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Abstract

Chair of Entrepreneurial Risks

Department of Management, Technology and Economics

Master of Science

by Jan Kevin Pluut

A lot of utility firms may benefit from paying per use instead of paying for ownership for

the nodes in the power grid. Interested investing parties, however, expose themselves

by buying multiple nodes to additional systemic risk. The goal of this dissertation is

to compute the systemic risk component that should be assigned to price to ensure

fairness. Using complex network analysis and simulation methods, modes of failure will

be emulated and resulting penalty costs will be computed. Also, different investment

strategies will be benchmarked to each other to advise potential asset managers optimal

investing portfolio (acquiring clusters, decentralized, and upstream, downstream). No

evidence was found for superior heuristically investment strategies. The 1/N portfolio

was benchmarked to be very close to Markowitz efficiency as long as frequently failing

nodes were identifiable.
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Chapter 1

Introduction

1.1 Setting the scene

The power sector is in constant change: decentralized power markets, renewable power

generation and the emergence of super grids are just some of the many recent devel-

opments that have had (or are having) an enormous impact on how the power value

chain is delivering energy to society as a whole. Along with the technical developments

mentioned above, the power industry is exploring new ways to conduct business. A good

example is the decreasing cost of renewables (e.g., solar panels and wind turbines), which

allows individual agents to sell their energy directly to the grid and/or to an end cus-

tomer. This relatively new development in power generation, also known as distributed

power generation, presents an opportunity for new types of marked-price agreements on

the customer side that more efficiently allocate power demand to the power supply[18][6].

It is not only power agents actively looking for innovative ways to capture value from

recent technological developments: the financial world as well has been watching closely

how the power sector is changing. In particular, so-called Alternative Asset Management

(AAM) funds have kept a close eye on the power industrys transformation. These funds

are characterized by investing in assets that are typically very illiquid and difficult to

value. Usually, these include real estate, infrastructure, and other objects of significant

value like art collections. The main focus, therefore, is to invest in real-world assets

as opposed to typical (virtual) financial assets. One of the main drivers behind this

new trend is the recent financial crisis in 2009. According to PricewaterhouseCoopers

1



Introduction 2

(PWC)s latest report1 on AAM, rapid developments in the global economic environment

have pushed asset management to the forefront of social and economic change. An

important part of this change [is] the need for increased and sustainable long-term

investment returns. Accordingly, they forecast this particular segment of the capital

markets to grow in Assets Under Management (AUM) with 8.1% Compound Annual

Growth Rate (CAGR) until 2020.

In particular, infrastructure has been a special subset of this asset class[13] and is typi-

cally characterized by a long investment horizon, low correlation with the market (beta),

and low overall volatility[1]. Although the Internal Rate of Return (IRR) is generally

lower than conventional equity (e.g., stocks), it offers professional investors a way to

diversify their otherwise non-diversifiable portfolios market risk. Belonging to this sub-

class, power assets have become a very attractive investment opportunity for AAM funds.

Since the liberalization of power generation markets, power generation has been mainly

financed by private investors looking for nice returns. Explicit ownership of the revenue

streams and associated risks of such an asset may be the reason why most private equity

began there. The same cannot be said of substations or other mid-stream devices like

Flexible Alternating Current Transmission System (FACTS) equipment. After all, how

would investors measure the income generation of owning a substation (an intercon-

nected power asset that mainly functions as an electrical gear by transforming voltage

levels)? Before liberalization, this question would not have made sense as the whole

grid would have been owned by one single entity. This was mainly due to regulation

and natural monopoly dynamics in order to spread the extremely high fixed cost over

as many end customers as possible. However, since the liberalization of the markets in

many countries the rules of the game have changed to allow external players to invest

in the grid. For example, by means of ancillary services, it is possible for a private fund

to own an element or function across the whole grid. These services are, in essence, just

a way for a grid operator to outsource a certain function of the grid like reactive power

compensation[15]. These are just some of the many ways that an interested private

equity fund can invest in the grid. Another, more direct, way is by acquiring a certain

portion of the network from the grid operator by means of a so-called sale leaseback

transaction 1.1.

1Source: https://www.pwc.com/jg/en/publications/alternative-asset-management-2020.pdf
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Lessor Lessee

1

2

Product/service flow

Cash flow

Figure 1.1: A sale-leaseback can be separated in two different sub-transactions: 1)
The Lessee sells their power asset(s) to the Lessor for their market value. 2) The Lessee

pays for the use of the assets (lease)

It should be noted that this type of financial transaction can be done in several ways.

In particular, the payments of the second sub-transaction are something that can be

tailored to the type of asset under consideration. One could, for example, set up a lease

for a fixed number of years ($/year) as a type of bond Figure 1.2. This could be the

way forward for assets where the value production is only indirectly measurable (like

FACTS equipment2). Even better would be a pay-as-you go kind of model ($/MWh).

Due to the inherent variability of energy throughput, the revenue stream resembles

more a dividend-paying share (Figure 1.2). The latter would better fit an asset, like

a substation, as the usage can be clearly measured. The modelling of the first kind

of leaseback transactions should not be that difficult for the typical financial analyst.

The second, though, requires already a significant degree of competence in electrical

engineering to successfully model. However, if we ignore the interconnectedness of the

asset, the asset valuation problem should also be doable from a technical point of view.

It really gets interesting, however, when we extend the asset valuation problem to a

portfolio problem, i.e., the lessor buys not just one, but multiple assets of the same

grid. This adds a great layer of complexity to the original problem as the assets can

now be expected to display some sort of interdependence . In fact, the interconnected

nature of a grid guarantees some kind of non-linear interdependence as the probability

2Flexible AC Transmission System, better known as FACTS, is a power device that mainly functions
as the regulator of the electrical power grid. In the most general case, it serves as a compensator for the
reactive power generated by transmission of power.
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Figure 1.2: In a fixed yearly lease model, the cash flows are constant and thus less
risky resembling more the characteristic trait of debt. In contrast, the pay-as-you-
model fits more a dividend paying share. The additional risk is thus comparable to the

inherent risk of equity.

distribution function (pdf) of blackout magnitude in several countries does seem to

suggest [21][11][22][12].

1.2 Case transaction

For the sake of precision, we define here a case transaction that in our opinion offers

the business and academic worlds the most value. A utility (the lessee), transfers their

power asset (e.g., substation) off-balance sheet to a special purpose vehicle (the lessor).

The lessor is obviously funded by an interested investor. Furthermore, we limit ourselves

to the nodes (more on that in ) in the grid: substations, loads and power generation

assets. The transfer of ownership will be done in exchange for the residual economic

value of the asset. Additionally, the lessee maintains the right to use the asset by paying

a predetermined price to the lessor. This price is directly proportional to the amount of

usage of the substation. It furthermore should include all the costs and risk premiums

incurred by the lessor for owning the asset plus a healthy profit margin. A more graphical

overview of this deal is shown in Figure 1.3.

Note that this type of financial transaction could also be done for new projects (so-called

greenfield projects). In that case, the first sub-transaction would be omitted (Figure 1.3).
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Lessor Lessee

1

2

Residual value

Power asset

Pay-as-you-go fee ($/MWh)

Usage right

Product/service flow

Cash flow

Figure 1.3: The case transaction involves only nodes of the grid (substation, load or
power generator). Furthermore, we assume the residual economic value of the asset to
be the price of the asset. For simplicity, we use a straight line depreciation to calculate

this.

However, we will limit the scope of the thesis only to existing assets (so-called brownfield

projects). This is done for a couple of reasons: first, greenfield deals are usually done one

at a time, which limits the flexibility of tailoring a portfolio; second, from a modelling

point of view, it is easier to model an existing grid than an evolving grid (in terms of

additional nodes).

1.3 Goal of this dissertation

For theoretical reasons, we first define the main setting of the problem that is to be

solved in this dissertation as follows: We imagine a hypothetical investor with budget

B in a world where he can only invest in all N nodes of a given grid (and as well in

some risk-free asset). Consequently, there exists N different lessors (Special Purpose

Vehicles (SPVs)) and we assume that each lessor is infinitely divisible (i.e., it is possible

to buy any specific amount of shares). Just as the Markowitz efficient portfolio theory

prescribes a certain degree of inclusion or exclusion of particular assets by optimizing

a portfolios variance (one of the many measures for risk) given an expected return, it

might be of interest for the investor to understand the underlying dynamics of power

grids to obtain a tailored portfolio. That is to say, how can the investor strategically

tailor their portfolio given their risk appetite? Additionally, in this dissertation we will

focus on the following key sub-questions:
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1. Data generation: Are we able to simulate the statistics of the energy throughput

of real-world data?

2. Revenue stream construction: If so, what are the statistics of the associated rev-

enue streams?

3. Portfolio optimization: How can we select the most efficient portfolio based on the

revenue streams of each asset?

4. Heuristic testing: Are there any rules-of-thumb strategies that consistently lead to

better financial performance?



Chapter 2

Models

It already might have become obvious to the reader that this techno-economic problem

can be divided into two separate sub-problems: a technical problem and an ordinary

financial portfolio problem. In fact, these two separate sub-problems are weakly coupled,

i.e., they can be modularized (Figure 2.1).

Technical
sub-problem

(Find consistent
inputs for the port-
folio sub-problem)

Portfolio
sub-problem

(Research portfolio
properties & pre-
scribe investor a
tailored strategy)
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determines what kind of

technical model to use

Figure 2.1: This particular problem is essentially a portfolio problem in which the
inputs require some technical simulations. The reason for this is that day-to-day data
of operational metrics in a power grid are not publicly available for privacy and safety

reasons

7
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It is worth taking note that there is some degree of coupling: the portfolio model deter-

mines what kind of technical model to use. If the goal is risk assessment based on small

risks, then a grid model with some noise added will suffice. However, if the goal is to

avoid large risks (e.g., blackouts), then a technical model should be used that captures

the type of fast dynamics associated with blackouts and other catastrophic events.

2.1 Technical sub-problem

Assuming the case transaction, what is relevant for an investor from a portfolio point of

view is the revenue stream of each asset (Equation 2.1:

Ri,t = Ui,t · pi,t − Zi,t (2.1)

where:

Ri,t = Revenue of asset i on day t [$]

Ui,t = Usage of asset i on day t [MWh]

Pi,t = Usage price of asset i on day t [$/MWh]

Zi,t = Cost of power interruption for asset i on day t (binary) [$/day]

i = amount of nodes (∈ N)

Operational grid data like the energy throughput through a node (U(i, t)) and outage

of node (Z(i, t)) are usually not disclosed by any grid operator for privacy and safety

reasons, at least not in a time-scale that is relevant for longer-term investment problems.

This is why we are obliged to simulate the data in order to analyze it.

It has to be noted that this is in stark contrast to what a typical investor would do.

Usually, they rely on historical data for their investment decisions.

2.1.1 The distribution of both Ui,t and Zi,t

It is well known that power grids are prone to catastrophic events, i.e., blackouts. In

fact, evidence for power law behavior in the pdf of blackout distribution has been found

in many power grids through the world. Although the statistics given in the literature
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Figure 2.2: The same IEEE 24 RTS system is displayed here above: the left picture
is the typical power engineering format, while the right picture is generated using the
included ‘force’ algorithm of MATLAB. From a mathematical point of view, they are
the same though. Note that the redundancies (parallel lines) are not displayed in the

right picture.

usually refer to the energy shed (the fraction of energy that was not able to be delivered),

it is not unreasonable to expect that both energy throughput (U(i, t)) and node outage

(Z(i, t)) are similarly distributed or at least show some kind of interdependence between

nodes.

2.1.2 A primer on power network theory

As with any network, it is conventional to model a power grid as a graph comprising

nodes and links (Figure 2.2). In a very simplistic manner, the links represent transmis-

sion lines while the nodes usually represent a substation, generator, or load. The real

grid, of course, is much more complex, but to understand the power flow dynamics this

simplistic view is usually enough.

The power dynamics through a network are governed by Kirchhoff’s circuit laws. As a

consequence, the dynamics of power flow through the network can be modelled using

the nodes real and reactive power balances (Equation 2.2):

Pk =

N∑
j=1

|Vk||Vj | (Gkjcos(Θk −Θj) +Bkjsin(Θk −Θj))

Qk =
N∑
|Vk||Vj | (Gkjsin(Θk −Θj)−Bkjcos(Θk −Θj))

(2.2)

where:
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Pk = real power injection on node k

Qk = reactive power injection on node k

Vk = magnitude of the voltage phasor of node k

Gkj = conductance of the line between node k and j

Θk = phase of the voltage phasor node k

Bkj = reactance of the line between node k and j

k, j = amount of nodes (∈ N)

In other words, power flow through the nodes is a function of the admittance of the lines

and voltage phasor of the nodes, better known as the classic power flow problem.

To solve this non-linear problem is expensive computationally as it can only be solved

using numerical methods like NewtonRaphson. However, by approximating the grid as

a Direct Current (DC) system (by linearizing the voltage angles), the problem becomes

linear and, as such, computationally efficient using SIMPLEX or other variants.

Pk =
N∑

j=1,j 6=k
(Bkj (Θk −Θj)) (2.3)

Note that the reactive power is not given, as in the DC approximation for a well-

engineered power grid: Pk ≫ Qk.

It is usually the job of the grid operator to optimize the flows through the grid in a way

that maximizes a given economic objective function. This has to respect not only the

power flow dynamics, but also the conservation of energy and thermal line constraint

equations. The general Optimal Power Flow (OPF) problem, as this mathematical

problem is commonly called, consists of solving an optimization problem of the form

equation 2.4:

min
x
f(x)

subject to

g(x) = 0

h(x) = 0

xmin ≤ x ≤ xmax

(2.4)



Models 11

For the DC approximation (DCOPF), this results in the following problem (Equa-

tion 2.5):

min
Θ,Pg

ng∑
t=1

f tP (ptg)

subject to

gP (Θ, Pg) = BbusΘ + Pbus,shift + Pd +Gsh − CgPg = 0

hf (Θ) = BfΘ + Pf,shift − Fmax ≤ 0

ht(Θ) = −BfΘ− Pf,shift − Fmax ≤ 0

Θref
i ≤ Θi ≤ Θref

i i ∈ xref

pt,ming ≤ ptg ≤ pt,maxg i = 1 · · ·ng

(2.5)

where:

f() = economic objective function

Pg = real power injection of generator g

Gk,j = conductance of the line between node k and j

Θ = vector containing all phases of the nodes

Bk,j = reactance of the line between node k and j

k, j = amount of nodes (∈ N)

One may argue whether this kind of approximation is justifiable. The literature has

shown that the error between an ACOPF solution and DCOPF is small enough to com-

pensate for the enormous gain in calculation speed by solving a linear set of equations.

2.1.3 Understanding the (technical) risk of power assets

In general, the source of volatility of energy throughput of a node is both endogenous

and exogenous. The former comes from the power dispatching activities that arise

whenever supply and demand change dynamically. There are many factors that have

an effect on the so called load profile. However, the biggest is when the grid operator

sets an (economic) objective function to optimize (see OPF). Because of the complex

network structure, it is then possible that a node that is far away will experience a
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change in energy throughput. The exogenous factors include sudden line trips due to

storms or other hazards. Planned and unplanned maintenance activities also could

be considered exogenous factors. According to , these events (when we account for

their monetary value of damage) are very much power law-distributed. Consequently,

this means that their impact (although rare) can be much bigger than the volatility

generated by normal operations. This statistical behavior can generally be produced

through many mechanisms. However, the complex network structure of the system

makes it very plausible that there is some kind interdependent relation that achieves

some degree of criticality. That is to say, the probability of a node failing becomes higher

when another node in the network already has failed. If this difference in probability

is high enough, then there is a chance for total system collapse. This domino effect,

often compared with avalanches, creates in a similar fashion interdependencies in the

investment portfolio. However, the degree of independence may vary.

2.1.4 Picking the right grid model

The root of the previously identified interdependence is, of course, the severe complexity

of a system like a power grid. To put this into perspective: the California system itself

consisted of approximately 16,000 buses (and this was six years ago!). Add to this the

stochastic demand of each customer and producer (renewable energy sources are known

for their fluctuating energy supply) and we have a perfect example of a complex network

system.

As always, when we deal with complexity, it is never the goal to make a model that

replicates all the complexity. In fact, most of the time a Keep It Simple and Stupid

(KISS) model is the only way feasible way to study these kind of systems: you only

model the specific dynamics in the system that you are interested in and keep it as

simple as possible. In this particular case, we are solely interested in the risk of the

revenue streams as given by Equation 2.1. As we suspect some kind interdependencies,

studying the variance in this time series is not enough. In other words, the model

we use should be able to capture the non-linear dynamics of the grid that produces

blackouts. This is because if the large events overshadow the small events (variance),

then a portfolio optimization problem based solely on variance is incomplete and might

paint a wrong picture. Given that our model of choice should be able to reproduce
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the fast-dynamics associated with the large impact events mentioned above, we put our

focus to models that reproduce outages. The literature has identified not one, but many

modes of failure that are responsible for grid outages. Examples include overloaded lines,

hidden failures, and frequency-induced trips. Please note that we are not referring here

to the triggering events, see Figure 2.3. The difference is in the endogeneity: a triggering

event is exogenous and a mode of failure is an endogenous mechanism that facilitates

another event. This does not necessarily mean that each of these events will produce

a blackout: the consensus is that a blackout is the combination of a stressed system

state and a triggering event. Reliability engineers know this very well and, therefore,

design enough redundancy to survive any triggering event that affects only one device,

the so-called N-1 protection. From an economic and mathematical point of view, this

is as far as we can go. For example, with a 16,000 bus grid the amount of redundancy

grows from 16,000 to almost 256 million states that have to be individually protected in

the of case N-2 protection1 . This factorial increase is one of the fundamental reasons

why even though protection technology is advancing, the rate of power grid blackouts is

still not decreasing. In fact, some may argue that the probability of a large blackout is

still increasing.

Nevertheless N-1 protection is still beneficial as a minimum engineering safety margin.

It instantly rules out most the probable critical system states for a marginal cost in

terms of redundancy. However, it neglects improbable system states, e.g., two different

triggering events at the same time or one event that affects multiple devices. Given that

most of the grid regulators have made N-1 protection compulsory, we can argue that

most of the blackouts now are the result of a combination of a critical system state and

an improbable (series of) triggering events: a perfect storm.

2.1.5 Branching process

A branching process is a generic stochastic model for processes that involve every form

of propagation, e.g., offspring, cascades, and epidemics. The most simple and popular

one is the GaltonWatson branching process, which is in the form (Equation 2.6):

1The amount of possible contingencies grow with approximately with Nk, where N is the amount of
devices and k is the level of protection
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Critical system state

Triggering
events

Triggering
events

Outage

Outage

Outage

Stage 0 Stage 1 Stage 2

Figure 2.3: According to , the consensus is that a blackout is the product of a
triggering event (or events) on a critical system state. Accordingly, the modes of failure

are the transfer mechanism that facilitate the blackout, i.e. the blue lines.

Xn+1 =

Xn∑
j=1

ξ
(n)
j (2.6)

where:{
ξ

(n)
j : n, j ∈ N

}
= set of Independent and Identically Distributed (IID) natural number-

valued random variables

If ξj is Poisson-distributed, then the extinction probability distribution function can be

approximated with the following relation (Equation 2.7):

xn+1 = eλ(xn−1) (2.7)

This implies that when λ > 1, we can expect the process to explode (supercritical) in the

long-term, although there still exists a possibility that the process will die out. In the

subcritical case of λ < 1, the process is guaranteed to die out in the long-term. Perhaps

the most interesting case is when λ approaches 1. Around this critical point, the model

produces propagations that are power law-distributed with an exponent of 1.5.

In the case of power grid blackouts, evidence has been found for Poisson-distributed

branching processes [9]. This implies that the state of the grid can be very roughly

approximated by fitting their propagations with a GaltonWatson branching process. In

fact, the resulting parametrization of λ can be used as a lagging system state indicator.

It is expected that the more a system is stressed the more λ will approach 1.
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2.1.6 The OPA model

Although there are plenty of models capable of replicating each of the failure modes,

only a few can replicate the flow chart in Figure 2.3 over many system states.

One of the KISS models that has received particular appraisal is the so-called Oak Ridge-

PSERC-Alaska (OPA) model. Created by [9]., the model has been well-received in the

community due to its ability to replicate the long-term temporal statistics of real-world

grids. The fundamental assumption of this model is that the power grid main blackout

mechanism is governed by so-called Self-Organized Criticality (SOC).

2.1.6.1 A primer on SOC

The concept itself comes from the physics realm after it was proposed by Bak with

the popular sand pile model, better known as the Abelian sand pile[23]. Since then,

many variations on the original sand pile have been proposed and extensively analyzed,

although the original is still the most popular one. To understand the Abelian sand

model, we imagine a circular base with open borders onto which grains of sand are

consecutively dropped[20]. After a certain period, a canonical shape will form: a sand

pile. Of course, adding the grains will result, eventually, in avalanches of grains because

the slope of the pile will be too steep for friction to hold the sand grains together. What

is interesting from a physics point of view are the statistics of these avalanchesboth

the temporal and spatial statistics of the avalanches reveal that the system grows from

a non-critical to critical state. At the beginning, the size of the avalanches will be

generally small. Then, after a certain period, bigger avalanches will occur in addition to

the occasional smaller avalanches. This kind of phenomenon is usually an indicator that

the system has reached a critical regime and has the remarkable property of producing

scale-free statistics. In laymans terms, this simply means that in a critical regime, a big

avalanche is just a small avalanche that did not stop. This property has the tendency to

produce scale invariant probability distribution functions, i.e., demonstrates power law

behavior. Aside from these long temporal correlations, there will also be a tendency in

the system to produce long spatial correlations, i.e., there is a delicate balance between

internal avalanches and avalanches that touch the boundaries.
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It is important to understand that although SOC systems produce scale-free probability

distributions, not every scale invariant pdf is the result from an SOC mechanism. The

difficulty lies in validating such a model, as SOC dynamics can only be fully validated

in an experimental setting. In cases where this is not possible, like in a power grid,

an SOC mechanism can only be made plausible by comparing the statistics of an SOC

system (e.g., the sand pile model) with the statistics of the respective system. In the

case of self-organized criticality, the long-range temporal and spatial correlations are

characteristics[10] that have to be compared with empirical data.

2.1.6.2 The OPA model explained

This very high-level model has been promising due to its ability to explain (or at

least replicate) one of the many complex dynamics behind power outages. Surprisingly

enough, the model has been made plausible to some extent by being able to replicate

real-world blackout data on the California grid. To understand the general idea behind

the OPA model, see Figure 2.4, it might be beneficial to keep the basic sand pile model

in mind:

1. We take an existing grid, which is governed by Kirkhoff equations and, therefore,

governed by the basic power flow equations.

2. Once we have the stationarity solutions, some noise in the power demand is added

in every time-step to simulate different states of the system.

3. At each time-step, we multiply the overall power demand with g, which is calibrated

to simulate the annual power demand growth.

4. Given that power grids are engineered to tolerate a certain electrical capacity,

usually linked to the thermal limits of the equipment, we expect the system to get

ever-more stressed until some of the links are overloaded. Usually, this will happen

due to a sudden (positive) shock of noise added in step 2. In the real world, this

could be an exceptionally cold day, which naturally drains more energy.

5. Additionally, to the overloaded lines we add exogenous triggering events that cause

a line to trip. In the real world, these sudden line trips resemble the improbable

events that cause line trips, like falling trees, thunder, etc.
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6. Once a line trips (either because of the endogenous or exogenous factors mentioned

above), the power is redispatched using the standard optimal power flow algorithm

given by Equations 2.5

7. If redispatch is not possible because of the system constraints, we shed load (i.e.,

generator power gets reduced and, consequently, end customers get cut off). Of

course, this is only done as a last resort as the grid regulator applies penalties

when this happens. Therefore, this is also implemented in the economic objective

function.

8. Once redispatching is done, the algorithm looks if other lines are around their

thermal limits. As the redispatch, in general, stresses the whole system, there

is a possibility that other lines trip too. In this case, the power is redispatched

again and again until, finally, a stable state is achieved. Taking the analogy of the

sand pile model into consideration, it is immediately obvious that blackouts are,

according this particular model, comparable to the same fast dynamics associated

with the sand pile avalanches in the Abelian sand pile model.

9. To mimic the dissipating force of the sand pile model, an enforcement of the tripped

lines is done so that in the next time-step, the lines are not only restored but also

enforced.

It is arguable whether modelling the reinforcement as a simple capacity increase is

justifiable in the following time-step for a couple reasons:

1. Grid planning, as grid capacity expansion process is commonly called, is usually

done 510 years in advance.

2. Furthermore, adding capacity to a line usually implies building a parallel set of

lines next to the current lines, which is, in most cases, extremely unlikely.

However, since the grid is progressively loaded, the expansion of the grid is also in

constant growth. As this in itself takes place at a constant pace, it is not unreasonable

to model the grid expansion as simple line and generator capacity growth.
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time t=0

t=t+1

Increase average load.
Randomly vary each
load about average

Which upgrade policy?

For each line in contin-
gency list, run DC load
flow with line out and

upgrade any overloaded
lines until no overload

Upgrade lines involved
in load-shedding cascade

at time t-1 using (5)

n-1 criterion direct response

Initial disturbance; outage
each line with probability P0

LP redispatch and
possible load shed

Each line overloaded in LP
outages with probability P 1

Any line outage
yes

Upgrade generation if genera-
tion margin is below threshold.
Record lines out and load shed

no

Enough cascades simulated?

end

yes

no

Figure 2.4: A variant of the OPA model that takes the N-1 policy into account[5]
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2.2 Portfolio sub-problem

The grid data generated with the previous algorithms, of course, are operational only

in nature. However, when we translate those values to money values, it is possible to

construct the cash flows that are relevant to an investor. More on that, in Chapter 3

Once these are constructed, a rational investor is able to select or deselect which assets

generate the most economic utility for them. This problem is, of course, known as an

ordinary portfolio optimization problem.

Generally, such a problem is in the form of (equation 2.8):

min
x
f(x)

subject to

g(x) = 0

h(x) = 0

xmin ≤ x ≤ xmax

(2.8)

where:

f = economic utility objective function, usually a risk measure

x = vector containing the weights of each respective asset

g = function that characterizes the expected return

h = other constraints that are relevant to the problem

The risk measure is usually a measure for the degree of dispersion of all (or some of)

the possible asset states. In the most popular case, this is usually the centered second

moment, better known as the variance. A variant of variance is the so-called semi-

variance, which only takes dispersion below the center (i.e., the downside risk) into

account. Other popular risk measures include: Value at Risk (VaR), expected shortfall,

higher moments, or a combination of these. The type of risk measure to use depends

generally on:

• The risk appetite of the investor: a risk-averse investor is more interested in avoid-

ing potential losses and, therefore, would rather use the semi-variance than the

variance as a risk measure of choice.
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• More importantly, the mechanism behind the stochastic element of the asset. An

asset that produces normal asset returns can be approximated easily by variance

only, as higher-order effects are then guaranteed to be non-existent. However, if the

asset has the tendency to produce fatter than normal tails, using only variance as

a risk measure is typically not a good practice as the higher-order effects generally

are not well-captured. More on that in paragraph 2.2.2.

Furthermore, if there is a risk-free asset in existence, the portfolio optimization problem

can be fully tailored to the return requirements of the investor. Usually the desired

return, the first moment of the portfolio pdf, is then set in g(x).

The other constraints, in the form of h(x), can include different limitations, such as

transactions costs involved in switching between assets, as this seemingly small cost

can have a big impact on the overall structure of the most efficient portfolio. This is

especially true in dynamically reallocated portfolios in which the portfolio optimization

problem is then reiterated over time. Lastly, there is an option to limit portfolios to

contain only long (or short) positions by setting an additional constraint to the sign of

the weight vector x.

2.2.1 Markowitz efficient frontier

In the original problem, Markowitz proposed portfolio optimization based only on vari-

ance as a risk measure[17]. If the optimization is then done for several return targets,

then a locus on the return variance plot can be constructed that locates all the efficient

portfolios, i.e., for a desired return, there is no other portfolio that offers a better re-

turn/risk ratio. This so-called efficient frontier virtually obliges every risk-averse rational

investor to allocate their resources in a portfolio that is on the locus. Furthermore, if a

risk-free asset is available, then the locus would reduce to a point: the tangent portfolio.

In that case, the efficient frontier would simply be a line that captures all the possible

combinations of the risk-free asset and the tangent portfolio.

The main assumption behind the math in the Markowitz efficient frontier is that asset

returns are generally normally distributed and thus can be parametrized by the co-

variance matrix of the assets available to the investor. Unfortunately though, fitting

historical data to this matrix ignores most of the higher-order dynamics that usually
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are present in the regions with higher deviations, i.e. the tail. Although this approach

simplifies the math a lot (and therefore is still one of the most widely used method to

optimize portfolios), this is something that can only be done with prudence. By def-

inition, large deviations have a bigger impact than small deviations and thus simply

averaging them out together into one single metric that lies bigger on small deviations

can have unexpected consequences.

2.2.2 Other risk measure

If the return data follows a non-Gaussian distribution, it is more accurate to use other

risk measures that lay more emphasis on larger deviations. In particular, if these event

are more impactful than the small events, this approach is usually more a prudent way

to manage overall portfolio risks. Apart from other risk measures, like VaR, there is

also the possibility to generalize the framework prescribed by Markowitz to higher order

moments or cumulants. These measures take a bigger emphasis on the larger deviations

and as such are a better way to optimize a portfolio when the assets are prone to fat

tails.

2.2.3 Moments

In general, moments are implicitly defined by their moment generating function (equa-

tion 2.9).

P̂ (k) =

+∞∑
n=0

(ik)n

n!
Mn (2.9)

Where P̂ Is the Fourier transform of the pdf of S.

P̂ (k) =

∫ ∞
−∞

dSP (S)eikS (2.10)

Equation 2.10 can be written explicitly as equation 2.11.

µn =

∫ ∞
−∞

(x− c)n f(x)dx (2.11)
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That is to say: µn is the nth moment around c of the pdf of X. Whenever, we center the

moments on the first moment, we call it the centered moment. It is immediately obvious

that the first moment is the mean and the second centered moment is the variance. From

there on we identify both the skewness and kurtosis as, respectively, the third and fourth

centered moments.



Chapter 3

Methods

Looking back at our analysis of the problem in Chapter 2, we concluded that the main

thesis problem is very much decomposable into both a power engineering problem and a

financial portfolio problem. Therefore, although we will prescribe now an exact method-

ology, the reader should keep in mind that the models that will be combined here can

be interexchanged with other models that produce similar outputs. The general recipe

presented here is thus a guideline for further work.

The framework, visualized below in Figure 3.1, should serve as an outline for answering

the sub-questions presented in Chapter 1 that ultimately will lead to answer the main

question.

The choice is made to use the OPA algorithm as the operational data generator for its

ability of being able to simulate the cascading dynamics of the grid and as well capture

the longer term complex dynamics that (could) govern the grid. Although, there exist

many other models that are able to generate the dataset that is required to construct

consistent revenue streams, the OPA model has been chosen over the other algorithms

because of its recent successful attempts to make the model more plausible by validating

the output with real-world data.

In the following paragraphs the methodology of each step in the outline will be explained.

23
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Gather different grid models1
Use OPA algorithm to

generate operational data
2

Sub-question 1 3
Construct revenue stream
based on operational data

4

Sub-question 25
Optimize portfolio using
different risk measures

6

Sub-question 3 7
Rank portfolios us-
ing pattern metrics

8

Sub-question 49

Figure 3.1: The general outline in methodology

3.1 Step 1: Grid models

The OPA algorithm is able to use any real-world grid model as input that is complete,

i.e. the full topology and electrical properties are disclosed and thus the power flow

problem can be solved. Additional to this, the transmission line limits should also be

disclosed as these form the basis of the cascade generating mechanism of the model.

Although there are many different power grid models publicized, the typical model does

not include the transmission limits, mainly because of the antiquity of the models.

Fortunately, there are two relatively small grid models that fulfill the criteria above: the

IEEE 24 RTS system and the New England 39 system. The data of these systems can

be found in Appendix B.

Thanks to the MATPOWER project [25], the models are already pre-formatted and

using the same software the power flow problem can easily be solved. Using the dcopf

command both grids are solved numerically for the DC approximation. Once done, the

inputs for the OPA algorithm are ready to be plugged in.
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3.2 Step 2 & 3: Data generation

The OPA algorithm is coded using the recipe given by [19]. The script used to produce

the results is given in Appendix ??.

The choice is made to not model the generator margin to be constant (a small deviation

from [19]), but instead to couple the generator capacity growth rate to the load growth

rate.

Moreover, we choose the same parameters as used by [4], as those paramaters were

validated and thus provide the most confidence in representing reality:

Parameter name Parameter value

Simulation time 50000 days

Energy demand growth factor 1.00005 per day

Capacity growth factor 1.005 if failure

Probability of initial line failure 0.001

Probability of failure of overloaded line 0.15

Lastly, we remark that the OPA algorithm’s original purpose is not to study the energy

throughput through nodes. In fact, to our knowledge no public paper has used the load

data between nodes in any of their research. The model’s original goal was to explain

the complex dynamics behind power grid outages. It achieves this by applying a Monte

Carlo simulation over differnent states of the grid. It is therefore, in our opinion, not

unreasonable to use the data for other purposes. However, we will first compare the

statistics of the data to real world data, to add some confidence in this approach before

analyzing the data.

The operational data generated by the OPA algorithm will thus be validated against

real world data. The data is a courtesy of a consulting firm and as such is anonymized

for privacy reasons. The load curves (which is the community term for the times-series

of the energy-throughput) are a hourly sample of one full year and extracted from a

100-150 kV substation.

The moments of the real-world data, plotted in Figure 3.2, and the simulated data

are then compared to each other to see if the there is a match in terms of statistical

properties.
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Figure 3.2: Real-world data of the energy throughput of a 100-150 kV substation.
The timescale is in hours and total time series amount to one year. There is clearly a
seasonality element, which is of course a consequence of the higher energy consumption
in both summer and/or winter. In fact, the seasonality applies not only to the first
moment (mean), but also the second: there is clearly a higher variance visible whenever

there is a higher average consumption.

3.3 Step 4 & 5: Revenue stream construction

After validation of the OPA data, we are ready to convert the operational values into

financial values.

Ultimately, what is important from an investor point of view is, not the operational

data, but of course the revenue stream associated with owning the asset. We will used

the simple model described in equation 2.1.

Once we have modelled the usage Ui,t of all the assets in the grid, what rests us is thus

to calculate the leasing price pi,t of each MWh transferred and as well to set a penalty

fee Zi,t for each event of power outage.
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3.3.1 Leasing price

In a real-world setting, the price that the lessor will ask from lessee is simply calculated by

numerically finding the price that matches the expected IRR of all cash flows associated

with owning the asset. This IRR is usually chosen in such a way that it is comparable

to the return of assets with similar risk profiles.

It is also worth taking note that in a real world setting, there will be definitely some

kind of bargaining going to take place that might skew the ultimate price.

For the sake of brevity, however, we will assume an identical linear model for each of

the substations, i.e. we set a price per MWh that is valid for each of the substations.

This price is assumed to be 2% of the energy price1. Taking the USA power markets

into consideration, this figure is thus only 120 USD * 2% = 2.4 USD/MWh.2

3.3.2 Penalty fee

Whenever a grid operator is not able to transfer energy, the industry practice is to

assign a penalty fee to the agent that is accountable for it. Like for example, agents that

generate power are entitled to some kind of compensation fee as they suffer the most of

transmission outages, since their high CAPital EXpenditure (CAPEX) structure requires

uninterrupted operations to stay profitable. The magnitude of these so-called Energy

Not Supplied (ENS) payments (in the unplanned case) amount to sometimes more than

a million dollars per day, which is of course a serious tail risk for the grid operator.

However, it has to be said, that although we have defined a clear case transaction in the

first chapter, the aspect of risk transfer was not mentioned. This is because a transaction

like this will vary strongly on the Terms and Conditions from transaction to transaction.

Therefore, for the sake of simplicity, we will assume that if failure occurs the accountable

agent will pay fee to an exogenous entity, i.e. that there is no cash flow transfer between

revenue streams of nodes.

1This price was calculated in a previous business case
2Source:https://www.ovoenergy.com/guides/energy-guides/average-electricity-prices-kwh.

html

 https://www.ovoenergy.com/guides/energy-guides/average-electricity-prices-kwh.html
 https://www.ovoenergy.com/guides/energy-guides/average-electricity-prices-kwh.html
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Lastly, we remark that the OPA algorithm does not simulate node outages, but only

transmission line outages. To simulate this phenomenon, we will artificially ‘manufac-

ture’ these node outages. We do this in the following way:

• We log the volatility of the energy throughput per node

• Whenever a node hits a certain (down-side) deviation, we count that as a ‘failure’

and assign a penalty fee to that event.

The threshold is set to 2.8 times the standard deviation of the node in question. This

number was chosen so that most of the nodes are cash-flow positive (with a couple

negative ones). This emulates a realistic business case, in which each node has big, but

not full, probability of ending cash flow positive.

3.3.3 Statistical analysis

In the same way that the operational data has been analyzed using the methodology

prescribed in the previous paragraph, the revenue streams will be analyzed to find if

there are any other higher-order effects than just variance and the expected left-tail

kurtosis generated by the penalty fees.

Additionally to that, the degree of interdependence between assets will be checked.

Tools that will enable this analysis will include the correlation coefficient matrix, which

measures the statistical linear interdependence between revenue streams. Although not

sufficient to fully grasp the full structure of the data, the correlations coefficient matrix

can rule out the hypothesis of fully independent assets. This will be simply visualized

by the resulting efficient frontier that can reveal the non-diversifiable risk, i.e. system

risk.

For spatial interdependence, we use Morans I using the link distance as distance measure

(Equation 3.1) as proposed by [8].

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̂)(Xj − X̂)∑

i(Xi − X̂)2
(3.1)

where:
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N = amount of nodes

wij = link distance between node i and j

Xi = binary variable that is 1 if node distance is i-j

X̂ = mean distance

The statistical significance of Moran’s I statistic can be approximated using a normal

approximation under randomization [7] to give Equation 3.2.

V (I) =
ns1 − s2s3

(n− 1)(n− 2)(n− 3)
(∑

i

∑
j wij

)2

s1 =(n2 − 3n+ 3)

0.5
∑
i

∑
j

(wij + wjj)
2


− n

∑
i

(
∑
j

wij +
∑
j

wij)
2

+ 3

∑
i

∑
j

wij

2

s2 =
n−1

∑
i(yi − ȳ)4

(n−1
∑

i(yi − ȳ)2)2

s3 =0.5
∑
i

∑
j

(wij + wji)
2

− 2n

0.5
∑
i

∑
j

(wij + wji)2

+ 6

∑
i

∑
j

wij

2

(3.2)

Furthermore, we check if there are clusters of lines that frequently fail together to check

for interdependencies in clusters. We check this by constructing a so-called synchro-

nization matrix, as proposed by [4], which tracks which lines fail together more than k

times. This reveals potential clusters of lines (and their connecting nodes) that should

be avoided including in the portfolio because of the high interdependent risk of failure.

3.4 Step 6 & 7: Portfolio optimization

Once the revenue stream of each particular node are constructed, we compute the cu-

mulated cash flows over the whole investment horizon. We set this to be 10 years (3650

days).
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We then check for nodes that fail frequently (and thus result in disproportionally high

amount of penalty fees). From this point on, we make the distinction between two

separate cases: a portfolio with these frequently failing nodes and one excluding these

ones. This is done because the risk in owning an asset is severely asymmetric: there

are only large negative deviations possible. This will guarantee them to be excluded

of the efficient frontier, as their additional variance can only lower the expected return

compared to their counterparts.

Using portfolio optimization techniques, we then compare different portfolios lying on

the efficient frontier with the 1/N portfolio to see if there are financial gains feasible by

performing such a portfolio optimization. This is done only for the case without the

frequently failing nodes.

3.5 Step 8 & 9: Heuristic testing

Once we have found the efficient frontier, the question arises if there is a dominant

(topological) pattern present in the locus of efficient portfolios.

Why do we ask this question if the methodology above prescribes the direct composition

of the efficient portfolio? Well, the reason is that although the recipe given above

should be consistent in the sense that if the operational data generated by the OPA

algorithm is consistent with the spatio-statistics of real-world data, then the optimization

problem should prescribe the optimal portfolio at all times. However, given that the

OPA algorithm is high-level in nature, it is expected that the resulting moments of the

revenue stream contain big uncertainties. In fact, the efficient frontier, in general, is so

susceptible to uncertainties in inputs that some have even argued that the reason that

the Capital Asset Pricing Model (CAPM) hypothesis has consistently been rejected, is

because of mere uncertainties in inputs [24]. Especially, because small variations in input

can change the portfolio structure dramatically. To combat this we check if there are

any heuristics existing in choosing a better portfolio (note that we explicitly use better

and not best).

Two potential heuristics that could be relevant to this kind of problems are:
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• Mainly investing in nodes higher up in the power transfer chain. Because these

usually tend to be less clustered and thus less susceptible to interdependent risk

• Mainly investing in nodes that are decentralized from each other. Again, because

there the interdependent risk is suspected to be more diversified more than buying

clustered nodes.

To test these two hypotheses, we introduce the following two metrics that should give a

general idea on if there are any structural patterns in the efficient frontiers: streamness

and modified Katz centrality score [14].

Streamness

We define Streamness using a self-created function 3.3 using a simplistic node mode, see

Figure 3.3.

Streamness : Pgen, Pup, Pdown, Pload → [0, 1]

Only three cases possible

Case1 :Pgen > 0 then Streamness = Pgen/(Pgen + Pup)

Case2 :Pload > 0 then Streamness = Pload/(Pload + Pdown)

Case3 :Pgen = 0 ∩ Pload = 0 then Streamness = 0.5

(3.3)

Node
Pgen Pload

Pup

Pdown

Figure 3.3: Each node in the graph can be either exogenous or endogenous power
inflow. Mathematically, this is the same for power outflow



Methods 32

Once the streamness of each node is calculated, the overall portfolios degree of Stream-

ness is computed by using a simple arithmetic weighted average (using the portfolios

weight wi calculated in the portfolio optimization problem) given by equation 3.4.

Streamnessportfolio =
∑
i∈1

wi · Streamnessi (3.4)

Katz modified centrality

We define this modified version of Katz centrality measure in equation 3.5. Furthermore,

we set the attenuation parameter α to 0.5.

CKatz,m(i) =
∞∑
k=1

n∑
j=1

wjα
k
(
Ak
)
ji

(3.5)

where:

wj = weight of node j

α = attenuation parameters

Ak = adjecancy matrix for k -links between nodes

i, k = amount of nodes (∈ N)

The portfolio’s clusterness is then simply the sum of the individual nodes clusterness

scores. Although the score does not necessarily add up to 1, the score is nevertheless a

good way to compare how centralized the portfolios are between each other.



Chapter 4

Results

4.1 Sub-question 1: Data generation

Before actually validating the operational OPA output with the real-world data, we first

harmonize the latter so that we can compare ‘apples with apples’. Then after this the

moments of both data-sets are compared to each other.

The reason for this validation step is that the OPA output has only been validated for

the probability distribution of blackouts measured in terms of energy shed. However,

the operational data (energy-throughput of each node) has to our knowledge never been

validated yet.

4.1.1 Real-world data analysis

To make a better comparison between the generated data and real world data, we de-

seasonalize the data using an symmetric 1001-term moving average filter (Equation 4.1,

Figure 4.1)

µt =
1

1001

500∑
i=−500

Pt+i (4.1)

Two types of regimes are immediately obvious to the reader: a long period with relatively

low volatility (Regime 2) and a shorter period with higher extremes and as well higher

33
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Figure 4.1: The original data (blue line) is filtered using a symmetric 1001-term MA
filter (red line) to deseasonalize the data (yellow line).

volatility (Regime 1). Because the peak periods seem to have bigger variance as well,

we check for temporal autocorrelations (Figure 4.2).
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Figure 4.2: Autocorrelation plot of the whole data sample using hours as lag-scale.

The autocorrelation shows clearly a daily pattern, which is obviously a result from the

intraday periodicity. This is however not a problem as the OPA model uses a daily time-

scale. This means that the intraday effects in the real world data can be averaged out

without any loss. To rule any other periodicity, we nevertheless make a power spectral

analysis of the detrended data (Figure 4.3)

The power spectral analysis shows the obvious daily periodicity and rules out any other
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Figure 4.3: A power spectral analysis of the sample data . The other two spikes at
3,5 hours and 2 days are speculated to result from the short (breaks every 3-4 hours

from working) and long business (breaks in the week) hours cycle.

(significant) periodicity. We then construct a histogram to visualize the probability

distribution of energy-throughput after centering the resulting time series (Figure 4.4).
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Figure 4.4: A histogram of the detrended series after centering.

Although a histogram is generally only a very rough estimation of the actual probability

distribution function, it is however a helpful instrument to generate an easy visualization

of the empirical frequency data. After observation, one can easily spot the fatter-than-

normal left-tail and a huge asymmetry between tails. In particular, the left tail shows

evidence of some higher-order effects in energy throughput. Moreover, we speculate the

reason that the right tail suddenly stops at around 4 MW is that there are saturation

effects build into the system that deaccelerate the consumption demand increase (e.g.

higher energy prices)
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Figure 4.5: The survival functions are both plotted on a log-linear scale. There is a
huge asymmetry between the tails, which can be explained by (un)planned maintenance

and/or power outages that skew the distribution.

To support our assessment of the real-world data, we examine the tails of the empirical

distribution function. We perform a survival analysis using the complement cumulative

distribution function of both tails (Figure 4.5).

Figure 4.5 confirms our previous observation of asymmetry between tails. The right

tail seems to be thinner than exponential and the left tail does on first sight seem to

suggest some kind of exogenous factors that produce a discontinuity in the tail. In

fact, one could argue that this discontinuity could also be the result of some power law

generating mechanism. To check this, we plot the tails on a log-log scale (Figure 4.6).
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Figure 4.6: Both tails on a log-log scale.

The left tail does appear to be drawn from a power law distribution. The discontinuity

in the plot is probably because there are multiple mechanisms generating this behavior:
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the left-part of the blue line is probably because of the operational variance and the

right part of the blue line (after the discontinuity) could be the result of outages and

maintenance. It seems thus that there are exogenous factors (from a substation system

point-of-view) that generate left-sided heavy tails.

To finalize our analysis, we construct a QQ plot of the sample energy-throughput (Fig-

ure 4.7).
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Figure 4.7: A QQ-plot of the emperical distributuion against the corresponding nor-
mal distribution.

The QQ plot does indeed show the same asymmetry between both tails. The left-tail is

definitely heavier than the right tail Figure 4.7 supports our previous judgement on the

asymmetry of the tails. The left tail seems absolutely not natural, in the sense that the

discontinuity seems to be so diametrical that it suggest exogenous factors to be playing

a role.

We tabulate the moments for both regimes, specified in Figure 4.1:
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Scale-free moments Regime 1 Regime 2

Relative Std. Deviation 1.6 0,23

Skewness 0.41 -0.37

Kurtosis 2.7 5.0

The moments of both regimes differ significantly:

• Regime 1 is more volatile, right skewed and less curved than a comparable normal

distribution (Kurtosis¡3).

• Regime 2 is less volatile, left skewed and much more curved than a comparable

normal distributio (Kurtosis¿3).

4.1.2 Data comparison

Now that the real-world data has been statistically analyzed, we compare both the

operational data to the empirical data, so we can proceed with analysis.

Choosing the right time window

We first check the state of system over time. The simulation length is 50000 days

(approximately 140 years), which is obviously a very long time horizon in a different

time scale than the typical investment horizon. According to [?], the state of the system

becomes more critical with the demand growth. Furthermore, a metric that parametrizes

this criticality is derived from the Galtson-Watson process [3]. We compute λ over time

to check if the state of system converges.

Looking at Figure 4.8, we observe that system 24 achieves convergence later than system

39, probably because of different initial states of criticality. According to [12], current

grids are being operated around their operational limits, which instructs us to use only

the last portion (last 5000 days) of the data. This ensure that we compare the simulated

data that resembles the most the real-world data.

To do a last check of convergence, we calculate the Mean Time Between Failure (MTBF)

statistic using again 50 partitions.

The convergence again suggest that using only the last portion of the data is the most

suitable for comparison with the empirical data.



Results 39

0 10000 20000 30000 40000 50000
0

0.1

0.2

0.3

Time in days

L
a
m

b
d

a

GaltonWatson process paramater estimator (npar=25)

System 39
System 24

Figure 4.8: Galtson-Watson parameter over time (partitioning the data over 25 bins).
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Figure 4.9: The Mean Time Between Failure calculated again using 25 bins of parti-
tioned data.

Furthermore, we average out the intraday effects by compressing the hourly data into

daily data (Figure 4.10).

We then compare the empirical moments to the moments from the simulated data to

see if the data is usable.

Second moment

Using the following backwards looking moving variance filter, Equation 4.2, we plot

the daily standard deviation to see how dispersed the deviations themselves are. (Fig-

ure 4.11.
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Figure 4.10: Compressed, detrended and centered real-world data

V =
1

50− 1

50∑
i=1

|Ai − µ|2 (4.2)

where:

µ =
1

50

50∑
i=1

Ai (4.3)
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Figure 4.11: A plot of the daily relative standard deviations against time. One can
see that in Regime 1, the standard deviations themselves deviate a lot.

We compare this with the operational data produced by the OPA algorithm, Figure 4.12.
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Figure 4.12: Scaled down operational standard deviations of OPA model. From both
grid models (system 24 and system 39) only the operational data of node 1 are plotted

One can see that the average relative standard deviation of system 39 and system 24 are

around, respectively, 0.33 and 0.19. These values are in the same order of magnitude of

the values in regime 1 of the real-world data. However, the plot is of a random node

(namely node 1). To see if there are differences between nodes, we plot the average

relative standard deviations of each node over the last 5000 days (Figure 4.13).
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Figure 4.13: Standard deviations of each node of system 39 averaged out over last
5000 days of data. We used the same filters as for the real-world data

The relative standard deviation of each node seems to be around 0.28. This gives

confidence in the model’s output.
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In fact, if we look to system 24, see Figure 4.14, our hypothesis that the operational

data of OPA is realistic seems even more plausible:
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Figure 4.14: Relative standard deviation of each node of system 24. Averaged out
over the last 5000 days.

With an average of around 0.18, the relative standard deviation seems very comparable

to the deviations of the Regime 1 of the real world data.

Third moment

The skewness of the data is a metric for the asymmetry in the data series. We have

observed that the sign of this moment seems to change from Regime 1 to Regime 2 in

the empirical data.

We compute the skewness of each node of system 24 in Figure 4.15.

The average skewness seems to float around 0.19, which has not only the same sign as

the empirical value of Regime 1, but is also in the same order of magnitude. This again

seems to suggest that the OPA simulation output is statistically more similar to Regime

1.

Tail analysis

To finalize our comparison between the empirical data and simulation data, we make a

plot of both tails of a random node of system 39 (Figure 4.16).
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Figure 4.15: The skewness of each node of system 24. Averaged out over the last
5000 days.
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Figure 4.16: A survival function plot on log-linear scale of node 1 of system 39
(randomly chosen). Both the left and right tails are plotted

The positive skewness can be clearly identified. However, this the opposite of what is

seen in the tail plot of the empirical data. The reason for this is that the survival plot of

the empirical data, was not made by make a distinction between Regime 1 and Regime

2. As the positive skewness of Regime 1 seems to suggest, we could have expected a

similar plot if we only had taken Regime 1 into consideration. We check this by plotting

the survival curves of only Regime 1 (Figure 4.17).

Now the tails seem more comparable:

• The right tail of the simulated data seems to be drawn from an exponential dis-

tribution, which is definitely fatter-than-normal and similar to Regime 1.
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Figure 4.17: Survival analysis of empirical data of only Regime 1.

• The left tail still contains the discontinuity, which the operational data misses.

The OPA algorithm does not produces node outages, which should be the reason

that the discontinuity is not present in the simulated data.

4.2 Sub-question 2: Revenue stream construction

Using equation 2.1 and the parameters given in Chapter 3, we construct for each node

the revenue stream.

The stacked bar chart in Figure 4.18 are the accumulated cash flows of owning a node.

Note that they exclude the initial investment. Also note that in the first year, only a

handful of node do indeed experience outages.

To check for interdependencies between assets, we start first by looking at spatial rela-

tionships (Figure 4.19).

We observe a statistically significant spatial autocorrelation at distance 1. After that,

we dont see any evidence for spatial autocorrelation.

In fact, if we look over time the autocorrelation function doesnt seem to converge. We

do see a continuous progression that is cyclical in nature. That element seems to be

consistent over each distance level, which suggest that there could be some statistically

significant correlations, which are not captured by the normal approximation of equation.
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Figure 4.18: Accumulated cash flow of the first year using the last 50000 days of
simulation sample. Furthermore, we use 2.8 time standard deviations as hit rate for a

penalty fee
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Figure 4.19: Spatial autocorrelation (Moran’s I) using amount of links as distance
unit. The lines are a 95% confidence interval. The graph does not seem to show

convergence over the time
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To check further for interdependence, we go back to the operational data and check for

synchronization in line outages. Using a so-called synchronization matrix, we plot which

lines tend to fail frequently together. By setting a certain threshold, we check if there

indeed clusters of lines that tend fail frequently. If that is the case, then there is a strong

case for not rejecting the hypothesis of interdependence.
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Figure 4.20: Synchronization matrices of system 24. The data is sampled over only
the whole 50000 days. One can spot that there is a group of lines that fail often.

After inspection, the case of interdependency has been made stronger: often frequently

failing group of lines indicate that the failure modes have influence over a group of nodes.

When we construct the histogram of a portfolio returns, see Figure 4.22 consisting of

equally weighted assets (also known as the 1/N portfolio), we immediately see a negative

skewness and a long left tail. This is of course the product of the inherent asymmetry

of penalty fees: there are no performance bonuses when delivering more energy than

possible.

From the histogram it is clear that the portfolio with the often-frequent nodes contains a

serious tail risk for the investor. The long left-tail could be a reason to not use variance
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Figure 4.21: The synchronization matrices of system 39 show even more frequently
failing lines (again sampled over the whole 50000 days).
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Figure 4.22: A histogram of the daily returns of a 1/N portfolio consisting of all the
nodes of system 39
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as risk measure; a higher moment risk measure could be more beneficial.

4.3 Sub-question 3: Portfolio optimization

From the previous paragraph, it is clear that the best portfolio optimization strategy is

obviously omitting the frequently failing nodes: their long tail risk is only downwards

directed and thus will never be part of any efficient portfolio. In fact, just detecting these

group of frequently failing nodes and omitting them from the portfolio can positively

skew the return distribution, as can be seen from Figure 4.23.
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Figure 4.23: A histogram of the daily returns of a 1/N portfolio excluding all the
frequently failing nodes of system 39.

Omitting the frequently failing nodes is thus very rewarding both in terms of returns

(higher mean) as risk (only upwards risk). However, we can go one step further and

optimize the restant of the portfolio using Markowitz efficient portfolio theory, see Fig-

ure 4.24 and Figure 4.25. By explicitly omitting the frequently failing nodes, we are

basically only diversifying the operational risk, which is subject to the noise that the

power demand change generates.

Interestingly enough, the 1/N portfolio is in both cases very close to the frontier. Fur-

thermore, we remark that the risk-free asset that is usually present in these kind of

portfolio optimization analyses is omitted on purpose: we assume that the investor has

other assets in his portfolio that might change the overall frontier. As such, constructing

a tangent portfolio in this particular case doesnt make sense.
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Figure 4.24: Markowitz efficient frontier of all system 39 nodes excluding the fre-
quently failing nodes
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4.4 Sub-question 4: Heuristic testing

With the understanding that the previously constructed frontier is very sensitive to

change in errors in inputs, we will research if there are certain rules-of-thumb that

advise the investor on if there are certain dominant investing strategies based on the

topology of the grid. The main patterns that we will look for are :

Streamness: a measure on how to upstream (or downstream) a node is located, see

equation 3.3.

Katz Centrality: a measure on how clustered the portfolio is. A high number means

that the portfolio is relatively more clustered than a portfolio with a small number, see

equation 3.5.

Pattern testing on solely variance

First we benchmark each node in terms of their standard deviation for both Katz Cen-

trality and streamness. Note that the interdependence of each node is here neglected;

we look for patterns only in the diagonal of the covariance matrix.

Although not instantly visible in Figure 4.26, there is a statistical significant (linear)

correlation between Katz centrality and standard deviation of 0.62. Streamness though

doesnt seem to have a statistical significant impact on the standard deviation.

We perform the same benchmarking for system 39, see Figure 4.27 to see if that corre-

lation only holds for that particular system or is more general in nature.

In the case of system 39, we did not find any statistical significant (linear) correlation

between any of the two predictors.

Pattern testing on the efficient frontier

Lastly, we test if there is any pattern in the efficient frontier; we benchmark a sample of

equally spaced portfolios on the efficient frontier using the same metrics, see Figure 4.28.

Note that we use the efficient frontier produced in the previous sub-question, i.e. they

exclude the frequently failing nodes.
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Figure 4.26: Standard deviation of each node of system 24 benchmarked against
Streamness and Katz Centralilty
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Figure 4.27: Standard deviation of each node of system 39 benchmarked against
Streamness and Katz Centralilty
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Figure 4.28: A sample of 20 equally-distanced portfolios on the efficient frontier.
Starting from number 1 (minimum variance) to number 20 (maximum return) each
portfolio of system 24 is benchmarked against their Streamness and Katz Centralilty

score.

We find no statistically linear correlation for neither one of the predictors (or their

second-order combinations). However, a funny S-shape appears, that we think might be

the result of some quadratic relationship.

Again we find no statistical significant (linear) correlations in any of the predictors while

using system 39, see Figure 4.29. However, the similar locus shape appears in this plot .

The sign seems to be inversed, though, which indicates that this pattern might be pure

coincidence.
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Figure 4.29: A sample of 20 equally-distanced portfolios on the efficient frontier.
Starting from number 1 (minimum variance) to number 20 (maximum return) each
portfolio of system 39 is benchmarked against their Streamness and Katz Centralilty

score.



Chapter 5

Conclusion

Before finalizing this dissertation, an attempt will be made to use the previous collected

results to answer the questions raised in the first chapter. After that, a final judgement

will be made on the overall methodologys results.

5.1 Sub-question 1: Data generation

The data generated by the OPA model seems to suggest that there is a critical regime

change over time: The Galton-Watson fit parameter increases monotonically and con-

verges at a much higher value than at the beginning of simulation. This indicates that

the systems state grows, in terms of criticality, to a certain steady-state independently

from the grid model inputs. This is, of course, a consequence of the OPA models fun-

damental assumption that power grids, in the long term, are governed by some kind

of self-organized criticality. With the knowledge that most of the grids now-a-days are

running at their maximum engineering capacity, we chose therefore to sample only the

last 10 years of the model simulation. This sample was the basis of comparison between

the empirical and model data.

The results of the analysis of the empirical data revealed that there is enough evidence to

conclude that the energy-throughput is definitely not normally distributed. Interesting

enough, the empirical data is measured to be consisting of several periodic elements:

both yearly and daily oscillation have identified. In respect to yearly seasonality, we

54
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have identified two clear regimes in which all the first four moments differ by a signif-

icant difference. Leaving the present seasonality aside, we conclude that the tails are

asymmetric (although the sign does seem to change per regime). Furthermore, the tails

differ in their kurtosis, which could be an indicator that there are exogenous factors that

take place (such as maintenance dynamic pricing) that stabilizes the device.

Comparing the operational data to the empirical data, we conclude that only Regime 1

seems to be consistent with the temporal statistics of the operational data generated by

the OPA algorithm. This could be because the OPA algorithm is designed to simulate an

over-stressed system, which is more in line with the higher mean and variance measured

in Regime 1. In particular, most of the nodes of system 24 seem to be statistically

similar to the empirical temporal statistics.

Only the left tail seems to differ substantially from the operational data. This was

expected as that side of the pdf stands for device shutdown (either maintenance or

outage) and the OPA model is not designed to simulate these events. This means that

to successfully use the model data as input for the revenue stream construction, this

element needed to be back-engineered.

All in all, we can conclude that the operational data generated by the OPA model doesnt

differ too much, in terms of standardized moments, to the empirical data. This gave

good faith in using the operational data, as long as the node outages (as opposed to line

outages) were carefully back-engineered. Especially, because these outage events were

subject to penalty fees, this last step was crucial.

5.2 Sub-question 2: Revenue stream construction

Given that the operational data is statistically similar to empirical data, we proceeded

with the revenue stream construction. We generalized this stream to be in the form of

Equation. The difficulty was the following two points:

1. Estimating the prices and penalty fees. These figures are very much tied to the

negotiated Terms Conditions and are thus expected to vary significantly across deals.

2. The OPA model does not generate node outages (only line outages). This means that

to assign penalty fees can only be done if outages are back-engineered.
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For simplicity, the first point was solved by assuming a certain price (and penalty fee)

for energy-transferred that is valid for all the nodes. The second-point was resolved

by back-engineering node outages. The mechanism that generated was simply a hit-a-

threshold function that generates an outage (and thus also a penalty) whenever the load

profile hits a certain (downwards) threshold. The deviation that is associated with the

threshold was chosen to make the accumulated cash flows consistent with a real business

case, i.e. most nodes will end up cash flow positive, while a few might end up in the

negative.

Furthermore, the cash-flows (excluding the penalties) were checked for interdependence.

In particular, spatial auto-correlation was computed to see if there are dependencies

between neighboring links. A plot of Morans I, using link distance as unit, revealed

statistical significant autocorrelations at distance 1. After that, there was no evidence

of further spatial autocorrelation. Furthermore, the plot was done for different (time

step) partitions of the data sample, to check for convergence. Although, there was no

evidence for convergence, there was definitely some element of continuity. This could be

weak evidence of oscillations in the criticality state of the system.

To further support the hypothesis of interdependence, synchronization matrices of both

grid models were constructed. The plots, which reveal which lines have tendency to

fail together, revealed that there are definitely cluster of lines failing frequently. This

is in line with the notion of interdependence, as a line outage will for sure affect the

connected nodes volatility.

Lastly, we constructed a histogram of the 1/N portfolio of all the revenue streams asso-

ciated with grid model 39. The plot shows the large (left) long tail risk that is generated

by the accumulation of penalty fees. This is consistent with reality, as this kind of risk

are asymmetrical in nature (there are no positive penalty fees).

5.3 Sub-question 3: Portfolio optimization

Noting that there a handful of frequently failing nodes that are the root of the negative

long tail risk, our portfolio optimization started omitting these nodes. Their (negatively)

asymmetrical risk is not compensated with any additional return and thus will never be

in an efficient portfolio.
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Excluding these nodes already made the histogram of returns skew to the right, which

was of course already a great improvement. We checked if the resulting portfolio still

had room for improvement in terms of efficiency. For this their Markowitz efficient

frontier was constructed to see how far their distance to it was. In both cases, the 1/N

portfolio (excluding frequently failing nodes) was, surprisingly enough, very close to the

frontier. This suggest that the covariance matrix is quite symmetric, in the sense that

diversification over all nodes almost eliminates only idiosyncratic risk. In fact, one could

argue that the 1/N strategy is the most robust one (with negligible cost in efficiency),

given that other strategy are susceptible to uncertainties.

5.4 Sub-question 4: Heuristic testing

Although previously concluded that the 1/N strategy (by excluding the frequently failing

nodes) is the most robust (and thus preferable) one, we nevertheless checked if there

are other dominant strategies present. In particular, we checked for the following two

rule-of-thumb strategies:

1. Buy only upstream (or downstream) nodes 2. Buy a decentralized (or centralized)

portfolio

Moreover, for additional granularity, we even checked for second-order strategies (com-

binations of both strategies).

Using the streamness and Katz (modified) centrality metrics, first all the nodes were

benchmarked according their relative standard deviations. A statistical linear corre-

lation between standard deviation and Katz centrality measure was found in system

24. However, a double check with system 39 (where no correlation was found) suggest

that this dependency was probably idiosyncratic in nature. Furthermore, in both cases

a weak (useless) negative correlation between both metrics was found, i.e. upstream

nodes tend to be more decentralized and vice-versa.

After this, the same analysis was done for the efficient frontier portfolios. Taking an

equally-distanced sample of the efficient frontier, produced in the previous section, each

of these portfolios was benchmarked in line with the metrics. Both loci seemed to have

a similar S shape, but not no other mutually consistent correlations. This suggest that,
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even have checked for second-order strategy combinations, there is no evidence for a

dominant heuristically investment strategy.

5.5 Final judgement on overall methodology

If a potential investor would use the presented methodology, then we have found no

evidence of contradiction between using generated data as opposed to emperical data.

This is assuming that an investor would have access to the relevant grid data, which

because of security reasons, might be a gross assumption.

In the case of not having access to this data, then we can rely on the main conclusion

of this thesis: if the frequently failing nodes could be detected (e.g. by looking at their

history), then a 1/N portfolio would almost be as efficient as Markowitz recipe would

prescribe. This strategy has the huge benefit, however, of being robust against measuring

errors and is thus the preferred strategy.
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Open questions

The methodology proposed is a combination of multiple techniques existing in different

sub-fields. Therefore, it is not expected that this thesis has produced any novel insight,

in the sense that it has pushed the academic frontier in any way. However, if there would

be someone who would be interested in this cross-field area, there are some items that

are still left for additional research.

First of all, the effect of different pricing for each node has not been studied. That is to

say, by setting a fixed price for each asset, we have effectively randomized the revenue

streams. In a realistic scenario, this would of course not be the case, as bigger nodes

would have a higher price to account for their higher CAPEX. This could have the

changed the efficient frontier in total different way.

Secondly, the OPA model is not designed to simulate node outages. That is why it was

needed to back-engineer this events into the revenue streams. However, from a technical

point-of-view, there is no reason to not modify the OPA model to include these modes

of failure in the simulation itself. Doing so, would create a much richer data sample that

is perhaps reveals other dynamics that are not directly obvious to us. However, this has

been to our knowledge never been done before.

Lastly, to arrive to our main conclusion, we did have to assume that frequently failing

nodes are detectable. In the case that this would not be possible, or perhaps because

there is a spectrum in the frequency of failure, then other risk measures than variance

would be more applicable for risk management. Value at Risk or Expected Shortfall

would in that case be a better risk measure.

59
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Or perhaps using higher-cumulant portfolio theory (as they are more sensitive to the long

tail risk) would be a more applicable way to capture the risk[16]? The downside of this

approach, however, is that the math complicates a lot whenever the assets are correlated,

i.e. dependent on each other. In that case, the Markowitz approach of doing a Gaussian

fit through use of the covariance matrix is not possible anymore. To avoid this problem,

Malevergne and Sornette proposed a framework where the Gaussian fit is extended to

a modified Weibull distributions, which is able to capture the higher order moments, in

particular when fat tails are present. In the interdependent case, however, the formulas

for the multivariate fit, becomes extremely complex. Therefore they serve more as

qualitatively tool than for quantitative weight prescription. However, by approximating

the dependency as independent assets, it should be possible to strongly simplify the math

and construct other frontiers similar to Markowitz efficient frontier[2]. This approach

could reveal a better strategy than the proposed 1/N strategy if the frequently failing

nodes are indeed undetectable.
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MATLAB Code of OPA Model

1 %% OPA Model

2 % By Jan Kevin Pluut 15.11.16

3

4 clear all

5 clc

6 tic

7 % Define MATPOWER column names

8 define_constants

9

10 % Load en solve base case using MATPOWER

11 case_original=ext2int(case24_ieee_rts);

12 results=rundcpf(case_original);

13

14 % Set model parameters

15 dg =1.000049; % Demand growth mean

16

17 cg =1.005; % Capacity growth average

18

19 h0 =0.001; % Probability of initial line failure

20 h1 =0.15; % Probability of failure of overloaded line

21

22 kt =50000; % Amount of days (simulation length)

23 ptol =0.1; % Load shedding tolerance

24

25

26 % Add extra capicity to overloaded lines (optional)

27 M1=abs(results.branch(:, PF))./ results.branch(:, RATE_A);

28 o=find(M1 >1);

29 results.branch(o,RATE_A)=results.branch(o,RATE_A)+20;

30

31 % Get model inputs

32 rate=results.branch(:,RATE_A); % Rate of line

61
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33

34 m=size(results.branch ,1); % Amount of branches

35 n=size(results.bus ,1); % Amount of nodes

36

37 typeg=results.bus(:,2) ==2; % Get nodes types (1=Load , 2=

Generator , 3= Reference/slack

38 typel=results.bus(:,2) ==1;

39 types=results.bus(:,2) ==3;

40

41 ig=find(typeg); % Get generator indices

42 il=find(typel); % Get load indices

43 is=find(types);

44

45 M=zeros(m,kt);

46 M(:,1)=M1; % Get basecase fractional

overloads

47

48 F=zeros(m,kt);

49 F(:,1)=results.branch(:, PF); % Get basecase branch flows

50

51 P=zeros(n,kt);

52 P(:,1)=-results.bus(:,PD); % Get basecase load

53

54 for i=1:n % Get basecase generators

55 for j=1: size(results.gen ,1)

56 if results.gen(j,1)==i

57 P(i,1)=P(i,1)+results.gen(j,PG);

58 end

59 end

60 end

61

62

63

64

65 % Calculate OPF matrices

66 fat=size(ig ,1); % Size of additional vatiables

67

68 obj=ones(1,n+fat)*100; % Make objective function

69 obj(ig)=0;

70 obj(n+1:end)=1;

71 obj(is)=0;

72

73 diagl=diag(typel); % Make (3-4) inequality

constraint matrix

74 matl=[ diagl zeros(n,fat)];

75 matl=matl(any(matl ,1) ,:);

76
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77 diagg=diag(typeg); % Make (4-8) inequality

constraint matrix

78 matg=diagg(any(diagg ,1) ,:);

79

80 gmax=zeros(n,kt); % Get generation bus maximum

outputs

81 for i=1:n

82 for j=1: size(results.gen ,1)

83 if results.gen(j,1)==i

84 gmax(i,1)=gmax(i,1)+results.gen(j,9);

85 end

86 end

87 end

88

89

90

91 PTm=makePTDF(case_original); % Get PTDF matrix

92 aPTm=[PTm -PTm(:,ig)]; % Make (1-2) inequality matrix

93

94 % Merge inequality matrices to one A matrix -> A*x<=b

95 A1=-aPTm;

96 A2=aPTm;

97 A3=-matl;

98 A4=matl;

99 A5=[-matg -matg(:,ig)];

100 A6=[matg zeros(fat)];

101 A7=[-matg zeros(fat)];

102 A8=[matg -matg(:,ig)];

103 A=[A1;A2;A3;A4;A5;A6;A7;A8];

104

105

106 % Make equality matrices Aeq*x=beq

107 Aeq=ones(1,n+fat);

108 Aeq(n+1:end)=-1;

109 beq =0;

110

111 % Set output vatiables

112 exit=ones(kt ,1); % Redispatch log

113 BO=zeros(kt ,1); % Blackout log

114 OL=zeros(kt ,1); % Amount of overloaded lines

115 prop=zeros(kt,m);

116

117 shed=zeros(length(il),kt); % Amount of load shed

118

119 % Begin OPA siumulation

120

121 ioverload =[];

122 outaged=zeros(m,kt);
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123 % Slow dynamics (days)

124 for k=2:kt

125 s=0;

126 % Gemerate model random variable

127 % Load growth

128 o1rand=rand(m,1); % Auxillary

outage randon vector #1

129 newcase=case_original; % Load

basecase/repair broken links

130

131 if isempty(ioverload)~=0 || sum(outaged(:,k-1))~=0

132 ioutage=find(outaged(:,k-1)); %

Increase rate of overloaded/outaged lines

133 rate([ ioutage;ioverload ])=cg*rate([ ioutage;ioverload ]);

134

135 end

136

137 % Increase model variables (slow dynamics)

138 P(:,k)=unifrnd (0.6 ,1.4,n,1).*P(:,1).*dg^(k-1); % Increase of node load

139 F(:,k)=PTm*P(:,k); % Increase branch load flow

140 M(:,k)=abs(F(:,k))./rate; % Calculate fractional overload

of lines

141

142 gmax(:,k)=gmax (:,1)*dg.^(k-1); % Increase generator capacity

143

144 % Look if overload and/or initial outage

145 ioverload=find(abs(F(:,k))./rate >0.99);

146 ioutage=find(o1rand <h0);

147 prop(k,1)=sum(o1rand <h0);

148

149 % Set fast dynamics variables

150 f=F(:,k);

151 p=P(:,k);

152

153 % Start fast dynamics (cascades)

154

155 % Calculate power redispatch if either: (1)One or more lines are

overloaded

156 % (2)One or more lines are

157 % outaged (initial outage)

158 % (3) Generator flows are

159 % bigger than maximum

160

161 rate1=rate;

162

163 while isempty(ioverload)==0 || isempty(ioutage)==0

164

165 % Calculate updated inequality matrix A -> A*x<=b
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166

167 newcase.branch(ioutage ,5)=newcase.branch(ioutage ,5) /1000;

168 rate1(ioutage)=rate1(ioutage)/1000;

169 outaged(ioutage ,k)=1;

170

171 nPTm=makePTDF(newcase); % Get PTDF matrix

172 aPTm=[nPTm -nPTm(:,ig)]; % Make (1-2)

inequality matrix

173

174 A1=-aPTm;

175 A2=aPTm;

176 A3=-matl;

177 A4=matl;

178 A5=[-matg -matg(:,ig)];

179 A6=[matg zeros(fat)];

180 A7=[-matg zeros(fat)];

181 A8=[matg -matg(:,ig)];

182 A=[A1;A2;A3;A4;A5;A6;A7;A8];

183

184 % Calculate updated inequality vector b -> A*x<=b

185 b=[rate1+F(:,k);rate1 -F(:,k);zeros(length(il) ,1);-1*P(il,k);zeros(fat

,1);gmax(ig,k)-P(ig ,k);P(ig,k); zeros(fat ,1)];

186

187 % Calculate redispatch with LP

188 [lp ,lpval ,exit(k),lpopt ]= linprog(obj ,A,b,Aeq ,beq);

189

190 % Transform incremental node flows backs to normal variables

191 p=lp(1:n)+P(:,k);

192 p(ig)=p(ig)-lp(n+1:end);

193 % Calcualte new branch flows

194 f=nPTm*p;

195 f=f.*( outaged(:,k) -1)*-1;

196 % Start reiteration if line was overloaded

197 ioverload= find(abs(f)./rate1 >0.99); % Find overloaded lines

198 o2rand=rand(m,1); % Auxillary outage randon

vector #2

199 ioutage=find((o2rand <h1).*(abs(f)./rate1 >0.99));

200 s=s+1;

201 prop(k,s)=sum((o2rand <h1).*(abs(f)./rate1 >0.99));

202 outaged(ioutage ,k)=1;

203 % Check if there are cascades

204 if isempty(ioutage)==1

205 shed(:,k)=p(il)-P(il,k);

206

207

208 BO(k)=1; % Set output variables

209 OL(k)=sum(outaged(:,k));

210 break
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211 end

212

213

214 end

215

216

217 end

218

219 toc
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Grid models

1 %% IEEE 24 RTS

2 %% bus data

3 % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

4 mpc.bus = [

5 1 2 108 22 0 0 1 1 0 138 1 1.05 0.95;

6 2 2 97 20 0 0 1 1 0 138 1 1.05 0.95;

7 3 1 180 37 0 0 1 1 0 138 1 1.05 0.95;

8 4 1 74 15 0 0 1 1 0 138 1 1.05 0.95;

9 5 1 71 14 0 0 1 1 0 138 1 1.05 0.95;

10 6 1 136 28 0 -100 2 1 0 138 1 1.05 0.95;

11 7 2 125 25 0 0 2 1 0 138 1 1.05 0.95;

12 8 1 171 35 0 0 2 1 0 138 1 1.05 0.95;

13 9 1 175 36 0 0 1 1 0 138 1 1.05 0.95;

14 10 1 195 40 0 0 2 1 0 138 1 1.05 0.95;

15 11 1 0 0 0 0 3 1 0 230 1 1.05 0.95;

16 12 1 0 0 0 0 3 1 0 230 1 1.05 0.95;

17 13 3 265 54 0 0 3 1 0 230 1 1.05 0.95;

18 14 2 194 39 0 0 3 1 0 230 1 1.05 0.95;

19 15 2 317 64 0 0 4 1 0 230 1 1.05 0.95;

20 16 2 100 20 0 0 4 1 0 230 1 1.05 0.95;

21 17 1 0 0 0 0 4 1 0 230 1 1.05 0.95;

22 18 2 333 68 0 0 4 1 0 230 1 1.05 0.95;

23 19 1 181 37 0 0 3 1 0 230 1 1.05 0.95;

24 20 1 128 26 0 0 3 1 0 230 1 1.05 0.95;

25 21 2 0 0 0 0 4 1 0 230 1 1.05 0.95;

26 22 2 0 0 0 0 4 1 0 230 1 1.05 0.95;

27 23 2 0 0 0 0 3 1 0 230 1 1.05 0.95;

28 24 1 0 0 0 0 4 1 0 230 1 1.05 0.95;

29 ];

30

31 %% generator data
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32 % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2

Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf %

Unit Code

33 mpc.gen = [

34 1 10 0 10 0 1.035 100 1 20 16 0 0 0 0 0 0 0 0 0

0 0; % U20

35 1 10 0 10 0 1.035 100 1 20 16 0 0 0 0 0 0 0 0 0

0 0; % U20

36 1 76 0 30 -25 1.035 100 1 76 15.2 0 0 0 0 0 0 0 0

0 0 0; % U76

37 1 76 0 30 -25 1.035 100 1 76 15.2 0 0 0 0 0 0 0 0

0 0 0; % U76

38 2 10 0 10 0 1.035 100 1 20 16 0 0 0 0 0 0 0 0 0

0 0; % U20

39 2 10 0 10 0 1.035 100 1 20 16 0 0 0 0 0 0 0 0 0

0 0; % U20

40 2 76 0 30 -25 1.035 100 1 76 15.2 0 0 0 0 0 0 0 0

0 0 0; % U76

41 2 76 0 30 -25 1.035 100 1 76 15.2 0 0 0 0 0 0 0 0

0 0 0; % U76

42 7 80 0 60 0 1.025 100 1 100 25 0 0 0 0 0 0 0 0 0

0 0; % U100

43 7 80 0 60 0 1.025 100 1 100 25 0 0 0 0 0 0 0 0 0

0 0; % U100

44 7 80 0 60 0 1.025 100 1 100 25 0 0 0 0 0 0 0 0 0

0 0; % U100

45 13 95.1 0 80 0 1.02 100 1 197 69 0 0 0 0 0 0 0 0

0 0 0; % U197

46 13 95.1 0 80 0 1.02 100 1 197 69 0 0 0 0 0 0 0 0

0 0 0; % U197

47 13 95.1 0 80 0 1.02 100 1 197 69 0 0 0 0 0 0 0 0

0 0 0; % U197

48 14 0 35.3 200 -50 0.98 100 1 0 0 0 0 0 0 0 0 0 0

0 0 0; % SynCond

49 15 12 0 6 0 1.014 100 1 12 2.4 0 0 0 0 0 0 0 0 0

0 0; % U12

50 15 12 0 6 0 1.014 100 1 12 2.4 0 0 0 0 0 0 0 0 0

0 0; % U12

51 15 12 0 6 0 1.014 100 1 12 2.4 0 0 0 0 0 0 0 0 0

0 0; % U12

52 15 12 0 6 0 1.014 100 1 12 2.4 0 0 0 0 0 0 0 0 0

0 0; % U12

53 15 12 0 6 0 1.014 100 1 12 2.4 0 0 0 0 0 0 0 0 0

0 0; % U12

54 15 155 0 80 -50 1.014 100 1 155 54.3 0 0 0 0 0 0 0 0

0 0 0; % U155

55 16 155 0 80 -50 1.017 100 1 155 54.3 0 0 0 0 0 0 0 0

0 0 0; % U155
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56 18 400 0 200 -50 1.05 100 1 400 100 0 0 0 0 0 0 0 0 0

0 0; % U400

57 21 400 0 200 -50 1.05 100 1 400 100 0 0 0 0 0 0 0 0 0

0 0; % U400

58 22 50 0 16 -10 1.05 100 1 50 10 0 0 0 0 0 0 0 0 0

0 0; % U50

59 22 50 0 16 -10 1.05 100 1 50 10 0 0 0 0 0 0 0 0 0

0 0; % U50

60 22 50 0 16 -10 1.05 100 1 50 10 0 0 0 0 0 0 0 0 0

0 0; % U50

61 22 50 0 16 -10 1.05 100 1 50 10 0 0 0 0 0 0 0 0 0

0 0; % U50

62 22 50 0 16 -10 1.05 100 1 50 10 0 0 0 0 0 0 0 0 0

0 0; % U50

63 22 50 0 16 -10 1.05 100 1 50 10 0 0 0 0 0 0 0 0 0

0 0; % U50

64 23 155 0 80 -50 1.05 100 1 155 54.3 0 0 0 0 0 0 0 0

0 0 0; % U155

65 23 155 0 80 -50 1.05 100 1 155 54.3 0 0 0 0 0 0 0 0

0 0 0; % U155

66 23 350 0 150 -25 1.05 100 1 350 140 0 0 0 0 0 0 0 0 0

0 0; % U350

67 ];

68

69 %% branch data

70 % fbus tbus r x b rateA rateB rateC ratio angle status

angmin angmax

71 mpc.branch = [

72 1 2 0.0026 0.0139 0.4611 175 250 200 0 0 1 -360 360;

73 1 3 0.0546 0.2112 0.0572 175 208 220 0 0 1 -360 360;

74 1 5 0.0218 0.0845 0.0229 175 208 220 0 0 1 -360 360;

75 2 4 0.0328 0.1267 0.0343 175 208 220 0 0 1 -360 360;

76 2 6 0.0497 0.192 0.052 175 208 220 0 0 1 -360 360;

77 3 9 0.0308 0.119 0.0322 175 208 220 0 0 1 -360 360;

78 3 24 0.0023 0.0839 0 400 510 600 1.03 0 1 -360 360;

79 4 9 0.0268 0.1037 0.0281 175 208 220 0 0 1 -360 360;

80 5 10 0.0228 0.0883 0.0239 175 208 220 0 0 1 -360 360;

81 6 10 0.0139 0.0605 2.459 175 193 200 0 0 1 -360 360;

82 7 8 0.0159 0.0614 0.0166 175 208 220 0 0 1 -360 360;

83 8 9 0.0427 0.1651 0.0447 175 208 220 0 0 1 -360 360;

84 8 10 0.0427 0.1651 0.0447 175 208 220 0 0 1 -360 360;

85 9 11 0.0023 0.0839 0 400 510 600 1.03 0 1 -360 360;

86 9 12 0.0023 0.0839 0 400 510 600 1.03 0 1 -360 360;

87 10 11 0.0023 0.0839 0 400 510 600 1.02 0 1 -360 360;

88 10 12 0.0023 0.0839 0 400 510 600 1.02 0 1 -360 360;

89 11 13 0.0061 0.0476 0.0999 500 600 625 0 0 1 -360 360;

90 11 14 0.0054 0.0418 0.0879 500 625 625 0 0 1 -360 360;

91 12 13 0.0061 0.0476 0.0999 500 625 625 0 0 1 -360 360;
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92 12 23 0.0124 0.0966 0.203 500 625 625 0 0 1 -360 360;

93 13 23 0.0111 0.0865 0.1818 500 625 625 0 0 1 -360 360;

94 14 16 0.005 0.0389 0.0818 500 625 625 0 0 1 -360 360;

95 15 16 0.0022 0.0173 0.0364 500 600 625 0 0 1 -360 360;

96 15 21 0.0063 0.049 0.103 500 600 625 0 0 1 -360 360;

97 15 21 0.0063 0.049 0.103 500 600 625 0 0 1 -360 360;

98 15 24 0.0067 0.0519 0.1091 500 600 625 0 0 1 -360 360;

99 16 17 0.0033 0.0259 0.0545 500 600 625 0 0 1 -360 360;

100 16 19 0.003 0.0231 0.0485 500 600 625 0 0 1 -360 360;

101 17 18 0.0018 0.0144 0.0303 500 600 625 0 0 1 -360 360;

102 17 22 0.0135 0.1053 0.2212 500 600 625 0 0 1 -360 360;

103 18 21 0.0033 0.0259 0.0545 500 600 625 0 0 1 -360 360;

104 18 21 0.0033 0.0259 0.0545 500 600 625 0 0 1 -360 360;

105 19 20 0.0051 0.0396 0.0833 500 600 625 0 0 1 -360 360;

106 19 20 0.0051 0.0396 0.0833 500 600 625 0 0 1 -360 360;

107 20 23 0.0028 0.0216 0.0455 500 600 625 0 0 1 -360 360;

108 20 23 0.0028 0.0216 0.0455 500 600 625 0 0 1 -360 360;

109 21 22 0.0087 0.0678 0.1424 500 600 625 0 0 1 -360 360;

110 ];

111

112 %% New England 39 System

113 %% bus data

114 % bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin

115 mpc.bus = [

116 1 1 97.6 44.2 0 0 2 1.0393836 -13.536602 345 1 1.06

0.94;

117 2 1 0 0 0 0 2 1.0484941 -9.7852666 345 1 1.06 0.94;

118 3 1 322 2.4 0 0 2 1.0307077 -12.276384 345 1 1.06 0.94;

119 4 1 500 184 0 0 1 1.00446 -12.626734 345 1 1.06 0.94;

120 5 1 0 0 0 0 1 1.0060063 -11.192339 345 1 1.06 0.94;

121 6 1 0 0 0 0 1 1.0082256 -10.40833 345 1 1.06 0.94;

122 7 1 233.8 84 0 0 1 0.99839728 -12.755626 345 1 1.06 0.94;

123 8 1 522 176.6 0 0 1 0.99787232 -13.335844 345 1 1.06 0.94;

124 9 1 6.5 -66.6 0 0 1 1.038332 -14.178442 345 1 1.06 0.94;

125 10 1 0 0 0 0 1 1.0178431 -8.170875 345 1 1.06 0.94;

126 11 1 0 0 0 0 1 1.0133858 -8.9369663 345 1 1.06 0.94;

127 12 1 8.53 88 0 0 1 1.000815 -8.9988236 345 1 1.06 0.94;

128 13 1 0 0 0 0 1 1.014923 -8.9299272 345 1 1.06 0.94;

129 14 1 0 0 0 0 1 1.012319 -10.715295 345 1 1.06 0.94;

130 15 1 320 153 0 0 3 1.0161854 -11.345399 345 1 1.06 0.94;

131 16 1 329 32.3 0 0 3 1.0325203 -10.033348 345 1 1.06 0.94;

132 17 1 0 0 0 0 2 1.0342365 -11.116436 345 1 1.06 0.94;

133 18 1 158 30 0 0 2 1.0315726 -11.986168 345 1 1.06 0.94;

134 19 1 0 0 0 0 3 1.0501068 -5.4100729 345 1 1.06 0.94;

135 20 1 680 103 0 0 3 0.99101054 -6.8211783 345 1 1.06 0.94;

136 21 1 274 115 0 0 3 1.0323192 -7.6287461 345 1 1.06 0.94;

137 22 1 0 0 0 0 3 1.0501427 -3.1831199 345 1 1.06 0.94;
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138 23 1 247.5 84.6 0 0 3 1.0451451 -3.3812763 345 1 1.06

0.94;

139 24 1 308.6 -92.2 0 0 3 1.038001 -9.9137585 345 1 1.06

0.94;

140 25 1 224 47.2 0 0 2 1.0576827 -8.3692354 345 1 1.06 0.94;

141 26 1 139 17 0 0 2 1.0525613 -9.4387696 345 1 1.06 0.94;

142 27 1 281 75.5 0 0 2 1.0383449 -11.362152 345 1 1.06 0.94;

143 28 1 206 27.6 0 0 3 1.0503737 -5.9283592 345 1 1.06 0.94;

144 29 1 283.5 26.9 0 0 3 1.0501149 -3.1698741 345 1 1.06

0.94;

145 30 2 0 0 0 0 2 1.0499 -7.3704746 345 1 1.06 0.94;

146 31 3 9.2 4.6 0 0 1 0.982 0 345 1 1.06 0.94;

147 32 2 0 0 0 0 1 0.9841 -0.1884374 345 1 1.06 0.94;

148 33 2 0 0 0 0 3 0.9972 -0.19317445 345 1 1.06 0.94;

149 34 2 0 0 0 0 3 1.0123 -1.631119 345 1 1.06 0.94;

150 35 2 0 0 0 0 3 1.0494 1.7765069 345 1 1.06 0.94;

151 36 2 0 0 0 0 3 1.0636 4.4684374 345 1 1.06 0.94;

152 37 2 0 0 0 0 2 1.0275 -1.5828988 345 1 1.06 0.94;

153 38 2 0 0 0 0 3 1.0265 3.8928177 345 1 1.06 0.94;

154 39 2 1104 250 0 0 1 1.03 -14.535256 345 1 1.06 0.94;

155 ];

156

157 %% generator data

158 % bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2

Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf

159 mpc.gen = [

160 30 250 161.762 400 140 1.0499 100 1 1040 0 0 0 0 0 0 0 0

0 0 0 0;

161 31 677.871 221.574 300 -100 0.982 100 1 646 0 0 0 0 0 0 0

0 0 0 0 0;

162 32 650 206.965 300 150 0.9841 100 1 725 0 0 0 0 0 0 0 0 0

0 0 0;

163 33 632 108.293 250 0 0.9972 100 1 652 0 0 0 0 0 0 0 0 0

0 0 0;

164 34 508 166.688 167 0 1.0123 100 1 508 0 0 0 0 0 0 0 0 0

0 0 0;

165 35 650 210.661 300 -100 1.0494 100 1 687 0 0 0 0 0 0 0 0

0 0 0 0;

166 36 560 100.165 240 0 1.0636 100 1 580 0 0 0 0 0 0 0 0 0

0 0 0;

167 37 540 -1.36945 250 0 1.0275 100 1 564 0 0 0 0 0 0 0 0

0 0 0 0;

168 38 830 21.7327 300 -150 1.0265 100 1 865 0 0 0 0 0 0 0 0

0 0 0 0;

169 39 1000 78.4674 300 -100 1.03 100 1 1100 0 0 0 0 0 0

0 0 0 0 0 0;

170 ];

171
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172 %% branch data

173 % fbus tbus r x b rateA rateB rateC ratio angle status

angmin angmax

174 mpc.branch = [

175 1 2 0.0035 0.0411 0.6987 600 600 600 0 0 1 -360 360;

176 1 39 0.001 0.025 0.75 1000 1000 1000 0 0 1 -360

360;

177 2 3 0.0013 0.0151 0.2572 500 500 500 0 0 1 -360 360;

178 2 25 0.007 0.0086 0.146 500 500 500 0 0 1 -360 360;

179 2 30 0 0.0181 0 900 900 2500 1.025 0 1 -360 360;

180 3 4 0.0013 0.0213 0.2214 500 500 500 0 0 1 -360 360;

181 3 18 0.0011 0.0133 0.2138 500 500 500 0 0 1 -360 360;

182 4 5 0.0008 0.0128 0.1342 600 600 600 0 0 1 -360 360;

183 4 14 0.0008 0.0129 0.1382 500 500 500 0 0 1 -360 360;

184 5 6 0.0002 0.0026 0.0434 1200 1200 1200 0 0 1 -360

360;

185 5 8 0.0008 0.0112 0.1476 900 900 900 0 0 1 -360 360;

186 6 7 0.0006 0.0092 0.113 900 900 900 0 0 1 -360 360;

187 6 11 0.0007 0.0082 0.1389 480 480 480 0 0 1 -360 360;

188 6 31 0 0.025 0 1800 1800 1800 1.07 0 1 -360 360;

189 7 8 0.0004 0.0046 0.078 900 900 900 0 0 1 -360 360;

190 8 9 0.0023 0.0363 0.3804 900 900 900 0 0 1 -360 360;

191 9 39 0.001 0.025 1.2 900 900 900 0 0 1 -360 360;

192 10 11 0.0004 0.0043 0.0729 600 600 600 0 0 1 -360 360;

193 10 13 0.0004 0.0043 0.0729 600 600 600 0 0 1 -360 360;

194 10 32 0 0.02 0 900 900 2500 1.07 0 1 -360 360;

195 12 11 0.0016 0.0435 0 500 500 500 1.006 0 1 -360 360;

196 12 13 0.0016 0.0435 0 500 500 500 1.006 0 1 -360 360;

197 13 14 0.0009 0.0101 0.1723 600 600 600 0 0 1 -360 360;

198 14 15 0.0018 0.0217 0.366 600 600 600 0 0 1 -360 360;

199 15 16 0.0009 0.0094 0.171 600 600 600 0 0 1 -360 360;

200 16 17 0.0007 0.0089 0.1342 600 600 600 0 0 1 -360 360;

201 16 19 0.0016 0.0195 0.304 600 600 2500 0 0 1 -360 360;

202 16 21 0.0008 0.0135 0.2548 600 600 600 0 0 1 -360 360;

203 16 24 0.0003 0.0059 0.068 600 600 600 0 0 1 -360 360;

204 17 18 0.0007 0.0082 0.1319 600 600 600 0 0 1 -360 360;

205 17 27 0.0013 0.0173 0.3216 600 600 600 0 0 1 -360 360;

206 19 20 0.0007 0.0138 0 900 900 2500 1.06 0 1 -360 360;

207 19 33 0.0007 0.0142 0 900 900 2500 1.07 0 1 -360 360;

208 20 34 0.0009 0.018 0 900 900 2500 1.009 0 1 -360 360;

209 21 22 0.0008 0.014 0.2565 900 900 900 0 0 1 -360 360;

210 22 23 0.0006 0.0096 0.1846 600 600 600 0 0 1 -360 360;

211 22 35 0 0.0143 0 900 900 2500 1.025 0 1 -360 360;

212 23 24 0.0022 0.035 0.361 600 600 600 0 0 1 -360 360;

213 23 36 0.0005 0.0272 0 900 900 2500 1 0 1 -360 360;

214 25 26 0.0032 0.0323 0.531 600 600 600 0 0 1 -360 360;

215 25 37 0.0006 0.0232 0 900 900 2500 1.025 0 1 -360 360;

216 26 27 0.0014 0.0147 0.2396 600 600 600 0 0 1 -360 360;
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217 26 28 0.0043 0.0474 0.7802 600 600 600 0 0 1 -360 360;

218 26 29 0.0057 0.0625 1.029 600 600 600 0 0 1 -360 360;

219 28 29 0.0014 0.0151 0.249 600 600 600 0 0 1 -360 360;

220 29 38 0.0008 0.0156 0 1200 1200 2500 1.025 0 1 -360

360;

221 ];
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