the 95%
confidence level to accept the null hypothesis that the coefficients are i.i.d. (see section A.2). The
black vertical dashed line is at lag 20, the start lag sHi used to pinpoint a range of lags yielding a
positive combined p-value for the decay exponent β. The black horizontal dashed line corresponds
to ACF coefficients with value 0.01. This cut-off is the fix end lag fHi of the ranges used to pinpoint
a positive combined p-value. A slower decay of the ACF of the absolute returns implies stronger
volatility clustering.
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Figure 5.8: The left figure shows the evolution of the combined p-value of the linear fit on the range
[log (yHi(xsHi)), log (yHi(x fHi))] of the points (xHi, log (yHi)) displayed in Figure 5.7, for the starting
lags sHi ∈ [20, fHi − m] given on the x-axis of the present plot, the final lag fHi corresponding
to the lag preceding the first lag for which the ACF coefficient is below 0.01 (black dashed line in
Figure 5.7) for a given Hi, and minimal amount of lags fitted m = 50. The evolution of the combined
p-value for each Hi displays an unexpected percolating behavior with a transition from a combined
p-value of 0 to a combined p-value of 1 at the percolation thresholds pc

Hi (vertical dashed lines).
The value pc

Hi is the mean lag between the highest lag sHi for which the combined p-value is below
0.01 and the lowest lag sHi with combined p-value of at least 0.99. The plot on the right displays
the values of the percolation thresholds, with the values listed in Table 5.3. The simulations in
Figure 5.7 are run for the values listed in Table 2.1, with the number of noise trader groups (given
in Table 5.1), the memory of the noise traders and the random seed changing.

horizontal dashed line in Figure 5.7) and m = 50 yields at least one range with a positive combined
p-value for each market Hi. The evolution of the combined p-value is shown in Figure 5.8 (left).
The markets H2 and H40 do not display a percolation behavior as clear as the other 4 markets H3,
H5, H9 and H17 and as the evolution observed in Figure 3.6 for H1 markets with memories given
in Table 2.1. The percolation threshold pc

Hi (displayed in Figure 5.8 (right), and as dashed lines in
Figure 5.8 (left)) is the mean lag between the highest lag sHi for which the combined p-value is
below 0.01 and the lowest lag sHi with combined p-value of at least 0.99.

Figure 5.9 (left) displays the evolution of the decay exponents β for all ranges analyzed. The nu-
merical values of β are given in Table 5.3. The decay exponents show a downward trend for higher
starting lags sHi which is explained by increasingly shorter ranges of points fitted and an accelera-
tion of the decay for lags approaching the i.i.d. null hypothesis, as seen in Figure 5.7.

To quantify volatility clustering, β is computed for the six markets on the range [pc
Hi + 1, fHi], the

largest range displaying a positive combined p-value, and is shown in Figure 5.9 (right). As men-
tioned in chapter 3, Cont (2001) cites [0.2, 0.4] for the exponent of the decay of the ACF on absolute
return in real markets. The results obtained here show a much slower decay||, hence more volatility
clustering.

||As was the case for markets with all noise traders sharing the same memory, see Figure 3.7.
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Figure 5.9: The left figure shows the values of the decay exponent β of the linear fit on the range
[log (yHi(xsHi)), log (yHi(x fHi))] of the points (xHi, log (yHi)) displayed in Figure 5.7, for the starting
lags sHi ∈ [20, fHi − m] given on the x-axis of the plot, the final lag fHi corresponding to the lag
preceding the first lag for which the ACF coefficient is below 0.01 (black dashed line in Figure 3.5)
for a given Hi, and m = 50. The evolution of the combined p-value for each Hi displays an
unexpected percolating behavior with a transition from a combined p-value of 0 to a combined
p-value of 1 at the percolation thresholds pc

Hi (vertical dashed lines). The value pc
Hi is the mean lag

between the highest lag sHi for which the combined p-value is below 0.01 and the lowest lag sHi
with combined p-value of at least 0.99. The plot on the right displays the decay exponent computed
on the range [pc

Hi + 1, fHi]. Higher heterogeneities are linked to a slower decay, hence produce more
volatility clustering. The values of the percolation thresholds and of the decay exponents are listed
in Table 5.3. The simulations in Figure 5.7 are run for the values listed in Table 2.1, with the number
of noise trader groups (given in Table 5.1), the memory of the noise traders and the random seed
changing.

The results of the analysis of the combined p-value and of the decay β for the markets H1(τ(Hi))
are shown in Figure B.7 and Figure B.8, with values given in Table C.4. The percolation is more
precisely defined than for the markets Hi. The decay exponent has a cleaner evolution with values
of β that do not overlap each other. The number of lags for which the combined p-value is found
to be at least 0.99 is large enough for the decay exponents to be representative. The results concord
with what was observed in Figure 3.7 for memories above 377 (all τ(Hi)) are above 383) with shorter
memories linked to a faster decay.

To decouple the effect of the underlying memory of each market Hi, the ratio of the decays of the
markets Hi (Figure 5.9 (right), Table 5.3) with the decays of the markets H1(τ(Hi)) (Figure B.8
(right), Table C.4) is computed and shown in Figure 5.10**. The values are listed in Table 5.4. Using
the decay of the autocorrelation coefficients of the absolute returns as a metric of volatility clustering,
the market H2 produces 36% less volatility clustering than the market H1(τ(H2)) composed of one
fundamentalist and all the noise traders sharing the same memory. The result for a hierarchy of 3
memories is similar (35%). Then, the higher the heterogeneity of the noise traders’ memories, the

**Note that both decay exponents being negative, their ratio is positive. A higher ratio translates to a heterogeneous
market having a faster decay, thus displaying less volatility clustering.
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5.4. Time series analysis

Hi Percolation lag pc
Hi End lag fHi Number of lags fitted Decay exponent β

H2 261 402 141 -0.00812
H3 276 401 125 -0.00839
H5 248 404 156 -0.00810
H9 255 407 152 -0.00810
H17 271 412 141 -0.00813
H40 174 417 243 -0.00770

Table 5.3: The range [log (yHi(xsHi)), log (yHi(x fHi))] of the points (xHi, log (yHi)) displayed in Fig-
ure 5.7 is fitted for varying starting lags sHi. The simulations in Figure 5.7 are run for the values
listed in Table 2.1, with the number of noise trader groups (given in Table 5.1), the memory of the
noise traders and the random seed changing. The evolution of the combined p-value for each Hi
displays an unexpected percolating behavior with a transition from a combined p-value of 0 to a
combined p-value of 1 at the percolation thresholds pc

Hi (vertical dashed lines in Figure 5.8). The
percolation thresholds pc

Hi are the mean lag between the highest starting lag for which the range
yields a combined p-value below 0.01 and the lowest starting lag for which the range yields a com-
bined p-value above 0.99 (Figure 5.8). The end lag fHi represents the lag preceding the first lag
for which the ACF coefficients of the absolute returns are below the cut-off 0.01. The number of
lags fitted is the difference between the end lag and the percolation lag. The decay exponent β is
computed on the ranges [pc

Hi + 1, fHi].

closer the amount of volatility is to a market with all the noise traders sharing the average memory
of the heterogeneous market. Note that as no error is computed on the decay β, no confidence level
can be given for these results. A crude approach to evaluate the error on the coefficients β would be
to investigate the distributions of the slope for ranges near the one on which β is computed. Note
that β is computed on the longest range yielding a combined p-value of at least 0.99 for all the sub
ranges††, which subsets the relevant slopes for the distribution to the ones with a higher starting
lag. The evolution of the slope for the markets Hi (Figure 5.9) indicates that some values of β start
weaving for starting lags sτ just above the percolation thresholds. This behavior may weaken the
values of the decay presented.

Contrary to what was observed in section 3.2, the percolation lags (Figure 5.8) do not seem to
embody information about the volatility clustering. However, the present computation of the decays
shows to be more relevant and stable than the case presented in section 3.2. By endowing the noise
traders with two or three time scales rather than a single one, the volatility clustering is found to be
35% lower.

††The start lag of the range on which β is computed is the first lag yielding a combined p-value of at least 0.99,
which usually corresponds to the first lag after the percolation thresholds, if the percolation is not erratic. As it has been
repetitively shown, all ranges defined with a higher start lag consistently display a combined p-value of at least 0.99.
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Figure 5.10: Ratio of the decay exponent obtained for the markets Hi (formed of i groups of noise
traders with i different memories, see Table 5.1) with the results obtained for the markets H1(τ(Hi))
with all the noise traders sharing the same memory with their memory set to the average memory
τ(Hi) of the heterogeneous market Hi. The values plotted here are listed in Table 5.4. The market H2
produces 36% less volatility clustering than the market H1(τ(H2)) composed of one fundamentalist
and all the noise traders sharing the same memory τ(H2). The result for a hierarchy of 3 memories
is similar (35%). Then, the higher the heterogeneity of the noise traders’ memories, the closer the
amount of volatility is to a market with all the noise traders sharing the average memory of the
heterogeneous market. The details of the computation of the decays and a possible approach to
compute error terms are given in the text. For both cases (the 6 markets Hi and the 6 markets
H1(τ(Hi)) ), The simulations are run for the values listed in Table 1.1, with the number of noise
trader groups (given in Table 5.1), the memory of the noise traders and the random seed changing.
For each market, 1000 simulations of 494999 returns are generated.
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i = 2 i = 3 i = 5 i = 9 i = 17 i = 40

Ratio of the decay exponents
β(Hi)

β(H1(τ(Hi)))
1.36 1.35 1.16 1.08 1.05 0.97

Table 5.4: Ratio of the decay exponent obtained for the markets Hi (formed of i groups of noise
traders with i different memories, see Table 5.1) with the results obtained for the markets H1(τ(Hi))
with all the noise traders sharing the same memory with their memory set to the average memory
τ(Hi) of the heterogeneous market Hi. The values listed here are plotted in Figure 5.10. See
Figure 5.10 and the text for an analysis of the results.

5.5 Frequency distribution and branching ratio

The metric proposed in section 4.2 to quantify the volatility clustering through the sample standard
deviation of the frequency distribution of absolute returns above a threshold v is applied on the
returns generated by the six markets Hi presented in Table 5.1.

The evolution of the standard deviation w.r.t. the window size are shown in Figure 5.11 for both
thresholds v. The evolution for the different heterogeneities is very similar throughout all window
sizes. The values for the window size 10000 are shown in Figure 5.12. The results for the mar-
kets H1(τ(Hi)) with all noise traders sharing the same memory τ(Hi) are presented in Figure B.9
and Figure B.10. For v = 1σ, Figure B.10 (left) shows more significant numbers than for the het-
erogeneous markets (Figure 5.12, left). The v = 1σ threshold does not seem the most adequate
to differentiate the behaviors of the Hi markets. The difference between both plots of Figure 5.12
shows that all markets Hi have a similar volatility clustering for v = 1σ, but differ for v = 2σ
where larger heterogeneities generate more clustering. The H1 markets do have significant volatil-
ity clustering for returns above v = 1σ, even though the biggest clusters are found for v = 2σ, see
Figure B.10, Figure 4.1 and Figure 4.8. The choice of a window of size m = 10000 is arbitrary, but
relies on the observations that window sizes up to m = 150 did not show robustness for all mem-
ories in subsection 4.2.2. Selecting the same window sizes for both thresholds allow for a robust
comparison.

As in section 5.3 and section 5.4, to decouple the effect of the underlying memory of each market
Hi, the ratio of the standard deviations of the markets Hi with the the standard deviations of
the markets H1(τ(Hi)) is computed and shown in Figure 5.13. The values for both thresholds
are given in Table 5.5. A very similar behavior to Figure 5.10‡‡ is found: introducing a small
heterogeneity reduces the volatility clustering in comparison to a market where all noise traders
share the heterogeneous market average memory length. Larger heterogeneities bring the amount
of volatility clustering of the markets Hi closer to H1(τ(Hi)).

In section 4.3, the endogeneity of the market was analyzed through a non parametric approximation
of the branching ratio for self-exciting Hawkes point processes in one dimension. (Equation 4.24).

‡‡Remember that a higher ratio translates to a heterogeneous market having a faster decay, thus displaying less
volatility clustering.
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Figure 5.11: Evolution of the standard deviation for the six markets Hi for the threshold v = 1σ
(left) and v = 2σ (right) over increasingly larger window sizes m. The density of lines changing at
m = 1000 is due to computing the standard deviation (and the error bars) for window sizes that are
multiples of 1000 above m = 1000. From m = 5 to m = 1000, every window size is computed. The
simulations are run for the values listed in Table 1.1, with the number of noise trader groups (given
in Table 5.1), the memory of the noise traders and the random seed changing.
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Figure 5.12: Volatility clustering measured through the sample standard deviation of the frequency
distribution. All markets Hi have a similar volatility clustering for v = 1σ, but differ for v = 2σ
where larger heterogeneities generate more clustering. The H1 markets do have significant volatility
clustering for returns above v = 1σ, even though the biggest clusters are found for v = 2σ, see
Figure B.10, Figure 4.1 and Figure 4.8. The simulations are run for the values listed in Table 1.1,
with the number of noise trader groups (given in Table 5.1), the memory of the noise traders and
the random seed changing.
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i = 2 i = 3 i = 5 i = 9 i = 17 i = 40

std(Hi)
std(H1(τ(Hi))

, v = 1σ 0.877± 0.003 0.882± 0.003 0.895± 0.004 0.909± 0.004 0.918± 0.004 0.923± 0.004

std(Hi)
std(H1(τ(Hi))

, v = 2σ 0.816± 0.003 0.820± 0.003 0.829± 0.003 0.843± 0.003 0.854± 0.003 0.870± 0.004

Table 5.5: Ratio of the standard deviation of the frequency distribution as defined in Equation 4.8
obtained for the markets Hi (formed of i groups of noise traders with i different memories, see
Table 5.1) with the results obtained for the markets H1(τ(Hi)) with all the noise traders sharing the
same memory with their memory set to the average memory τ(Hi) of the heterogeneous market
Hi. The values listed are plotted in Figure 5.13. See Figure 5.13 and the text for an analysis of the
results. For both cases (the 6 markets Hi and the 6 markets H1(τ(Hi)) ), The simulations are run
for the values listed in Table 1.1, with the number of noise trader groups (given in Table 5.1), the
memory of the noise traders and the random seed changing. For each market, 1000 simulations of
494999 returns are generated.

The same analysis is carried out here on the markets Hi. The results are presented in Figure 5.14
and Figure 5.15, with numerical values listed in Table 5.6.

Figure 5.14 shows a smooth evolution of the branching ratio n(Hi) over larger window sizes. As
in subsection 4.2.2 and section 4.3, the simulations are run for every m ∈ [5, 1000], then for every
multiple of 1000 for m ∈ [1000, 10000]. The endogeneity grows steadily up to a window size of 1000
days after which the trend flattens and even slightly decreases. Window sizes larger than 10000
were not investigated in details, due to time and computation power constraints. The window
size 100000 was computed for v = 2σ and is shown in Figure B.13. The values are slightly lower
than for a window of size 10000 for all markets Hi but present the same trend. The branching
ratio, approximated with Equation 4.24, shows a consistent and converging behavior at very large
windows. The necessity for the approximation of the branching ratio to converge only for large
window sizes may be tracked back to the necessity to cover all the correlation of the returns.

The results for the markets H1(τ(Hi)) with all noise traders sharing the same memory τ(Hi) are
presented in Figure B.11 and Figure B.12. In agreement with the results obtained in Figure 4.11,
larger memories show higher branching ratio (see Table 5.1 for the values of τ(Hi) ).

To decouple the effect of the underlying memory of each market Hi, the ratio of the branching
ratios of the markets Hi (Figure 5.15) with the the branching ratios of the markets H1(τ(Hi)) (Fig-
ure B.12) is computed and shown in Figure 5.16. The values are given in Table 5.7. The impact of
an increase of heterogeneity in the memories of the noise traders is similar to what was observed
for volatility clustering (Figure 5.10, Figure 5.13)§§. Using the branching ratios as a metric of market

§§The similarity to the results for the volatility clustering computed with the frequency distribution may be attributed
to the data collapsed of the mean observed in Figure 4.9.
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Figure 5.13: Ratio of the standard deviation of the frequency distribution as defined in Equation 4.8
obtained for the markets Hi (formed of i groups of noise traders with i different memories, see
Table 5.1) with the results obtained for the markets H1(τ(Hi)) with all the noise traders sharing the
same memory with their memory set to the average memory τ(Hi) of the heterogeneous market
Hi. Using the standard deviation of the frequency distribution of returns above 2σ as a metric of
volatility clustering, the market H2 produces 18.4± 0.3% less volatility clustering than the market
H1(τ(H2)) composed of one fundamentalist and all the noise traders sharing the same memory
τ(H2). The result for a hierarchy of 3 memories is similar (18.0± 0.3% less volatility clustering).
Then, the higher the heterogeneity of the noise traders’ memories, the closer the amount of volatility
is to a market with all the noise traders sharing the average memory of the heterogeneous market.
The values plotted are listed in Table 5.5. For both cases (the 6 markets Hi and the 6 markets
H1(τ(Hi)) ), The simulations are run for the values listed in Table 1.1, with the number of noise
trader groups (given in Table 5.1), the memory of the noise traders and the random seed changing.
For each market, 1000 simulations of 494999 returns are generated.

endogeneity, a market with two groups of noise traders produces 4.54± 0.07% less endogeneity
than the market H1(τ(H2)) composed of one fundamentalist and all the noise traders sharing the
same memory τ(H2) (for v = 2σ). The result for a hierarchy of 3 memories is similar (4.46± 0.03%
less endogeneity). Then, the higher the heterogeneity of the noise traders’ memories, the closer the
amount of endogeneity is to a market with all the noise traders sharing the average memory of the
heterogeneous market.

Quantifying volatility clustering of heterogeneous markets through the standard deviation of the
frequency distributions yields a smaller difference w.r.t. the markets H1(τ(Hi)) than when quanti-
fying the volatility clustering through the decay of the ACF of absolute returns. However, the trend
for different Hi is similar. It is also observed that the higher the heterogeneity of memories, the
closer the volatility and endogeneity are to markets with a single memory for all the noise traders.
This behavior can me summarized by
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5.5. Frequency distribution and branching ratio
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Figure 5.14: Evolution of the branching ratio over very long windows. The Hawkes process is
calibrated on the absolute returns above v = 1σ (left) and v = 2σ (right). The trend stabilizes from
window size 1000. The necessity for the approximation of the branching ratio to converge only for
large window sizes may be tracked back to the necessity to cover all the correlation of the returns.
A snapshot of the values for window size m = 10000 is presented in Figure 5.15. The simulations
for each market Hi (formed of i groups of noise traders with i different memories, see Table 5.1) are
run for the values listed in Table 2.1, with the number of noise trader groups (given in Table 5.1),
the memory of the noise traders and the random seed changing. For each market, 1000 simulations
of 494999 returns are generated.
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Figure 5.15: Asymptotic values for the branching ratio of the six markets Hi computed through a
non parametric approximation of the self-exciting Hawkes point processes (Equation 4.24) in one
dimension on a window of size m = 10000. The Hawkes process is calibrated on the absolute
returns above v = 1σ (left) and v = 2σ (right). The values plotted are listed in Table 5.6. The values
for m = 100000 are shown in Figure B.13. The simulations for each market Hi (formed of i groups
of noise traders with i different memories, see Table 5.1) are run for the values listed in Table 2.1,
with the number of noise trader groups (given in Table 5.1), the memory of the noise traders and
the random seed changing. For each market, 1000 simulations of 494999 returns are generated.
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5.5. Frequency distribution and branching ratio

Hi Branching ratio Branching ratio
v = 1σ v = 2σ

H2 0.8602 ± 0.0005 0.8267 ± 0.0006
H3 0.8603 ± 0.0004 0.8265 ± 0.0006
H5 0.8601 ± 0.0005 0.8268 ± 0.0006
H9 0.8622 ± 0.0004 0.8290 ± 0.0006
H17 0.8627 ± 0.0004 0.8300 ± 0.0006
H40 0.8642 ± 0.0004 0.8334 ± 0.0006

Table 5.6: Branching ratios for each market Hi. The Hawkes process used to approximate the branch-
ing ratio is calibrated on the absolute returns above v = 1σ and v = 2σ. The branching ratios listed
are computed with a window of size 10000, yielding 49 windows in each of the 1000 simulations.
The mean and variance of the frequency distribution (used to compute the approximation of the
branching ratio, see Equation 4.24) is computed as described in the Method 1, subsection 4.2.1. The
numerical values are shown in Figure 5.15.

Λ(Hi)
Λ(H1(τ(Hi)))

−→ 1 for i −→ 40 (5.6)

where Λ represents the function quantifying the volatility clustering or the market endogeneity.
Larger heterogeneities should be considered to probe if this behavior is asymptotic, or holds only
locally up to i = 40 heterogeneities. On the scales considered, one might argue that a noise traders
agent with a single memory has the same impact as a large heterogeneity of memories. Hence, if
it can be argued that the speculative traders in the real financial markets are formed by a large
amount of different look back windows, their overall behavior can be modeled through a single
agent endowed with the average of all the look back windows present. Note that the current ABM
has the fundamentalist and noise traders trading at every time step. The model should thus first be
extended to allow noise traders with longer memories (or larger wealth) to trade less frequently to
mimic strategies with longer holding periods.
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5.5. Frequency distribution and branching ratio
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Figure 5.16: Ratio of the branching ratios (as defined in Equation 4.24) obtained for the markets
Hi (formed of i groups of noise traders with i different memories, see Table 5.1) with the results
obtained for the markets H1(τ(Hi)) with all the noise traders sharing the same memory with their
memory set to the average memory τ(Hi) of the heterogeneous market Hi. The values plotted here
are listed in Table 5.7. Using the branching ratios as a metric of market endogeneity, a market with
two groups of noise traders produces 4.54± 0.07% less endogeneity (for v = 2σ) than the market
H1(τ(H2)) composed of one fundamentalist and all the noise traders sharing the same memory
τ(H2) . The result for a hierarchy of 3 memories is similar (4.46± 0.03% less endogeneity). Then,
the higher the heterogeneity of the noise traders’ memories, the closer the amount of endogeneity
is to a market with all the noise traders sharing the average memory of the heterogeneous market.
For both cases (the 6 markets Hi and the 6 markets H1(τ(Hi)) ), The simulations are run for the
values listed in Table 1.1, with the number of noise trader groups (given in Table 5.1), the memory
of the noise traders and the random seed changing. For each market, 1000 simulations of 494999
returns are generated.

i = 2 i = 3 i = 5 i = 9 i = 17 i = 40

n(Hi)
n(H1(τ(Hi))

, v = 1σ 0.9777 ±
0.0006

0.9785 ±
0.0006

0.9804 ±
0.0006

0.9834 ±
0.0006

0.9854 ±
0.0006

0.9867 ±
0.0006

n(Hi)
n(H1(τ(Hi))

, v = 2σ 0.9546 ±
0.0007

0.9554 ±
0.0007

0.9570 ±
0.0007

0.9603 ±
0.0007

0.9626 ±
0.0007

0.9664 ±
0.0007

Table 5.7: Ratio of the branching ratios (as defined in Equation 4.24) obtained for the markets
Hi (formed of i groups of noise traders with i different memories, see Table 5.1) with the results
obtained for the markets H1(τ(Hi)) with all the noise traders sharing the same memory with their
memory set to the average memory τ(Hi) of the heterogeneous market Hi. The values listed here
are plotted in Figure 5.16.
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5.6. Initial results on the heterogeneity of the coupling strength

5.6 Initial results on the heterogeneity of the coupling strength

The extension of the ABM presented in this chapter endowed all the noise traders with a common
coupling strength κt (Equation 1.21, also referred to as strength of the social interaction, social
coupling or herding propensity), regardless of their memory length.

Now, a further extension of the ABM is made, where each group of noise traders sharing the
same memory is endowed with its own social coupling, thus extending the heterogeneity to a
heterogeneity of time scales and social coupling. The social coupling can be understood as how
easy each noise traders is influenced by the behavior of the other noise traders from the same
group.

It then becomes possible for a group of noise traders to enter a local organized phase, independently
of the opinion¶¶ of the other noise trader groups on the market. All Nn

G groups may also simultane-
ously be in Nn

G organized phases, with every group being in either a positive or negative feedback
mechanism. This state can be best visualized as a Weiss domain*** in a ferromagnet. With a strong
external magnetic field (exogenous shock), the orientations of the Nn

G groups would all align.

The impact on the number of bubbles and their drawdowns are presented in Figure 5.17 with values
listed in Table 5.8. When each group, endowed with a view of the market independent from the
other groups’ views, enters a positive or negative feedback regime, its impact on the price path
may be counterbalanced by other groups of noise traders with a different memory. Only when
a significant ratio of the groups share the same view can this view move the market significantly.
This can be seen with the market H40 only showing a fraction (0.073± 0.002%) of the number of
bubbles generated in H1(τ(H40)). Comparing Table 5.2 with Table 5.8 shows that for a memory
heterogeneity of 2, 3 and 5, endowing each memory with its own opinion increases the number of
bubbles.

The analysis of the impact of this further extension of heterogeneities on volatility clustering and
market endogeneity have be run and will be shown in an updated version of the current work.

¶¶Note that opinion does not refer to the opinion index but how easy this group is convinced by others.
***Of which the quantum extension is modeled by the Ising model.
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5.6. Initial results on the heterogeneity of the coupling strength
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Figure 5.17: Ratio of the number of bubbles (left) and of the log drawdowns (right) obtained for the
markets Hi (formed of i groups of noise traders with i different memories, see Table 5.1) with each
group of noise traders endowed with its own social coupling strength κ (Equation 1.21) with the
results obtained for the markets H1(τ(Hi)) with all the noise traders sharing the same memory and
social coupling strength with their memory set to the average memory τ(Hi) of the heterogeneous
market Hi. See the text and Table 5.8 for an analysis of the results. The simulations are run for the
values listed in Table 1.1, with the number of noise trader groups (given in Table 5.1), the memory
of the noise traders and the random seed changing. For each market, 1000 simulations of 494999
returns are generated.

i = 2 i = 3 i = 5 i = 9 i = 17 i = 40
Nb(Hi)

Nb(H1(τ(Hi)))
1.306± 0.002 1.408± 0.003 1.408± 0.003 0.891± 0.002 0.245± 0.001 0.00073± 0.00002

d(Hi)
d(H1(τ(Hi)))

0.9± 0.6 0.9± 0.6 0.9± 0.5 0.7± 0.3 0.6± 0.2 0.5± 0.2

Table 5.8: Ratio of the number of bubbles (Nb) and of the log drawdowns (d) obtained for the
markets Hi (formed of i groups of noise traders with i different memories, see Table 5.1) with each
group of noise traders endowed with its own social coupling strength κ (Equation 1.21) with the
results obtained for the markets H1(τ(Hi)) with all the noise traders sharing the same memory and
social coupling strength with their memory set to the average memory τ(Hi) of the heterogeneous
market Hi. The values listed here are plotted in Figure 5.17. Comparing with the results obtained
for markets Hi composed of i different groups of noise traders with different memories but a shared
coupling strength (Table 5.2) shows that for a memory heterogeneity of 2, 3 and 5, endowing each
memory with its own opinion increases the number of bubbles. A market with large numbers of
independent opinions generates only a fraction of the bubbles seen in markets with lower hetero-
geneity of opinions (see the two rightmost columns). The simulations are run for the values listed
in Table 1.1, with the number of noise trader groups (given in Table 5.1), the memory of the noise
traders and the random seed changing. For each market, 1000 simulations of 494999 returns are
generated.
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Conclusion

The aim of this work was to analyze the impact of the memory of the noise traders on the frequency
and size of bubbles, on volatility clustering and market endogeneity within the agent-based model
(ABM) introduced by Kaizoji et al. (2015). The initial markets H1(τ) are formed of fundamentalist
traders establishing their positions based on a value analysis of the market, and of noise traders
herding and acting with a common memory τ on price momentum.

A metric to pinpoint the peaks of bubbles out of sample was introduced. The robustness of the
parameters of the metric were probed. The metric was then applied on price returns generated
by 18 markets H1(τ), each assigning a different memory τ to the noise traders. It was found
that markets with the noise traders having no memory produced the least amount of bubbles, but
with the highest average drawdown. Assigning a 1 day memory to the noise traders reverses
the situation entirely with this memory producing the largest amount of bubbles with the lowest
average drawdown. Increasing the memory further reduced the amount of bubbles created and
asymmetrically increases their drawdowns. It was shown that a memory of 0 day corresponds to
noise traders with an infinite memory.

Quantifying volatility clustering for the 18 different memories through the decay of the autocorrela-
tions coefficients (ACF) of the absolute returns was proved delicate, and did not yield a significant
result for 5 of the 18 memories. The short strictly positive memories displayed a faster decay and
thus less volatility clustering than longer memories. The memory producing the least amount of
volatility clustering was found at τ = 21. For τ > 377, the longer the memories the more volatility
clustering was present. The noise traders with τ = 0 displayed similar results as very long memo-
ries. A sharp percolation behavior was found for the combined p-value of the fit of the ACF decay,
with longer memories having a percolation threshold at later lag. The memory to percolate the
fastest was found for τ = 21. Interestingly, the percolation thresholds showed a similar behavior as
the value of the decays.

A more innovative approach to quantify volatility clustering based on the moments of the frequency
distribution of the large absolute returns was then thoroughly presented. On the analyzed data, the
metric was found robust for all the metric parameters for window sizes longer than 150 returns.
This allowed to compare the volatility clustering between memories. The memories producing the
least volatility clustering were found for 1, 13 and 21 days. For memories longer than 21 days, the
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longer the memory length, the more clustering is generated. Noise traders with no memory showed
again the same behavior as very large memories. The results obtained through the moments of the
frequency distributions delivered similar results to the memories that were significant with the ACF
approach. The mean of the frequency distribution showed data collapse with a critical exponent of
1.00± 10−12.

Using the moments of the frequency distribution, the endogeneity of the market was analyzed
through a non parametric approximation of the branching ratio for self-exciting Hawkes point
processes in one dimension. The branching ratio was showed to be robust for very large windows
only. For all memory parameters, the branching ratio was found high but sub critical. The shorter
strictly positive memories created the least endogeneity with a branching ratio of n = 0.8233 ±
0.0006 for τ = 1. The longer memories tended to create the most endogenous markets. Consistently
with the results shown in the preceding approaches, the noise traders with no memory behaved as
embodied by a very long memory. These noise traders created the most endogenous markets with
an average branching ratio of n = 0.8701± 0.0004.

The ABM was extended to understand how a heterogeneity of time scales of the noise traders
impacted the frequency and size of bubbles, the volatility clustering and the endogeneity. The
noise traders were split in groups, with all the noise traders in each group sharing the same
memory length. Six different markets Hi were generated with respective heterogeneity of i ∈
{2, 3, 5, 9, 17, 40} noise traders time scales. By comparing the results for each market Hi with a mar-
ket H1(τ(Hi)) where all the noise traders shared the average memory length τ(Hi) of the different
memories of the noise traders in the heterogeneous market, a meaningful analysis of the impact of
the heterogeneity on the market was made.

For the market with two groups of noise traders (H2), the number of bubble was found to be 25.2±
0.2% higher than for the market H1(τ(H2)) (a market with one group of noise traders with the
memory set to the average of the memories present in H2). This increase of heterogeneity (doubling
the number of memories of the noise traders from 1 to 2) had a higher impact on the number of
bubbles than all the other increases of heterogeneity considered. For example, a heterogeneity of
5 memories (H5) generated 27.5± 0.2% more bubbles than the market H1(τ(H5)). This represents
however only ≈ 1% more bubbles than the market H2. Increasing the level of heterogeneity reduced
the bubbles average drawdown by 30% for all heterogeneities considered.

An out of sample ACF and PACF analysis showed that a market with a higher heterogeneity of
time scales may correspond to an ARMA(p,q) dynamic with lower p, q coefficients than H1 markets.
Ftting the decay of the ACF of the absolute returns showed that the market H2 produced 36% less
volatility clustering than the market H1(τ(H2)) composed of one fundamentalist and all the noise
traders sharing the same memory τ(H2). The result for a hierarchy of 3 memories was found to
be similar (35%). Also, the higher the heterogeneity of the noise traders’ memories, the closer the
amount of volatility was to a market with all the noise traders sharing the average memory of the
heterogeneous market.

Quantifying the volatility clustering of the heterogeneous markets Hi with the moments of the
frequency distribution showed that the market H2 produced 18.4± 0.3% less volatility clustering
than the market H1(τ(H2)). The result for a hierarchy of 3 memories was found to be similar
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(18.0 ± 0.3% less volatility clustering). Then, the higher the heterogeneity of the noise traders’
memories, the closer the amount of volatility was to a market with all the noise traders sharing the
average memory of the heterogeneous market. These results were found to be coherent with the
ones found by fitting the decay of the ACF of absolute returns. Both methods showed the same
trend, though did not return the same absolute value.

Using the branching ratios as a metric of market endogeneity, a market with two groups of noise
traders was found to produce 4.54± 0.07% less endogeneity than the market H1(τ(H2)). The result
for a hierarchy of 3 memories were similar (4.46± 0.03% less endogeneity). Then, the higher the
heterogeneity of the noise traders’ memories, the closer the amount of endogeneity was to a market
with all the noise traders sharing the average memory of the heterogeneous market.

To sum up, markets where all noise traders shared the same memory saw the most bubbles for a
memory of 1 day. This memory also produced the bubbles with the smallest drawdown. The most
volatility clustering in markets with a single memory length for all the noise traders was found
for the largest memory lengths and no memory at all. A memory length of 1 day produces the
least volatility clustering. This memory length also generates the market with the least endogeneity
(branching ratio of n = 0.8233 ± 0.0006). As for the amount of volatility clustering, the longest
memory and no memory showed to produce the highest values with n = 0.8701± 0.0004 when
noise traders have no memory. Then we showed that increasing the heterogeneity of time scales
from a single memory shared for all the noise traders to 2 memories increased the number of
bubbles by 25.2± 0.2% and decreased their drawdown by 30%, by controlling the result w.r.t. to the
average memory length of the heterogeneous market. This increase of heterogeneity also decreased
the volatility clustering by 36% when computed through the decay of the ACF on absolute returns
and 18.4± 0.03% when computed through the moment of the frequency distribution of absolute
large returns. The endogeneity of the market was reduced by 4.54± 0.07% by endowing the noise
traders with two memory lengths. It is observed that the higher the heterogeneity of memories, the
closer the volatility and endogeneity are to markets with a single memory for all the noise traders.

The analysis of the impact of endowing each group of noise traders with its own coupling strength
was run and will be shown in an updated version of the current work. In future works, implement-
ing an agent arbitraging the significant autocorrelations found up to lag 100 could show useful to
the robustness of the time series approach to quantify volatility clustering. This would bring the cur-
rent ABM closer to the ACF behaviors observed in real markets. Moreover, different heterogeneities
and intrinsic structure of time scales should be systematically analyzed. Also, an analysis of the
evolution of the wealth of each group of noise traders may reveal interesting, to observe if some
memories dominate and remove other memories from the market. Also, endowing each memory of
a heterogeneous market with a corresponding trading frequency may bring the current ABM closer
to the trading dynamics observed in real markets. Thanks to the robustness of the code developed
for the present work, the impact of any parameter of the ABM (or of future extensions of the ABM)
on frequency and size of bubbles, both approaches to quantify volatility clustering, and market
endogeneity can be effortlessly run.
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Appendix A

Key Concepts in Time Series Analysis

The analysis presented in chapter 3 rely on key concepts of time series analysis. This appendix
presents an introduction to the key definitions and equations used in this chapter 3. The shortcom-
ings and pitfalls of the approximation methods used in chapter 3 are highlighted.

This section is partly based on Dettling (2016) and Ruppert (2011).

A.1 Stationarity

A process is strictly stationary if all its moments are constant over time.

Let Xt be a stochastic process and let FX(xt1+τ, ..., xtn+τ) be the cumulative distribution function of
the unconditional joint distribution of Xt at times t1 + τ, ..., tn + τ. Then Xt is strictly stationary if
for all τ, t1, ..., tn ∈ R and ∀n ∈N

FX(xt1+τ, ..., xtn+τ) = FX(xt1 , ..., xtn). (A.1)

Hence a stationary process does not show any deterministic pattern, but only stochastic variations.

A weaker form, weak stationarity, is defined by having only the mean, variance and covariance
constant in time. In this case we have for all t, s: E(Xt) = µ a finite (unconditional) constant,
Var(Xt) = σ2 a finite positive (unconditional) constant and Cov(Xt, Xs) = γ(| t − s |) for the
autocovariance function γ(k). We note that γ(0) = Cov(Xt, Xt) = E[(Xt − x̄)(Xt − x̄)] = E[X2

t ]−
x̄2 = σ2, where x̄ = 1

n ∑n
t=1 Xt is the mean.

White Noise (WN) is the simplest stationary process. An independent and identically distributed
(i.i.d.) random variable forms the most simple WN, and if the distribution is normal with zero
mean it is known as Gaussian WN. A weak WN process Xt is defined by a vanishing covariance for
all t 6= s: Cov(Xt, Xs) = 0.
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A.2. Autocorrelation

A.2 Autocorrelation

The autocorrelation between two random variables Xt+k, Xt is defined as

Cor(Xt+k, Xt) =
Cov(Xt+k, Xt)√

Var(Xt+k)Var(Xt)
. (A.2)

For weakly stationary processes we can write the autocorrelation function ACF

Cor(Xt+k, Xt) := ρ(k) . (A.3)

A known and stable technique to estimate the autocorrelations ρ̂ is the plug-in approach*:

ρ̂ =
γ̂(k)
γ̂(0)

(A.4)

with

γ̂(k) =
1
n

n−k

∑
t=1

(Xt+k − x̄)(Xt − x̄) . (A.5)

Note that the estimated autocorrelations† with the plug-in approach are shrunken towards zero for
high lags. This is important to keep in mind as we will work with up to 1000 lags.

As is noted in Cont (2007), one has to be vigilant when estimating sample autocorrelation coeffi-
cients as it may be possible that these converge to random values (see also Resnick (1998)). For the
case of autocorrelations of squared returns, the outcome can even be worse (Mikosch et al. (2000)).

Let Xt be a stationary series. Then, choose n such that ∑n
k=1 Xt = 0. It can be shown that for the

stationary series Xt the sum of all the estimated autocorrelation coefficients for all lags k up to
k = n− 1 is‡

n−1

∑
k=1

ρ̂(k) = −1
2

. (A.6)

This implies the presence of artifacts. Bartlett (1946) showed that the coefficients ρ̂(k) are asymp-
totically normally distributed. Hence, taking the null hypothesis that a series is i.i.d. (and thus
ρ̂(k) = 0 ∀k) the 95% confidence level to accept the null is the interval ±1.96/

√
n, where n is the

length of the series This will serve as basis for our confidence bands in ACF and PACF plots.

*The plug-in approach has the advantage of not increasing the variance of ρ(k) as k increases, which is a known
problem for the lagged scatter plot method. The brute force algorithm has order n2. As the time series analyzed have
494999 returns, a Fast Fourier Transform convolution is preferred (order n log(n), ≈ 37750 times faster).

† ˆρ(k) are also called sample autocorrelation coefficients
‡Expand the LHS, and use that ∑n

k=1 Xt = 0 for a stationary series.
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A.3. AR processes

A.3 AR processes

A process Xt is an autoregressive (AR) process, when Xt is a weighted average of past instances and
a white noise error term (also called innovation). The innovation represents the exogenous shocks.
The simplest AR process is the AR(1)

Xt − µ = ϕ(Xt−1 − µ) + εt ∀t , (A.7)

where µ is the mean of the process, ϕ a constant determining the amount of feedback. The error εt is
a weak white noise process WN(0, σ2

ε ) with mean 0 and variance σ2
ε . The term µ+ ϕ(Xt−1− µ) is the

nonconstant conditional expectation of Xt given Xt−1, and σ2
ε is the constant conditional variance of

Xt.

If Xt is weakly stationary, then | ϕ |< 1. This can be seen by taking the variance on both sides of
Equation A.7 and noting that they have to be equal : σ2

X = ϕ2σ2
X + σ2

ε . The ACF of an AR(1) model
will decay geometrically to zero if | ϕ |< 1 and alternate if ϕ < 0. We have an explosive behavior
for | ϕ |> 1. For ϕ = 1, the process is not stationary and represents the random walk.

We can reformulate Equation A.7 by repeated substitution as follows

Xt − µ = εt + ϕεt−1 + ϕ2εt−2 + ... =
∞

∑
h=0

ϕhεt−h ∀t . (A.8)

The more general AR(p) model regresses not only the immediate past value, but the p past ones. A
stochastic process Xt is an AR(p) process if

Xt − µ = ϕ1(Xt−1 − µ) + ϕ2(Xt−2 − µ) + ... + ϕp(Xt−p − µ) + εt ∀t , (A.9)

with εt a weak WN(0, σ2
ε ).

For an AR(p) process to be weakly stationary, its mean and variance are constant while its covariance
only depends on the lag. The unconditional mean is straightforwardly E[Xt] = µ. We note that the
conditional mean may be different from µ:

µt = E[Xt | Xt−1, ..., Xt−p] = µ +
p

∑
i=1

ϕiE[xt−i − µ] . (A.10)

For the variance and covariance, let us take the AR(1) case for simplicity

Var(Xt) = Var(µ +
∞

∑
h=0

ϕhεt−h) = σ2
ε

∞

∑
h=0

ϕ2h =
σ2

ε

1− ϕ2 (A.11)

Cov(Xt, Xt−h) = Cov
( ∞

∑
i=0

εt−i ϕ
i,

∞

∑
j=0

εt−h−j ϕ
j
)
= ϕ|h|

σ2
ε

1− ϕ2 (A.12)

Cor(Xt, Xt−h)
(A.2)
= ϕ|h| . (A.13)
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A.4. MA processes

An AR process takes into account past information of up to lag p for the present value. This implies
that there is correlation at all lags. In case the ACF shows correlations only at small lags, a moving
average model (MA) is more suitable.

A.4 MA processes

We talk about a moving average (MA) process Xt, when Xt is a weighted average (moving average)
of past values of the white noise process εt. The MA(1) model is

Xt − µ = εt + θεt−1 ∀t , (A.14)

where εt is a weak white noise process WN(0, σ2
ε ).

The more general MA(q) model is

Xt − µ = εt + θ1εt−1 + ... + θqεt−q ∀t . (A.15)

The autocovariance and autocorrelation functions both vanish for lags higher than q: γ(h) = ρ(h) =
0 ∀ | h |> q.

Similarly to the stationarity of an AR(p) process, we check the MA(q) case as follows: E[Xt] = µ =
constant, Var(Xt) = σ2

ε (1 + ∑
q
i=1 θ2

i ) = constant. The computation for the covariance can be found
in Dettling (2016), pp.86-87.

A.5 ARMA process

An ARMA(p,q) process combines the autoregressive and moving average model described in the
previous sections. It allows to be more parsimonious than using only an AR or MA model. This
model is defined as

Xt − µ = ϕ1(Xt−1 − µ) + ... + ϕp(Xt−p − µ) + εt + θ1εt−1 + ... + θqεt−q ∀t . (A.16)

With the backwards operator B defined as BhXt = Xt−h, the above equation can be rewritten as

(1− ϕ1B− ...− ϕpBp)(Xt − µ) = (1 + θ1B + ... + θqBq)εt . (A.17)

Ruppert (2011) derives the following two equations for an ARMA(1, 1) process

ρ(1) =
(1 + ϕ1θ1)(ϕ1 + θ1)

1 + θ2
1 + 2ϕ1θ1

, (A.18)

and for h ≥ 2
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A.6. Partial autocorrelation

ρ(h) = ϕ1ρ(h− 1) , (A.19)

which will help us derive a key insight for the GARCH(1, 1) process.

A.6 Partial autocorrelation

The partial autocorrelation function PACF measures the linear dependency between two random
variables Xt+k, Xt while removing the linear dependency between Xt+k−1 and Xt+1.

π(k) := Cor(Xt+k, Xt | Xt+k−1, ..., Xt+1) (A.20)

A theoretical relation exists between the autocorrelations ρ(k) and the partial autocorrelations π(k)
:

π(1) = ρ(1) (A.21)

π(2) = (ρ(2)− ρ(1)2)/(1− ρ(1)2) . (A.22)

An important property of π(k) is that the pth coefficient of an AR(p) model is ϕp = π(p). This
means that for an AR(3) model we have ϕ3 = π(3) but not necessarily ϕ2 = π(2) or ϕ1 = π(1).
Also, π(k) = 0 for all k > p.

A.7 ACF and PACF

Analyzing the results of the previous section, we can deduct which model is appropriate by looking
at the ACF and PACF plots:

• AR(p) when the ACF shows an infinite or exponential decay, and the PACF has a clear cut-off
at lag p,

• MA(q) when the ACF shows a clear cut-off at lag q, and the PACF has an infinite or exponen-
tial decay,

• ARMA(p,q) when the ACF and PACF both show an infinite/exponential decay or a mix of
decay and cut-offs.

A slowly decaying ACF may be due to nonstationarity.

A.8 GARCH

As we have seen, all ARMA models have a nonconstant conditional mean and a constant conditional
variance. These models are thus not adequate to model financial time series displaying nonconstant
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A.8. GARCH

conditional variance (known as conditional heteroskedasticity). This is the case when volatility
clustering is present.

An ARCH model (Autoregressive Conditional Heteroskedasticity) is then useful. Let at be an
ARCH(1) model

at = εt

√
ω + αa2

t−1 , (A.23)

with εt WN(0,1). We must have ω > 0 and α ≥ 0 for the square root to be positive for all t. For
stationarity the condition α < 1 must hold. If we rewrite Equation A.23 as

a2
t = ε2

t (ω + αa2
t−1) , (A.24)

we see a similarity to an AR(1) process in a2
t . We have the following unconditional and conditional

mean and variance:

E[at] = 0 (A.25)
E[at | at−1, at−2, ...] = 0 (A.26)

E[a2
t ] = ω + αE[a2

t−1]⇒ E[a2
t ] =

ω

1− α
(A.27)

E[a2
t | at−1, at−2, ...] = ω + αa2

t−1 = σ2
t . (A.28)

As we can see we have the opposite behavior from an AR(1) process, with constant conditional mean
and nonconstant conditional variance. ARCH is an example of an uncorrelated (independence of
the conditional mean on the past) but dependent (dependence of conditional variance on the past)
process. Equation A.28 shows how ARCH processes work: when at−1 is unusually big, at will be
too, which is a typical behavior in volatility clustering. Even though the at process does not have
an interesting ACF (uncorrelated), the a2

t process does show a geometric decay similar to an AR(1)
process, as ρα2(h) = α|h| (A.13).

When both the conditional mean and variance are nonconstant, we can use in the simplest case an
AR(1)+ARCH(1) model

Xt − µ = ϕ(Xt−1 − µ) + at , (A.29)

where at is an ARCH(1) process such that at = εt

√
ω + αa2

t−1, with εt i.i.d N (0, 1). It is interesting
to note that, as at is uncorrelated and thus has the ACF of white noise, Xt will display the same
ACF as an AR(1): ρXt(h) = ϕ|h| ∀h. Also, a2

t has the ARCH(1) ACF: ρα2(h) = α|h| ∀h.

To generalize the processes discussed in this section, we can define the general ARCH(p) process at
with εt Gaussian WN(0,1)
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A.8. GARCH

at = εtσt = εt

√√√√ω +
p

∑
i=1

αia2
t−i . (A.30)

As for the ARCH(1) case, the ACF of a2
t has the same structure as the ACF of a AR(p) process.

To improve parsimony in ARCH models, we can include autoregressive terms of the volatility
which allows for persistent volatility to be more accurately modeled. This generalization of ARCH
is named GARCH(p,q) and is defined as

at = εtσt = εt

√√√√ω +
p

∑
i=1

αia2
t−i +

q

∑
j=1

β jσ
2
t−j . (A.31)

In (Ruppert, 2011, p. 418-420), the parallel between GARCH and ARMA processes is derived. In
summary, if at is GARCH, then a2

t is ARMA with weak WN. Also, a necessary condition for the
stationarity of the process at is given by

max(p,q)

∑
i=1

(αi + βi) < 1 . (A.32)

Equation A.18 and Equation A.19 are used to derive the following two key equations of a GARCH(1,1)
process,

ρa2(1) =
α(1− αβ− β2)

1− 2αβ− β2 , (A.33)

and for h ≥ 2

ρa2(h) = (αβ)h−1ρa2(1) . (A.34)

Equation A.33 means that ρa2(1) is not uniquely defined. Equation A.34 implies that a higher value
of α + β translates to a slower decay of ρa2 for lags higher than 1.
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Appendix B

Additional Figures
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Figure B.1: Asymptotic values for the branching ratio, approximated with Equation 4.24, for a
window of size 100000 and calibrated on the absolute returns above v = 2σ. For all memory
parameters, the branching ratio is high but sub critical. The noise traders with no memory behave
as embodied by a infinite memory (see Equation 2.4). The shorter strictly positive memories create
the least endogeneity. The longer memories tend to create the most endogenous markets, regardless
of the select thresholds The values for a window of size 100000 shown here are slightly lower than
for 10000 (Figure 4.11) for all memory parameters but present the same trend. The branching ratios
show a consistent and converging behavior at very large windows. The simulations are run varying
only the memory parameter τ of the noise traders for the values listed in Table 2.1, while keeping
all the other market variables fixed (except for the random seed). In each simulation, all the noise
trader agents have the same memory length.
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Figure B.2: Unconditional probability to generate a return of absolute value above v = 1σ (left)
and v = 2σ(right) for each value of the parameter τ in Table 2.1. The computations are run over
494999 returns and 1000 seeds for each τ and v. The distribution for each τ is plotted in Figure 4.2.
The numerical values and their errors (the standard deviation of the corresponding distribution)
are found in Table 4.1. The simulations are run varying only the memory parameter τ of the noise
traders for the values listed in Table 2.1, while keeping all the other market variables fixed (except
for the random seed). In each simulation, all the noise trader agents have the same memory length.
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Figure B.3: Conditional probability of to generate a return of absolute value at time t above v when
the absolute value of the return at time t− 1 was also above v, for v = 1σ (left) and v = 2σ(right) for
each value of the parameter τ in Table 2.1. The computations are run over 494999 returns and 1000
seeds for each τ and v. The distribution for each τ is plotted in Figure 4.3. The numerical values
and their errors (the standard deviation of the corresponding distribution) are found in Table 4.1.
The simulations are run varying only the memory parameter τ of the noise traders for the values
listed in Table 2.1, while keeping all the other market variables fixed (except for the random seed).
In each simulation, all the noise trader agents have the same memory length.
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Figure B.4: ACF coefficients of the absolute returns for all memory parameters up to lag 800 for
the six markets H1(τ(Hi)). The red horizontal dashed line represents the upper band of the 95%
confidence level to accept the null hypothesis that the coefficients are i.i.d. (see section A.2). The
black vertical dashed line is at lag 20, the start lag s

τ(Hi) used to pinpoint a range of lags yielding a
positive combined p-value for the decay exponent β. The black horizontal dashed line corresponds
to ACF coefficients with value 0.01. This cut-off is the fix end lag f

τ(Hi) of the ranges used to
pinpoint a positive combined p-value. A slower decay of the ACF of the absolute returns implies
stronger volatility clustering. The simulations are run for the values listed in Table 1.1, with the
random seed and the memory parameters changing.
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Figure B.5: ACF (left) and PACF (right) coefficients of signed returns, for each market H1(τ(Hi)).
The simulations are run for the values listed in Table 1.1, with the memory parameter and the
random seed changing. The coefficients displayed correspond to the average coefficient over 1000
simulation of 494999 returns generated for each H1(τ(Hi)). The errors, not clearly visible at this
scale, are the standard error of the distribution of the 1000 coefficients for each lag. The red horizon-
tal dashed lines represent the 95% confidence level to accept null hypothesis that the coefficients are
i.i.d. The first ACF lags are significantly non vanishing, indicating a strong non stationarity in the
returns generated. The first lag for which the ACF and PACF coefficient is zero for each H1(τ(Hi))
and the lag with the lowest coefficients are given in Table C.2.
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Figure B.6: Average sum of the two GARCH(1,1) coefficients for each heterogeneous market Hi (left)
and market H1(τ(Hi)) (right). The simulations are run for the values listed in Table 1.1, with the
number of noise trader groups (given in Table 5.1), the memory of the noise traders and the random
seed changing. It is known from Equation A.34 that the sum of the coefficients of a GARCH(p, q) fit
on the signed returns quantifies the decay of the autocorrelation of absolute returns. A GARCH(1,1)
model is fitted on every simulation of every market Hi and H1(τ(Hi)). The sum of the two GARCH
coefficients is averaged over the 1000 simulations. The error is taken as the standard deviation of the
distribution of the sums. The results displayed do not allow any clear interpretation. Note that the
mean of the sum is below but close to the critical value 1.0 (Equation A.32) for all memory lengths
(the confidence bands of some markets H1(τ(Hi)) overlap with the critical value), indicating a
variance marginal distribution close to infinite. Mikosch et al. (2000) argue at length that in such
a case the sample autocorrelations are deceptive estimators for the signed and absolute returns.
The ACF of the GARCH(1,1) is an unreliable estimator (tardy convergence), becomes senseless, and
one should deflect drawing conclusions from the ACF of the absolute returns (see also Resnick
(1998) and Cont (2007)). The non-stationarity of the returns (Figure 5.4) may also play a part (see
Equation A.25 and more generally section A.8 where εt is always defined as WN(0,1)). The results
are disregarded.
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Figure B.7: The left figure shows the evolution of the combined p-value of the linear fit on the range
[log (y

τ(Hi)(xs
τ(Hi)

)), log (y
τ(Hi)(x f

τ(Hi)
))] of the points (x

τ(Hi)i, log (y
τ(Hi))) displayed in Figure B.4,

for the starting lags s
τ(Hi) ∈ [20, f

τ(Hi) − m] given on the x-axis of the present plot, the final lag
f
τ(Hi) corresponding to the lag preceding the first lag for which the ACF coefficient is below 0.01

(black dashed line in Figure 5.7) for a given τ(Hi), and minimal amount of lags fitted m = 50.
The evolution of the combined p-value for each τ(Hi) displays an unexpected percolating behavior
with an irreversible and sharp transition from a combined p-value of 0 to a combined p-value of 1
at the percolation thresholds pc

τ(Hi)
(vertical dashed lines). The value pc

τ(Hi)
is the mean lag between

the highest lag s
τ(Hi) for which the combined p-value is below 0.01 and the lowest lag s

τ(Hi) with
combined p-value of at least 0.99. The plot on the right displays the values of the percolation
thresholds. The simulations are run for the values listed in Table 1.1, with the memory of the noise
traders and the random seed changing.
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Figure B.8: The left figure shows the values of the decay exponent β of the linear fit on the
range[log (y

τ(Hi)(xs
τ(Hi)

)), log (y
τ(Hi)(x f

τ(Hi)
))] of the points (x

τ(Hi)i, log (y
τ(Hi))) displayed in Fig-

ure B.4, for the starting lags s
τ(Hi) ∈ [20, f

τ(Hi) − m] given on the x-axis of the present plot, the
final lag f

τ(Hi) corresponding to the lag preceding the first lag for which the ACF coefficient is

below 0.01 (black dashed line in Figure 5.7) for a given τ(Hi), and minimal amount of lags fitted
m = 50. The evolution of the combined p-value for each τ(Hi) displays an unexpected percolating
behavior with an irreversible and sharp transition from a combined p-value of 0 to a combined
p-value of 1 at the percolation thresholds pc

τ(Hi)
(vertical dashed lines). The value pc

τ(Hi)
is the mean

lag between the highest lag s
τ(Hi) for which the combined p-value is below 0.01 and the lowest lag

s
τ(Hi) with combined p-value of at least 0.99. The plot on the right displays the decay exponent

computed on the range [pc
τ(Hi)

+ 1, f
τ(Hi)]. The simulations are run for the values listed in Table 1.1,

with the memory of the noise traders and the random seed changing.
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Figure B.9: Evolution of the standard deviation for the six markets H1(τ(Hi)) for the threshold
v = 1σ (left) and v = 2σ (right). The density of lines changing at n = 1000 is due to computing the
standard deviation (and the error bars) for window sizes that are multiples of 1000 above n = 1000.
From n = 5 to n = 1000, every window size is computed. The simulations are run for the values
listed in Table 1.1, with the memory of the noise traders and the random seed changing.
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Figure B.10: Volatility clustering measured through the sample standard deviation of the frequency
distribution, for the six markets H1(τ(Hi)). Larger memories show strong clustering (see Table 5.1
for the values of τ(Hi)) generate more clustering, in agreement with the results obtained in Fig-
ure 4.8. The simulations are run for the values listed in Table 1.1, with the memory of the noise
traders and the random seed changing.
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Figure B.11: Evolution of the branching ratio over very long windows for the six markets H1(τ(Hi))
calibrated on the absolute returns above v = 1σ (left) and v = 2σ (right). The trend stabilizes from
window size 1000. A snapshot of the values for window size m = 10000 is presented in Figure B.12.
The simulations are run for the values listed in Table 1.1, with the memory of the noise traders and
the random seed changing.
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Figure B.12: Asymptotic values for the branching ratio of the six markets H1(τ(Hi)) computed
through a non parametric approximation of the self-exciting Hawkes point processes (Equation 4.24)
in one dimension on a window of size m = 10000, calibrated on the absolute returns above v = 1σ
(left) and v = 2σ (right). In agreement with the results obtained in Figure 4.11, larger memories
show higher branching ratio (see Table 5.1 for the values of τ(Hi). The simulations are run for the
values listed in Table 1.1, with the memory of the noise traders and the random seed changing.
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Figure B.13: Branching ratio for the six markets Hi listed in Table 5.1 approximated with Equa-
tion 4.24, calibrated on the absolute returns above v = 2σ. The approximation shows a consistent
and converging behavior at very large windows. The values for a window of size 100000 shown
here are slightly lower than for 10000 (Figure 5.15) for all memory parameters but present the same
trend. The simulations are run for the values listed in Table 1.1, with the memory of the noise
traders and the random seed changing.
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Appendix C

Additional Tables

ACF of signed returns PACF of signed returns
Heterogeneity cut-off lag lowest coeff lag of lowest coeff cut-off lag lowest coeff lag of min coeff

H2 11 -0.070 20 2 -0.039 3
H3 11 -0.070 20 2 -0.039 3
H5 11 -0.070 20 2 -0.039 3
H9 11 -0.071 20 2 -0.039 3

H17 11 -0.074 20 2 -0.041 3
H40 11 -0.074 20 2 -0.040 3

Table C.1: Behavior of the signed autocorrelation and partial autocorrelations coefficients near the
crossing of the i.i.d. null hypothesis (cut-off lag) for markets Hi with a heterogeneity i of memories
of the noise traders. All markets Hi display the same cut-off lag and reach their lowest ACF and
PACF coefficients at the same lag. Comparing the results with Table C.2 shows that the PACF
coefficients have a faster decay in markets Hi than in markets H1(τ(Hi)). Even though the PACF
coefficients reach lower values in the markets Hi than in markets H1(τ(Hi)), these minima occur
much earlier (at lag 3 for Hi, between lag 11 and 12 for H1(τ(Hi)). This might suggest lower p, q
coefficients to model the dynamic of the nonconstant conditional mean and the constant conditional
variance in Hi markets. The simulations are run for the values listed in Table 1.1, with the random
seed, the number of noise trader groups and the memory parameters changing. In each simulation,
all the noise trader agents have the same memory length.
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ACF of signed returns PACF of signed returns
Heterogeneity cut-off lag lowest coeff lag of lowest coeff cut-off lag lowest coeff lag of min coeff

τ(H2) 14 -0.047 26 5 -0.009 11
τ(H3) 14 -0.047 25 5 -0.009 12
τ(H5) 14 -0.046 25 5 -0.009 12
τ(H9) 14 -0.046 26 5 -0.009 11
τ(H17) 14 -0.045 26 5 -0.009 12
τ(H40) 14 -0.046 26 5 -0.009 12

Table C.2: Behavior of the signed autocorrelation and partial autocorrelations coefficients near the
crossing of the i.i.d. null hypothesis (cut-off lag) for markets H1(τ(Hi)) with all the noise traders
sharing the same memory τ(Hi) corresponding to the average memory of the market Hi. See
Table C.1 for a analysis of the values. The simulations are run for the values listed in Table 1.1, with
the random seed and the memory parameters changing. In each simulation, all the noise trader
agents have the same memory length.
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ACF of signed returns PACF of signed returns
τ cut-off lag lowest coeff lag of lowest coeff cut-off lag lowest coeff lag of min coeff
0 14 -0.045 25 5 -0.009 12
1 11 -0.070 20 2 -0.037 3
2 12 -0.092 20 3 -0.037 4
3 13 -0.101 22 4 -0.026 5
5 14 -0.101 25 4 -0.018 9
8 16 -0.088 29 5 -0.014 11
13 17 -0.068 33 6 -0.010 12
21 17 -0.049 35 6 -0.007 13
34 17 -0.040 32 6 -0.007 12
55 15 -0.038 29 6 -0.007 13
89 15 -0.041 27 6 -0.008 12

144 14 -0.043 26 5 -0.009 12
233 14 -0.045 26 5 -0.009 12
377 14 -0.046 25 5 -0.009 12
610 14 -0.046 26 5 -0.009 12
987 14 -0.046 26 5 -0.009 12
1597 14 -0.047 25 5 -0.009 11
2584 14 -0.047 25 5 -0.009 12

Table C.3: Behavior of the signed autocorrelation and partial autocorrelations coefficients near the
crossing of the i.i.d. null hypothesis (cut-off lag) for different value of the memory parameters of
the noise traders, for the ABM described in chapter 1. As expected, longer memories are linked to
an autoregressive process of higher lags. This can be traced back to the price momentum part of
the social interaction of the noise traders (Equation 1.18). A higher τ leads to older price returns
taken into consideration. The simulations are run for the values listed in Table 1.1, with the random
seed and the memory parameters changing. In each simulation, all the noise trader agents have the
same memory length.
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τ Percolation lag pc
τ(Hi)

End lag f
τ(Hi) Number of lags fitted Decay exponent β

τ(H2) 322 550 228 -0.00600
τ(H3) 360 546 186 -0.00621
τ(H5) 383 530 147 -0.00691
τ(H9) 392 517 125 -0.00741
τ(H17) 380 506 126 -0.00769
τ(H40) 383 503 120 -0.00783

Table C.4: The range [log (y
τ(Hi)(xs

τ(Hi)
)), log (y

τ(Hi)(x f
τ(Hi)

))] of the points (x
τ(Hi), log (y

τ(Hi))) dis-
played in Figure B.4 are fitted for varying starting lag s

τ(Hi). The evolution of the combined p-value

for each τ(Hi) (see Figure B.7) displays an unexpected percolating behavior with an irreversible
and sharp transition from a combined p-value of 0 to a combined p-value of 1 at the percolation
thresholds pc

τ(Hi)
(vertical dashed lines in Figure B.7). The percolation thresholds pc

τ(Hi)
are the mean

lag between the highest starting lag for which the range yields a combined p-value below 0.01 and
the lowest starting lag for which the range yields a combined p-value above 0.99 (see Figure B.7).
The end lag f

τ(Hi) represents the lag preceding the first lag for which the ACF coefficients of the
absolute returns are below the cut-off 0.01. The number of lag fitted is the difference between the
end lag and the percolation lag. The decay exponent β is computed on the ranges [pc

τ(Hi)
+ 1, f

τ(Hi)].
The simulations are run for the values listed in Table 1.1, with the random seed and the memory
parameters changing. In each simulation, all the noise trader agents have the same memory length.
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