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ABSTRACT:

We study the performance of the euro/Swiss franc exchange rate in the extraordinary period from
September 6, 2011 and January 15, 2015 when the Swiss National Bank enforced a minimum ex-
change rate of 1.20 Swiss francs per euro. Within the general framework built on geometric Brownian
motions (GBM), the first-order effect of such a steric constraint would enter a priori in the form of
a repulsive entropic force associated with the paths crossing the barrier that are forbidden. It turns
out that this naive theory is proved empirically to be completely mistaken. The clue is to realise
that the random walk nature of financial prices results from the continuous anticipations of traders
about future opportunities, whose aggregate actions translate into an approximate efficient market
with almost no arbitrage opportunities. With the Swiss National Bank stated commitment to enforce
the barrier, traders’s anticipation of this action leads to a volatility of the exchange rate that depends
on the distance to the barrier. This effect described by Krugman’s model [P.R. Krugman. Target
zones and exchange rate dynamics. The Quarterly Journal of Economics, 106(3):669-682, 1991] is
supported by non-parametric measurements of the conditional drift and volatility from the data. De-
spite the obvious differences between "brainless" physical Brownian motions and complex financial
Brownian motions resulting from the aggregated investments of anticipating agents, we show that
the two systems can be described with the same mathematics after all. Using a recently proposed
extended analogy in terms of a colloidal Brownian particle embedded in a fluid of molecules associ-
ated with the underlying order book, we derive that, close to the restricting boundary, the dynamics
of both systems is described by a stochastic differential equation with a very small constant drift and
a linear diffusion coefficient.

The thesis comes with three appendices: (i) a thorough derivation of important random walk proper-
ties, (ii) a method for the perturbative calculation of cumulants of solutions to stochastic differential
equations using Feynman path integrals and diagrams, (iii) a functional renormalization group cal-
culation of the interaction between a D-dimensional fluctuating surface and a hard wall.
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1 Currencies, target zones and efficient markets

In this section we present a qualitative overview on the fundamental concepts that the thesis is based
on. We start by explaining the efficient market hypothesis and its mathematical implementation in
terms of random walks. We then go on to describe how foreign-exchange markets determine ex-
change rates and what role central banks play in this market. Finally, we explain the target zone that
was implemented by the Swiss National Bank in September 2011.

The reader is provided with references for more detailed reviews throughout the text. A basic under-
standing of physics, mathematics, finance and economics is assumed.

1.1 The efficient market hypothesis

Surely, you have already seen pictures or movies of the busy stock exchanges that exist all over the
world. You have seen traders attentively studying rapidly fluctuating prices that flatter over dozens
of screens in real-time. You have seen them reacting hectically to certain events by giving orders to
buy or to sell.
If you have a background in natural sciences you are used to studying empirical data sets taken from
experiments and then deducing theoretical models on the basis of these observations. On the other
hand, if you are given a model, you know that with certainty (within the realms of a certain precision)
the model is going to hold at all places and times. Therefore, given some initial values, we can, in
some sense, predict the future. So it is only natural that you ask yourself how the traders on financial
markets do this. What models are they applying? How can they, by studying past prices, infer what
the future prices will be? The efficient market hypothesis (EMH) provides a simple answer to this
question: they can’t!
This answer might be surprising to you and it possibly raises more questions than it has actually
answered. So let us review step by step what the efficient market hypothesis says and where it is
coming from.

Let us start by giving the definition of an ideal efficient market. A market is called efficient if [102]:

(i) the participants quickly and comprehensively obtain all information relevant to trading.

(ii) it is liquid. This means that an investor can easily buy or sell a financial product at any time.
The more liquid a market is, the more secure it is to invest. The investor knows that he can
always cash-in his assets. This easy exchange between money and financial product raises the
attractiveness of the market. On a liquid market, the myriad transactions efficiently balance
the decision of a single investor (or a small group of investors) so that individual purchases or
sales are possible at any time without destabilizing the asset prices.

(iii) there is low market friction. Market friction is a collective expression for all kinds of trading
costs. These include trader provisions, transaction costs, taxes etc. The sum of these costs is
negligible compared with the transaction volume if the market friction is low.

Recall that the price of an asset, for instance a stock, that is traded on a financial market is nothing
but the point at which supply and demand meet. If demand for the asset is increased, the price rises
and for the supply it works the other way around. Now assume that we are trading such an asset
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Figure 1.1: The blue line shows the daily GBP/USD exchange rate from January 2010 to Decem-
ber 2013. The red line shows an artificially created random walk with the same starting point and
the same average step length as the exchange rate. It seems hard to tell them apart. The efficient
market hypothesis makes this observation concrete by stating that the development of asset prices on
financial markets is indeed of stochastic nature.

on a perfectly efficient market. What can we say about its price? By assumption, we know that the
participants have all the possible information that can be used to value the asset, all trades can be
executed and market friction is negligible. Therefore, supply and demand must balance exactly at
the fair underlying value of the asset. Assume this was not so. Assume that the value of the asset
would be undervalued, say. According to the first property of efficient markets the information "asset
is undervalued" is accessible to traders. Knowing that the asset is worth more than they have to pay
for traders immediately start to bid on this asset. Consequently, the price is increased. This process
continues until the asset price reaches its fair value. Through this process market equilibrium is im-
mediately readjusted to its fair value. This is of course a highly dynamical process. All information
that becomes available to traders through news and other information channels is immediately incor-
porated into the market price. Therefore, at any point in time the price of the asset reflects its fair
value.
In essence, this is exactly the statement of the efficient market hypothesis: financial markets are com-
plex, highly efficient systems in which all possible information is aggregated, immediately digested
and reflected in fair asset prices.

Mathematically, we consider the price X of an asset as a function of time t. The EMH states that we
cannot predict future price developments with certainty. Hence, X(t) denotes a random walk. We
assume that the fundamental properties of random walks are known. See for instance [14, 24] for an
introduction.
But X(t) is not just any random walk. Since the EMH states furthermore that all the available in-
formation is fully incorporated in the present price, past prices do not have any influence on the
statistical properties of future prices at all. In the language of mathematics this just means that the
random walk is a Markov Process. As an example we show the exchange rate of British pounds
(GBP) to US dollars (USD) in figure 1.1. In the same figure we have plotted an artificially generated
random walk. Indeed, the two paths show a striking resemblance and it seems difficult to tell them
apart.

The analogy between asset prices and random walks is not a new one but dates back to Bachelier’s
famous paper Théorie de la Spéculation [4] published in 1900. In his paper, Bachelier suggested that
prices (of the Paris stock market) follow a random walk. Furthermore, he introduced and solved the
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diffusion equation five years before Einstein’s famous publication on Brownian motion [21]. Bache-
lier’s ideas fell into oblivion for more than sixty years. In the 1960s, his work was rediscovered and
largely enhanced in the following decades by Mandelbrot, Samuelson, Fama and others. See [96]
and references therein for more details on the recent history of the EMH.

While the EMH sounds very plausible in theory, we must remind ourselves that all this reasoning
relies on the assumption of efficient markets. Clearly, reality can only be an approximation of a truly
efficient market. Fama’s work (see [96] and references therein) has contributed largely to showing
that, in good approximation, real markets can be modeled as efficient. In fact, Fama [22] distin-
guishes between three different forms of market efficiency:

(i) Weak Form Efficiency: The weakest form of the EMH states that market prices reflect all
historical price information. This means that future returns cannot be predicted with only the
analysis of past prices, no matter how smart the applied method. All information that could be
extracted has already been incorporated in the latest price.

(ii) Semi-Strong Form Efficiency: The semi-strong version of efficient markets assumes that mar-
ket prices also reflect all publicly available information (e.g. geopolitical developments, new
scientific discoveries etc.). Even if a trader has all this information available, he or she can still
not make money on the financial markets without being exposed to a certain risk. We also say
that the market cannot be arbitraged or that there is no free lunch.

(iii) Strong Form Efficiency: In its strongest form, the EMH claims that market prices reflect all
information on an asset. Neither publicly available nor private information (insider information
etc.) can be used to arbitrage the market.

Fama was awarded for his work with a Nobel price in 2013. Nevertheless, the EMH goes not without
criticism. It is for a good reason that in 2013, the same year that Fama received the Nobel price for
showing that the EMH holds, Shiller was awarded with the same Nobel price for showing that the
EMH does not hold in real markets (see [96] and references therein). For a natural scientist this might
sound contradictory: How can two economists be awarded with the same prize, one for showing that
a theory holds and the other one for showing that it does not? It turns out that there is an important
and omnipresent difference between natural sciences and economics. While in natural sciences we
are used to thinking stationary and of systems being in equilibrium in economics everything is con-
ditional. This is not different for the efficient market hypothesis: If prices are next to impossible to
predict in the short run, this does not mean that they are unpredictable in the long run. Stock prices
are excessively volatile in the short run, and at a horizon of a few years the overall market is quite
predictable. On average, the market tends to move downward following periods when prices are high
and upward when prices are low [96]. See also [54] for further discussions of the EMH and its limits.
What is important for us is that, in good approximation, we may assume that the market considered
in this thesis is efficient. We will see in the next section why this is the case.

1.2 The foreign-exchange market

There are many types of asset classes that market participants can choose to invest in. Among the
most prominent there are equities, fixed income, commodities, real estate and currencies. In this
thesis we will be mainly concerned with currencies.

In every country prices are expressed in units of currency. The value of a currency itself, however,
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4.2.1 Market size

Because the market is informal, with no central clearing or exchange, market-wide data has
been in short supply. However, in March 1986 four major foreign exchange centres were
surveyed for the first time by their central banks under the auspices of the BIS6 in an effort to
redress this balance. It was decided to establish a regular triennial survey, and the number of
foreign exchange centres surveyed has grown dramatically. In April 1989, 21 countries were
surveyed; in the latest BIS Survey preliminary results, published in 2002 but referring to April
2001, 48 countries were surveyed. In summary, the volume of FX dealing in April 2001 was
$1.2 trillion per day.

The first thing to remark about this number is how high the transaction volume is. Contrast
daily London Stock Exchange (c. $10bn) or NYSE (c. $50bn) figures to see how high. The
second thing to note is that although the survey compilers have tried to eliminate straight
double counting (i.e. buyer and seller both reporting the same transaction), the nature of the
foreign exchange market means that customer orders ‘echo’ through the interbank system to
find a counterparty customer. The survey reports that non-financial customer deals account for
only 13% of the total turnover, with financial sector customers another 28%. We will return to
this point later.

While the BIS survey tells us much about the size of the market and the nature of the
transactions, it tells us nothing of the motivation and goals of the participants.

6 The Bank for International Settlements in Basle.

Figure 1.2: Schematic structure of the foreign-exchange market (FX), borrowed from [67]. The
market-making banks form the interbank-network through which deals are "cleared". There are no
brokerage fees. The banks which interact with other banks on the one side and with customers on
the other make only profit through the bid-ask spread.

can only be judged against an external reference. This reference, the exchange rate, thus becomes
the fundamental price in any economy. Most often, the references against which a currency’s value
is measured are other currencies. Determining the relative values of different currencies is the role
of the foreign-exchange market (FX) [48].
The FX is very different from for instance a stock market in the sense that it has no (physical) lo-
cation. We are talking about a decentralized market. It is relatively clear how the price of an asset
traded at a centralized market is established. As an example, think about the price of a Nestlé stock
traded at the Swiss Exchange (SIX). Since demand (ask price) of all buyers and supply (bid price) of
all sellers are aggregated at one and the same localized market, the SIX 1, one can readily read of the
price of a Nestlé stock as the position where supply and demand meet. For the FX, however, no such
centralized market exists. Figure 1.2 sketches the basic structure of the large, unregularized FX. In
the center we have the market-making banks (each working from its own dealing room) which span
the interbank-network. The exchange rate of a currency pair that the costumers see is determined
through this network. This can be understood best in terms of a simple example [67]:

A customer contacts a bank of his choice and buys a six-month forward of 10 million US-dollars vs.
yen. To avoid running overnight risk, which is risky and regulatorily expansive, the bank will need
to unwind its short dollar/long yen position before the end of the day, if possible at a profit. The
method by which it does this are two-fold: it can either hope that another customer will contact them
and ask to buy yen/sell dollars on their quoted prices, or it can go to other banks asking for prices
to sell yen/buy dollars. The likelihood of the right customer coming to that specific bank at the right
time by chance is slim but in the countless thousands (probably millions) of trades done each day,
there will be customers around the world taking the positions that our bank desires to square its book.
These interbank deals, which make up about 59% or the entire trading volume on the FX, therefore
represent the clearing system for exposure to "find" another customer. This mechanism is extremely
efficient and essentially leads to the situation that customers around the world see the same prices at

1Nowadays, "localized" is of course understood in a more abstract sense as trades are executed via internet. The
physical location of the SIX is less important.
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every time.

We have mentioned in section 1.1 that the efficient market hypothesis is only an approximation of re-
ality. It turns out that the FX has all the ingredients for an efficient market if ever there was one [67]:
The FX is by far the largest market in the world, with unparalleled liquidity. The market is open 24
hours a day except for the weekends. Information flows almost instantaneously through the market,
and there are no insider trading laws and no common taxation regime to distort market prices. There
is no brokerage commission on wholesale trading, and the only form of payment to banks for market-
making is the difference between their quoted buying and selling prices, so-called bid-ask spreads.
The number of participants in the market is huge - measured in hundreds of millions if direct and
indirect players are included. For instance, the volume of FX dealing in April 2001 was 1.2 trillion
USD per day. This daily trading volume is to be contrasted for instance with a daily trading volume
of the New York stock exchange (NYSE) of 50 billion USD.

Customers as referred to in the above example and depicted in figure 1.2 are a varied collection of
organizations. They include financial institutions like smaller banks and insurance companies, active
investment trading houses like hedge funds, industrial and commercial companies, investment man-
agers and many more. Some of these customers (the dealers), among them of course the (smaller)
banks, then trade the exchange rates further with their clients (called retail customers) earning a fee
by charging a wider bid/ask spread.

This basic and traditional understanding of the FX price mechanism is all we need to know in the
realms of this thesis. More detailed, classical introductions can be found for instance in [67, 79].
However, trading technology in the FX has undergone a radical change since the early 1990s, when
electronic broking systems have been introduced [13]. See [20, 76] for a more recent review of the
FX focusing on the structural changes due to the advent of high-frequency trading.

In the above examples of participants in the FX we have not yet mentioned one player that is of par-
ticular importance: the central bank. Central banks may trade currencies for the purpose of affecting
exchange rates. A government’s deliberate attempt to alter the exchange rate between two currencies
by buying one and selling the other is called an intervention [48]. There is a continuum of flexibility,
along which it is possible to place the value of one currency to another. Specifically, nine distinct
forms can be observed in real currency markets [30]. Starting with the most flexible one and going to
more and more fixed exchange rates, we discuss here only the five systems which are most relevant
in this thesis. See [30] for a detailed explanation of all nine forms.

(i) Free float: The central bank does not intervene in the foreign exchange market, but rather
allows private supply and demand to clear on their own. The United States is the closest to a
pure example of a free float.

(ii) Managed float: Also known as a "dirty float" it is defined as a readiness to intervene in the
FX, without defending any predetermined exchange rate. Most intervention is intended to lean
against the wind - buying the currency when it is rising and selling when it is falling. As of
2013, examples in this category are Romania and Afghanistan [37].

(iii) Target zone or band: The authorities pledge to intervene when the exchange rate hits pre-
announced margins on either side of a central parity. As we will discuss below, Switzerland
has been a prominent example of this type.

(iv) Basket peg: The exchange rate is fixed in terms of a weighted basked of currencies instead of
any one major currency, an approach that makes sense for countries with trade patterns that are
highly geographically diversified, as many in Asia.
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(v) Currency board: A currency board is a monetary institution that only issues currency that is
fully backed by foreign assets. Often, this exchange rate is fixed not just by policy, but by
law. This form of currency control was widespread in the British colonies. The purpose was to
provide the colonies with a stable currency without the associated difficulty of issuing sterling
notes and coins that were costly to replace if lost or destroyed.

Which of the above is the optimal exchange rate regime depends on the circumstances of the partic-
ular country and time. Floating is often desirable in large economies. Fixity may be desirable for
very small open economies. Small political units that have tight economic links with their neighbors
are too small to float. If the boundaries of a geographic area are drawn sufficiently large that the
trade links and income links among its constituent parts are strong compared to the trade links and
income links with its neighbors, then it is of the optimal size to constitute an independent currency
area. More rigid exchange rates are also useful for countries with history of hyperinflation which has
rendered confidence scarce and independent monetary policy no longer usable [30].

1.3 The Swiss franc target zone

Future prices move randomly due to the efficient market hypothesis. In hindsight, however, prices
reflect more than just a random process. Since prices are assumed to always reflect the exact value of
an asset at every time they tell us a story about the development of this asset. This is particularly true
for exchange rates because they express the relative economic health and prosperity of two currency
unions.

In this thesis we will be mainly concerned with the analysis of euro to Swiss franc (EUR/CHF) ex-
change rate. Let us thus review the history of the EUR/CHF exchange rate in order to have not just
a quantitative, but also a qualitative understanding of the data sets that will be analyzed with several
mathematical tools in the following sections.

The Swiss franc has a long reputation as being a safe haven currency, meaning a relatively stable
currency in a politically and economically well-developed, secure state. While this can be mainly
attributed to Switzerland’s reputation as a safe country in general, investors also perceive the Swiss
franc as a stable currency since Switzerland has always had a large percentage of its currency backed
with gold reserves. During most of the twentieth century, and long after the breakdown of Bret-
ton Woods [98], the Swiss franc remained legally linked to gold. For one thing, public opinion in
Switzerland generally held gold in high esteem as a symbol of monetary stability. More importantly,
however, a reduction in the gold stock required a fundamental reform of the legal framework of the
Swiss monetary system. The process leading up to suitable legislative reforms was lengthy and com-
plex. In 1999, the Swiss National Bank (SNB) finally decided that gold reserves of 2’500 tons (per
capita, this was more than five times the amount of gold than the second-ranked Netherlands) were
no longer required for monetary purposes and started to sell more than 1’000 tons over the course of
five years. By international comparison, the SNB has continued to hold a very significant stock of
gold [35].

As mentioned in section 1.1, economics, unlike physics, is not stationary. When looking at the de-
velopment of the EUR/CHF exchange rate over the last 15 years (figure 1.3) several regimes can be
seen and related to different economic and geopolitical developments. When the euro was introduced
in 1999, its value was set to 1.58 Swiss francs. Until March 2000, in regime I, a plateau is observed
which implies more or less steady conditions in both economies. This is followed by a depreciation
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Figure 1.3: Development of the EUR/CHF exchange rate ever since the inception of the euro in
1999. The shaded regions I-VII denote different economic and geopolitical regimes. Starting from
a relatively neutral development (I) the Swiss franc gains in value in regime II due to a lack of
credibility of the euro zone. In regime III, the tide has turned and the belief in the newly established
currency union is high. The Swiss franc appreciates again during the 2008 global financial crisis
(IV), stagnates (V), appreciates even more during the European sovereign debt crisis (VI) and is
finally halted by the 1 EUR > 1.20 CHF target zone established by the SNB in September 2011
(VII).

of the euro against the Swiss franc (and several other major currencies) during roughly three years,
until March 2003 (regime II). There have been many debates about the economic reasons behind
the steady weakening of the euro and indeed many arguments can be found (see for instance [62]
for a detailed discussion). Broadly speaking, the weakening can be attributed to an initial lack of
credibility of the euro zone. On the one hand, there was a lagging implementation of structural re-
forms in many of the euro countries which are necessary for the flexibility of the euro market to fully
unfold. On the other hand, the identification with the "Euroland", an economically and politically
homogeneous union, had not yet fully succeeded. These tendencies are finally turned in the subse-
quent regime. Regime III shows the period of the "European dream", guided by the belief that the
creation of the euro zone leads to prosperity and that the euro would replace or at least be a signif-
icant competitor to the US dollar for international commerce. This development peaked in October
2007 at around 1.67 Swiss francs per euro just before entering regime IV, the 2008 global financial
crisis. After a short plateau between March and September 2009 (regime V), we can see the deep
impact of the European debt crisis in regime VI. The debt crisis lead to investors losing faith in the
European currency union and seeking investments in more stable currencies, among them the Swiss
franc. This implied a continuous increase in demand and thereby a significant increase in value for
the Swiss franc. Although being a country with a highly appreciated currency seems like a good
thing, the Swiss economy suffered from the developments in regime VI. Switzerland is largely de-
pending on its exports, of which most of them go to countries in the euro zone. When the value of the
Swiss franc rises relative to the euro a potential customer in the euro zone will all of a sudden have
to pay more euros for the same Swiss good. This, in turn, leads to a reduced demand of Swiss export
goods and hence to a weakened Swiss economy. In September 2011, when the EUR/CHF parity was
approaching an incredibly low exchange rate of one euro per Swiss franc, passive monetary policies
(e.g. interest rates) were no longer effective and the SNB decided to intervene actively in the market
which brings us to regime VII. On the 6th of September 2011, the SNB stated in a press release [92]:
"The current massive overvaluation of the Swiss franc poses an acute threat to the Swiss economy
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and carries the risk of deflationary development. The Swiss National Bank is therefore aiming for
a substantial and sustained weakening of the Swiss franc. With immediate effect, it will no longer
tolerate a EUR/CHF exchange rate below the minimum rate of CHF 1.20. The SNB will enforce this
minimum rate with the utmost determination and is prepared to buy foreign currency in unlimited
quantities." Hence, what we see in region VII is the result of an extremely interesting and uncommon
establishment of a target zone. The Swiss franc is freely floating against the euro until it comes close
to 1.20. At this point the SNB itself becomes an FX customer and demands large amounts of euro.
This leads to an increased supply of Swiss franc and an increased demand for euro on the FX and
therefore lowers the relative value of the Swiss franc.

During the several years that the SNB has been defending the exchange rate the euro has indeed
never been valued less than 1.20 Swiss francs, with one small exception [93]: On the 5th of April
2012, a few of the transactions were concluded at a rate below the minimum exchange rate set by
the SNB. What happened was that within just a few seconds the EUR/CHF exchange rate fell from
1.2020 to 1.2000. Despite SNB offers placed in the trading systems, a few isolated transactions oc-
curred below 1.20 Swiss francs per euro. However, at no time did the best available euro exchange
rate in the market fall below the minimum exchange rate of CHF 1.20. Thus, for a short time, what
is known as segment market could be observed, in which transactions below the best price were
concluded. This situation was remedied within very few seconds, however, by means of arbitrage.
How could transactions take place below CHF 1.20 per euro despite the fact that the SNB was at all
times present in the market? As explained in section 1.2, the FX is a decentralized market. Rather
than foreign exchange being traded on a bourse, forex transactions are made directly between market
participants. Each bank has its own individual group of counterparties, and, in particular, banks with
lower ratings only have a small number of counterparties. The exchange rate below 1.20 Swiss francs
per euro were concluded by banks that do not have an agreement relating to limits with the SNB,
in other words, by banks that cannot or do not wish to trade with the SNB. The SNB was prepared
at all times to buy unlimited quantities of euros. All market participants were at all times aware of
this SNB purchase offer, including the banks without an agreement relating to limits. Consequently,
banks which sold euros for less than 1.20 Swiss francs did not receive the best market price and had
- relatively speaking - to accept losses. Since there is no compulsion to make business transactions at
the best prices, such anomalies cannot always be excluded. However, they can only be maintained for
a very short period. The following operational organization of the SNB allows the implementation
of the minimum exchange rate: Since the introduction of the minimum exchange rate, the SNB has
monitored the foreign exchange market from market opening in Asia on Sunday evening to market
closing in New York on Friday evening without any interruption. The same applies to holidays. The
interbank market, which is the market of relevance for the SNB, includes its counterparties. The
SNB accepts well over 100 banks with more than 700 trading desks as counterparties. Thanks to this
network of contacts, the global foreign exchange market is almost completely covered. On the part
of the SNB, the trading limits amount to some hundreds of billions of euros a day. These limits can
be flexibly adjusted by the SNB, should this be necessary. Via electronic trading systems, the banks
have access at all times to the offers. The SNB’s strategy for implementing the minimum exchange
rate has proved effective. On the relevant interbank market, CHF 1.20 per euro qualifies as the lowest
exchange rate. Consequently, the minimum exchange rate applied at all times.
A similar case was observed on the 25th of December 2014 where some banks offered euros for less
than 1.20 Swiss francs, and hence traded below the highest bid [61].

It is important to note that the classification in figure 1.3 into regimes is not a final, official or unique
in any way. It is merely an attempt of the author to provide a rough overview over the different
economic and geopolitical circumstances that stood behind the development of the exchange rate
during different times. The main message that we want to make here is the importance of conditional
thinking in economic analysis. An economic theory is rarely true for all market or for all times.
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Figure 1.4: Development of the EUR/CHF exchange rate after the announcement of the Swiss franc
target zone on the 6th of September 2011. The red line denotes the fixed barrier at EUR/CHF =
1.20. Particular attention should be paid to the time interval between the 8th of April and the 5th
of September 2012 (magnified) which comes closest to what we can call stationary conditions. In
the second half of 2012 and during 2013 the exchange rate is slightly more departed but remains
looming large over the barrier. The dynamics looks clearly different from a free float. In the second
half of 2014 the euro slowly but steadily depreciates due to the Swiss Gold Initiative and even more
importantly due to fiscal and political changes in the euro zone.

Thus, when testing an economic theory it should not be applied blindly to any given data set. One
should rather examine the time series 2 first by eye and make sure that the data represents relatively
steady conditions. The exact definition and appropriateness of "steady conditions" depends on the
individual problem at hand.

In this thesis we are interested in the dynamics taking place in regime VII which itself can be sub-
divided into several regimes. In figure 1.4 the more recent development of the exchange rate is
depicted. The red line denotes the fixed EUR/CHF = 1.20 barrier after the SNB announcement on
the 6th of September 2011. We can see that right after the announcement the situations seems to relax
a bit. This can be either due to the active repulsion by the SNB, due to a a cooling of the market in
reaction to the announcement or a decreased demand of Swiss francs triggered by exogenous events.
However, we also see that this was just a temporary movement. The trend reverses yet again and the
exchange rate approaches the barrier more and more. Particular attention should be paid to the period
between April and September 2012 (magnified in figure 1.4). During several months the exchange
rate remains remarkably close to the barrier and the dynamics appear particularly steady. This is why
in the following, whenever we propose a certain model, we will test the theory with data from this
region first. We shall also refer to the regime between the 8th of April and the 5th of September 2012
as the stationary region. The pressure on the Swiss franc finally relaxed in September 2012 after
European Central Bank’s president Mario Draghi’s famous speech [19] in which he announced that
the European Central Bank would do whatever if takes to preserve the euro. The stationary region
is followed by a period in which the exchange rate is slightly more departed from the barrier. But
nevertheless it remains looming large over the barrier and does not show the typical behavior of a
free float. During this period the SNB has repeatedly stated that they had not actively intervened in
the FX market ever since September 2012.

A rough indicator for the activity of the SNB on the FX can be obtained by looking at its balance
2A time series is just a sequence of data points where each data point has a timestamp. Data sets of financial assets are

typically of this form.
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Figure 1.5: The blue line denotes the EUR/CHF exchange rates. The green line represents monthly
data of the SNB’s foreign currency reserves downloaded from [77]. Increasing reserves serve as
a proxy for the active intervention on the FX by the SNB. We can see that the SNB has already
intervened heavily during the crises in 2010 but without announcing this to the public. As we will
discuss later, an unannounced intervention is much more "expensive" than an announced one. As
anticipated, we see a significant increase of reserves in the stationary region and a relatively constant
development thereafter, hinting that indeed the SNB had not been active after September 2012. In
the last quarter of 2014 the euro had been slowly but steadily depreciating. It came so close to 1.20
Swiss francs that the SNB was forced to intervene yet again in December 2014 and January 2015
resulting in even more foreign currency reserves. This is not visible here because until the time of
writing the balance sheet had not been updated on the SNB homepage.

sheet. Figure 1.5 depicts the foreign currency reserves as a function of time where we associate
increasing foreign currency reserves with the intervention of the SNB on the FX. We can see that
the SNB has already intervened heavily during the crises in 2010 but without announcing this to the
public. As we will discuss later, an unannounced intervention is much more "expensive" than an
announced one. As anticipated, we see a significant increase of reserves in the stationary region and
a relatively constant development thereafter, hinting that indeed the SNB has not been active after
September 2012.

In the last quarter of 2014, in light of the Swiss Gold Initiative [94] as well as several geopolitical
and fiscal changes in the euro zone [60], the euro has been slowly but steadily depreciating. It came
so close to 1.20 Swiss francs that the SNB was forced to intervene yet again in December 2014 and
January 2015 resulting in even more foreign currency reserves. (This is not visible in figure 1.5 be-
cause until the time of writing the balance sheet had not been updated on the SNB homepage).

Completely unexpected for many market participants and during times of consistent pressure on the
Swiss franc, the SNB stated on the 15th of January 2015 [95]: "The Swiss National Bank is discon-
tinuing the minimum exchange rate of CHF 1.20 per euro. [...] The minimum exchange rate was
introduced during a period of exceptional overvaluation of the Swiss franc and an extremely high
level of uncertainty on the financial markets. This exceptional and temporary measure protected the
Swiss economy from serious harm. While the Swiss franc is still high, the overvaluation has de-
creased as a whole since the introduction of the minimum exchange rate. The economy was able
to take advantage of this phase to adjust to the new situation. Recently, divergences between the
monetary policies of the major currency areas have increased significantly - a trend that is likely to
become even more pronounced. The euro has depreciated considerably against the US dollar and
this, in turn, has caused the Swiss franc to weaken against the US dollar. In these circumstances,
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Figure 1.6: On the 15th of January 2015 the SNB abandoned its prevailing target zone policy and let
the EUR/CHF exchange rate float freely. The consequence was a 30% decline in just one day.

the SNB concluded that enforcing and maintaining the minimum exchange rate for the Swiss franc
against the euro is no longer justified. [...] The SNB will continue to take account of the exchange
rate situation in formulating its monetary policy in future. If necessary, it will therefore remain active
in the foreign exchange market to influence monetary conditions." (Compare this last statement to
the definition of a "dirty float" in section 1.2.)

The consequences were immediate and severe: In just one day (and even more when looking at intra
day price fluctuations) the exchange rate dropped by 30 percent (figure 1.6) and the Swiss Market
Index (SMI) declined by more than 14 percent. This unexpected decision of the SNB and its tremen-
dous impact on the Swiss economy presents a research topic in and of itself and was documented by
a myriad of media reports and interviews all over the world (see for instance [5, 17, 47] and many
more). A detailed discussion is beyond the scope of this thesis and we will focus rather on the
EUR/CHF exchange rate during September 2011 and early January 2015.

It is the aim of this thesis to examine the dynamics that arise from imposing a lower barrier to the
EUR/CHF exchange rate. We start in the next section by comparing this situation to a physical par-
ticle that is restricted by a wall. In section 3 we take a more empirical approach and fit the data to a
general Itô process. Section 4 backs our findings from a theoretical point of view and establishes a
link to other research that has been done in this field. Finally, in section 5, we point out an analogy
between physical hindered Brownian motion in a fluid and the movement of market prices seen as
the result of a constantly changing order book. Section 6 summarizes.
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2 Physical models for foreign-exchange markets

In the previous section we have given a qualitative introduction to the dynamics of the EUR/CHF
exchange rate. In this section we aim to quantify the special dynamics of this exchange rate by
setting up a mathematical model. Throughout this process we abstract from the problem at hand and
rely on purely physical analogies. We start by describing an effective repulsive potential that arises
when a Brownian particle is subject to a confined configuration space. We proceed by deriving a
stochastic differential equation which is supposed to capture all the essential characteristics of the
exchange rate dynamics in the SNB target zone. We then verify the model numerically by estimating
the second and third cumulant of the time series. Finally, we propose yet another approach to the
problem which is based on renormalization group theory.

2.1 Brownian motion in a potential

Instead of seeing the process depicted in figure 1.4 as the stochastic movement of the EUR/CHF
exchange rate we can also rely on a physical analogy: The movement of a one-dimensional Brownian
particle subject to a wall at height 1.20. We can then use a well-established law from statistical
physics, the emergence of an effective entropic potential.

Consider a one-dimensional Brownian particle that can move freely along the entire line of real
numbers. What happens if we impose an impenetrable barrier at x = 0 such that the particle is
restricted to move only in the upper half line x > 0 and is repelled whenever it touches the barrier at
x = 0? Statistically speaking, this amounts to a reduction in entropy since the barrier has bisected
the configuration space of the particle. We are now going to show that this change in entropy gives
rise to an entropic repulsive potential that drops like the reciprocal of its distance to the barrier.

Denote by ZN the partition function of a random walker taking N steps in presence of a (reflecting)
barrier. In Appendix I we show that the partition function scales in leading order like

ZN ∼ N−1/2. (2.1)

Following Fisher [27], we can now find the repulsive potential by considering the reduced free energy
per step

fN ∼ − log

(
ZN+1

ZN

)
=

1

2
log

(
1 +

1

N

)
∼ 1

N
. (2.2)

Now we use (and show in Appendix I) that the (average) distance x of the random walk from the
barrier scales like the square root of N . Hence, statistically speaking, we then arrive at

fN ∼
1

x2
. (2.3)

So indeed, we have a long-range repulsive 1/x potential as was claimed above.

When we simulate a random walk in presence of a barrier (figure 2.1) we can see that the random
walk is clearly affected by the barrier when close to it. The more steps taken, the more regions are
explored since the average distance to the wall scales like

√
N (see Appendix I). The behavior of the

walk from figure 2.1 is clearly different from what we observe in figure 1.4. This implies that the
"particle" in figure 1.4 is not only subject to a repulsive long-range potential but there must also be
force G = G(x, t) which pushes the particle towards the barrier. It is a priori not clear what the form
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Figure 2.1: Simulation of an unbiased random walk starting at x = 1 with N = 30′000 steps and a
repulsive barrier at x = 0 (red line). The average distance from the barrier scales like

√
N .

of G should be. As was already pointed out in section 1.1, in economics everything is dynamic and
not stationary like many problems in physics are. This is why we have denoted the force G with an
explicit t dependence which makes it extremely difficult to come up with a reasonable form for G.
The best we can do is assume that at least during certain time periods G is approximately stationary.
Considering the region between April and September 2012 in figure 1.4 it seems plausible to assume
that during this time the economic pressure was approximately constant. Therefore, we hypothesize
that, in first approximation, the EUR/CHF exchange rate X(t) from figure 1.4 can be modeled as a
Brownian particle moving in a potential

V (X) =
c

X − 1.20
+ F × (X − 1.20), X > 1.20 (2.4)

where c > 0 and F > 0 are some constants (figure 2.3). We expect that if this description holds,
then in particular for the data between April and September 2012. It is therefore this region that we
examine first.

2.2 Exchange rate dynamics in a target zone

Quite generally, we can make the ansatz that the EUR/CHF exchange rate X (or analogously, a
Brownian particle at position X) follows an Itô process

Ẋ = f(X, t) + g(X, t)η(t) (2.5)

where f, g are two arbitrary, Itô-integrable functions. The function t 7→ η(t) denotes uncorrelated
white noise with

E [η(t)] = 0 (2.6)

and
E
[
η(t)η(t′)

]
= 2δ(t− t′). (2.7)

where δ stands for the Dirac-delta distribution. Here and in the following, we denote (theoretical)
expectation values by E and (empirical) means by 〈·〉. Mathematicians prefer to denote an Itô process
rather by

dX = f(X, t) + g(X, t)dW (t) (2.8)
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Figure 2.2: Graph of potential (2.4) with c = F = 1 and r ≡ X−1.20. The EUR/CHF exchange rate
after September 2011, when the SNB started to defend a minimum exchange rate of 1.20 Swiss francs
per euro, are expected to be in a potential of this form at least in first approximation of stationarity.
The decaying, repulsive part comes from the 1/r (long-range) entropic potential due to the barrier.
The attractive part represents the economic distress which strengthens the Swiss franc relative to the
euro. The minimum req represents the stable equilibrium. Clearly, the potential is asymmetric around
req.

with dWt = η(t)dt the Brownian motion, also called Wiener process. We assume that the reader
is familiar with the basics of stochastic differential equations. See [58] for a crash course and [63]
for a solid introduction with applications. Stochastic differential equations are part of a mathemat-
ical branch called stochastic calculus. In-depth mathematical introductions to the topic are given
in [39, 66]. Introductions with specific emphasis on applications in finance are found in [38, 81, 82].
For applications in natural sciences [33] may be consulted.

It should be pointed out that throughout this thesis all the stochastic integrals and differential equa-
tions are interpreted in the Itô-, and not in the Stratonovich-sense. The Stratonovich calculus best
represents situations where rapidly fluctuating quantities with small but finite correlation times are
parametrized as white noise. The Itô calculus is used when discrete uncorrelated fluctuations are ap-
proximated as continuous white noise. Hence, continuous physical systems are normally described
by the Stratonovich calculus, whereas financial markets are best modeled by the Itô calculus [90,102].
Another way to see that finance requires Itô’s interpretation is that it respects causality. Think of an
investor buying an asset of price X at time t. The price increment dX can only depend on informa-
tion up to time t and the invested amount is fixed during the infinitesimal time step dt. Only after it
has changed by an amount dX at a later time t+ dt the investment can be readjusted.

Let us introduce the variable r ≡ X − 1.20 > 0 and denote the equilibrium position of potential
(2.4) by req. Furthermore, we denote by x = r − req the deviation of the EUR/CHF exchange rate
from this equilibrium. A first idea to model the exchange rate in the potential V as a stochastic
differential equation (2.5) is in terms of an Ornstein-Uhlenbeck process [97] where the curvature
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Figure 2.3: Random trajectory (green line) of a one-dimensional Brownian particle moving in a
potential V (X) (orange line). This potential is the sum of an attractive potential (purple, dashed
line) and a repulsive potential (purple, dotted line). From a physical perspective, one would expect
the EUR/CHF exchange rate between September 2011 and January 2015 to be controlled by such
force potentials.

V (2)(req) ≡ V ′′(req) ≡ d2V
dr2

∣∣∣
r=req

of the the potential V in equilibrium controls the volatility 3

ẋ = −V ′′(req)x+ gη. (2.9)

Here, we have chosen g as a constant. Note that g is also called the diffusion coefficient 4 in physics
or the volatility (coefficient) in finance. The problem with equation (2.9) is that it is symmetric under
x 7→ −x and hence neglects the asymmetry of the potential (2.4) around its equilibrium position (see
figure 2.2). The next simple process which respects this asymmetry can be obtained by considering
a Taylor approximation of V up to third order:

V (X) = V (req + x) = V (req)︸ ︷︷ ︸
≡0

+V ′(req)︸ ︷︷ ︸
=0

x+
1

2
V (2)(req)x2 +

1

6
V (3)(req)x3 +O

(
x4
)

(2.10)

with V (n) the n-th order derivative of V . This leads us to a stochastic differential equation (SDE)

ẋ = − d

dX
V (X)

≈ −V (2)(req)x− 1

2
V (3)(req)x2. (2.11)

Setting the derivative of potential (2.4) to zero

0
!

=
dV

dr

∣∣∣∣
r=req

= − c

r2
eq

+ F (2.12)

3In finance, volatility is usually defined as the standard deviation of returns
4In a physical context, Brownian motion describes the movement of a particle that is suspended in a fluid. It can then

be shown [21] that the diffusion coefficient depends on the size of the particle as well as on temperature and viscosity of
the surrounding fluid.
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we find that the equilibrium position satisfies

req =

√
c

F
. (2.13)

The second derivative in equilibrium then reads

V (2)(req) =
d2V

dr2

∣∣∣∣
r=req

= 2

√
F 3

c
(2.14)

while for the third derivative we find

V (3)(req) =
d3V

dr3

∣∣∣∣
r=req

= −6
F 2

c
. (2.15)

Finally, we have derived the following SDE for the EUR/CHF exchange rate:

ẋ = 3
F 2

c
x2 − 2

√
F 3

c
x+ gη(t). (2.16)

In particular, we have now an asymmetric distribution around the equilibrium point x = 0. However,
this comes with a price: we have a non-linear stochastic differential equation. In the next section, we
discuss a way to test our theory (2.16) without solving the actual equation.

2.3 Exchange rate dynamics: An empirical test

In the previous section we have set up a stochastic differential equation (2.16) modeling the EUR/CHF
exchange rate after September 2011. In a next step, we must, of course, find a way to verify the the-
ory empirically. Since the direct solution of (2.16) is difficult, we have set up an extensive framework
which allows us to calculate the moments and cumulants of solutions to (2.16) perturbatively. This
method relies heavily on the use of Feynman path integrals and Feynman diagrams. We thus present
here just the results and give a detailed derivation in Appendix II.

We find that the variance V of the solution to (2.16) obeys

V [x(t)] ∼ r3
eq. (2.17)

Since (2.16) is asymmetric around its equilibrium position req we can also find a non-vanishing
skewness

γ [x(t)] ≡ E

(x− E [x]√
V [x]

)3
 ∼ r2

eq. (2.18)

The idea is now to test the theory (2.16) by measuring variance and skewness of the time series. To
this end, we proceed as follows:

(i) We download tick data 5 of the EUR/CHF exchange rate ranging from the 8th of April to the
6th of September 2012 from [1]. The time series consists of approximately 1.5 million data
points. Furthermore, the data contains a bid and an ask column. We work with the mean
1
2 (bid + ask) since it is the centre of the bid-ask-spread that incorporates all the information
of the market and therefore changes randomly [70].

5Tick data denotes time series where the prices are not recorded in equal time intervals but every occurring price change
is tracked.

20



(ii) We iterate over the data with a moving window of size n. Denote by X1, . . . , Xn the data
points (EUR/CHF exchange rate) in the i-th window. Then, we calculate req of the i-th window
as

req[i] ≡ median {X1 − 1.20, X2 − 1.20, . . . , XN − 1.20} . (2.19)

Furthermore, we calculate from X1 − 1.20, . . . Xn − 1.20 the variance V[i] and the skewness
γ[i].

(iii) Denote the amount of considered windows by k. We plot the data points
(
req[i],V[i]

)
and(

req[i], γ[i]
)

logarithmically for i = 1, . . . , k. If (2.16) holds, we expect to see a straight line
with a slope equal to three for the variance plot (equation (2.17)) and a straight line with a
slope equal to two for the skewness plot (equation (2.18)).

(iv) We repeat steps (ii) and (iii) for several values of n. Concretely, we define the size of the
moving window n in units of time: 10 minutes, 1 hour, 2 hours, 4 hours, 8 hours and 1 day.

Before this can be implemented we must clarify how to calculate the variance and skewness in step
(ii) numerically. It is tempting to simply approximate the m-th moment by

E [Xm] ≈ 〈Xm〉 ≡ 1

n

n∑
i=1

Xm
i (2.20)

However, not only is convergence of (2.20) slow for "large" values of m, it even turns out that this
estimator is flawed when considering high-frequency data. We do not want to go into detail what
the problems exactly are but we rather refer to specific literature [2, 34, 104, 105] instead. For the
measurement of the variance we work with the PARK estimator [64]

VP ≡
(H − L)2

log 16
(2.21)

whereH denotes the largest (highest) and L the smallest (lowest) value in the data. For the skewness,
we work with the Bowley coefficient [9]

γB ≡
Q75% − 2Q50% +Q25%

Q75% −Q25%
(2.22)

where Qp% stands for the empirical p-percent quantile of the considered dataset. We are now ready
to implement the algorithm described above. The outcome for the variance is shown in figure 2.4
and the one for the skewness is depicted in figure 2.5 and figure 2.6. It can immediately be seen that
the expected scaling laws do not even hold remotely. It seems that somewhere our reasoning went
wrong. Lets see how we can elaborate on this.

2.4 The interfacial model

Since the simple idea of an entropic repulsive potential was not successful we have been thinking
where it could have gone wrong. In fact, we will reveal section 4 that our ansatz is fundamentally
wrong since we have not incorporated an important economic principle into our reasoning. But
before we do so, let us - for purely didactical reasons - quickly present one more idea that we have
examined. We do so because we think that although not applicable here, the method still has its
merits. Readers who are only interested in results directly applicable to the EUR/CHF exchange rate
can skip this section and keep on reading in section 3.
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Figure 2.4: Logarithmic plot of the PARK variance (2.21) as a function of the empirically observed
equilibrium (2.19). Several different window sizes are shown, as is described in the algorithm (i)-(iv)
in the text above. According to (2.17) a linear relationship with a slope equal to three (see black
slope as reference) is expected. This is not what is observed here.

As above, we will completely abstract from the problem of the EUR/CHF exchange rate and think
purely physically in terms of a Brownian particle in presence of a barrier located at X = 1.20. The
approach we take now is based on a method called renormalization group (RG). The RG is a very
deep and rich model which is well-known in theoretical physics where it is used to describe systems
at criticality. A qualitative introduction to the subject is provided by Nobel laureate Kenneth Wilson
[101]. More quantitative introductions with applications to physics can be found for instance in
[28,36,78,88,100]. For readers without a background in physics there is an introduction by Sornette
[85] where the central limit theorem from statistics is proofed using arguments from renormalization
group.

The repulsive part in potential (2.4) was derived under the assumption that we have a fixed barrier
at 1.20 and a rigid interaction between the particle and the barrier. The particle moves freely until
it touches the barrier. It is then repelled and keeps on moving freely until it touches the barrier
again. This reasoning is similar to the interaction between, say, two billiard balls. Denote by r the
distance between the two balls. Then, in non-smooth mechanics [11], their interaction is modeled by
a hard-core potential

VHC(r) =

{
0, r > 0
∞, r = 0.

(2.23)

The billiard balls do not feel each other until they touch. Once they are in contact, energy and mo-
mentum is exchanged instantaneously and the balls keep on moving freely. While this rigid way
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Figure 2.5: Logarithmic plot of the Bowley coefficient (2.22) as a function of the empirically ob-
served equilibrium (2.19). Several different window sizes are shown, as is described in the algorithm
(i)-(iv) in the text above. According to (2.18) a linear relationship with a slope equal to two is ex-
pected. This is not what is observed here. We note furthermore that there are two clusters. The lower
cluster represents values where the skewness is basically zero. The reason is that there are times
where the exchange rate remains unchanged for several hours. Figure 2.6 shows the upper cluster in
more detail.

of modeling the interaction between two billiard balls is justified on a macroscopic scale, we know
that microscopically the world is actually smooth. Assume that you look at the interaction between
two billiard balls "under a magnifying glass". If you magnified sufficiently, you would see that the
hard-core repulsion that is observed macroscopically is actually mediated through a smooth repulsive
Coulomb potential VC , governed by the laws of electrodynamics. In the language of RG we would
say that upon renormalization ("zooming out") the smooth Coulomb potential VC is renormalized
into a hard-core repulsive potential VHC. This reasoning forms the basis of our next idea. It seems
unrealistic to assume that the SNB is waiting idle until the EUR/CHF is exactly at 1.20 and only
then they start to interact. Much rather, the SNB starts trading against the Swiss franc already to a
certain amount when EUR/CHF > 1.20 and they gradually increase their activity as the Swiss franc
becomes stronger. Physically, this gives rise to a particle which feels a smoothly repelling potential
VSNB, for instance of exponential form. Roughly speaking, our idea is now the following: We as-
sume that there is some microscopic potential Vmicro in which the particle is undergoing a Brownian
motion. This potential is the sum of the trading strategy of the SNB, VSNB, and some exogenous
potential, VECO, representing the economic distress. This microscopic potential is, however, not di-
rectly empirically accessible since it depends on many unknown details. What is accessible is the
renormalized, macroscopic potential Vmicro → R [Vmicro] ≡ Vmacro. The idea is then that we can
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Figure 2.6: Logarithmic plot of the Bowley coefficient (2.22) as a function of the empirically ob-
served equilibrium (2.19). Several different window sizes are shown, as is described in the algorithm
(i)-(iv) in the text above. According to (2.18) a linear relationship with a slope equal to two (see
black slope as reference) is expected. This is not what is observed here.

try several forms of microscopic potentials and see if the corresponding renormalized potential fits
empirical observations. This allows us to gain insights into the underlying microscopic structure,
such as the trading strategy of the SNB.

A random walk in the (t, ~x) plane (t is the time-coordinate, ~x the (D − 1)-dimensional space-
coordinate) can also be modeled as a fluctuating (D − 1)-dimensional interface in D-dimensional
space with a non-zero surface tension σ [87]. This analogy enables us to rely on the extensive work
that has been done on the interaction between fluctuating surfaces in statistical physics. Overviews
are provided in [46, 51, 80, 87]. In our case we have D = 2 and the fluctuating surface is rather a
fluctuating line than a surface. The surface (or line) tension σ controls the amplitude of the fluctua-
tions. In the context of finance, σ can thus be related to the volatility. Without loss of generality we
let D denote any dimension and set D = 2 only in the end.

We are working with the interface displacement model (IDM) in D dimensions where we consider
the z = 0 plane as the (D − 1)-dimensional hard wall. We denote points in this plane by the vector
ρ = (x1, . . . , xD−1). One configuration of a (D − 1)-dimensional interface is given by the func-
tion z(ρ) where z denotes the distance of the interface from the wall (height) at position ρ. The
Hamiltonian of the IDM takes the form

H(z) =

∫
dD−1ρ

(σ
2
|∇ρz(ρ)|2 + V (z(ρ))

)
. (2.24)
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Figure 2.7: A typical physical application of the interface Hamiltonian (2.24) is the description of a
wetting transition. In figure (a) we have what is called partial wetting, where the intermediate phase
β is not fully covering the bulk phase α (e.g. a solid wall) such that the bulk phases α and γ (e.g.
vapour) are in direct contact. A wetting transition occurs when the thickness of the intermediate
phase β becomes infinite (macroscopic) and there is no more direct α-γ contact. We have then a
completely wetted surface shown in (b). Such a phase transition from (a) to (b) can be described as
the unbinding of the β-γ-interface from the wall.

The first term of (2.24) controls the fluctuations of a free surface. The second term of (2.24), the
potential V (or Vmicro), is the sum of all direct, i.e. "microscopic" interaction potentials between
the wall and the interface. By microscopic we mean that these are the bare, in some sense "point-
wise mediated" interactions that are independent of the interfaces as a whole. Physically, these are
typically Van der Walls forces, Coulomb forces etc. In our case V consists of a repulsive part due to
the SNB and of an attractive part due to economic distress.

In physics, the Hamiltonian (2.24) has many applications. It can be seen as the direct interaction of a
fluctuating surface with a rigid wall or as the interaction of two fluctuating surfaces (where z(ρ) then
just denotes the relative distance between the two surface at a position ρ). One can then examine the
highly non-trivial interplay between repulsive and attractive forces which lead to phase transitions
from bound to unbound states, see for instance [52, 53, 83, 87]. Often, (2.24) is also used for the
description of wetting transitions. When we think of wetting, we think of water, or any other liquid,
in contact with a solid (e.g. dish or a piece of cloth). This is exactly one of the models one can
always keep in mind: a solid, inert substrate covered with a film of liquid in equilibrium with its
vapour. The word wetting, however, came to have a more general meaning, describing phenomena
where no liquid is present. Wetting occurs whenever a phase, β, intrudes between phases α and γ
with α, β and γ in coexistence (or one of them inert). If the thickness of the wetting layer is infinite
(macroscopic) we say the phase β wets the α − γ interface (figure 2.7). It can happen that as the
control parameters of the system (such as temperature) are changed we go from a non-wet to a wet
situation. We say we went through a wetting transition [6]. See [6, 27, 50] for details.

The "interaction" between the EUR/CHF exchange rate and the 1.20 barrier is of course not that of
two rigid straight lines. The EUR/CHF exchange rate as a function of time traces out a fluctuating
line (surface). Due to these undulations, different parts of the random-walk-line are exposed to
different repulsive and attractive forces, depending on their distance to the barrier. These complex
interactions can be taken into account by renormalizing the potential V into a renormalized potential
V` in which all the effects of fluctuations up to a certain scale ` are integrated out. In terms of the
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visualization via billiard balls, this means that we "zoom out" by a factor of ` and calculate what the
potential looks like at this magnification. For the interested reader, we present a thorough derivation
of this renormalized potential in Appendix III where we work with a method known as functional
renormalization group. In the end, the renormalized potential is found to be

V`(z) =
e(D−1)`

√
2πδ(l)

∫ ∞
−∞

dz′ V0(z′) exp

(
−(γ(`)z − z′)2

2δ2(`)

)
(2.25)

where

δ(`) =
2
(
e(3−D)/` − 1

)
(3−D)σ̄

(2.26)

denotes the width of the convolution,

σ̄ =
(2π)(D−1)/2Γ

(
D−1

2

)
σβ

ΛD−3
(2.27)

is just a constant and
γ(`) = e

3−D
2
` = b

3−D
2 = bζb (2.28)

is called the rescaling factor. See Appendix III for a detailed explanation of all the variables involved.
This is quite a neat close form solution since any microscopic potentials V can be plugged into (9.30)
and we can readily read of its renormalized form. As practical as this result is in theory, it will not
be useful in our further analysis. The reason is that we have taken the analogy between finance and
physics too far and while doing so we have been neglecting fundamental economical principles. This
will be explained in detail in section 4.
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3 Extracting equations from financial time series

As already in the previous section, our goal is to find a suitable stochastic differential equation (2.5)
which models the EUR/CHF exchange rate in the target zone enforced by the SNB since September
2011. Our previous analysis in terms of steric entropic interactions has not been successful. There-
fore, in this section, we take a more direct approach by fitting the functions f and g in (2.5) to the
time series of the EUR/CHF exchange rate. We start by deriving expressions for f and g as limits
of realized observations. We then discuss an algorithm which allows us to extract f and g approx-
imately from the data. Using a Monte-Carlo scheme, the validity of the algorithm is tested on a
model equation. Next, the algorithm is applied to the EUR/CHF exchange rate. Finally, we discuss
the numerical stability of the presented results.

3.1 Iteration of an Itô process

Motivated by the derivation of Risken [68] we want to express f and g in equation (2.5) as a limit
of realized values X . It will be of crucial importance to make the distinction between Itô’s and
Stratonovich’s definition for the stochastic integral. Hence, it is best to do the derivation with some
mathematical rigor and we will therefore be working with the mathematician’s notation. We start by
writing (2.5) in the equivalent form

X(t+ τ)−X =

t+τ∫
t

dt′ f(X(t′), t′) +

t+τ∫
t

dW (t′) g(X(t′), t′) (3.1)

where X is short for X(t) and W (t) is a Wiener process. In a physicist’s notation, we have

w(τ) ≡W (t+ τ)−W (t) =

t+τ∫
t

dt′ η(t′). (3.2)

Since η(t) is Gaussian distributed, so is w(τ). Using (2.6) and (2.7) we find furthermore

w(0) = 0 (3.3)

E [w(τ)] = 0 (3.4)

E [w(τ1)w(τ2)] = 2min {τ1, τ2} . (3.5)

These are the defining properties of the Wiener process and so we see that the physicist’s notation is
consistent with the mathematician’s.

Assume that f and g can be expanded in their first argument,

f(X(t′), t′) = f(X, t′) + f ′(X, t′)
(
X(t′)−X

)
+ . . . (3.6)

with

f ′(X, t′) ≡ ∂

∂X
f(X, t′) ≡ ∂

∂X(t′)
f(X(t′), t′)

∣∣∣∣
X(t′)=X

(3.7)
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and similar for g. We can plug this expansion both for f and g into (3.1) and obtain

X(t+ τ)−X =

t+τ∫
t

dt′ f(X, t′) +

t+τ∫
t

dW (t′) g(X, t′) (3.8)

+

t+τ∫
t

dt′ f ′(X, t′)
(
X(t′)−X

)
+

t+τ∫
t

dW (t′) g′(X, t′)
(
X(t′)−X

)
(3.9)

+ . . .

For the zeroth order approximation (3.8) we have just

t+τ∫
t

dt′ f(X, t′) +

t+τ∫
t

dW (t′) g(X, t′) = f ′(X, t+ Θ1τ)τ + g(X, t+ Θ2τ)w(τ) (3.10)

for some Θ1,2 ∈ [0, 1] which is a direct consequence of the mean-value theorem of integration theory
and its stochastic analogon, see [44]. The first order approximation (3.9) can be iterated by expanding
X(t′)−X as

X(t′)−X =

t′∫
t

dt′′ f(X(t′′), t′′) +

t′∫
t

dW (t′′) g(X(t′′), t′′)

=

t′∫
t

dt′′ f(X, t′′) +

t′∫
t

dW (t′′) g(X, t′′) + . . . (3.11)

+

t′∫
t

dt′′ f ′(X, t′′)
(
X(t′′)−X

)
+

t′∫
t

dW (t′′) g′(X, t′′)
(
X(t′′)−X

)
+ . . . (3.12)

Plugging this expansion into (3.9), taking expectation values on both sides and using (3.3)-(3.5) we
find in first order

E [X(t+ τ)−X] = f(X, t+ Θ1τ)τ

+ g′(X, t+ Θ3τ)g(X, t+ Θ2Θ3τ)E

 τ∫
0

dW (τ ′) w(τ ′)

 . (3.13)

Now we use that

E

 τ∫
0

dW (τ ′) w(τ ′)

 Itô
= E

[
w2(τ)

2
− τ
]

(3.5)
= 0 (3.14)

from which we finally conclude

f(X, t) = lim
τ→0

1

τ
E [X(t+ τ)−X] . (3.15)

Higher order corrections are at least of linear order in τ and hence negligible in the limit where
τ → 0. Note that (3.14) is different in the Stratonovich interpretation where we have

E

 τ∫
0

dW (τ ′) w(τ ′)

 Stratonovich
= E

[
w2(τ)

2

]
(3.5)
= τ (3.16)
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and thus
f(X, t) + g′(X, t)g(X, t)

Stratonovich
= lim

τ→0

1

τ
E [X(t+ τ)−X] . (3.17)

We see that the distinction between Itô’s and Stratonovich’s definitions of stochastic integrals leads
to non-trivial differences and hence it is important that we stick to Itô’s definitions. In this thesis we
are always using Itô’s results (see also section 2.2).

In the same fashion that we have just derived (3.15) we can also find

g2(X, t) = lim
τ→0

1

τ
E
[
(X(t+ τ)−X)2

]
. (3.18)

3.2 Extracting equations from empirical data

In the previous section we have found that the functions f and g in (2.5) can be written as the limits
6

f(X, t) = lim
τ→0

1

τ
E [X(t+ τ)−X] (3.19)

g(X, t) =

√
lim
τ→0

1

τ
E
[
(X(t+ τ)−X)2

]
. (3.20)

Let us now assume that we are examining a stationary process, f(X, t) = f(X) and g(X, t) = g(X).
If we are given a time series with corresponding measured data of high frequency, i.e. τ is small, we
can approximate

f(X) ≈ 1

τ
〈X(t+ τ)−X〉 (3.21)

g(X) ≈
√

1

τ

〈
(X(t+ τ)−X)2

〉
(3.22)

with 〈·〉 the sample mean which converges to the expectation value E [·] according to the law of large
numbers. On this basis, Friedrich et al. [31] have suggested an algorithm which takes a time series
and returns numerical approximations of f and g. It works as follows:

(i) We start from any given time series ts that is a realization of an Itô process (2.5) for some
unknown functions f and g. It is assumed that the data comes with equally spaced time stamps
of distance τ . We denote by tsmin = min(ts) the minimum value and by tsmax = max(ts)
the maximum value in ts.

(ii) Divide the value range [tsmin,tsmax] into K bins B1, . . . , BK . Take the middle of each bin
to discretize the value range [tsmin,tsmax] into K discrete points x1, . . . , xK . These xi will
serve as arguments for the sampled functions f and g below.

(iii) Iterate over ts and each value X(t) in ts is assigned to its bin. So for each bin Bi we then
have a list of ni values X(t1), . . . , X(tni) for some timestamps tk. Furthermore, we do not
only store the values X(tk) but also the proceeding value X(tk + τ).

6Actually, from (3.18) we can only infer that |g| =
√
. . . but with g the volatility we can assume that g is a positive

function.
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(iv) For each bin Bi, now calculate

fi ≡
1

τ

1

ni

ni∑
k=1

(X(tk + τ)−X(tk)) (3.23)

and

gi ≡

√√√√1

τ

1

ni

ni∑
k=1

(X(tk + τ)−X(tk))
2. (3.24)

(v) Plot (xi, fi) and (xi, gi) for i = 1, . . . ,K. The plotted points will then indicate the functional
form of f(X) and g(X).

Note that this algorithm works by just considering one single time series. This is why the assumption
of a stationary process was necessary. If we have an explicit time-dependence, we would require
several data sets of repeated measurements.

3.3 Extracting equations: A Monte Carlo test

Before applying the above algorithm (i)-(v) to actual data we are going to verify its validity with
Monte Carlo simulations [40]. Concretely, we want to estimate the equation

Ẋ = −X3 +
(
0.3 ·X2 + 1

)
η(t) (3.25)

with initial value X(t = 0) = 0. To this end, we solve equation (3.25) L = 1′000 times numerically
using a Milstein scheme [57]

X(t+ ∆t) = X(t) + f(X(t))∆t+ g(X(t))∆W (t) +
1

2
g(X(t))g′(X(t))

[
∆W (t)2 −∆t

]
(3.26)

consisting of M = 50′000 discrete time steps of size ∆t = 1/360 (= 10 seconds in units of hours).
Here, ∆W (t) denotes the independently, identically and normally distributed random increments
with zero expectation value and variance ∆t. Figure 3.1 shows an exemplary solution. Solving
equation (3.25) L times numerically yields L sets of discrete approximate solutions {Xk}(j) for j =

1, . . . , L and k = 1, . . . ,M . For each solution {Xk}(j) we run the algorithm (i)-(v) from which we
obtain L sets of points {Xi, fi}(j) and {Xi, gi}(j) for j = 1, . . . , L and i = 1, . . . ,K (compare with
step (ii) from the above algorithm). Generally, of course, the {Xi}(j) differ for different realizations
j. However, we can identify the arguments Xi from different numerical solutions by assigning them
again to K bins B̃1, . . . , B̃K of equal size. For each bin B̃i we have now a set of values {fj}(Bi)

where the fj are calculated from (3.23) and a set of values {gj}(Bi) where the gj are calculated from
(3.24). For these two sets we can calculate median and 90% confidence interval. The outcome of
this is shown in figure 3.2 and figure 3.3. We can see that the analytical solutions f(X) = −X3 and
g(X) = 0.3X2 + 1 are indeed well-approximated. The confidence intervals widen with the distance
from the origin. This effect is of statistical nature simply because data is more sparse towards the
edges. We conclude that the algorithm (i)-(v) works well but results towards the edges should be
considered more critically.
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Figure 3.1: Example of a numerical solution to (3.25) using a Milstein scheme (3.26) with M =
50′000 steps and step size ∆t = 1/360.

3.4 Empirical model for euro/Swiss franc exchange rate dynamics

We can apply the algorithm (i)-(v) from section 3.2 to the euro/Swiss franc exchange rate. To this
end, we download tick-by-tick data of the EUR/CHF exchange rate between September 7,2011 and
January 14, 2015 from [1] and upsample the data to ten second intervals by taking the median. This
new time series of the EUR/CHF exchange rate in equally spaced 10 seconds intervals represents the
time series that we have denoted by ts in the above algorithm (i)-(v). By definition, we have τ = 10
seconds = 1/360 hours and we choose K = 100.

Of course, we must also analyze data before September 2011 in order to have a direct comparison
between the dynamics before and after the barrier had been enforced. The target zone regime covers
a time span of approximately 3 years. To examine a similar amount of data points, the analysis of
other regimes should also cover about three years of data. Hence, we analyze data between 2005
and 2007 (figure 3.4) and between 2008 and 2010 (figure 3.5). We observe similar results for the
2005-2007 and for the 2008-2010 period for both f and g. Although there is considerable statistical
noise, it can be inferred that f and g are both constant. More even, we can see that f is vanishing.
This is in agreement with our reasoning in section 2 since there is no wall and hence no repulsive
potential. Furthermore, there is no reason to assume a persistent one-sided economic distress (on
small time-scales) which would justify the appearance of a short-term drift.

Now let us see how the results change during the target zone regime (figure 3.6). First of all, we
notice that f is vanishing here as well (large fluctuations on the right edge are due to poor sampling).
This is in direct contradiction to our reasoning in section 2 and explains why we were not successful.
Indeed, we will argue in section 4 that from a theoretical point of view, f must necessarily be zero.
This will reveal the fundamental error in our previous thinking. On the other hand, we observe a non-
trivial behavior for g. Recall that in economic terms, g is equal to the volatility. We will sometimes
also use nomenclature from random walk theory and interpret g as (proportional to) the average step
length or mean free path. Hence, we see that the entire change in dynamics due to the barrier is
hidden in g and not not in f . This is fundamentally different from the previous section where we
have simply assumed the stochastic part g to be constant and focused purely on the deterministic f .
We leave an interpretation of these findings for section 4.

The algorithm (i)-(v) from section 3.2 takes two parameters, the step size τ and the bin size K. Their
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Figure 3.2: The red line shows the analytical form of f(X) in equation (3.25). The blue line and
error bars denote median and 90% confidence interval, respectively, as a result of solving equation
(3.25) L = 1′000 times numerically using a Milstein scheme (3.26) with M = 50′000 steps and
discrete time step ∆t = 1/360. We can see that the analytical solution f(X) = −X3 is indeed
well-approximated. The confidence intervals widen with the distance from the origin (initial value).
This effect is of statistical nature simply because data is more sparse towards the edges.

influence on the outcome should be discussed. The dependence on τ is quite subtle and is discussed
in section 3.5 below. The dependence on K is intuitively clear: the larger K, the larger the bin size
and consequently we have reduced statistical errors at the price of a less precise resolution of the
shapes of f and g. So the choice of K is a trade-off situation. However, as figure 3.7 confirms, the
result is not strongly dependent on the choice of K. The same holds for results of f and for other
time spans.

3.5 Stability under first order corrections

When we have derived (3.15) and (3.18) we have dropped all corrections that were higher than zeroth
order in τ since they would not contribute to the limit τ → 0 anyway. However, the algorithm that
we have extracted from these results in section 3.2 is based on the approximation of finite, but small
τ . We must thus ask if it was justified to neglect any correction terms coming from τ being finite.

Analytically, the correction terms can be derived in a straight forward manner as was outlined in
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Figure 3.3: The red line shows the analytical form of g(X) in equation (3.25). The blue line and
error bars denote median and 90% confidence interval, respectively, as a result of solving equation
(3.25) L = 1′000 times numerically using a Milstein scheme (3.26) with M = 50′000 steps and
discrete time step ∆t = 1/360. We can see that the analytical solution g(X) = 0.3 ·X2 +1 is indeed
well-approximated. The further away from the origin (initial value) the more the blue line deviates
from the red one. This effect is of statistical nature simply because data is more sparse towards the
edges.

section 3.1. We simply have to iterate X(t′)−X in (3.9) and keep the terms of the next higher order.
With some stochastic calculus and straight forward integral manipulations, one ends up with

1

τ
E [X(t+ τ)−X] = f(X) +

(
1

2
f(X)f ′(X) +

1

4
f ′(X)g2(X)

)
τ +O

(
τ2
)

(3.27)

1

τ
E
[
(X(t+ τ)−X)2

]
= g2(X) +

(
f2(X) + f ′(X)g2(X) + f(X)g(X)g′(X)

+
1

2

(
g2(X)

(
g′(X)

)2
+ g3(X)g′′(X)

))
τ +O

(
τ2
)

(3.28)

We see that even simple forms of f and g give rise to non-trivial correction terms. Since f and g are
a priori unknown we cannot use these analytical results to verify if the error is negligible. Therefore,
Sura and Barsugli [90] suggest a method that they call subsampling the time series. Instead of
running the algorithm on the entire time series, we skip every second value (τ → 2τ) and consider
if the results change significantly from the original sampling. This can be repeated several times
(2τ → 4τ → . . .). If the result (i.e. the shapes of f and g indicated by {(xi, fi}) and {(xi, gi)}) is
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Figure 3.4: Approximation of the drift f(X) and the volatility g(X) from (2.5) using upsampled
tick-by-tick data of the EUR/CHF exchange rate between January 2005 and December 2007. This
figure is obtained by following faithfully the steps (i)-(v) described in section 3.2.
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Figure 3.5: Approximation of the drift f(X) and the volatility g(X) from (2.5) using upsampled
tick-by-tick data of the EUR/CHF exchange rate between January 2008 and December 2009. This
figure is obtained by following faithfully the steps (i)-(v) described in section 3.2.

largely unaffected by this subsampling, we can be sure that the first order corrections in τ have little

34



log(1.20) log(1.22) log(1.24)

X = log(EUR/CHF exchange rate)

0

5

10

15

d
ri

ft
f

an
d

vo
la

ti
li
ty
g

in
u

n
it

s
of

10
−

4

g(X)

f(X)

Figure 3.6: Approximation of the drift f(X) and the volatility g(X) from (2.5) using upsampled
tick-by-tick data of the EUR/CHF exchange rate between September 7, 2011 and January 14,2015.
This figure is obtained by following faithfully the steps (i) (v) described in section 3.2.

weight. Considering figure 3.8 shows that this is indeed the case. The same holds for results of f and
for other time spans. We conclude that the first order approximations (3.21) and (3.22) are justified
and the results reliable.
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Figure 3.7: Approximation of the volatility g(X) from (2.5) using upsampled tick-by-tick data of
the EUR/CHF exchange rate between September 2011 and January 2015. This figure is obtained by
following faithfully the steps (i)-(v) described in section 3.2. We see the choice of the number of bins
K does not affect the indicated form of g.
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Figure 3.8: Approximation of the function g(X) from (2.5) using upsampled tick-by-tick data of
the EUR/CHF exchange rate between September 2011 and January 2015. This figure is obtained
by following faithfully the algorithm described in section 3.2. Additionally, the algorithm is applied
to subsampled time series as suggested by Sura and Barsugli [90]. We can see that the result is
unaffected by this subsampling and conclude that the first order approximations (3.21) and (3.22) are
justified.
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4 Economic models for foreign-exchange markets

In our attempt to model the EUR/CHF exchange rate X after the enforcement of the 1.20-barrier in
September 2011 as an Itô process

Ẋ = f(X, t) + g(X, t)η(t) (4.1)

we have first considered purely physical analogies in section 2. Since we had not been not successful,
we have then turned to a more empirical approach in section 3 and presented an algorithm which fits
the shapes of f and g to the observed data. Surprisingly, the outcome was fundamentally different
from our physical intuition. While we have no deterministic part (f ≡ 0), all the dynamics is
hidden in the stochastic g. It is the goal of this section to shine some light on these observations
and justify them from a theoretical point of view. We start by reconsidering the analogy of exchange
rates to a Brownian particle. We then give a concrete example which shows how from our physical
description the exchange rate dynamics could be predicted, which makes it completely unrealistic
from a financial view point. Next, we introduce the mathematical martingale property and discuss the
Krugman target zone model, which incorporates the traders’ expectations as a fundamental ingredient
into its equations. It is shown that this model provides a suitable description for the EUR/CHF target
zone.

4.1 Why physical analogies were inappropriate

In section 2 we have put great emphasis on the analogy between the dynamics observed in figure
1.4, i.e. the EUR/CHF exchange rate confined to lie above 1.20, and a constrained Brownian particle
moving in a fluid. All the ideas that we have derived from this analogy were based on the simple
logical chain

random walk + barrier ⇒ repulsive potential. (4.2)

From a physical point of view these are all the ingredients to consider. We have a particle that is
performing a random walk which, economically, ensures the no-arbitrage condition. Once a barrier is
added we reduce the entropy of the system. Consequently, the statistical properties of the movement
are changed, giving rise to an effective repulsive potential. Why does this reasoning not apply to
the FX dynamics? The fundamental difference between the FX and the Brownian particle is that a
financial market is a complex system whose various components and interdependences give rise to
the emergence of new dynamics which cannot just be derived as the sum of contributions from each
constituent (in Anderson’s words: "more is different" [3]). After all, restricting the configuration
space of a Brownian particle is very simple: the particle keeps on moving freely as if its movement
was not restricted until it hits the barrier. It is then instantaneously repelled and keeps on moving
freely. In particular, temporarily removing the barrier leaves the dynamics of the particle unchanged
as long as it is not close to 1.20. Assume this was the same for the dynamics of the FX. This would
mean that the market participants do not care at all about the SNB enforcing a minimum exchange
rate. They keep on trading unaffectedly until one euro is traded for 1.20 Swiss francs, at which point
the SNB intervenes, pushes the exchange rate up and the trading continues as before. The special
dynamics of g that we have observed in the previous section proofs that this is not the case. Already
when the exchange rate approaches the lower boundary the dynamics start to change, so there must
be a more complex process behind.

The fact that the dynamics cannot be like its physical analog is also clear from an arbitrage point of
view. Assume that indeed the dynamics was as suggested by equation (2.16). Taking expectation
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values on both sides we can see that we have a non-vanishing conditional expectation value for price
changes. This, in turn, results in a certain predictability and thus arbitrage opportunities. The efficient
market hypothesis tells us that this opportunity must vanish. Hence, we see that imposing a barrier in
an FX gives rise to more complex mechanisms which ensure that the market remains arbitrage-free:

random walk + barrier + no-arbitrage ⇒ new dynamics. (4.3)

We will elaborate on this statement in more detail in subsection 4.3 and subsection 4.4. Before that,
we want to give an example of the arbitrage opportunities that would prevail if our physically intuitive
model held true.

4.2 Arbitrage potential

Assume that the EUR/CHF could be accurately described by the stochastic differential equation

dX

dt
= 3

F 2

C

(
X −Xeq

)2 − 2

√
F 3

C

(
X −Xeq

)
+ gη(t). (4.4)

We will now show how you can arbitrage based on a simple trading strategy.

4.2.1 Creating a suitable time series

To start, we have to create a reasonable time series obeying (4.4). For tick by tick data of the
EUR/CHF exchange rate from the 8th of April and the 5th of September 2012 (the particularly
stationary regime, see figure 1.4) the volatility is approximately 3 · 10−4 and the average time step τ
is around 1.5 seconds which is approximately equal to 4 · 10−4 hours. Using a Milstein scheme [57],
we then solve equation (4.4) with a discrete time step of τ = 4 · 10−4 hours. The parameters F,C
and g are chosen such that the simulated volatility is also approximately equal to 3 · 10−4. This
guarantees the creation of a "realistic" time series. Concretely, we have chosen F = 0.04, C = 0.08
and g = 9 · 10−5. Furthermore, looking at the empirical density of the EUR/CHF exchange rate
(figure 4.1) indicates that Xeq = 1.201 is a reasonable choice for the equilibrium price. We have
now all we need to simulate 6′000 hours of price fluctuations (figure 4.2, left axis). This corresponds
to approximately one year of data (there are about 250 trading days and the FX is open 24 hours).

4.2.2 A simple trading strategy

In the FX, trading costs TC are typically of the order of the bid-ask spread. Analysing the tick by
tick data of the EUR/CHF exchange rate in regime IV we find that this spread is narrowly distributed
around 1.2 pip = 1.2·10−4 Swiss francs per euro that is traded. Since |X−Xeq| � 1, the square term
is small so that (4.4) is approximately an Ornstein-Uhlenbeck process with a slight tendency towards
positive increments. This gives rise to the following trading strategy: We short sell euros whenever
X > Xeq + n · TC (expected decrease in value) and we are long euros whenever X < Xeq − n · TC
(expected increase in value) knowing that with probability one the exchange rate will eventually
return to Xeq. Here, n denotes some positive number which can be adapted to optimize our gains.
In principle, n can be chosen as small as 1/2 which will just compensate for the transaction costs.
If n is chosen too large, almost no trading will occur. Empirically, we have found that n = 1 yields
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Figure 4.1: Empirical density distribution p obtained from a normalized histogram plot of the
EUR/CHF exchange rate between the 8th of April and the 5th of September 2012. The peak is
observed at X = 1.201 rather than at the location of the theoretical singularity X = 1.20. This is a
typical finite-size effect.

steady gains. In practice, the parameters Xeq, F, C and g can be estimated from the data using a
Bayesian framework for parameter estimation [16]. From the resulting gains, both mean return 〈rτ 〉
and standard deviation στ per time step τ can be calculated. The Sharpe ratio per time step is then
given by 〈rτ 〉 /στ (where we have neglected the subtraction of the risk free rate) through which we
determine the annual Sharpe ratio (SR) by multiplying by the square root of the total number of time
steps 6′000 · 2′400. Figure 4.2 shows the outcome for different choices of the transaction cost. We
see that realistic transaction costs of 1 or 2 pip lead to Sharpe ratios which are more than 10 times
times larger than what would already be considered a high Sharpe ratio. However, we have neglected
slippage in this simple example (the fact that not all orders are executed at the ordered price). It is
clear that the traded volume cannot grow arbitrarily. At some point, the orders would start to “eat"
deep into the order book which increases the transaction costs and washes out the gains. On the other
hand, it must be pointed out that the applied investment strategy is far from optimal. We could also
make use of the strong correlation between returns. Approximating (4.4) as an Ornstein-Uhlenbeck
process, the duration of temporal correlations is given by the inverse of the coefficient in front of
the linear term which is in our case more than 17 hours. Implementing a linear predictor, it can be
shown [8, 69] that even small temporal correlations can be exploited to arbitrage the market.
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Figure 4.2: On the left axis we show one year of the simulated EUR/CHF exchange rate according to
(4.4). On the right axis we show the wealth which results from the simple trading strategy described
in the text and an initial investment of 10’000 CHF. The transaction costs TC are given in units of
pip (= 10−4 Swiss francs per euro traded) and SR denotes the annual Sharpe ratio that is calculated
from the risk-free trading strategy.

4.3 The martingale property

Starting from equation (4.1) we argue in this section why f has to vanish. This requires quite a
bit of terminology and tools from stochastic calculus. Consult [39, 66] for in-depth mathematical
introductions, [81, 82] for introductions with an emphasis on applications in finance and [33] for
an emphasis on applications in natural sciences. However, more than a basic understanding of the
concepts is not required and we will repeat the most important definitions and properties. Throughout
this thesis we assume that f and g are (Itô-) integrable.

Let {X(t)} denote a stochastic process on a filtered probability space
(

Ω,F , (Ft)t≥0 ,P
)

with, say,
t ∈ [0,∞). Recall the following definition of a martingale from stochastic calculus:

A stochastic process {X(t)} is called a martingale with respect to a filtration Ft if

(i) X(t) is adapted to the filtration {Ft}t≥0,

(ii) for every t ≥ 0
E [|X(t)|] <∞ (4.5)

and

(iii) for every X and t such that 0 ≤ X < t

E [X(t)|Fs] = X(X). (4.6)

Whereas conditions (i) and (ii) are rather technical (see for instance [33] for a detailed explanation),
condition (iii) is the characterizing property of the martingale. Its interpretation becomes evident
once one realizes that Fs can be interpreted as "all the information that can be acquired from the
process up to time X". The martingale property of a stochastic process then just says that the expec-
tation value E [X(t)|Fs] of X(t) at a time t > X conditional on all the available information from

41



the process up to time X is equal to the last observed value X(X). Interpreting X(t) as the time
series of a traded asset this means that all the information about future price developments that could
be extracted from the analysis of past prices is already incorporated in X(X). Recalling the discus-
sion of efficient markets from section 1.1 the following claim seems obvious: A stochastic process
(a random walk) X(t) describing the price movement of an asset (in particular exchange rates) must
be a martingale. This is exactly what is proven more formally in Samuelson’s paper [73] from 1965.
Samuelson’s reasoning is as follows:

Let {. . . , X(t− 1), X(t), X(t+ 1), . . . , X(t+ τ), . . .} represent the time series of prices of any as-
set. Given knowledge of today’s price and of past prices {X(t), X(t− 1), . . . , X(1)}, suppose we
cannot know with certainty tomorrow’s price X(t+ 1) or any future price X(t+ τ). Suppose there
is at best a probability distribution for any future price, whose form depends solely on the number of
periods ahead over which we are trying to forecast prices, given by

P (X) ≡ Prob (X(t+ τ) = X|X(t− 1) = xt−1, . . . , X(1) = x1) . (4.7)

These P’s are assumed not to depend explicitly on historical calendar time, meaning that the prob-
ability distributions are stationary. Now consider today’s futures price quotation for the actual spot
price 7 that will prevail τ periods from now, i.e. the price quoted today at time t for a contract
requiring delivery of the asset at time t + τ . If the present spot price is X(t), the relevant spot
price that is to prevail later is given by X(t + τ). The newly defined futures price, quoted to-
day, for that future X(t + τ) we denote by Y (τ, t). When another period passes, we shall know
{X(t+ 1), X(t), X(t− 1), . . . X(1)} instead of merely {X(t), X(t− 1), . . . , X(1)} and the new
quotation for the same futures price will be written as Y (τ − 1, t + 1). It in turn will be succeeded
by the sequence

Y (τ − 2, t+ 2), Y (τ − 3, t+ 3), . . . , Y (1, t+ τ − 1), Y (0, t+ τ). (4.8)

After t+τ , there is no problem of pricing the particular futures contract. What relationship should be
posit between the sequence {Y (τ − n, t+ n) | n = 0, 1, . . . , τ} and the sequence {X(t)}? When
the due date for the futures contract arrives, the no-arbitrage condition will ensure that (neglecting
transaction costs)

Y (0, t+ τ) = X(t+ τ). (4.9)

If this was not the case, we could immediately (i.e. instantaneously at time t + τ ) buy one, sell the
other and pocket the difference. A period earlier, no one can know what X(t+ τ) will turn out to be.
If interest and risk-aversion can be ignored, it is tempting to assume that people in the market place
make as full use as they can of the posited probability distribution P of next-period’s price and bid by
supply and demand Y (1, t+ τ − 1) to the expected level of tomorrow’s price (which means that we
assume fully informed, rational market participants). That way neither short-sellers nor long-buyers
stand to make a positive gain or loss. Thus, Samuelson’s postulates the Axiom of Mathematically
Expected Price Formation: If spot prices {X(t)} are subject to the probability distribution (4.7), a
futures price is to be set by competitive bidding at the now-expected level of the terminal spot price.
That is,

Y (τ, t+ τ) = E [X(t+ τ) | X(t), X(t− 1), . . .] (4.10)

where the conditional expectation E is taken with respect to (4.7). With this axiom, it will be straight
forward to proof Samuelson’s Theorem of Fair-Game Future Pricing: If spot prices {Xt} are subject
to some probability law (4.7) and the futures price sequence (4.8) is subject to the axiom (4.10),

7The Xpot price of an asset is the price for the asset when payment and delivery follow immediately after concluding
the contract. This is thus opposed to a forward or future price where payment and/or delivery can take place some time
after concluding the contract. Note that often in this thesis we just talk about the price of an asset. It is then implicitly
assumed that we mean the spot price.
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then the later sequence is a martingale (also called fair-game) in the sense of having unbiased price
changes

E [Y (τ − 1, t+ τ − 1)|X(t), X(t− 1), . . .] = Y (τ, t). (4.11)

All we need to proof this theorem is the Law of Iterated Expectations which states that

E [R1] = E [E [R1|R2]] (4.12)

for any two random variables R1,2 (in particular, for R1 = R2 where this holds trivially). Now, just
replace Y (τ − 1, t+ τ − 1) in (4.11) by (4.10) and apply (4.12) which already finishes the proof.

In terms of Fama’s categorization (section 1.1), Samuelson proofs the weak form of market efficiency.
There is a follow-up paper [74] from 1973 in which Samuelson shows that when historical price
changes are properly adjusted for expected dividends paid out, they are more or less indistinguishable
form a random walk. This can be shown to be equivalent to the semi-strong form of market efficiency
since dividends can be seen as a proxy for information which is not incorporated in the market price.

Now that we know that X(t) defined as a solution of (4.1) must be a martingale, we prove that f
must vanish. Furthermore, we show that the martingale property does not restrict the form of g. First
of all, note that (4.1) is equivalent to (or actually just a physicist’s notation for)

X(t)−X0 =

∫ t

0
du f(X,u) +

t∫
0

dW (u) g(X,u) (4.13)

where X0 ≡ X(t = 0) is some initial value and the stochastic integral is interpreted in the Itô
sense. It is a well-known property that E [R|Ft] = R for any Ft-measurable random variable R.
Furthermore, E [R|Ft] = E [R] for any random variable R that is independent of Ft. It follows that
the Wiener process Wt is a martingale (with respect to the filtration Ft = {W (X) | 0 ≤ X ≤ t})
since

E [Wt|Fs] = E [(Wt −Ws) +Ws|Fs]
= E [Wt −Ws|Fs] + E [Ws|Fs]
= E [Wt −Ws] +Ws

= Ws. (4.14)

In the last step we have used that the incrementsWt−Ws of a Wiener process are independently and
normally distributed with zero mean by definition. Recall from stochastic calculus that

E

 b∫
a

dW (u) h(u)

 = 0 (4.15)

for any (sufficiently well-behaved) function h on a compact interval [a, b]. It follows immediately
that any stochastic integral is a martingale:

E

 t∫
0

dW (u) g(X,u)

∣∣∣∣∣∣Fs
 = E

 X∫
0

dW (u) g(X,u)

∣∣∣∣∣∣Fs
+ E

 t∫
s

dW (u) g(X,u)

∣∣∣∣∣∣Fs


=

X∫
0

dW (u) g(X,u) + E

 t∫
s

dW (u) g(X,u)

∣∣∣∣∣∣Fs


=

X∫
0

dW (u) g(X,u). (4.16)
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In the second last step we have used that the Itô integrale is measurable. An immediate consequence
of (4.16) is that the martingale property does not restrict the form of g. Thus, we see from (4.13) that

E [X(t)−X0| Fs] =

X∫
0

dW (u) g(X,u) + E

 t∫
0

du f(X,u)

∣∣∣∣∣∣FX


=

X∫
0

dW (u) g(X,u) +

X∫
0

du f(X,u) + E

 t∫
s

du f(X,u)

∣∣∣∣∣∣Fs
 (4.17)

and deduce that (4.13) is a martingale if and only if

E

 t∫
s

du f(X,u)

∣∣∣∣∣∣Fs
 = 0. (4.18)

Since this has to hold for arbitrary times X < t we conclude that (4.1) is a martingale process if and
only if f ≡ 0.

4.4 Krugman’s theoretical target zone model

Given the failure of our physically motivated model (4.4), we turn to the financial literature to find
an explanation for figure 3.6. The work of Krugman [43] turns out to be the reference of a large part
of the target zone literature. Following the original discussion by Krugman [43] and a review paper
by Svensson [91], we are now going to summarise the basics of this model. Krugman’s model starts
from the following intuitive equation:

X = m+ v + γ
E [dX]

dt
. (4.19)

All variables are expressed in natural logarithms and have the following interpretations:

• X is the (log of the) spot price of foreign exchange, also called the exchange rate. The ex-
change rate is the domestic price of foreign exchange, that is, the number of domestic currency
units per foreign currency unit. From a Swiss perspective, we will thus describe the EUR/CHF
exchange rate, such that EUR/CHF = 1.20 means 1 euro is worth 1.20 Swiss francs. In a
target zone, X is held inside the target zone band X < X < X . To simplify the mathematics,
it is assumed that the target zone is symmetric around X = 0, i.e. X = −X . This is without
loss of generality, since we only shift X by a constant. Obviously, this has no influence on its
dynamics. In the following, we will discuss primarily the situation where X & X which is the
interesting case for us. Due to symmetry, all results immediately translate to the case where
X . X .

• m is the domestic money supply and controlled by the central bank. When the currency is
strong (the exchange rate is low) the central bank can increase the money supply in order
to weaken the domestic currency (increase the exchange rate). Krugman assumes that the
monetary policy is passive, i.e. m is shifted only at (or infinitesimally close to) the exchange
rate limits X and X . As long as X lies within the target zone band X < X < X , m is held
constant.
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• v represents exogenous velocity shocks, i.e. economic and geopolitical events affecting the
exchange rate that cannot be controlled by the (domestic) central bank. The velocity term is
assumed to follow a simple Brownian motion

dv = σdWt (4.20)

with σ > 0 constant. It follows E [dv] = 0 in line with the no-arbitrage condition.

• E [dX] /dt is the expected change of the exchange rate. This is the ingredient of the model
which contains the psychological component of market participants. In a credible target zone,
when the exchange rate approaches its upper or lower limit, market participants anticipate the
intervention by the central bank and act accordingly.

• γ > 0 is a constant which can be interpreted as the semi-elasticity of the exchange rate with
respect to the instantaneous expected rate of currency depreciation. This can be understood
from the definition of of semi-elasticity:

Semi-elasticity of a function f at a point x :=
d log f(x)

dx
.

Indeed, we have
dX

dE[dX]
dt

= γ

and since X is the logarithm of the exchange rate this is consistent with the above definition
of semi-elasticity.

• m+ v together represent the fundamental value of the exchange rate. We will sometimes also
denote this quantity by f ≡ m + v. In particular, note that in absence of (or in the limit far
away from) the exchange rate boundaries, where naturally E [dX] /dt = 0, we have X = f .

4.4.1 Solution of the Krugman model

In order to proceed with the model (4.19) we must somehow rewrite the expectation term E [dX] /dt.
To this end, we simply apply Itô’s Lemma

dX = dX(v) =
σ2

2

∂2X

∂v2
dt+ σ

∂X

∂v
dWt, (4.21)

take the expectation value,

E [dX] =
σ2

2

∂2X

∂v2
dt (4.22)

and plug this into (4.19) in order to obtain

X = m+ v +
γσ2

2

∂2X

∂v2
. (4.23)

This simple, second order linear ODE has the general solution

X(m, v) = m+ v +Aeρv +Be−ρv (4.24)

with ρ ≡
√

2/γσ2. This result can be further simplified due to symmetry: Suppose that m = 0 at
some point (again, without loss of generality, as only relative changes and not the absolute value of
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m matter). We then expect to see X(v = 0) = 0. If this was not the case, we would have an offset
and symmetry would be broken. We conclude that A = −B and write

X(m, v) = m+ v +A
(
eρv − e−ρv

)
≡ m+ v +A sinh (ρv) (4.25)

where we have absorbed a factor of 2 in the constant A. It is easy to see, and will be argued in more
detail below, that only A < 0 leads to a reasonably shaped X(v)-curve. Always remembering that
A < 0 is a brain teaser. Hence, let us write this right away as

X(m, v) = m+ v −A sinh(ρv), (A > 0). (4.26)

Equation (4.26) constitutes the final functional form of the X − v relation. However, the value of the
constant A remains to be determined. This is what we discuss next.

4.4.2 The smooth-pasting condition

In this subsection we follow the ideas of [75] but we are more mathematically rigorous, working with
limits and taking into account continuity conditions.

Assume that we are inside the band (so m is fixed) approaching the lower exchange rate limit X
from above. Denote by f the value of the fundamental at which X(f) = X . This condition must
be understood as the limit limf↓f X(f) ≡ X

(
f + 0

)
because as soon as X touches X , m will be

changed, making it difficult to define a unique value f .
We will now argue that A is determined by imposing the additional "smooth-pasting" condition

∂X

∂f

∣∣∣∣
f=f

= 0. (4.27)

Smooth-pasting is based on a no-arbitrage argument, as can be seen from the following line of reason-
ing: Consider a point f∗ & f in the neighbourhood of f where the authorities intervene by increasing
the money supply in such a way that f is pushed back into the band by a discrete amount ∆f . Hence,
whenever the exchange rate gets to X (f∗) the authorities intervene by a discrete amount, resulting
in the exchange rate becoming instantly equal to X (f∗ + ∆f). As soon as X touches X (f∗), then,
the traders face a risk-free opportunity, since they can buy foreign currency just before the interven-
tion and make a percentage profit equal to the difference between X (f∗) and X (f∗ + ∆f). This
arbitrage opportunity is only eliminated if

X (f∗) = X (f∗ + ∆f) (4.28)

By assumption, the central bank does not intervene at a point f∗ > f but only infinitesimally close
to f . Hence, dividing (4.28) by ∆f and considering the infinitesimal limit we find

lim
f∗↓f

lim
∆f↓0

X (f∗ + ∆f)−X (f∗)
∆f

= 0 (4.29)

which - since X is a continuous function of f - is exactly the imposed smooth-pasting condition
(4.27). Via limf↓f ≡ v + m we can also define the value v at which X (v) = X , or, put more
precisely, where X (v + 0) = X .

We have now derived the following two conditions

X(v) = X and
∂X

∂f

∣∣∣∣
f=f

=
∂X

∂v

∣∣∣∣
v=v

= 0 (4.30)
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(understood as the limit v ↓ v) from which the two constants v and A can be determined uniquely
(although only numerically). Assuming that we know v, it is straight forward to derive formally an
analytical expression for A:

0
!

=
dX

dv

∣∣∣∣
v=v

= 1−Aρ cosh (ρv) ⇒ A =
1

ρ cosh(ρv)
. (4.31)

This completes our derivation of the Krugman model. The result is visualised in figure 4.3. When
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Figure 4.3: Schematic plot of Krugman’s exchange rate model (4.26) showing the exchange rate X ,
bounded between X and X as a function of it’s fundamental value v. The smooth-pasting condition
(4.27) accounting for the no-arbitrage condition is clearly visible. Such a X(v)-line corresponds to
one fixed amount of money supply m. Changing m shifts the entire line to the left or to the right as
is explained in the text. The dashed line shows the trivial relation X(f) = f that prevails under a
freely floating exchange rate policy.

looking at figure 4.3, it is clearly visible that the closer X is to its upper or lower limit, the less it
does react to external shocks v. Since this happens without active intervention of the central bank
(which is only assumed to interact exactly at the limits) this shows that the sole announcement of a
target zone renders the exchange rate less volatile. This is also known as the Honeymoon effect.

4.4.3 Money supply behavior

It remains to be described how m is changed when X = X or X = X . Assume that we are at some
point inside the band (point 1 in figure 4.4). Let v be the value of v at which a particular X-curve
touches the bottom of the band (point 2). If v goes below v, the money supply must be increased
such that X remains at X . As long as v continues to decrease, m is increased, shifting the curve
from point 2 to point 3. Next, suppose that v starts to have positive shocks. Then the exchange rate
will not retrace its steps since the monetary authority does not react to shocks that pushes X back
into the band. Thus, the market will move back up a new X-curve, to a point like 4.
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Figure 4.4: Marginal interventions by the central bank lead to a shift of the X(v) curve. See text for
a detailed explanation.

Similarly, the curve is shifted to the right if v > v. The result is a family of X-curves. We can
actually write a simple expression for the whole family of curves. Let A be determined so that the
curve is tangent for some particular m. Then, the whole family of curves is defined by

X = m+ v −A sinh (ρ(m+ v)) (4.32)

= f −A sinh(ρf) (4.33)

with the same A. Whenever negative shocks to v push (4.33) to X , m will be reduced to keep m+ v
constant. It follows that we can draw the whole family of X-curves as a single curve X = X(f).

4.4.4 One-sided target zones

So far, we have kept the discussion very general and considered both a lower (X) and an upper (X)
limit for the exchange rate X . All results apply equally for the single-sided (EUR/CHF) target zone
in the sense that we always consider the regime X � X & X where the upper boundary X is not
felt and hence negligible. More formally, the single-sided target zone can be described by demanding
that the general solution (4.24) recovers X → v for v → ∞. This implies A = 0 and B > 0 which
is the formal solution for the one-sided target zone

X = m+ v +Ae−ρv (4.34)

For X & X it is easy to verify that (4.34) asymptotically coincides with (4.26).
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4.5 Assumptions and implications of the Krugman model

Krugman’s target zone model has several important implications which allow us to test the model
empirically. In this subsection we show that Krugman’s model provides a suitable description of the
EUR/CHF target zone.

4.5.1 Assumptions of Krugman’s model

Krugman’s target zone model is based on two crucial assumptions: First, the target zone is perfectly
credible. This means that market participants belief at every time that the central bank will stick to
its announced target zone. Second, the interventions by the central bank are marginal, meaning the
monetary supply is held constant as long as X is within the target zone band. Only when X touches
X , the monetary supply is increased, just sufficiently to keep X at X . These assumptions have been
investigated specifically for the EUR/CHF exchange rate between 2011 and 2015 in [89] where it is
found that the two assumptions hold sufficiently well so that Krugman’s model can be applied. This
sets the EUR/CHF target zone apart from many earlier empirical studies in which Krugman’s model
was already challenged on the basis of its assumptions. We refer to [75, 91] for detailed reviews.

4.5.2 Density distribution

A first implication of Krugman’s model is that the distribution of the exchange rate within the band
must be ∪-shaped, that is, the exchange rate must spend most of the time near the edges of the
band [91]. To understand this implication, one must consider that the volatility vanishes smoothly
as X → X or X → X (see derivation below). Hence, the exchange rate moves more and more
slowly as it approaches its boundaries. The fundamental, in contrast, moves with a constant speed
between its bounds, hence its distribution is uniform. Denote by p̃(v) the probability density of the
fundamental v (actually, f = m + v but since m is constant inside the band we can also work with
v instead of f ). Since the fundamental is distributed (asymptotically) uniformly within the exchange
rate band, we have trivially

p̃(v) =
1

2X
. (4.35)

We are interested in the density p(X) as a function of the exchange rate X . Changing variables,

p(X)dX
!

= p̃(v)dv = p̃(v(X))
dv

dX
dX, (4.36)

gives

p(X) = p̃(v)
dv

dX

(4.35)
=

1

2X

dv

dX
∼ dv

dX
. (4.37)

Below we show that for X close to X ,

v ∼
√
X −X + v. (4.38)

Consequently, we predict

p(X) ∼ 1√
X −X

(4.39)

close to the lower barrier X which is in good agreement with the data (figure 4.5).
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Figure 4.5: The green line indicates the empirical density distribution of EUR/CHF exchange rate
tick-by-tick data between September 2011 and January 2015. The brown line represents the result of
a one-parameter ordinary least-squares fit with(4.39) determining C ≈ 2.5.

4.5.3 Drift and volatility in Krugman’s model

By applying Itô’s lemma to (4.26), we derive the following drift f and volatility g in the Krugman
framework:

f(v) =
1

2
Aσ2ρ2e−ρv (4.40)

g(v) = σ − σAρe−ρv. (4.41)

For practical purposes, working with (4.40) and (4.41) is cumbersome because v cannot be measured
but only estimated [29]. Nevertheless, testing directly the non-linear X(v) relation (4.26) by esti-
mating v is the method that has been widely applied in the empirical literature. The reported results
have then either rejected Krugman’s target zone model entirely or have shown only a very noisy evi-
dence for (4.26). We refer again to [75, 91] for a broad overview and to [89] for EUR/CHF specific
results. Our strategy is different: Instead of relying on v, we invert the X(v) relation (4.26) locally
to lowest order in v − v (it is easy to see that (4.26) has a well-defined, global inverse v(X) which,
however, has no analytical closed form expression). Since we only care about the regime X & X it
is sufficient to invert a Taylor-expanded approximation of X(v) expanded around v with v > v. We
find

X(v) = X(v)︸ ︷︷ ︸
=X

+X ′(v)︸ ︷︷ ︸
=0

(v − v) +
1

2
X ′′(v)(v − v)2 +O

(
(v − v)3

)
∼ X − 1

2
Aρ2 sinh(ρv)(v − v)2. (4.42)
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Since sinh(ρv) < 0 we see that −1
2Aρ

2 sinh(ρv) is a positive constant which I shall denote by C.
Hence, we have found that

X ∼ X + C(v − v)2 ⇒ v ∼
√

1

C
(X −X) + v. (4.43)

Redefining C 7→ C−1/2 for convenience, we end up with

v ∼ C
√
X −X + v. (4.44)

Plugging (4.44) into (4.40) and (4.41) the following expressions derive for drift and volatility:

f(X) = α (4.45)

g(X) = β
√
X −X. (4.46)

Here α = σ
/√

2γ and β = 23/4√σ
/
γ1/4 . In particular, we note that

√
α/β = 1/2. There

are higher order terms leading to corrections to (4.45) and (4.46). It is easy to check that for our
data where s < log(1.26) these corrections are negligible. Comparing (4.45) and (4.46) with figure
3.6, one can check that the data conform very well to Krugman’s theory. For the volatility, we can
apply a one parameter least-squares fit which determines β = (5.42± 0.06) · 10−3. Another least-
squares fit determines α = (1.40± 0.8)·10−5 (figure 4.6). Basic error propagation calculations yield
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Figure 4.6: We show the parameter free estimate of drift f(X) and volatility g(X). The result is
fundamentally different from the Brownian particle analogy (4.4) but well described by the Krugman
model (4.26). The straight lines represent the best non-linear least-squares fit for the drift (4.45) and
volatility (4.46), respectively.

√
α/β = 0.68 ± 0.22. Despite the relatively large fluctuations for s & log(1.24), the data agrees

with the theoretical value 1/2 within one standard deviation. Ignoring the large fluctuations around
s & log(1.24) leads to even better correspondence between data and theory. This confirms that
Krugman’s target zone model provides a suitable description of the constrained EUR/CHF exchange
rate.
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5 Hindered diffusion in an order-book fluid

We have started this thesis by pointing out a seeming analogy between physics and finance that
turned out to be wrong. As was pointed out by Krugman [43], the naive view that the exchange rate
behaves as if the regimes were one of free floating until the rate hits the edge of the authorised band
are incorrect. The principal issue in modelling exchange rate dynamics under a target zone regime is
the formation of expectations, so that investors adapt their strategies as a function of the proximity
to the band edges according to their anticipation of the central bank actions. These expectations and
their observable consequences turn out not to be described by the entropy reduction (2.4) associated
with the forbidden paths that would cross the rigid barrier.

5.1 Physical hindered diffusion

Interestingly, it turns out that Krugman’s model gives rise to a physical parallel after all. Indeed, using
the analogy with a Brownian particle embedded in a fluid of small colliding particles, the presence
of a barrier translates into the decrease due to hydrodynamic forces of the diffusion coefficient of the
Brownian particle upon its approach to the wall. As we will show now, the volatility g(X) is thus,
at least semi-quantitatively, related to the physical problem of hindered diffusion. Financial price
fluctuations has been recently shown to be more deeply anchored in the physics-finance analogy of
a colloidal Brownian particle embedded in a fluid of molecules as shown in figure 2.3 (omitting the
previously shown incorrect potentials), where the surrounding molecules reflect the structure of the
underlying order book [103].

It turns out that this analogy can be extended even further to incorporate the case in which the motion
is restricted by a wall (or target zone, respectively). Consider a physical Brownian particle in a fluid.
The presence of a wall leads to a modification of the hydrodynamic flow of the molecules trapped
between the wall and the Brownian particle. The closer the Brownian particle to the wall, the thinner
the lubrification layer between them and the more hindered is the diffusion of the Brownian particle.
In physics, it is more common to work with the diffusion coefficient D(X) which is related to our
volatility via g =

√
2D. In the bulk of a fluid (where the wall is not felt), the diffusion coefficient D

is a constant D0. The Einstein-Stokes equation predicts for a spherical particle with radius R

D0 =
kBT

6πνR
(5.1)

with kB the Boltzmann constant, T the temperature and ν the viscosity of the fluid. In presence of a
wall at X = X , the diffusion coefficient must be modified by D(X) = D0/λ [10] where λ is given
by

λ⊥ =
4

3
sinh(α)

∞∑
n=1

[
n(n+ 1)

(2n− 1)(2n+ 3)

2 sinh((n− 1)α) + (2n+ 1) sinh(α)

4 sinh2((n+ 1/2)α)− (2n− 1)2 sinh2(2α)

]
(5.2)

and α = arcosh(X/R). The result is depicted in figure 5.1. An approximation of this result had
already been found decades before by Lorentz [55] who predicted

λ ∼ 1 +
9

8

R

X −X
. (5.3)

From (5.3) we infer that close to the wall D(X) = D0/λ is, to first order, linear in X − X . It
follows immediately that close to the wall, the volatility of the particle increases like the square-root
of X −X , in correspondence with Krugman’s prediction (4.46) from finance.

52



R 2R 3R
distance of particle midpoint from the wall

0

0.2

0.4

0.6

D
(X

)/
D

0

Figure 5.1: Physical diffusion coefficient as a function of particle distance from the wall. To first
order and close to the wall, D(X) is a linear function of X −X .

5.2 Thermal equilibrium in finance?

In absence of any external forces, what is the stochastic process that describes a physical Brownian
particle? Naively, one is led to propose dX/dt = g(X) · η(t). However, this implies not only that
we are working in Itô’s interpretation of stochastic calculus, but can furthermore be shown to be in-
consistent with convergence towards thermal equilibrium. For an equilibrium system, the probability
density p(X, t) must have a steady state solution with the canonical form p(X) ∼ exp(−H/kBT )
with H the Hamiltonian of the system. If we insist on working in Itô’s interpretation as is cus-
tomary in finance to ensure causality of financial strategies, it has recently been shown [45] than
an additional drift term g(X)dg(X)

dX must be added to the stochastic differential equation in order to
be consistent with the physical steady state distribution. From (4.46), we then derive the following
stochastic equation for a Brownian particle close the a wall and in absence of external forces:

dX

dt
= g(X)

dg(X)

dX
+ g(X) · η(t)

=
β2

2
+ β

√
X −X · η(t). (5.4)

Remarkably, the square-root shaped volatility is exactly the function which induces a constant pos-
itive drift in agreement with Krugman’s prediction (4.45). The correspondence between physical
hindered diffusion and Krugman’s target zone model is only semi-quantitative in the sense that here√

"drift term"/β = 1/
√

2. For Krugman, on the other hand, we have derived
√

"drift term"/β =
1/2, thus revealing a key difference between Krugman’s constant drift term and the one resulting
from a noise-induced drift of the form (5.4). We attribute this difference of the numerical values
of
√

"drift term"/β to the global condition of thermal equilibrium p(X) ∼ exp(−H/kBT ), which
is absent in finance. Lévy and Roll [49] have recently proposed to impose the constraint that the
global market portfolio is mean-variance efficient, i.e, that it obeys the predictions of the Capital
Asset Pricing Model (CAPM). This global condition can be shown to lead to a reassessment and an
improved estimation of the expected returns of the stocks constituting the global market [59]. But it
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is not known what could be other consequences, in particular in exchange rate dynamics. Indeed, in
finance, the existence of an economic equilibrium distribution similar to Boltzmann, and its relation
to detailed balance is highly debated and far from trivial. We refer to [25] for a recent discussion
of this topic and to [7, 23, 86] for further details on the interplay and coevolution of physics and
economics in general.

5.3 Diffusion close to a wall

Let us end this section by pointing out that, also from a purely physical perspective, our result (5.4)
has interesting implications. It reveals the special role played by the linearly increasing diffusion co-
efficient. In this subsection we want to give a less rigorous but simple heuristic derivation of Lorentz’
approximate result (5.3). What is nice about our derivation is that no detailed knowledge about hy-
drodynamic interactions is required.

Working with Itô’s interpretation of stochastic calculus, it can be shown [45] that a Brownian par-
ticle with general diffusion coefficient D(X) = g(X)2/2 and in absence of any external forces is
described by the stochastic differential equation

dX

dt
= g(X)

dg(X)

ds
+ g(X) · η(t). (5.5)

We want to determine the volatility g(X) of a Brownian particle at position X close to a wall located
at X = X . Without loss of generality, we set now X = 0 and make the fairly general approximation
that, close to the wall, g(X) = βXγ for some γ > 0 (it is easy to see that limX↓0D(X) = 0 is a
necessary condition). Plugging this into (5.5) gives

dX

dt
= β2γX2γ−1 + βXγ · η(t). (5.6)

In the limit X ↓ 0, we can distinguish three cases:

the drift g(X)
dg(X)

ds


diverges if γ < 1/2,

is constant if γ = 1/2,
vanishes if γ > 1/2.

If γ < 1/2, the particle will be repelled with infinite force and can never touch the wall. Furthermore,
placing initially the particle at the wall is ill-defined. If γ > 1/2, the particle, once it has reached
the wall, will stay there forever (more precisely, it can be shown that a particle starting from X > 0
can never exactly reach the wall, but approach it arbitrarily close [32]). Also, a particle placed at
the the wall will simply stay there forever. We deduce that γ = 1/2, and hence D(X) ∼ s is
the only physically reasonable choice. In this case, a particle starting from X > 0 has non-zero
probability to reach the boundary in finite time, upon which it will be repelled. These arguments can
be formalised by solving analytically the Fokker-Planck equation corresponding to (5.6) in terms of
an eigenfunction expansion [68, 71].
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6 Summary and Conclusions

In this thesis we have examined the dynamics of the EUR/CHF exchange rate that arose from the
SNB enforcing a minimum value of 1.20 Swiss francs per euro between September 2011 and January
2015. The overall goal was to set up a suitable stochastic differential equation (2.5) for this process.

Section 1 served as an introduction. The reasoning behind the efficient market hypothesis and the
functioning of the foreign-exchange market were summarized. Different regimes in the development
of the EUR/CHF exchange rate were highlighted.

In an initial approach, in section 2, we have relied on an apparent analogy from physics: A freely
moving, one-dimensional Brownian particle whose motion is restricted only by a hard, repulsive
wall. With arguments from statistical physics we have derived a long-range repulsive potential and
set up the stochastic differential equation (2.16) that was thought to capture the dynamics of the
EUR/CHF exchange rate. Numerical tests have shown that this is not the case. It turned out that
equation (2.16) is ill-suited for the description of the FX since it focuses too much on the determin-
istic drift f in (2.5) that violates the no-arbitrage condition. Rather, the dynamics must be hidden in
the stochastic volatility g. This section came with three appendices. In Appendix I we have derived
several important random walk properties. In particular, we have derived the partition function of a
random walker in presence of a barrier. Using Feynman path integrals and diagrams, Appendix II
provides a general framework for the perturbative calculation of cumulants of solutions of stochastic
differential equations. This is then applied to (2.16) and its validity is discussed. A functional renor-
malization group calculation of the interaction between a D-dimensional fluctuating surface and a
hard wall is shown in Appendix III.

In section 3 we have abandoned the physical analogies. We have presented an algorithm that allowed
us to extract both drift and volatility in a parameter-free way. After testing the accurateness of the
algorithm by applying a Monte-Carlo scheme to a model equation, we have applied it to tick data of
the EUR/CHF exchange rate. We found that the drift f is essentially constant, whereas the volatility
g exhibits non-trivial behavior, increasing non-linearly as a function of the distance to the barrier.

The purpose of section 4 was to back all the previous empirical findings from a new theoretical per-
spective. In a first part, we have justified why the physical analogy of the Brownian particle from
section 2 is too simplistic. In particular, we have shown how a rather naive trading strategy would
lead to immense gains on the costs of the SNB. We have also explained this more formally in terms
of the martingale condition. Consequently, we turned our attention to the famous Krugman target
zone model which, as we could show, provides an accurate description of the EUR/CHF target zone
regime.

By describing the exchange rate as a colloidal Brownian particle embedded in an “order book fluid",
we could show in section 5 that there is a formal analogy to the physical hindered diffusion problem
in the sense that both systems can be described by the same stochastic differential equation. This pro-
vides novel empirical support for the recently introduced model of a “financial Brownian particle in a
layered order book fluid” [103], which generalises the standard random walk model of financial price
fluctuations. We have also pointed out two fundamental differences between physical and economic
hindered diffusion: First, in finance, market participants’ expectations must be taken into consider-
ation. And their dedicated actions lead in aggregate to a quasi-absence of arbitrage opportunities.
This is a typical feature of a complex human system that the physicist should always keep in mind
when applying methods from natural sciences to model social dynamics. Second, in physics, we
have an additional constraint in terms of a thermal equilibrium based on detailed balance. In finance,
the existence of such a global equilibrium is a priori not clear and must be investigated further.
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7 Appendix I: A Random Walker and a Wall

In this appendix we derive the partition function of a random walker in presence of a wall. Knowledge
of the partition function is needed in order to derive the effective repulsive potential that a random
walker feels due to that wall. Note that "wall" and "barrier" obviously mean the same in this context.
We start by considering a free random walk and setting up proper nomenclature. We can then describe
the presence of a wall with the help of mirror paths. This is similar to the method of mirror charges
known from electrostatics which was originally developed by Maxwell [56] already around 1870.
The presented calculations are built on the discussions by Chandrasekhar [14].

7.1 A Free Random Walker

Let us start with the most simple of all random walks: an unbiased, one-dimensional free random
walk with all steps of equal length. Unbiased means that the walker chooses the direction of its next
step (up or down) both with probability p = 1/2. Without loss of generality we set the constant step
length to ` = 1. We are now asking for W (m,N), the probability to be at position m after N steps
when starting at the origin. Note that m must be even (odd) when N is even (odd). In the following,
we are always assuming that this is the case (otherwise, we have trivially W (m,N) = 0).

The probability for any given random walk consisting of N steps is (1/2)N . This is because there
are 2N distinct walks each of which having equal probability. Hence, we know that

W (m,N) = number of distinct walks from 0 to m ·
(

1

2

)N
. (7.1)

It is easy to see that we must take (N+m)/2 steps into the positive and (N−m)/2 into the negative
direction (where the ’positive’-direction is defined by the sign of m). Hence, we have found that

W (m,N) =

(
N

(N +m)/2

)(
1

2

)N
(7.2)

which corresponds to a Bernoullian distribution. Clearly, due to symmetry it must hold that the
expectation value of m vanishes:

E [m] = 0. (7.3)

Since the increments are independent, the variance is additive and we find

E
[
m2
]

=
N∑
i=1

1 = N (7.4)

which implies the following result for the root mean square displacement:√
E [m2] =

√
N. (7.5)

We can simplify (7.2) in the case of N � m by using Stirling’s formula

logN ! =

(
N +

1

2

)
logN −N +

1

2
log 2π +O

(
N−1

)
(N →∞). (7.6)
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We find

logW (m,N) ∼
(
N +

1

2

)
logN − 1

2
(N +m+ 1) log

(
N

2

(
1 +

m

N

))
− 1

2
(N −m+ 1) log

(
N

2

(
1− m

N

))
− 1

2
log 2π −N log 2. (7.7)

A first order Taylor approximation yields

log
(

1± m

N

)
= ±m

N
− 1

2

m2

N2
+O

(
m3

N3

)
. (7.8)

Thus, our expression simplifies further to

logW (m,N) ∼ −1

2
logN + log 2− 1

2
log 2π − m2

2N
(7.9)

and finally

W (m,N) ∼
√

2

πN
e−m

2/2N . (7.10)

A simple numerical analysis shows that this approximation is very accurate already for small param-
eters such as N = 10 and m < 7.

Changing nomenclature, we can make rewrite (7.10) such that taking the continuous limit will be
straight forward. We write x = m` where ` is now a constant step size of any length. Then, x
is simply the net displacement from the origin. In particular, we can now ask for the probability
W (m,N)∆x that we are in the interval [x, x+ ∆x] after N steps for ∆x� `. We have

W (x,N)∆x = W (m,N)
∆x

2`
(7.11)

where the factor 2 stems from the fact that m can take only even (odd) values when N is even (odd).
Combining all this, we can write

W (x,N) =
1√

2πN`2
e−x

2/2N`2 . (7.12)

Moreover, if we assume that we make n steps per unit time and we define the diffusion coefficient
D ≡ 1

2n`
2 we can write

W (x, t)∆x =
1

2
√
πDt

e−x
2/4dt∆x. (7.13)

7.2 A Random Walker and a Reflective Wall

Let us assume that there is a perfectly reflecting wall at m0 > 0 (the case m0 < 0 is analogous).
This means that whenever the particle arrives at m0 it is retracing its step to m0 − 1 with probability
1. We ask for the probability W (refl)(m,N ;m0), i.e. the probability that a particle arrives at m after
N steps under the condition that there is a reflecting boundary positioned at m0. Obviously, we have
W (refl)(m,N ;m0) = 0 for all m > m0 since we assume that (without loss of generality) the walk
starts at the origin. To derive an expression ifm 6 m0 we have to modify (7.2) by accounting for the
fact that whenever the walker is at m0 he or she turns with probability 1. Formally, this means that
a path which is reflected k times at m0 before reaching m must be weighted by a factor of 2k since
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we have falsely multiplied the probability of this path by a probability of (1/2)k. At this point, it is
usually argued that we can account for these factors 2k by considering also all the mirrored paths,
hence, that we have

W (refl)(m,N ;m0) = W (m,N) +W (2m0 −m,N) (7.14)

N�m∼
√

2

πN

(
e−m

2/2N + e−(2m0−m)2/2N
)
. (7.15)

This is indeed true, but let us derive this in some more detail. Let kmax denote that maximal possible
number of reflections that a path starting at the origin and arriving at m after N steps can have.
Also, "# DP" stands for "number of distinct paths" and "RW" stands for "random walk". We find

W (refl)(m,N ;m0) =

kmax∑
k=0

∑
RW i with
k reflections

(probability for a RW i
with k reflections

)
︸ ︷︷ ︸

equal ∀ i

=

kmax∑
k=0

(
# DP with
k reflections

)
·
(probability for a RW i

with k reflections

)
=

kmax∑
k=0

(
# DP with
k reflections

)
· 2k

(
probability for the same RW i
but in absence of the wall at m0

)

=

kmax∑
k=0

(
# DP with
k reflections

)
· 2k

(
1

2

)N
(7.16)

Now the idea of mirror paths comes into play. We claim that for each path with k reflections at m0

there exist 2k − 1 forbidden paths (i.e. paths that cross the reflective wall) that lead either to m or to
its image (i.e. its reflection at m0) 2m0 −m. This can be justified inductively:

(i) All the paths that arrive at m without ever being reflected are trivially accounted for by
W (m,N). There are 2k − 1 = 20 − 1 = 0 mirrored paths.

(ii) Now, consider a path that leads to m and is reflected exactly k = 1 time at m0. It is easy to
see (figure 7.1) that for every path that is reflected just once there is exactly one mirrored path
that leads to 2m0 −m. Hence, we have 2k − 1 = 1 additional forbidden path.

(iii) If we draw a path that is reflected k = 2 times at the wall m0 before arriving at m (blue line
in figure 7.2) we can see that there are two alternative paths that lead to 2m0 −m (red and red
dashed line) and that there is one additional path that crosses the wall twice and leads back to
m (green line). Hence, we have 2k − 1 = 3 additional forbidden paths.

(iv) This reasoning can be continued inductively. One has then shown that for a path with k reflec-
tions there are 2k − 1 additional forbidden paths which lead either to m or to 2m0 −m. We
omit showing this step explicitly here since the idea is intuitively clear.
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Figure 7.1: The blue line denotes the path of a random walk with N = 6 steps, k = 1 reflections
at a reflective wall wich is located at m0 = 3 and ending at m = 2. For k = 1 reflections we have
to account for 2k = 2 distinct walks (blue and red line) that lead to the same path if there is a wall
present.

m

n
O N

A

B

B′

C

D
m

D′
2m0 −m

m0

Figure 7.2: The blue line denotes the path of a random walk with N = 6 steps, k = 2 reflections at
a reflective wall wich is located at m0 = 3 and ending at m = 2. For k = 2 reflections we have to
account for 2k = 4 distinct walks (blue, red, red dashed and green line) that lead to the same path if
there is a wall present.
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With this claim, we can write further

W (refl)(m,N ;m0) =

kmax∑
k=0

(
# DP with
k reflections

)
· 2k

(
1

2

)N

=

kmax∑
k=0

(
# DP with
k reflections

)
·
[(

probability for RW with k reflections
or its mirrored paths to m

)
+(

probability for mirrored paths of RW
with k reflections to 2m0 −m

)]
= W (m,N ;m0) +W (2m0 −m,N ;m0) (7.17)

which proofs (7.14).

Changing again to the notation x = ml the probability W (refl)(x, t, x1)∆x hat a particle is between
x and x + ∆x after a time t (during which it takes n · t steps) in the presence of a reflecting wall at
x0 = m0` we have

W (refl)(x, t;x0) =
1

2
√
πDt

(
e−x

2/4Dt + e−(2x0−x)2/4Dt
)
. (7.18)

Note that this implies
∂W (refl)

∂x

∣∣∣∣∣
x=x0

= 0, (7.19)

i.e. the probability flux through the hard wall at m0 is vanishing, as anticipated.

7.3 A Random Walker and an Absorbing Wall

Let us assume that there is a perfectly absorbing wall at m0 > 0, i.e. whenever the random walker
arrives at m0 he or she becomes trapped and cannot keep on walking. We ask for W (abs)(m,N ;m0)
which is the probability that the particle is at position m after N steps in presence of the absorbing
wall at m0. As already for the reflecting wall we can solve this problem with the method of images.
Obviously, we have W (abs)(m,N ;m0) = 0 for all m > m0 since we assume that (without loss
of generality) the walk starts at the origin. When counting the number of distinct walks in order
to derive W (abs)(m,N ;m0) for some m 6 m0 we must be careful to exclude all sequences which
include even a single arrival at m0. Hence, we must exclude all the forbidden sequences. From our
discussion above we know now that every forbidden sequence uniquely defines another sequence
leading to the image point 2m0 −m. This can be seen by reflecting the path at m = m0 once the
trajectory hits m0 for the first time. Conversely for every trajectory leading to 2m0 −m we obtain
by reflection a forbidden trajectory leading to m since any trajectory to 2m0 −m must necessarily
cross the absorbing wall at m0. Hence,

W (abs)(m,N ;m0) = W (m,N)−W (2m0 −m,N) (7.20)

N�m∼
√

2

πN

(
e−m

2/2N − e−(2m0−m)2/2N
)

(7.21)

∼ 1

2
√
πDt

(
e−x

2/4Dt − e−(2x0−x)2/4Dt
)
. (7.22)

In particular, W (abs)(m0, t;m0) ≡ 0.
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7.4 Scaling of the Partition Function

We are interested in the partition function

Z
(refl/abs)
N =

m0∑
m=−N

W (refl/abs)(m,N ;m0) (7.23)

of a random walk starting at the origin and consisting of N steps with a reflecting or absorbing wall
located at m0 > 0. Formally, this is of course just equal to unity (the walker certainly has to end up
somewhere) since all our probabilities have been properly normalized by 2−N in (7.2). However, we
are rather interested in the leading scaling behavior of ZN as a function of the number of steps N .
For this, note that in leading order in N it holds

(7.15) ∼ N−3/2e−m
2/2N . (7.24)

Comparison with (7.21) shows that the same scaling behavior applies for an absorbing wall. There-
fore, we can drop this distinction in the following. The number of terms in the partition function
(7.23) is of order N and so we find that

ZN ∼
1√
N
. (7.25)

Finally, we also note that the most probable distance and the mean distance from the wall after N
steps scale as

E [m] ∼
√
N. (7.26)

which can be seen from (7.2) and (7.23) by setting the corresponding derivatives (in the continuous
limit) to zero. Alternatively, this can also be seen from (7.5) using symmetry arguments. This is all
we need for the derivation of the repulsive force acting on a random walker in presence of a wall.
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8 Appendix II: Path Integral Methods for Stochastic Differential Equa-
tions

In section 2.2 we have encountered a stochastic differential equation (SDE) of the form

Ẋ(t) = −aX(t) + bX(t)2 +
√
Dη(t). (8.1)

where a, b,D are some constants and η is white noise. Let X0 ≡ X(t = 0) ∈ R denote some initial
value. We are interested in calculating the (time-dependent) moments and cumulants of X . A first
step to do so could consist of solving (8.1) which is, however, not so simple. Alternatively solving
the corresponding Fokker-Planck equation is not any easier. Luckily, it turns out that we do not have
to solve any of these equations. We can use a path integral formalism to obtain perturbative results
of all the moments and cumulants.

The following discussion relies on the work of Chow and Buice [15]. The entire discussion presented
here displays close similarities to the path integral treatment of (quantum) field theories (QFT). This
includes the usage of mathematical tools such as Feynman diagrams and functional derivatives but
also nomenclature that is directly adopted from physical analogies. Readers unfamiliar with the topic
are referred to more didactical introductions. See the standard textbooks by Peskin & Schröder [65]
or Ryder [72] for an introduction in the context of quantum field theory. See Kleinert [41] for an
introduction which also includes applications to finance.

8.1 Motivation

For a one-dimensional, real random variable X we define the moment generating function Z as

Z[λ] =
〈
eλX

〉
=

∫
dXP (X)eλX (8.2)

where P is the density distribution function of X and λ ∈ R some dummy variable. Via

〈Xn〉 =
1

Z[0]

dn

dλn
Z(λ)

∣∣∣∣
λ=0

(8.3)

we can then calculate the n-th moment of X as can be seen immediately by applying the derivative
directly on the integrand in (8.2). 8 Note that usually in this context Z[0] = 1 since P is normal-
ized. However, we must not insist on this condition since this factor cancels out in (8.3) anyway.
Furthermore, the cumulant generating function ZC is defined as

ZC [λ] = logZ[λ]. (8.4)

By definition, the n-th cumulant is then given by

〈Xn〉C =
dn

dλn
W (λ)

∣∣∣∣
λ=0

. (8.5)

It is now clear that having a closed-form expression for Z presents a convenient way of calculating
moments and cumulants: It is then just a matter of taking derivatives.

8 Mind the change in notation. In this thesis, we usually denote theoretical expectation values by E and empirical mean
values by 〈·〉. However, in this appendix we choose to denote theoretical expectation values also by 〈·〉 to highlight the
formal equivalence between the following calculations and the formalism know from field theories.
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Let us now consider the special case of a Gaussian distributed variable X with mean a and standard
deviation σ. We find

Z[λ] =
1√
2πσ

∫
dX e−

(X−λσ2−a)
2

2σ2
+λX

= Z[0]eλa+λ2σ2

2 (8.6)

with Z[0] =
√

2πσ. The second equality follows from completing the square in the exponent.

This method generalizes to an n-dimensional random variable ~X = (X1, . . . , Xn) in a natural way
through

Z
[
~λ
]

=
1

(2π)n/2
√
| det(K)|

∫ n∏
i=1

dXi exp

−1

2

∑
j,k

XjK
−1
jk Xk +

∑
j

λjXj


= Z[0] exp

∑
j,k

1

2
λjKjkλk

 (8.7)

with Z[0] = (2π detK)n/2 and K is the inverse of the covariance matrix.

It is now intuitive to consider the generalization to an "infinite-dimensional random variable" Xi →
X(t) where t ∈ [0, T ]. This yields the "infinite-dimensional generalization"

Z[λ] ∝
∫
DX(t) exp

(
−1

2

∫
ds dt X(s)K−1(s, t)X(t) +

∫
dt λ(t)X(t)

)
(8.8)

= Z[0] exp

(∫
ds dt

1

2
λ(s)K(s, t)λ(t)

)
(8.9)

where DX(t) ≡ limn→∞
∏n
i=0 dxi and Z[0] = limn→∞(2π detK)n/2. In the last step we have

again "completed the square". Integrals of type (8.8) which integrate over an entire functional space
are commonly called (Feynman) path integrals. Note that Z[0] is formally infinite but as already
argued above, we will see that this divergent pre-factor cancels out in the calculation of moments and
cumulants.

8.2 From Differential Equations to Path Integrals

The above was just a special case for an "infinite-dimensional Gaussian distributed stochastic pro-
cess". Let us have a look now at how we can generalize this idea in order to apply it to a general SDE
of the form

Ẋ = f(X, t) + g(X, t)η(t) ⇔ dX(t) = f(X, t)dt+ g(x, t)dW (t) (8.10)

where W (t) is a Wiener process and the equation is interpreted in the Itô sense (see section 2.2 for
a discussion of Itô vs. Stratonovich) Moreover, we have the initial condition X0 = X(t = 0) ∈ R.
Let us now rewrite this initial value problem as a probability density

P [X(t)|X0, η(t)] = δ
[
Ẋ(t)− f(X, t)− g(X, t)η(t)−X0δ(t− t0)

]
(8.11)

where δ is the delta functional, i.e. the functional generalization of Dirac’s delta distribution. The
definition of the density P via (8.11) is actually a trivial statement since all we do is writing a
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probability distribution that is constrained at the solution of the SDE. Recall that the δ-functional has
the path-integral representation

δ(X(t)) = N
∫
DK(t) e−

∫
dt iK(t)X(t) ≡ N

∫
DK̃(t) e−

∫
dt K̃(t)X(t) (8.12)

where we have defined K̃(t) := iK(t). Moreover, we denote byN some pre-factor in which we will
collect all the (possibly diverging) pre-factors that occur in the following calculations. Using that η
is white noise we find

P [X(t)|X0] = N
∫
Dη P [X(t)|X0, η] e−η

2(t)

= N
∫
Dη DK̃ exp

(
−
∫
dt
[
K̃(t)

(
Ẋ(t)− f(X, t)−X0δ(t− t0)

)
+K̃(t)g(x, t)η(t)− η2(t)

])
= N

∫
DK̃(t) exp

(
−
∫
dt

[
K̃(t)

(
Ẋ(t)− f(x, t)−X0δ(t− t0)

)
+

1

2
K̃2(t)g2(x, t)

])
(8.13)

where in the last step we have completed the square and integrated out the η-dependence. We will
dropN in the following for simplicity and since it would cancel out in final-results anyway. Now we
can write the moment and cumulant generating functionals for the solution of (8.1) as

Z[J, J̃ ] =

〈
exp

(∫
dt
(
J̃(t)X(t) + J(t)K̃

))〉
=

∫
DX(t) DK̃(t) exp

(
−S[X, K̃] +

∫
dt J̃(t)X(t) +

∫
dt J(t)K̃(t)

)
(8.14)

with the action

S[X, K̃] ≡
∫
dt

[
K̃(t)

(
Ẋ(t)− f(X(t), t)−X0δ(t− t0)

)
− 1

2
K̃2(t)g2(X(t), t)

]
. (8.15)

The terms proportional to J̃X and JK̃ in (8.14) are the so-called source terms. Since J and J̃ will
be set to zero in any final result we have introduced them without loss of generality. Working with
functional derivatives, the source terms turn out useful because the moments can be obtained via〈

m∏
i=1

n∏
j=1

X(ti)K̃(tj)

〉
=

1

Z[0, 0]

m∏
i=1

n∏
j=1

δ

δJ̃(ti)

δ

δJ(tj)
Z

∣∣∣∣
J=J̃=0

(8.16)

whereas the cumulants obey〈
m∏
i=1

n∏
j=1

X(ti)K̃(tj)

〉
C

=
1

Z[0, 0]

m∏
i=1

n∏
j=1

δ

δJ̃(ti)

δ

δJ(tj)
logZ

∣∣∣∣
J=J̃=0

. (8.17)

Now, let us apply this formalism specifically to (8.1). The expression for the action (8.15) then reads

S[X, K̃] =

∫
dt

[
K̃
(
Ẋ + aX − bX2 −X0δ(t− t0)

)
− D

2
K̃2

]
. (8.18)

We see immediately that this does not correspond to a free action, meaning that X and K̃ appear
in such a way that we cannot complete the square and perform the integration as before but we will
require perturbative methods instead. We thus separate S = SF +SI where SF denotes the free part

SF [X, K̃] =

∫
dt K̃

(
Ẋ + aX

)
=

∫
dt K̃

(
d

dt
+ a

)
X (8.19)
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and the rest of the action belongs to the interaction part SI . Now we only have to determine the
inverse (or rather Green’s function) G of the operator

(
d
dt + a

)
, i.e. solve for(

d

dt
+ a

)
G(t, t′) = δ(t− t′). (8.20)

Once we knowG, we add source terms to SF , i.e. define S0 := SF +
∫
dt J̃(t)X(t)+

∫
dt J(t)K̃(t).

This yields the generating functional of the free action with source terms

ZF [J, J̃ ] = Z0 exp

(∫
ds dt J̃(s)G(s, t)J(t)

)
(8.21)

where we have completed the square such that all the source terms become independent of X and
K̃. In this way the path integral becomes nothing but a (diverging) pre-factor Z0 ≡ Z[J = 0] which
cancels out when we calculate moments and cumulants. The generating functional of the entire
theory including the interaction part is given as

Z[J, J̃ ] = exp

(
SI

[
δ

δJ
,
δ

δJ̃

])
ZF [J, J̃ ]. (8.22)

By expanding the exponential up to an arbitrary order and using (8.16) and (8.17), respectively, we
can calculate any moment or cumulant with arbitrary precision.

It is important to note that a perturbative expansion makes only sense if we can make sure that the
coupling constants are small. In our case, this means that we must make sure that b,D and X0 (a
belongs to the free action) are small. We discuss the validity of this assumption in section 8.4. For
now, let us assume that this is indeed the case.

Before we can start calculating moments and cumulants we must solve equation (8.20). This is done
best by transforming the equation into Fourier-space (variables denoted with a hat) where we use that
d̂
dt = −iE and δ̂ = 2π. In Fourier-space we have nothing but a simple polynomial equation

(a− iE) Ĝ(E) = 2π ⇒ Ĝ(E) =
2π

a− iE
. (8.23)

In order to transform back to G(t) = 1
2π

∫
dE 2πeiEt/(a− iE) we can use the residue theorem (see

for instance [12]) together with a distinction of cases for t ≤ 0 and t > 0 to find

G(t, t′) = Θ(t− t′)e−a(t−t′) (8.24)

where

Θ(t) =

{
0, t 6 0
1, t > 0

(8.25)

is the left-continuous Heaviside function. 9

We have now all we need to calculate the moments and cumulants. We expand the interacting part
of the action as

exp
(
SI [X, K̃]

)
= 1−X0K̃(t0)− b

∫
dt K̃(t)X2(t)− D

2

∫
dt K̃2(t)

+
1

2

(
X0K̃(t0) + b

∫
dt K̃(t)X2(t) +

D

2

∫
dt K̃2(t)

)2

+ . . . , (8.26)

replace X by δ/δJ and K̃ by δ/δJ̃ , plug this into (8.22) and then calculate the cumulants via (8.17).
9Left-continuity is an important detail in order to be consistent with our interpretation of the stochastic process accord-

ing to Itô’s definition.
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8.3 Feynman Diagrams

The above technique for calculating cumulants is possible but also rather tedious. There is a much
more convenient way to keep track of the necessary terms by introducing Feynman diagrams. A
technical introduction to the use of Feynman diagrams can be found in [65,72]. With some practice,
one can quickly derive the Feynman diagrams and the corresponding Feynman rules from the action
(8.18). There may be some additional subtleties to the rules when the fields involved in the theory
have vectorial or tensorial structure as for instance in quantum chromodynamics (QCD). For (8.18)
the derivation is straight forward:

The propagator G corresponds to the free part of (8.18) and is graphically denoted by a straight line:

t t0
=
〈
K̃(t)X(t0)

〉
F

= G(t, t0) (t > t0). (8.27)

The subscript F means averaging with respect to the free partition function (8.21). We work in the
convention that time flows from right to left. The right end of a line then denotes a time ti and the
left end point denotes a time tf with tf > ti.
Each summand in the interacting part in (8.18) now constitutes one additional Feynman rule, a so-
called vertex. In a simple theory like (8.18) a vertex is drawn according to the following rules: For
each X-field we draw an ingoing and for each K-field we draw an outgoing line. Consequently, the
corresponding Feynman rule for this vertex is nothing but the term in the action but with the opposite
sign since Z ∝ e−S . For the first vertex, we read from (8.18)

t = bX2(t)K̃(t). (8.28)

Time t denotes any time between the time ti to the right of the incoming lines and the time tf to the
left of the outgoing line. Since t can denote any point with ti < t < tf we will see below that we
have to integrate over t, i.e. consider a superposition of all possibilities t ∈ (ti, tf ).
The second vertex in (8.18) reads

t
=
D

2
K̃2(t) (8.29)
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and finally we have a tadpole, i.e. a vertex with no ingoing line,

t
= X0K̃(t)δ(t− t0). (8.30)

The δ arises because this node cannot be connected to the right. Hence, it must denote the "right-
most" point in time, i.e. the initial time t0. The usefulness of these diagrams is due to the following
statement:

Expression (8.16) is equal to the sum of all (topologically distinct) Feynman diagrams with m ingo-
ing and n outgoing lines which can be drawn with only the above nodes (8.28)-(8.30). Furthermore,
the cumulants (8.17) are given by the sum of all fully connected Feynman diagrams. Here, fully
connected means just that all nodes are connected to each other (either directly or via other nodes).

This is a powerful statement. It tells us that instead of working with multiple functional derivatives
and a myriad of product and chain rules, we can simply draw intuitive diagrams which then corre-
spond to certain mathematical expressions. However, two questions naturally arise: What are distinct
diagrams? For a given m and n, there seems to be in general an infinite amount of diagrams with
m incoming and n outgoing lines. Do we have to consider an infinite amount of diagrams? As will
become more clear below, there is a 1:1 correspondence between the number of nodes in a diagram
and the order of the expansion in (8.26). We can see from (8.26) that if the coupling constants y, b
and D are small, only the diagrams with the least amount of nodes will contribute significantly. We
will argue in section 8.4 that indeed these coupling constants are small and hence we are safe to
consider only the diagrams with the smallest amount of nodes.
Regarding the first question, we can look for instance at the node (8.28). We see that there are two
possibilities for the two incoming lines to connect to the node. (Line coming from top right going
to the top right "plug" of the node or line coming from top right going to the bottom right "plug" of
the node. Only the first possibility is depicted in (8.28).) Indeed, these are two topologically distinct
diagrams and so they have to be considered as two different diagrams. However, they represent the
same mathematical expression. It is therefore easier to just consider each such diagram as one, and
than multiply it by its symmetry factor S . The symmetry factor accounts exactly for the number of
topologically distinct diagrams that represent the same mathematical expression. Another ambiguity
arises from the choice t of the node which must be between ti and tf . Since each such choice cor-
responds to a different diagram, we must integrate over all such choices of t. This leads us finally
to the following set of Feynman rules which tell us exactly what mathematical expression we must
assign to each diagram:

(i) Each line between two points of time ti and tj corresponds to a propagator G(ti, tj) where
ti > tj . 10

(ii) For S distinct ways of connecting edges to vertices that lead to the "same" diagram we account
a symmetry factor S .

10 The case ti = tj (e.g. in loops) drops automatically out since Θ(0) = 0.
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(iii) For each vertex we multiply by the corresponding pre-factor (X0, b or D/2) and integrate each
vertex over the time-domain (t0,∞).

It is easy to verify, that these rules yield exactly the same as the approximation of (8.16) and (8.17)
via (8.26). Note that for an expansion up to k-th order in (8.26) we have to consider a factor of 1/k!
from the expansion of the exponential. This factor does not show up in our Feynman rules because it
cancels exactly with the number of permutations of the vertices that lead to the same diagram.

We are now ready to calculate the cumulants of X(t) from (8.1). For the variance and skewness of
X(t) we will need to know 〈Xn(t)〉C for n = 2, 3. Let us start with

〈
X3(t)

〉
C

. A first straight
forward idea which comes to mind is

t

t

t

t1

t1

t1

(8.31)

This diagram contributes to
〈
X3(t)

〉
. However, as argued above, only the fully connected diagrams

contribute to the cumulants. (Thinking in terms of (8.17) and (8.26) this can easily be seen as a
consequence of the product rule for the functional derivative.) Hence, we can already discard all
the diagrams that are not fully connected and find for the lowest order contribution to

〈
X3(t)

〉
C

the
following diagram:

t

t

t

t2

t3

t1 (8.32)

For all the three vertices we have 2 possibilities each to connect the lines to the vertices. This yields
a symmetry factor of 8. Hence, we find that

(8.32) = 8b
D2

4

∫
dt1

∫
dt2

∫
dt3 G(t, t1)G(t, t2)G(t, t3)G(t1, t2)G(t1, t3)

=
2bD2

3a3
e−4at

(
eat − eat0

)3 (
eat + 3eat0

)
. (8.33)

In the limit of large t we have thus found that the third cumulant is given up to third order by

〈
X3(t)

〉
C

=
2bD2

3a3
. (8.34)
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The next higher contribution term is of the form

(8.35)

and so forth. If necessary, we can expand the third cumulant up to arbitrary precision. However, we
argue in section 8.4 that this is not necessary in our case.

To have everything in the same order we calculate the second cumulant
〈
X2(t)

〉
C

(which is equal to
the variance V [X(t)]) also up to third order:

V [X(t)] = +

(8.36)
For the first diagram we calculate

t

t

t1
= D

∫
dt1 G(t, t1)2 =

D

2a

(
1− e2a(t0−t)

)
(8.37)
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and for the second one we have

t

t t2

t1

= 2byD

∫
dt1

∫
dt2 G(t, t1)G(t, t2)G(t1, t0)G(t1, t2)

=
bX0D

a2
ea(t0−3t)

(
eat − eat0

)2
. (8.38)

Thus, we have found that up to third order

〈
X2(t)

〉
C

= V(X(t)) =
D

2a

(
1− e2a(t0−t)

)
+
bX0D

a2
ea(t0−3t)

(
eat − eat0

)2 t→∞−→ D

2a
. (8.39)

The skewness γ of a random variable X is defined as

γ(X) = E

(X − E [X]√
V [X]

)3
 =

〈
X3(t)

〉
C

V3/2
, (8.40)

thus

γ(X(t)) =

√
2

3

b
√
D

a3/2

e−4at
(
eat − aat0

)3 (
eat + 3eat0

)(
1− e2a(t0−t) + 2by

a e
a(t0−t)

[
ea(t0−t) − 1

]2)3/2
. (8.41)

In the limit of t→∞ the time dependence cancels out and we are left with

γ(X(t)) =

√
2

3

b
√
D

a3/2
. (8.42)

8.4 Higher Order Expansions

The method presented in the previous section delivers perturbative results in b,X0 and D (however,
not in a which is part of the free action) for moments and cumulants of X . In order to work with the
first order result (8.32) for the skewness we have to argue that it is justified to neglect higher order
diagrams. This means that we have to argue that the "coupling constant" b,X0 and D are indeed
small. Let us consider D first. Analyzing the time series of the stationary region (figure 1.4) we
see that the fluctuations are of order 10−3. Since the random fluctuations scale with

√
Dη and η is

normally distributed with standard deviation equal to unity we see that we must choose D of order
10−6. Hence, perturbation in D is clearly justified. It is only reasonable to choose an initial value
of similar order such that X0 must also be of magnitude 10−3 or smaller. So perturbation in X0 is
justified. Finally, we have that b = 6F 2/c. We have shown in section 2.2 that F ∼ 1/r2

eq and since
req & 1.20 we see that F 2 is of order 1/2. For b to be small, we must show that c is small. This
is problematic, since c is a parameter from the model that we cannot influence or estimate a priori.
However, we will show now that perturbation is still justified, as long as c is reasonably "small".

The third cumulant
〈
X3(t)

〉
C

is given in first approximation by (8.32). This means first order in b,
second order inD and zeroth order inX0. SinceD � X0, the order ofD is the one that must be kept
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the lowest since one order higher inD will already make the diagram several orders of magnitude less
important. We can keep D in second order and expand up to arbitrary order in b and X0 according
to:

+ + . . . (8.43)

Expanding in this manner we see that if we expand up to n-th order in b we are at (n − 1)-th order
in X0. However, we know that X0 is of order 10−3 and so as long as c is of order 102 or smaller
perturbation is still justified. We can also expand in higher orders of D. In third order of D we have
for instance

(8.44)

and so forth. However, since D is of order 10−6 we can safely neglect higher order expansions in
D. It is therefore completely justified to consider only contributions from (8.32) to the calculation
of
〈
X3(t)

〉
C

as long as the value of b is of order 100 or lower because then multiplication with
X0 shows that each higher order is still one order of magnitude less significant. We could even set
X0 = 0 (and loose some generality) and then c could take values of order 105 and the expansions
would still be justified. By nature of the problem, we can assume that b will not exceed such large
values since b ∼ 1/c and c is a constant in the potential V = c

r + Fr.

A similar discussion holds for the variance. With every b vertex that we add to the diagram we
have to add at least one X0 or D vertex which makes it immediately a few orders of magnitude less
important. Therefore, it is in good approximation justified to consider only (8.37) for the contribution
to the variance.
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9 Appendix III: Functional Renormalization Group

In section 2.4 we have proposed an analogy between the constrained EUR/CHF exchange rate and
the renormalized potential V describing the interaction of a D-dimensional surface embedded in a
(D + 1)-dimensional space. Applying a method known as functional renormalization group (FRG)
we want to show in this appendix how the potential V can be renormalized. FRG is a special type of
the general renormalization group (RG) framework, see [18] for an in-depth introduction.

We are working with the interface displacement model (IDM) in D dimensions where we consider
the z = 0 plane as the (D − 1)-dimensional hard wall. We denote points in this plane by the
vector ρ = (x1, . . . , xD−1). One configuration of a (D − 1)-dimensional interface is given by the
function z(ρ) where z denotes the distance of the interface from the wall (height) at position ρ. The
Hamiltonian of the IDM takes the form

H(z) =

∫
dD−1ρ

(σ
2
|∇ρz(ρ)|2 + V (z(ρ))

)
. (9.1)

The first term of (9.1) controls the fluctuations of a free surface. The second term of (9.1), the poten-
tial V (or Vmicro), is the sum of all direct, i.e. "microscopic" interaction potentials between the wall
and the interface. By microscopic we mean that these are the bare, in some sense "point-wise me-
diated" interactions that are independent of the interfaces as a whole. Physically, these are typically
Van der Walls forces, Coulomb forces etc. In our case, V consists of a repulsive part due to the SNB
and of an attractive part due to economic distress, as was have discussed above. See section 2.4 for a
discussion of physical interpretations of the Hamiltonian (9.1).

It is implicitly assumed that the Hamiltonian (9.1) has a short distance cutoff at some length scale
1/Λ. In terms of wetting transitions, 1/Λ is of the order of the bulk correlation lengths. Economi-
cally, it can be seen as the time scale over which quotes are correlated.

The "interaction" between the EUR/CHF and the 1.20 barrier is of course not that of two rigid straight
lines. The time evolution of the EUR/CHF exchange rate traces out an irregular, fluctuating surface.
Due to these undulations different parts of the random-walk-line are exposed to different repulsive
and attractive forces, depending on their distance to the 1.20 line. These complex interactions can be
taken into account by renormalizing the potential V into a renormalized potential V` in which all the
effects of fluctuations up to a certain scale ` are integrated out.

In the following, we set up a renormalization of the interfacial Hamiltonian (9.1). There exists a
variety of approaches to this problem. We will follow here the approach by Fisher & Huse [26] since
it offers a neat closed form solution for which we can try out several forms of potentials without any
additional effort. We present a more detailed derivation, borrowing also from [84] as well as from
more didactical RG review papers [18,42,99]. It would be far beyond the scope of this thesis to give
a fundamental introduction to the methods of RG. Consult the references given in section 2.4 for this
purpose.

It is convenient to work in Fourier transformed coordinates

ẑ(k) =

∫
dD−1ρ z(ρ)eik·ρ (9.2)

such that (9.1) becomes

H(ẑ) =

∫
|k|<Λ

dD−1k
(σ

2
|k|2 |ẑ(k)|2 + V (ẑ(k))

)
. (9.3)
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The partition function can be written as the functional integral

ZΛ =

∫
|k|<Λ

Dz e−βH ≡
∏
|k|<Λ

∫
dz(k) e−βH (9.4)

where β is some parameter (physically, β = 1/kBT with T the temperature and kB the Boltzmann
constant). Quite generally, a RG-cycle consists of three steps:

(i) Integrating out the degrees of freedom (here z) within the thin momentum shell Λ/b < |k| < Λ
with b > 1 the rescaling factor. We set b = 1 + ` with ` infinitesimal. Generally, this step
is also called decimation since we coarse grain our system (not necessarily always through
integration). Intuitively, this step corresponds to "zooming out". Next, all the quantities that
are affected by this procedure must be rescaled in such a manner that the Hamiltonian reclaims
its original form.

(ii) Rescaling of the coordinates (here ρ or k, respectively). Interpretatively, this amounts to "blow-
ing up" the radius of integration back to its original value Λ so that the system looks again like
the previous one. It is then clear that

k → k′ = bk ⇔ ρ→ ρ′ = ρ/b (9.5)

which is essentially just a change of coordinates.

(iii) The last step is normalization which means the rescaling of the the field z according to 11

z′(k′) = ζ−1
b z(k). (9.6)

The field rescaling factor ζb depends in general also on more system specific quantities such as
the scaling of the correlation function. Its specification is not necessarily unique and depends
on the problem at hand. This rescaling leads to a rescaling of the Hamiltonian H → H′. We
must now change all the parameters (coupling constants) of the system in such a way that H′
has the same structure asH and such that the partition function does not change

ZΛ/b(H′) = ZΛ(H). (9.7)

Insisting on (9.7) is necessary to ensure that the physical properties of the system are un-
changed. In fact, note that Z may change up to a multiplicative constant since this contributes
just an additive constant to the energy.

Before performing the integration (i), we can split z(ρ) into two parts: the "fast" part

zf (ρ) =

∫
Λ/b<|k|<Λ

dD−1k ẑ(k)e−ik·ρ (9.8)

which will be integrated out and the remaining "slow" part zs(ρ) = z(ρ) − zf (ρ). Notice that
Λ/b = Λ/(1 + `) = Λ(1− `) +O

(
`2
)
∼ Λ(1− `) so that

zf (ρ) =

∫
Λ(1−`)<|k|<Λ

dD−1k e−iρ·kẑ(k) =

∫
dΩ

∫
Λ(1−`)<|k|<Λ

d|k| |k|D−2e−iρ·kẑ(k)

∼
∫

Λ(1−`)<|k|<Λ

d|k| |k|D−2e−iρ·kẑ(k) ∼ Λ` ·
(
ΛD−2e−iρΛẑ(Λ)

)
∼ ` · const(ρ) (9.9)

11Often, in literature, normalization is also counted to (ii) so that RG consists of two steps only: decimation and rescal-
ing.
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is arbitrarily small. This justifies the expansion

V (z) = V (zs) + zf
dV

dzs
+ z2

f

1

2

d2V

dz2
s

+ . . . (9.10)

where the ρ dependence of all the arguments is implicitly assumed and dV
dzs

is short for dV (z)
dz

∣∣∣
z=zs

etc. Keeping only terms up to second order in zf we can plug this into the partition function (9.4)
and obtain

ZΛ =
∏

0<|k|<Λ

∫
dz(k) exp

(
−β
∫

dD−1ρ

[∣∣∣σ
2
∇ρ (zs + zf )

∣∣∣2 + V (zs) + zf
dV

dzs
z2
f

1

2

d2V

dz2
s

])

=
∏

0<|k|<Λ/b

∫
dzs(k) exp

(
−β
∫

dD−1ρ
[σ

2
|∇ρzs|2 + V (zs)

])
·

·
∏

Λ/b<|k|<Λ

∫
dzs(k) exp

(
−β
∫

dD−1ρ

[
σ

2
|∇ρzf |2 + zf

dV

dzs
+ z2

f

1

2

d2V

dz2
s

])

=
∏

0<|k|<Λ/b

∫
dzs(k) exp (−βHs) ·

·
∏

Λ/b<|k|<Λ

∫
dzf (k) exp

(
−β
∫

dD−1ρ

[
σ

2
|∇ρzf |2 + zf

dV

dzs
+ z2

f

1

2

d2V

dz2
s

])
(9.11)

where we have defined
Hs =

∫
dD−1ρ

[σ
2
|∇ρzs|2 + V (zs)

]
. (9.12)

Identifying furthermore

exp
(
−βH′

)
= exp (−βHs) ·∏

Λ/b<|k|<Λ

∫
dzf (k) exp

(
−β
∫

dD−1ρ

[
σ

2
|∇ρzf |2 + zf

dV

dzs
+ z2

f

1

2

d2V

dz2
s

])
(9.13)

we can rewrite (9.11) simply as

ZΛ/b ≡
∏

0<|k|<Λ/b

∫
dzs(k) exp

(
−βH′

)
(9.14)

Note that the mixed term ∼ ∇ρzs · ∇ρzf that would appear in (9.11) vanishes since Fourier com-
ponents of different wavelengths are orthogonal. So far, we have done nothing but restructuring the
partition function. In order to continue, we must actually integrate out the high momentum shell. If it
was not for the terms proportional to zfdV/dzs and z2

fd
2V/dz2

s this would be trivial since the com-
ponents zs and zf are then uncoupled. Integrating out the second part of (9.11) yields then merely a
multiplicative constant which we can ignore. In fact, let us go even one step further and assume for
the moment that we have turned off all the interactions, V → 0. This will serve us to determine ζb.
Performing the path integral between Λ/b and Λ then just yields

ZΛ/b =
∏

0<|k|<Λ/b

∫
dzs(k) exp

−β
∫

dD−1ρ
∣∣∣σ
2
∇ρzs

∣∣∣2︸ ︷︷ ︸
=:H0

 . (9.15)
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We also callH0 a Gaussian Hamiltonian. It represents a freely fluctuating surface. In (9.15) we have
have dropped the multiplicative constant that arose from integrating out the momentum shell (see it
as absorbed into the integration measure). Following faithfully the three steps of FRG we must now
rescale the coordinates. From (9.5) we infer

dρ→ b1−Ddρ′ and ∇ρ → b∇ρ′ (9.16)

such that
H0 → H′0 =

∫
dD−1ρ′ b3−D

∣∣∣σ
2
∇ρ′zs(ρ′)

∣∣∣2 . (9.17)

According to step (iii) above we must now rescale zs. But how do we choose ζb? Thinking about
this problem physically, it becomes clear that the free Hamiltonian H0 ought to be a fixed point of
the RG transformation. It is the fixed point of the complete interface unbinding transition. Insisting
onH0 (and hence its only parameter σ) being invariant under the RG transformation finally leads to

ζb = b(D−3)/2. (9.18)

Now back to the evaluation of

(9.11) ∝
∏

Λ/b<|k|<Λ

∫
dzf (k) exp

(
−β
∫

dD−1ρ

[
σ

2
|∇ρzf |2 + zf

dV

dzs
+ z2

f

1

2

d2V

dz2
s

])
. (9.19)

Since zf and z2
f are small, we can expand the exponential to first order 12

(9.11) ∝
∏

Λ/b<|k|<Λ

∫
dzf (k)

(
1 + zf

dV

dzs
+ z2

f

1

2

d2V

dz2
s

+ . . .

)
exp

(
−β
∫

dD−1ρ
σ

2
|∇ρzf |2

)
.

(9.20)
It is common practice to interpret the exponential of the free part of the Hamiltonian in (9.20) as
probability weight such that we can write furthermore

(9.11) ∝ 〈1〉f ;0 +
dV

dzs
〈zf 〉f ;0 +

d2V

dz2
s

1

2

〈
z2
f

〉
f ;0

+ . . . (9.21)

where we have used linearity of the functional integral and the subscript ”f ; 0” denotes averaging
with respect to the free (0) Hamiltonian over the fast (f) modes. The term proportional to 〈1〉f ;0

can be ignored since it represents just a constant. The term proportional to 〈zf 〉f ;0 drops out by
symmetry. 13 We are thus left with the determination of〈

z2
f

〉
0;f

=
∏

Λ/b<|k|<Λ

∫
dzf z

2
f exp

(
−
∫

dD−1ρ
βσ

2
|∇ρzf |2

)

=
∏

Λ/b<|k|<Λ

∫
dzf (ρ) z2

f exp

(
−
∫

dD−1ρ
βσ

2
|∇ρzf |2

)
(9.22)

Readers familiar with the path integral formulation of (quantum) field theories will note immediately
that this functional integral can be solved exactly by completing the square. In fact, this is the same

12Since (9.19) is quadratic in zf we could also solve this integral by completing the square as we have done in Appendix
II.

13The probability weight is symmetric under zf → −zf . The reason for the vanishing is thus the same as for instance
in

∞∫
−∞

dx xe−x
2

= 0.
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technique that we have used in Appendix II in order to evaluate path integrals. What follows is a
standard procedure in field theories: Using integration by parts we bring the exponential in (9.22)
into a standardized form. We then introduce a source term J(ρ) in order to express z2 in terms of
functional derivatives. Finally we solve the integral by completing the square. Working with the
notation from (9.4) we now perform the actual calculation:

(9.22) =

∫
Λ/b<|k|<Λ

Dzf z2
f exp

(
−
∫

dD−1ρ
βσ

2
|∇ρzf |2

)

=

∫
Λ/b<|k|<Λ

Dzf z2
f exp

(∫
dD−1ρ

βσ

2
zf∆ρzf

)

=
δ2

δJ(ρ)2

∫
Λ/b<|k|<Λ

Dzf exp

(∫
dD−1ρ

βσ

2
zf∆ρzf + J(ρ)zf (ρ)

)∣∣∣∣∣∣∣
J=0

=
δ2

δJ(ρ)2
exp

(
−
∫

dD−1ρ G(ρ)J2(ρ)

)∣∣∣∣
J=0

= −G(ρ). (9.23)

In the second-last step we have introduced the Green’s function G of the Laplacian operator σβ
2 ∆ρ.

It is straight forward to figure out the form of G in Fourier space since the Fourier transform of the
delta-functional is proportional to unity (compare also with our discussion in Appendix II):

σβ

2
∆ρG(ρ) = δ(ρ) ⇒ −σβ

2
|k|2 Ĝ(k) = (2π)−(D−1). (9.24)

We can easily solve for Ĝ and transform back to find

(9.22) = −G(ρ) =
2

(2π)D−1σβ

∫
Λ/b<|k|<Λ

dD−1k
1

|k|2

=
2

(2π)D−1σβ

∫
dΩ

Λ∫
Λ/b

d|k| |k|D−2 1

|k|2

=
2

(2π)D−1σβ

(2π)(D−1)/2

Γ
(
D−1

2

) Λ∫
Λ/b

d|k| |k|D−4

∼ 2

(2π)D−1σβ

(2π)(D−1)/2

Γ
(
D−1

2

) (`Λ) ΛD−4

∼ 2(2π)(1−D)/2

Γ
(
D−1

2

) (b− 1)ΛD−3

σβ
(9.25)

Plugging this result into (9.21) and from there back into (9.11) we find that, after rescaling and
normalizingHs, this gives rise to a change in the potential

V (zs)→ V`(zs) ≡ bD−1V
(
b(3−D)/2zs

)
+
b− 1

σ̄

d2V

dz2
s

(9.26)

with

σ̄ =
(2π)(D−1)/2Γ

(
D−1

2

)
σβ

ΛD−3
. (9.27)
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Keeping only terms linear in ` yields

V`(zs) = V (zs) + (D − 1)V (zs)`+
3−D

2

dV

dzs
dl +

1

σ̄

d2V

dzs
` (9.28)

and since ` is infinitesimal we can write this as an effective change in the potential according to

∂V (z)

∂l
= (D − 1)V (z) +

3−D
2

z
dV

dz
+

1

σ̄

d2V

dz
. (9.29)

In the last step we have set zs back to z since we have now completed the above steps (i)-(iii) and
hence one (functional) RG cycle. From here on, we can iteratively repeat these steps up to any scale
giving us the typical renormalization group flow. However, the "parameter" V is a function, and
hence infinite-dimensional itself. This explains why the method goes by the name functional RG.
Equation (9.29) is just the one-dimensional Fokker-Planck equation with constant coefficients. Its
solution is known analytically (for constant coefficients) and discussed for instance in [68]. Essen-
tially, it boils down to finding the corresponding Green’s function and then convoluting with the bare
potential V0(z) at ` = 0. Explicitly, we have

V`(z) =
e(D−1)`

√
2πδ(l)

∫ ∞
−∞

dz′ V0(z′) exp

(
−(γ(`)z − z′)2

2δ2(`)

)
(9.30)

where

δ(`) =
2
(
e(3−D)/` − 1

)
(3−D)σ̄

(9.31)

denotes the width of the convolution and

γ(`) = e
3−D
2
` = b

3−D
2 = bζb (9.32)

is nothing but the rescaling factor of the field- (i.e. z-) direction (9.18). This determines uniquely the
FRG-flow of the potential V up to linear order in V . Higher order corrections (possibly leading also
to corrections for σ) arise by taking into account additional terms from (9.20).

77



Declaration of originality

78



References

[1] HistData|Free Forex Historical Data.

[2] ANDERSEN, T. G., BOLLERSLEV, T., DIEBOLD, F. X., AND LABYS, P. Modeling and
Forecasting Realized Volatility. Econometrica 71, 2 (March 2003), 579–625.

[3] ANDERSON, P. More Is Different. Science 177, 4047 (August 1972), 393–396.

[4] BACHELIER, L. Théorie de la Spéculation. Annales Scientifiques de l’École Normale
Supérieure 17 (1900), 21–86.

[5] BAGHDJIAN, A., AND KOLTROWITZ, S. Swiss Central Bank Stuns Market with Policy U-
Turn. Reuters, January 2015.

[6] BERNARDINO, N. F. R. The Nonlocal Model of Short-Range Wetting. PhD thesis, Department
of Mathematics - Imperial College, March 2008.

[7] BOUCHAUD, J.-P. Power laws in economics and finance: some ideas from physics. Quanti-
tative Finance 1, 1 (2001), 105–112.

[8] BOUCHAUD, J.-P., AND POTTERS, M. Theory of Financial Risks: From Statistical Physics
to Risk Mangement. Cambridge University Press, 2000.

[9] BOWLEY, A. L. S. Elements of Statistics. London: P.S. King, 1901.

[10] BRENNER, H. The Slow Motion of a Sphere Through a Viscous Fluid Towards a Plane
Surface. Chemical Engineering Science 16, 3-4 (December 1961), 242–251.

[11] BROGLIATO, B. Nonsmooth Mechanics: Models, Dynamics and Control, second ed. Com-
munications and Control Engineering. Springer, 2002.

[12] CAIN, G. Complex Analysis. Georgia Tech, 2009, ch. 5. Cauchy’s Theorem.

[13] CHABOUD, A. P., CHERNENKO, SERGEY, V., HOWORKA, E., KRISHNASAMI, I., LIU, D.,
AND WRIGHT, J. H. The High-Frequency Effects of U.S. Macroeconomic Data Releases on
Prices and Trading Activity in the Global Interdealer Foreign Exchange Market. International
Finance Discussion Papers, 823 (November 2004).

[14] CHANDRASEKHAR, S. Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 15
(Jan 1943), 1–89.

[15] CHOW, C. C., AND BUICE, M. A. Path integral methods for stochastic differential equations.
Journal of mathematical neuroscience 5, 8 (2015), 1–35.

[16] COELHO, F. C., CODEÇO, C. T., AND GOMES, M. G. M. A Bayesian Framework for
Parameter Estimation in Dynamical Models. PLoS ONE 6, 5 (2011), e19616.

[17] COX, S. The Three Big Misconceptions about the Swiss Franc. The Economist, January
2015.

[18] DEMALOTTE, B. Renormalization Group and Effective Field Theory Approaches to Many-
Body Systems, vol. 852 of Lecture Notes in Physics. Springer Berlin-Heidelberg, 2012, ch. An
Introduction to the Nonperturbative Renormalization Group, pp. 49–132.

[19] DRAGHI, M. Speech by Mario Draghi at the Global Investment Conference in London. Eu-
ropean Central Bank, 2012.

79

http://www.histdata.com
http://onlinelibrary.wiley.com/doi/10.1111/1468-0262.00418/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1468-0262.00418/abstract
http://www.sciencemag.org/content/177/4047/393.citation
https://eudml.org/doc/81146
http://www.reuters.com/article/2015/01/15/us-swiss-snb-cap-idUSKBN0KO0XK20150115
http://www.reuters.com/article/2015/01/15/us-swiss-snb-cap-idUSKBN0KO0XK20150115
http://www.ciul.ul.pt/~nelsonrb/Docs/Nelson_Rei_Bernardino_PhD_Thesis_2008.pdf
http://www.tandfonline.com/doi/abs/10.1080/713665538#.VcllFs7ldFI
http://www.cambridge.org/ch/academic/subjects/physics/econophysics-and-financial-physics/theory-financial-risk-and-derivative-pricing-statistical-physics-risk-management-2nd-edition?format=PB
http://www.cambridge.org/ch/academic/subjects/physics/econophysics-and-financial-physics/theory-financial-risk-and-derivative-pricing-statistical-physics-risk-management-2nd-edition?format=PB
https://archive.org/details/elementsstatist03bowlgoog
http://www.sciencedirect.com/science/article/pii/0009250961800353
http://www.sciencedirect.com/science/article/pii/0009250961800353
http://www.springer.com/materials/mechanics/book/978-1-85233-143-6
http://people.math.gatech.edu/~cain/winter99/complex.html
http://www.federalreserve.gov/Pubs/ifdp/2004/823/default.htm
http://www.federalreserve.gov/Pubs/ifdp/2004/823/default.htm
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.15.1
http://www.biomedcentral.com/content/pdf/s13408-015-0018-5.pdf
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019616
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019616
http://www.economist.com/blogs/freeexchange/2015/01/switzerlands-monetary-policy
http://link.springer.com/chapter/10.1007/978-3-642-27320-9_2
http://link.springer.com/chapter/10.1007/978-3-642-27320-9_2
http://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html


[20] EASLEY, D., LÓPEZ DE PRADO, M., AND O’HARA, M., Eds. High-Frequency Trading -
New Realities for Traders, Markets and Regulators. Risk Books, 2013.

[21] EINSTEIN, A. Ueber die von der Molekularkinetischen Theorie der Wärme geforderte Bewe-
gung von in Ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322, 8 (May
1905), 549–560.

[22] FAMA, E. F. Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal
of Finance 25, 2 (May 1970), 383–417.

[23] FARMER, J., AND LUX, T. Applications of statistical physics in economics and finance.
Journal of Economic Dynamics and Control 32, 1 (2008), 1–320.

[24] FELLER, W. An Introduction to Probability Theory and its Applications, second ed. Princeton
University Press, 1971.

[25] FIEBIG, H., AND MUSGROVE, D. Testing for detailed balance in a financial market. Physica
A: Statistical Mechanics and its Applications 427 (2015), 26–33.

[26] FISHER, D. S., AND HUSE, D. A. Wetting Transitions: A Functional Renormalization-Group
Approach. Physical Review B 32, 1 (July 1985), 247.

[27] FISHER, M. E. Walks, Walls, Wetting, and Melting. Journal of Statistical Physics 34, 5
(1984), 667–729.

[28] FISHER, M. E. Renormalization Group Theory: Its Basis and Formulation in Statistical
Physics. Reviews of Modern Physics 70 (1998), 653.

[29] FLOOD, R., ROSE, A., AND MATHIESON, D. An empirical exploration of exchange-rate
target-zones. Carnegie-Rochester Conference Series on Public Policy 35 (1991), 7–65.

[30] FRANKEL, J. A. No Single Currency Regime is Right for all Countries or at all Times. Nber
Working Paper Series, Working Paper 7338 (1999).

[31] FRIEDRICH, R., SIEGERT, S., PEINKE, J., LÜCK, S., SIEFERT, M., LINDEMANN, M.,
RAETHJEN, J., DEUSCHL, G., AND PFISTER, G. Extracting Model Equations from Experi-
mental Data. Physics Letters A 271, 3 (2000), 217–222.

[32] GARDINER, C. W. Handbook of stochastic methods. Springer, 1985.

[33] GRIGORIU, M. Stochastic Calculus - Applications in Science and Engineering. Springer
Science+Business Media, LLC, 2002.

[34] GROENEVELD, R. A., AND MEEDEN, G. Measuring Skewness and Kurtosis. Journal of the
Royal Statistical Society 33, 4 (December 1984), 391–399.

[35] HILDEBRAND, P. M. Speech by Philipp M. Hildebrand, Member of the Governing Board
of the Swiss National Bank. In Swiss National Bank Sales - Lessons and Experiences (May
2005).

[36] HUANG, K. Statistical Mechanics, second ed. Wiley, 1987, ch. 17, 18, p. 493.

[37] INTERNATIONAL MONETARY FUND. Annual Report on Exchange Arrangements and Ex-
change Restrictions. Tech. rep., International Monetary Fund, 2013.

[38] JEANBLANC, M., YOR, M., AND CHESNEY, M. Mathematical Methods for Financial Mar-
kets. Springer Finance Textbooks. Springer, 2009.

80

http://riskbooks.com/high-frequency-trading-new-realities-for-traders-markets-and-regulators
http://riskbooks.com/high-frequency-trading-new-realities-for-traders-markets-and-regulators
http://onlinelibrary.wiley.com/doi/10.1002/andp.19053220806/abstract;jsessionid=6B8378C172A474B1D21656B631E72272.f03t01
http://onlinelibrary.wiley.com/doi/10.1002/andp.19053220806/abstract;jsessionid=6B8378C172A474B1D21656B631E72272.f03t01
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1970.tb00518.x/full
http://www.sciencedirect.com/science/journal/01651889/32/1
https://archive.org/details/AnIntroductionToProbabilityTheoryAndItsApplicationsVolume1
http://www.sciencedirect.com/science/article/pii/S0378437115000746?np=y
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.32.247
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.32.247
http://link.springer.com/article/10.1007%2FBF01009436
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.70.653
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.70.653
http://www.sciencedirect.com/science/article/pii/016722319190018Z
http://www.sciencedirect.com/science/article/pii/016722319190018Z
http://www.nber.org/papers/w7338
http://www.sciencedirect.com/science/article/pii/S0375960100003340
http://www.sciencedirect.com/science/article/pii/S0375960100003340
http://www.springer.com/birkhauser/applied+probability+and+statistics/book/978-0-8176-4242-6
http://www.jstor.org/stable/2987742
http://www.iie.com/publications/papers/hildebrand0505.pdf
http://www.iie.com/publications/papers/hildebrand0505.pdf
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471815187.html
https://www.imf.org/external/pubs/nft/2013/areaers/ar2013.pdf
https://www.imf.org/external/pubs/nft/2013/areaers/ar2013.pdf
http://www.springer.com/economics/public+finance/book/978-1-85233-376-8
http://www.springer.com/economics/public+finance/book/978-1-85233-376-8


[39] KALLENBERG, O. Foundations of Modern Probability, second ed. Springer Berlin-
Heidelberg, 2002.

[40] KALOS, M. H., AND WHITLOCK, P. A. Monte Carlo Methods, second ed. Wiley, 2008.

[41] KLEINERT, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Finan-
cial Markets, fifth ed. World Scientific, 2009.

[42] KOPIETZ, P., BARTOSCH, L., AND SCHÜTZ, F. Introduction to Functional Renormalization
Group. Springer Berlin-Heidelberg, 2010.

[43] KRUGMAN, P. R. Target Zones and Exchange Rate Dynamics. The Quarterly Journal of
Economics 106, 3 (1991), 669–682.

[44] KRYLOV, N. Mean Value Theorems for Stochastic Integrals. The Annals of Probability 29, 1
(January 2001), 395–410.

[45] LAU, A., AND LUBENSKY, T. C. State-dependent diffusion: Thermodynamic consistency
and its path integral formulation. Physical Review E 76 (2007), 011123.

[46] LEIBLER, S. Equilibrium Statistical Mechanics of Fluctuating Films and Membranes. World
Scientific Pub Co Inc, 2004, ch. 3, pp. 49–101.

[47] LEISINGER, C. Der Frankenschock Zieht Weitere Kreise. NZZ, January 2015.

[48] LEVINSON, M. Guide to Financial Markets, fourth ed. Bloomberg Press, 2000.

[49] LEVY, M., AND ROLL, R. The Market Portfolio may be Mean-Variance Efficient After All.
Review of Financial Studies 23 (2010), 2464–2461.

[50] LIPOWSKY, R. Critical Effects at Complete Wetting. Physical Review B 32 (August 1985),
1731.

[51] LIPOWSKY, R. Random Fluctuations and Pattern Growth: Experiments and Models, vol. 157
of NATO ASI Series. Springer Netherlands, 1988, ch. Scaling Properties of Interfaces and
Membranes, pp. 227–245.

[52] LIPOWSKY, R. Critical Behavior of Interacting Manifolds. Physica A 177, 1-3 (September
1991), 182–188.

[53] LIPOWSKY, R., AND LEIBLER, S. Unbinding Transitions of Interacting Membranes. Physical
Review Letters 56 (June 1986), 2541.

[54] LO, A. W., AND MACKINLAY, A. C. A Non-Random Walk Down Wall Street, fifth ed.
Princeton University Press, 2002.

[55] LORENTZ, H. A. Abhandlungen über theoretische Physik. BG Teubner, 1907.

[56] MAXWELL, J. C. A Treatise on Electricity and Magnetism, vol. 1. Cambridge University
Press, 1873.

[57] MIL’SHTEJN, G. Approximate Integration of Stochastic Differential Equations. Theory of
Probability & Its Applications 19, 3 (September 1973), 557–562.

[58] MULDOWNEY, P. Understanding Stochastic Differential Equations. arXiv, 2014.

81

http://www.springer.com/mathematics/probability/book/978-0-387-95313-7
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-352740760X.html
http://www.worldscientific.com/worldscibooks/10.1142/7305#t=aboutBook
http://www.worldscientific.com/worldscibooks/10.1142/7305#t=aboutBook
http://link.springer.com/book/10.1007%2F978-3-642-05094-7
http://link.springer.com/book/10.1007%2F978-3-642-05094-7
http://qje.oxfordjournals.org/content/106/3/669.short
http://www.jstor.org/discover/10.2307/2652927?sid=21104917071381&uid=2&uid=3737760&uid=4
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.011123
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.011123
http://www.worldscientific.com/worldscibooks/10.1142/5473
http://www.nzz.ch/finanzen/der-frankenschock-zieht-weitere-kreise-1.18463021
https://docs.google.com/file/d/0B69UQKvdxnGPNzRhZDYyZmUtZTgzNi00NDE4LTgzNTYtYmM2MjhjYzAzMGI5/edit?hl=en&pli=1
http://rfs.oxfordjournals.org/content/early/2010/01/05/rfs.hhp119.short
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.32.1731
http://link.springer.com/chapter/10.1007/978-94-009-2653-0_35
http://www.sciencedirect.com/science/article/pii/0378437191901512
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.56.2541
http://www.jstor.org/stable/j.ctt7tccx
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9780511709333
http://epubs.siam.org/doi/abs/10.1137/1119062
http://arxiv.org/abs/1407.7147


[59] NI, X., MALEVERGNE, Y., SORNETTE, D., AND WOEHRMANN, P. Robust reverse engi-
neering of cross sectional returns and improved portfolio allocation performance using the
CAPM. Journal of Portfolio Management 37, 4 (2011), 76–85.

[60] NZZ. Starker Franken Sorgt Für Nervosität. Online, November 2014.

[61] NZZ. Verwirrung Über Verletzung des Mindestkurses. Online, December 2014.

[62] OHR, R., STARBATTY, J., AND BOFINGER, P. Zeitgespräch: Warum ist der Euro so
Schwach? Wirtschaftsdienst: Zeitschrift für Wirtschaftspolitik 81, 7 (2001), 371–379.

[63] ØKSENDAL, B. Stochastic Differential Equations, sixth ed. Springer-Verlag, 2003.

[64] PARKINSON, M. The Extreme Value Method for Estimating the Variance of the Rate of
Return. Journal of Business 53, 1 (January 1980), 61–65.

[65] PESKIN, M. E., AND SCHRÖDER, D. V. An Introduction to Quantum Field Theory. Westview
Press, 1995, ch. 9. Functional Methods.

[66] PROTTER, P. E. Stochastic Integration and Differential Equations, second ed. Springer
Berlin-Heidelberg, 2005.

[67] RECORD, N. Currency Overlay. Wiley, 2003.

[68] RISKEN, H. The Fokker-Planck Equation. Lecture Notes in Mathematics. Springer Berlin-
Heidelberg, 1996.

[69] ROEHNER, B., AND SORNETTE, D. The Sharp Peak-Flat Trough Pattern and Critical Specu-
lation. Europhysics Letters 4 (1998), 387–399.

[70] ROLL, R. A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market.
The Journal of Finance 39, 4 (September 1984), 1127–1139.

[71] RUSECKAS, J., AND KAULAKYS, B. 1/f noise from nonlinear stochastic differential equa-
tions. Physical Review E 81, 3 (2010), 1–7.

[72] RYDER, L. H. Quantum Field Theory. Cambridge University Press, 1996, ch. 5. Path Integrals
in Quantum Mechanics.

[73] SAMUELSON, P. A. Proof that Properly Anticipated Prices Fluctuate Randomly. Industrial
Mangement Review 6.2 (1965), 41–49.

[74] SAMUELSON, P. A. Proof That Properly Discounted Present Values of Assets Vibrate Ran-
domly. The Bell Journal of Economics and Management Science 4, 2 (1973), 369–374.

[75] SARNO, L., AND TAYLOR, M. The economics of exchange rates. Cambridge, University
Press, 2003.

[76] SCHMIDT, ANATOLY, B. Econophysics Approaches to Large-Scale Business Data and Finan-
cial Crisis. Springer Japan, 2010, ch. Microstructure and Execution Strategies in the Global
Spot, pp. 49–65.

[77] SCHWEIZERISCHE EIDGENOSSENSCHAFT. Economic and Financial Data. Online.

[78] SCHWENK, A., AND POLONYI, J., Eds. Renormalization Group and Effective Field Theory
Approaches to Many-Body Systems, vol. 852 of Lecture Notes in Physics. Springer Berlin-
Heidelberg New York, June 2012.

82

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1753014
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1753014
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1753014
http://www.nzz.ch/finanzen/starker-franken-sorgt-fuer-nervositaet-1.18423139
http://www.nzz.ch/finanzen/verwirrung-ueber-verletzung-des-mindestkurses-1.18452466
http://www.wirtschaftsdienst.eu/downloads/getfile.php?id=360
http://www.wirtschaftsdienst.eu/downloads/getfile.php?id=360
http://www.springer.com/mathematics/analysis/book/978-3-540-04758-2
http://web.b.ebscohost.com/ehost/detail/detail?sid=a9e8a891-7d46-4c42-99f6-f3e5943f5d23%40sessionmgr112&vid=0&hid=101&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=buh&AN=4586153
http://web.b.ebscohost.com/ehost/detail/detail?sid=a9e8a891-7d46-4c42-99f6-f3e5943f5d23%40sessionmgr112&vid=0&hid=101&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=buh&AN=4586153
https://books.google.ch/books?id=EVeNNcslvX0C&dq=peskin+and+schroeder&source=gbs_navlinks_s
http://www.springer.com/mathematics/probability/book/978-3-540-00313-7
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470850272.html
http://www.springer.com/physics/complexity/book/978-3-540-61530-9
http://epjb.epj.org/articles/epjb/abs/1998/15/b8109/b8109.html
http://epjb.epj.org/articles/epjb/abs/1998/15/b8109/b8109.html
http://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.1984.tb03897.x/abstract
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.031105
http://journals.aps.org/pre/abstract/10.1103/PhysRevE.81.031105
http://www.cambridge.org/ch/academic/subjects/physics/particle-physics-and-nuclear-physics/quantum-field-theory-2nd-edition
http://jmhommet.free.fr/jmhommet.free.fr/NEWS/Entrees/2013/10/14_M2_EGRF__MESSAGE_9_files/Samuelson-Proof.pdf
http://www.jstor.org/discover/10.2307/3003046?sid=21104892917421&uid=2&uid=4&uid=3737760
http://www.jstor.org/discover/10.2307/3003046?sid=21104892917421&uid=2&uid=4&uid=3737760
http://link.springer.com/book/10.1007%2F978-4-431-53853-0
http://link.springer.com/book/10.1007%2F978-4-431-53853-0
http://www.bfs.admin.ch/bfs/portal/de/index/themen/systemes_d_indicateurs/economic_and_financial/data.html
http://www.springer.com/physics/theoretical%2C+mathematical+%26+computational+physics/book/978-3-642-27319-3
http://www.springer.com/physics/theoretical%2C+mathematical+%26+computational+physics/book/978-3-642-27319-3


[79] SHAMAH, S. A Foreign Exchange Primer. Wiley, 2008.

[80] SHARMA, P. Entropic Force Between Membranes Reexamined. Proceedings of the National
Academy of Sciences of the United States of America 110, 6 (February 2013), 1976–1977.

[81] SHREVE, S. Stochastic Calculus in Finance II. Springer Finance. Springer Berlin-Heidelberg
New York, 2004.

[82] SONDERMANN, D. Introduction to Stochastic Calculus for Finance, vol. 579 of Lecture Notes
in Economics and Mathematical Systems. Springer Berlin-Heidelberg New York, 2006.

[83] SORNETTE, D. Steric Interaction Between Wandering Walls. Study of the Strong Deviation
from Mean Field Theory. Europhysics Letters 2 (1986), 715.

[84] SORNETTE, D. Fluctuations and Interactions Between Membranes. In Physics of Amphiphilic
Layers, J. Meunier, D. Langevin, and N. Boccara, Eds., Springer Proceedings in Physics.
Springer-Verlag, 1987, pp. 80–96.

[85] SORNETTE, D. Critical Phenomena in Natural Sciences, Chaos, Fractals, Self-organization
and Disorder: Concepts and Tools, second ed. Springer-Verlag, 2000, ch. 2.3 and 11.

[86] SORNETTE, D. Physics and financial economics (1776-2014): puzzles, Ising and agent-
based models. Reports on Progress in Physics. Physical Society (Great Britain) 77, 6 (2014),
062001.

[87] SORNETTE, D., AND OSTROWSKY, N. Lamellar Phases: Effect of Fluctuations (Theory).
In Micelles, Membranes, Microemulsions and Monolayers, W. Gelbart, A. Ben-Shaul, and
D. Roux, Eds. Springer New York, 1994, pp. 251–302.

[88] STOOF, H. T., DICKERSCHEID, D. B. M., AND GUBBELS, K. Renormalization Group The-
ory. In Ultracold Quantum Fields, Theoretical and Mathematical Physics. Springer Nether-
lands, 2009, pp. 329–355.

[89] STUDER-SUTER, R., AND JANSSEN, A. The Swiss franc’s honeymoon. SSRN, Working
Paper No. 170 (2014).

[90] SURA, P., AND BARSUGLI, J. A Note on Estimating Drift and Diffusion Parameters from
Timeseries. Physics Letters A 305 (2002), 304–411.

[91] SVENSSON, L. E. O. An interpretation of recent research on exchange rate target zones.
Journal of Economic Perspectives 6, 4 (1992), 119–144.

[92] SWISS NATIONAL BANK. Swiss National Bank sets minimum exchange rate at CHF 1.20 per
euro. Press Release, September 2011.

[93] SWISS NATIONAL BANK. Discussion on the Topic of the Eur/Swiss-Franc Minimum Ex-
change Rate. Press Release, April 2012.

[94] SWISS NATIONAL BANK. Gold Initiative. Online, 2014.

[95] SWISS NATIONAL BANK. Swiss National Bank Discontinues Minimum Exchange Rate and
Lowers Interest Rate to -0.75%. Press Release, January 2015.

[96] THE ROYAL SWEEDISH ACADEMY OF SCIENCES. The Prize in Economic Sciences 2013 -
Press Release. Nobelprize.org, October 2013.

83

http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470754370.html
http://www.pnas.org/content/110/6/1976.extract
http://www.springer.com/mathematics/quantitative+finance/book/978-0-387-40101-0
http://www.springer.com/economics/book/978-3-540-34836-8
http://iopscience.iop.org/0295-5075/2/9/009
http://iopscience.iop.org/0295-5075/2/9/009
http://link.springer.com/chapter/10.1007%2F978-3-642-83202-4_10
http://www.springer.com/physics/complexity/book/978-3-540-30882-9
http://www.springer.com/physics/complexity/book/978-3-540-30882-9
http://www.ncbi.nlm.nih.gov/pubmed/24875470
http://www.ncbi.nlm.nih.gov/pubmed/24875470
http://link.springer.com/chapter/10.1007%2F978-1-4613-8389-5_5
http://link.springer.com/chapter/10.1007%2F978-1-4020-8763-9_14
http://link.springer.com/chapter/10.1007%2F978-1-4020-8763-9_14
http://ssrn.com/abstract=2479941
http://www.sciencedirect.com/science/article/pii/S0375960102014743
http://www.sciencedirect.com/science/article/pii/S0375960102014743
http://www.snb.ch/en/mmr/reference/pre_20110906/source/pre_20110906.en.pdf
http://www.snb.ch/en/mmr/reference/pre_20110906/source/pre_20110906.en.pdf
http://www.snb.ch/en/mmr/speeches/id/ref_20120410_tjn/source/ref_20120410_tjn.en.pdf
http://www.snb.ch/en/mmr/speeches/id/ref_20120410_tjn/source/ref_20120410_tjn.en.pdf
http://www.snb.ch/en/ifor/media/dossiers/id/media_dossiers_gold
http://www.snb.ch/en/mmr/reference/pre_20150115/source/pre_20150115.en.pdf
http://www.snb.ch/en/mmr/reference/pre_20150115/source/pre_20150115.en.pdf
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2013/press.html
http://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/2013/press.html


[97] UHLENBECK, G., AND ORNSTEIN, L. On the Theory of the Brownian Motion. Physical
Review 36 (September 1930), 823.

[98] UNITED STATES DEPARTMENT OF STATE. PUBLICATION: Proceedings and Documents
of the United Nations Monetary and Financial Conference, Bretton Woods, New Hampshire.
United States Department of State.

[99] VILFAN, I. Lecture Notes in Statistical Mechanics. Abdus Salam ICTP, 2002.

[100] WILSON, K. G. The Renormalization Group: Critical Phenomena and the Kondo Problem.
Reviews of Modern Physics 47 (October 1975), 773.

[101] WILSON, K. G. Problems in Physics with many Scales of Length. Scientific American 241,
2 (1979).

[102] WOLFGANG, P., AND BASCHNAGEL, J. Stochastic Processes - From Physics to Finance,
second ed. Springer Berlin-Heidelberg, 2013.

[103] YURA, Y., TAKAYASU, H., SORNETTE, D., AND TAKAYASU, M. Financial brownian par-
ticle in the layered order-book fluid and fluctuation-dissipation relations. Physical Review
Letters 112, 9 (2014), 1–5.

[104] ZHANG, L., MYKLAND, P. A., AND AÏT-SAHALIA, Y. A Tale of Two Time Scales: Deter-
mining Integrated Volatility with Noisy High-Frequency Data. Journal of American Statistical
Association 100, 472 (December 2005), 1394–1411.

[105] ZHOU, B. High-Frequency Data and Volatility in Foreign-Exchange Rates. Journal of Busi-
ness and Economic Statistics 14, 1 (July 1996), 44–52.

84

http://journals.aps.org/pr/abstract/10.1103/PhysRev.36.823
https://fraser.stlouisfed.org/title/?id=430#!7569
https://fraser.stlouisfed.org/title/?id=430#!7569
http://www-f1.ijs.si/~vilfan/SM/index.html
http://journals.aps.org/rmp/abstract/10.1103/RevModPhys.47.773
http://www.scientificamerican.com/article/problems-in-physics-with-many-scale/
http://www.springer.com/physics/complexity/book/978-3-319-00326-9
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.098703
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.098703
http://www.jstor.org/stable/27590680
http://www.jstor.org/stable/27590680
http://www.jstor.org/discover/10.2307/1392098?uid=23805&uid=3737760&uid=2&uid=3&uid=5911624&uid=67&uid=23803&uid=62&sid=21104900038943

	[chp:acknowledgements]Acknowledgements
	[chp:abstract]Abstract
	Currencies, target zones and efficient markets
	The efficient market hypothesis
	The foreign-exchange market
	The Swiss franc target zone

	Physical models for foreign-exchange markets
	Brownian motion in a potential
	Exchange rate dynamics in a target zone
	Exchange rate dynamics: An empirical test
	The interfacial model

	Extracting equations from financial time series
	Iteration of an Itô process
	Extracting equations from empirical data
	Extracting equations: A Monte Carlo test
	Empirical model for euro/Swiss franc exchange rate dynamics
	Stability under first order corrections

	Economic models for foreign-exchange markets
	Why physical analogies were inappropriate
	Arbitrage potential
	The martingale property
	Krugman's theoretical target zone model
	Assumptions and implications of the Krugman model

	Hindered diffusion in an order-book fluid
	Physical hindered diffusion
	Thermal equilibrium in finance?
	Diffusion close to a wall

	Summary and Conclusions
	Appendix I: A Random Walker and a Wall
	A Free Random Walker
	A Random Walker and a Reflective Wall
	A Random Walker and an Absorbing Wall
	Scaling of the Partition Function

	Appendix II: Path Integral Methods for Stochastic Differential Equations
	Motivation
	From Differential Equations to Path Integrals
	Feynman Diagrams
	Higher Order Expansions

	Appendix III: Functional Renormalization Group
	Declaration of originality
	[chp:references]References

