
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤

⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤
⇤
⇤⇤

Swiss Federal Institute of Technology Zurich

Seminar for

Statistics

Master Thesis Summer 2015

Philip Berntsen

Particle filter adapted to

jump-di↵usion model of bubbles and crashes

with non-local crash-hazard rate estimation

Submission Date: July 30

th

2015

Adviser: Dr. Markus Kalisch

Supervisors: Prof. Didier Sornette

Prof. Yannick Malevergne

Abstract

Crashes in the financial sector probably represent the most striking events among
all possible extreme phenomena. The impact of the crises have become more severe
and their arrivals more frequent. The most recent financial crises shed fresh light on
the importance of identifying and understanding financial bubbles and crashes.

The model developed by Malevergne and Sornette [2014] aims at describing the
dynamics of the underlying occurrences and probability of crashes. A bubble in this
work is synonymous with prices growing at a higher rate than what can be expected
as normal growth over the same time period. A non-local estimation of the crash haz-
ard rate takes into account unsustainable price growth, and increases as the spread,
between a proxy for the fundamental value and the market price becomes greater.
The historical evaluation of the jump risk is unique and expands the understanding
of crash probability dynamics assumed embedded in financial log-return data.

The present work is mainly concerned with developing fast sequential Monte Carlo
methods, using C++. The algorithms are developed for learning about unobserved
shocks from discretely realized prices for the model introduced by Malevergne and
Sornette [2014]. In particular, we show how the best performing filter - auxiliary par-
ticle filter - is derived for the model at hand. All codes are accessible in the appendix
for reproducibility and research extensions.

In addition, we show how the filter can be used for calibration of the model at
hand. The estimation of the parameters, however, is shown to be di�cult.

CONTENTS i

Contents

1 Introduction 1

2 Jump-di↵usion model of bubbles and crashes with non-local behavioral
self-referencing 3
2.1 Jump-di↵usion models . 3
2.2 Model of bubbles and crashes with non-local behavior 4
2.3 Mispricing and inherent jump probability 8

3 Particle filtering 10
3.1 Filtering . 10

3.1.1 Importance sampling . 13
3.1.2 Sequential importance sampling . 13
3.1.3 Sequential importance resampling 15
3.1.4 Auxiliary particle filter . 15

3.2 Derivation of the filtering algorithm . 16
3.2.1 Jump times . 17
3.2.2 Jump sizes . 17
3.2.3 Filtering weights . 19

3.3 Convergence of particle filters . 20

4 Parameter estimation 21
4.1 Maximum likelihood . 21

4.1.1 Expectation-maximization algorithm 22
4.2 State augmentation . 25

4.2.1 Fixed parameters . 26
4.2.2 Artificial dynamics . 26
4.2.3 Priors . 27

5 Simulations 28
5.1 Model simulation and stylized facts . 28

5.1.1 Model simulation . 28
5.1.2 Stylized facts . 29

5.2 Filtering of the states and convergence . 36
5.2.1 Filtering of the states . 36
5.2.2 Convergence of the particle filter . 36

5.3 Parameter estimation . 40
5.3.1 Parameter cross-sections . 40
5.3.2 State augmentation . 40

5.4 Conclusion of simulations . 41

6 Conclusion 46

CONTENTS ii

Appendices 51

A Pseudo code 52
A.1 SIR particle filter algorithm . 52
A.2 APF particle filter algorithm . 52
A.3 Fixed state augmentation . 53

B Code 55
B.1 SIR C++ code . 55
B.2 APF C++ code . 61
B.3 Fixed state augmentation C++ code . 69

LIST OF FIGURES iii

List of Figures

5.1 Simulated model of bubbles and crashes with non-local behavior 31
5.2 Volatility and mispricing . 32
5.3 Crash hazard rate density plot . 33
5.4 Log returns and squared log returns with corresponding correlograms 34
5.5 Kurtosis and skewness of raw returns from the simulated series 35
5.6 SIR performance of estimating jumps and jump sizes 37
5.7 APF performance of estimating jumps and jump sizes 38
5.8 Convergence of SIR particle filter . 39
5.9 Cross section of the log-likelihood space (↵,�) 43
5.10 Cross section of the log-likelihood space a 44
5.11 State augmentation with fixed parameters 45

Chapter 1

Introduction

Throughout financial market history, there are numerous examples showing phases of ex-
traordinary growth in prices, known as bubbles, followed by a crash. A bubble is created
whenever the price of an asset rises above the fundamental value. The fundamental value
is notoriously hard to estimate and, therefore, also the determination of whether extraor-
dinary price growth is in fact a bubble. In the works of Malevergne and Sornette [2014]
a bubble is quantified as growth in asset prices that exceed what can be expected over a
certain period in time. This in turn renders an increase in the crash probability. The esti-
mated growth rate is based on the available historic log-returns and an historic anchoring
point by which the current price is compared gives a proxy for the fundamental value.

The model introduced by Malevergne and Sornette [2014] aims at explaining the dynamics
of crashes. Estimation of the crash-hazard rate is based on the above commonly held con-
ception. The modeling of real financial log return is said to depend on the volatility, crash
probability and lastly jumps. The disentanglement of volatility and jump is important as
they are compensated di↵erently with respect to risk and expected return.

One of the main model strengths is the persistent crash-hazard rate. The historic estima-
tion procedure allows for enduring positive crash probability. Comparable models, such as
rational expectation models lack this property. Here the crash-hazard rate becomes zero
as soon as the conditional expected return becomes zero. This comes from proportionally
relating the conditional expected return with the crash-hazard rate, and is clearly wrong.
Furthermore rational expectation models assume that despite explosive paths in the asset
prices, the non-arbitrage condition remains true. Traders possessing di↵erent risk pro-
files, becoming more prominent in periods of market excitement, clearly contradicts this
assumption. Malevergne and Sornette [2014] model allows for heterogeneous collection of
traders. This grant market players to have di↵erent views on the timing of the crash and
therefore diverse exit strategies. This is in line with typical behavior of crashes as they are
formed over a series of successive drawdowns. Chapter 2 introduces the exciting model at
hand.

The work in this thesis is concerned with adapting sequential Monte Carlo methods, in
particular, particle filters to estimate the latent states (jump occurrences and jump sizes)
from discretely realized asset prices using the Malevergne and Sornette [2014] model. The
ultimate goal, however, is to use the filtering algorithms for parameter estimation. The
underlying idea of filtering algorithms is to estimate the predictive distribution of the
unobservable states given historic asset price information. They are especially powerful in

1

2

the case of complex systems in which the predictive distribution, known as the filtering
density, is intractable. From an initial sample, the filter is used to select, or filter, the
most likely particles thereby obtaining a discrete approximation of the filtering density.
In chapter 3 we thoroughly explain di↵erent filtering algorithms before developing a more
advanced method, known as auxiliary particle filter (APF), for the present model.

In a next step, we propose and investigate algorithms for model calibration using the filter.
Chapter 4 investigates two methods for parameter estimation. First the expectation-
maximization (EM) algorithm is developed for maximizing the log likelihood. Next, a
simpler alternative, known as state augmentation is pursued in e↵orts of jointly estimate
the parameters and states.

In order to check model applicability as well as performance of the filter, chapter 5 is
devoted to a simulation study. The conclusion drawn from this study were uplifting.
Firstly, the model works very well in reproducing the stylized facts drawn from real log
returns. Secondly, the algorithm developed for the model at hand works e�ciently in
identifying important movements in the simulated data. Sadly, the calibration did not
yield the desired result. Even if the calibration remains unsolved, it is believed that further
development, utilizing the algorithms in this master thesis, of more advanced algorithms
for jointly learning about parameters and states will improve the results.

Chapter 2

Jump-di↵usion model of bubbles

and crashes with non-local

behavioral self-referencing

In the following chapter the discrete time jump-di↵usion of bubbles and crashes with
non-local crash-hazard rate estimation, developed by Malevergne and Sornette [2014], is
presented. The model belongs to a class known as jump-di↵usion models, which will briefly
be explained in section 2.1. Section 2.2 consider the dynamics of the jump-di↵usion model
at hand and focuses on the derivation of the di↵erent terms. The chapter closes with a
discussion on the crucial benefits of the model and a short comparison with similar models.

2.1 Jump-di↵usion models

Jump-di↵usion models have since the introduction by Merton [1976], received a great deal
of attention. They are used to capture discontinuous behavior in financial log-return data
and shown to be very attractive in understanding the risk-return relationship resulting
from the disentanglement of di↵usion and jump risks. A true purist, believing in pure
di↵usion models without jumps, may argue that log-returns are inherently continuous and
that the apparent discontinuity comes from the fact that observations are made in discrete
time. Although true, they fail to realize that the task is not really to identify whether the
price trajectory is discontinuous or not, but rather propose a model which reproduces the
realistic properties of price behavior at the time scale of interest. In a pure di↵usion model
unpredictable market moves, corresponding to the normal perception of risk, is di�cult
to capture. This is why jump di↵usion models are preferable. As a further motivational
remark, Bates [1991] imposed a jump-di↵usion model on the log returns of the S&P500
future options and found systematic behavior in the expected number of drawdowns before
the 1987 stock market crash. Maybe then, these models are able to replicate the reality
in such a way that crashes can be determined ex-ante.

More precisely, the general jump-di↵usion model assumes that log-prices are a mixture
between a Brownian motion and a jump size random variable controlled by a point process.
It is therefore assumed that log-prices, Y

t

= logS
t

, and the underlying state variables L
t

3

2.2 Model of bubbles and crashes with non-local behavior 4

jointly solve:

dY

t

= µ

s(L
t

)dt+ �

s(L
t

)dW s

t

+ d(
N

s

tX

n=1

Z

s

n

) , (2.1a)

dL

t

= µ

l(L
t

)dt+ �

l(L
t

)dW l

t

+ d(
N

l

tX

n=1

Z

l

n

) , (2.1b)

where W

s

t

and W

l

t

are potentially correlated Brownian motions, N

s

t

and N

l

t

are point
processes with predictable intensities �

s(L
t

) and �

x(L
t

), and Z

s

n

and Z

x

n

are jump size
random variables with distributions ⇧s(L

t

) and ⇧l(L
t

) respectively. As an example, we
may take S

t

to be the S&P500 equity index, L
t

as it’s stochastic variance, Zs

n

the jumps
in prices and Z

l

n

the jumps in volatility. Omitting jumps in volatility and prices reduces
the model to the well-known stochastic volatility model. Utilizing the full structure is,
therefore, known as a stochastic volatility model with jumps. For feasible calibration one
normally assumes a Poisson point process with independent increments and constant jump
intensity.

A solution to the continuous time system of equations is presented in Johannes, Polson,
and Stroud [2009] and, using a single discretization step, given by:

r

t+1

= µ

s

t

(L
t

) + �

s

t

✏

s

t+1

+ Z

s

t+1

J

s

t+1

, (2.2a)

L

t+1

= L

t

+ µ

l

t

(L
t

) + �

l

t

✏

l

t+1

+ Z

l

t+1

J

l

t+1

, (2.2b)

where r

t+1

= Y

t+1

� Y

t

, ✏s
t+1

and ✏

l

t+1

are iid standard Gaussian, and J

s

t+1

and J

l

t+1

are
Bernoulli random variables with success probability �

s

(L
t

) and �

l

(L
t

) respectivelly.

The driving force behind the introduction of jump-di↵usion models has been on developing
an option pricing model. Such a model aims at capturing the features of option prices
quoted in the market. They are also used to compute hedging strategies and quantify the
risk associated with a given position. Compared with other models, jump-di↵usion models
are superior for pricing and hedging Cont and Tankov [2004].

2.2 Model of bubbles and crashes with non-local behavior

In this section, the model introduced by Malevergne and Sornette [2014] is considered in
more detail. They look at a discrete-time economy in which two assets are traded; a risky-
and a risk-free asset. The risk is defined on a filtered probability space (⌦,F ,P). The
log-returns, r

t

= log S

t

S

t�1
, where S

t

is the price of the risky asset at time t, are assumed
to follow the consecutive stochastic equation

r

t

= µ

t

+ �

t

· ✏
t

� · J
t

· I
t

, (2.3)

where

• µ

t

denotes the drift,

• �

t

the volatility at time t,

• ✏

t

iid⇠ N(0, 1) Gaussian,

• the average jump size assumed to be strictly positive,

2.2 Model of bubbles and crashes with non-local behavior 5

• J

t

⇠ exp (1.0), exponentially distribution,

• I

t

⇠ Bernoulli(�
t

), where �

t

is the inverse logit function of a constantly changing
mispricing index and denotes the conditional success probability

�

t

= P [I
t

= 1|F
t�1

] , (2.4)

• and, lastly, it is assumed that ✏
t

,J
t

and I

t

are independent conditional on F
t�1

.

The remaining part of this section will be devoted to analyzing each term in equation 2.3.

Firstly, the conditional expected return of the risky asset, determining the risk premium
investors expect above the risk-free rate, is assumed to be constant and given by

r̄

!

= E[r
t

|F
t�1

] , (2.5a)

= E[µ
t

+ �

t

· ✏
t

� · J
t

· I
t

|F
t�1

] , (2.5b)

= µ

t

� · E[J
t

|F
t�1

] · E[I
t

|F
t�1

] , (2.5c)

= µ

t

� · �
t

. (2.5d)

Where r̄ defines the risk-free rate in a risk-neutral framework and the unconditional ex-
pected return of the risky asset in a risk-averse world. Note that µ

t

increases linearly as a
function of the crash-hazard rate. This is perfectly in line with the risk-return relationship:
investors require greater remuneration for investing in assets with increased uncertainty.
 may be viewed as a measure of investors sensitivity to an increase in the crash-hazard
rate. The greater remuneration from higher risk, along with the crash not being a certain
deterministic outcome of the bubble, means that it is rational for traders to remain in the
market during a bubble phase.

Next �

t

denote what is commonly known as the volatility. Real volatility is continu-
ally changing in a partly predictable manner, due to the presence of clustering. The
GARCH(1,1) process enables recovery of these stylized facts and is why it’s sensible to
model the conditional standard deviation accordingly. More formally, �

t

· ✏
t

is said to
follow a GARCH(1,1) process if

�

2

t

= w + ↵ · (r
t�1

� r̄)2 + � · �2

t�1

. (2.6)

The GARCH process, therefore, allows the squared volatility, �2

t

, to depend on previously
squared volatilities as well as previous squared values of the process. Hence, volatilities are
large if either |r

t�1

| or �
t�1

are large. The GARCH(1,1) process is covariance-stationary
white noise process if and only if ↵ + � < 1. The variance of the covariance-stationary
process is then given by

�̄

2 =
w

1� ↵� �

. (2.7)

For ease of modeling purposes, we will proceed with the following dynamics for the volatil-
ity

�

2

t

= �̄

2 · (1� ↵� �) + ↵ · (r
t�1

� r̄)2 + � · �2

t�1

. (2.8)

The last term in 2.3 represents the crash. The realization of a jump is determined by the
Bernoulli random variable, I

t

, and it’s success probability is time varying. The dynamics
for the crash probability in the model incorporates a non-local estimation procedure and

2.2 Model of bubbles and crashes with non-local behavior 6

is both unique and revolutionary in terms of existing jump-di↵usion models. Non-local
implies that the estimation takes into account unsustainable price growth that has hap-
pened over longer historic time periods. Consider growth in an asset price, S

t

, over a
certain time period [t� ⌧, t]. This growth is then compared with what can be considered
as sustainable over the same period. The di↵erence gives us the mispricing metric

�

t,⌧

=
S

t

S

t�⌧

· e⌧ r̄ , (2.9)

where e

⌧ r̄ denotes the continuous compounding. This representation corresponds to an
anchoring on price. The initial price is taken to be an approximation of the asset’s funda-
mental value. Using the log-logistic function translates �

t�1,⌧

into the crash-hazard rate
denoted by

�

t

=
1

1 + (�t�1,⌧

d

)�1/s

, (2.10)

with scale parameter d and shape parameter s. The former represents the threshold above
which the mispricing becomes too great. The latter represents the uncertainty or fuzziness
around this level. Hence, extraordinary asset price growth translates to greater crash-
hazard risk. This in turn renders increased expected return, compensating investors for
the additional risk. Increased expected return again put greater pressure on elevated price
growth and finally added on jump risk. This loop continues until the price is corrected. The
correction is determined by the accumulation of jump sizes. Large accumulative jump sizes
pushes the current price back towards its fundamental value and subsequently decreases
the crash-hazard rate. This is synonymous with real market behavior where periods of
extraordinary growth is associated with greater fluctuations and jumps in returns.

Malevergne and Sornette [2014] extends the non-local crash-hazard rate estimation by
noticing that markets are populated by di↵erent types of investors. In particular, financial
markets are populated by heterogeneous investors with di↵erent time horizons, ranging
from intra-day traders to slow moving long-term investors. The time period over which
the mispricing is estimated should, therefore, be a weighted average of the past mispricing’s
relating to the mixture of agents acting in the market. Noticing that the log-transform of
the past mispricing is nothing but a moving average over the rolling window [0, ⌧] suggests
the standard procedure of using an exponentially-weighted moving average

log �
t,a

e

r̄ = (1� a)
1X

k=0

a

k

S

t�k

S

t�1�k

, (2.11a)

= (1� a) · log S

t

S

t�1

+ a · log (�
t�1,a

e

r̄) . (2.11b)

Malevergne and Sornette [2014] thereby summarizes market heterogeneity in the parameter
a. a describes the collective market view on the severity of the current mispricing. For
example, a market heavily populated by short-term investors weigh recent extraordinary
growth higher than a market with a greater portion of long-term investors.

2.2 Model of bubbles and crashes with non-local behavior 7

Equation 2.11b can equivalently be written as

log �
t,a

= (1� a) · (log S

t

S

t�1

� r̄) + a log �
t�1,a

. (2.12)

For a typical investor memory of one year, counting 250 trading days in a year, a =
1� 1

250

= 0.996. Next, by introducing the term

X

t

:=
1

s

log
�

t�1,a

d

, (2.13)

one can deduce that

�

t

=
1

1 + (�t�1,a

d

)�1/s

, (2.14a)

=
1

1 + (de
sX

t

d

)�1/s

, (2.14b)

=
1

1 + e

�X

t

, (2.14c)

:= L(X
t

) . (2.14d)

Hence,

X

t

=
1

s

log
�

t�1,a

d

, (2.15a)

=
1

s

✓
log

✓
exp

✓
(1� a) (log

S

t�1

S

t�2

� r̄) + a log(�
t�2,a

)
◆◆

� log d
◆

, (2.15b)

=
1

s

✓
(1� a)(log

S

t�1

S

t�2

� r̄) + a log(�
t�2,a

)� a log d� (1� a) log d
◆

, (2.15c)

=
1

s

✓
(1� a)(log

S

t�1

S

t�2

� r̄) + a log
�

t�2,a

d

� (1� a) log d
◆

, (2.15d)

= �1� a

s

log d+ aX

t�1

+
1� a

s

(log
S

t�1

S

t�2

� r̄) , (2.15e)

= (1� a)X̄ + aX

t�1

+ ⌘(r
t�1

� r̄) . (2.15f)

X

t

will be denoted the mispricing index. For ease of writing let

X̄ = � log d

s

and ⌘ = 1�a

s

. (2.16)

The mispricing index, therefore, depends on past mispricing indexes X

t�1

of which its
influence is determined by the parameter a, and the size of past return, r

t�1

.

In conclusion, the complete system of equations is therefore given by

r

t

= r̄ + · L(X
t

) + �

t

· ✏
t

� · J
t

· I
t

, (2.17)

X

t

= (1� a) · X̄ + a ·X
t�1

+ ⌘ · (r
t�1

� r̄) , (2.18)

�

2

t

= �̄

2 · (1� ↵� �) + ↵ · (r
t�1

� r̄)2 + � · �2

t�1

, (2.19)

where I

t

denotes the jumps controlled by the Bernoulli random variable with success
probability equal to

t

and J

t

the unit exponential distribution controlling the corresponding
jump sizes.

In closing of this section, summarizing the complete set of parameters

2.3 Mispricing and inherent jump probability 8

• r̄ the unconditional expected return of the risky asset,

• the average jump size,

• a the smoothing factor of the exponential moving average of the mispricing index,

• X̄ function of the threshold d and the fuzziness parameter s and represents the typical
size of mispricings,

• ⌘ function of the smoothing parameter a and the fuzziness paramater s, and deter-
mines the variance around X̄,

• �̄ denotes the volatility of covariance-stationary GARCH(1,1) process,

• ↵ and � describes the squared volatility, �2

t

dependence on previous squared values
of log-returns and squared volatilities respectively.

In order to give a deeper meaning of the parameters X̄ and ⌘, the asymptotic distribution
of �

t

= L(X
t

) is presented in Malevergne and Sornette [2014] and given by the logistic-
normal distribution

f(x|µ,�) = 1p
2⇡�x(1� x)

· exp(�
(log(x

1�x

)� µ)2

2�2

) , (2.20)

where µ = X̄ and �

2 = ⌘

2

1�a

2var(rt).

2.3 Mispricing and inherent jump probability

The model builds upon the common conception that the underlying cause of a crash can
be found in the preceding months or even years of financial log-return observations. The
backward view, determining the downside risk associated with the growth, depends on the
heterogeneous mixture of investors in the market. An accelerating ascent of prices forces
the market to enter an unstable phase in which any small disturbance can trigger a crash.
This representation of markets becoming increasingly more unstable is accounted for by
the step up in crash-hazard rate. A Bernoulli random variable with success parameter
equal to the crash-hazard rate replicates the sudden drop. The jump risk will get back
to ’normal’ levels if the accumulated size of the jumps is large enough. Otherwise, the
crash-hazard rate remains significant. This estimation approach distinguishes itself from
previous works as most existing jump-di↵usion models derive the conditional expected
return as being proportional to the underlying present crash hazard rate. We will in this
section, therefore, shed light on these di↵erences and highlight the improvements made by
Malevergne and Sornette [2014].

Rational expectation models where originally introduced by Blanchard [1979]. They where
intended to account for the possibility, often discussed in the empirical literature and
by practitioners, that observed prices may deviate significantly and over extended time
intervals from fundamental asset value. While allowing for deviations from fundamental
value, rational expectation models of bubbles and crashes assume that all agents have
rational expectations and share the same information. A rational bubble may arise when
the actual market price depends positively on its own expected rate of change.

The instantaneous matching of the conditional expected return and crash-hazard rate in
rational expectation models follows from the no-arbitrage condition and is both unrealistic

2.3 Mispricing and inherent jump probability 9

and misleading because it assumes complete markets and no friction. Both conditions are
highly unrealistic in periods of market hysteria in which prices increasingly deviates from
its fundamental value. Humans are by nature not rational and exhibit di↵erent views
on risk. This means a non-uniform distribution of traders acting in the market which
Malevergne and Sornette [2014] accounts for.

Also, the e↵ect of proportionally relating the conditional expected return and the crash-
hazard rate is catastrophic. It severely underestimates the risk that the investor faces as
soon as the price evolution of the asset stabilizes. This is because the conditional expected
return becomes zero and in turn also the crash probability. In the model by Malevergne and
Sornette [2014] it remains high as a consequence of the existing mispricing, still accounting
for the larger downside risk.

In another attempt, Bates [2015] considers a model in which the Poisson intensity, con-
trolling the number of crashes, is calculated as a linear functional of the realized volatility.
This relates to the works by Malevergne and Sornette [2014] but separates on two impor-
tant aspects. Firstly, the sign of mispricing is ignored when only considering an absolute
measure such as volatility. This may lead to odd results as the crash probability can in
principle increase with prices fluctuating around a downward sloping trend. This may be
true in some cases, but in general fails to hold for the majority of scenarios. Secondly, and
rather importantly, Bates crash-hazard rate predictions are based on a local estimation
procedure. This does not take into account unsustainable price growth over longer periods,
say a year.

Chapter 3

Particle filtering

Particle filters are classified as recursive Monte Carlo methods. Like all Monte Carlo
methods, particle filters can adapt to any model, a crucial advantage in non-linear models
with fat-tailed and asymmetric error distributions. Furthermore, particle filters are easy
to program and computationally very fast to run.

Before developing an accurate filtering algorithm for learning about the unobservable
crash-hazard rate and jump times for the model at hand, the chapter gives an introduction
to di↵erent particle filtering methods. The chapter continuous with explaining the conver-
gence of particle filters, before deducing the APF particle filter for the model presented in
Malevergne and Sornette [2014]. The C++ codes can be found in the appendix.

3.1 Filtering

Filtering is a way of extracting a latent state variable, L
t

, from noisy data, using a statis-
tical model, specifically a dynamic system for which you have a Bayesian model. Filtering
was originally used to track latent states in physical systems, such as tracking the location
of an airplane using noisy radar signals. Lately it has become a useful tool in economics
and finance due to widespread use of models incorporating latent variables. As seen in the
previous chapter, the latent variables are intended to capture unobserved changes in the
economic environment and follow their own dynamics. As an example it is a commonly
held conception that assets volatility is time varying.

In full generality, we consider a statistical model which generates the observed data, r
t

,
where conditional distribution of r

t

depends on the latent state variable, L
t

. Hence, we
have

observation equation: r
t

= f(L
t

, ✏

y

t

) , (3.1)

state evolution: L
t

= g(L
t�1

, ✏

x

t

) , (3.2)

where ✏y
t

is the observation noise and ✏

x

t

the state shocks. The observation equation is often
written as a conditional likelihood, p(r

t

| L
t

), and the state evolution as p(L
t

| L
t�1

). The
posterior distribution of L

t

given the observed data, p(L
t

| rt) is said to solve the particle

10

3.1 Filtering 11

filtering problem. The posterior, take into account observations measured up to time t
and is given by

p(L
t

| rt) = p(L
t

| (r
1

, ..., r

t

)) . (3.3)

Computing p(L
t

| r

t) is a two step-procedure consisting in first predicting the states
and then use Bayesian update taking into account the current observation. Firstly, the
prediction step combines the filtering distribution at time t�1 with the state evolution:

p(L
t

| rt�1) =
Z

p(L
t

| L
t�1

)p(L
t�1

| rt�1)dL
t�1

. (3.4)

This provides a forecast of the state at time t. Next, given a new observation, r
t

the
instantaneous prediction of the states is updated by following Bayes theorem

p(L
t

| rt) = p(r
t

| L
t

)p(L
t

| rt�1)

p(r
t

| rt�1)
, (3.5a)

/ p(r
t

| L
t

)p(L
t

| rt�1) . (3.5b)

The terms, reading the equation from left to right, are denoted posterior and prior respec-
tively. Note that the integral above may be very hard to solve, consequently one relies on
Monte Carlo approximation. Direct Monte Carlo approximation of the integral is however
only possible if one can sample from the filtering density, p(L

t�1

|rt�1). The filtering den-
sity is rarely known analytically and one relies on alternative methods. In particular one
relies on sequential Monte Carlo, also known as particle filtering algorithms. For the mo-
ment assume that the filtering density is known and that sampling from this distribution
is possible.

A particle filter is a discrete approximation, pN (L
t�1

| rt�1), to p(L
t�1

| rt�1), generally

written as {⇡(k)

t�1

, L

(k)

t�1

}N
k=1

, where
P

N

k=1

⇡

(k)

t�1

= 1. Hence an approximation to the target
density, p(L

t�1

| rt�1), is given by

p(L
t�1

| rt�1) ⇡
NX

k=1

⇡

(k)

t�1

�

L

(k)
t�1

, (3.6)

where �

L

(k)
t�1

is the Dirac function centered at L(k)

t�1

and ⇡

(k)

t�1

= p(L(k)

t�1

| rt�1). The latter

term is also known as the importance weight at time t�1. Note that the particle approx-
imation, pN (L

t�1

| rt�1), can be transformed into an equally weighted random sample
using any kind of sampling with replacement technique. Hence, sampling with replace-

ment from the discrete distribution {⇡(k)

t�1

, L

(k)

t�1

}N
k=1

yields an equally weighted sample

{1/N,L

z(k)

t�1

}N
k=1

, where z(k) denotes the resampling index from the vector of prior states.
Normally, the resampling is performed using a multinomial resampling technique. The
filtering algorithm in this dissertation, however, utilizes a much faster approach, based on
Carpenter, Cli↵ord, and Fearnhead [1999]. Having obtained a discrete approximation of
p(L

t�1

| rt�1) enables us to deduce estimates of interest, such as E[f(L
t�1

) | rt�1], by
applying Monte Carlo:

E[f(L
t�1

) | rt�1] ⇡
NX

k=1

f(L(k)

t�1

)⇡(k)

t�1

. (3.7)

3.1 Filtering 12

Given a discretization of pN (L
t�1

|rt�1), p(L
t

|rt) can be expressed in the following way

p

N (L
t

| rt) /
Z

p(r
t

| L
t

)p(L
t

| L
t�1

)pN (L
t�1

| rt�1)dL
t�1

, (3.8a)

⇡
NX

k=1

p(r
t

| L
t

)p(L
t

| L(k)

t�1

)⇡(k)

t�1

. (3.8b)

This, however, is nothing but a discrete mixture distribution. Sampling from a discrete
mixture distribution is straightforward by first selecting the mixture index and then simu-

late from that mixture component. That is, we first select (k), then simulate L

(k)

t

accord-

ing to p(L
t

|L(k)

t�1

) receiving the corresponding probability weight p(r
t

|L(k)

t

). The discrete
probability weights of pN (L

t

|rt), are therefore given by

⇡

(k)

t

= p(r
t

|L(k)

t

)⇡(k)

t�1

. (3.9)

This procedure is known as exact particle filtering because we can sample directly from
the filtering density p(L

t�1

|rt�1) and thereby obtain a particle approximation of p(L
t

|rt).
The algorithm can be summarized as follows

• Given initial particle set, approximating the filtering density at time t�1, {L(k)

t�1

,⇡

(k)

t�1

},
for k=1,....,N simulate new states,

L

(k)

t

⇠ p(L
t

| L(k)

t�1

) , (3.10)

and assign probability weight

⇡

(k)

t

/ ⇡

(k)

t�1

p(r
t

|L(k)

t

) . (3.11)

• For k=1,...,N draw

z(k) ⇠ Mult(N ;⇡(1)

t

,,⇡

(N)

t

) , (3.12)

where ⇡

(i)

t

denotes the normalized probability weights. After setting L

(k)

t

= L

z(k)

t

, a
Monte Carlo estimate of the state mean at time t is given by

E[L
t

|rt] =
Z

L

t

p

N (L
t

|rt)dL
t

, (3.13a)

⇡
NX

k=1

L

(k)

t

⇡

(k)

t

, (3.13b)

=
1

N

NX

k=1

L

(k)

t

. (3.13c)

As previously stated, if direct sampling is not possible, a technique known as importance
sampling is applied. Before proceeding note that in order to derive the subsequent algo-
rithms it is useful to consider the full posterior distribution at time t, p(L

0:t

| rt).

3.1 Filtering 13

3.1.1 Importance sampling

Importance sampling approximates the sample from the target distribution, p(L
0:t�1

|rt�1)
, which may be di�cult or even impossible to sample from, by sampling from a proposal
density q(L

0:t�1

|rt�1). Using the trick

p(L
0:t�1

| rt�1) =
p(L

0:t�1

| rt�1)

q(L
0:t�1

| rt�1)
q(L

0:t�1

| rt�1) , (3.14)

where p(L0:t�1|rt�1
)

q(L0:t�1|rt�1
)

is denoted the importance weight. An approximation to the target

density, p(L
0:t�1

| rt�1), is given by

p(L
0:t�1

| rt�1) ⇡
NX

k=1

⇡

(k)

t�1

�

L

(k)
0:t�1

, (3.15)

where ⇡(k)

t�1

= p(L

t�1|rt�1
)

q(L0:t�1|rt�1
)

. Note that the importance weights compensate for the fact that

one is sampling L

0:t�1

from the wrong distribution, q(L
0:t�1

|rt�1).

A sample from the filtering density, p

N (L
t

|rt), solves the filtering problem. Applying
importance sampling directly to the filtering density at time t is possible, but would
imply re-computation of the importance weights whenever new data, r

t

, becomes available.
Sequential importance sampling (SIS) is then much more e�cient. SIS simply updates

the filtering distribution at time t�1 by propagating L

(k)

t�1

through the state evolution
p(L

t

|L
t�1

).

Before moving on, note that there are two sources of approximation errors in particle filter
algorithms:

1. approximating p(L
t�1

|rt�1) by p

N (L
t�1

|rt�1) (discrete approximation) ,

2. and secondly approximating p

N (L
t�1

|rt�1) using a sampling method.

3.1.2 Sequential importance sampling

The most basic sequential Monte Carlo approximation scheme is the SIS. The idea is to

utilize the discrete approximation of the filtering density at time t�1, {L(k)

0:t�1

,⇡

(k)

t�1

}N
k=1

,
then recursively update these particles to obtain an approximation of the posterior density
at the next time step.

Applying importance sampling to the posterior distribution at time t gives

⇡

(k)

t

=
p(L

0:t

| rt)
q(L

0:t

| rt) . (3.16)

Assuming that the importance density q(L
0:t

| rt) admits as marginal distribution at time

3.1 Filtering 14

t�1, the importance function q(L
0:t�1

| rt�1), implies that

q(L
0:t

| rt) = q(L
0:t�1

| rt�1)q(L
t

| L
0:t�1

, r

t) , (3.17a)

= q(L
0:t�2

| rt�2)q(L
t�1

| L
0:t�2

, r

t�1)q(L
t

| L
0:t�1

, r

t)q(L
t

| L
0:t�1

, r

t) ,
(3.17b)

.... , (3.17c)

= q(L
0

)
t+1Y

k=1

q(L
k

| L
0:k�1

, r

k) . (3.17d)

Furthermore, as the states evolve according to a Markov process and the observations are
conditionally independent given the states:

p(L
0:t

) = p(L
0

)p(L
1

| L
0

)p(L
2

| L
1

, L

0

)....p(L
t

| L
t

, ..., L

0

) , (3.18a)

= p(L
0

)
tY

k=1

p(L
k

| L
k�1

) , (3.18b)

p(rt | L
0:t

) =
tY

k=1

p(r
k

| L
k

) . (3.18c)

Finally obtaining a recursive formula for the importance weights

⇡

t

=
p(L

0:t

| rt)
q(L

0:t

| rt) , (3.19a)

=
p(rt | L

0:t

)p(L
0:t

)

q(L
0

)
Q

t

k=1

q(L
k

| L
0:k�1

, y

k)
, (3.19b)

=

Q
t

k=1

p(r
k

| L
k

)p(L
0

)
Q

t

k=1

p(L
k

| L
k�1

)

q(L
0

)
Q

t

k=1

q(L
k

| L
0:k�1

, y

k)
, (3.19c)

=
p(r

t

| L
t

)p(L
t

| L
t�1

)p(L
0

)
Q

t�1

k=1

p(r
k

| L
k

)p(L
k

| L
k�1

)

q(L
t

| L
0:t�1

, r

t)q(L
0

)
Q

t�1

k=1

q(L
k

| L
0:k�1

, y

k)
, (3.19d)

= ⇡

t�1

p(r
t

| L
t

)p(L
t

| L
t�1

)

q(L
t

| L
0:t�1

, r

t)
, (3.19e)

= ⇡

t�1

p(r
t

| L
t

)p(L
t

| L
t�1

)

q(L
t

| L
t�1

, r

t

)
, (3.19f)

where in the last step it’s assumed that q(L
t

|L
0:t�1

, r

t) = q(L
t

|L
t�1

, r

t

) , so that the
proposal at the next time step only depends on the most recent state and the most recent
observation. This is reasonable for first order Markovian state evolutions.

The complete set of update equations, resulting from the SIS, simplify to:

L

(k)

t

⇠ q(L
t

| L(k)

t�1

, r

t

) , (3.20a)

⇡

(k)

t

= ⇡

(k)

t�1

p(r
t

| L(k)

t

)p(L(k)

t

| L(k)

t�1

)

q(L(k)

t

| L(k)

t�1

, r

t

)
, (3.20b)

thereby obtaining a discrete approximation {L(k)

t

,⇡

(k)

t

}N
k=1

of the filtering density p(L
t

|
r

t).

3.1 Filtering 15

3.1.3 Sequential importance resampling

SIS su↵ers from a significant drawback, namely as t increases the distribution of the
importance weights becomes highly skewed meaning that some particles will, eventually,
have their weights set close to zero. This is denoted degeneracy. The sequential importance
resampling (SIR) algorithm corrects this deficiency by resampling the updated particles,

such that the resampled importance weights become ⇡

(k)

t

= 1/N .

SIR chooses the proposal density q(L
t

|L(k)

t�1

, r

t

) to be the state transition distribution
p(L

t

| L
t�1

). The update equations, therefore, become:

L

(k)

t

⇠ p(L
t

| L(k)

t�1

) , (3.21)

⇡

(k)

t

/ p(r
t

| L(k)

t

) . (3.22)

Hence, given current particle set {L(k)

t�1

,⇡

(k)

t�1

}N
k=1

from p

N (L
t�1

| r

t�1) the algorithm
consists of two steps:

1. For k=1,....,N simulate L

(k)

t

⇠ p(L
t

| L(k)

t�1

)

2. For k=1,....,N compute

⇡

(k)

t

= p(r
t

| L(k)

t

)/
NX

k=1

p(r
t

| L(k)

t

) , (3.23)

draw

z(k) ⇠ Mult(N ;⇡(1)

t

,,⇡

(N)

t

) , (3.24)

and set L(k)

t

= L

(z(k))

t

. {L(k)

t

,

1

N

}N
k=1

approximates the filtering density at time t.

3.1.4 Auxiliary particle filter

The SIR chooses the proposal density, q(L
t

| L(k)

t�1

, r

t

), to be the state transition distri-
bution, p(L

t

| L
t�1

). This samples new states, L
t

, ignoring the new observation, r
t

. In
periods with large movements driven by outliers and rare events, this sampling procedure
underestimates the state. The auxiliary particle filter (APF) corrects this deficiency and
adapts to the structure of the given model. It consists of two steps: resampling old parti-
cles using p(r

t

| L
t�1

), then propagate states by simulating from p(L
t

| L
t�1

, r

t

). If it is not
possible to evaluate p(r

t+1

| L
t

) or sample directly from p(L
t

| L
t�1

, r

t

), one may utilize
importance sampling. Approximating the exact distribution, p(r

t

| L
t�1

), by p̂(r
t

| L
t�1

)
and p(L

t

|L
t�1

, r

t

) by p̂(L
t

| L
t�1

, r

t

), results in the following steps for the APF algorithm:

1. For k=1,...,N compute

w

(k)

t

= p̂(r
t

| L(k)

t�1

)/
NX

k=1

p̂(r
t

| L(k)

t�1

) , (3.25)

draw

z(k) ⇠ Mult(N ;w(1)

t

,, w

(N)

t

) , (3.26)

and set L(k)

t�1

= L

(z(k))

t�1

3.2 Derivation of the filtering algorithm 16

2. For k=1,....,N simulate

L

(k)

t

⇠ p(L
t

| L(k)

t�1

, r

t

) , (3.27)

and compute

⇡

(k)

t

= ⇡

(k)

t�1

target

proposal
, (3.28a)

= ⇡

(k)

t�1

p(r
t

| L(k)

t�1

)p(L(k)

t

| L(k)

t�1

)

p̂(r
t

| L(k)

t�1

)p̂(L(k)

t

| L(k)

t�1

, r

t

)
, (3.28b)

= ⇡

(k)

t�1

p(r
t

| L(k)

t

)p(L(k)

t

| L(k)

t�1

)

w

z(k)

t

p̂(L(k)

t

| L(k)

t�1

, r

t

)
, (3.28c)

thereby obtaining the next step particle set, {L(k)

t

,⇡

(k)

t

}N
k=1

approximating p

N (L
t

|
r

t).

As explained in Johannes and Polson [2009] there is no need to resample the importance
weights calculated at the end of the algorithm. This, in fact, introduces additional Monte
Carlo error.

3.2 Derivation of the filtering algorithm

In this section, the APF particle filtering algorithm will be derived for the model at
hand. We thereby also implicitly determine the simpler SIR algorithm. The complete SIR
algorithm can be found in the appendix. Recapping the dynamics of the jump-di↵usion
model introduced by Malevergne and Sornette [2014]:

r

t

= r̄ + · L(X
t

) + �

t

· ✏
t

� · J
t

· I
t

, (3.29)

X

t

= (1� a) · X̄ + a ·X
t�1

+ ⌘ · (r
t�1

� r̄) , (3.30)

�

2

t

= �̄

2 · (1� ↵� �) + ↵ · (r
t�1

� r̄)2 + � · �2

t�1

, (3.31)

where �

t

= L(X
t

) = 1

1+e

�X

t

and J

t

⇠ exp (1), I
t

⇠ Bernoulli(�
t

) and ✏

t

⇠ N(0, 1) all
independent. In what follows let f

emg

(x;µ,�, k) and �(x;µ,�) denote the densities of the
Exponentially Modified Gaussian and Gaussian respectively, and L

t

= (I
t

, J

t

)

The first step in the APF algorithm requires the predictive likelihood given by p(r
t

|
L

t�1

) =
R
p(r

t

| L
t

)p(L
t

| L
t�1

)dL
t

. Following the approach in Johannes et al. [2009]
to approximate p(r

t

| L
t�1

) intermediate states, jump times and jump sizes need to be
integrated out. Consider X

t

and �

2

t

to be known and given by their respective equations

X

t

= (1� a) · X̄ + a ·X
t�1

+ ⌘ · (r
t�1

� r̄) , (3.32)

�

2

t

= �̄

2 · (1� ↵� �) + ↵ · (r
t�1

� r̄)2 + � · �2

t�1

. (3.33)

We have that

p̂(r
t

| (X
t

,�

2

t

), J
t

, I

t

) = �(r
t

; r̄ + · L(X̂
t

)� · J
t

· I
t

,�

t

) . (3.34)

3.2 Derivation of the filtering algorithm 17

Now, the jump times and sizes can be integrated out to obtain p̂(r
t

| X
t

,�

2

t

). First taking
the expectation with respect to I

t

yields

p̂(r
t

| (X
t

,�

2

t

), J
t

) = L(X
t

) · �(r
t

; r̄ + · L(X
t

)� · J
t

,�

t

)+

(1� L(X
t

)) · �(r
t

; r̄ + · L(X
t

),�
t

) .
(3.35)

Lastly, averaging the first Gaussian density with respect to J

t

yields the Exponentially
Modified Gaussian. Hence

p̂(r
t

| X
t

,�

2

t

) = L(X
t

) · f
emg

(r
t

; r̄ + · L(X
t

),�
t

,)+

(1� L(X
t

)) · �(r
t

; r̄ + · L(X
t

),�
t

) .
(3.36)

The previous section explained how APF adapts to the model structure by taking into
account the current observation r

t

when simulating new states. In the following two
sections, it is showed how we obtain p(L

t

|L
t�1

, r

t

) for the jump times and sizes respectively.

3.2.1 Jump times

The second step in the APF algorithm simulates latent variables using the structure of
the model. First sampling jump times from

p(I
t

= k | (X
t

,�

2

t

), r
t

) / p(r
t

| (X
t

,�

2

t

), I
t

= k)p(I
t

) , (3.37a)

=

(
�

t

· f
emg

(r
t

; r̄ + · �
t

,�

t

,) if k = 1 ,
(1� �

t

) · �(r
t

; r̄ + · �
t

,�

t

) if k = 0 ,
(3.37b)

where �

t

= L(X
t

). We introduce the following notation

p

1

/ p(I
t

= 1 | (X
t

,�

2

t

), r
t

) , (3.38)

p

2

/ p(I
t

= 0 | (X
t

,�

2

t

), r
t

) . (3.39)

3.2.2 Jump sizes

If a jump occurs, incorporating the new observation, r
t

, e↵ectively tilts the jump sizes
towards values that could have generated the observation. Hence, one is interested in
sampling from

p(J
t

| I
t

= 1, (X
t

,�

2

t

), r
t

) . (3.40)

Again, considering (X
t

,�

2

t

) as known, and noting that

r

t

= r̄ + · �
t

+ �

t

· ✏
t

� · J
t

· I
t

, (3.41a)

r

t

� (r̄ + · �
t

) = ✏̃

t

� J̃

t

· I
t

, (3.41b)

r̃

t

= ✏̃

t

� J̃

t

· I
t

, (3.41c)

3.2 Derivation of the filtering algorithm 18

where ✏̃

t

⇠ N(0, �̂2

t

) and J̃

t

⇠ exp(1/).

p(J̃
t

= z | I
t

= 1, X
t

,�

2

t

, r

t

) =
p(J̃

t+1

= z)p(✏̃
t

= r̃

t

+ z)

p(r̃
t

)
, (3.42a)

/

8
<

:
1p
2⇡�

t

exp(� (z+r̃

t

+

1
k

�

2
t

)

2

2�

2
t

) if z � 0 ,

0 if z < 0 .
(3.42b)

This is the truncated Gaussian distribution on the range z 2 (0,1) with mean and
standard deviation given by:

µ = �(r̃
t

+
1

k

�

2

t

) , (3.43)

� = �

2

t

, (3.44)

and probability density function

f(x;µ,�) =
�(x�µ

�

)

1� �(�µ

�

)
. (3.45)

Letting P (J̃
t+1

= z | I
t

= 1, X
t

,�

2

t

, r

t+1

) denote the cdf of the jump sizes, gives

P (J̃
t+1

= z | I
t

= 1, (X
t

,�

2

t

), r
t

) =
�(z�µ

�

)� �(�µ

�

)

1� �(�µ

�

)
. (3.46)

Simulating random variables z may be done using the relation; if u ⇠ U [0, 1] and F =

P (J̃
t

= z | I
t

= 1, X
t

,�

2

t

, r

t

) then F

�1(U)
d

= Z. Hence a random variable z is given by

��1(�(�µ

�

) + u(1� �(�µ

�

)))� + µ . (3.47)

However, using the method above calls for a simultaneous evaluation of the normal cdf
� and its inverse ��1, requiring a great deal of precision in the approximations of these
functions. In addition it may also be quite ine↵ective if µ is large. Lastly noting that if �
is close to zero and µ positive, such that �µ

�

<< 0, can cause problems since �(�µ

�

) ! 0
exponentially fast as �µ

�

! �1. This in turn implies that (1� �(�µ

�

))u+ �(�µ

�

) ! u.
Enabling negative jump size realizations, since ��1(u) 0 whenever u 1

2

.

Another, readily available method is to simulate from a standard normal distribution, X.
Then simulate jump sizes, using the transformation Z = µ + �X, until the generated
number is larger than 0. This method is quite reasonable when 0 < µ, but of no use when
µ is several standard deviations to the left of 0.

Both approaches presented above may not yield the desired results and e�ciency. An
accept-reject algorithm may be more profitable.

Accept-reject algorithm

First, the general accept-reject algorithm is based on the following result Devroye [1986];

let h and g be two densities such that h(x) Mg(x) for every x in the support of h and
normalization constant M . The random variable x resulting from the algorithm:

3.2 Derivation of the filtering algorithm 19

1. generate z ⇠ g(z) , then

2. generate u ⇠ U [0, 1]. If u h(z)/Mg(z), take x = z, otherwise repeat step 1,

is distributed according to h.

Following the approach in Robert [1995], choosing g to be the exponential distribution
with density

g(z;�) = �e

��z . (3.48)

The task is now to find the normalization constant M such that h(x) Mg(x). Where in
our case, h(x) = p(J̃

t

= z | I
t

= 1, X
t

,�

2

t

, r

t

). By first noting that

e

�z

e

� (z�µ)2

2�2 = e

� (z�(µ+��

2))2

2�2
e

(µ+��

2)2�µ

2

2�2 , (3.49a)

 e

µ�+�

2
�

2
/2 . (3.49b)

Hence,
h(z)

g(z)
 e

µ�+�

2
�

2
/2

�

p
2⇡�(1� �(�µ

�

))
. (3.50)

The normalization constant M is chosen to be:

M =
e

µ�+�

2
�

2
/2

�

p
2⇡�(1� �(�µ

�

))
, (3.51)

and the ratio h(z)/Mg(z) is then given by

h(z)

Mg(z)
= e

� (z�µ)2

2�2 �(µ�+

�

2
�

2

2 ��z) . (3.52)

Where a sensible choice for � may be such that the expectation of the exponential distri-
bution is close to the average jump size.

3.2.3 Filtering weights

Since we are using approximations to p(r
t

| L

t�1

) and p(L
t

| L

t�1

, r

t

) an additional
reweighting step is required at the end of the algorithm, as explained in Johannes et al.
[2009]. These final weights define the filtering distribution at time t. These probabilities
are defined as

⇡

t

/ ⇡

t�1

· p(Lt

|L
t�1

, X

t

,�

2

t

) · p(r
t

|L
t

, X

t

,�

2

t

)

w

z()

t

· p(L
t

|L
t�1

, X

t

,�

2

t

, r

t

)
, (3.53a)

= ⇡

t�1

· p(It|Lt�1

, X

t

,�

2

t

) · p(J̃
t

|L
t�1

, X

t

,�

2

t

) · �(r
t

; (r̄ + L(X
t

)� J̃

t

· I
t

),�
t

)

p(I
t

|L
t�1

, r

t

) · p(J̃
t

|L
t�1

, X

t

,�

2

t

, r

t

) · wz()

t

, (3.53b)

= ⇡

t�1

· p(It|Xt

) · p(J̃
t

) · �(r
t

; (r̄ + · L(X
t

)� J̃

t

· I
t

),�
t

)

p(I
t

|X
t

,�

2

t

, r

t

) · p(J̃
t

|I
t

, X

t

,�

2

t

, r

t

) · wz()

t

, (3.53c)

/

8
>><

>>:

⇡

t�1

· L(X

t

)

I

t ·(1�L(X

t

))

1�I

t ·e�1/J
t ·�(r

t

;(r̄+·L(X
t

)� ˜

J

t

·I
t

),�

t

)

exp(�
(x+r̃

t

+ 1
k

·�2
t

)2

2·�2
t

)·pIt1 ·p1�I

t

2 ·wz()
t

if I
t

= 1 ,

⇡

t�1

· L(X

t

)

I

t ·(1�L(X

t

))

1�I

t ·e�1/·J
t ·�(r

t

;(r̄+·L(X
t

)),�

t

)

p

I

t

1 ·p1�I

t

2 ·wz()
t

if I
t

= 0 .
(3.53d)

3.3 Convergence of particle filters 20

Where w

z()

t

denotes the resampled first stage weights. Completely in line with the de-
pendence structure of the model the derivations used that the states L

t

= (I
t

, J

t

) are
conditionally independent of each other and of the current observed log-return r

t

.

3.3 Convergence of particle filters

The above approach, which is based on Johannes et al. [2009], relies on particle approxi-
mations. Under some mild regularity conditions on the state transition and the likelihood,
the SIR and APF algorithms are consistent. If the true model is given by p(L

t

|r
r

), then

the particle approximation p

N (L
t

|r
t

), given by {L(i)

t

,⇡

(i)

t

}N
i=1

, converges in a pointwise
sense as N increases Crisan and Doucet [2002].

When data is simulated, the true value of the states and parameters are known. This
makes it possible to check for convergence in the particle filtering algorithm. Following
the same procedure as in Sylvain [2012], using the relation

p(r
t

|r
1:t�1

) =
Z

p(r
t

|L
t�1

)p(L
t�1

|r
1:t�1

)dL
t�1

, (3.54a)

=
NX

i=1

⇡

(i)

t�1

p(r
t

|L
t�1

) . (3.54b)

Assuming that p(I
t

|L
t�1

) and p(J
t

|L
t�1

) are simulated correctly, the estimated cdf ob-
tained, using the particle filtering algorithm, is given by

P̂ (r
t

|L
t�1

) = P (r
t

|Î
t

, Ĵ

t

) , (3.55a)

=�(r
t

; r̄ + (X
t

)� · Ĵ
t

· Î
t

,�

t

) , (3.55b)

where � is the cdf’s of the Gaussian distribution with mean r̄ + (X
t

) � · Ĵ
t

· Î
t

and
standard deviation equal to �

t

.

Letting P (r
t

|L
t�1

) denote the true predictive distribution, and using that if X ⇠ F , then
F (X) ⇠ U [0, 1]. Hence, P̂ (r

t

|L
t�1

) is said to be a good approximation if it is approximately
uniformly distributed between 0 and 1. If it has a U-shape, the true cdf is broader, i.e.
has heavier tails, and the estimation is said to be under-dispersed. If, on the other hand,
the shape is concave, the true predictive cdf has thinner tails. Lastly, any sign of a slope
would indicate bias.

Chapter 4

Parameter estimation

Particle filtering has proven to be successful in many applications. A main problem arises
when there is the presence of unknown static parameters, especially when the parameter
space is large. Numerous papers have been written on the construction of estimation
algorithms based on Markov Chain Monte Carlo, but have not proven very successful.

In the previous section, we displayed the filtering of the states, in which the parameters
of the jump-di↵usion model at hand where assumed to be known. Clearly, this is never
true in reality and this chapter therefore presents two methods, using the particle filtering
algorithm, to calibrate the model. In this master thesis, the focus is on

• maximum likelihood ,

• state augmentation .

First the maximum likelihood approach is presented in section 4.1. This may be used
to display cross sections of the parameter space, but the computational cost of directly
applying the maximum likelihood is too great. In order to find the maximum of the
log-likelihood we, therefore, rely on standard optimization algorithms. In section 4.1.1,
we present how the expectation-maximization algorithm adapts to the filter. Next the
simplest calibration method, known as state augmentation, is reviewed in section 4.2.

4.1 Maximum likelihood

Maximum likelihood is the traditional way of calibrating a model. Assuming that the
jump-di↵usion process depends on an unknown static parameter vector ✓ and furthermore
that the marginal likelihood L(✓ | r

1:t+1

) = p

✓

(r
1:t+1

) admits a sequential formulation

p

✓

(r
1:t+1

) = p

✓

(r
1

)
tY

k=1

p

✓

(r
k+1

| r
1:k

) . (4.1)

21

4.1 Maximum likelihood 22

One can utilize the filter to estimate the log-likelihood by noting that

p

✓

(r
k+1

| r
1:k

) =
Z

p

✓

(r
k+1

, L

k+1

| r
1:k

)dL
k+1

, (4.2a)

=
Z Z

p

✓

(r
k+1

| L
k+1

)p
✓

(L
k+1

| L
k

)p
✓

(L
k

| r
0:k

)dL
k

dL

k+1

, (4.2b)

⇡
NX

i=1

⇡

(i,✓)

k

Z
p(r

k+1

|L
k+1

)p(L
k+1

|L(i,✓)

k

)dL
k+1

, (4.2c)

=
NX

i=1

⇡

(i,✓)

k+1

. (4.2d)

Where one utilized the Monte Carlo approximation for the filtering density p(L
t

|r
1:k

).

⇡

(i,✓)

k

denotes the un-normalized weights at the k

th time step for a given ✓. The particle
approximation of the log-likelihood is therefore given by

logL(✓ | r
1:t+1

) = log
tY

k=1

p

✓

(r
k+1

| r
1:k

) , (4.3a)

=
tX

k=1

log p
✓

(r
k+1

| r
1:k

) , (4.3b)

⇡
tX

k=1

log
NX

i=1

⇡

(i,✓)

k+1

. (4.3c)

Maximizing the sum of unnormalized weights results in the maximum likelihood estimator:

✓̂ = argmax
✓

[
tX

k=1

log
NX

i=1

⇡

(i,✓)

k+1

] . (4.4)

Displaying a cross section of the parameter space is done by computing the log-likelihood
for a subspace of the full parameter space, where all other parameters are set to their true
values. Noting, however, in this case, that despite having deduced a fast algorithm for
solving the filtering problem, computing the likelihood on a grid over the full parameter
space is not feasible. As an example, a grid corresponding to 10 points in each parameter
direction means running the particle filter for 108 di↵erent ✓ values. Assuming that the
time series over which we run the algorithm is 10000 with 5000 particles, the real compu-
tation time would amount to approximately 108 ⇥ 180sec = 208333 days of computation
time on a Mac running on OS X Yosemite with 2.7 GHz Intel Core i7 processor.

4.1.1 Expectation-maximization algorithm

To summarize, we are interested in solving the following maximization problem

✓̂ = argmax
✓

log p
✓

(r
1:T

) , (4.5)

where log p
✓

(r
1:T

) denotes the complete likelihood of the model over the whole time series
spanning from 1 to T . The main di�culty of solving this optimization problem arises from
the need to perform a nonlinear filtering operation in order to calculate the likelihood.
Suppose, however, that in addition to the measurements r one can also observe the states

4.1 Maximum likelihood 23

L

1:T

= (L
1

,, L

T

). Based on these measurements one seeks the maximum log-likelihood
estimate of ✓ via

✓̂ = argmax
✓

log p
✓

(L
1:T

, r

1:T

) . (4.6)

Then maximizing l
✓

(L
1:T

, r

1:T

) = log p
✓

(L
1:T

, r

1:T

) is done by using a gradient based search
algorithm. The states are, however, not observed and employment of the EM algorithm
is necessary. The E-step approximates the joint log-likelihood function, l

✓

(L
1:T

, r

1:T

), by
taking the expected value over the unobserved states based upon some current guess of
the parameters ✓

k

. That is

E[l
✓

(L
1:T

, r

1:T

)|r
1:T

] =
Z

l

✓

(L
1:T

, r

1:T

)p
✓

k

(L
1:T

|r
1:T

)dL
1:T

. (4.7)

The M-step then maximizes this expectation with respect to the parameter ✓. Hence the
Expectation Maximization (EM) algorithm iteratively switches between the following two
steps:

1. (E-step) Calculate the expected value of l
✓

(L
1:T

, r

1:T

) over the unobservable states L
based on a current parameter estimate ✓

k

and the measurements r.

Q(✓, ✓
k

) := E[l
✓

(L
1:T

, r

1:T

)|r
1:T

] =
Z

l

✓

(L
1:T

, r

1:T

)p(L
1:T

|r
1:T

)dL
1:T

. (4.8)

2. (M-step) Obtain a new estimate ✓

k+1

by maximizing Q(✓, ✓
k

) over ✓

✓

k+1

= argmax
✓

Q(✓, ✓
k

) . (4.9)

A remarkable feature of the EM algorithm is that maximizing Q(✓, ✓
k

) actually generates
an increase in the log-likelihood log(p

✓

(r
1:T

)) from above.

In order to apply Monte Carlo approximation to the integral above, note that from Bayes
and the Markov property of the model that

p

✓

(L
1:T

, r

1:T

) = p

✓

(L
1:T

)p
✓

(r
1:T

|L
1:T

) , (4.10a)

= p

✓

(L
1

)
TY

t=1

p

✓

(L
t+1

|L
t

)p(r
t

|L
t

) . (4.10b)

Hence, the conditional expectation from above translates to

Q(✓, ✓
k

) =
Z

log p
✓

(L
1

) p
✓

k

(L
1:T

|r
1:T

)dL
1

+
TX

t=1

Z
log p

✓

(L
t+1

|L
t

) p
✓

k

(L
t+1

|r
1:T

)dL
t

+
TX

t=1

Z
log p

✓

(r
r

|L
t

) p
✓

k

(L
t

|r
1:T

)dL
t

,

(4.11)

now, utilizing the filtering weights, provides us with the desired approximation of the

4.1 Maximum likelihood 24

log-likelihood function

Q̂(✓, ✓
k

) =
NX

i=1

⇡

(i,✓

k

)

1

log p(L(i,✓

k

)

1

)

+
TX

t=2

NX

i=1

⇡

(i,✓

k

)

t

log p
✓

(L(i,✓

k

)

t

|L
t�1

)

+
TX

t=1

NX

i=1

⇡

(i,✓

k

)

t

log p
✓

(r
r

|L(i,✓

k

)

t

) .

(4.12)

Where L

(i,✓

k

)

1:t

denotes the state particle i under initial parameter guess ✓
k

at time t.

In the M-step, one uses a gradient optimization approach to maximize Q with respect to ✓

of which the gradient can be approximated using the expression from above. Noting that
the initial state distributions are independent of ✓ gives us

@Q̂

@✓

=
TX

t=2

NX

i=1

⇡

(i,✓

k

)

t

@

@✓

log p
✓

(L(i,✓

k

)

t

|L
t�1

)

+
TX

t=1

NX

i=1

⇡

(i,✓

k

)

t

@

@✓

log p
✓

(r
r

|L(i,✓

k

)

t

) .

(4.13)

Putting it in context of the model at hand, in which the the partial derivatives
@ log p

✓

(r

t

|L(i,✓
k

)
t

)

@✓

are given in Malevergne and Sornette [2014]. Note that the state transition densities are
given by

p

✓

(L(i,✓

k

)

t

|L
t�1

) = p

✓

(I(i,✓k)
t

)p
✓

(J (i,✓

k

)

t

) , (4.14)

where

p

✓

(I(i,✓k)
t

) = (1� �

t

)1�I

(i,✓
k

)
t

�

I

(i,✓
k

)
t

t

, (4.15)

p

✓

(J (i,✓

k

)

t

) = e

�J

(i,✓
k

)
t . (4.16)

Hence, given that the process driving the conditional jump probability X

t

only depends on
the parameters r̄, X̄, ⌘ and a (X

t

depends on r̄ through the initial condition), the partial
derivatives of the jump time state transition density, are given by

@ log p
✓

(I
t

)

@✓

i

= (
I

t

�

t

� (1� I

t

)
1

1� �

t

)
@�

t

@✓

i

, (4.17a)

= (
I

t

�

t

� (1� I

t

)
1

1� �

t

)L0(X
t

)
@X

t

@✓

i

, (4.17b)

where
@X

t

@r̄

= �⌘ + a

@X

t�1

@r̄

, (4.18)

@X

t

@X̄

= (1� a) + a

@X

t�1

@X̄

, (4.19)

@X

t

@⌘

= (r
t�1

� r̄) + a

@X

t�1

@⌘

, (4.20)

@X

t

@a

= �X̄ +X

t�1

+ a

@X

t�1

@a

, (4.21)

4.2 State augmentation 25

with initial conditions

@X

0

@r̄

= 0 , (4.22)

@X

0

@X̄

= 1 , (4.23)

@X

0

@⌘

= 0 , (4.24)

@X

0

@a

= 0 . (4.25)

The transition density for the jump sizes is independent of the parameters. Hence,
@

@✓

log p
✓

(L
t

|L
t�1

) depends only on the partial derivative of the state transition density
for the jumps.

The approach in wil [2008] uses a particle smoother where the smoothing weights in our
case are given by:

q

(i)

t�1

=
p(L(i)

t

|L(i)

t�1

)
P

N

j=1

p(L(i)

t

|L(j)

t�1

)
, (4.26a)

=
p(I(i)

t

)p(J (i)

t

)
P

N

j=1

(p(I(i)
t

)p(J (i)

t

))
, (4.26b)

=
1

N

. (4.26c)

The smoothed particle set, {L̃(i,✓

k

)

t

, 1/N}, is then used to approximate the partial deriva-
tives of Q. We note, however, that since the weights identical

@Q̂

@✓

=
TX

t=2

@

@✓

log p
✓

(¯̃I(✓k)
t

)

+
TX

t=1

@

@✓

log p
✓

(r
r

| ¯̃I(✓k)
t

,

¯̃
J

(✓

k

)

t

) .

(4.27)

Where ¯̃
I

t

= 1

N

P
N

i=1

Ĩ

(i)

t

and ¯̃
J

t

= 1

N

P
N

i=1

J̃

(i)

t

represent the means of the smoothed parti-
cles.

4.2 State augmentation

In this section, we present a di↵erent calibration method directly using the filtering algo-
rithm. Its simplicity comes at the cost of some drawbacks, but the advantage of being easy
to understand and implement is considered to outweigh the cons. Actually, Sylvain [2012]
also uses state augmentation to perform parameter estimation. Although on a di↵erent
model, this approach proved to be the most successful. In state augmentation, one simply
adds the parameters as new unobservable states. The new state vector then becomes:

L

t

= (I
t

, J

t

, ✓

t

) . (4.28)

4.2 State augmentation 26

The time index in ✓

t

does not mean that the parameters are time varying, but rather that
it is the filter estimation at time t. The initial selection of the parameters is done inde-
pendently, except for (↵,�). The latter are drawn from the uniform simplex due to the
restriction ↵+� < 1. Particles are selected according to their usual state values and indi-
rectly to their parameter value, dictating the direction in which they evolve. As explained
in the Master thesis by Sylvain [2012], state augmentation increases the complexity of the
filtering problem and it becomes more di�cult to get good state estimates. In order to
avoid sample impoverishment, a lot of particles needs to be drawn. Again, the speed of
the algorithm developed in this thesis will become useful.

In order to utilize state augmentation, there are two obvious strategies one can employ
with respect to the parameter evolution, namely

• fixed parameters and

• artificial dynamics .

4.2.1 Fixed parameters

This is the simplest form of state augmentation and the parameters are said to follow the
dynamics

✓

t

= ✓

t�1

Implementing the parameters as states, the SIR pseudo algorithm becomes

1. Given initial particle set {L(i)

t�1

,⇡

(i)

t�1

}, where L

(i)

t�1

= (I(i)
t�1

, J

(i)

t�1

, ✓

(i)

t�1

) we simulate,
for i = 1,, N , new states according to p(L

t

|L
t�1

) by first calculating

X

(i)

t

= (1� a

(i)

t�1

)X̄(i)

t�1

+ a

(i)

t�1

X

(i)

t�1

+ ⌘

(i)

t�1

(r
t�1

� r̄

(i)

t�1

) , (4.29)

(�2

t

)(i) = (�̄2)(i)
t�1

(1� ↵

(i)

t�1

� �

(i)

t�1

) + ↵

(i)

t�1

(r
t�1

� r̄

(i)

t�1

)2 + �

(i)

t�1

(�2

t�1

)(i) , (4.30)

then jump times and jump sizes are simulated according to

I

(i)

t

⇠ Bernoulli(L(X(i)

t

)) , (4.31)

J

(i)

t

⇠ exp (1) , (4.32)

lastly, the parameters are evolved according to ✓

(i)

t

= ✓

(i)

t�1

2. Estimate the filtering weights according to p(r
t

|L(i)

t

) and resample.

Note that the particle selection process, determined by the filtering weights, is greatly
influenced by the priors chosen for the parameters. The final estimation is restricted to
the set of parameters initially drawn. Hence, one relies on simulating a significant amount
of particles in order to explore the parameter space e�ciently enough.

4.2.2 Artificial dynamics

Here the parameters are evolved according to some imposed artificial randomness with
time decreasing variation. This diminishes sample impoverishment and enables a broader

4.2 State augmentation 27

search of the parameter space. However, as pointed out in Sylvain [2012] the artificial
dynamics can be dangerous because one particle could jump from one type of behavior
to something completely di↵erent, even for small changes in parameter values. It would,
therefore, be necessary to include some knowledge on how the parameters interact. Taking
into account all interaction e↵ects and dependencies become a very complex task. This
dissertation will remain focused on the fixed state augmentation approach.

4.2.3 Priors

As previously stated, a crucial and important task of the state augmentation, especially
involving fixed parameter dynamics, is selecting suitable prior distributions for ✓. Initially,
one might select the parameters independently of each other, but this approach falls short
right away as ↵+ � < 1. Hence, one would need to sample at least these jointly.

The approach taken in this thesis is to sample almost all parameters independently from a
uniform distribution with reasonable support. The support for the uniform distributions
are chosen such that they contain the respective true value. This is necessary as the final
estimate will be based on the initial sample.

In more detail, r̄, denoting the expected daily growth rate of the risky asset is sampled
between �0.18/250 and 0.32/250. This is based on the historical annualized growth rates
of the S&P500, taking into account the slight positive trend that; in the long run you can
expect about 7% in inflation-adjusted return from investing in the stock market. This in
turn would yield a long-term annual volatility of �̄ = 0.25, and the volatility is therefore
sampled between 0.1/

p
250 and 0.5/

p
250. The daily jump size, K0, is said to be strictly

positive in this thesis and therefore sampled uniformly between 0.02 and 0.08. X̄ between
�6 and �5, ⌘ between 2 and 4 and lastly a ⇠ U [0, 1].

In order to optimize the state augmentation procedure, it’s clear that more thought can
be put into selecting these priors. Nevertheless, it is hoped that generating a large amount
of particles will diminish the dependency on the initial values and that the true values
are profound enough to be noticed and selected by the algorithm. It is believed that the
increased speed, allowing us to run the state augmentation algorithm on longer time series
and to generate a lot of particles will improve the results and increase the precisions in
the estimates compared with the works of Sylvain [2012]. Furthermore, note that a more
sophisticated method of joint parameter and state learning is presented in Johannes and
Polson. Attempts were made to implement this algorithm, but thus far not in a satisfactory
way.

Chapter 5

Simulations

This chapter is devoted to a simulation study reviewing the model as well as the perfor-
mance of the filtering algorithms. The first section analyzes the properties of the model.
Next section 5.2 shows how the SIR and APF filter performs in estimating the filtering
distribution and predicting the latent states. Section 5.3 use state augmentation to cali-
brate the model at hand. A short discussion on why it may be so di�cult to calibrate the
model by Malevergne and Sornette [2014] closes the chapter.

5.1 Model simulation and stylized facts

In the subsequent simulations a synthetic time series spanning 40 years will be used. Each
time step represents one day and a year consists of 250 trading days. The parameters are
chosen to be as follows r̄ = 0.00028, = 0.04, X̄ = �5.0, ⌘ = 3.0, �̄ = 0.25/

p
250,↵ =

0.05,� = 0.94 and a = 0.996. The parameters taking the values as described here takes
advantage of what is commonly observed in real financial returns.

5.1.1 Model simulation

Figure 5.1 displays log prices (in black) as a function of time. Linear growth, in this linear-
logarithmic plot, represents exponential growth with a constant rate of return. A convex
shape represents rising returns and hence a super-exponential growth in prices. The dotted
blue line represents the crash probability at time t and red bars the corresponding jump
size. Note how the crash-hazard rate increases as a response to greater mispricing. A
crash and its size will determine the subsequent decrease in the crash-hazard rate. The
long-term memory of the mispricing index ensures non-negligible probability if the price
gap remains large.

A second interesting observation is that the log prices fluctuate more before the peak
around 1992, than after. The period before the peak is populated by more frequent jump
occurrences as a response to greater mispricing. As the price increases, the risk of negative
jumps become larger, in turn causing the expected return to escalate since investors require
compensation for the greater uncertainty. The price trajectory will have a positive trend
if the jumps do not correct enough and balance out the inherent mispricing. Figure 5.2
shows the corresponding evolution of the volatility and mispricing index. We note how the

28

5.1 Model simulation and stylized facts 29

volatility exhibits large gaps. This illustrates how jumps account for extreme movement
in discretely observed prices that are unexplainable by the di↵usive component.

Figure 5.3 shows a Gaussian kernel density estimate of the mispricing in figure 5.2 along
with the theoretical stationary distribution of �

t

colored in red.

5.1.2 Stylized facts

Financial returns exhibit empirical properties that are now so entrenched in econometric
experience that they have been elevated to the status of facts. The stylized facts can be
summarized as follows

1. return series are not iid, although showing little sign of serial correlation, their abso-
lute or squared return do,

2. conditional expected returns are close to zero,

3. volatility varies over time and in clusters,

4. return series are leptokurtic and appear in clusters.

In the following each point is considered and estimated from the sample time series gen-
erated by the model. Whereby empirically showing how they coincide with stylized facts
of real financial returns.

Serial correlation of a covariance-stationary process, denoted autocorrelations (ACF) ⇢(h),
is estimated according to

⇢(h) = ⇢(r
h

, r

0

) = �(h)/�(0) , (5.1)

where � denotes the autocovariance function

�(h) = �(h, 0) , (5.2a)

= E[(r
t

� µ

t

)(r
s

� µ

s

)] . (5.2b)

In which µ

t

is constant for a covariance stationary process and h = |t � s|. Hence the
autocorrelations are estimated to be

⇢̂(h) =

P
n�h

s=1

(r
s+h

� r̄)(r
s

� r̄)
P

n

t=1

(r
t

� r̄)
. (5.3)

The confidence bounds are estimated using the asymptotic result that for long iid time
series ⇢̂(h) ⇠ N(0, 1/n). Thus a 95% confidence interval for ⇢(h) is given by ⇢̂(h)±1.96/

p
n.

A plot displaying the log-returns and squared log-returns with correspond autocorrelations
can be found in figure 5.4. Figure 5.2 shows how the volatility varies over time and displays
the appearance of clusters, properties following from the GARCH(1,1) process.

In order to test whether the simulated time series from the model is leptokurtic as real
financial data are, we estimate the kurtosis. The kurtosis is a measure of the peakedness
of a distribution. A kurtosis greater than 3 implies a leptokurtic distribution meaning
sharper decline than the normal distribution for values concentrated around the mean
and slower decay in the tails causing what is known as heavy tails. In addition to being
leptokurtic, real log-returns are often also skewed. A negative skewness indicates that the

5.1 Model simulation and stylized facts 30

mean of the data is less than the median. Both the kurtosis and skewness are estimated
using the relation

�

2

=
µ

4

µ

2

� 3 , (5.4)

�

1

=
µ

3

µ

3/2

2

, (5.5)

where µ
2

, µ

3

and µ

4

are the second, third and fourth central moments respectively. Below
5.5 is a histogram of the raw returns simulated from the model and a Gaussian kernel den-
sity estimate (blue) along with the best-fitting Gaussian density under the iid assumption.
In the header the estimated moments from above are displayed.

5.1 Model simulation and stylized facts 31

Time

lo
g(
S
t)

1970 1980 1990 2000 2010

0
1

2
3

4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

λ t
,J~

t

J~t |I t=1
λt

Figure 5.1: Simulated time series of the jump-di↵usion model of bubbles and crashes with
non-local behavior of length T=10 000,
black: log prices ref. left y-axis,
blue: Jump probability ref. right y-axis,
red: Jump sizes ref. right y-axis.

5.1 Model simulation and stylized facts 32

Volatility

t

σ
t

1970 1980 1990 2000 2010

0.
02

0.
06

Mispricing index

t

X
t

1970 1980 1990 2000 2010

−9
−7

−5
−3

Figure 5.2: Trajectory of the volatility and mispricing index of the simulated jump-
di↵usion model.

5.1 Model simulation and stylized facts 33

0.00 0.02 0.04 0.06 0.08

0
50

10
0

15
0

20
0

25
0

30
0

Crash−hazard rate density

λ

D
en

si
ty

Kernel density
Theoretical density

Figure 5.3: Gaussian kernel density estimate (red) of the simulated series from above and
theoretical (black) stationary distribution of �

t

.

5.1 Model simulation and stylized facts 34

Time

r t

1970 1980 1990 2000 2010

−0
.2

−0
.1

0.
0

0.
1

0.
2

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Time

r t2

1970 1980 1990 2000 2010

0.
00

0.
02

0.
04

0.
06

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Figure 5.4: The upper left panel depicts the trajectory of log-returns and to the upper
right its corresponding autocorrelations. The lower left figure shows the squared log returns
whereas the lower right its corresponding autocorrelation.

5.1 Model simulation and stylized facts 35

γ2=9.854489 γ1=−0.53129

x

D
en

si
ty

−0.2 −0.1 0.0 0.1 0.2

0
5

10
15

20
25

Figure 5.5: The plot shows a histogram of the log-returns and corresponding Gaussian
kernel density estimate (blue) as well as best-fitting Gaussian distribution using MLE
(red) under the assumption that the log-returns are iid. On the top, the kurtosis and
skewness, respectively are calculated using the raw log-returns.

5.2 Filtering of the states and convergence 36

5.2 Filtering of the states and convergence

This section, conditional on the parameters being known, analyzes the performance of
the filter. The APF algorithm developed in chapter 3 is run on the time series above.
N = 10000 particles are generated. We choose X = X̄ and �

2 = �̄

2 and initialize the
particles by selecting the jump times I

o

from a Bernoulli distribution with initial success
probability L(X) and jump sizes from an exponential distribution with parameter 1/0.01.

5.2.1 Filtering of the states

Figure 5.7 shows the filtering of the underlying jump times and jump sizes using the APF
and figure 5.6 the corresponding SIR filter. The true jump times are given by the black
dots and the red crosses show the actual jump sizes with reference to the right y-axis.
The black bars show, with reference to the left y-axis, how well the algorithm filters jump
times. A bar stretching all the way up to 1 implies that the filter fully recovers the actual
jump time.

The algorithm identifies large jumps very well, but misses many of the smaller ones. In
particular jumps smaller than the true average jump size, 0.04, is not well accounted for.
In this case, the price movements cannot be separated well enough from normal day-to-day
movements.

Large jumps, being fully recovered and recognized, are very well accounted for in terms of
their amplitudes. In particular, the APF filter performs remarkably well and the estimation
error is small. One may improve the estimation power further by recognizing that the
algorithm performs poorly in the case of small jumps that are of similar amplitude as
normal returns. It also produces jumps, though negligible small, where in reality no
jump has occurred. Increasing the jump-size threshold above which the algorithm starts
assigning greater likelihood to jumps may not yield a significant improvement in estimation
power. The algorithm already assigns a very low likelihood (small black bars) to the
misclassifications. There are only very few cases, especially at the beginning of the time
series, in which the filter assigns ’significant’ probability to the misclassifications.

If data is sampled less frequent than daily, the algorithms ability to separate jumps from
di↵usion deteriorate and its judgment becomes even more clouded. This is because volatil-
ity aggregates and weekly variance is roughly 5 times larger than daily. Hence, sampling
data at a greater frequency may yield an improvement referring to the missclassifications
mentioned above.

Finally, note that there is only a marginal improvement of using the APF over the SIR for
estimating the latent states in case of known parameters. As computation time is critical
in parameter estimation, this master thesis proceeds with the SIR filter.

5.2.2 Convergence of the particle filter

In this section the method for model checking described in section 3.3 is applied. The
predictive distribution function is obtained as a by-product of the filtering. Computing
P̂ (r

t

|r
1:t�1

) for every observation enables us to analyze the convergence of the filtering
algorithm through the histogram 5.8. The movie displays the evolvement of the histogram

5.2 Filtering of the states and convergence 37

throughout time of the estimated predictive cdf, P̂ (r
r

|L
t�1

) resulting from the SIR filter.
The result is quite convincing, with a distribution approaching the uniform distribution,
implying that the estimated predictive cdf converges to the true predictive distribution
P (r

t

|L
t�1

).

t

1970 1980 1990 2000 2010

0.
0

0.
5

1.
0

1.
5

●●●●●● ● ●●●●●● ●●●●●● ● ● ●●●●●● ●●●●●●●●●● ●●●●●●●●● ●● ● ● ●●● ● ●●●●●●●●●●●●● ● ● ● ● ●●● ●●●● ●●●●● ●●● ●●●

E[
I t+

1|(
X̂
t+
1,σ̂

t+
12),

r t+
1]

++++++++++++++

+

++
+
+++++++++
+
+++

+

+++++++++++++++++++++
+
++
+
+++

+

+++

+

+++
+++

+

+++++++++++++++++++++++++++++++++
+
+++++++++++++++++++++++++++++++++++++

+

+++++++++++++
+
+++++++++++++++++++++++++++++

+

+++++++++++++++++++++++++++++++++++
++
++
+
++

+

+++

+

++

+
+++
+
++
+
+++++

+

++
+
+++++++++++++++++++++++++++++

+

+++
+
++

+

++

+

+++

+

+++
+
++++++++++++++++++++++++++++++++++++++

+

+++++++++++++++++

+

++
+
+++++++++++++++++++++++++++++++++

+

++

+

++++++++++++++++++++++++++++

++

+++++++++++++

+

++

+

++
+
+++++++++++++++++++++++++

+

+++

+

++

+

++

+

++++++++++++++++++++++++++
+
++

+

++

+

++

+

++

+

+++
+
+++

+
+++

+

++

+

+++++++++++++++++++++++++++
+
+++
+
+++

+

+++
+
++
+
++
+
+++

+

+++
++

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+ +

+

+
+

+

++

+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+
+

+

++

+

+

+

+

++

+

++

+

+

++
++

+

+

+

+

+
++

+
+

+

+
+

+

0.
00

0.
05

0.
10

0.
15

0.
20

J~ t+
1|I

t+
1=
1,
(X̂

t+
1,σ̂

t+
12),

r t+
1

● I true
J~true
I est
J~est

Figure 5.6: Filtering of the states using the SIR filter with N = 10 000 particles on a time
series of length T = 10 000. The complete simulation took 49 sec (real time) on a Mac 2.7
GHz Intel Core i7 with OS X Yosemite and code written in C++. The true jump times
are given by the black dots and the red crosses show the actual jump sizes with reference
to the right y-axis. The black bars show, with reference to the left y-axis, displays how
well the algorithm filters jump times. A bar stretching all the way up to 1 implies that
the filter fully recovers the actual jump time.

5.2 Filtering of the states and convergence 38

t

1970 1980 1990 2000 2010

0.
0

0.
5

1.
0

1.
5

●●●●●● ● ●●●●●● ●●●●●● ● ● ●●●●●● ●●●●●●●●●● ●●●●●●●●● ●● ● ● ●●● ● ●●●●●●●●●●●●● ● ● ● ● ●●● ●●●● ●●●●● ●●● ●●●

E[
I t+

1|(
X̂
t+
1,σ̂

t+
12),

r t+
1]

+++++++++++++++

+

++
+
+++++++++
+
+++

+

+++++++++++++++++++++
+
+++

+

+++

+

+++

+

+++++++++++++++++++++++++++++++++
+
++++++++++++++++++++++++++++++++++++

+

+++++++++++++
+
+++++++++++++++++++++++++++++

+

+++++++++++++++++++++++++++++++++++
+
+
+++
+++++++
+
++

+

+++

+

++
+
+++
+
++
+
+++++

+

++
+
+++++++++++++++++++++++++++++

+

++
+
++

+

++

+

+++

+

+++
+
+++++++++++++++++++++++++++++++++++++

+

+++++++++++++++++
+
++
+
++++++++++++++++++++++++++++++++

+

+++

+

++++++++++++++++++++++++++++

++

+++++++++++++

+

++

+

++
+
+++++++++++++++++++++++++

+

++

+

+++

+

+++

+

++++++++++++++++++++++++++
+
++

+

++

+

+++

+

++

+

+++
+
+++
+
++

++

+

+++

+

+++++++++++++++++++++++++++
+
+++
+
++

+

+++
+
++
+
++
+
+++

+

+++
++

+

+

+

+

+

+

+

+

+

+

+ +
+

+

+

+

+ +

+

+
+

+

++

+

+

+

+

+

+

+

+

+
+

+
+
+

+

+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+
+

+

++

+

+

+

+

++

+

++

+

+

++
++

+

+

+

+

+
++

+
+

+

++

+

0.
00

0.
05

0.
10

0.
15

0.
20

J~ t+
1|I

t+
1=
1,
(X̂

t+
1,σ̂

t+
12),

r t+
1

● I true
J~true
I est
J~est

Figure 5.7: Filtering of the states using the APF filter with N = 10 000 particles on a
time series of length T = 10 000. The complete simulation took 148 sec (real time) on
a Mac 2.7 GHz Intel Core i7 with OS X Yosemite and code written in C++. The true
jump times are given by the black dots and the red crosses show the actual jump sizes
with reference to the right y-axis. The black bars show, with reference to the left y-axis,
displays how well the algorithm filters jump times. A bar stretching all the way up to 1
implies that the filter fully recovers the actual jump time.

5.2 Filtering of the states and convergence 39

Figure 5.8: Histogram of P̂ (r
t

|r
1:t�1

) displaying the convergence of the estimated predictive
cdf resulting from the filtering compared with the true predictive cdf. The histogram
approaches, as t increases, the uniform distribtuion. The simulation study is conducted
using the SIR filter with N = 10 000 particles on a time series of length T = 10 000.
P̂ (r

t

|r
1:t�1

) is then computed every time step

5.3 Parameter estimation 40

5.3 Parameter estimation

In this section, the performance of the SIR filter to estimate the parameters is tested. In
the subsequent simulations, we restrict ourselves toN = 1000 particles. We note that while
1000 particles may be enough to get good estimates for the states in the case of known
parameters, it is actually very likely to be insu�cient in the present case. If, however,
the goal is to display the evolution of the estimates, restriction to a smaller number of
particles is necessary. This is because otherwise the storage requirement and computation
time becomes too overwhelming.

5.3.1 Parameter cross-sections

Here we display some cross sections of the parameter space. This is done to show how the
filter can be used to directly apply the maximum likelihood. While keeping all parameters
set at their true values, the log likelihood is computed over a grid of values for both the
set (↵,�) and a respectively. The result is displayed in figure 5.9 and figure 5.10. Notice
that the shape of the log-likelihood as a function of (↵,�) behaves quite well in the sense
that it is possible to locate a maximum log-likelihood. The maximum log-likelihood of the
simulation study is given by the pair (↵,�) = (0.068965, 0.89655) which is not far from
the true value (↵,�) = (0.05, 0.94) of the simulated series. Note that the grid of ✓0s that
were generated did not contain the true value and, therefore, might be the reason for the
minor estimation bias.

The log-likelihood as a function of a does not behave as well, seen in figure 5.10. The area
is very flat with a rough surface. The surface may be spikey due to jagged log-likelihood
estimates produced by the filter. This suggests that the estimates of the states become
more di�cult with varying a.

In concluding this section, note that the cross sections do not take into account the pa-
rameter interdependencies. Hence, it does not really give a satisfactory view on how
the parameter space actually looks like. Full application, directly maximizing the log-
likelihood depends on computing the log-likelihood over a su�ciently dense parameter
grid. This is too exhaustive computationally and gradient-based optimization algorithms
are, therefore, necessary.

Sadly, the EM algorithm presented in section 4.1.1, was not implemented successfully
within the timeframe of the thesis. It is, however, believed that it will not yield a sat-
isfactory result. Malevergne and Sornette [2014] shows that direct maximization of the
likelihood does not perform well. This comes from the fact that the log-likelihood as a
function of some of the parameters are very flat. The gradient of the log-likelihood is,
therefore, close to zero for a wide range of values outside the true ones. This in turn
makes the gradient optimization cumbersome as some parameters can be changed with
large magnitude without a↵ecting the value of the log-likelihood too much.

5.3.2 State augmentation

Running the state augmentation with a satisfactory number of particles and feasible com-
putation time meant restricting the above time series to 1000 observations, or equivalently

5.4 Conclusion of simulations 41

4 trading years. Further supporting the simplification we have that particle filters are de-
pendent upon the initialization of the particles and in general on the seed used. The above
simulation, therefore, needs to be repeated, with di↵erent seeds each run, to display the
consistency in the estimates. Hence, there is a need for balancing the length of the time
series, the number of particles and lastly the number of repetitions to get sound estimates
using this approach. It’s expected that if the algorithm works properly the estimates of
the parameters will not fluctuate too much. In the subsequent simualtion the state aug-
mentation algorithm was applied to the shortened time series of log-returns with length
T = 1000 and using N = 5000 particles. This simulation procedure was then repeated
M = 200.

Figure 5.11 shows the result of the simulation. The black dots represent a mean estimate
produced from repeating state augmentation with static parameter evolution 200 times.
The shaded gray area represents one estimated standard deviation away from the mean.
Narrow bands will correspond to consistent estimates. The red lines in the plots represent
the true parameter value.

The mean and standard deviation estimates are produced by taking the mean of the filter

means produced at each run. That is, if ✓̂(j)
t

represents the filter mean at time t from the
jth, i.e.

✓̂

(j)

t

=
NX

i=1

⇡

(i)

t

✓

(i,j)

t

. (5.6)

The black dotted line in figure 5.11 represents

✓̂

t

=
1

M

MX

j=1

✓̂

(j) . (5.7)

Notice that that the estimates are very poor for nearly all parameters. Except for maybe
�̄,↵ and � the consistency in the estimates are bad and most standard deviation range
estimates almost recover the whole support of the prior distributions chosen for the pa-
rameters. Also notice how, after around time step 200, only a small subset of the original
particles survive due to sample depletion. This is visible because the estimation stops to
vary after this point. The problem of sample depletion may be alleviated by applying the
dynamic state augmentation approach. Focusing on the bright side, the estimates for ↵

and � are rather good. The mean estimate displayes a clear convergence towards the true
value. The spread in the estimates may, however, still be too wide in order to get accurate
estimates, but scaling up the simulation would yield better results.

5.4 Conclusion of simulations

The EM tries to maximize the log-likelihood of the model by successively switching be-
tween estimating the states using the particle filter and a prior parameter guess and
then maximize the log likelihood of the model with respect to the parameters. As the
log-likelihood depends not only on the observations and the parameters but also on the
unobservable states the EM algorithm may perform poorly when the estimates from the
filter are bad. This is especially so whenever the probabilities are very jagged as a result
of sample impoverishment. Evolutionary algorithms are methods intended to solve this
problem by sampling particles in a smart way. The main idea behind is to combine the

5.4 Conclusion of simulations 42

most probable particles in such a way that the fit becomes better as time increases by
replacement of poorly fitting particles.

Even if the particle estimates would be good, Malevergne and Sornette [2014] shows that
maximization of the log-likelihood does not perform well. The objective function is sloppy
in the sense of Waterfall, Casey, Gutenkunst, Brown, Myers, Brouwer, Elser, and Sethna
[2006] meaning that there are directions of the log-likelihood as a function of the eight
parameters that are very flat. This can be seen as the gradient of the log-likelihood is
consistently close to zero in a wide range outside the true parameter values. Hence, one
can impose large changes in parameters almost maintaining the value of the log-likelihood.
The EM algorithm, utilizing the particle filtering does therefore not perform well and one
needs to use the filter in a di↵erent manner.

State augmentation did not yield any improvement in the e↵orts of model calibration. The
95% confidence bands were nearly as wide as the supports for the prior distributions of
✓. This again shows how a wide range of parameters may be plausible for the model and
calibration proved di�cult using simple static state augmentation.

5.4 Conclusion of simulations 43

angle=10

0.00.20.40.60.81.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0.0
0.2

0.4
0.6

0.8
1.0

α

β

Lo
g

Li
ke

lih
oo

d

●

●

●

●
●

●

●●
●

●

●●●
●

●

●●●●
●

●

●●
●●

●
●

●

●●
●●●

●
●

●

●
●
●●●●●

●

●

●
●
●●●●●

●
●

●

●
●●

●●●●●
●
●

●

●

●
●●

●
●●●●

●
●

●
●

●
●●

●●●●●●
●
●

● ●

●
●
●●●

●●●●●
●
●

●
●

●

●●
●●

●●●●●●●
●

●

●

●

●
●
●●●

●●●●●●
●
●

●

●

●

●
●
●
●●

●●
●●●●●●

●

●

●

●

●
●
●●

●●●
●●●●●

●●
●

●

●

●

●
●
●
●●

●●●
●●●●●●●

●

●

●

●

●
●
●
●
●
●●●

●●●●●●●
●
●

●

●

●

●

●

●
●●

●●●
●●●●●●●●

●●

●

●

●

●

●
●
●
●●

●●
●●●●●●●●●●

●

●

●

●

●

●
●

●
●
●●

●●
●●●

●●●●●●●●

●

●

●

●

●

●

●
●
●
●

●●
●
●●●●

●●●●●●
●

●

●

●

●

●

●

●
●
●
●

●●●
●●

●●●●●●●●●
●

●

●

●

●

●

●

●

●

●●
●●

●●
●
●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●●
●
●
●●●

●●●
●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●
●
●●

●●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●
●●

●●
●●

●●●●●●●●

●

angle=0

0.00.20.40.60.81.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0.00.20.40.60.81.0

α

β

Lo
g

Li
ke

lih
oo

d
●

●

●

●

●

●

●●
●

●

●●●

●

●

●●●●
●

●

●●
●●

●
●

●

●
●●●●●

●

●

●
●
●●●●●

●

●

●
●
●●●●●

●
●

●

●

●●
●●●●●

●
●

●

●

●
●
●●

●●●●
●

●

●

●

●
●
●
●●●●●●

●
●

● ●

●
●
●●●

●●●●●
●
●

●
●

●

●●
●●

●●●●●●●

●

●

●

●

●
●
●●

●●
●●●●●

●
●

●

●

●

●
●
●
●●

●●
●●●●●

●
●

●

●

●

●

●
●●

●●
●●●●●●●●

●

●

●

●

●
●
●
●
●●

●●●
●●●●●●

●

●

●

●

●
●
●
●
●
●●●

●●●●●●●
●
●

●

●

●

●

●

●

●●
●●

●
●●●●

●●●●
●
●

●

●

●

●

●
●
●
●●

●●
●●●

●●●●●
●●

●

●

●

●

●

●

●

●
●
●●

●●
●●●

●●●●●●●
●

●

●

●

●

●

●

●
●
●
●
●●

●
●●●●

●●●●●●
●

●

●

●

●

●

●

●
●
●
●
●●

●
●
●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●
●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●

●●●
●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●●

●●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●

●●
●
●●

●●●●●●●

●

angle=180

0.00.20.40.60.81.0

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0.00.20.40.60.81.0

α

β

Lo
g

Li
ke

lih
oo

d

●

●

●

●

●

●

●●
●

●

●●●

●

●

●●●●
●

●

●●
●●

●
●

●

●
●●●●●

●

●

●
●
●●●●●

●

●

●
●
●●●●●

●
●

●

●

●●
●●●●●

●
●

●

●

●
●
●●

●●●●
●

●

●

●

●
●
●
●●●●●●

●
●

● ●

●
●
●●●

●●●●●
●
●

●
●

●

●●
●●

●●●●●●●

●

●

●

●

●
●
●●

●●
●●●●●

●
●

●

●

●

●
●
●
●●

●●
●●●●●

●
●

●

●

●

●

●
●●

●●
●●●●●●●●

●

●

●

●

●
●
●
●
●●

●●●
●●●●●●

●

●

●

●

●
●
●
●
●
●●●

●●●●●●●
●
●

●

●

●

●

●

●

●●
●●

●
●●●●

●●●●
●
●

●

●

●

●

●
●
●
●●

●●
●●●

●●●●●
●●

●

●

●

●

●

●

●

●
●
●●

●●
●●●

●●●●●●●
●

●

●

●

●

●

●

●
●
●
●
●●

●
●●●●

●●●●●●
●

●

●

●

●

●

●

●
●
●
●
●●

●
●
●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●
●●

●●
●
●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●

●●●
●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●●

●●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●●

●●
●
●●

●●●●●●●

●

Figure 5.9: Log-likelihood as a function of (↵,�) keeping all other parameters set to their
true value. The three panels display a di↵erent viewpoint of the 3-dimensional scatterplot,
in which angle denotes the angle between the ↵- and �-axis. Running the SIR particle
filter with N = 1 000 particles on a time series of length T = 10 000. The simulation is
repeated according to the number of grid points for ✓ and corresponded to run the filter
435 times. The black points correspond to the log-likelihood of the given parameter value.
The red point corresponds to the maximum log-likelihood value over the given (↵,�) grid
and corresponds to (0.068965, 0.89655), true value is given by (0.05, 0.94). The complete
simulation took 1 487 sec (real time) on a Mac 2.7 GHz Intel Core i7 with OS X Yosemite
and code written in C++.

5.4 Conclusion of simulations 44

0.0 0.2 0.4 0.6 0.8 1.0

0.
94

0
0.

94
5

0.
95

0

a

lo
g

lik
el

ih
oo

d

Figure 5.10: Plot showing the log-likelihood as a function of a, and keeping the remaining
parameters set equal to their true values. The true value for a is given by 0.996. Running
the SIR particle filter with N = 1 000 particles on a time series of length T = 10 000.
The simulation is repeated according to the number of grid points generated for ✓ and
corresponded to run the filter 300 times. The complete simulation took 1 016 sec (real
time) on a Mac 2.7 GHz Intel Core i7 with OS X Yosemite and code written in C++.

5.4 Conclusion of simulations 45

0 400 800

−0
.0
02

−0
.0
01

0.
00
0

0.
00
1

0.
00
2

t

r

0 400 800

0.
00

0.
01

0.
02

0.
03

0.
04

t

σ

0 400 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

α

0 400 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t
β

0 400 800

0.
03
0

0.
03
5

0.
04
0

0.
04
5

0.
05
0

t

K
0

0 400 800

−6
.0

−5
.5

−5
.0

−4
.5

−4
.0

t

X

0 400 800

2.
0

2.
5

3.
0

3.
5

4.
0

t

η

0 400 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

a

Figure 5.11: Black dotted line: the mean parameter estimate from the repeated simula-
tions. Gray area: represents a sandard deviation from the mean. Red line: true parameter
value. Running the SIR particle filter with N = 5 000 particles on a time series of T=1
000 observations. The simulation is then repeated M = 200. The complete simulation
took 740 sec (real time) on a Mac 2.7 GHz Intel Core i7 with OS X Yosemite and code
written in C++.

Chapter 6

Conclusion

The main work of this master thesis was concerned with adapting a fast sequential Monte
Carlo algorithms, in particular a sequential importance resampling - and an auxiliary par-
ticle filter algorithm, to the model developed by Malevergne and Sornette [2014]. Quanti-
tative properties and advantages of the model where highlighted and explained. Synthetic
data was generated enabling model inference as well as checking the performance of the
filters. The algorithms proved e↵ective in identifying reasonably large sized jumps, which
is important for practical applications. In particular, movements in log-returns exceeding
a threshold corresponding to the true average crash size is e↵ectively recognized by the
algorithm. It was noted that the filter produced estimates of jumps even if in reality no
jump had occurred. The estimated jumps were, however, in this case negligible and the
likelihood assigned to the falsely generated jumps small.

A secondary goal, utilizing the particle filter, was to calibrate the model. It was explained
how the EM-algorithm may be adapted and state augmentation was implemented and
tested for the model at hand. Simulations in chapter 5 demonstrated that calibration is
not straightforward. As also pointed out in Malevergne and Sornette [2014], the logllike-
lihood as a function of some of the parameters is very flat so that they can be changed
in combination with large factors without altering significantly the log-likelihood value.
Using fixed evolution for the parameters, state augmentation applied the filter directly
to select the best fitting particles and thereby obtaining an estimate for the parameters.
This attempt was shown to be unsuccessful as the estimate range of nearly all parameters
almost fully recovered the support of the prior distributions for ✓. The algorithm, however,
proved somewhat successfully in estimating ↵ and �.

It is well known that parameter estimation of these complex systems of equations is hard.
Referring to the master theses Bertolace [2009], Sylvain [2012], Lagerqvist [2014], although
on a di↵erent model yielded a similar conclusion. Lagerqvist [2014] concluded that the
parameter estimation works poorly due to model sloppiness, a term introduced by Brown,
Hill, Calero, Myers, Lee, Sethna, and Cerione [2004]. A similar study may be performed
for the model at hand.

In future work we encourage development of an algorithm for sequentially learning about
the state variables and parameters utilizing and building upon the algorithms developed
in this dissertation. It would be very interesting to see if this yields any improvements in
calibration over the EM and state augmentation pursued in this thesis.

46

47

Another line of research is to design a smarter way to evolve the parameters and select
better prior distributions for ✓. This would utilize a more e↵ective exploration of the
parameter space, referring to state augmentation in chapter 4. This would also yield a
better starting point for employment of a random search algorithm such as simulated
annealing, genetic algorithms etc., in which one can also build upon the present filter.

A more critical question is related to the actual fit and applicability of this model. How
do we test whether the crash-hazard rate follows the dynamics proposed in the works of
Malevergne and Sornette [2014]. Since the true crash-hazard rate cannot be observed, it is
not evident how to do so. A possible way to check the validity could be to systematically
test predictions generated by the model and compare with reality. There are numerous
bubbles characterized by super-exponential growth followed by crashes, but also evidence
of ’sustainable’ bubbles. That is, prices that experience super-exponential growth which
are not followed by a crash but rather stabilization in price on a higher level. Hence, we
know in advance that some of these predictions will fall short. Extending the model to
include a distinction between these two types of bubbles would indeed yield a significant
improvement.

Bibliography

Parameter estimation for discrete-time nonlinear systems using EM, 2008. ISBN
9783902661005. doi:10.3182/20080706-5-KR-1001.00675.

T.G Andersen, T. Bollerslev, F.X. Diebold, and P. Labys. Modeling and forecasting
realized volatility. Econometrica, 71(2):579–625, 2003. doi:10.1111/1468-0262.00418.

O.E. Barndor↵-Nielsen. Econometric analysis of realized volatility and its use in estimating
stochastic volatility models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 64(2):253–280, 2002. doi:10.1111/1467-9868.00336.

O.E. Barndor↵-Nielsen and N. Shephard. Estimating quadratic variation using realized
variance. Journal of Applied Econometrics, 17(5):457–477, 2002. doi:10.1002/jae.691.

D.S. Bates. The crash of ’87: Was it expected? the evidence from options markets. The
Journal of Finance, 46(3):1009–1044, 1991. doi:10.1111/j.1540-6261.1991.tb03775.x.

S.D. Bates. How crashes develop: intradaily volatility and crash evolution. http://www.
biz.uiowa.edu/faculty/dbates/ or http://tippie.uiowa.edu/people/profile/

profile.aspx?id=194916, May 2015.

A. Bertolace. Study of a nonlinear model of the price of an asset: Kalman filter cali-
bration to data. Master’s thesis, ETH, 2009. URL http://www.er.ethz.ch/media/

publications/phd-and-master-theses.html.

O.J Blanchard. Speculative bubbles, crashes and rational expectations. Economics Letters,
3(4):387–389, 1979. doi:10.1016/0165-1765(79)90017-X.

B. Bollen and B. Inder. Estimating daily volatility in financial markets utilizing in-
traday data. Journal of empirical finance, 9(5):551–562, 2002. doi:10.1016/S0927-
5398(02)00010-5.

K. Brown, C. Hill, G. Calero, C. Myers, K. Lee, J. Sethna, and R. Cerione. The statistical
mechanism of complex signaling networks: Nerve growth factor signaling. Physical
Biology, 1:184–195, 2004.

J. Carpenter, P. Cli↵ord, and P. Fearnhead. Improved particle filter for nonlinear prob-
lems. IEE Proceedings - Radar, Sonar and Navigation, 146(1):2, 1999. doi:10.1049/ip-
rsn:19990255.

R Cont and P. Tankov. Financial modelling with jump processes, volume 2. Chapman
Hall/CRC, 2004.

D. Crisan and A. Doucet. A survey of convergence results on particle filtering meth-
ods for practitioners. Signal Processing, IEEE Transactions on, 50(3):736–746, 2002.
doi:10.1109/78.984773.

48

http://dx.doi.org/10.3182/20080706-5-KR-1001.00675
http://dx.doi.org/10.1111/1468-0262.00418
http://dx.doi.org/10.1111/1467-9868.00336
http://dx.doi.org/10.1002/jae.691
http://dx.doi.org/10.1111/j.1540-6261.1991.tb03775.x
http://www.biz.uiowa.edu/faculty/dbates/
http://www.biz.uiowa.edu/faculty/dbates/
http://tippie.uiowa.edu/people/profile/profile.aspx?id=194916
http://tippie.uiowa.edu/people/profile/profile.aspx?id=194916
http://www.er.ethz.ch/media/publications/phd-and-master-theses.html
http://www.er.ethz.ch/media/publications/phd-and-master-theses.html
http://dx.doi.org/10.1016/0165-1765(79)90017-X
http://dx.doi.org/10.1016/S0927-5398(02)00010-5
http://dx.doi.org/10.1016/S0927-5398(02)00010-5
http://dx.doi.org/10.1049/ip-rsn:19990255
http://dx.doi.org/10.1049/ip-rsn:19990255
http://dx.doi.org/10.1109/78.984773

BIBLIOGRAPHY 49

S. Das. Particle filtering on large dimensional state spaces and applications in computer
vision. PhD thesis, Iowa State University, 2010.

L. Devroye. Sample-based non-uniform random variate generation. 1986. ISBN 0-911801-
11-1. doi:10.1145/318242.318443.

V. Filimonov and D. Sornette. Apparent criticality and calibration issues in the hawkes
self-excited point process model: application to high-frequency financial data. Quanti-
tative Finance, 15(8):1293–1314, 2015. doi:10.1080/14697688.2015.1032544.

Michael S. Johannes and Nick G. Polson. Particle filtering and parameter learning (march
2007). Available at SSRN: http://ssrn.com/abstract=983646 or http://dx.doi.

org/10.2139/ssrn.983646.

Michael S. Johannes and Nick G. Polson. Particle filtering. Springer Berlin Heidelberg,
2009. doi:10.1007/978-3-540-71297-8.

Michael S. Johannes, Nick G. Polson, and Seung M. Yae. Sequential inference for nonlinear
models using slice variables (november 19, 2009). Available at SSRN: http://ssrn.
com/abstract=1509782 or http://dx.doi.org/10.2139/ssrn.1509782.

Michael S Johannes, Nick G Polson, and J.R. Stroud. Optimal filtering of jump di↵usions:
Extracting latent states from asset prices. Review of Financial Studies, 22(7):2759–2799,
2009. doi:10.1093/rfs/hhn110.

A. Johansen and D. Sornette. Shocks, crashes and bubbles in financial markets. Brussels
Economic Review, 53(2):201–253, 2010. URL http://EconPapers.repec.org/RePEc:

bxr:bxrceb:2013/80942.

A. Johansen, D. Sornette, and O. Ledoit. Predicting financial crashes using discrete scale
invariance. Journal of Risk, 1(4):5–32, 1999.

A. Johansen, O. Ledoit, and D. Sornette. Crashes as critical points. International
Journal of Theoretical and Applied Finance, 3(2):219–255, 2000. ISSN 0219-0249.
doi:10.1142/S0219024900000115.

T. Kaizoji, M. Leiss, A. Saichev, and D. Sornette. Super-exponential endogenous bubbles
in an equilibrium model of fundamentalist and chartist traders. Journal of Economic
Behavior & Organization, 112:289–310, 2015. doi:10.1016/j.jebo.2015.02.001.

C.P. Kindleberger and R.Z. Aliber. Manias, panics and crashes: a history of financial
crises. Palgrave Macmillan, 2011. ISBN 9781403936516. doi:10.1057/9780230628045.

A. Lagerqvist. Parameter estimation of a non-equilibrium asset pricing model and per-
formance analysis of the calibration in terms of sloppiness. Master’s thesis, ETH, 2014.
URL http://www.er.ethz.ch/media/publications/phd-and-master-theses.html.

C. Lee, A.C. Lee, and S. Wang. Encyclopedia of Finance, chapter Jump di↵usion model,
pages 525–534. Springer, 2013. ISBN 978-1-4614-5359-8. doi:10.1007/978-1-4614-5360-4.

Y. Malevergne and D. Sornette. Jump-di↵usion model of bubbles and crashes with non-
local behavioral self-referencing. 2014.

A.J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Tech-
niques, and Tools: Concepts, Techniques, and Tools. Princeton Series in Finance. Prince-
ton University Press, 2005. ISBN 9780691122557.

http://dx.doi.org/10.1145/318242.318443
http://dx.doi.org/10.1080/14697688.2015.1032544
http://ssrn.com/abstract=983646
http://dx.doi.org/10.2139/ssrn.983646
http://dx.doi.org/10.2139/ssrn.983646
http://dx.doi.org/10.1007/978-3-540-71297-8
http://ssrn.com/abstract=1509782
http://ssrn.com/abstract=1509782
http://dx.doi.org/10.2139/ssrn.1509782
http://dx.doi.org/10.1093/rfs/hhn110
http://EconPapers.repec.org/RePEc:bxr:bxrceb:2013/80942
http://EconPapers.repec.org/RePEc:bxr:bxrceb:2013/80942
http://dx.doi.org/10.1142/S0219024900000115
http://dx.doi.org/10.1016/j.jebo.2015.02.001
http://dx.doi.org/10.1057/9780230628045
http://www.er.ethz.ch/media/publications/phd-and-master-theses.html
http://dx.doi.org/10.1007/978-1-4614-5360-4

BIBLIOGRAPHY 50

R.C. Merton. Option pricing when underlying stock returns are discontinuous. Journal of
Financial Economics, 3(1-2):125–144, 1976. doi:10.1016/0304-405X(76)90022-2.

G. Poyiadjis, S.S. Singh, and A. Doucet. Gradient-free maximum likelihood parameter
estimation with particle filters. In American Control Conference, page p.6 pp., 2006.
ISBN 1-4244-0209-3. doi:10.1109/ACC.2006.1657187.

C.P. Robert. Simulation of truncated normal variables. Statistics and Computing, 5(2):
121–125, 1995. doi:10.1007/BF00143942.

T.B. Schön, A. Wills, and B. Ninness. System identification of nonlinear state-space
models. Automatica, 47(1):39–49, 2011. doi:10.1016/j.automatica.2010.10.013.

D. Sornette. Why stock markets crash: Critical events in complex financial systems. Prince-
ton University Press, Princeton NJ, 2009. doi:10.1515/9781400829552.

D. Sornette and Y. Malevergne. From rational bubbles to crashes. Physica A: Statistical
Mechanics and its Applications, 299(1):40–59, 2001. doi:10.1016/S0378-4371(01)00281-
3.

R. Sylvain. Sequential monte carlo methods for a dynamical model of stock prices.
Master’s thesis, ETH, 2012. URL http://www.er.ethz.ch/media/publications/

phd-and-master-theses.html.

J.J. Waterfall, F.P. Casey, R.N. Gutenkunst, K.S. Brown, C.R. Myers, P.W. Brouwer,
V. Elser, and J.P. Sethna. Sloppy-model universality class and the vandermonde matrix.
Phys. Rev. Lett., 97:150601, Oct 2006. doi:10.1103/PhysRevLett.97.150601.

M.J. Werner, K. Ide, and D. D. Sornette. Earthquake forecasting based on data assimi-
lation: sequential monte carlo methods for renewal point processes. Nonlin. Processes
Geophys., 18(1):49–70, 2011. doi:10.5194/npg-18-49-2011.

X. Yang and K. Xing. Stochastic Optimization - Seeing the Optimal for the Uncertain,
chapter Joint State and Parameter Estimation in Particle Filtering and Stochastic Op-
timization. InTech, 2011. ISBN 978-953-307-829-8. doi:10.5772/14658.

Y. Yukalov, D. Sornette, and E.P. Yukalova. Nonlinear dynamical model of regime switch-
ing between conventions and business cycles. Journal of Economic Behavior Organiza-
tion, 70(1-2):206–230, 2009. doi:10.1016/j.jebo.2008.12.004.

http://dx.doi.org/10.1016/0304-405X(76)90022-2
http://dx.doi.org/10.1109/ACC.2006.1657187
http://dx.doi.org/10.1007/BF00143942
http://dx.doi.org/10.1016/j.automatica.2010.10.013
http://dx.doi.org/10.1515/9781400829552
http://dx.doi.org/10.1016/S0378-4371(01)00281-3
http://dx.doi.org/10.1016/S0378-4371(01)00281-3
http://www.er.ethz.ch/media/publications/phd-and-master-theses.html
http://www.er.ethz.ch/media/publications/phd-and-master-theses.html
http://dx.doi.org/10.1103/PhysRevLett.97.150601
http://dx.doi.org/10.5194/npg-18-49-2011
http://dx.doi.org/10.5772/14658
http://dx.doi.org/10.1016/j.jebo.2008.12.004

Appendices

51

Appendix A

Pseudo code

A.1 SIR particle filter algorithm

Using the notation in Johannes et al. [2009] the SIR particle filter is implemented using
the following generic algorithm:

1. given initial particles {(I(i)
t�1

, J

(i)

t�1

),⇡(i)

t�1

}N
i=1

we simulate new states (I(i)
t

, J

(i)

t

) by first
computing

X

t

= (1� a)X̄ + aX

t�1

+ ⌘(r
t�1

� r̄) , (A.1)

�

2

t

= �̄

2(1� ↵� �) + ↵(r
t�1

� r̄)2 + ��

2

t�1

, (A.2)

then for i = 1, ..., N

Î

(i)

t

⇠ Bernoulli(L(X
t

)) , (A.3)

Ĵ

(i)

t

⇠ exp(1) if Î(i)
t

= 1 . (A.4)

Then evaluate the filtering weights according to

w

(i)

t

/ p(r
t

| L̂(i)

t

) (A.5a)

= �(r
t

|µ = (r̄ + L(X
t

)� J

(i)

t

I

(i)

t

,� = �

t

) (A.5b)

Resample the particles by drawing indices

z(i) ⇠ Mult(N ;w(1)

t

, ..., w

(N)

t

) , (A.6)

and set (I(i)
t

, J

(i)

t

) = (Iz(i)
t

, J

z(i)

t

).

A.2 APF particle filter algorithm

Following the APF algorithm approach in Johannes et al. [2009] the pseudo code becomes:

52

A.3 Fixed state augmentation 53

1. given initial particles {(I(i)
t�1

, J

(i)

t�1

),⇡(i)

t�1

}N
i=1

we compute (Î(i)
t

, Ĵ

(i)

t

) by first computing

X

t

= (1� a)X̄ + aX

t�1

+ ⌘(r
t�1

� r̄) , (A.7)

�

2

t

= �̄

2(1� ↵� �) + ↵(r
t�1

� r̄)2 + ��

2

t�1

, (A.8)

then for i = 1, ..., N

Î

(i)

t

⇠ Bernoulli(L(X
t

)) , (A.9)

Ĵ

(i)

t

⇠ exp(1) if Î(i)
t

= 1 . (A.10)

Then evaluate the first stage weights, using {Î(i)
t

, Ĵ

(i)

t

}, according to

w

(i)

t

/ p(r
t

| L̂(i)

t

) , (A.11a)

= �(r
t

|µ = (r̄ + L(X
t

)� J

(i)

t

I

(i)

t

,� = �

t

) . (A.11b)

Resample the intial particles by drawing indices

z(i) ⇠ Mult(N ;w(1)

t

, ..., w

(N)

t

) , (A.12)

and set (I(i)
t�1

, J

(i)

t�1

) = (Iz(i)
t�1

, J

z(i)

t�1

) and (Î(i)
t

, Ĵ

(i)

t

) = (Îz(i)
t

, Ĵ

z(i)

t

).

2. Generate new states, i.e number of jumps I
t

from p(I
t

| X
t

,�

2

t

, r

t

), using the proba-

bilities {p(i)
k

}1
k=0

defined by

p

(i)

0

= �

t

· f
emg

(r
t

; r̄ + �

t

,�

t

,) , (A.13)

p

(i)

1

= (1� �

t

) · �(r
t

; r̄ + �

t

,�

t

) . (A.14)

3. Generate the total jump sizes J̃
t

from p(J̃
t

| I
t

= 1, X
t

,�

2

t

, r

t

).

4. Finally compute the second stage weights.

⇡

(i)

t

, (A.15)

where �

t

= 1/(1 + exp(X
t

)).

A.3 Fixed state augmentation

Fixed state augmentation follows the generic algorith as follows:

1. At t=0, For i=1,....N simulate ✓

(i)

0

= ((r̄(i), k(i), X̄(i)

, ⌘

(i)

, w

(i)

,↵

(i)

,�

(i)

, a

(i))) accord-
ing to some prior distribution and similarly for the jump times and sizes

2. Given initial particles {(I(i)
t�1

, J

(i)

t�1

), ✓(i)
t�1

}N
i=1

compute (X(i)

t

, (�2

t

)(i)) for each parame-

ter particle ✓(i)
t�1

and set ✓(i)
t

= ✓

(i)

t�1

and simulate new jump times and sizes according
to

Î

(i)

t

⇠ Bernoulli(L(X(i)

t

)) , (A.16)

Ĵ

(i)

t

⇠ exp(1) if Î(i)
t

= 1 . (A.17)

A.3 Fixed state augmentation 54

3. Estimate the filtering weights at time t according to

⇡

(i)

t

= p(r
t

| L(i)

t

) , (A.18a)

= �(r
t

|µ = (r̄(i)
t

+

(i)

t

L(X(i)

t

)�

(i)

t

J

(i)

t

I

(i)

t

,� = �

(i)

t

) . (A.18b)

4. Resample the particles by drawing indices

z(i) ⇠ Mult(N ;⇡(1)

t

, ...,⇡

(N)

t

) , (A.19)

and set (I(i)
t

, J

(i)

t

) = (Iz(i)
t

, J

z(i)

t

) and ✓

(i)

t

= ✓

z(i)

t

Appendix B

Code

B.1 SIR C++ code

Listing B.1: SIR C++ code
/⇤ Input ⇤/
// Time s e r i e s o f l o g re turns
// Number o f p a r t i c l e s

/⇤ Output ⇤/
// I J ⇤/
// p i l o g l i k ⇤/

#include<iostream> // Inc lude in /out f unc t i on
#include<f stream>
#include<s t r i ng>
#include<vector>
#include<random>
#include<math . h>
#include<c s td io>
#include<ctime>
#include<time . h>
#include<algor ithm> // f o r low bound and upper bound
#include<i t e r a t o r> // s t d : : begin , s t d : : end
#include<iomanip> // f o r setw
using namespace std ; // The namespace

#ifndef M PI
#de f i n e M PI 3.14159265358979323846264L

#endif

// Normal cumula t ive d en s i t y f unc t i on :
long double pnorm(long double q , long double mu=0.0L , long double sd=1.0L) {

const long double SQRTHL = 7.071067811865475244008 e�1L ;
long double x , y , z ;

x = (q�mu)/ sd ⇤ SQRTHL;
z = abs (x) ;

i f (z < SQRTHL)
y = 0 .5L + 0 .5L ⇤ e r f (x) ;

else

{

55

B.1 SIR C++ code 56

y = 0 .5L ⇤ e r f c (z) ;

i f (x > 0 .0L)
y = 1 .0L � y ;

}
return y ;

}

// sgn func t i on
long double s i gn (long double x) {

i f (x >= 0.0L) {
return 1 .0L ;

}
else {

return �1.0L ;
}

}

// Normal d en s i t y :
long double dnorm(long double x , long double mu=0.0L , long double sd2=1.0L) {

// sd2 denotes the var iance
return exp (�.5L⇤(x�mu)⇤ (x�mu)/ sd2 � .91893853320467274178L)/ sq r t (sd2) ;

}

// Exponent ia l modi f i ed Gaussian den s i t y :
long double demg(long double x , long double mu, long double sd , long double k) {

return 1 .0L/abs (k)⇤ exp ((x�mu)/k + sd⇤ sd / (2 . 0L⇤k⇤k)) ⇤
(1 . 0L � pnorm ((s i gn (k)⇤ ((x�mu)/ sd + sd/k)))) ;

}

long double L(long double x) {
return (1 . 0L/ (1 . 0L+exp (�1.0L⇤x))) ;

}

int main () {

random device rd ;
u i n t 32 t seed=time (NULL) ;

// Number o f Monte Carlo s imu l a t i on s :
unsigned int N = 10000;

// Exact va l u e s :
long double mu; long double sigma0 ; long double alpha ; long double beta ;
long double K0; long double Xbar ; long double eta ; long double a ;
mu = 0.00028L ; sigma0 = sq r t ((0 . 2 5L⇤0 .25L)/250 .0L) ; alpha = 0.05L ;
beta = 0.94L ; K0 = 0.04L ; Xbar = �5.0L ; eta = 3 .0L ; a = 0.996L ;

// Reading data from s imu la ted the Jump Di f f u s i on model :
//��//
// Length o f time s e r i e s :
unsigned int Ts = 0 ;

vector<long double> r ;
vector<long double> X rea l ;
vector<long double> V rea l ;
vector<int> c h r a s h a c t i v i t y ;
vector<long double> c h r a s h s i z e ;

FILE ⇤ myFile ;

B.1 SIR C++ code 57

myFile = fopen (”sim10000 . csv ” , ”r ”) ;

i f (myFile !=NULL) {
cout << ”Su c c e s s f u l l y opened the f i l e \n” ;

long double aux r , aux X real , aux V real , aux ch ra sh s i z e ;
int aux ch ra sh a c t i v i t y ;

while (f s c a n f (myFile , ”%Lf ,%Lf ,% i ,%Lf ,%Lf\n” ,
&aux X real , &aux V real , &aux ch ra sh ac t i v i t y ,
&aux chra sh s i z e , &aux r) == 5) {

X rea l . push back (aux X rea l) ;
V rea l . push back (aux V rea l) ;
c h r a s h a c t i v i t y . push back (aux ch ra sh a c t i v i t y) ;
c h r a s h s i z e . push back (aux ch ra sh s i z e) ;
r . push back (aux r) ;
Ts++;

}

f c l o s e (myFile) ;
cout << ”Data read \n” ;

}
else {

cout << ”Unable to open the f i l e \n” ;
return 0 ;

}

cout << ”Ts=” << Ts << endl ;
cout << ”Random Seed=” << rd () << endl ;
cout << ”Random Seed=” << seed << endl ;

unsigned int T = Ts⇤N;

vector<unsigned int> I (T) ;
vector<long double> J (T) ;
vector<long double> pi (T) ;

// For check ing convergence in p a r t i c l e f i l t e r s :
vector<double> FF(Ts) ;

// D i s t r i b u t i o n s needed f o r the computat ions / a l gor i thm :
de fau l t random eng ine genera to r ;
genera to r . seed (seed) ; // Seeded d i f f e r e n t l y each time

e xpon en t i a l d i s t r i bu t i o n<long double> exponent i a l (1 . 0L) ;
no rma l d i s t r i bu t i on<long double> normal (0 . 0L , 1 . 0L) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> un i f (0 . 0L , 1 . 0L) ;

cout << ”End i n i t i a l i s a t i o n ” << endl ;

//��//
// Vector con ta in ing the f i r s t s t a g e we i gh t s a t time t :
vector<long double> W(N) ;

// Vector con ta in ing the normal i z ing f i r s t s t a g e we i gh t s a t time t
vector<long double> nW(N) ;
// Vector con ta in ing the cumula t ive sum of the normal ized f i r s t s t a g e we i gh t s
// at time t+1
vector<long double> Q((N+1)) ;

B.1 SIR C++ code 58

// Vector con ta in ing the p o s i t i o n o f the re�sampled s t a t e s a t time t+1
vector<unsigned int> B(N) ;

// Vectors conta ing the resampled s t a t e s a t time t
vector<long double> i s (N) ;
vector<long double> j s (N) ;

vector<long double> TT((N+1)) ;

// Timing the SIR a lgor i thm ;
c l o c k t s t a r t 1 ;
double durat ion1 ;
durat ion1 = 0 ;

s t a r t 1 = c lock () ;
//��//

// I n i t i a l i s a t i o n , sampling i n i t i a l s t a t e s :
b e r n o u l l i d i s t r i b u t i o n b e r n o u l l i i n i t (0 . 0 0 0 6) ;
e xpon en t i a l d i s t r i bu t i o n<long double> e x p on e n t i a l i n i t (20 . 0L) ;

for (unsigned int n=0; n<N; n++) {
I [n] = b e r n o u l l i i n i t (generator) ;
J [n] = I [n]⇤ e x p on e n t i a l i n i t (generator) ;
p i [n] = 1 .0L/N;

}

cout << ” I n i t i a l sampling done ” << endl ;

// The l o g l i k e l i h o o d sum fo r the g iven t h e t a :
long double l l s = 0 ;

cout << ”S ta r t i ng APF p a r t i c l e f i l t e r ” << endl ;

long double X = Xbar ;
long double V = sigma0 ⇤ sigma0 ⇤ (1 � alpha � beta) ;

for (unsigned int t=0; t<(T�N) ; t+=N)
{

X = (1 . 0L � a) ⇤ Xbar + a⇤X +
eta ⇤ (r [t /N] � mu) ;

V = sigma0 ⇤ sigma0 ⇤ (1 . 0L � alpha � beta) + alpha ⇤
pow((r [t /N] � mu) , 2 . 0L) + beta ⇤ V;

b e r n o u l l i d i s t r i b u t i o n b e r n ou l l i 1 (L(X)) ;

// Simula t ing new s t a t e v a r i a b l e s
for (unsigned int n=0; n<N; n++) {

I [n+t+N] = be r n ou l l i 1 (genera to r) ;
i f (I [n+t+N] == 1) {

J [n+t+N] = exponent i a l (genera to r) ;
}

}

// computing the f i l t e r i n g we i gh t s a t time t :
for (unsigned int n=0; n<N; n++) {
W[n] = dnorm(r [(t+N)/N] ,

(mu + K0 ⇤ L(X) � K0 ⇤ J [n+t+N] ⇤ I [n+t+N]) , V) ;
}

// F i r s t s t a g e resampl ing from the d i s c r e t e d i s t r i b u t i o n

B.1 SIR C++ code 59

// {L { t +1} , W { t+1}} us ing a l gor i thm in mul t inomia l sampl ing . pd f

// Normal iz ing the we i gh t s :
long double s1 ;
s1 = 0 .0L ;
for (int n=0; n<N; n++) {

s1 += W[n] ;
}

// Resampling s t ep
for (unsigned int n=0; n<N; n++) {
nW[n] = W[n] / s1 ;
// Ca l cu l a t i n g the cumula t ive sum of the normal ized we i gh t s :
// corresponding to Q:
i f (n == 0) {
Q[n] = 0 .0L ;
TT[n] = exponent i a l (genera to r) ;

}
i f (n > 0) {
Q[n] = Q[n�1] + nW[n�1] ;
TT[n] = TT[n�1] + exponent i a l (genera to r) ;

}
}
Q[N] = Q[(N�1)] + nW[(N�1)] ;
TT[N] = TT[(N�1)] + exponent i a l (genera to r) ;

unsigned int i =0; unsigned int j =1;
while (i < N) {

i f (TT[i] < (Q[j] ⇤ TT[N])) {
B[i] = (j �1);
i s [i] = I [(j�1) + t + N] ;
j s [i] = J [(j�1) + t + N] ;
i++;

}
else {

j++;
}

}
// Updating the s t a t e s
for (unsigned int n=0; n<N; n++) {

I [n+t+N] = i s [n] ;
J [n+t+N] = j s [n] ;

}

// Computing the l o g l i k e l i h o o d at each time s t ep
long double l l s t = 0 .0L ;

for (unsigned int n=0; n<N; n++) {
// Using the unnormalised p r o b a b i l i t y we i gh t s a t time t
l l s t += W[n] ;

}
long double s s ;
for (unsigned int n=0; n<N; n++) {

pi [n+t+N] = W[n] ;
s s = pi [n+t+N]/ l l s t ;
p i [n+t+N] = s s ;

}

// Updating the complete log� l i k e l i h o o d o f the f u l l t ime s e r i e s :
l l s += log (l l s t) ;

B.1 SIR C++ code 60

// cout << t << ” ” << l l s << ”\n ”;
i f (i snan (l l s) == 1) {

cout << ”NaN log l i k e l i h o o d value ! ” << ”\n” ;
break ;

}

// Checking convergence o f p a r t i c l e f i l t e r s :
double SC;
SC = 0 ;
for (unsigned int j =0; j<N; j++) {

SC += pi [j+t] ⇤ pnorm(r [(t+N)/N] ,
mu + K0 ⇤ L(X) � K0 ⇤ J [j] ⇤ I [j] ,
s q r t l (V)) ;

}
FF[t /N] = SC;

} // end o f time loop

durat ion1 += (c l o ck () � s t a r t 1) / (double) CLOCKS PER SEC;
cout << durat ion1 << ”seconds ” << endl ;

//��//
// Est imat ing the f i l t e r e d means :
vector<long double> I mean (Ts) ;
vector<long double> J mean (Ts) ;

for (unsigned int t=0; t<T; t+=N) {
long double i mean = 0 .0L ;
long double j mean = 0 .0L ;
long double j we i gh t = 0 .0L ;
for (unsigned int n=0; n<N; n++) {

// Ca l cu l a t i n g the c ond i t i o na l moment o f
// E[I]
i mean += 1.0L / N ⇤ I [t+n] ;
i f (I [t+n] == 1) {

j we i gh t += 1.0L ;
}

}

for (unsigned int n=0; n<N; n++) {
i f (I [n+t] == 1) {

// Ca l cu l a t i n g the c ond i t i o na l mean o f J
j mean += 1.0L / j we i gh t ⇤ J [t+n] ;

}
else {

j mean += 0.0L ;
}

}

I mean [t /N] = i mean ;
J mean [t /N] = j mean ;

}
// Saving the data :
ofstream myf i l e s im ;
myf i l e s im . open (”SIR10000 . csv ”) ;
for (unsigned int i =0; i<Ts ; i++) {

myf i l e s im << I mean [i] << ” , ” << J mean [i]
<< ”\n” ;

}
myf i l e s im . c l o s e () ;

B.2 APF C++ code 61

//��//
// Saving the convergence data :
ofstream myf i l e s im2 ;
myf i l e s im2 . open (”convergenceSIR . csv ”) ;

for (unsigned int i =0; i<Ts ; i++) {
myf i l e s im2 << FF[i] << ”\n” ;

}
myf i l e s im2 . c l o s e () ;
//��//
return 0 ;

}

B.2 APF C++ code

Listing B.2: APF C++ code
/⇤ Input ⇤/
// Time s e r i e s o f l o g re turns
// Number o f p a r t i c l e s

/⇤ Output ⇤/
// I J ⇤/
// p i l o g l i k ⇤/

#include<iostream> // Inc lude in /out f unc t i on
#include<f stream>
#include<s t r i ng>
#include<vector>
#include<random>
#include<math . h>
#include<c s td io>
#include<ctime>
#include<time . h>
#include<algor ithm> // f o r low bound and upper bound
#include<i t e r a t o r> // s t d : : begin , s t d : : end
#include<iomanip> // f o r setw
using namespace std ; // The namespace

#ifndef M PI
#de f i n e M PI 3.14159265358979323846264L

#endif

// Normal cumula t ive d en s i t y f unc t i on :
long double pnorm(long double q , long double mu=0.0L , long double sd=1.0L) {

const long double SQRTHL = 7.071067811865475244008 e�1L ;
long double x , y , z ;

x = (q�mu)/ sd ⇤ SQRTHL;
z = abs (x) ;

i f (z < SQRTHL)
y = 0 .5L + 0 .5L ⇤ e r f (x) ;

else

{
y = 0 .5L ⇤ e r f c (z) ;

i f (x > 0 .0L)
y = 1 .0L � y ;

}

B.2 APF C++ code 62

return y ;
}

// sgn func t i on
long double s i gn (long double x) {

i f (x >= 0.0L) {
return 1 .0L ;

}
else {

return �1.0L ;
}

}

// Normal d en s i t y :
long double dnorm(long double x , long double mu=0.0L , long double sd2=1.0L) {

// sd2 denotes the var iance
return exp (�.5L⇤(x�mu)⇤ (x�mu)/ sd2 � .91893853320467274178L)/ sq r t (sd2) ;

}

// Exponent ia l modi f i ed Gaussian den s i t y :
long double demg(long double x , long double mu, long double sd , long double k) {

return 1 .0L/abs (k)⇤ exp ((x�mu)/k + sd⇤ sd / (2 . 0L⇤k⇤k)) ⇤
(1 . 0L � pnorm ((s i gn (k)⇤ ((x�mu)/ sd + sd/k)))) ;

}

long double L(long double x) {
return (1 . 0L/ (1 . 0L+exp (�1.0L⇤x))) ;

}

int main () {

random device rd ;
u i n t 32 t seed=time (NULL) ;

// Number o f Monte Carlo s imu l a t i on s :
unsigned int N = 10000;

// Exact va l u e s :
long double mu; long double sigma0 ; long double alpha ; long double beta ;
long double K0; long double Xbar ; long double eta ; long double a ;
mu = 0.00028L ; sigma0 = sq r t ((0 . 2 5L⇤0 .25L)/250 .0L) ; alpha = 0.05L ;
beta = 0.94L ; K0 = 0.04L ; Xbar = �5.0L ; eta = 3 .0L ; a = 0.996L ;

// Reading data from s imu la ted the Jump Di f f u s i on model :
//��//

// Length o f time s e r i e s :
unsigned int Ts = 0 ;

vector<long double> r ;
vector<long double> X rea l ;
vector<long double> V rea l ;
vector<int> c h r a s h a c t i v i t y ;
vector<long double> c h r a s h s i z e ;

FILE ⇤ myFile ;
myFile = fopen (”sim10000 . csv ” , ”r ”) ;

i f (myFile !=NULL) {
cout << ”Su c c e s s f u l l y opened the f i l e \n” ;

B.2 APF C++ code 63

long double aux r , aux X real , aux V real , aux ch ra sh s i z e ;
int aux ch ra sh a c t i v i t y ;

while (f s c a n f (myFile , ”%Lf ,%Lf ,% i ,%Lf ,%Lf\n” ,
&aux X real , &aux V real , &aux ch ra sh ac t i v i t y ,
&aux chra sh s i z e , &aux r) == 5) {

X rea l . push back (aux X rea l) ;
V rea l . push back (aux V rea l) ;
c h r a s h a c t i v i t y . push back (aux ch ra sh a c t i v i t y) ;
c h r a s h s i z e . push back (aux ch ra sh s i z e) ;
r . push back (aux r) ;
Ts++;

}

f c l o s e (myFile) ;
cout << ”Data read \n” ;

}
else {

cout << ”Unable to open the f i l e \n” ;
return 0 ;

}

cout << ”Ts=” << Ts << endl ;
cout << ”Random Seed=” << rd () << endl ;
cout << ”Random Seed=” << seed << endl ;

unsigned int T = Ts⇤N;

vector<unsigned int> I (T) ;
vector<long double> J (T) ;
vector<long double> pi (T) ;

// For check ing convergence in p a r t i c l e f i l t e r s :
vector<double> FF(Ts) ;

de fau l t random eng ine genera to r ;
genera to r . seed (seed) ; // Seeded d i f f e r e n t l y each time the code i s run

// D i s t r i b u t i o n s needed f o r the computat ions / a l gor i thm :
e xpon en t i a l d i s t r i bu t i o n<long double> exponent i a l (1 . 0L) ;
no rma l d i s t r i bu t i on<long double> normal (0 . 0L , 1 . 0L) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> un i f (0 . 0L , 1 . 0L) ;

cout << ”End i n i t i a l i s a t i o n ” << endl ;

//��//
// Vector con ta in ing the f i r s t s t a g e we i gh t s a t time t :
vector<long double> W(N) ;

// Vector con ta in ing the normal i z ing f i r s t s t a g e we i gh t s a t time t
vector<long double> nW(N) ;
// Vector con ta in ing the cumula t ive sum of the normal ized f i r s t s t a g e we i gh t s
// at time t+1
vector<long double> Q((N+1)) ;

// Vector con ta in ing the p o s i t i o n o f the re�sampled s t a t e s a t time t+1
vector<unsigned int> B(N) ;

// Vectors conta ing the resampled s t a t e s a t time t

B.2 APF C++ code 64

vector<long double> I ha t (N) ;
vector<long double> i h a t (N) ;
vector<long double> J hat (N) ;
vector<long double> j h a t (N) ;
vector<long double> i s (N) ;
vector<long double> j s (N) ;

// Vector con ta in ing the d en s i t y o f jump s i z e s at time t
vector<long double> DE1(N) ;
vector<long double> DE2(N) ;

// Vectors conta ing the unormal ized / normal ized jump p r o b a b i l i t i e s ,
// r e s p e c t i v e l l y , a t time t :
vector<long double> p1 (N) ;
vector<long double> P1(N) ;
// p r o b a b i l i t y o f no jump :
vector<long double> P2(N) ;

vector<long double> TT((N+1)) ;

// Timing the Pa r t i c l e F i l t e r APF a lgor i thm ;
c l o c k t s t a r t 1 ;
double durat ion1 ;
durat ion1 = 0 ;

s t a r t 1 = c lock () ;
//��//

// I n i t i a l i s a t i o n , sampling i n i t i a l s t a t e s :
b e r n o u l l i d i s t r i b u t i o n b e r n o u l l i i n i t (0 . 0 0 0 6) ;
e xpon en t i a l d i s t r i bu t i o n<long double> e x p on e n t i a l i n i t (20 . 0L) ;

for (unsigned int n=0; n<N; n++) {
I [n] = b e r n o u l l i i n i t (generator) ;
J [n] = I [n]⇤ e x p on e n t i a l i n i t (generator) ;
p i [n] = 1 .0L/N;

}

cout << ” I n i t i a l sampling done ” << endl ;

// The l o g l i k e l i h o o d sum fo r the g iven t h e t a :
long double l l s = 0 ;

cout << ”S ta r t i ng APF p a r t i c l e f i l t e r ” << endl ;

// I n i t i a l i z i n g the mispr i c ing and v o l a t i l i t y
long double X = Xbar ;
long double V = sigma0 ⇤ sigma0 ;

for (unsigned int t=0; t<(T�N) ; t+=N)
{

X = (1 . 0L � a) ⇤ Xbar + a⇤X +
eta ⇤ (r [((t+N)/N � 1)] � mu) ;

V = sigma0 ⇤ sigma0 ⇤ (1 . 0L � alpha � beta) + alpha ⇤
pow((r [((t+N)/N � 1)] � mu) , 2 . 0L) + beta ⇤ V;

b e r n o u l l i d i s t r i b u t i o n b e r n ou l l i 1 (L(X)) ;

// Eva lua t ing the f i r s t s t a g e we i gh t s :
for (unsigned int n=0; n<N; n++) {

I ha t [n] = b e r n ou l l i 1 (genera to r) ;

B.2 APF C++ code 65

i f (I ha t [n] == 1) {
J hat [n] = exponent i a l (genera to r) ;

}
}

// c a l c u l a t i n g the mean o f the log�r e tu rns i n c l u d i n g new ob s e r va t i on at
// time t :
for (unsigned int n=0; n<N; n++) {
W[n] = dnorm(r [(t+N)/N] ,

(mu + K0 ⇤ L(X) � K0 ⇤ J hat [n] ⇤ I ha t [n]) ,
V) ;

}

// F i r s t s t a g e resampl ing from the d i s c r e t e d i s t r i b u t i o n
// {L { t +1} , W { t+1}} us ing a l gor i thm in mul t inomia l sampl ing . pd f

// Normal iz ing the we i gh t s :
long double s1 ;
s1 = 0 .0L ;
for (int n=0; n<N; n++) {

s1 += W[n] ;
}

// F i r s t s t a g e resampl ing
for (unsigned int n=0; n<N; n++) {
nW[n] = W[n] / s1 ;
// Ca l cu l a t i n g the cumula t ive sum of the normal ized we i gh t s :
// corresponding to Q:
i f (n == 0) {
Q[n] = 0 .0L ;
TT[n] = exponent i a l (genera to r) ;

}
i f (n > 0) {
Q[n] = Q[n�1] + nW[n�1] ;
TT[n] = TT[n�1] + exponent i a l (genera to r) ;

}
}
Q[N] = Q[(N�1)] + nW[(N�1)] ;
TT[N] = TT[(N�1)] + exponent i a l (genera to r) ;

unsigned int i =0; unsigned int j =1;
while (i < N) {

i f (TT[i] < (Q[j] ⇤ TT[N])) {
B[i] = (j �1);
i h a t [i] = I ha t [(j �1)] ;
j h a t [i] = J hat [(j �1)] ;
i s [i] = I [(j�1)+t] ;
j s [i] = J [(j�1)+t] ;
i++;

}
else {

j++;
}

}
// Updating the s t a t e s
for (unsigned int n=0; n<N; n++) {

I ha t [n] = i ha t [n] ;
J hat [n] = j ha t [n] ;
I [n+t] = i s [n] ;
J [n+t] = j s [n] ;

B.2 APF C++ code 66

}

// Ca l cu l a t i n g the jump p r o b a b i l i t y a t time t +1:
for (unsigned int n=0; n<N; n++) {

P1 [n] = L(X) ⇤
demg(r [(t+N)/N] , (mu + K0 ⇤ L(X)) , s q r t l (V) , K0) ;

P2 [n] = (1 . 0L � L(X)) ⇤
dnorm(r [(t+N)/N] , (mu + K0 ⇤ L(X)) , V) ;

// Normalized jump p r o b a b i l i t y f o r n=1 , . . . ,N
// Rounding o f f us ing f l o o r
p1 [n] = P1 [n] / (P1 [n] + P2 [n]) ;

}

// Simula t ing new jumps :
for (unsigned int n=0; n<N; n++) {

// P r o b a b i l i t y o f jump fo r n=1 , . . . ,N
b e r n o u l l i d i s t r i b u t i o n b e r n ou l l i (p1 [n]) ;
I [n+t+N] = b e r n ou l l i (genera to r) ;

}

// Simulate jump s i z e s in case a jump has occured :
for (unsigned int n=0; n<N; n++) {

i f (I [n+t+N] == 1) {
long double a t i l d e = �1.0L ⇤ (

r [(t+N)/N] � (mu + K0 ⇤ L(X)) +
1 .0L / K0 ⇤ V
) ;

// accept�r e j e c t a l gor i thm
e xpon en t i a l d i s t r i bu t i o n<long double> expj (1 . 0L/K0) ;
long double zz = expj (genera to r) ;
long double r a t i o = expl (�

(zz � a t i l d e)⇤ (zz � a t i l d e) /
(2 . 0L ⇤ V) �
(
a t i l d e ⇤ 1 .0L / K0 + 1 .0L / K0 ⇤
1 .0L / K0 ⇤ V / 2 .0L �
1 .0L / K0 ⇤ zz
)

) ;

long double u = un i f (genera to r) ;
while (u > r a t i o) {

zz = expj (genera to r) ;
r a t i o = exp(�

(zz � a t i l d e)⇤ (zz � a t i l d e) /
(2 . 0L ⇤ V) �
(
a t i l d e ⇤ 1 .0L / K0 + 1 .0L / K0 ⇤
1 .0L / K0 ⇤ V / 2 .0L �
1 .0L / K0 ⇤ zz
)

) ;
u = un i f (genera to r) ;

}

J [n+t+N] = zz ;
}
else {

J [n+t+N] = 0 .0L ;

B.2 APF C++ code 67

}
i f (J [n+t+N] < 0 .0L) {

break ;
}

}
// Ca l cu l a t i n g the jump s i z e d en s i t y at time t :
for (unsigned int n=0; n<N; n++) {

i f (I [n+t+N] == 1) {

long double a t i l d e = � (
r [(t+N)/N] �
(mu + K0 ⇤ L(X)) +
1 .0L / K0 ⇤ V
) ;

DE1[n] = 1 .0L / K0 ⇤ expl (� (1 . 0L / K0) ⇤ J [n+t+N]) ;
DE2[n] = 1 .0L / (1 . 0L � pnorm(�1.0L ⇤ a t i l d e / s q r t l (V))) ⇤

dnorm(J [n+t+N] , a t i l d e , V) ;
}
else {

// Densi ty o f the jump s i z e s not de f i ned i f no jump has occured . .
// hence i t w i l l not a f f e c t the d i s c r e t e p r o b a b i l i t y we i gh t s and
// i s t h e r e f o r e s e t to 1
DE1[n] = 1 .0L ;
DE2[n] = 1 .0L ;

}
}

// Est imat ing the unweighted d i s c r e t e p r o b a b i l i t y we i gh t s o f the
// f i l t e r i n g d i s t r i b u t i o n at time t ,
for (unsigned int n=0; n<N; n++) {

pi [n+t+N] = pi [n+t] ⇤
((

dnorm(r [(t+N)/N] ,
((mu + K0 ⇤ L(X)) �
J [n+t+N] ⇤ I [n+t+N]
) ,

V
) ⇤

pow (L(X) , I [n+t+N]) ⇤
pow ((1 . 0L � L(X)) , (1 . 0L � I [n+t+N])) ⇤
DE1[n]
) / (

pow (p1 [n] , I [n+t+N]) ⇤
pow ((1 . 0L � p1 [n]) , (1 . 0L � I [n+t+N])) ⇤
DE2[n] ⇤
W[B[n]]
)

) ;
}

// Computing the l o g l i k e l i h o o d at each time s t ep
long double l l s t = 0 .0L ;

for (unsigned int n=0; n<N; n++) {
l l s t += pi [n+t+N] ;

}
long double s s ;
for (unsigned int n=0; n<N; n++) {

s s = pi [n+t+N]/ l l s t ;

B.2 APF C++ code 68

pi [n+t+N] = s s ;
}

// Updating the complete log� l i k e l i h o o d o f the f u l l t ime s e r i e s :
l l s += log (l l s t) ;
// cout << t << ” ” << l l s << ”\n ”;
i f (i snan (l l s) == 1) {

cout << ”NaN log l i k e l i h o o d value ! ” << ”\n” ;
break ;

}

// Checking convergence o f p a r t i c l e f i l t e r s :
double SC;
SC = 0 ;
for (unsigned int j =0; j<N; j++) {

SC += pi [j+t] ⇤ pnorm(r [(t+N)/N] ,
mu + K0 ⇤ L(X) � K0 ⇤ J hat [j] ⇤ I ha t [j] ,
s q r t l (V)) ;

}
FF[t /N] = SC;

} // end o f time loop
cout << ”End o f APF p a r t i c l e f i l t e r ” << endl ;

// Applying a p a r t i c l e smoother :

// Est imat ing the computation time :
durat ion1 += (c l o ck () � s t a r t 1) / (double) CLOCKS PER SEC;
cout << durat ion1 << ”seconds ” << endl ;

//��//

// Est imat ing the means :
vector<long double> I mean (Ts) ;
vector<long double> J mean (Ts) ;

for (unsigned int t=0; t<T; t+=N) {
long double i mean = 0 .0L ;
long double j mean = 0 .0L ;
long double j we i gh t = 0 .0L ;
for (unsigned int n=0; n<N; n++) {

// Ca l cu l a t i n g the c ond i t i o na l moment o f
// E[I]
i mean += pi [n+t] ⇤ I [t+n] ;
i f (I [t+n] == 1) {

j we i gh t += pi [n+t] ;
}

}

for (unsigned int n=0; n<N; n++) {
i f (I [n+t] == 1) {

// Ca l cu l a t i n g the c ond i t i o na l mean o f J
j mean += pi [n+t] / j we i gh t ⇤ J [t+n] ;

}
else {

j mean += 0.0L ;
}

}
I mean [t /N] = i mean ;
J mean [t /N] = j mean ;

}

B.3 Fixed state augmentation C++ code 69

// Saving the data :
ofstream myf i l e s im ;
myf i l e s im . open (”APF10000 . csv ”) ;
for (unsigned int i =0; i<Ts ; i++) {

myf i l e s im << I mean [i] << ” , ” << J mean [i]
<< ”\n” ;

}
myf i l e s im . c l o s e () ;
//��//
// Saving the convergence data :
ofstream myf i l e s im2 ;
myf i l e s im2 . open (”convergenceAPF . csv ”) ;

for (unsigned int i =0; i<Ts ; i++) {
myf i l e s im2 << FF[i] << ”\n” ;

}
myf i l e s im2 . c l o s e () ;
//��//
return 0 ;

}

B.3 Fixed state augmentation C++ code

Listing B.3: Fixed state augmentation C++ code
// S ta t e Augmentation wi th f i x e d parameters : :

/⇤ Input ⇤/
// Time s e r i e s o f l o g re turns
// Number o f p a r t i c l e s

/⇤ Output ⇤/
// I J \ t h e t a ⇤/

#include<iostream> // Inc lude in /out f unc t i on
#include<f stream>
#include<s t r i ng>
#include<vector>
#include<random>
#include<math . h>
#include<c s td io>
#include<ctime>
#include<time . h>
#include<algor ithm> // f o r low bound and upper bound
#include<i t e r a t o r> // s t d : : begin , s t d : : end
#include<iomanip> // f o r setw
using namespace std ; // The namespace

#ifndef M PI
#de f i n e M PI 3.14159265358979323846264L

#endif

// sgn func t i on
long double s i gn (long double x) {

i f (x >= 0.0L) {
return 1 .0L ;

}
else {

return �1.0L ;
}

B.3 Fixed state augmentation C++ code 70

}

// Normal d en s i t y :
long double dnorm(long double x , long double mu=0.0L , long double sd2=1.0L) {

// sd2 denotes the var iance
return exp (�.5L⇤(x�mu)⇤ (x�mu)/ sd2 � .91893853320467274178L)/ sq r t (sd2) ;

}

// Normal cumula t ive d en s i t y f unc t i on :
long double pnorm(long double q , long double mu=0.0L , long double sd=1.0L) {

const long double SQRTHL = 7.071067811865475244008 e�1L ;
long double x , y , z ;

x = (q�mu)/ sd ⇤ SQRTHL;
z = abs (x) ;

i f (z < SQRTHL)
y = 0 .5L + 0 .5L ⇤ e r f (x) ;

else

{
y = 0 .5L ⇤ e r f c (z) ;

i f (x > 0 .0L)
y = 1 .0L � y ;

}
return y ;

}

// Exponent ia l modi f i ed Gaussian den s i t y :
long double demg(long double x , long double mu, long double sd , long double k) {

return 1 .0L/abs (k)⇤ exp ((x�mu)/k + sd⇤ sd / (2 . 0L⇤k⇤k)) ⇤
(1 . 0L � pnorm ((s i gn (k)⇤ ((x�mu)/ sd + sd/k)))) ;

}

long double L(long double x) {
return (1 . 0L/ (1 . 0L+exp (�1.0L⇤x))) ;

}

int main () {

random device rd ;
u i n t 32 t seed=time (NULL) ;
// Number o f Monte Carlo s imu l a t i on s :
unsigned int N = 5000 ;
// Number o f s t a t e augmentation runs
unsigned int M=200;

// Reading data from s imu la ted the Jump Di f f u s i on model :
//��//

// Length o f time s e r i e s :
unsigned int Ts = 0 ;

vector<long double> r ;
vector<long double> X rea l ;
vector<long double> V rea l ;
vector<int> c h r a s h a c t i v i t y ;
vector<long double> c h r a s h s i z e ;

FILE ⇤ myFile ;

B.3 Fixed state augmentation C++ code 71

myFile = fopen (”sim10000 . csv ” , ”r ”) ;

i f (myFile !=NULL) {
cout << ”Su c c e s s f u l l y opened the f i l e \n” ;

long double aux r , aux X real , aux V real , aux ch ra sh s i z e ;
int aux ch ra sh a c t i v i t y ;

while (f s c a n f (myFile , ”%Lf ,%Lf ,% i ,%Lf ,%Lf\n” ,
&aux X real , &aux V real , &aux ch ra sh ac t i v i t y ,
&aux chra sh s i z e , &aux r) == 5 & Ts < 1001) {

X rea l . push back (aux X rea l) ;
V rea l . push back (aux V rea l) ;
c h r a s h a c t i v i t y . push back (aux ch ra sh a c t i v i t y) ;
c h r a s h s i z e . push back (aux ch ra sh s i z e) ;
r . push back (aux r) ;
Ts++;

}
f c l o s e (myFile) ;
cout << ”Data read \n” ;

}
else {

cout << ”Unable to open the f i l e \n” ;
return 0 ;

}

cout << ”Ts=” << Ts << endl ;
cout << ”Random Seed=” << rd () << endl ;
cout << ”Random Seed=” << seed << endl ;

unsigned int T = Ts⇤N;

// S ta t e v e c t o r s :
vector<unsigned int> I (T) ;
vector<long double> J (T) ;
// vec tor<l ong double> p i (T) ; due to SIR resampl ing s t ep
// at the end a l l we i gh t s are i d e n t i c a l and equa l to 1

vector<long double> mu(T) ;
vector<long double> sigma0 (T) ;
vector<long double> alpha (T) ;
vector<long double> beta (T) ;
vector<long double> K0(T) ;
vector<long double> Xbar (T) ;
vector<long double> eta (T) ;
vector<long double> a (T) ;

// D i s t r i b u t i o n s needed f o r the computat ions / a l gor i thm :
de fau l t random eng ine genera to r ;
genera to r . seed (seed) ; // Seeded d i f f e r e n t l y each time

e xpon en t i a l d i s t r i bu t i o n<long double> exponent i a l (1 . 0L) ;
no rma l d i s t r i bu t i on<long double> normal (1 . 0L , 1 . 0L) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> un i f (0 . 0L , 1 . 0L) ;

cout << ”End i n i t i a l i s a t i o n ” << endl ;

//��//
// Vector con ta in ing the f i r s t s t a g e we i gh t s a t time t :

vector<long double> W(N) ;

B.3 Fixed state augmentation C++ code 72

// Vector con ta in ing the normal i z ing f i r s t s t a g e we i gh t s a t time t
vector<long double> nW(N) ;
// Vector con ta in ing the cumula t ive sum of the normal ized f i r s t s t a g e we i gh t s
// at time t+1
vector<long double> Q((N+1)) ;

// Vector con ta in ing the p o s i t i o n o f the re�sampled s t a t e s a t time t+1
vector<unsigned int> B(N) ;

// Vectors conta ing the resampled s t a t e s a t time t
vector<long double> i s (N) ;
vector<long double> j s (N) ;

vector<long double> Xhat (N) ;
vector<long double> Vhat (N) ;

vector<long double> mus(N) ;
vector<long double> sigma0s (N) ;
vector<long double> a lphas (N) ;
vector<long double> betas (N) ;
vector<long double> K0s (N) ;
vector<long double> Xbars (N) ;
vector<long double> e ta s (N) ;
vector<long double> as (N) ;

vector<long double> TT((N+1)) ;

// Timing the Pa r t i c l e F i l t e r APF a lgor i thm ;
c l o c k t s t a r t 1 ;
double durat ion1 ;
durat ion1 = 0 ;

s t a r t 1 = c lock () ;
//��//

// I n i t i a l i s a t i o n , sampling i n i t i a l s t a t e s :
b e r n o u l l i d i s t r i b u t i o n b e r n o u l l i i n i t (0 . 0 0 0 6) ;
e xpon en t i a l d i s t r i bu t i o n<long double> e x p on e n t i a l i n i t (1 . 0L/0 .04L) ;

// Exact va l u e s : :
// mu = 0.00028L ; sigma0 = s q r t ((0 . 25L⇤0.25L)/250.0L) ; a lpha = 0.05L ;
// be ta = 0.94L ; K0 = 0.04L ; Xbar = �5.0L ; e ta = 3.0L ; a = 0.996L ;

un i f o rm r e a l d i s t r i b u t i o n<long double> unif mu (�0.18L/250 .0L , 0 . 3 2L/250 .0L) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> un i f s i gma0 (0 . 10L/ s q r t l (250 . 0L) ,

0 . 5L/ s q r t l (250 . 0L)) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> unif K0 (0 . 03L , 0 . 0 5L) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> uni f Xbar (�6.0L,�4.0L) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> un i f e t a (2 . 0L , 4 . 0L) ;
un i f o rm r e a l d i s t r i b u t i o n<long double> un i f a (0 . 0L , 1 . 0L) ;

// Mean es t ima t e s ob ta ined running the s t a t e augmentation M times :
// Vectors ho l d ing the d i f f e r e n t mean e s t ima t e s :
vector<long double> mu mean ((Ts�1)) ;
vector<long double> sigma0 mean ((Ts�1)) ;
vector<long double> alpha mean ((Ts�1)) ;
vector<long double> beta mean ((Ts�1)) ;
vector<long double> K0 mean ((Ts�1)) ;
vector<long double> Xbar mean ((Ts�1)) ;

B.3 Fixed state augmentation C++ code 73

vector<long double> eta mean ((Ts�1)) ;
vector<long double> a mean ((Ts�1)) ;

// Vectors ho l d ing the d i f f e r e n t s tandard d e v i a t i o n s :
vector<long double> sdmu ((Ts�1)) ;
vector<long double> sdsigma0 ((Ts�1)) ;
vector<long double> sdalpha ((Ts�1)) ;
vector<long double> sdbeta ((Ts�1)) ;
vector<long double> sdK0 ((Ts�1)) ;
vector<long double> sdXbar ((Ts�1)) ;
vector<long double> sdeta ((Ts�1)) ;
vector<long double> sda ((Ts�1)) ;

// Vectors ho l d ing the d i f f e r e n t t h e t a i ˆ{(j)}
vector<long double> muj ((Ts�1)⇤M) ;
vector<long double> s igma0j ((Ts�1)⇤M) ;
vector<long double> a lpha j ((Ts�1)⇤M) ;
vector<long double> be ta j ((Ts�1)⇤M) ;
vector<long double> K0j ((Ts�1)⇤M) ;
vector<long double> Xbarj ((Ts�1)⇤M) ;
vector<long double> e t a j ((Ts�1)⇤M) ;
vector<long double> a j ((Ts�1)⇤M) ;

for (unsigned m=0; m<M; m++)
{

u in t32 t seed=time (NULL) ;
genera to r . seed (seed) ; // Seeded d i f f e r e n t l y each time

for (unsigned int n=0; n<N; n++) {
// I n i t i a l sampl ing o f the s t a t e s :
I [n] = b e r n o u l l i i n i t (generator) ;
J [n] = I [n]⇤ e x p on e n t i a l i n i t (generator) ;

mu[n] = unif mu (generator) ;
sigma0 [n] = un i f s i gma0 (genera to r) ;
long double E1 = exponent i a l (genera to r) ;
long double E2 = exponent i a l (genera to r) ;
long double E3 = exponent i a l (genera to r) ;
long double se = E1 + E2 + E3 ;
alpha [n] = E1 / se ;
beta [n] = E2 / se ;
K0 [n] = unif K0 (genera to r) ;
Xbar [n] = uni f Xbar (genera to r) ;
eta [n] = un i f e t a (genera to r) ;
a [n] = un i f a (genera to r) ;

// I n i t i a l i z a t i o n o f the mi spr i c ing and v o l a t i l i t y
// f o r each parameter va lue :
Xhat [n] = Xbar [n] ;
Vhat [n] = sigma0 [n] ⇤ sigma0 [n] ;

}

// The l o g l i k e l i h o o d sum fo r the g iven t h e t a :
// long doub le l l s = 0 ;

// S t a r t i n g Pa r t i c l e f i l t e r :
for (unsigned int t=0; t<(T�N) ; t+=N)

{

B.3 Fixed state augmentation C++ code 74

// Eva lua t ing the f i r s t s t a g e we i gh t s :
for (unsigned int n=0; n<N; n++) {

Xhat [n] = (1 . 0L � a [n+t]) ⇤ Xbar [n+t] + a [n+t] ⇤ Xhat [n] +
eta [n+t] ⇤ (r [t /N] � mu[n+t]) ;

Vhat [n] = sigma0 [n+t] ⇤ sigma0 [n+t] ⇤
(1 . 0L � alpha [n+t] � beta [n+t]) + alpha [n+t] ⇤
pow ((r [t /N] � mu[t+n]) , 2 . 0) + beta [n+t] ⇤ Vhat [n] ;

b e r n o u l l i d i s t r i b u t i o n b e r n ou l l i 1 (L(Xhat [n])) ;
I [n+t+N] = be r n ou l l i 1 (genera to r) ;
i f (I [n+t+N] == 1) {

J [n+t+N] = exponent i a l (genera to r) ;
}

mu[n+t+N] = mu[n+t] ;
sigma0 [n+t+N] = sigma0 [n+t] ;
alpha [n+t+N] = alpha [n+t] ;
beta [n+t+N] = beta [n+t] ;
K0 [n+t+N] = K0 [n+t] ;
Xbar [n+t+N] = Xbar [n+t] ;
e ta [n+t+N] = eta [n+t] ;
a [n+t+N] = a [n+t] ;

}

// c a l c u l a t i n g the mean o f the log�r e tu rns i n c l u d i n g new
// ob s e r va t i on at time t :
for (unsigned int n=0; n<N; n++) {
W[n] = dnorm(r [(t+N)/N] ,

(mu[n+t+N] + K0 [n+t+N] ⇤ L(Xhat [n]) �
K0[n+t+N] ⇤ J [n+t+N] ⇤ I [n+t+N]) ,

Vhat [n]) ;
}

// F i r s t s t a g e resampl ing from the d i s c r e t e d i s t r i b u t i o n
// {L { t +1} , W { t+1}} us ing a l gor i thm in mul t inomia l sampl ing . pd f

// Normal iz ing the we i gh t s :
long double s1 ;
s1 = 0 .0L ;
for (int n=0; n<N; n++) {

s1 += W[n] ;
}
// F i r s t s t a g e resampl ing

for (unsigned int n=0; n<N; n++) {
nW[n] = W[n] / s1 ;
// Ca l cu l a t i n g the cumula t ive sum of the normal ized we i gh t s :
// corresponding to Q:
i f (n == 0) {
Q[n] = 0 .0L ;
TT[n] = exponent i a l (genera to r) ;

}
i f (n > 0) {
Q[n] = Q[n�1] + nW[n�1] ;
TT[n] = TT[n�1] + exponent i a l (genera to r) ;

}
}
Q[N] = Q[(N�1)] + nW[(N�1)] ;
TT[N] = TT[(N�1)] + exponent i a l (genera to r) ;

B.3 Fixed state augmentation C++ code 75

unsigned int i =0; unsigned int j =1;
while (i < N) {

i f (TT[i] < (Q[j] ⇤ TT[N])) {
B[i] = (j �1);
// Resampling o f the s t a t e s :
i s [i] = I [(j�1)+t+N] ;
j s [i] = J [(j�1)+t+N] ;

mus [i] = mu[(j�1)+t+N] ;
s igma0s [i] = sigma0 [(j�1)+t+N] ;
a lphas [i] = alpha [(j�1)+t+N] ;
betas [i] = beta [(j�1)+t+N] ;
K0s [i] = K0 [(j�1)+t+N] ;
Xbars [i] = Xbar [(j�1)+t+N] ;
e ta s [i] = eta [(j�1)+t+N] ;
as [i] = a [(j�1)+t+N] ;

i++;
}
else {

j++;
}

}

for (unsigned int n=0; n<N; n++) {
// Updating the s t a t e s :
I [n+t+N] = i s [n] ;
J [n+t+N] = j s [n] ;

mu[n+t+N] = mus [n] ;
sigma0 [n+t+N] = sigma0s [n] ;
alpha [n+t+N] = alphas [n] ;
beta [n+t+N] = betas [n] ;
K0 [n+t+N] = K0s [n] ;
Xbar [n+t+N] = Xbars [n] ;
e ta [n+t+N] = eta s [n] ;
a [n+t+N] = as [n] ;

}
} // End o f SIR f i l t e r

//��//
// Saving the data :
for (unsigned int t=0; t<T; t+=N) {

long double mu m = 0.0L ;
long double sigma0 m = 0.0L ;
long double alpha m = 0.0L ;
long double beta m = 0.0L ;
long double K0 m = 0.0L ;
long double Xbar m = 0.0L ;
long double eta m = 0.0L ;
long double a m = 0.0L ;

for (unsigned int n=0; n<N; n++) {
mu m += 1.0/N ⇤ mu[t+n] ;
sigma0 m += 1.0/N ⇤ sigma0 [t+n] ;
alpha m += 1.0/N ⇤ alpha [t+n] ;
beta m += 1.0/N ⇤ beta [t+n] ;
K0 m += 1.0/N ⇤ K0[t+n] ;
Xbar m += 1.0/N ⇤ Xbar [t+n] ;
eta m += 1.0/N ⇤ eta [t+n] ;
a m += 1.0/N ⇤ a [t+n] ;

B.3 Fixed state augmentation C++ code 76

}
// s t o r i n g the d i f f e r e n t \ t h e t a i ˆ{(j)} f o r j =1 , . . . ,M
muj [t /N + (Ts�1)⇤m] = mu m;
s igma0j [t /N + (Ts�1)⇤m] = sigma0 m ;
a lpha j [t /N + (Ts�1)⇤m] = alpha m ;
be ta j [t /N + (Ts�1)⇤m] = beta m ;
K0j [t /N + (Ts�1)⇤m] = K0 m;
Xbarj [t /N + (Ts�1)⇤m] = Xbar m ;
e t a j [t /N + (Ts�1)⇤m] = eta m ;
a j [t /N + (Ts�1)⇤m] = a m ;

mu mean [t /N] += mu m;
sigma0 mean [t /N] += sigma0 m ;
alpha mean [t /N] += alpha m ;
beta mean [t /N] += beta m ;
K0 mean [t /N] += K0 m;
Xbar mean [t /N] += Xbar m ;
eta mean [t /N] += eta m ;
a mean [t /N] += a m ;

}
cout << m << ”\n” ;

}
for (unsigned int t=0; t<(Ts�1); t++) {

mu mean [t] /= M;
sigma0 mean [t] /= M;
alpha mean [t] /= M;
beta mean [t] /= M;
K0 mean [t] /= M;
Xbar mean [t] /= M;
eta mean [t] /= M;
a mean [t] /= M;

for (unsigned int j =0; j<M; j++) {
sdmu [t] += 1 .0L / M ⇤ (muj [t+(Ts�1)⇤ j] � mu mean [t]) ⇤

(muj [t+(Ts�1)⇤ j] � mu mean [t]) ;
sdsigma0 [t] += 1 .0L / M ⇤ (s igma0j [t+(Ts�1)⇤ j] � sigma0 mean [t]) ⇤

(s igma0j [t+(Ts�1)⇤ j] � sigma0 mean [t]) ;
sdalpha [t] += 1 .0L / M ⇤ (a lpha j [t + (Ts�1)⇤ j] � alpha mean [t]) ⇤

(a lpha j [t + (Ts�1)⇤ j] � alpha mean [t]) ;
sdbeta [t] += 1 .0L / M ⇤ (be ta j [t + (Ts�1)⇤ j] � beta mean [t]) ⇤

(be ta j [t + (Ts�1)⇤ j] � beta mean [t]) ;
sdK0 [t] += 1 .0L / M ⇤ (K0j [t + (Ts�1) ⇤ j] � K0 mean [t]) ⇤

(K0j [t + (Ts�1) ⇤ j] � K0 mean [t]) ;
sdXbar [t] += 1 .0L / M ⇤ (Xbarj [t + (Ts�1) ⇤ j] � Xbar mean [t]) ⇤

(Xbarj [t + (Ts�1) ⇤ j] � Xbar mean [t]) ;
sdeta [t] += 1 .0L / M ⇤ (e t a j [t + (Ts�1) ⇤ j] � eta mean [t]) ⇤

(e t a j [t + (Ts�1) ⇤ j] � eta mean [t]) ;
sda [t] += 1 .0L / M ⇤ (a j [t + (Ts�1) ⇤ j] � a mean [t]) ⇤

(a j [t + (Ts�1) ⇤ j] � a mean [t]) ;
}
sdmu [t] = s q r t l (sdmu [t]) ;
sdsigma0 [t] = s q r t l (sdsigma0 [t]) ;
sdalpha [t] = s q r t l (sdalpha [t]) ;
sdbeta [t] = s q r t l (sdbeta [t]) ;
sdK0 [t] = s q r t l (sdK0 [t]) ;
sdXbar [t] = s q r t l (sdXbar [t]) ;
sdeta [t] = s q r t l (sdeta [t]) ;
sda [t] = s q r t l (sda [t]) ;

}

B.3 Fixed state augmentation C++ code 77

durat ion1 += (c l o ck () � s t a r t 1) / (double) CLOCKS PER SEC;
cout << durat ion1 << ”seconds ” << endl ;

// Saving the data :

ofstream myf i l e s im ;
myf i l e s im . open (”SIR SAm1000 . csv ”) ;
for (unsigned int i =0; i<(Ts�1); i++) {

myf i l e s im << mu mean [i] << ” , ” << sdmu [i] << ” , ”
<< sigma0 mean [i] << ” , ” << sdsigma0 [i] << ” , ”
<< alpha mean [i] << ” , ” << sdalpha [i] << ” , ”
<< beta mean [i] << ” , ” << sdbeta [i] << ” , ”
<< K0 mean [i] << ” , ” << sdK0 [i] << ” , ”
<< Xbar mean [i] << ” , ” << sdXbar [i] << ” , ”
<< eta mean [i] << ” , ” << sdeta [i] << ” , ”
<< a mean [i] << ” , ” << sda [i]
<< ”\n” ;

}
myf i l e s im . c l o s e () ;

return 0 ;
}

	Introduction
	Jump-diffusion model of bubbles and crashes with non-local behavioral self-referencing
	Jump-diffusion models
	Model of bubbles and crashes with non-local behavior
	Mispricing and inherent jump probability

	Particle filtering
	Filtering
	Importance sampling
	Sequential importance sampling
	Sequential importance resampling
	Auxiliary particle filter

	Derivation of the filtering algorithm
	Jump times
	Jump sizes
	Filtering weights

	Convergence of particle filters

	Parameter estimation
	Maximum likelihood
	Expectation-maximization algorithm

	State augmentation
	Fixed parameters
	Artificial dynamics
	Priors

	Simulations
	Model simulation and stylized facts
	Model simulation
	Stylized facts

	Filtering of the states and convergence
	Filtering of the states
	Convergence of the particle filter

	Parameter estimation
	Parameter cross-sections
	State augmentation

	Conclusion of simulations

	Conclusion
	Appendices
	Pseudo code
	SIR particle filter algorithm
	APF particle filter algorithm
	Fixed state augmentation

	Code
	SIR C++ code
	APF C++ code
	Fixed state augmentation C++ code

	0:
	0:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	36:
	37:
	38:
	39:
	40:
	41:
	42:
	43:
	44:
	45:
	46:
	47:
	48:
	49:
	50:
	51:
	52:
	53:
	54:
	55:
	56:
	57:
	58:
	59:
	60:
	61:
	62:
	63:
	64:
	65:
	66:
	67:
	68:
	69:
	70:
	71:
	72:
	73:
	74:
	75:
	76:
	77:
	78:
	79:
	80:
	81:
	82:
	83:
	84:
	85:
	86:
	87:
	88:
	89:
	90:
	91:
	92:
	93:
	94:
	95:
	96:
	97:
	98:
	99:
	100:
	101:
	102:
	103:
	104:
	105:
	106:
	107:
	108:
	109:
	110:
	111:
	112:
	113:
	114:
	115:
	116:
	117:
	118:
	119:
	120:
	121:
	122:
	123:
	124:
	125:
	126:
	127:
	128:
	129:
	130:
	131:
	132:
	133:
	134:
	135:
	136:
	137:
	138:
	139:
	140:
	141:
	142:
	143:
	144:
	145:
	146:
	147:
	148:
	149:
	150:
	151:
	152:
	153:
	154:
	155:
	156:
	157:
	158:
	159:
	160:
	161:
	162:
	163:
	164:
	165:
	166:
	167:
	168:
	169:
	170:
	171:
	172:
	173:
	174:
	175:
	176:
	177:
	178:
	179:
	180:
	181:
	182:
	183:
	184:
	185:
	186:
	187:
	188:
	189:
	190:
	191:
	192:
	193:
	194:
	195:
	196:
	197:
	198:
	199:
	200:
	201:
	202:
	203:
	204:
	205:
	206:
	207:
	208:
	209:
	210:
	211:
	212:
	213:
	214:
	215:
	216:
	217:
	218:
	219:
	220:
	221:
	222:
	223:
	224:
	225:
	226:
	227:
	228:
	229:
	230:
	231:
	232:
	233:
	234:
	235:
	236:
	237:
	238:
	239:
	240:
	241:
	242:
	243:
	244:
	245:
	246:
	247:
	248:
	249:
	250:
	251:
	252:
	253:
	254:
	255:
	256:
	257:
	258:
	259:
	260:
	261:
	262:
	263:
	264:
	265:
	266:
	267:
	268:
	269:
	270:
	271:
	272:
	273:
	274:
	275:
	276:
	277:
	278:
	279:
	280:
	281:
	282:
	283:
	284:
	285:
	286:
	287:
	288:
	289:
	290:
	291:
	292:
	293:
	294:
	295:
	296:
	297:
	298:
	299:

	anm0:

