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Abstract

A modified version of an artificial market model designed by Kaizoji et al [1] is provided,
stressing the significance of dividends and bringing a possibility of bias amongst noise
traders. Noise traders and fundamentalists are the only types of traders involved in the
market, which is composed of a risk-free asset and a risky asset. The risk-free asset can be
thought as a government bond whereas the risky asset can be thought as a stock.

Fundamentalists follow dividends (which belong to the fundamentals of the risky asset)
whereas noise traders are subject to social imitation and trend-following. The competition
between those two kinds of traders is investigated through the long-term behavior of the
market.

We find that dividends have a significant impact on the long-term behavior of the price
of the risky asset since noise traders’ strategy is not persistent in the long run, compared
to the strategy of fundamentalists which mixes both short-term and long-term interesting
approaches.

However, in absence of dividends and of fundamentalists, noise traders are able to have a
consequent impact on the long-term behavior of the market. This ability depends a lot
on the herding which they allow for trend-following and social imitation. We find a phase
transition for the returns of the risky asset which can beat the price of the money, even if
there is only noise within the market.
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Introduction

Hommes has argued [2] that in order to appreciate the features of financial markets, it is
necessary to introduce some heterogeneity, in order to model the world economy as real-
istically as possible. This point corresponds to an important shift in Economics, leaving
the traditional, rational agent approach to a behavioral agent-based approach. This tra-
ditional view comes from Microeconomics and the use of pure Mathematics. Most of the
time, only one agent – or, equivalently, many identical agents – is used to model the whole
economy. Such an agent is called representative agent. In this sense, the behavior of the
economic system is a scaled up version of the behavior of one micro-agent. She is often
taken to be perfectly rational, so that her decisions are ruled by constrained optimization.
Nevertheless, optimization does not seem adequate to represent human behavior. Indeed,
how could agents form fully rational expectations in a complex, non-linear world ?

Thus, much of evolutionary economics has been focused on the behavior of heterogeneous,
boundedly rational, agents who are able to interact with each other. This conceptual
change has been motivated by many authors [3, 4, 5, 6], convinced that Economics is a
complex system, so that it can be viewed as network structures of elements and connections.
A natural framework for exploring such systems is presented by the agent-based models
(ABMs), based on the aggregation of simple interactions at the micro level, leading to
sophisticated structures at the macro level. In statistical physics, it is said that those
systems exhibit emergent phenomena.

Agent-based modeling has been an important tool for providing support to analytical
propositions. Even simple agent-based models can explain significant observed stylized
facts which rational agent models cannot, as excess volatility, firstly stressed by Shiller[7],
high trading volumes, temporary bubbles or trend following. The following quotation
illustrates well the needs for heterogeneity:

“ One of the things that microeconomics teaches you is that individuals are not alike.
There is heterogeneity, and probably the most important heterogeneity here is heterogeneity
of expectations. If we didn’t have heterogeneity, there would be no trade. But developing
an analytic model with heterogeneous agents is difficult. ” Arrow, 2004 [8].

As an example of such heterogeneity, there are two main philosophies of trading in Eco-
nomics. The first one corresponds mostly to the traditional, rational agent approach, driven
by the fundamentals of a given asset, such as dividends, earnings of the firm, macroeco-
nomic growth or unemployment rates. Such investors are called fundamentalists. The
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second one, the technical analysis, is more recent and is thought to be responsible of spec-
ulation. Technical analysts – also called chartists – do not take market fundamentals into
account but, instead, they base their trading strategies upon observed price patterns in
past prices. For that purpose, they use various technical indicators, trying to extrapolate
observed price patterns, such as trends. What is interesting is that financial practitioners
have learned to use both strategies. Indeed, Frankel and Froot [9] have provided survey
data of the techniques used by some forecasting services between 1978 and 1988. The
results are reported in Figure 1. One can observe that, during this period of time, uses of
technical analysis became more and more important, compared to fundamentals models.

Figure 1: Techniques used by forecasting services. Taken from Frankel and Froot [9].
Source: Euromoney, August issues. Total = number of services surveyed; Chart. = number
who reported using technical analysis; Fund. = number who reported using fundamentals
models; and Both = number reporting a combination of the two. When a forecasting firm
offers more than one service, each is counted separately.

In fact, at short horizons, financial practitioners tend to use chartists’ trading rules whereas,
at longer horizons, they tend to look carefully at fundamentals [10]. This heterogeneity
has stimulated much work on agent-based models with chartists against fundamentalists.

In the present report, we shall study the behavior of an interesting agent-based model,
proposed by Kaizoji [1], which shows transient super-exponential bubble growth. This
model has been studied and slightly modified by other authors [11, 12]. The corresponding
artificial market is composed of one risky asset and one risk-free asset, with two different
competing trading strategies. The first group of traders is composed of fundamentalists;
they use dividends to perceive investment opportunities. Broadly speaking, they are ratio-
nal risk averse investors, maximizing a given utility function at each time step. The second
group of traders, called noise traders, are driven both by trend-following (chartists’ trading
rules) and by social imitation. The latter induces some feedback, sometimes leading to the
creation of financial bubbles. Those are defined in [1] as transient super-exponential growth
of prices. In contrast to the original model [1] but in the same spirit than in[11, 12], we
introduce an exogeneous stochastic dividend process, accounting for non trivial economic
determinants, and a possibility of bias among noise traders. In the original model, the
impact of dividends was not so realistic, since fundamentalists used to invest a constant
fraction of their wealth in the risky asset, with respect to time.
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More specifically, we shall study the long-term behavior of this modified artificial market.
It has been shown in [13] that dividends can be seen as an external field – in a phase
transitions meaning – so that they drive prices. This result was obtained in a static
perspective and in absence of speculation. Besides, in absence of external field, that is
without dividends, a phase transitions approach has been developed for prices [13]. We
shall try to investigate if those stylized facts hold with our dynamic model.

In Chapter 1, a detailed explanation of the artificial market model is provided. An effort has
been made to put the chosen exogeneous dividend process into perspective with traditional
processes, which one can find in the litterature. The strategy of both types of traders is
then developed, leading to the price equation of the risky asset. Chapter 2 focuses on the
impact of dividends on the market model, using numerical simulations. The purpose of
Chapter 3 is more theoretical, but most of the results obtained are then used to find what
happens to the market when there is no dividend.
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Chapter 1

The market model

1.1 The assets

The market model has only two assets: a risk-free asset and a risky asset. The risk-free
asset can be thought of as a government bond. It has perfect elastic supply: it is guaranteed
to pay a fixed risk-free interest rate rf at each time step, no matter how much is invested.
For instance, rf could be equal to 2% per year. If one invests a wealth W risk−free

t−1 in the
risk-free asset at time t−1, one gets the wealthW risk−free

t−1 (1+rf ) at time t. The risk-free
interest rate rf characterizes the ’price of money’: it is a source of certain returns, without
any risk. As a consequence, if a trader does not invest in the risk-free asset, she expects
that she will get return rates greater than rf – perhaps by taking some risk – otherwise,
it is of no interest.

The risky asset can be represented by a stock. Investors buy and sell shares of this stock
at a given price Pt, which is set, at time t, by supply and demand. If one invests a wealth

W risky
t−1 in the risky asset at time t − 1, one obtains W risky

t−1

Pt−1
shares of the stock. The price

of the risky asset is, thus, a benchmark unit for the value of a share.

There are two sources of returns, so thatW risky
t = W a

t + W b
t . At time t, the price changes

but the number of owned shares does not, so that one still has W risky
t−1

Pt−1
=

Wa
t
Pt

shares of

the stock, with a new wealth W a
t = W risky

t−1
Pt
Pt−1

. The risky asset also pays dividends dt
at each time step: those are payments per owned share of the asset, chosen irrespective of

the investors. Having W risky
t−1

Pt−1
shares of the stock at time t − 1, one receives the dividend

payment W b
t =

W risky
t−1

Pt−1
dt at time t. Thus, being invested in the risky asset from t− 1 to

t yields two kinds of returns: the price return rate rt := Pt − Pt−1

Pt−1
= Pt

Pt−1
− 1 and the

dividend yield dt
Pt−1

.

{
W risk−free
t = W risk−free

t−1 (1 + rf )

W risky
t = W risky

t−1 [1 + rt + dt
Pt−1

]
(1.1)
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6 1.2. The dividend process

In the special case where the price Pt of the risky asset is lower than its previous value
Pt−1, that is the price return rate rt is negative, there is a competition between the price
return rate and the dividend yield. Hence, even if prices have fallen, the risky asset can
still be profitable, compared to the risk-free asset, if dividends are enough to compensate
the ’loss’ due to the change of prices.

In the general case, a trader i chooses, at any time t, how much will be invested respectively
in the risk-free and the risky assets. This notion is called the risky fraction xit, that is the
fraction of wealth invested in the risky asset at time t. Thus, the fraction of wealth invested
in the risk-free asset at time t is nothing but (1 − xit). From Equations 1.1, a trader i,
having a wealth W i

t−1 at time t− 1, gets the wealth W i
t at the next time step, defined by:

W i
t = (1− xit−1) W i

t−1 (1 + rf ) + xit−1 W
i
t−1 [1 + rt +

dt
Pt−1

] (1.2)

W i
t = W i

t−1 [1 + rf + xit−1 Rexcess,t] with Rexcess,t := rt − rf +
dt
Pt−1

(1.3)

Rexcess,t is called the excess return of the risky asset over the risk-free asset. As said before,
the risk-free interest rate rf can be viewed as a lower base line for capital returns. The
excess return then provides a measure for the profitability of the risk of buying the risky
asset, instead of the risk-free one. From Equation 1.3, one could notice that what defines
an investor i are her initial wealth W i

0 and her risky fraction xit process. In the latter
equation (called the wealth dynamics of trader i), all quantities are known, except the
risky fraction and the dividend processes, as well as the price dynamics.

1.2 The dividend process

When a firm makes profits, the resulting earnings are allocated to retained earnings or
dividend payments by a financial decision. Dividends are generally distributed one or
several times per year to its shareholders – the owners of shares in the company – to
satisfy their need for liquidity or other uses. Dividend payment behavior – also called
dividend policy – has been a strong research field in economics [14].

Unfortunately, there is no widely accepted theory of optimal dividend policy. Thus, many
papers found in the litterature use empirical facts to establish specific dividend policy
theories which can be incorporated in more general models. Many of these specific theories
are based on John Lintner’s model [15] which includes several stylized facts coming from
interviews of managers about their dividend policies. Generally speaking, managers choose
the dividends which will be paid by their firms to have a target payout ratio – the proportion
of firm earnings paid out as dividends to shareholders – as a long-term objective. However,
due to unanticipated changes in earnings of companies, those policies can deviate from their
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initial objective. In this case, managers choose policies which smooth the time path of the
changes in dividends needed to meet that objective. One should notice that the earnings
mentioned by Lintner are ’permanent’ earnings, that is to say that all ’temporary’ earnings,
known to vanish in the future, are not taken into account.

In[16], Marsh and Merton develop a model of the dividend process which captures well the
behavior described in the Lintner interviews. Let dt be the dividend per share paid by a
firm to shareholders at time t and et the permanent earnings per share of this firm at time
t. They introduced the following dividend policy process:

dt = (1 + rd) dt−1 +
N∑
k=0

γk [et−k − (1 + rd) et−k−1] . (1.4)

It is assumed that γk ≥ 0 for all k = 0, 1, ..., N . Put another way, managers choose
dividends to grow at a constant growth rate rd and it happens at least when et−k =
(1 + rd) et−k−1 for all k = 0, 1, ..., N . It means that, in order to get a constant target
payout ratio, the earnings of their firm should follow the same growth behavior than the
dividends paid to shareholders. Thus, a deviation from this growth rate for permanent
earnings will impact future dividends. One can notice that the parameter N characterizes
the number of past periods which would be taken into account by managers to set dividends.
The positivity of the coefficients γk leads to a negative impact on dividends when earnings
are less than expected. For the sake of simplicity, we shall denote the dividends per share
by ’dividends’ in all this thesis since the total amount of dividends will be of no use.

Since the Lintner interviews, other variables such as free cash flows or firm size have
appeared to be determinants of dividend policy [14]. In addition, Dhrymes and Kurz
showed that variations in dividend policy are primarily because of a combination of many
endogenous and exogenous elements [17]. Adding more complexity on the subject, Shiller
has stressed the fact that financial behavior is influenced by societal norms and attitudes
and that social pressures are able to lead to errors in judgement and trading activities that
defy logical explanation [7, 18]. Considering those new aspects makes it possible to enrich
dividend policy theories so that dividend payouts can be viewed as the socioeconomic
repercussion of corporate evolution [19]. However, it seems really difficult to introduce this
kind of psychology behavior into traditional financial pricing models. As an illustration to
this non-trivial subject, one should keep in mind the following quotation:

“ The harder we look at the dividend picture, the more it seems like a puzzle with pieces
that just don’t fit together. ” Black, 1976

As a consequence of this huge complexity to model dividend policy, it has become quite
standard to take the dividend process as completely exogenous, adding some stochasticity
accounting for all non-trivial time-dependent determinants of dividend policy. Such models
include Markov switching[20] and autoregressive integrated moving average [21] models
but also trend-stationary autoregressive [22], simple random walk [23] and stationary [24]
processes. However, the most widely used process – and considered as the tradition in
applied work in finance – remains the geometric random walk.
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Although it is possible to find in the litterature uses of geometric log-normal random walk
models [24, 25], we shall adopt, in this thesis, a geometric normal random walk process for
the dividends, following several authors [26, 11, 12, 27]:

d̃t = (1 + rdt ) d̃t−1 = d̃0

t∏
k=1

(1 + rdk) . (1.5)

Here, the growth rate rdt of the dividends is stochastic and, more precisely, follows a normal
distribution characterized by a mean value rd and a standard deviation σd:

rdt = rd + σd ut where ut
i.i.d.∼ N (0, 1) . (1.6)

One could notice an analogy between this dividend process and Marsh and Merton’s en-
dogenous model, defined in equation (1.4). From their perspective, all the information
contained in the aggregate permanent earnings of the firm is now replaced by a stochastic
term σd ut d̃t−1, considering thus that the aggregate unexpected changes in permanent
earnings can be viewed as stochastic. This should not be surprising, given the difficulty of
distinguishing ’permanent’ from ’temporary’ earnings and considering the large number –
and their complexity – of the reasons for changes in earnings. From a more state-of-the-
art perspective, this stochastic term accounts for all previously described determinants of
dividend policy such as psychology and sociological elements, which are hardly quantifiable.

One should notice that, depending on the values of rd and σd, dividends can become
negative. This seems unrealistic, so that the real dividend process is thought to be the
following:

dt =

{
d̃t if d̃t ≥ 0

0 if d̃t < 0
(1.7)

In the previous equation, the quantity d̃t simply corresponds to the exogeneous process,
defined in Equation 1.5. The dividends paid by the risky asset are then always positive.

1.3 Fundamentalists

Fundamentalists are rational risk averse value investors; this kind of traders comes directly
from Microeconomics. Their risky fraction xft , at time t, is the result of a maximization of
the expected utility of their expected wealth W f

t+1 at time t+ 1:

xft = max
xft

Et[U(W f
t+1)] (1.8)
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Here, Et[·] is the mathematical expectation, given all information available at time t. Let
us explain their strategy in details. In order to find their risky fraction xft at time t,
they maximize the previous quantity. Their future wealth W f

t+1 is given by Equation 1.3,
that is the wealth dynamics. In this equation, the following quantities are unknown at
time t, given that they will be determined in the future: xft , rt+1 and dt+1. Then, they
compute the utility function of their future wealth U(W f

t+1), still without knowing xft ,
rt+1 and dt+1. Utility functions are a well-known concept in Economics; they characterize
consumer’s preference ordering over a choice set[28]. Thus, fundamentalists use an utility
function U(W f

t+1) – which will be detailed later – to quantify explicitly their preference for
their future wealth, that is how much they would prefer getting the wealth W f

t+1 = 3 W f
t

to getting the wealth W f
t+1 = 2 W f

t for instance.

Here, this choice is made under uncertainty (mainly about future returns rt+1) so that,
as risk averse investors, they exhibit a relative risk aversion γ(W f

t+1), which is nothing
but a quantitative measure of how averse to risk and uncertainty they are. The most
commonly used measure of relative risk aversion γ(W f

t+1) for an investor, having a given
utility function U(W f

t+1), was developed by J.W. Pratt in the 1960s [29]:

γ(W f
t+1) = −W f

t+1

U ′′(W f
t+1)

U ′(W f
t+1)

(1.9)

Here, U ′(W f
t+1) (respectively U

′′(W f
t+1)) denotes the first (respectively the second) deriva-

tive of the utility function U(W f
t+1). The utility function, which fundamentalists use to

measure their preference for their future wealth, is chosen so that it would be compliant
with their relative risk aversion γ being constant [1]:

U(W f
t+1) =


log(W f

t+1) for γ = 1

W f
t+1

1−γ

1−γ for γ 6= 1

(1.10)

Obviously, the utility function is an increasing function of their expected wealth – their
preference corresponds to possible gains – but there is a notion of risk, when investing
in the risky asset, characterized by γ. Since they do not know the quantities xft , rt+1

and dt+1 in the expression of U(W f
t+1), they now have to estimate them. They behave as

rational traders, meaning that they are able to guess the true values of parameters, when
computing an expectation. In this sense, their expectations coincide with mathematical
expectations, which explains the expectation appearing in the quantity to maximize. Fi-
nally, the optimization gives the risky fraction xft they have to choose to get a future wealth
that maximizes their utility function – at least, in terms of expectation – that is to say,
their preference taking a constant relative risk aversion γ into account. The derivation of
this maximization has been done in [27, 1]:

xft =
1

γ

Et[Rexcess,t+1]

Vart[Rexcess,t+1]
(1.11)
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Here, Vart[·] is the mathematical variance, given all information available at time t. One
could notice that the more they expect the risky asset to return, compared to the risk-free
asset, the greater the risky fraction xft of fundamentalists – that is, the amount of wealth
they invest in the risky asset. Besides, their risky fraction decreases with the relative risk
aversion γ to the risky asset and with the uncertainty they have about the future excess
return. Using the definition of the excess return in Equation 1.3, one finds:

Et[Rexcess,t+1] = Et(rt+1) − rf +
Et(dt+1)

Pt
(1.12)

As rational traders, they are able to compute the mathematical expectation of dividends
dt+1, using the true parameters rd and σd of Equations 1.5 and 1.6, but they cannot get
a convincing value for their expectation of the price return rate rt+1 since there is no
such parameter: they make a simple guess. Since there is no obvious way of having a
time-dependent expectation of price return rates, it is assumed, for the sake of simplicity,
that this quantity is constant with respect to time: Et(rt+1) := Ert . It only means that
fundamentalists make a guess, at the beginning of the market, about the price return rate
rt. This value can then be viewed as what they expect in the long-run. It is assumed that
Ert > rf , otherwise it means that, from the very beginning of the market, fundamentalists
would always think that the risk-free asset is the best option, and consequently stay away
from the risky asset, which is not an interesting case. Using the equations of the dividend
process 1.5 and 1.6, one finds:

Et[Rexcess,t+1] = Ert − rf +
dt
Pt

(1 + rd) (1.13)

For the variance Vart[Rexcess,t+1] appearing in Equation 1.11, one should notice that fun-
damentalists face the same problem than with the expectation Et(rt+1). They still do not
have any information about the future price return rate rt+1 and, unlike the expectation
Et[Rexcess,t+1], the variance is non-linear. Thus, it is not possible to separate terms, as it
has been done in Equation 1.12, except using the covariance, which depends on the future
price return rate rt+1, so that it is of no use. As a consequence, in the same spirit than with
the expectation Et(rt+1), fundamentalists make an initial guess about the variance of the
excess return, which can then be viewed as a long-run value: Vart[Rexcess,t+1] := σ2excess.
Using Equations 1.11 and 1.13, one finds the risky fraction of fundamentalists:


xft = xfmin + dt

Pt
1 + rd
γ σ2

excess
> 0

xfmin =
Ert − rf
γ σ2

excess
> 0

(1.14)

One should notice that, at each time step, fundamentalists invest at least the fraction
xfmin of their wealth in the risky asset. This minimum fraction corresponds to a long-term
strategy, depending on their initial guess of the long-term behavior. The other quantity ap-
pearing in the expression of the risky fraction xft is time-dependent and forms a short-term
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strategy, only depending on the current price-dividend ratio. For a better understanding
of that short-term strategy, let us find how the risky fraction changes with respect to time.
Using Equations 1.14, one finds:

xft+1 − xft = (
dt+1

Pt+1
− dt

Pt
)

1 + rd
γ σ2excess

(1.15)

Since, the long-term strategy, that is xfmin, is constant with respect to time, the change in
the risky fraction xft , which one could observe in the previous equation, is only due to the
short-term strategy. In particular, it is now possible to compare the risky fraction xft of
fundamentalists at any time t with their initial risky fraction xf0 :

xft − xf0 = (
dt
Pt
− d0

P0
)

1 + rd
γ σ2excess

(1.16)

As a consequence, to observe a constant risky fraction with respect to time (xft = xf0 for
all t), the price of the risky asset must follow the following specific behavior:

P ?t = P0
dt
d0

= P0

t∏
k=1

(1 + rd + σduk) (1.17)

In this sense, fundamentalists expect the long-term price growth to be due to the growth
of dividends, that is rt ∼

+∞
rd. Thus, any deviations from this behavior are perceived as

investment opportunities. This explains why they are called fundamentalists. This kind
of traders is widely used in Economics; they base their trading strategies upon market
fundamentals and economic factors, such as dividends, and they tend to invest in assets
which are undervalued, that is, whose prices are below a benchmark fundamental value,
and sell assets which are overvalued, that is, whose prices are above the fundamental
value[2]. In this case, the fundamental value is the price following the same growth than
the dividends, that is P ?t .

For the sake of simplicity, fundamentalists are assumed to be identical, so that we can
consider, in the following, the behavior of one representative fundamental trader, having
an initial wealthW f

0 and a risky fraction process as defined in Equations 1.14. The concept
of representative agent is well-known and has been widely used in Economics [30]. In this
case, it does not seem very restrictive since fundamentalists are maximizers so, assuming
that they have the same relative risk aversion γ and the same opinion about the long-term
behavior of the risky asset, they all have the same strategy.
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1.4 Noise traders

In contrast to the fundamentalists, noise traders have different opinions. Besides, they
embody the lack-of-diversification puzzle [31, 32], so that, in this model, they are always
either fully invested in the risky or in the risk-free asset. Among a total of Nn noise traders,
the number of noise traders invested in the risky asset (respectively invested in the risk-free
asset) at time t is N+

t (respectively N−t ), so that the conservation of noise traders gives:
N+
t + N−t = Nn for all t. At each time step, all noise traders decide whether to keep

their current position or to change it, in a probabilistic manner. Let p+t−1 (respectively
p−t−1) be the probability that any of the N+

t−1 traders who are fully invested in the risky
asset (respectively any of the N−t−1 traders who are out of the risky asset) at time t − 1
decides to sell it (respectively to buy it) at time t. Those probabilities are called transition
probabilities; they characterize the time-dependent propensity for noise traders to move in
a two-state system. At this point, one might wonder about what is able to affect those
transition probabilities.

Noise traders do not take fundamentals into account but, instead, they base their trading
strategies upon imitation and technical analysis [2, 33]. The latter – also called chartist
strategy – is vast and includes lots of possible indicators, most of them based on observed
historical patterns in past prices, giving the ’trend’ of the asset. One of the most widely
used indicators is the price momentum Ht, defined as follows:

Ht = θ Ht−1 + (1− θ) rt (1.18)

One should notice that it is nothing but an exponential moving average of past price return
rates rt. The parameter θ ∈ (0, 1) is a measure of the noise trader memory length.

In order to use imitation as a strategy, it is necessary to know what to imitate. For that
purpose, the model of Lux [34, 35] and Lux and Marchesi [36, 37] introduces a useful
quantity for noise traders, the opinion index st, representing the average opinion among
them:

st =
N+
t − N−t
Nn

∈ [−1, 1] (1.19)

It is clear that the sign of the opinion index st indicates whether the prevailing sentiments
on the risky asset are optimistic (st > 0) or pessimistic (st < 0). In a nutshell, noise
traders are trend-followers (using the price momentum Ht) and they tend to imitate each
other (using the opinion index st). As a consequence, those quantities are the only ones
affecting the transition probabilities p−t (st, Ht) and p+t (st, Ht). As in [1], the expressions
of those probabilities are taken so that they depend linearly on st and Ht, for simplicity,
having an intrinsic non zero value. However, unlike[1], some bias is introduced among noise
traders:
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{
p̃−t = p−

2 [1 + κ(st +Ht)] with p− ∈ (0, 1)
p̃+t = p+

2 [1− κ(st +Ht)] with p+ ∈ (0, 1)
(1.20)

κ is called the herding propensity, giving the strength of trend and imitation among noise
traders. For instance, for κ > 0, if the number of noise traders invested in the risky asset
increases and/or its price has increased recently, the probability p̃−t – that is the probability
that any of the traders currently out of the risky asset decides to buy it – increases and the
probability p̃+t – that is the probability that any of the traders currently fully invested in
the risky asset decides to sell it – decreases. One could notice that, in absence of herding
(κ = 0), the transition probabilities are non zero and characterized by the constants
p− and p+. Any difference between those two constants induces some bias among noise
traders: if p− > p+, noise traders are intrinsically more likened to buy the risky asset when
they are not invested in it than to sell it when they are fully invested in it. One should
notice that the quantities defined in Equations 1.20 are not real probabilities since they
do not necessarily belong to the set [0, 1]; we call them pseudo transition probabilities and
they are denoted using the symbol ∼. The ’real’ transitions probabilities p−t (st, Ht) and
p+t (st, Ht) are then simply defined as saturations of the pseudo transition probabilities:

p−t =


p̃−t if p̃−t ∈ [0, 1]
0 if p̃−t ≤ 0
1 if p̃−t ≥ 1

(1.21)

p+t =


p̃+t if p̃+t ∈ [0, 1]
0 if p̃+t ≤ 0
1 if p̃+t ≥ 1

(1.22)

Let us now derive the dynamics of the opinion index st. Noise traders’ decision, about
whether to keep their position or to change it, is represented by Bernoulli random variables,
which depend themselves on the transition probabilities. In details, for a noise trader k
who owns the risky asset at time t− 1, her specific decision at time t is represented by the
Bernoulli random variable ξk(p+t−1), taking the value 1 with probability p+t−1 – that is she
sells the asset which she owns – and the value 0 with probability (1 − p+t−1) – that is she
keeps the asset. In the same spirit, for a noise trader j who is out of the risky asset at
time t− 1, her specific decision at time t is represented by the Bernoulli random variable
ξj(p

−
t−1), taking the value 1 with probability p−t−1 – that is she buys the asset – and the

value 0 with probability (1 − p−t−1) – that is she stays away from the asset. The random
variables {ξi} are independent, so that noise traders make independent decisions. Now
that the decision process of noise traders is defined, it is possible to find the dynamics
of the number N+

t of noise traders fully invested in the risky asset at time t and of the
number N−t who are out of it at time t:
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N−t =

N+
t−1∑
k=1

ξk(p
+
t−1) +

N−t−1∑
j=1

[1− ξj(p−t−1)]

N+
t =

N+
t−1∑
k=1

[1− ξk(p+t−1)] +
N−t−1∑
j=1

ξj(p
−
t−1)

(1.23)

Let us explain the equation giving N−t , that is the number of noise traders who are out of
the risky asset at time t. The first sum corresponds to the number of noise traders who
were fully invested in the risky asset at time t − 1 and decided to sell it at time t. The
second sum corresponds to the number of noise traders who were already out of the risky
asset at time t− 1 and decided to stay away from it at time t. An analogous explanation
holds for N+

t .

Summing both previous equations, one can get convinced that the conservation of noise
traders holds for the previous specific dynamics of N−t and N+

t :

N−t + N+
t = N−t−1 + N+

t−1 = N−0 + N+
0 = Nn (1.24)

Using Equations 1.23 in the definition of the opinion index st in Equation 1.19, one finds
the dynamics of the opinion index:

st =
1

Nn

( N+
t−1∑
k=1

[1− 2ξk(p
+
t−1)] +

N−t−1∑
j=1

[2ξj(p
−
t−1)− 1]

)
∈ [−1, 1] (1.25)

As in [1], we do not aim at describing the heterogeneity between noise traders: only their
aggregate impact will be considered, so that, as for the fundamentalists, they will be
treated as one group with total wealth Wn

t . One can picture this situation as one group
of noise traders, sharing a common total wealth and having equal weights in their decision
of investing or not in the risky asset, so that their risky fraction xnt is nothing but the
following:

xnt =
N+
t

Nn
=

1 + st
2

∈ [0, 1] (1.26)

As a consequence, their risky fraction is only a rescaling of the opinion index st; it is
stochastic and strongly dependent on the transition probabilities which are saturations of
the pseudo transition probabilities, defined in Equations 1.20. Those probabilities lead to
an imitative and trend-following strategy. This kind of traders results from an important
paradigm shift in Economics, that is the transition between the representative, rational
agent approach to the behavioral, agent-based approach [2]. One should keep in mind
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that this conceptual change appeared when Economics began to be thought as a complex
evolving system.

1.5 Market clearing condition

The two considered kinds of traders are completely defined: they have initial wealths W f
0

and Wn
0 , risky fraction processes defined in Equations 1.14 and 1.26 and wealth dynamics

defined in Equation 1.3. According to 1.1, at time t, one of those two representative traders,
let say trader i, holds the following number of shares of the risky asset:

nit =
xit W

i
t

Pt
(1.27)

Thus, from time t−1 to time t, the trader i has an excess demand ∆Di
t−1→t = nit − nit−1

, in terms of shares of the risky asset. Using Equations 1.27 and 1.3, one finds:

∆Di
t−1→t =

xit W
i
t

Pt
−

xit−1 W
i
t−1

Pt−1

= W i
t−1

[
xit
Pt

[
1 + rf + xit−1

( Pt
Pt−1

− 1− rf +
dt
Pt−1

)]
−

xit−1
Pt−1

]

= W i
t−1

xit−1
Pt−1

(xit − 1) + W i
t−1

xit
Pt

[
1 + rf + xit−1

( dt
Pt−1

− 1− rf
)]

(1.28)

It has been explained in 1.1 that the price Pt of the risky asset at time t is set by supply
and demand. This is a common way to obtain successive prices in Economics, called the
market clearing condition or Walras’ law. Sometimes considered as an ’equilibrium’, it is
nothing but the conservation of shares:

∆Df
t−1→t + ∆Dn

t−1→t = 0 (1.29)

It only means that the price Pt of the risky asset has to evolve in such a way that there is
a trade of a given number of shares of the risky asset between fundamentalists and noise
traders. In the following, the corresponding price equation is derived.

Using Equation 1.28 in the market clearing condition, one finds:
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W f
t−1

xft−1
Pt−1

(xft − 1) + W f
t−1

xft
Pt

[
1 + rf + xft−1

( dt
Pt−1

− 1− rf
)]

+ Wn
t−1

xnt−1
Pt−1

(xnt − 1) + Wn
t−1

xnt
Pt

[
1 + rf + xnt−1

( dt
Pt−1

− 1− rf
)]

= 0

(1.30)

The risky fraction xft of fundamentalists depends explicitly on the price of the risky asset.
Equations 1.14 give:

W f
t−1

xft−1
Pt−1

(xfmin +
dt
Pt

1 + rd
γ σ2excess

− 1) +
W f

t−1
Pt

(xfmin +
dt
Pt

1 + rd
γ σ2excess

)

[
1 + rf + xft−1

( dt
Pt−1

− 1− rf
)]

+ Wn
t−1

xnt−1
Pt−1

(xnt − 1) + Wn
t−1

xnt
Pt

[
1 + rf + xnt−1

( dt
Pt−1

− 1− rf
)]

= 0

(1.31)

This equation leads to the price equation, of second-order in the price:

at P
2
t + bt Pt + ct = 0 (1.32)

The coefficients at, bt and ct are time dependent; their expression is given below:

at =
1

Pt−1

[
Wn

t−1

W f
t−1

xnt−1 (xnt − 1) + xft−1

(
Ert − rf
γ σ2excess

− 1

)]
(1.33)

bt =
xft−1

γ σ2excess

dt (1 + rd)

Pt−1
+

Ert − rf
γ σ2excess

[
xft−1

(
dt
Pt−1

− 1− rf
)

+ 1 + rf

]
+ (1.34)

Wn
t−1

W f
t−1

xnt

[
xnt−1

(
dt
Pt−1

− 1− rf
)

+ 1 + rf

]

ct =
dt (1 + rd)

γ σ2excess

[
xft−1

(
dt
Pt−1

− 1− rf
)

+ 1 + rf

]
(1.35)

In the expression of at – see Equation 1.33 – one could notice that, if γ σ2excess ≥ Ert − rf ,
the sign of at is known: at ≤ 0. Indeed, by definition, the risky fraction xnt of noise traders
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satisfies xnt ≤ 1 and all other quantities appearing in the expression of at are positive.
Using Equations 1.14, it is possible to define the quantity γ σ2excess as a function of the
initial risky fraction xf0 :

γ σ2excess =
1

xf0

[
Ert − rf +

d0
P0

(1 + rd)
]

(1.36)

This is how the product γ σ2excess is implemented in the numerical simulations. Then, the
condition to obtain at ≤ 0, that is γ σ2excess ≥ Ert − rf , is equivalent to:

1

xf0

[
Ert − rf +

d0
P0

(1 + rd)
]
≥ Ert − rf (1.37)

Let us recall that it has been supposed in 1.3 that Ert > rf . Hence, one finds the following
condition on the initial risky fraction xf0 of fundamentalists:

xf0 ≤ 1 +
d0
P0

1 + rd
Ert − rf

(1.38)

As a consequence, if xf0 < 1, then the product γ σ2excess satisfies γ σ2excess > Ert − rf ,
so that at ≤ 0 for all t. In the following of this thesis, it will be assumed that xf0 < 1 to
fix the sign of the coefficient at. It is not really restrictive and seems even realistic since it
means that, at the beginning of the market, fundamentalists do not invest all their wealth
in the risky asset.

In fact, it is even possible to show that at < 0 for all t. Indeed, since the risky fraction
xnt of noise traders satisfies 0 ≤ xnt ≤ 1, one finds the following inequality, using the
expression of at in Equation 1.33:

at ≤
1

Pt−1
xft−1

(
Ert − rf
γ σ2excess

− 1

)
(1.39)

Let us recall that, by definition, fundamentalists invest at least the fraction xfmin of their
wealth in the risky asset at any time t, so that: xft−1 ≥ xfmin i.e. xft−1 ≥

Ert − rf
γ σ2

excess
> 0.

Besides, since it is assumed that xf0 < 1, we have Ert − rf
γ σ2

excess
− 1 < 0. Using those

inequalities in the previous inequality on at, one finds:

at ≤
1

Pt−1

Ert − rf
γ σ2excess

(
Ert − rf
γ σ2excess

− 1

)
< 0 (1.40)

In a nutshell, once it is assumed that Ert > rf and that xf0 < 1, the coefficient at is
negative for all t.
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Furthermore, one could notice, in Equations 1.34 and 1.35, that the signs of the coefficients
bt and ct are much more difficult to find. However, the only quantity, appearing in their
expression, which is not clearly positive is the following: xit−1 ( dt

Pt−1
− 1 − rf ) + 1 + rf ,

where i denotes the fundamentalists or the noise traders. Thus, if bt or ct is negative, it
means that this quantity is negative too. One should notice that there is no equivalence
between those two propositions and the latter proposition is only a necessary condition to
obtain bt or ct negative. Let us find what happens when the previous quantity is negative:

xit−1 (
dt
Pt−1

− 1− rf ) + 1 + rf ≤ 0

i.e. (1 + rf ) (1− xit−1) + xit−1
dt
Pt−1

≤ 0 (1.41)

The second term of the latter inequality is positive. As a consequence, if bt or ct is
negative, it means that the first term is negative, that is xit−1 > 1. As said before,
this condition cannot be satisfied for the risky fraction xnt of noise traders but it might
be possible for the risky fraction xft of fundamentalists. Thus, the coefficients bt and ct
are most of the time positive and a necessary condition for them to be negative is that
the risky fraction xft of fundamentalists is greater than 1, which should rarely occurs. It
means that fundamentalists borrow some money to invest in the risky asset, thinking that
it is profitable.

In a nutshell, once we choose an initial risky fraction for the fundamentalists such that
xf0 < 1, and if their risky fraction xft at time t is less than 1, one is able to find the sign of
the discriminant of Equation 1.32:

∆ = b2t − 4atct = b2t + 4|at|ct ≥ 0 (1.42)

As a consequence, in those conditions, the only positive solution for the price of the risky
asset is the following:

Pt =
bt +

√
b2t + 4|at|ct
2|at|

(1.43)

Among the two conditions required to obtain this result (xf0 < 1 and xft ≤ 1), the only
one over which there is no possible control is the risky fraction xft being less than 1. Thus,
for theoretical study, we shall use Equation 1.29 or 1.32 whereas, for numerical simulations,
we shall use Equation 1.43 with a verification of the positivity of the discriminant and of
the price, at each time step.



Chapter 2

The impact of dividends

In this chapter, the herding propensity κ is time-dependent and undergoes a discretized
Ornstein-Uhlenbeck process, as in [1]:

{
κt − κt−1 = η(µκ − κt−1) + σκ νt

νt
i.i.d.∼ N (0, 1) .

(2.1)

It seems to be a more realistic feature for noise traders; the strength of social imitation and
trend influence varies in time. It adds a second input – in addition to the stochastic dividend
process – from the external world, corresponding to a varying economy, geopolitical climate,
psychology for instance.

2.1 Choice of parameters

For the following numerical simulations, it is necessary to fix the values of the constant
parameters. For that purpose, a basic parameter set is provided by Table 2.1. The values
within this set are mostly imported from [1], where it is shown that they correspond to
realistic values on a daily basis. This means that they come from empirical economic
studies and that they are rescaled, so that they remain realistic when the time step of the
model, described in Chapter 1, is equal to 1 day. In cases where other values than those
in Table 2.1 are used instead, differences will always be highlighted.

2.2 Transition probabilities

In this section, a quantitative study of how the transition probabilities depend on each
other is provided. The following discussion first considers the simple case of no bias (p+ =
p− = p) and then the general case (p+ 6= p−). Let us recall the expressions of the

19



20 2.2. Transition probabilities

Table 2.1: Basic parameter set used for numerical simulations. Those values are mostly
imported from [1], where it is shown that they correspond to realistic values on a daily
basis.

Assets Fundamentalists Noise traders Transition probabilities
rf = 8× 10−5 W f

0 = 1× 106 Wn
0 = 1× 106 p+ = 0.199375

d0 = 1.6× 10−4 xf0 = 0.3 xn0 = 0.3 p− = 0.200625
P0 = 1 Ert = 1.6× 10−4 Nn = 1000 µκ = 0.98
rd = 1.6× 10−4 θ = 0.95 η = 0.11
σd = 1.6× 10−5 H0 = 0 σκ = 1× 10−3

transition probabilities p−t and p+t in absence of bias, which are saturations of the pseudo
transition probabilities p̃−t and p̃+t :

p−t =


p̃−t if p̃−t = p

2 [1 + κt (st + Ht)] ∈ [0, 1]
0 if p̃−t ≤ 0
1 if p̃−t ≥ 1

p+t =


p̃+t if p̃+t = p

2 [1− κt (st + Ht)] ∈ [0, 1]
0 if p̃+t ≤ 0
1 if p̃+t ≥ 1

(2.2)

One could notice that the sum of the pseudo transition probabilities p̃−t and p̃+t is constant
with respect to time:

p̃−t + p̃+t = p ∈ (0, 1) (2.3)

As a consequence, it proves the following result:

Proposition 1. The pseudo transition probabilities are symmetrical with respect to p
2 .

This explains how the pseudo transition probabilities depend on each other. Let us now
focus on the real transition probabilities and, for that purpose, let us consider all possible
cases on the pseudo transition probabilities.

• p̃−t ∈ [0, 1] ⇐⇒ p−t = p̃−t

In this case, the real transition probability p−t is known. Using Equation 2.3, one
finds the following condition on the pseudo transition probability p̃+t :

p− 1 ≤ p̃+t ≤ p < 1
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To know the value of the real transition probability p+t , it is necessary to distinguish
the cases where the corresponding pseudo transition probability p̃+t is in the set [0, 1]
and where it is not.

• 0 ≤ p̃+t ≤ p ⇒ p+t = p̃+t

This restriction on p̃+t implies a restriction on p̃−t , according to Equation
2.3: 0 ≤ p̃−t ≤ p. In brief, the conditions 0 ≤ p̃−t ≤ p and 0 ≤ p̃+t ≤ p
give p−t = p̃−t and p+t = p̃+t . Thus, one finds the following solutions:

{
0 ≤ p−t ≤ p
p+t = p − p−t

• p− 1 ≤ p̃+t ≤ 0 ⇒ p+t = 0

This restriction implies, according to Equation 2.3: p ≤ p̃−t ≤ 1. Thus,
using p−t = p̃−t and p+t = 0, one finds:

{
p ≤ p−t ≤ 1
p+t = 0

• p̃−t ≤ 0 ⇐⇒ p−t = 0

Equation 2.3 gives the following condition on the pseudo transition probability p̃+t :

p̃+t ≥ p > 0

Using Equations 2.2, one finds the following solutions:

{
p−t = 0
p ≤ p+t ≤ 1

This solution is degenerate: for one single value of p−t , many values for p+t are
possible. Indeed, once p̃−t ≤ 0 is considered, p−t becomes fixed, equal to 0. However,
the lower p̃−t , the greater p+t until its saturation to 1. The problem is that the
information on how much p̃−t is lower than 0 vanishes when considering p−t – which
is equal to 0.

• p̃−t ≥ 1 ⇐⇒ p−t = 1

Equation 2.3 gives the following condition on the pseudo transition probability p̃+t :

p̃+t ≤ p− 1 < 0
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Using Equations 2.2, one finds the following solution:

{
p−t = 1
p+t = 0

In order to get a clearer idea of how the transition probabilities p−t and p+t depend on each
other, the previous results are represented by a plot p+t = f(p−t ), provided by Figure 2.1.
The corresponding plot is depicted by the green curve. The parameter p takes the value
0.2 and it is represented both on the x-axis and the y-axis by a red dashed line. Inside the
domain where both transition probabilities are lower than p, the transition probabilities
p−t and p+t are equal to their corresponding pseudo transition probability p̃−t or p̃+t . Then,
according to Equation 2.3, the following relation holds inside this domain: p−t + p+t = p.
As for Proposition 1, it implies that the real transition probabilities are symmetrical with
respect to p

2 inside this domain. The two remaining domains (p−t = 0 and p+t = 0) are
characterized by the saturation of at least one of the transition probabilities. For instance,
when p−t = 0, the values taken by p+t are degenerate; they can be equal to any value in
the set [p, 1], depending on the value of the pseudo transition probability p̃−t . Inside those
saturated domains, there is not symmetry with respect to p

2 anymore for the real transition
probabilities whereas this symmetry holds for the pseudo transition probabilities, according
to Proposition 1.

Let us now consider the general case, that is with bias (p− 6= p+). The transition
probabilities are the following:

p−t =


p̃−t if p̃−t = p−

2 [1 + κt (st + Ht)] ∈ [0, 1]
0 if p̃−t ≤ 0
1 if p̃−t ≥ 1

p+t =


p̃+t if p̃+t = p+

2 [1− κt (st + Ht)] ∈ [0, 1]
0 if p̃+t ≤ 0
1 if p̃+t ≥ 1

(2.4)

Then, the sum of the pseudo transition probabilities is not constant with respect to time
anymore:

p̃−t + p̃+t =
p− + p+

2
+

p− − p+
2

κt (st + Ht) (2.5)

Let us now compare both terms appearing at the right side of the previous equation. Ac-
cording to the definition of the opinion index st, it is known that |st| ≤ 1. Furthermore, it
is shown in[1] that the Ornstein-Uhlenbeck process for the herding propensity κt, described
in 2.1, admits the following stationary distribution:

κt ∼ N (µκ,
σκ√
2η

) (2.6)
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Figure 2.1: Possible values for the transition probability p+t as functions of the other
transition probability p−t , in absence of bias. The corresponding plot is depicted by the
green curve. The parameter p takes the value 0.2 and it is represented both on the x-axis
and the y-axis by a red dashed line. Inside the domain where both transition probabilities
are lower than p, the transition probabilities p−t and p+t are equal to their corresponding
pseudo transition probability p̃−t or p̃+t . The two remaining domains (p−t = 0 and p+t = 0)
are characterized by the saturation of at least one of the transition probabilities.

As a consequence, in average, the following inequality holds for the herding propensity:
κt ≤ µκ + 10 σκ√

2η
. Let us now focus on the price momentum Ht, whose expression is the

following:

{
H0 = 0
Ht = θHt−1 + (1− θ) rt for t ≥ 1

(2.7)

Let us recall that it is an exponential moving average of the successive past return rates
rt = Pt−Pt−1

Pt−1
.

Proposition 2. If |rt| ≤ α with α ≥ 0 for any t, then |Ht| ≤ α for any t.



24 2.2. Transition probabilities

Proof. Let us proceed by induction.

• H0 = 0 ≤ α

• Let us suppose that Ht−1 ≤ α. Using the definition of the price momentum Ht,
one finds:

|Ht| ≤ θ |Ht−1| + (1− θ) |rt|
≤ θ α + (1− θ) α
≤ α

For a realistic purpose, it is expected – and verified in the following simulations – that
|rt| << 1

2 . Indeed, it means that the price Pt of the risky asset cannot increase or
decrease by more than 50% of its current value during one time step only. Thus, according
to Proposition 2, one finds: |Ht| ≤ 1

2 .

Thus, in average, the last term at the right side of Equation 2.5 satisfies:

|p− − p+
2

κt (st + Ht)| ≤
|p− − p+|

2
(µκ + 10

σκ√
2η

)
3

2
(2.8)

Considering the values used for the simulations, which are given in the basic parameter set
provided by Table 2.1, one finds:

{
|p−−p+2 κt (st + Ht)| ≤ 9.207 × 10−4

|p−+p+2 | = 0.2
(2.9)

As a consequence, in those conditions, the following relation holds:

|p− − p+
2

κt (st + Ht)| << |
p− + p+

2
| (2.10)

Thus, according to Equation 2.5, the sum of the pseudo transition probabilities is approx-
imately constant with respect to time, in those conditions:

p̃−t + p̃+t ≈
p− + p+

2
(2.11)

Hence, the previous discussion for the simpler case of no bias holds for the general case.
The parameter p is played by p−+p+

2 : when both real transition probabilities p−t and p+t are
in the set [0, p−+p+2 ], they are approximately equal to their corresponding pseudo transition
probabilities p̃−t and p̃+t , so that they are roughly symmetrical with respect to p−+p+

4 . If
one of the transition probabilities is greater than p−+p+

2 , there is saturation of at least one
of them, thus no symmetry anymore.
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2.3 General time series

In order to get a clearer idea of the dynamics of the market, time series of some relevant
variables are plotted on Figure 2.2. The simulation is computed until t = 5000 days and
uses the basic parameter set provided in Table 2.1. The herding propensity κt undergoes
the Ornstein-Uhlenbeck process, defined in Equations 2.1, as one can observe on the cor-
responding panel of Figure 2.2. The mean reversion level µκ is represented by a dashed
line.

The price Pt of the risky asset is displayed on a log-linear scale, so that a straight line ex-
presses an exponential behavior. Between t = 2000 and t = 3000 days, one could observe a
financial bubble, defined in [1] as a super-exponential growth of the price. Because of their
herding behavior, based on feedback and imitation, noise traders outperform fundamen-
talists during the bubble but fail to maintain their competitive advantage because of the
subsequent crash, as one can observe on the plot corresponding to the wealth ratio Wn

t

W f
t

.
The price momentum Ht series is plotted on the same panel than the price return rate rt
series to stress the fact that Ht is nothing but an exponential moving average of rt.

On Figure 2.2, one could notice that the risky fraction xft of fundamentalists, defined in
Equations 1.14, depends well linearly on the dividend-price ratio. The transition probabili-
ties are roughly symmetrical with respect to p− + p+

4 , which is represented by a dashed line.
This behavior can be predicted, using the definitions of the pseudo transition probabilities
in Equations 2.4 and the fact that the bias introduced in the basic parameter set of Table
2.1 is small: p− ∼ p+. When one of the transition probabilities becomes greater than
p− + p+

2 = 0.2 (see Table 2.1), there is saturation to 0 for the other transition probability.
The dependence of the transition probabilities on the risky fraction xnt of noise traders
(imitation) and on the price momentum Ht (trend) appears clearly on Figure 2.2.
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Figure 2.2: Time series of the market over 5000 days. All the parameters used for the
simulation are taken from the basic parameter set provided in Table 2.1. The herding
propensity undergoes a discretized Ornstein-Uhlenbeck process. Its mean reversion level
µκ is represented by a dashed line. One could observe on the price series a financial bubble
between t = 2000 and t = 3000 days, defined in [1] as a super-exponential growth of the
price Pt. Because of their herding behavior, noise traders outperform fundamentalists dur-
ing the bubble but fail to maintain their competitive advantage in the end. The transition
probabilities are roughly symmetrical with respect to p− + p+

4 , which is represented by a
dashed line. It is possible to observe their almost linear dependence (the herding propen-
sity κt is not constant with respect to time) on the price momentum Ht and on the risky
fraction xnt of noise traders.



Chapter 2. The impact of dividends 27

2.4 Long-term cumulative price return rate

It has been shown in [13] that dividends can be seen as an external field, in a phase
transitions meaning. Indeed, positive dividends make a stock desirable whereas negative
dividends – corresponding to a premium that must be paid regularly to own the asset –
make it not attracting if it does not provide other benefits. Thus, dividends drive the
price of the asset. However, the discussion in [13] has been made in a static view for the
fundamental price of the asset, using the celebrated formula of Gordon and Shapiro [38],
and in absence of speculation. In a dynamic perspective, corresponding to our model,
we expect the deterministic long-term price return rate r∞ to be the mean growth rate
rd of dividends. Indeed, the speculation brought by noise traders seems to have a non-
persistent impact on the market, according to the wealths’ dynamics on Figure 2.2, so that
fundamentalists drive the price Pt of the risky asset to its fundamental value in the long
run.

In the model described in Chapter 1, the notion of ’infinite time’ is difficult to catch. The
only simple characteristic time which is present corresponds to the dividend process. Using
Equations1.5 and 1.6, the mathematical expectation gives an estimate of the deterministic
evolution of dividends, in the special case where rd >> σd: E(dt) ∼ (1 + rd) E(dt−1).
Thus, one finds the approximate characteristic time τd for the exponential behavior of the
expectation of dividends:

τd =
1

log(1 + rd)
(2.12)

This characteristic time can act as a benchmark for the time of our simulations. However,
one should notice that it is not sufficient to provide any information on the minimum time
of simulation required to obtain a hypothetical steady state: it is only a lower bound. As a
consequence, the simulations have been run until the maximum possible time of simulation
tmax. This maximum corresponds to a technical limit of storage of high numbers (typically
greater than 10308).

Due to the stochastic aspect of our model, the cumulative price return rate 〈rt〉 is consid-
ered, instead of the price return rate rt. It is nothing but the cumulative moving average
of the successive price return rates, making it possible to smooth the stochasticity. In
all following simulations in this thesis, stochasticity is represented by initial seeds which
generate random numbers. On Figure2.3, time series of the price return rate rt and of the
cumulative price return rate 〈rt〉 have been plotted until the maximum possible time of
simulation tmax = 431733, depicted by a green dashed line on each panel. All parameters
used for the simulation are taken from the basic parameter set, provided by Table 2.1,
except the mean growth rate rd of dividends (rd = 0.0016). For greater clarity, only one
seed has been used. The first two panels suggest that both rt and 〈rt〉 seem to converge
over time, after a given transient regime. The last two panels are nothing but zooms of
the previous panels around their ’convergent’ value. On the third panel, one could ob-
serve that stochasticity has a significant impact on the price return rate rt, even when t is
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near its final value tmax, so that there is not really convergence of rt over time. However,
from t ∼ 25000 to tmax, the price return rate rt of the risky asset is centered around a
mean value approximately equal to 0.0016, exhibiting variations about 6% from this value
(0.00165−0.001550.0016 ∼ 6%). The large period of time for which those observations are verified
suggests that, from t ≥ 25000, the variations of the price return rate rt are only due to
stochasticity, so that there would be no significant change for times greater than tmax. As a
consequence, it seems difficult to define a deterministic long-term price return rate r∞ – let
us recall that the purpose of this section is to find such a deterministic long-term value, to
compare with the mean growth rate rd of dividends – using only the stochastic price return
rate rt. On the last panel of Figure 2.3, one could notice that the cumulative price return
rate 〈rt〉 is much more stable than the price return rate rt for t ≥ 25000. Furthermore, it
converges to a value approximately equal to 0.0016, that is the previous mean value of the
price return rate rt. Thus, the variations, observed on the time series of the price return
rate rt, seem to be offset when using a simple average, meaning that they are caused by
stochasticity only. Hence, a deterministic long-term price return rate r∞ can be defined
using the long-term cumulative price return rate. In addition, one should notice that the
convergent value of the cumulative price return rate 〈rt〉 is exactly the mean growth rate rd
of dividends, used for this simulation (0.0016). It suggests that the long-term cumulative
price return rate is well equal to the mean growth rate rd of dividends.

Even if the cumulative price return rate 〈rt〉 seems to converge over time, it has the
disadvantage of keeping in memory transient past return rates. Thus, its long-term value
〈r∞〉 will only lead to an estimate of the deterministic long-term price return rate r∞.
Having said that, let us focus on the numerical process to get the value 〈r∞〉. To find how
this value depend on the mean growth rate rd of dividends, the computation of 〈r∞〉 is
made in the following, for many values of rd.

Because of the significant corresponding times of simulation, only the simulation of the first
seed is run until tmax. Taking the final value of the cumulative price return rate 〈rtmax〉
for this specific seed, we find the time tc from which the cumulative price return rate 〈rt〉
stays into a convergent interval of 1% of the final value 〈rtmax〉. Then, the simulations of all
seeds are computed until this ’convergent’ time tc. The process of computation of the time
tc is illustrated on Figure 2.4. As for Figure 2.3, the time series have been plotted until
the maximum possible time of simulation tmax = 431733 for one specific seed, depicted
by a green dashed line on each panel. All parameters used for the simulation are taken
from the basic parameter set, provided by Table 2.1, except the mean growth rate rd of
dividends (rd = 0.0016). The horizontal blue dashed lines correspond to the convergent
interval of 1% of the final value 〈rtmax〉. Then, it is possible to find the time tc from which
the cumulative price return rate 〈rt〉 stays into this convergent interval. This time tc is
depicted by a vertical blue dashed line on each panel.

Finally, we take the average of the values 〈rtc〉 over the seeds to get the long-term cu-
mulative price return rate 〈r∞〉. The standard deviation of the set of values 〈rtc〉, each
corresponding to one seed (that is before taking the average 〈r∞〉), is denoted by σ[〈r∞〉].
In the following, 100 seeds are considered. Assuming that all those seeds lead exactly to
the same simulations, the uncertainty of 1% over the value 〈rtc〉 of the first seed propagates
to a global uncertainty σerr over the long-term cumulative price return rate 〈r∞〉, whose
value is the following:
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Figure 2.3: Comparison between time series of the price return rate rt and time series of the
cumulative price return rate 〈rt〉 of the risky asset. The time series have been plotted until
the maximum possible time of simulation tmax = 431733, depicted by a green dashed line
on each panel. All parameters used for the simulation are taken from the basic parameter
set, provided by Table 2.1, except the mean growth rate rd of dividends (rd = 0.0016).
For greater clarity, only one seed has been used. The first two panels suggest that both rt
and 〈rt〉 seem to converge over time, after a given transient regime. The last two panels
are nothing but zooms of the previous panels around their ’convergent’ value. On the third
panel, one could observe that stochasticity has a significant impact on the price return rate
rt, even when t is near its final value tmax, so that there is not really convergence of rt
over time. The last panel shows that the cumulative price return rate 〈rt〉 is much more
stable than the price return rate rt for t ≥ 25000. Furthermore, it converges to a value
approximately equal to 0.0016, that is the mean growth rate rd of dividends, used for this
simulation.



30 2.4. Long-term cumulative price return rate

0.004

0.002

0.000

0.002

0.004

Cumulative price return rate < rt >

0 200000 300000tc tmax
t

0.00155

0.00156

0.00157

0.00158

0.00159

0.00160

0.00161
Cumulative price return rate < rt >  (zoom)

Figure 2.4: Process of computation of the convergent time tc, which will be the maximum
time of simulations for all seeds. The time series have been plotted until the maximum
possible time of simulation tmax = 431733, depicted by a green dashed line on each panel.
All parameters used for the simulation are taken from the basic parameter set, provided by
Table 2.1, except the mean growth rate rd of dividends (rd = 0.0016). One specific seed
is used to obtain a simulation until tmax. Taking the final value of the cumulative price
return rate 〈rtmax〉 for this specific seed, we find the time tc from which the cumulative
price return rate 〈rt〉 stays into a convergent interval of 1% of the final value 〈rtmax〉. The
horizontal blue dashed lines correspond to the convergent interval of 1% of the final value
〈rtmax〉. Then, it is possible to find the time tc from which the cumulative price return rate
〈rt〉 stays into this convergent interval. This time tc is depicted by a vertical blue dashed
line on each panel.
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σerr =
0.01√
100

= 1× 10−3 (2.13)

One should notice that σerr is a lower bound for the real uncertainty over 〈r∞〉, since
each seed leads to a unique behavior, due to the stochasticity. Doing the simulations for
many values of the mean growth rate rd of dividends makes it possible to find the relation
between 〈r∞〉 and rd. The results are plotted on Figure 2.5.

100 seeds have been used and all parameters – except rd which varies along the x-axis – are
taken from the basic parameter set, provided in Table 2.1. On the first panel, the values of
the long-term cumulative price return rate 〈r∞〉 are plotted along with the corresponding
values of rd (blue line) used to compute them. As expected, the long-term cumulative
price return rate 〈r∞〉 seems to be equal to the mean growth rate rd of dividends. On the
third panel, the ratio tc

tmax
gives some information about the convergence of the cumulative

price return rate 〈rt〉. For values of rd lower than 10−3, this ratio becomes significant,
meaning that there is not really convergence. Thus, the corresponding values of 〈r∞〉 are
not relevant, so that lower values than 10−4 for rd have not been represented. One should
notice that low values for the ratio tc

tmax
do not mean that there has been a real convergence

of the cumulative price return rate. On the fourth panel, the ratio tc
τd

shows that the time
tc used to compute 〈r∞〉 is almost always greater than 100 times the characteristic time
of dividends’ dynamics, except for values of rd around 10−3. Its use is justified since
the considered values of rd are greater than 10−3 and that the standard deviation σd of
dividends is roughly equal to 10−5 (see Table 2.1). On the second panel, the relative
difference between 〈r∞〉 and rd is represented. There is a peak which we cannot explain
but it appears for values of rd for which the time tc is less than 100 times the characteristic
time τd. On this panel, the value of σerr is displayed by a dashed line. For the relevant
values of rd (greater than 10−3), one could observe that the relative difference between 〈r∞〉
and rd is greater than σerr (around 4 × 10−3 in average). The last panel provides some
information about this difference: the standard deviation of the values used to compute
the average 〈r∞〉 over all the seeds, rescaled by 〈r∞〉. One could notice that its values
are too small to explain the previous difference. Then, we conclude by remarking that the
memory of the transient past cumulative price return rates 〈rt〉 may have an impact of our
results. However, it may be possible that there has not been a real convergence. In all
cases, even if 〈r∞〉 is not exactly equal to rd, dividends have still a significant impact on
the long-term price return rate of the risky asset, supporting [13] about their external field
aspect.
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Figure 2.5: Long-term cumulative price return rate 〈r∞〉 as a function of the mean growth
rate rd of dividends. The cumulative price return rate 〈rt〉 is the cumulative moving
average of the successive price return rates rt. 100 different seeds have been used for the
simulations. All parameters are taken from the basic parameter set, provided in Table 2.1,
except the mean growth rate rd of dividends, which varies along the x-axis. To obtain the
long-term value 〈r∞〉 for one given value of rd, the simulation corresponding to one specific
seed is run until the maximum possible time of simulation tmax (technical limit of storage
of numbers greater than 10308) – see Figure 2.3 for more details. The final value 〈rtmax〉 of
the cumulative price return rate for the first seed is used to compute a ’convergent’ time
tc from which the cumulative price return rate 〈rt〉 stays into an interval of 1% of its final
value 〈rtmax〉 (see Figure 2.4). The simulations of all 100 seeds are then run until tc. The
average of the values 〈rtc〉 over all the seeds is the long-term cumulative price return rate
〈r∞〉, plotted on the first panel along with the value of rd used for its computation (blue
straight line). The standard deviation of the values 〈rtc〉 over all the seeds is denoted by
σ[〈r∞〉] and a rescaled version is plotted on the last panel. On the third panel, the ratio
tc
tmax

shows that the results obtained for values of rd lower than 10−3 are not relevant. The
fourth panel compares the ’convergent’ time tc to the approximate characteristic time τd
of dividends, defined in Equation2.12. Its use is legitimate since the considered values of
rd are greater than 10−3 and the standard deviation σd of dividends is around 10−5 (see
Table 2.1). The relative difference between 〈r∞〉 and rd is plotted on the second panel.
The dashed line corresponds to σerr, defined in Equation 2.13, which is a lower bound for
the uncertainty on 〈r∞〉.



Chapter 3

Theoretical analysis of the long-term
behavior

3.1 The price momentum

Let us recall the expression of the price momentum, as a function of the price return rate
rt:

{
H0

Ht = θ Ht−1 + (1− θ) rt if t ≥ 1
(3.1)

Proposition 3. For t ≥ 1, Ht = (1− θ)
t∑
i=1

θt−i ri + θt H0.

Proof. We have H1 = (1−θ) r1 + θ H0. Then, if we suppose that the proposition stands
for t ≥ 1, we have :

Ht+1 = θ [ (1− θ)
t∑
i=1

θt−i ri + θt H0 ] + (1− θ) rt+1

= (1− θ)
t∑
i=1

θt+1−i ri + θt+1 H0 + (1− θ) rt+1

= (1− θ)
t+1∑
i=1

θt+1−i ri + θt+1 H0

This expression clearly shows how the price momentum depends on the successive price
return rates. Now, let us suppose that the price return rate rt converges to a given value
r∞. We would like to know what is the long-term behavior of the price momentum Ht.

33
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Proposition 4. If rt converges to a given value r∞, the price momentum Ht converges to
the same value.

Proof. We shall use the following identity: 1− θt = (1− θ)
t∑
i=1

θt−i. The long-term price

return rate r∞ can then be written as follows:

r∞ = r∞ (1− θt + θt)

= r∞ (1− θ)
t∑
i=1

θt−i + θt r∞

Then, one finds easily the difference between Ht and r∞:

Ht − r∞ = (1− θ)
t∑
i=1

θt−i [ri − r∞] + θt (H0 − r∞)

The last term tends to 0 when t → +∞, since θ ∈ ] 0, 1 [. When t → +∞, rt → r∞, so
the term in square brackets in the previous sum becomes as small as we want it to be. It
does not prove why the sum converges to 0 but it gives a general idea. For a complete
mathematical proof of this point, see Appendix A.

In fact, the relation between Ht and rt is even more important than that. Let us suppose
that Ht converges to a given value H∗. Then, (Ht−θ Ht−1) converges to (1−θ) H∗. From
equation 3.1, one finds that Ht − θ Ht−1 = (1− θ) rt. As a consequence, rt converges to
a given value r∞ which verifies (1− θ) r∞ = (1− θ) H∗, that is r∞ = H∗. This proves
the following result.

Proposition 5. The price momentum Ht converges if and only if the price return rate rt
converges. If one of them converges to a given value, the other one converges to the same
value.

3.2 The average opinion index

The opinion index st is stochastic because of the randomness of the variables ξk(p+t ) and
ξj(p

−
t ), which appear in the dynamics of the number N+

t of noise traders invested in the
risky asset and of the number N−t of those invested in the risk-free asset instead:



N+
t =

N+
t−1∑
k=1

[1− ξk(p+t−1)] +
N−t−1∑
j=1

ξj(p
−
t−1)

N−t =
N+

t−1∑
k=1

ξk(p
+
t−1) +

N−t−1∑
j=1

[1− ξj(p−t−1)]

st =
N+
t − N−t
Nc

∈ [−1, 1]

(3.2)
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It is nevertheless possible to get the average deterministic behavior, using the mathematical
expectation and considering st, a linear expansion of E(st) instead.

Proposition 6. For t ≥ 1, st = st−1 + p−t−1 (1− st−1) − p+t−1 (1 + st−1)

Proof. The random variable ξk(p+t ) (resp. ξj(p−t )) takes the value 1 with probability p+t
(resp. p−t ) and the value 0 with probability 1− p+t (resp. 1− p−t ). Then, one easily finds
their expectation:

{
E(ξk(p

+
t )) = 1× E(p+t ) + 0× (1− E(p+t )) = E(p+t )

E(ξj(p
−
t )) = 1× E(p−t ) + 0× (1− E(p−t )) = E(p−t )

One should notice that the transition probabilities p−t and p+t are linear functions of the
stochastic index opinion st (and of the price momentum Ht). As a consequence, the
transition probabilities E(p−t ) and E(p+t ) appearing as results of the previous calculus are
deterministic versions of the true transition probabilities, so that p−t (st, Ht) and p+t (st, Ht)
are now considered. For the sake of simplicity, their respective writing symbols are not
changed.

Using a linear expansion in Equations 3.2, it is possible to find a deterministic version of
the dynamics of N+

t and N−t :

{
E(N+

t ) = E(N+
t−1) (1− p+t−1) + E(N−t−1) p

−
t−1

E(N−t ) = E(N+
t−1) p

+
t−1 + E(N−t−1) (1− p−t−1)

One finds the corresponding value of E(st) ∼ st, using Equations 3.2:

st =
E(N+

t−1) (1− 2p+t−1) + E(N−t−1) (2p−t−1 − 1)

Nc

The conservation of noise traders N+
t + N−t = Nc gives the relations between N+

t (or
N−t ) and st, which are: N+

t
Nc

= 1
2(1 + st) and N−t

Nc
= 1

2(1− st). It is then possible to use
the corresponding relations between E(N+

t−1) (or E(N−t−1)) and E(st−1) ∼ st−1:

st =
Nc
2 (1 + st−1) (1− 2p+t−1) + Nc

2 (1− st−1) (2p−t−1 − 1)

Nc

=
1 + st−1

2
− 1− st−1

2
+ p−t−1 (1− st−1) − p+t−1 (1 + st−1)

= st−1 + p−t−1 (1− st−1) − p+t−1 (1 + st−1)
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The fact that st ∈ [−1, 1] stands for its expectation, that is: st ∈ [−1, 1]. One can
notice that this is true because p+t−1 and p+t−1 are in the set [0, 1].

Proposition 6 can be rewritten, using the average risky fraction of noise traders xnt = 1+st
2 ,

instead of the average index opinion:

xnt − xnt−1 = p−t−1 (1− xnt−1) − p+t−1 x
n
t−1 (3.3)

Considering the average risky fraction xnt as the probability for noise traders to be invested
in the risky asset at time t, this equation is exactly a discrete-time master equation. The
first term represents the change, in successive time steps, of the probability of being invested
in the risky asset. Two reasons are given. The first (positive) contribution appears when
noise traders are not invested in the risky asset at time t − 1 and decide to buy at time
t. The second (negative) contribution appears when noise traders are well invested in the
risky asset at time t − 1, but decide to sell at time t. The change of position is then
characterized by the transition probabilities.

In the expression of st, the only link with the market remains in the transition probabilities
p−t−1 (st−1, Ht−1) and p+t−1 (st−1, Ht−1). In order to obtain the long-term behavior of the
average opinion index st, it is thus necessary to look at their respective behavior. Let us
recall that they are defined as saturations of the pseudo transition probabilities p̃−t−1 and
p̃+t−1:

p−t =


p̃−t if p̃−t = p−

2 [1 + κ (st + Ht)] ∈ [0, 1]
0 if p̃−t ≤ 0
1 if p̃−t ≥ 1

p+t =


p̃+t if p̃+t = p+

2 [1− κ (st + Ht)] ∈ [0, 1]
0 if p̃+t ≤ 0
1 if p̃+t ≥ 1

(3.4)

Here, the herding propensity κ is chosen to be constant, for the sake of simplicity. From
Equations3.4, one finds: p̃−t −

p−
2 κ st = p−

2 [1 + κ Ht] and p̃+t + p+
2 κ st = p−

2 [1− κ Ht].
Then, if the price return rate rt converges to a given value r∞, the price momentum
Ht converges to the same value according to Proposition 4, so that (p̃−t −

p−
2 κ st) and

(p̃+t + p+
2 κ st) converge too. Nevertheless, there is no proof that the average opinion index

st or the pseudo transition probabilities p̃−t and p̃+t converge.

When the herding propensity κ (constant) is equal to 0, the problem becomes much simpler,
since p̃−t = p−

2 ∈ (0, 1) and p̃+t = p+
2 ∈ (0, 1), so that p−t = p−

2 and p+t = p+
2 .

Proposition 6 gives:

st = [1− p+ + p−
2

] st−1 +
p− − p+

2
(3.5)
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If p− = p+ := p, that is there is no bias amongst noise traders, one finds a simple
expression for the average opinion index:

st = [1− p]t s0 (3.6)

Since p ∈ (0, 1), the average opinion index converges to 0 when there is no herding and
no bias.

If p− 6= p+, that is there is some bias amongst noise traders, one could notice that:

p− − p+
p− + p+

= [1− p+ + p−
2

] [
p− − p+
p− + p+

] +
p− − p+

2
(3.7)

Subtracting equation 3.7 from equation 3.5 gives:

[ st −
p− − p+
p− + p+

] = [1− p+ + p−
2

] [ st−1 −
p− − p+
p− + p+

]

As a consequence, one finds the following expression for the average opinion index st:

st = [1− p+ + p−
2

]t [s0 −
p− − p+
p− + p+

] +
p− − p+
p− + p+

(3.8)

Since p− ∈ (0, 1) and p+ ∈ (0, 1), the average opinion index converges to p− − p+
p− + p+

when
there is no herding (but some bias). In those conditions, if noise traders are more likened
to buy the risky asset than to sell it, that is p− > p+, the average opinion index converges
to a positive value. One could notice that the case with no bias, that is p− = p+ := p,
can be solved using the previous equation.

To conclude, the average opinion index st always converge when there is no herding (κ =
0). When it is no more the case, the problem of convergence becomes much more difficult.
Thus, for the following theoretical study of the long-term behavior of the market, it will
be assumed that there is convergence of the average opinion index, in addition to the
convergence of the price return rate rt.

3.3 Fixed points of the average opinion index without bias

Let us assume that, in addition to the convergence of the price return rate rt to the long-
term value r∞, the average opinion index st converges to a given value s∗. Then, in absence
of bias, the pseudo transition probabilities converge too and Equations 3.4 give:
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{
p̃−t −−→+∞

p
2 [1 + κ (s∗ + r∞)] := p̃−∞

p̃+t −−→+∞
p
2 [1− κ (s∗ + r∞)] := p̃+∞

(3.9)

As a consequence, the true transition probabilities p−t and p+t converge too, since they
are nothing but saturations of the pseudo transition probabilities. Let us denote their
respective limits by p−∞ and p+∞. The expression of the average opinion index st, defined
in Proposition 6, gives when t→ +∞:

p−∞ (1− s∗) = p+∞ (1 + s∗) (3.10)

One could notice that, in the special case where p−∞ (1 − s∗) = p+∞ (1 + s∗) = 0,
Equation3.10 is satisfied. This case corresponds to the detailed balance of the master
equation 3.3. As it is well known, it provides a sufficient condition to obtain the equilibrium.
However, this is not a necessary condition, as we shall see later.

Now that the limits of the pseudo transition probabilities are obtained by Equations 3.9, it
is possible to find the limits p−∞ and p+∞ of the true transition probabilities. The relations
between them are given in Equations 3.4. To find those new limits, it is thus necessary to
find whether p̃−∞ and p̃+∞ are in the set [0, 1] or not. In the following, we distinguish all
possible cases.

•
{
p̃−∞ < 0
p̃+∞ ∈ [0, 1]

⇐⇒
{ p

2 [1 + κ (s∗ + r∞)] < 0
p
2 [1− κ (s∗ + r∞)] ∈ [0, 1]

According to the definition of the transition probabilities in Equations 3.4, one finds:
p−∞ = 0 and p+∞ = p

2 [1−κ (s∗ + r∞)]. Equation 3.10, providing the equilibrium,
gives in this particular case:


[1− κ (s∗ + r∞)] (1 + s∗) = 0
p
2 [1 + κ (s∗ + r∞)] < 0
p
2 [1− κ (s∗ + r∞)] ∈ [0, 1]

The solutions for this set of equation and inequalities are the following:

• κ < 0{
1− 1

κ < r∞ ≤ 1 + 1
κ −

2
κp

s∗ = −1

• κ > 0{
1 + 1

κ −
2
κp ≤ r∞ < 1− 1

κ

s∗ = −1
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•
{
p̃−∞ < 0
p̃+∞ > 1

⇐⇒
{ p

2 [1 + κ (s∗ + r∞)] < 0
p
2 [1− κ (s∗ + r∞)] > 1

In this case, one finds: p−∞ = 0 and p+∞ = 1. Equation 3.10 gives:


s∗ = −1
p
2 [1 + κ (s∗ + r∞)] < 0
p
2 [1− κ (s∗ + r∞)] > 1

The solutions for this set of equation and inequalities are the following:

• κ < 0{
r∞ > 1 + 1

κ −
2
κp

s∗ = −1

• κ > 0{
r∞ < 1 + 1

κ −
2
κp

s∗ = −1

•
{
p̃−∞ ∈ [0, 1]
p̃+∞ < 0

⇐⇒
{ p

2 [1 + κ (s∗ + r∞)] ∈ [0, 1]
p
2 [1− κ (s∗ + r∞)] < 0

The transition probabilities are thus: p−∞ = p
2 [1 + κ (s∗ + r∞)] and p+∞ = 0.

Equation 3.10 gives:


[1 + κ (s∗ + r∞)] (1− s∗) = 0
p
2 [1 + κ (s∗ + r∞)] ∈ [0, 1]
p
2 [1− κ (s∗ + r∞)] < 0

The solutions for this set of equation and inequalities are the following:

• κ < 0{ 2
κp −

1
κ − 1 ≤ r∞ < 1

κ − 1

s∗ = +1

• κ > 0{ 1
κ − 1 < r∞ ≤ 2

κp −
1
κ − 1

s∗ = +1

•
{
p̃−∞ ∈ [0, 1]
p̃+∞ ∈ [0, 1]

⇐⇒
{ p

2 [1 + κ (s∗ + r∞)] ∈ [0, 1]
p
2 [1− κ (s∗ + r∞)] ∈ [0, 1]
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One should notice that this case is different than the detailed balance of the master
equation 3.3. Here, the transition probabilities are: p−∞ = p

2 [1 + κ (s∗ + r∞)] and
p+∞ = p

2 [1− κ (s∗ + r∞)]. Equation 3.10 gives:


(κ− 1) s∗ + κ r∞ = 0
p
2 [1 + κ (s∗ + r∞)] ∈ [0, 1]
p
2 [1− κ (s∗ + r∞)] ∈ [0, 1]

The solutions for this set of equation and inequalities are the following:

• κ < 0
1
κ − 1 ≤ r∞ ≤ 1− 1

κ

s∗ = κ r∞
1−κ

• κ = 0{
r∞ ∈ R
s∗ = 0

• 0 < κ < 1
1− 1

κ ≤ r∞ ≤
1
κ − 1

s∗ = κ r∞
1−κ

• κ = 1{
r∞ = 0
s∗ ∈ [−1, 1]

• κ > 1
1
κ − 1 ≤ r∞ ≤ 1− 1

κ

s∗ = κ r∞
1−κ

•
{
p̃−∞ > 1
p̃+∞ < 0

⇐⇒
{ p

2 [1 + κ (s∗ + r∞)] > 1
p
2 [1− κ (s∗ + r∞)] < 0

In this case, the transition probabilities are: p−∞ = 1 and p+∞ = 0. Equation 3.10
gives:


s∗ = 1
p
2 [1 + κ (s∗ + r∞)] > 1
p
2 [1− κ (s∗ + r∞)] < 0

The solutions for this set of equation and inequalities are the following:



Chapter 3. Theoretical analysis of the long-term behavior 41

• κ < 0{
r∞ < 2

κp −
1
κ − 1

s∗ = 1

• κ > 0{
r∞ > 2

κp −
1
κ − 1

s∗ = 1

The following cases are not possible, since Equations 3.9 give: p̃−∞ + p̃+∞ = p ∈ (0, 1).

•
{
p̃−∞ < 0
p̃+∞ < 0

•
{
p̃−∞ ∈ [0, 1]
p̃+∞ > 1

•
{
p̃−∞ > 1
p̃+∞ ∈ [0, 1]

•
{
p̃−∞ > 1
p̃+∞ > 1

Now that all cases have been studied, it is necessary to regroup all of them, depending on
the values of the herding propensity κ and the long-term price return rate r∞.

• κ < 0

• r∞ ≤ 1
κ − 1 → s∗ = 1

• 1
κ − 1 ≤ r∞ ≤ 1− 1

κ → s∗ = κr∞
1−κ

• r∞ ≥ 1− 1
κ → s∗ = −1

• κ = 0

• r∞ ∈ R → s∗ = 0

• 0 < κ < 1

• r∞ ≤ 1− 1
κ → s∗ = −1

• 1− 1
κ ≤ r∞ ≤ 1

κ − 1 → s∗ = κr∞
1−κ

• r∞ ≥ 1
κ − 1 → s∗ = 1

• κ = 1

• r∞ < 0 → s∗ = −1
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• r∞ = 0 → s∗ ∈ [−1, 1]

• r∞ > 0 → s∗ = 1

• κ > 1

• r∞ < 1
κ − 1 → s∗ = −1

• 1
κ − 1 ≤ r∞ ≤ 1− 1

κ → s∗ ∈ {−1, κr∞
1−κ , 1}

• r∞ > 1− 1
κ → s∗ = 1

In order to get a clear idea of how the fixed points s∗ behave when the long-term price
return rate r∞ change, this evolution is shown in Figure 3.1. All the cases on the value of
the herding propensity κ, discussed above, are present, except the simple case κ = 0, for
which no matter the value of r∞, the fixed point s∗ will always stay equal to 0. This is not
surprising, since it has been shown in 3.2 that, if κ = 0, the average opinion index st is
sure to converge and, if there is no bias, it converges to 0. From the derivation of the fixed
points s∗ above and from Figure3.1, one could notice two significant characteristics of the
average opinion index st. On the one hand, for κ = 1 and r∞ = 0, all the values in [−1, 1]
are fixed points of st. On the other hand, for κ > 1 and r∞ sufficiently near 0, there is
coexistence of 3 different fixed points. In this sense, the case κ = 1 can be viewed as an
Ising phase transition for the average opinion index st. The case κ > 1 corresponds to the
hysteresis cycle in the presence of a magnetic field, played either by r∞ or the long-term
value of the price momentum Ht, since they have the same behavior in the long run.

3.4 A market without dividends

As it has been shown in Chapter 2, the long-term price return rate r∞ of the risky asset
seems to be controlled by the growth rate rd of the dividends. Thus, a significant question
would be: What happens to the long-term price return rate when there is no dividend at
all?

To answer that question, we shall take rd = 0 and dt = 0 for all t. Doing so, the risky
fraction xft of the fundamentalists becomes a constant:

xft = xfmin =
Ert − rf
γσ2

(3.11)

This constant risky fraction characterizes the optimism of the fundamentalists about the
risky asset. Indeed, the term Ert − rf is about how much more than the risk-free asset
they think the risky asset would return. This ’pure’ optimism is created at the beginning
of the market (t = 0) and remains constant in the future. It is rescaled by the global
risk they take by investing in the risky asset, that is the constant relative risk-aversion γ
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Figure 3.1: Fixed points of the average opinion index st as functions of the constant
herding propensity κ and the long-term price return rate r∞. The specific values taken
for the herding propensity are the following: (a) κ = −3, (b) κ = 0.5, (c) κ = 1, (d)
κ = 1.5. Those values have been chosen so that all possible fixed points appear when
r∞ ∈ [−1.5, 1.5]. The green dashed lines correspond to the threshold values of the long-
term price return rate r∞, derived in 3.3. For κ = 1 and r∞ = 0, all the values in [−1, 1]
are fixed points of the average opinion index st. For κ > 1 and r∞ sufficiently near 0, there
is coexistence of 3 different fixed points.

and the uncertainty they have about their prediction of the excess return rate, which is
σ2 := V art[rt−rf ]. Once again, those quantities are constant with respect to time. They
are simple guess made by fundamentalists who expect those to be accurate, at least in the
long-run, so that they keep investing a minimum fraction of their wealth in the risky asset.
In the special case where there is no dividend, they cannot adjust their risky fraction since
they do not have any external information about the market – modeled by the dividends –
so that they keep investing a constant fraction of their wealth for all future trading days.
Then, their strategy is completely determined by their initial optimism about the risky
asset, at the beginning of the market.

When there is no dividend, price returns are the only source of returns for the risky asset.
In this sense, in terms of evolution of the traders’ wealths, there is a clear competition
between the price return rate rt := Pt

Pt−1
−1 and the risk-free return rate rf . The latter is
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a good benchmark for the price return rate rt, since it is the rate which one trader can get
without any risk and uncertainty. If the risky asset has a return rate rt less or equal than
rf in average, it is of no interest since traders can earn more or equivalent without any risk.
One should notice that, usually, dividends are there to compensate some losses. However,
since here is considered a market without dividend, that is without external information
for fundamentalists, one finds the following dynamics of the traders’ wealths, showing a
strict competition between rt and rf :

{
W f
t = W f

t−1 [1 + rf + xfmin(rt − rf )]
Wn
t = Wn

t−1 [1 + rf + xnt−1(rt − rf )]
(3.12)

3.5 A market without fundamentalists

For the sake of simplicity, let us focus on the simpler case where fundamentalists do not
show any optimism about the risky asset, at the beginning of the market. It means that
their long-run minimum constant risky fraction xfmin is equal to 0, and, in absence of
dividends, one finds using Equation 3.11:

xft = 0 for all t (3.13)

In absence of external information about the market and of ’a priori’ optimism about the
risky asset at the beginning of the market, fundamentalists do not have any reason to
invest in it. Then, they invest, at each time step, all of their wealth in the risk-free asset.
This fact can also be observed in Equations 3.12 using xfmin = 0:

W f
t = W f

t−1 [1 + rf ] ⇒ W f
t = W f

0 [1 + rf ]t (3.14)

Thus, fundamentalists stay away from the risky asset, which means that there is no possible
trade: noise traders cannot exchange their shares of the stock to anyone. As a consequence,
they possess a constant number of shares with respect to time. Let us recall that the number
of shares nit that a trader i possess at time t is nothing but the amount of wealth they have
invested in the risky asset, divided by the current price of the risky asset:

nit =
xit W

i
t

Pt
(3.15)

Obviously, since their risky fraction is constant equal to 0, fundamentalists do not possess
any share. The no-trade situation can also be seen using the excess demands ∆Df

t−1→t
and ∆Dn

t−1→t of fundamentalists and noise traders, in terms of shares. The conservation
of shares gives:
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∆Df
t−1→t + ∆Dn

t−1→t = (nft − n
f
t−1) + (nnt − nnt−1) = nnt − nnt−1 = 0

Then, noise traders keep a constant number of shares over time:

nnt = nnt−1 = nn0 =
xn0W

n
0

P0
(3.16)

One should keep in mind that those shares are nothing but a matter of initialization. If
the initial risky fraction xn0 of noise traders is equal to 0, then no one has invested in
the risky asset. As a consequence, the conservation of shares cannot provide future prices
for the risky asset, which seems reasonable. Let us recall that the risky fraction of noise
traders is just a rescaling of their opinion index st ∈ [−1, 1], so that xnt ∈ [0, 1] for all
t. If 0 < xn0 ≤ 1, it means that noise traders have invested a part of their wealth, at the
beginning of the market, to get some shares of the risky asset, and once it is done, they are
the only share-holders of the stock in the market, so that they cannot buy more shares or
sell their current shares: they are completely stuck and cannot do anything if it happens
that they lose too much of their wealth because of the risky asset.

As long as prices are well defined – and it should always be the case, otherwise the market
stops –, Equation 3.16 gives, when using the dynamics of the noise traders’ wealth in
Equations 3.12:

xnt [1 + rf + xnt−1(
Pt
Pt−1
− 1− rf )]

Pt
Wn

t−1 =
xnt−1
Pt−1

Wn
t−1 (3.17)

At this point, it seems relevant to know whether the noise traders’ wealth can become 0
or not.

Proposition 7. The noise traders’ wealth cannot reach 0, except if prices have fallen to
0, if current dividends are equal to 0 and if noise traders were completely invested in the
risky asset: 

Wn
t0−1 6= 0

Wn
t0 = 0

Pt0−1 6= 0
⇒


Pt0 = 0
dt0 = 0
xnt0−1 = 1

Proof. Using the general dynamics of the noise traders’ wealth, one finds:

Wn
t0 = Wn

t0−1 [1 + rf + xnt0−1 (
Pt0

Pt0−1
− 1− rf +

dt0
Pt0−1

)] = 0

Then, as Wn
t0−1 6= 0, the term in brackets must be equal to 0. Denoting rt0 =

Pt0
Pt0−1

− 1

as the current price return rate leads to:

xnt0−1 (rt0 − rf +
dt0
Pt0−1

) = −1− rf
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The term in parenthesis cannot be equal to 0 since it would lead to 0 = −1 − rf , which
is not possible when rf > 0 (the realistic case which is considered in this thesis). As a
consequence, it provides an expression for the risky fraction at t0 − 1:

xnt0−1 =
−1− rf

rt0 − rf +
dt0
Pt0−1

Let us recall that, for any t, xnt ∈ [0, 1]. This implies that rt0 − rf +
dt0
Pt0−1

< 0. Let us
now focus on the fact that xnt0−1 ≤ 1, that is:

rt0 − rf +
dt0
Pt0−1

≤ −1− rf

rt0 ≤ −1− dt0
Pt0−1

The lower bound for the price return rate rt is −1. If rt = Pt
Pt−1
− 1 = −1, it means that

Pt = 0. In words, it says that prices have fallen by 100% of their past value. Having said
that and recalling that dividends are always non negative, the previous inequality leads to:

rt0 = −1
dt0 = 0

xnt0−1 =
−1−rf

rt0−rf+
dt0

Pt0−1

⇒


Pt0 = 0
dt0 = 0
xnt0−1 = 1

This result could seem to be obvious since as long as noise traders have a fraction of their
wealth invested in the risk-free asset, they get a security against losses. Besides, as long
as they receive a dividend or that they have some shares, still valuable, of the risky asset,
they should keep a total wealth non equal to 0. Nevertheless, the real reason which proves
this result is the fact that the risky fraction xnt of noise traders cannot exceed 1. For
instance, it is possible that the risky fraction xnt of fundamentalists be more than 1. One
could find this point surprising, but if it happens, it only means that they have borrowed
some money to invest into the risky asset, thinking that this strategy would be profitable.
Thus, it is no longer necessary that prices fall by 100% to see the fundamentalists’ wealth
vanish. Following the previous proof, the conditions leading the fundamentalists’ wealth
to vanish at time t0 are:


rt0 < rf −

dt0
Pt0−1

xnt0−1 =
−1−rf

rt0−rf+
dt0

Pt0−1

(3.18)

Let us come back to where the conservation of shares, only held by noise traders, has
led us, that is Equation 3.17. In absence of dividends, as long as prices are well defined
(strictly positive prices for instance), Proposition 7 states that the noise traders’ wealth
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cannot suddenly become equal to 0. Thus, since their initial wealth Wn
0 is strictly positive

– otherwise, they would not exist, at the market level at least –, their successive wealth
values stay non zero, as long as prices are well defined. As a consequence, Equation 3.17
leads to:

xnt (1 + rf ) (1− xnt−1)
Pt

=
xnt−1 (1− xnt )

Pt−1
for all t ≥ 1 (3.19)

From this equation, one could observe that, if either xnt or xnt−1 is equal to 0 or 1, the price
Pt, at time t, of the risky asset is not clearly defined. In particular, it is true for t = 0.
The case xn0 = 0 is not relevant and has been discussed earlier: if no trader invest in the
risky asset at time t = 0, it is not surprising that the price at the next time step is not
defined. However, what is more surprising is that if fundamentalists stay away from the
risky asset (no dividends and no optimism) and if noise traders decide to invest all of their
wealth in the risky asset at the beginning of the market (that is xn0 = 1), future prices are
not defined. Even taking xn0 ∈ (0, 1) is not enough to get all future prices well defined;
it depends completely on the stochastic behavior of noise traders, who are able to choose
suddenly, at any time, a risky fraction equal to 0 or 1. Nevertheless, it is assumed in the
following that xnt 6= 0 and xnt 6= 1 for any time t, in order to study the behavior of the
market in those conditions. It may seem to be a strong assumption, but one should notice
that, when it is not the case, the market just stops, as prices are no longer defined. In this
sense, it provides an excellent control parameter of the latter assumption whereas it may
sometimes lead to a finite-time market. Using the latter hypothesis, one finds:

Pt
Pt−1

= (1 + rf )
xnt (1− xnt−1)
xnt−1 (1− xnt )

(3.20)

Now that the price equation has been established in absence of fundamentalists, let us
focus on the long-term price return rate r∞. As said before, it is assumed that there is
convergence of the price return rate rt = Pt

Pt−1
− 1 −−→

+∞
r∞. Consequently, there is

convergence of the fraction at the right side of Equation 3.20. We denote this fraction by
Ft, which satisfies Ft > 0. If it converges to 1, the long-term price return rate r∞ is equal
to the risk-free interest rate rf . The latter represents the ’price of the money’ and should
be a minimum for the long-term price return rate r∞; otherwise, it is better to invest in
the risk-free asset in order to be sure to earn a constant return rf , without any risk or
uncertainty. But what happens if Ft converges to a value different than 1 ?

Proposition 8. Ft −−→
+∞

α > 1 if and only if xnt −−→+∞
1 and xnt =

+∞
1
α xnt−1 + 1 −

1
α + o(1− xnt ).
Besides, Ft −−→

+∞
α < 1 if and only if xnt −−→+∞

0 and xnt ∼
+∞

α xnt−1.

Proof. Let Ft =
xnt (1−xnt−1)

xnt−1 (1−xnt )
−−→
+∞

α with α 6= 1. Denoting yt :=
xnt

1−xnt
, one finds:

yt ∼
+∞

α yt−1
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In addition, as long as xn0 ∈ (0, 1), it has been previously shown that xnt ∈ (0, 1) for all t,
so that yt > 0 for all t.

• α > 1

Since yt > 0, one finds, using the asymptotic relation between yt and yt−1, that yt =
xnt

1−xnt
= 1

1−xnt
− 1 −−→

+∞
+∞. Thus, the risky fraction xnt of noise traders converges

and xnt −−→+∞
1. Thus, it leads to a simpler equivalent of yt: yt =

xnt
1−xnt

∼
+∞

1
1−xnt

.
Comparing yt to yt−1 then gives:

1− xnt ∼
+∞

1

α
(1− xnt−1)

xnt =
+∞

1

α
xnt−1 + 1 − 1

α
+ o(1− xnt )

The converse follows the same proof.

• α < 1

As said before, the fraction Ft is strictly positive, so that 0 ≤ α < 1 in this special
case. Once again, since yt > 0, the asymptotic relation between yt and yt−1 gives:
yt =

xnt
1−xnt

= 1
1−xnt

− 1 −−→
+∞

0. Thus, the risky fraction xnt of noise traders
converges and xnt −−→+∞

0. In the same spirit than the previous case, one finds a simpler

equivalent: yt =
xnt

1−xnt
∼
+∞

xnt . Comparing yt to yt−1 then gives:

xnt ∼
+∞

α xnt−1

The converse follows the same proof.

As a direct consequence of Proposition 8, the long-term price return rate r∞ is almost
always equal to the risk-free interest rate rf , and if it is not the case, it means that the
risky fraction xnt of noise traders has converged to 0 or to 1. This condition of convergence
to 0 or 1 is not a sufficient condition, as states Proposition 8: a special asymptotic behavior
of the risky fraction xnt is required. Nevertheless, it is a necessary condition. From Equation
3.20, one could notice that, if the risky fraction xnt of noise traders converges to a value
different than 0 or 1, the long-term price return rate r∞ is equal to the risk-free interest
rate rf . If the fraction Ft converges to α < 1, it means that the risky fraction xnt converges
to 0 and that r∞ is lower than rf . Similarly, if Ft converges to α > 1, the risky fraction
converges to 1 and r∞ is greater than rf . Let us recall that it has been supposed that
xnt 6= 0 and that xnt 6= 1 for all t. One should notice that there is a significant difference
between converging to 0 or 1 and taking the value 0 or 1 at a given time t0. Indeed, there
are many ways in which the risky fraction xnt can converge to 0 or 1, without ever taking
one of those values.

In the following, we shall try to find what happens when the risky fraction xnt of noise
traders converges to 0 or 1 and hope that it is enough to get Ft −−→

+∞
α < 1 (that is

r∞ < rf ) or Ft −−→
+∞

α > 1 (that is r∞ > rf ).
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The problem of convergence of the average opinion index st (and thus the average risky
fraction xnt of noise traders) has been discussed in 3.2. It has been seen that, if the herding
propensity κ = 0, then the average risky fraction xnt always converge. If there is no bias
amongst noise traders, that is p+ = p− = p ∈ (0, 1), it converges to 1

2 ; otherwise, it
depends on the bias. Even if it is not the ’true’ risky fraction xnt , it can provide a good
first approximation. Let us first focus on the special case of a null herding propensity κ.
As explained before, in order to obtain the convergence of the average risky fraction xnt to
0 or 1, it is now necessary to introduce some bias. Let us recall the two expressions of the
average opinion index st in presence of bias, derived in 3.2:


st = [1− p+ + p−

2 ] st−1 + p− − p+
2

st = [1− p+ + p−
2 ]t [s0 − p− − p+

p− + p+
] + p− − p+

p− + p+

(3.21)

In this special case, the average opinion index st converges to the value p− −p+
p− +p+

. Since
the average risky fraction xnt = 1 +st

2 is only a rescaling of st, one finds the following
conditions on p− and p+ to obtain the convergence of xnt to 0 or 1:


xnt −−→+∞

0 if and only if p− = 0 and p+ ∈ (0, 1)

xnt −−→+∞
1 if and only if p+ = 0 and p− ∈ (0, 1)

(3.22)

One should notice that it has been supposed since 3.2 that both p− and p+ belong to the
set (0, 1). But one of those values can be equal to 0, as long as the other one is non zero.
Besides, the fact that they cannot be greater than 1 does not change much, as long as
they are less than 2 in this special case. If p− = 0, one finds, using Equations 3.4, that
p−t (st, Ht) = 0 for all t. Let us recall that the latter transition probability characterizes
the ability of one noise trader to buy the risky asset, when fully invested in the risk-free
asset. Consequently, if p− = 0, no noise trader is able to buy the risky asset, so that, from
an initial value xn0 ∈ (0, 1), the average risky fraction xnt , that is the amount of wealth
invested in the risky asset, converges to 0. Indeed, from Equations 3.4, one finds, in the
case of a null herding propensity κ, the expression of the transition probability p+t (st, Ht) of
selling the risky asset: p+t = p+

2 6= 0. Thus, there is a null probability of buying the asset
and a non zero probability of selling it, leading to a risky fraction converging to 0. Similarly,
if p+ = 0, one finds a null probability of selling the asset and a non zero probability of
buying it, when invested in the risk-free asset, leading to a risky fraction converging to
1. One might think that the meaning of those transition probabilities is ambiguous, given
that noise traders possess a constant number of shares of the risky asset and cannot trade
them with fundamentalists, who stay away from the risky asset. Nevertheless, one should
notice that those transition probabilities do not affect the number of shares, held by noise
traders, but only their risky fraction, that is the fraction of wealth that they invest in the
risky asset. In presence of fundamentalists, the change in their risky fraction can lead to
the acquisition of new shares, as one can observe, regarding the conservation of shares.
In this particular case, this is not possible. In this sense, noise traders cannot trade any
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share, but they decide at each time step how much wealth they will invest in the constant
number of shares they possess. Since they share their total wealth, each noise trader has
the same weight in that decision. One can picture this situation as a committee, holding
the only shares of the stock and stuck with them, which vote equally at each time step
whether they want to stay invested in the risky asset or not. Obviously, if no one of them
wants to stay invested in the risky asset, that is xnt = 0, there is a problem, as it has
been underlined before, given that they cannot sell any share. In a nutshell, the transition
probabilities affect the risky fraction of noise traders, which, in turn, affect the price of the
risky asset in such a way that noise traders always keep a constant total number of shares.

Let us first focus on the case xnt −−→
+∞

1, that is p+ = 0 and p− ∈ (0, 1). Using

Equations 3.21 and the definition of the average risky fraction xnt = 1+st
2 , one finds:


xnt = [1− p−

2 ] xnt−1 + p−
2

xnt = [1− p−
2 ]t [xn0 − 1] + 1

(3.23)

Thus, the average risky fraction xnt of noise traders converges exponentially to 1, with a
characteristic time:

τ1 =
1

log( 1
1− p−

2

)
(3.24)

Such a process converges to 1, is always different 0 or 1 as long as xn0 ∈ (0, 1) and
satisfies the asymptotic behavior required by Proposition 8: xnt =

+∞
1
α xnt−1 + 1 − 1

α

with α = 1
1− p−

2

> 1. Hence, in those conditions, Proposition 8 states that the fraction

Ft (xnt , x
n
t−1) converges to α = 1

1− p−
2

. As a consequence, Equation 3.20 gives the long-term
price return rate r∞:

r1∞ =
rf + p−

2

1 − p−
2

> rf (3.25)

In brief, in absence of fundamentalists and of herding (κ = 0), if noise traders have a null
probability of not being interested in the risky asset and a non zero probability of being
interested in it, they manage to outperform the price of the money, characterized by the
risk-free interest rate rf .

One should notice that this result is obtained using the average risky fraction xnt , instead
of the stochastic risky fraction xnt , so that it is an approximate solution. Indeed, while the
average risky fraction has previously been useful to better understand the market behavior,
one could observe that the fraction Ft is of second-order in the risky fraction. Then, the
stochasticity cannot be ignored and will have a certain impact on the market. To see this
impact, we shall use a numerical simulation, given by the algorithm described in 2.4. Let
us recall that it takes an initial configuration, then does the simulation of the first seed
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until the maximum possible time of simulation tmax. In this case, the initial configuration
is given, as usual, by Table 2.1 of Chapter2, except the following quantities: dt = 0
for all t, rd = 0, σd = 0, κ = 0 (constant process), Ert = rf and p+ = 0.
It corresponds exactly to the case described above, that is a market without dividend,
without fundamentalists, without herding and with an average risky fraction xnt of noise
traders converging to 1. Here, the time limit of simulation is due to the risky fraction
xnt taking the value 1 since it has been seen before that, if it happens, the market stops.
Indeed, the average xnt converges to 1 so it seems really likely that the real risky fraction
takes the value 1 at some time. Furthermore, using the complete simulation of the first
seed, the algorithm finds the time tc from which the cumulative moving average of the price

return rate, that is 〈rt〉 := 1
t

t∑
i=1

ri, stays inside a convergent interval of 1% of the final

value 〈rtmax〉, then does the simulations, until tc, for 100 different seeds, takes the new final
values of the cumulative price return rate 〈rtc〉 of each seed and computes the average over
the seeds, denoted by 〈r∞〉. On Figure 3.2, the first plot represents the ’infinite’ cumulative
price return rate 〈r∞〉 as a function of p−, in the conditions described above. The error
bars correspond to the range of values taken by the final values of 〈rtc〉 of each seed, that is
before taking the average 〈r∞〉. On the same plot, one can also observe the behavior of r1∞,
to compare with 〈r∞〉. To get a better idea, the second plot shows the relative difference
between those two quantities. One can notice that, even if their respective behavior look
more or less alike, the stochasticity induces significant differences between the values taken
by them. The third plot compares the characteristic time τ1, defined in Equation 3.24, to
the time tc of convergence of the cumulative price return rate. From this plot, one can
conclude that there is no problem of convergence for the average risky fraction xnt of noise
traders in the simulations. The last plot shows the rescaled standard deviation of the final
values of the cumulative price return rate 〈rtc〉 for the 100 considered seeds, that is before
taking the average 〈r∞〉 over those seeds.

In the case of a non zero herding propensity (κ 6= 0) and in absence of bias (p− = p+ := p),
it has been seen in 2.2 that, in order to get an average risky fraction xnt of noise traders
converging to 1, it is necessary to choose first the range of κ. The simplest case is 0 < κ < 1,
for which xnt converges to 1 – for simplicity, it has been assumed since 2.2 that the average
risky fraction xnt of noise traders converges to its fixed point – if the long-term price return
rate r∞ satisfies: r∞ ≥ 1

κ−1. However, we do not have any control on the long-term price
return rate. Assuming that it would be positive, one should notice that, if r∞ < 1

κ − 1
(that is an average risky fraction converging to a value lower than 1), then the long-term
price return rate r∞ would be equal to the risk-free interest rate rf , according to the
previous discussion. Then, it is possible to force the average risky fraction xnt to converge
to 1, by setting rf > 1

κ − 1 for the considered range of κ values. The previous inequality
gives in our special case: 1

1+rf
< κ < 1. Usual values for rf , according to Table 2.1, are

around 10−4, giving a really small interval for κ values. To address this issue, we choose
an arbitrary value of 1 for rf (and thus, Ert = 1 since xfmin = 0). One should notice
that it does not change much the general behavior of the market but makes it possible to
get a larger panel of κ values. One must keep in mind that 1

1+rf
< κ < 1 is not a necessary

condition to obtain the convergence of the average risky fraction xnt to 1: it is only a
sufficient condition. The ’real’ condition which determines completely the convergence to
1 is r∞ ≥ 1

κ − 1, as it has been highlighted earlier.



52 3.5. A market without fundamentalists

0

1

2
< r >

< r >
  r1

0.22

0.24

0.26

| < r > r1 |
< r >

0.18

0.19

0.20

0.21

1
tc

0.2 0.4 0.6 0.8 1.0
p

0.08

0.10

0.12

[ < r > ]
< r >

Figure 3.2: Long-term cumulative price return rate 〈r∞〉 in a market without dividends,
without fundamentalists, without herding (κ = 0) and with an average risky fraction xnt
of noise traders converging to 1. The quantity 〈r∞〉 has been computed by the algorithm
described in 2.4, using 100 different seeds. All parameters are taken from Table 2.1 of
Chapter 2, except the following quantities: dt = 0 for all t, rd = 0, σd = 0, κ = 0
(constant process), Ert = rf and p+ = 0. Those values are necessary to obtain the
particular considered market. The parameter p− corresponds to the x-axis: it characterizes
the probability for noise traders of being interested in the risky asset. The first plot shows
its impact on the long-term cumulative price return rate 〈r∞〉 and on the theoretical long-
term price return rate r1∞ of Equation 3.25, derived using the average risky fraction xnt
of noise traders, instead of the stochastic risky fraction xnt . The error bars correspond to
the range of values taken by the final values of 〈rtc〉 of each seed, that is before taking
the average 〈r∞〉. The second plot shows the relative difference between 〈r∞〉 and r1∞,
suggesting that the stochasticity has a significant impact on the market. The third plot
compares the characteristic time τ1, defined in Equation 3.24, to the time tc of convergence
of the cumulative price return rate, used by the algorithm of Chapter 2. It shows that the
time of simulation is sufficient, compared to the time of convergence of the average risky
fraction xnt of noise traders. The last plot shows the rescaled standard deviation of the
final values of the cumulative price return rate 〈rtc〉 for the 100 considered seeds, that is
before taking the average 〈r∞〉 over those seeds.
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On Figure 3.3, we have represented the long-term cumulative price return rate 〈r∞〉 as a
function of the herding propensity κ, in the conditions described above. Its computation
follows the same process than the one described in 2.4. For each value of κ, 100 different
seeds have been used for the simulation. The parameters are all taken from the basic
parameter set, provided in Table 2.1, except the following which corresponds to our par-
ticular considered conditions: dt = 0 for all t, rd = 0, σd = 0, Ert = rf = 1
and p− = p+ = 0.2. On both panels of Figure 3.3, the error bars correspond to the
uncertainty over the seeds. The red straight line represents the value of rf whereas the
blue dashed line depicts the threshold value 1

κ − 1, derived in 2.3. One could observe the
transition between 〈r∞〉 = rf and 〈r∞〉 > rf depending on the values of κ. The second
panel is nothing but a zoom of the first panel around the transition. Thus, one could notice
that there exists some values of κ for which rf < 〈r∞〉 < 1

κ − 1. It suggests that the
stochasticity have a certain impact on the fraction Ft. Nevertheless, the threshold value
gives a quite good estimate of the true one. For rf < 〈r∞〉, the maximum time tmax of
computation is due to the risky fraction xnt taking the value 1. The average risky fraction
xnt converging to 1, it seems very likely that the stochastic risky fraction takes the value 1
at some time. According to Figure 3.3, it is thus possible to view the herding propensity
as a control parameter leading to a phase transition in the special case of a market without
dividends and without fundamentalists.
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Figure 3.3: Long-term cumulative price return rate 〈r∞〉 in a market without dividends,
without fundamentalists, with herding but no bias. The quantity 〈r∞〉 has been computed
by the process described in 2.4, using 100 different seeds. All parameters are taken from
the basic parameter set provided in Table 2.1, except the following quantities: dt = 0 for
all t, rd = 0, σd = 0, Ert = rf = 1 and p+ = p− = 0.2. Those values are necessary
to obtain the particular considered market. On both panels, the error bars correspond to
the uncertainty over the seeds. The red straight line represents the value of rf whereas the
blue dashed line depicts the threshold value 1

κ − 1, derived in 2.3. One could observe the
transition between 〈r∞〉 = rf and 〈r∞〉 > rf depending on the values of κ. The second
panel is a zoom of the first panel around the transition. For rf < 〈r∞〉, the maximum
time tmax of computation is due to the risky fraction xnt taking the value 1.



Conclusion

The goal of the present thesis was to study the long-term behavior of an artificial market,
composed of fundamentalists and noise traders. The model has two assets, a constant
interest rate risk-free asset and a dividend paying risky asset, whose price is determined by
the market clearing condition. Fundamentalists have a long-term strategy, corresponding
to their optimism about the risky asset, and a short-term one, based on the dynamics of
the dividend-price ratio. The price following the same growth than the dividends is thus
a benchmark, called the fundamental value. They buy the risky asset mostly when it is
undervalued, that is whose price is below that fundamental value, and they sell it mostly
when it is overvalued, that is whose price is above the fundamental value. Noise traders
are completely different investors. They are trend-followers and subject to social imitation.

In presence of dividends, noise traders do not have a persistent impact on the market.
During bubbles, they outperform fundamentalists but fail to maintain their advantage,
because of the subsequent crash. They are only ’noise’ compared to the strategy of funda-
mentalists. Thus, the latter manage to drive the price of the risky asset to its fundamental
value. The long-term price return rate then follows the mean growth rate of dividends.
The corresponding simulations in 2.4 may not be fully accurate, mainly since we did not
find any trustful indicator of convergence and since simulations until a maximum time of
computation might not be pertinent. Nevertheless, there is still a strong dependence on
the mean growth rate of dividends for the risky asset, which supports their external field
aspect, as explained in [13]. One solution to get clearer ideas about the exact relation
between the mean growth rate rd of dividends and the long-term price return rate r∞
would be to do a prior theoretical study. It is in that spirit that the following chapter (3.2
especially) was meant to be more theoretical, in addition to the curiosity of finding what
drives the risky asset when there is no external field.

In absence of dividends and of fundamentalists, the prior study of the fixed points of
the average risky fraction of noise traders has been of significant help. Without herding,
only trivial solutions lead to a long-term price return rate r∞ different than the ’price
of the money’ rf . However, when there is some herding, that is imitative feedback and
trend-following, noise traders manage to outperform this benchmark rf , depending on the
strength they allow for this herding. In this sense, the lonely noise can become constructive.

A lot of remaining questions about this model are still to be answered. For instance, still
without dividends, what happens if fundamentalists invest their constant risky fraction
xfmin of wealth ? They might perhaps force the long-term price return rate r∞ to its lower
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base line value rf . But it is also possible that they enrich the long-term behavior of the
risky asset.

In this sense, the issue covered by the present thesis has still much to reveal, so that,
since the questions involved are rich in terms of complexity, there should be a second more
intensive study, given the broad ramifications. This future work should be quite theoretical
(in the same spirit than Chapter 3), given the difficult numerical simulations involved, but
it would benefit from all results one can find in this thesis.



Appendix A

Convergence of the price momentum

Let recall the ending result of the proof of Proposition 4:

Ht − r∞ = (1− θ)
t∑
i=1

θt−i [ri − r∞] + θt (H0 − r∞) for t ≥ 1

Let ε > 0. We have supposed that rt → r∞ when t → +∞. So, there exists t0 such that,
for all t ≥ t0, |rt − r∞| ≤ ε. We how have a quantification of the term in brackets
appearing in the sum. One finds:

|Ht − r∞| ≤ (1− θ)
t∑
i=1

θt−i |ri − r∞| + θt |H0 − r∞|

≤ θt [ (1− θ)
t0−1∑
i=1

1

θi
|ri − r∞|+ |H0 − r∞| ] + (1− θ)

t∑
i=t0

θt−i |ri − r∞|

≤ θt A + ε (1− θ)
t∑

i=t0

θt−i

A is a constant, defined as follows:

A = (1− θ)
t0−1∑
i=1

1

θi
|ri − r∞|+ |H0 − r∞|

Then, one finds easily:

|Ht − r∞| ≤ θt A + ε (1− θt+1−t0)

≤ θt A + ε − ε θt+1−t0

The first and the last terms at the right side of the previous inequality tend to 0 when
t→ +∞. As a consequence, we have proved that Ht → r∞ if rt → r∞.
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