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1 Abstract

Knowledge of the expected number of short-term trades or short-term price
changes impacts trading performance in financial markets by influencing the
order size process. The Hawkes Poisson process is a known model to pre-
dict these changes in liquid financial markets. The quality of the algorithm
depends on the calibration of its parameters. This work performs the cal-
ibration of these parameters by testing real data from the E-Mini market
2011. The analyzed calibration parameters are “number of simulations”,
“sample time frame”, “kernel choice”, and “detrending method”.

The calculations reveal that a larger number of simulations and a longer
sample time frame improves the results. These findings may be intuitive;
however, the results have also show that there is no substantial increase in
prediction-quality above the threshold of 300 simulations and a 30 minute
sample time frame.

The basic concept of the Hawkes Poisson process stipulates the distinction
between the arrival of exogenous events - such as external market news -
and the self-excited arrival of endogenous events, i.e. trades triggered by
past trades or price changes. In the Hawkes Poisson process, the probability
drop-off of an event triggered by a past event is called a “kernel”. Whether
this kernel has an exponential or power law form is a discussion within the
literature. The application of this forcasting algorithm with real market data
has shown that the forecasting performance is higher with an exponential
kernel than with a power law form. The forecasting algorithm assumes
that the exogenous intensity is not time-dependent. As in real markets, the
exogenous intensity may be time-dependent thus it is necessary to detrend
in-frame-data as a first step before applying the algorithm. The application
of the forecasting algorithm has shown that detrending of historical data
decreases the forecasting performance for the trend chosen in this thesis.
This could be due to a wrong ”bias” added by choosing a wrong trend.
Further trend determination methods are proposed.

The fully calibrated model overestimated the number of mid-price changes
by 21.3%. The false positive rate of the prediction of extreme events, which
are defined as number of minutes with 95 or more mid-price changes, was
1.2%; and the true positive rate of this parameter was 59.4%. The positive
predictive value lies at 85.9%, meaning, that if the algorithm predicts an
extreme event for the next minute, it is correct in 85.9% of the time. Equally,
if the algorithm predicts that no extreme event will occur in the following
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minute, it will be correct in 95.3% of the times (negative predictive value)

An application of the Hawkes Poisson process for a bi-variate setup (mid-
price up, mid-price down) is proposed.
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2 Introduction

Knowledge of the expected number of short-term trades or short-term price
changes impacts the trading performance in financial markets by influencing
the order size process.

In order to define forecast models for market parameters, it is necessary
to understand the dynamics of the underlying markets. Often in economic
theory, these models are based on the Efficient Market Hypothesis (EMH),
which stipulates that the markets are fully absorbing all available informa-
tion instantaneously and this information is fully reflected in the market
prices. [19][20][21][22]

A more sophisticated nonemodelling approach is based on the observation
that real markets do not behave entirely upon EMH. According to the EMH,
large changes in market prices can only occur due to “big news,” which influ-
ences the market from the outside. The analysis of extreme market changes
in the past has proven this assumption wrong. The number of short-term
trades or short-term price changes are not only based on news impacting the
market from the outside but also on information from the market itself that
influenced its participants, e.g. the number of trades or the market price
changes in the recent past. The Hawkes Poisson process is a general model
describing such systems.

In fact, Hardiman et al. [24] and Filimonov and Sornette [3] demonstrated
that the Hawkes Poisson process is a more valuable tool to predict parame-
ters of such markets than models based on the EMH.

This thesis exploits the Hawkes Poisson model for the prediction of the
number of short-term trades and/or short-term price changes. It has two
main goals:

1. Defining the calibration parameters of the model algorithm in order
to increase its prediction quality for the number of mid-price changes;
and

2. Understanding the stability of the prediction algorithm based on the
impact of different circumstances on the optimal calibration parame-
ters.
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As a first step, the theory of the Hawkes Poisson process is described. In the
second step, each Hawkes Poisson parameter is calibrated by applying real
data from the E-Mini market 2011. The calibration process is then evalu-
ated based on performance parameters that reflect the forecasting quality of
the algorithm. As a summary, in the third step, the stability of the predic-
tion quality with the optimal set of calibration parameters is tested under
different circumstances.
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3 Theoretical Background

3.1 Model: Hawkes Poisson Process

If we look at a (stock) market as a series of mid-price change events, we
can describe it as a discontinuous point process with a specific event arrival
rate. In a financial market, mid-price is defined as the price between the
market bid and the market ask price. This arrival rate is named λ. The
simple case is called a Poisson Process. In a Poisson Process, the individual
events do not depend on each other. The Hawkes Poisson process is a further
complication of the general Poisson process that assumes that the intensity
is time-dependent as well as dependent on the arrival of past events.

λ(t|Ft−) = µ(t) +

� t

−∞
ϕ(t− s)dN(s) (1)

where λ(t|Ft−) = limh↓0
1
hPr[N(t+h)−N(t)>0|Ft−]. N(t) = max(i : ti ≤ t)

refers to the number of events which happened in the past and shall be called
the counting process. The filtration is defined as Ft− = t1, ..., ti;∀i<N(t).
We define the exogenous part of the intensity µ as the background intensity.
The endogenous feedback in the system is described by the kernel function
ϕ(t). This kernel function denotes the probability of new events to occur
based on past events. We call an original (e.g. exogenous) event a mother
event. The number of events that follow a mother event are logically named
daughter events.
The integral of the kernel function is called a branching ratio.

n :=

� ∞
0

ϕ(t)dt>0 (2)

The branching ratio defines the average number of children a mother event
creates. Intuitively one understands that if a mother event has, on average,
more than one daughter event, the system is super-critical and grows un-
controlled. Stationarity of the Hawkes Poisson process requires a branching
ratio n < 1.

We can rewrite the conditional intensity of the Hawkes Poisson process as:

λ(t|Ft−) = µ(t) + n
∑
ti<t

h(t− ti) (3)
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Here we used the normalized kernel function

h(t) = ϕ(t)/n (4)

with

� ∞
0
h(t)dt = 1 (5)

The Hawkes self-excited Poisson process is a generalization to the Poisson
Point Process, where past events can influence the current intensity. This
dependency is described by the so called “kernel function.”

The Hawkes Poisson process describes a chain of individual events that can
either happen exogenously (immigrant events) or endogenously due to a
past event (descendant). The occurrence of exogenous events is described
by µ. Every exogenous event can create multiple following events in multiple
generations. We can group all these subsequent events into clusters. Every
mother event can statistically create a defined number of daughter events.
These daughter events can, in turn, create further generations of events.
We define the branching ratio n as the average number of daughter events
triggered by a mother event. A system with a branching ratio smaller than
one is called subcritical. Analogously a system can be critical (n = 1) or
super-critical (n > 1). In a subcritical system with one immigrant (mother)
event, the generations of daughters are limited and the system will die out
eventually. On the other hand, a single immigrant can lead to an explosion
(infinite events) of the system if every event statistically creates multiple
daughter events.
In a subcritical system with a constant (non time-dependent) background
intensity µ, the branching ratio equals the average fraction of the number
of descendants in the whole population of events [3].

9



Figure 1: Source: [1], Illustration of the branching structure of the Hawkes
Poisson process (top) and events on the time axis (bottom). Different
coloured markers correspond to different clusters; the dashed lines denote
descendants of the same cluster, and the number next to each event denotes
its order within the cluster. This picture corresponds to a branching ratio
equal to n = 0.88.

3.2 Kernels: Exponential vs. Power Law

The most commonly used kernel in finance is the exponential kernel, with
memoryless properties in such a stochastic process. [3],[1],[7],[8],[9]

h(t) =
1

τ
exp(− t

τ
)χ(t) (6)

This exponential kernel states that the probability for a daughter event to
be created after a mother event decreases exponentially with time.

However, if we assume the stock market behaves similarly to the energy
build-up and release of tectonic plates (resulting in earthquakes) we would
work with a kernel in the form of power-law (as done in [25]). This kernel is
often used for geophysical simulations. Compared to the exponential kernel
(formula 6), this kernel states that events can cause new events at a much
later time. In this context we can call a kernel which describes a situation
where mother events can still trigger daughter events even after a very long
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time a “long memory kernel”. This long memory power law kernel looks as
follows:

h(t) =
θcθ

(t+ c)1+θ
χ(t) (7)

The kernel for this Epidemic-Type Aftershock sequence [10],[11],[12],[13] has
a power law time-dependance and describes the modified Omori-Utsu law of
aftershock rates [3],[14],[15] Similarly to the exponential kernel, the heavy-
side function χ ensures the causality principle [3].

3.3 Estimation of kernel parameters

Confronted with real life market data, if we want to forecast the number
of mid-quote price changes, we need to estimate the kernel parameters (µ,
n, τ for exponential kernel or µ, n, c, θ for power law kernel). This can
be accomplished in multiple ways. The most obvious method is to reverse
engineer which events belong to which cluster. (The idea behind clusters
is illustrated in figure 1) Knowing the cluster, we can easily calculate the
average number of endogenous daughter events based on an immigration
event. However, Sornette and Utkin proved in 2009 [26] that this approach
has many drawbacks in the case of long-memory kernels.

Instead, we used the Maximum Likelihood Estimation method. The log-
likelihood function is already known in closed form for Hawkes Poisson pro-
cesses [23],[12]

The parameters for the Hawkes Poisson arrival rate in the sum-form (For-
mula 3) can be calculated by maximising the following log-likelihood func-
tion

logL(t1, ..., tN ) = −
� T

0
λ(t | Ft−)dt+

∑
log λ(ti | Fti−) (8)

where ti are the observed times of the events. In this specific case, where
we know the kernel to be of exponential form (Formula 6) and the back-
ground intensity is not dependent on time, the log-likelihood function to be
maximised becomes:
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logL(µ, n, τ | t1, ..., tN ) =

− µT − n
∑
ti<T

(
1− e−(T−ti)/τ

)
+
∑
ti<T

log

µ+
n

τ

∑
tj<ti

e−(ti−t)/τ

 (9)

Through maximisation we find the estimated parameters for the exponential
kernel

{µ̂, n̂, τ̂} = arg min
µ,n,τ

[− logL(µ, n, τ | t1, ..., tn)] (10)

This method does not take events into account which occurred before the
sample started. This, however, could explain some of the first events in the
sample. We thus believe those events are immigrants and are being described
with the background intensity µ, when in fact they are children events of
a past generation. This leads us to underestimate n and overestimate µ.
Similarly we have a distortion effect at the cut-off, after the sample ends.
We do not see all the daughter events of the events in our sample size as
these would lie outside our sample. This is especially true for events on the
far right side of our sample. This effect would lead to an underestimation
of n, which gets balanced by an overestimation of τ . The longer a memory
of a kernel is, the stronger this effect becomes.

Once the parameters µ, n and τ are estimated, they can be validated with a
goodness-of-fit between the real data and the model. A particularly useful
goodness-of-fit test, according to Ogata [12], is the residual analysis. This
is done by analyzing the residual process, defined as the nonparametric
transformation of the initial series of the event time stamps ti into [3]

ξi =

� ti

0
λ̂t(t)dt (11)

where λ̂t(t) is the conditional intensity of the Hawkes Poisson process esti-
mated with the maximum likelihood method. We can test the statement of
[18], that if the data set of events has been created using a Hawkes Poisson
process with kernel h(T ), the residual process ξi must be Poisson with unit
intensity. This goodness-of-fit can be tested in multiple ways:
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• visual cusum plot or Q-Q plot analysis

• statistical tests. e.g.

– independence tests applied to the sequence of ξi

– tests of the exponential distribution of the transformed inter-
event times ξi− ξi−1. This is equivalent to testing the uniformity
of distribution of the variable Ui = 1 − exp(ξi − ξi−1) between
[0, 1].

The calibration process could be used for real time analysis in, for example,
a high frequency trading environment. As such, it is important to optimize
the speed of such a calibration. Even though the log-likelihood function uses
O(N2) complexity if the kernel is of exponential or an approximate power
law form, it can be reduced to O(N) using recursive relation [23].

A further simplification of the computational process is the method devised
by Filimonov and Sornette in 2013 [3]. The following method not only de-
creases the number of local minimas and lets us present visually the search
space, it also decreases the computational complexity using dynamic pro-
gramming [3]. The trick is to split the set of parameters into two groups,
e.g. for the case of the exponential kernel. We split the parameter search for
µ, n, τ into two separate searches for µ, n and subsequently τ . The original
optimization problem

{µ̂, n̂, τ̂} = arg min
µ,n,τ

[− logL(µ, n, τ | t1, ..., tn)] (12)

becomes the optimization problem

{τ̂} = arg min
τ

S(τ | t1, ..., tN ) (13)

with

S(τ | t1, ..., tN ) = min
µ,n

[− logL(µ, n, τ | t1, ...tN )] (14)
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3.4 Detrending

The goal of this work is to find a way to predict the rate of arrival of mid-
price changes in a market. To do this, assuming the market follows Hawkes
Poisson with an exponential kernel, we need to estimate the parameters for
the exponential kernel n and τ . If the exogenous intensity µ is constant, this
estimation can be done using the methods described in chapter 3.3 using the
maximum likelihood function.

However, if the exogenous intensity µ is time dependent, a good estimation
of n and τ (the endogenous part, the kernel) is not possible as the model
assumes a constant exogenous intensity. If, for example, traders tend to
trade more frequently during early morning (many exo events), the algo-
rithm would mistakenly interpret exo events as endo events. To solve this
issue, if the underlying time dependent exogenous intensity is known, the
market data can and should be de-trended.

Detrending transforms the timestamps of our data. It is a sound assumption
that the original data set of timestamps follows a time dependent trend line.
The modified time stamps of the same data set follow a constant trend line.
The intensity deviations from this trend line will then be due to endogenous
processes. [6]

The original timestamps shall be called ti, and the detrended timestamps t∗i .
Detrending of ti works by integrating the trend function, here the exogenous
intensity µ(t), up to ti.

t∗∗i =

ti�

0

µ(t)dt (15)

The logical interpretation here would suggest that t∗∗i is the number of events
which would occur in the trend until the timestamp ti. This is directly
proportional to the detrended timestamps. We then need to rescale so that
the transformed time stamps are matching the original time stamps.

t∗0
!

= t0 = 0 and t∗max
!

= tmax with K = t∗∗max
tmax

t∗i =
1

K

ti�

0

µ(t)dt (16)
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4 Calibration of Prediction Algorithm

We want our algorithm to predict the number of events in the out-frame
based on input from the in-frame. The parameters of the algorithm need
to be calibrated in order to optimize its prediction performance which will
be measured by the performance indicators. A set of calibrated parame-
ters defines the setting of an algorithm. The calibration parameters and
performance indicators will be described shortly.

The algorithm to predict the number of mid-price changes works as follows:

1. For a given day, a trading activity trend is determined based on the
trading activity within an interval of certain trading days before the
given day. This time frame shall be called the “trend determination
timeframe.” (See section 4.1.3)

2. The data of the day under examination is detrended using the trend
found in step 1.

3. A “sample timeframe” - on which the prediction itself is based - is
selected. The Hawkes Poisson model is calibrated on this time frame
by using the parameter estimation method for the two kernels (see
chapter 3.3).

4. Combining the knowledge of these parameters and the mid-price changes
in the sample timeframe (in-sample), we can calculate the event (mid-
price change) arrival rate, or “intensity” using the Hawkes Poisson
model (eq. 3). For every mid-price change in the in-sample, the prob-
ability for descendant events, i.e. triggered mid-price changes, is cal-
culated for the out-sample (also called prediction time frame. In this
work the prediction time frame is one minute). The implementation
of this stochastic process is done using the thinning method described
in [5]. Because this is a stochastic process, we run the simulation to
estimate the prediction multiple times and calculate averages.

4.1 Introducing Calibration Parameters

The algorithm can be calibrated by different parameters and settings. This
thesis conducted performance tests with different settings in order to find
an optimal prediction algorithm.

The settings to be tested against each other are as follows:
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• Number of simulations

• Choice of kernel

• Detrending method

• Length of sample time frame

4.1.1 Number of Simulations

The Hawkes Poisson process (3) describes the intensity of occurring events.
Since the memory kernel is the probability for a descendant event to be
triggered, the entire Hawkes Poisson process is a stochastic process. To
obtain an adequate prediction for the number of mid-price changes, we have
to simulate the process multiple times and calculate averages.

4.1.2 Choice of Kernel

As discussed in chapter 3.2 different kernels can be used in the Hawkes
Poisson formalism and algorithm. We decided to compare the prediction
power of mid-price changes for the exponential short memory kernel (6) as
well as for the power law long memory kernel (7).

4.1.3 Detrending Method

Detrending of our data was done the following way:

1. A number of days leading up to the day we would want to detrend
is chosen. This time frame shall be called trend determination time
frame

2. The chosen timeframe is cleaned of days with different behaviour, as
using these days would skew our final trend as shown in [3]

3. The time series of events for the remaining days in the trend deter-
mination time frame are averaged. This averaged time series shall be
used as our trend. Why we can use this averaged time series as our
trend will shortly be described.

4. Using formula 16 the current day is detrended.
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The trend represents the average behavior of the exogenous intensity µ. We
found the trend however averaging the total intensity λ. We could do this
using the following following working assumption, which is illustrated in
figure 2:

• We want to find the trend for µ(t)

• As the intensity for the trend is normalized via the equation 16, the
absolute value is less important than simply the behavior over time.

• A trend is usually found by averaging time stamp data over multiple
days in the past. However, we can only find a trend for λ(t), not
directly for µ(t).

• Working assumption: The added average endogenous activity is con-
stant (Explanatory illustration in figure 2)

• If this working assumption holds true then the form of λ(t) = form of
µ(t) and we can use the total averaged intensity for detrending.
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Figure 2: We use the averaged total intensity of multiple days in the past
as the trend for unconditional intensity µ(t). This figure explains why we
can do this, even though the total intensity includes the endogenous inten-
sity. The time stamp series (e.g. of mid-price changes) for multiple days
in the past are added. The time stamps are either exogenous (black line)
or endogenous (green, blue, red line for different days respectively). As the
endogenous time stamps added from multiple days appear to occur evenly
distributed, the total measured intensity has the similar form as the aver-
age unconditional intensity. This can be seen by the fitted averaged total
intensity line (dotted)).
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Next we had to decide which days we use for detrending and how best to
find the average of intensity. In this chapter we will illustrate the rationale
behind those choices. In a later stage we will use the different methods on
real trading data to see which performs best.

a. Choosing a time frame over which the trend is determined : The more
days we use for detrending the less noise we have in our final averaged
trend. However the daily trends tend to change exceedingly over long periods
of time, as mentioned above. It has been shown, for example, that the
exogenous part has decreased relatively to the endogenous part over the last
10 years [3]. Thus taking an average over too long of a period does not yield
better results. We tested detrending on real data for one month and three
month periods.

0 2 4 6 8
0

20

40

60

80

100

h (hours of trading day)

In
te

ns
ity

Trend Averaged over 3 months

0 2 4 6 8
0

20

40

60

80

100

h (hours of trading day)

In
te

ns
ity

Trend Averaged over 12 months

0 2 4 6 8
0

20

40

60

80

100

h (hours of trading day)

In
te

ns
ity

Trend Averaged over 36 months

0 2 4 6 8
0

20

40

60

80

100

h (hours of trading day)

In
te

ns
ity

Trend Averaged over 120 months

Figure 3: Average intensity over different time frames, all ending on the date
04-01-2010. Resolution over 1000 packages. One clearly sees the typical U-
shape attributed to a lower activity during lunch time.

b. Cleaning of the timeframe on days of extreme trades and different be-
havior : We clean the days of the pre-defined timeframe by discarding non-
trading days as well as days with extreme trading behavior, i.e. extreme
peaks in the trading activity. Furthermore, time-shifts, such as summer or
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wintertime, were accounted for. As Filimonov and Sornette have shown in
[3], using days with extreme trading behavior to find trends will significantly
skew the trend. One way to find these days is to manually go through the
time period and flag days which exhibit this extreme behavior. However,
since part of the goal of this paper is to create an algorithm, which could, in
theory, be automatically used as a tool on the trading floor, this is not an
option. Days with different trading behavior often show an increase in the
number of trades. Big peaks of trading activity are usually so extreme such
that the total number of trades on those days is significantly larger than on
days without those big peaks. We thus use the extreme number of trades
per days as a proxy for extreme trading behavior on those days. In prac-
tice, we consider a quantile interval of days cut off from the extreme days
in terms of trading activity. In concrete, we tested both for (15% - 85%) as
well as (25% to 75%) quantiles. Furthermore days with big news, such as
fed rate announcements have a very different dynamics. We excluded those
days from the trend averaging.

c. Averaging : Every event on the days included in the trend analysis time-
frame were aggregated to one fictional day. As detrending works with the
rescaled (by K, see eq. 16) absolute averaged intensity, we can use this as
a trend. Since the aggregated day has many more time stamps, we can
coarse-grain the time stamps by combining N consecutive timestamps on
the aggregated day and average the time for an averaged time stamp. In
this way the total number of events for our aggregated day would more
closely resemble that of an average day. Hence N would approximately be
the number of days over which the average was performed. This does not
in any way increase the quality of our detrending, but it is, however, a good
method for illustration.

The shape of the trend changes over time. It is natural to assume that the
days closer to the day we want to predict the number of trades for are more
influential in finding the correct trend of the current day than days further in
the past. To include this assumption into the trend determination, one could
use a Exponentially-Weighted-Moving-Average EWMA to give days closer
to the target day more importance. For every day we use for averaging, we
include every time stamp of the mid-price change only with a probability
of pi = e−α·∆ti where ∆t is the difference in days to the day we are trying
to predict. For the forecasting algorithm we decided to test EWMA with
α = 0.1, which equals an exponential drop off after two months.
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Figure 4: Illustration for Exponentially Weighted Moving Average. After
having decided which days should be used for the in-frame, the remaining
days in the in-frame are given a weight each. This weight is calculated based
on an Exponential drop off (red line). The further the day lies in the past,
the less it is Weighted for the Average (blue bars). This process gives us
the trend used for detrending the current day. For the consecutive days the
process has to be Moved accordingly.

If we look at figure 3 we may be tempted to use a polynomially fit to smooth
the averaged trend. To analyse the difference between the raw - i.e. un-
smoothed - trend as well as the polynomially-fitted trend we plot these two
trends and their respective detrended day in the following figure 5
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Figure 5: From left to right. First column: The raw un-detrended trading
data of an exemplary day (here 03-May-2010). Second column, bottom
row: the trend using normal averaging over a time window of three months.
Second column, top row: Detrended day using the trend of the bottom row.
Third column, bottom row. Polynomial fit to the raw trend. Third column,
top row: Detrended day using the polynomial trend of the bottom row. The
peaks early in the morning and late in the evening are marked with red
circles. One can clearly see in the bottom right figure, that the polynomial
fit does not include those peaks. Consequently the detrended data with the
polynomial fit (top row, right figure) still show these peaks even though
these peaks are part of the unconditional time dependent intensity µ(t) we
would like to detrend.

The trend for the unconditional intensity shows the expected U-shape ([3],[24]).
Over lunchtime fewer trades occur than early in the morning and later in
the evening. Just at the time of opening and at the time of closing, two
peaks can be seen – these are the first and last auctions of the day.

We can clearly see that using polynomial fitting would lead to counting the
opening and closing peak as an endogenous events. Using the raw average
detrended these peaks as well. This effect can clearly be seen in figure 5.
The top left graph is the un-detrended, original trading data for a given day.
Using the trends (bottom row) once with the polynomial assumption and
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once with the raw trend we see the U-shape disappear. However, only the
raw trend is able to detrend the peaks early in the morning and late in the
evening.

For the experiment on the prediction power of different models, we used the
non-fitted trend both for EWMA and for normal averaging.

Furthermore, the whole set-up will be tested without performing the de-
trending.

4.1.4 Sample Timeframe

The sample timeframe is the timeframe on which the estimation of param-
eters of the Hawkes Poisson model is based. The longer the sample time-
frame, the better the algorithm results, but also the higher the computable
requirements to perform the calculation. As the dynamics of the market
changes substantially from trading hours to non-trading hours the sample
timeframe must fully lie in the trading hours. This small caveat means that
predictions cannot be made for the first few minutes of the trading day as
a sufficiently large sample timeframe has not been reached yet. We cannot
use data from the end of the previous trading day as these events could have
offspring events after closing hour and do not influence new events over 12
hours later at the opening of the new trading day. Nevertheless, one could
employ smaller sample time frames in the morning but those predictions
would be less reliable.
The sample frame does not include any data from the future in the experi-
mental setup. There is no look ahead bias.

4.2 Calibration: Number of Simulations

As discussed previously the stochastic nature of the multiple Hawkes Poisson
model simulations have to be performed in order to average and improve the
results. To find the number of simulations needed for the prediction of the
relative deviation to no longer fluctuate, we performed the following test.

4.2.1 Test Setup

We try to find the number of simulations needed for the averaged relative
deviation between the algorithmically predicted number of events and the
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actual number of events in the prediction timeframe. Once the relative
deviation is sufficiently small and stops fluctuating, a sufficient number of
simulations has been reached.

We set up a test with a synthetic time series. When we talk of synthetic time
series we mean a time series we created using the Hawkes Poisson algorithm
3 with a kernel and its corresponding set of parameters that we choose. The
advantage of the synthetic time series are two-fold.

1. The actual parameters of the Hawkes Poisson process (µ, n and τ
for exponential kernel) are known and thus the deviation we measure
comes only from the simulation, not from the estimation of the pa-
rameters.

2. The prediction algorithm assumes that the Hawkes Poisson process
governs the dynamics. However, other dynamics can also play a role
in real life trading data. With a synthetic time series we can estimate
a good number of simulation for a purely Hawkes Poisson “reality”.

Our test setup is as follows:

1. A kernel and its corresponding parameters are chosen.

2. The length of the synthetic time series is defined from [0, tend].

3. We define a time t0 with 0 < t0 < tend from which we would like to
predict and the length of the time frame which ends at t0 and will
be the input to the algorithm described in chapter 3.3 to predict the
parameters (µ, n, τ for short memory exponential Kernel and µ, n, c,
θ for the long memory power law kernel.) (Sample frame)

4. A synthetic time series for the time window [0, tend] length is simulated
applying the intensity λ of the Hawkes Poisson model (3) for every
event in the sample time window. Thinning method as described in
[5] was used.

5. Simulation for a prediction time frame starting at time t0 is done using
the kernel and parameters we used to create the synthetic reality with
the thinning method from [[5]]. We measure the discrepancy between
the number of events our algorithm predicted in the timeframe [t0 tend]
and the actual number of events in the (synthetic) reality. This step
is repeated Nsim times and the results are averaged.
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Figure 6: A visualisation of the synthetic simulation. The total averaged
number of simulated events (red) between t0 and tend are compared with
the synthetic reality (blue).

The performance indicator of the test was the decrease of fluctuation in the
relative deviation of predicted number of events versus number of events in
the synthetic reality for the same prediction timeframe.

The estimation value for the relative deviation was the following:

E[Relative Deviation] =
E[Ne −Nr]

E[Ne]
(17)

where Ne is the number of estimated events in the prediction time frame
and Nr the actual number of events in the prediction time frame. Here. Nr

is from the synthetic time series. For later experiments we used Nr of actual
trading data.

4.2.2 Test Results

The synthetic reality test was performed for different parameter values of the
Hawkes Poisson equation. While the relative deviation for different parame-
ter value combinations was different, the qualitative behavior of fluctuation
was similar across all different parameter realities. The following figure
therefore serves as an example of this qualitative trend.
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Figure 7: Expectation value and variance of relative deviation averaged over
different number of simulation. One clearly sees the fluctuation when we
average over too few simulations. After ca. 100 simulations the fluctuation
gets smaller. To be certain to avoid overly large deviations in the prediction
algorithm due to averaging over too few simulations, we chose to average
over 300 simulations.

Result: We choose to average over 300 Simulations. This is a good com-
promise between short computational time and sufficiently large sample size
for averaging in order to decrease the bias to do being a stochastic process.

4.3 Calibration: Multiple Trend-Determination Methods

As described in chapter 3.4, determining the correct way to find a trend is
not trivial thus we decided to test several trend-detection methods on real
data.

4.3.1 Test Setup

We want to know which trend-detection method (as well as which sample
frame length and which choice of kernel in the consecutive chapters) yields
the best prediction strength for the number of mid price changes. To do
this, we tested the prediction algorithm with the different parameter values
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on real data and compared the prediction strength through various perfor-
mance indicators.

Data Experiments were performed on data from the E-mini S&P500 fu-
ture contracts, which are being traded in the Chicago Mercantile Exchange
(CME). The CME started selling E-minis in 1997 as a smaller contract size
alternative to pre-existing S&P500 future contracts. The calibration method
developed in this work is based on the data of the trades in the year 2011.
All time stamps were rounded to the nearest milli-second. The data set was
cleaned of gaps, non-trading days and non-trading hours. Further, rollover-
weeks were not used for the experiment. A rollover week is based on the
following situation. Every third Friday of March, June, September and De-
cember future contracts expire. Eight days before the contract ends - the
second Thursday of March, June, September and December - the liquidity
(in volume) of the contract that is going to expire is switched to the contract
that will expire only in the subsequent quarter. This follows another dy-
namic which would most likely spoil the calibration of the Hawkes Poisson
model.

Calibrating the Hawkes Poisson model requires that the stationarity holds.
It has been shown that stationarity cannot hold for time windows during
which major macro-economic news announcements occur [2]. Just before
these announcements, nearly all trading comes to halt in anticipation of the
news. After the announcement trading rates shoot up very quickly. To be
able to calibrate the Hawkes Poisson models effectively, we exclude those
days.

Lastly, known days, such as where new federal rates were published, were
not used for the experiment. In 2011 these were 26-Jan-2011, 15-Mar-2011,
27-Apr-2011, 22-Jun-2011, 09-Aug-2011, 21-Sep-2011, 02-Nov-2011 and 13-
Dec-2011.

The E-mini market of 2011 had the following behavior:
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Figure 8: Analysis of every minute during trading hours on the E-Mini
S&P500 market in 2011. The top left figure shows the distribution of actual
number of mid-price changes for every minute during trading hours in 2011.
The other three figures show for the same time windows the distribution of
the estimated parameters for the exponential kernel.
Most sample minutes in 2011 had less than 50 trades. We would assume,
that these sample minutes would dominate the behavior of µ, n and τ .
Appendix 2 was attached to this thesis to show, how the distribution of
mu, n and tau differ for a different subset of sample minutes with different
number of midprice changes per minute.

Number of Mid-price
Changes

µ n τ

First Quartile 10 2.2 0.7 0.17
Median 26 4.6 0.82 0.208
Third Quartile 54 8.6 0.88 0.255
Mean 45 6.9 0.81 0.219
Variance 6105 61.9 0.01 0.007
Variance (w/o 5% outliers) 1015

Table 1: Detailed statistics of distribution of “Number of Mid-price
Changes”, “Estimated µ”, “Estimated n” and “Estimated τ” for figure 8
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The estimation of Hawkes Poisson parameters was done with the experimen-
tal set-up 4, which will be described further in table 4.3.2. The estimation
algorithm is being described in chapter 3.3. As they are estimations, they
are afflicted with a (negligible) bias and are included here only for qualita-
tive purposes.

We see that most minutes during trading hours in 2011 have had less than
150 mid-price changes. However during some extreme times, many more
mid-price changes occurred. The 90% Quantile of number of mid price
changes per minute was 95. The 95% Quantile 136 mid-price changes. These
values are of importance if we want to define “extreme” events in the future.
Furthermore, µ looks like bell curve but skewed towards larger values. This
stems from the fact that we cannot have negative µ. From the comparison
of low µ and higher number of mid-price changes we can already see that
the endogenous intensity is higher than the exogenous intensity.
Similar to µ, τ looks like a normal distribution around 0.2 with a light skew
towards larger values. Which is not surprising because tau, per definition,
could not be larger than zero.
N is consistently under 1, but closer to criticality, with a mean n of 0.8. This
coincides with findings of [3]

4.3.2 Performance Indicators

The different set-ups were ranked according to the following performance
indicators:

• Mean Relative Deviation (E[Ne−Nr
Ne

])

• Median Relative Deviation

The median of the relative deviation is the median for all relative deviations
of all predictions made for the year 2011 on the S&P500 E-Mini market.
We must choose how we value a low mean relative deviation compared to a
low median relative deviation depending on the trading situation. Does one
prefer to have most predictions correct, accepting that some predictions are
way off (preference for low median relative deviation), or does one prefer a
prediction model which tries to minimize the number of extremely wrong
predictions (preference for low mean relative deviation)? Obviously an op-
timal algorithm has both low median relative deviation as well as low mean
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relative deviation.

One possible application of the mid-price change prediction algorithm is its
ability to predict extreme events, e.g. minutes with very high trading activ-
ity. We defined extreme events as any minute with more than 95 mid-price
changes. (This value is the 90% Quantile of the year 2011; tests were also
conducted for extreme events defined by having more than 136 mid-price
changes per minute, which corresponds to the 95% Quantile in 2011. Those
additional tests can be seen in the appendix.) The performance benchmarks
for this extreme-event-prediction are as follows:

False positive rate is defined as

False Positive

False Positive + True Negative
=

FP

FP + TN
=
FP

N
(18)

The true positive rate (also called sensitivity) is defined as

True Positive

False Negative + True Positive
=

TP

FN + TP
=
TP

P
(19)

Here false positive, false negative, true positive and true negative are the
number of minutes for the year 2011 for which the prediction algorithm
incorrectly, respectively correctly predicted the following minute to have
more/less than 95 mid-price changes.

We tested the following 12 configurations. For easier referencing they are
labelled from 1 to 12.

In the following section, we will analyze the most interesting results for these
configurations. A table containing the complete set of results can be seen in
the appendix.
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4.3.3 Test Result

Figure 9: Top Figure: Median vs. Mean Relative Deviation for all differ-
ent experimental configurations. Bottom Figure: False positive rate versus
true positive rate for all different experimental configurations. The three
arrows always point from a setup to a similar setup with just one changed
parameter. Red arrow: 3 month trend determination time frame→ 1 month
trend determination time frame. Purple arrow: Exclusion of 30% of days
in the trend determination time frame due to extreme trading behavior →
Exclusion of 50% of days in the trend determination time frame due to ex-
treme trading behavior. Green arrow: Equally weighted averaging method
for trend determination → Exponential weighted moving average for trend
determination. On the following pages the difference of prediction perfor-
mance for the three setup differences are discussed. Setup 8 is not shown in
the bottom figure, as it lies outside the visible axis.
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Trend Determination Timeframe We tested the prediction algorithm
for the trend determination timeframe of one month as well as three months.
All other parameters were kept the same.

Label 1 5

Kernel Exp Exp
Trend 3 month (15%-85%) 1 month (15%-85%)
Sample Frame (min) 30 30
Absolute Value of Median of Relative Deviation 4.1% 5.4%
Mean of Relative Deviation 53.2% 51.9%
False Positive Rate Q90 3.7% 3.4%
True Positive Rate Q90 51.0% 49.9%

Table 2: Forecasting performance for two configurations with different trend
determination timeframes. See figure 9, red arrow

In figure 9 we see that the mean relative bias is already quite high at 50%.
This means that the average prediction states the number of events as 50%
too high. While the mean deviation drops ever so slightly for shorter trend
determination periods, the median prediction accuracy improves by 25%
from 4% overestimation to a little over 5% overestimation.

If we look at the distribution of the performance indicators for all configu-
rations, we see that the difference in the true positive rate and false positive
rate for the different trend determination frame lengths is benign. Thus we
cannot definitively state that one trend determination frame length performs
better than the other trend determination frame length.
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Cleaning of Extreme Days for Finding a Trend As discussed in
chapter 4.1.3, we do not include days with an extremely high or extremely
low total number of mid-price changes when finding the trend. We tested
the prediction algorithm once for a trend where the bottom and top 15%
quantiles were excluded and once where the top and bottom 25% quantiles
were excluded.

Label 1 6

Kernel Exp Exp
Detrending (Quantile) 3 month (15%-85%) 3 month(25%-75%)
Sample Frame (min) 30 30
Absolute Value of Median of Relative Deviation 4.1% 4.4%
Mean of Relative Deviation 53.2% 53.2%
False Positive Rate Q90 3.7% 3.6%
True Positive Rate Q90 51.0% 50.7%

Table 3: Forecasting performance for two configurations with different clean-
ing of extreme days methods. See figure 9, purple arrow

Again, we see in figure 9 that the difference in the mean of relative bias
as well the change of the absolute value of the median of relative bias is
negligible between the two averaging methods.

Changing the Quantiles of days included in the trend determination frame
did not improve or worsen the prediction performance of the algorithm as
seen in the fpr and tpr performance indicator. As such, we cannot conclu-
sively state which method works better.
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Trend-Detection: Non-Weighted Averaging versus EWMA We
tested two averaging methods for finding the trend.

• Averaging equally over all days in the trend determination frame, i.e.
not including weights.

• Exponentially-weighted moving average (EWMA), where days closer
to the present are weighted more for the trend to be detected. Every
day was weighted p = exp(−0.1∆t) where ∆t is the time difference (in
days) counted from the prediction day.

The results are as follows:

Label 1 3

Kernel Exp Exp
Detrending (Quantile) 3 month (15%-85%) EWMA 3 month (15%-85%)
Sample Frame (min) 30 30
Absolute Value of Median of Relative Deviation 4.10% 4.8%
Mean of Relative Deviation 53.20% 53.5%
False Positive Rate Q90 3.7% 3.5%
True Positive Rate Q90 51.0% 50.8%

Table 4: Forecasting performance for two setups with different trend aver-
aging methods. See figure 9, green arrow

We see here a very similar picture to the previous trend determination set-
tings. The prediction performance measures in mean relative deviation,
median relative deviation, true positive rate or false positive rate do not
change substantially with the choice of averaging method. Based on these
data we cannot conclusively recommend EMWA over normal averaging.
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Detrending versus No Detrending Lastly, we tested how the predic-
tion algorithm performed if we did not at all detrend the data of the day for
which we would like to predict the number of mid-price changes. Though
the necessity of detrending was stated in the theory section, it is sensible
to assume that for sufficiently short sample timeframes, the unconditional
intensity can be considered constant.

Label 1 3 5 6 4

Kernel Exp Exp Exp Exp Exp

Trend
3 month
(15%-85%)

EWMA
1 month
(15%-85%)

3 month
(25%-75%)

No Detrending

Sample Frame (min) 30 30 30 30 30
Absolute Value of Median
of Relative Deviation

4.1% 4.8% 5.4% 4.4% 1.7%

Mean of Relative Deviation 53.2% 53.5% 51.9% 53.2% 31.7%
False Positive Rate Q90 3.7% 3.5% 3.4% 3.6% 1.8%
True Positive Rate Q90 51.0% 50.8% 49.9% 50.7% 65.3%

Kernel Exp Exp

Trend
3 month
(15%-85%)

No Detrending

Sample Frame (min) 90 90
Absolute Value of Median
of Relative Deviation

7.3% 9.6%

Mean of Relative Deviation 49.2% 21.3%
False Positive Rate Q90 3.1% 1.2%
True Positive Rate Q90 50.6% 59.4%

Label 9 12

Kernel Pow Pow

Trend
3 month
(15%-85%)

No Detrending

Sample Frame (min) 90 90
Absolute Value of Median
of Relative Deviation

10.9% 11.8%

Mean of Relative Deviation 45.9% 23.3%
False Positive Rate Q90 1.2% 0.6%
True Positive Rate Q90 23.9% 37.6%

Table 5: Forecasting performance of multiple configurations to compare fore-
casting algorithms where detrending was used with forecasting algorithms
where no detrending was used. See figure 10
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Figure 10: Top figure: Median versus Mean Relative Deviation for all differ-
ent experimental configurations. Bottom figure: False positive rate versus
true positive rate for all different experimental configurations. The arrows
point from setups with detrending to a similar setup without detrending.

Not performing any detrending improves the mean performance for predic-
tion remarkably. Judging only on the median of relative bias, we cannot
clearly state if detrending or detrending yields better results. However, if
we look at the false positive rate and the true positive rate, we see that NOT
detrending actually massively lowers the false positive rate and increases the
true positive rate, in turn increasing the quality of our predictions. This was
especially surprising as the U-shape trend can be clearly seen in all the data
and all past research on this topic assumed detrending would increase the
accuracy of the Hawkes Poisson algorithm.
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This result could imply that the behaviour of the time-dependent exogenous
intensity µ(t) may be regular over long periods of time but have very indi-
vidual specific behaviour for the individual day. Detrending works with the
assumption that the trend equals the time dependent behaviour of the time
dependent exogenous intensity. Detrending with the wrong trend would
mean to detrend endogenous behavior at some points whilst not detrending
actual exogenous time dependent behaviour at other points in time. Fur-
ther trend determination methods are proposed, especially for much shorter
trend determination time frames as we had to assume stationarity of the
exogenous intensity when using long trend determination time frames.

We choose not to use detrending for the number of mid-price
changes prediction algorithm.

4.4 Calibration: Sample Frame

Theoretically the more input data we feed into the algorithm, the better the
prediction for the Hawkes Poisson parameters and the number of mid-price
changes should become. However, the longer the sample frame, the more
computational power is needed. We tested the prediction algorithm with
different length of input frame length (10min, 30 min, 60min and 90min).
Recall that we expect the assumption of a constant unconditional intensity
to be truer for shorter sample timeframes.

4.4.1 Test Setup

The test setup and performance indicators were the same as for the trend
deciding test. (See page 26)
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4.4.2 Test Result

Label 8 1 7 10

Kernel Exp Exp Exp Exp

Trend
3 month
(15%-85%)

3 month
(15%-85%)

3 month
(15%-85%)

3 month
(15%-85%)

Sample Frame (min) 10 30 60 90
Absolute Value of Median
of Relative Deviation

6.8% 4.1% 6.1% 7.3%

Mean of Relative Deviation 66.6% 53.2% 52.1% 49.2%
False Positive Rate Q90 9.2% 3.7% 3.3% 3.1%
True Positive Rate Q90 57.4% 51.0% 50.2% 50.6%

Label 4 11

Kernel Exp Exp
Trend No Detrending No Detrending
Sample Frame (min) 30 90
Absolute Value of Median
of Relative Deviation

1.7% 9.6%

Mean of Relative Deviation 31.7% 21.3%
False Positive Rate Q90 1.8% 1.2%
True Positive Rate Q90 65.3% 59.4%

Label 2 9

Kernel Pow Pow

Trend
3 month
(15%-85%)

3 month
(15%-85%)

Sample Frame (min) 30 90
Absolute Value of Median
of Relative Deviation

4.8% 10.9%

Mean of Relative Deviation 54.1% 45.9%
False Positive Rate Q90 3.7% 1.2%
True Positive Rate Q90 48.6% 23.9%

Table 6: Forecasting performance of multiple setups to compare how the
length of the sample frame impacts forecasting performance. See figure 11
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Figure 11: Top figure: Median versus Mean Relative Deviation for all differ-
ent experimental configurations. Bottom figure: False positive rate versus
true positive rate for all different experimental configurations.The arrow
points from short sample frames to larger sample frames.

As expected, the longer the sample frame, the lower the mean of relative
deviation simply because we have a larger number of data points to perform
the calibrations on. We see a big increase in mean deviation error as well as
median of relative deviation from 10 minutes to 30 minutes. While the mean
deviation further decreases from 30 minutes to 60 minutes and 90 minutes
respectively, the median of relative bias worsens.
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We see a similar picture for the false positive rate and true positive rate
analysis. The false positive rate more than halves from 9.2% to 3.7% when
increasing the sample frame from 10 minutes to 30 minutes for the exponen-
tial kernel configuration. The further improvements from 30 minutes to 60
minutes and to 90 minutes are much smaller.

Increasing the input frame generally lowers the numbers of predicted mid-
price changes. While there is big reduction in the false positive rate for the
power law kernel configuration when increasing the input frame, the true
positive rate falls to the extremely low value of under 25%. This is not
acceptable for a prediction algorithm.

As the pre-trading hours dynamic is different from the trading hours dy-
namic, the sample frame must fully lie during trading hours. Hence we
cannot predict the number of mid-price changes in the ‘heat up phase’ in
the morning. One option would be to gradually increase the sample frame
length during the early morning with the knowledge that the first predic-
tions are less accurate. Further tests are suggested in the future with such
a system.

We chose a sample frame length of 30 minutes.

4.5 Calibration: Choice of Kernel

4.5.1 Test Setup

The test setup and performance indicators were the same as for the trend
deciding test. (See page 26)
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4.5.2 Test Result

Label 1 2 Label 10 9

Kernel Exp Pow Kernel Exp Pow

Trend
3 month
(15%-85%)

3 month
(15%-85%)

Trend
3 month
(15%-85%)

3 month (15%-85%)

Sample Frame (min) 30 30 Sample Frame (min) 90 90
Absolute Value of Median
of Relative Deviation

4.1% 4.8%
Absolute Value of Median
of Relative Deviation

7.3% 10.9%

Mean of Relative Deviation 53.2% 54.1% Mean of Relative Deviation 49.2% 45.9%
False Positive Rate Q90 3.7% 3.7% False Positive Rate Q90 3.1% 1.2%
True Positive Rate Q90 51.0% 48.6% True Positive Rate Q90 50.6% 23.9 %

Label 11 12

Kernel Exp Pow
Trend No Detrending No Detrending
Sample Frame (min) 90 90
Absolute Value of Median
of Relative Deviation

9.6% 11.8%

Mean of Relative Deviation 21.3% 23.3%
False Positive Rate Q90 1.2% 0.6%
True Positive Rate Q90 59.4% 37.6%

Table 7: Forecasting performance of multiple setups to compare how the
choice of kernel impacts forecasting performance. See figure 12
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Figure 12: Top figure: Median versus Mean Relative Deviation for all differ-
ent experimental configurations. Bottom figure: False positive rate versus
true positive rate for all different experimental configurations. The arrow
points from exponential kernel to power law kernel.

The median of relative bias is higher for the power law kernel than for the
exponential kernel.

The mean relative bias is slightly higher or slightly lower for power law ker-
nel compared to exponential kernel depending on which other parameters
were chosen. While the absolute median of relative bias is worse for long
memory power law kernel, we cannot yet justify the choice of one kernel over
the other just from the top figure of figure 12.

Logically the difference between the exponential kernel and the power law
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kernel for shorter sample frames is less pronounced than for longer sample
frames. Power law kernels are long memory kernels and would need long
sample frames to correctly estimate parameters and the number of mid-price
changes. On the other hand, for longer sample frames the power law kernel
estimates a much lower number of events, and as such, lowers the false posi-
tive rate and lowers the true positive rate. We expect our prediction to find
at least 50% of the extreme trading minutes and thus chose the exponential
kernel over the power law kernel.

Figure 13: Distribution of power law kernel parameters in 2011 estimated
through configuration 10 (90 minutes sample frame, no detrending used,
power law kernel). Estimation of parameters was done using the estimation
algorithm described in chapter 3.3 using the maximum likelihood estimator.

In figure 13 we examine all minutes sampled in 2011 for a sample frame of
90 minutes with no detrending to find the distribution of estimated power
law Hawkes Poisson parameters (µ, n, c and θ). For µ we see a peak at
five. As can be seen in figure 8 the number of mid-price changes goes much
higher than five, implying that the majority of events were essentially en-
dogenous. This is supported by the near-critical value for n, as can be seen
in the respective subplot of Figure 13.
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If we look at the distribution of power law kernel parameters in 2011 es-
timated through configuration 10, we can see extremely high values for c
and θ. This implies a short memory, similar to an exponential short term
memory kernel. This is a further indication that the market follows a expo-
nential kernel dynamics. The peaks on the bottom left graph for c are due
to numerical issues in the estimation algorithm. The bottom subplots are
specific to the parameters of the power law kernel. The central plot simply
magnifies the last subplot.

This could be a further indicator that the real life data may not follow the
Hawkes Poisson dynamics with power law long memory kernel. For that
reason, and the performance indicators comparing power law kernel setups
with exponential law setups, we chose to use the exponential kernel
for our prediction algorithm.

4.6 Test Results Combined

To recapitulate the last chapters, we decided to use 300 simulations, not
use detrending, chose an exponential kernel and use a sample frame
length of 30 minutes.

Not only would we like to calibrate the model to its optimum, we also need
to compare our algorithm to different prediction methods. We chose to
compare the prediction performance of our algorithm with the prediction
performance of the naive approach where we use the average arrival rate
〈λ〉 to predict the average number of events in the prediction time frame:
E[Midprice Changes] = 〈λ〉∆t. The derivation for the average intensity is
the following
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〈λ(t)〉 = 〈µ+

� t

−∞
ϕ(t− s)dN(s) (20)

= 〈µ〉+

� t

−∞
ϕ(t− s)〈λ(s)〉ds (21)

= µ+ 〈λ(t)〉
� ∞

0
ϕ(t)dt (22)

= µ+ 〈λ(t)〉n (23)

which leads to (24)

〈λ〉 =
µ

1− n
(25)

where ϕ expresses the positive influence of the past events ti on the current
value of the intensity.
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Figure 14: Median versus Mean Relative Deviation for all different experi-
mental configurations. The arrow points from our prediction algorithm to
the prediction using the averaged intensity 〈λ〉. Clearly, the naive approach
consistently yields worse results.
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Figure 15: False positive rate versus true positive rate for all different ex-
perimental configurations. The arrow points from our prediction algorithm
to the prediction using the naive approach via the averaged intensity 〈λ〉.
Clearly, the naive approach consistently yields worse results.

We can clearly see that our algorithm outperforms the simple algorithm of
〈λ〉∆t

Furthermore figure 15 shows that setup Setup 4 and 11 yield the best
prediction. These are the setups with exponential kernel and no detrending
used:
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Label Kernel Trend Input Frame (min)

4 Exp No Detrending 30
11 Exp No Detrending 90

If a trader uses this algorithm as a tool, he needs to know the trustworthiness
of a positive (extreme event) prediction or negative (non-extreme event)
prediction. The positive predictive value

PPV =
True Positive

True Positive + False Positive
(26)

and negative predictive value

NPV =
True Negative

True Negative + False Negative
(27)

for those configurations in 2011 are:

Setup 4 11

Positive Predictive Value Q90 80.7% 85.9%
Negative Predictive Value Q90 96.2% 95.3%

5 Stability of Prediction Algorithm

After calibrating the prediction algorithm, we want to know how stable the
Hawkes Poisson algorithm is in predicting the number of mid-price changes.
How does the prediction performance change for different realities (differ-
ent Hawkes Poisson parameters)? As we concluded in chapter 4.5.2 it is
reasonable to assume the dynamics of the E-Mini market in 2011 are well
described by an exponential short memory kernel Hawkes Poisson process.
Thus we would like to test how our prediction would perform for different
values of n as well as for τ .
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5.1 Prediction Quality of Calibrated Algorithm Based on
Changing Hawkes Poisson Parameters

Testing prediction performance for different parameter realities requires that
we know the parameters of said reality, as well as be able to change just one
parameter at a time. This is possible for a synthetically created time series
as explained in chapter 4.2.1.

The configuration for a given parameter set for the exponential Hawkes
Poisson process was as follows:

1. The length of the synthetic time series is defined from [0 tend].

2. We define a time t0 with 0 < t0 < tend from which on we would like
to predict and the length of the time frame which ends at t0 and will
be the input to the algorithm described in chapter 3.3 to predict the
parameters (µ, n, τ for short memory exponential Kernel and µ, n, c,
θ for the long memory power law kernel.) (Sample frame)

3. A synthetic time series for the time window [0 tend] length is simulated
by applying the intensity λ of the Hawkes Poisson model (equation 3)
for every event in the sample frame.

4. The parameters µ, n and τ are estimated on the sample frame by using
the maximum likelihood estimator method described in chapter 3.3

5. Simulation for a prediction timeframe starting at time t0 estimated
parameters. We measured the discrepancy between the number of
events our algorithm predicted in the timeframe [t0 tend] and the actual
number of events in the (synthetic) reality. This step is repeated Nsim

times and the results are averaged.

6. As the process of creating a reality is stochastic in itself, the entire
experiment is repeated and results are averaged.
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Figure 16: Relative Deviation and Variance for constant µ = 1 and τ = 1
but varying n both for the Hawkes Poisson prediction algorithm as well as
the naive assumption of 〈λ〉∆t for prediction.

As we work within a reality perfectly created with a Hawkes Poisson pro-
cess, the deviation is much smaller than on the test performed on real market
data. We are, however, only interested in the behavior of the prediction for
changing parameters, not its value.

The relative mean deviation from events predicted and actual number of
events is not dependent on the endogenous parameter, the branching ratio
n. The change we see in the top of figure 16 can be attributed to noise. This
is even more surprising, as the values of n approach criticality, the system
becomes more and more complex.

The variance of the relative deviation, however, increases with n. This is
particularly true for the prediction with the naive assumption and a further
argument to use the Hawkes Poisson prediction algorithm to predict the
number of events (i.e. mid-price changes)
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Figure 17: Relative Deviation and Variance for constant µ = 1 and τ = 1
but varying τ both for the Hawkes Poisson prediction algorithm as well as
the naive assumption of 〈λ〉∆t for prediction.

For very high values of τ , which implies that the probability of an event
having a daughter event at a later time is much higher, the relative deviation
for the naive prediction gets worse, while the detailed prediction algorithm
based on the Hawkes Poisson model performs equally well. However, the
variance of deviation improves, gets smaller, for longer lifetimes τ . We show
in figure 8 that the E-mini market has rather short lifetimes between 0.1 and
0.4 minutes, so we can assume good mean prediction but a lot of variance
from our algorithm.

5.2 Analysis of the Evolution of Selected Hawkes Poisson
Parameters

We calibrated our algorithm for trading data of the E-Mini S&P500 market
in the year 2011. As a further test we analysed how the prediction algorithm
performed for different years. We chose to include the years 2007 to 2012
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since this includes the turbulent years of the stock market crash 2008 as well
as 2010 and 2011 flash crashes.

Figure 18: Performance indicators for Hawkes Poisson prediction algorithm
on S&P500 E-Mini market data from 2007 to 2012. From top to bottom.
First graph: Mean of relative deviation of prediction. Second graph: True
Positive Rate TPR is the percentage of all extreme events the algorithm
could predict of each respective year. Third graph: False positive rate FPR
is the percentage of all non-extreme events, which are falsely flagged as
extreme events by the prediction algorithm. Fourth graph: True positive
value TPV tells the ratio of correctly predicted extreme events to the total
number of predicted extreme events. Negative Predictive Value NPV tells
the ratio of correctly predicted non-extreme events to the total number of
predicted non-extreme events.

Incidentally, for most performance indicators, the prediction algorithm per-
formed better on other years than for 2011. We believe that this is caused
by the chaotic behavior before and during the flash crash of 2011. In 2011,
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we had quite high exogenous intensity as well as a high endogenous intensity
(see figure 20). In 2011 the prediction algorithm overestimated the number
of mid-price changes by 50%. In 2007 this nearly half, with just over 25%.
Future studies may test if the prediction algorithm applies to other years in
the past in order to see if this trend continues. However, using data from
the past may lead to some issues. Firstly, the volume of trades was lower, so
the prediction algorithm would have much less data to work with. Secondly,
the endeogenity was much lower in the past [3], thus most events occurred
due to exogenous factors, which cannot as easily be predicted with market
data.

Figure 19: Estimated average yearly unconditional intensity(µ), endeogenity
(n) and over time from 2007 to 2012.
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There is no overall clear trend to be seen for the exogenous intensity µ over
the years. However, the two peaks in 2008 and 2011, respectively, coincide
with the stock market crash in 2008 and the the August 2011 stock market
crash. This crude observation implies that crises and crashes do have not
only an endogenous but also exogenous component.

There is a strong increase from 2007 to 2010 with a decrease in the following
years for the endogenous factor n. The branching ratio ranges between 0.75
to 0.83, which is approaching the critical value of 1. What is striking is that
the peaks do not resemble those from the unconditional intensity. The peak
of the branching ratio as the direct measure of endogeneity implies that the
crash or more generally the activity that occurred in 2011 are mostly of
endogenous nature.

The slight downward trend of τ over the years is very crude and can, in fact,
not be concluded as such. A downward trend would imply that, over the
years, the memory kernel became less influential, meaning that the tendency
of an event to trigger a single daughter decreased. A high branching ratio,
however, could, in principle, more than compensate for this.

6 Conclusion

We were able to successfully implement and calibrate a forecasting algorithm
to predict the number of mid-price changes. The two most successful setups
were based on the Hawkes Poisson process with exponential kernel.

Kernel Trend Input Frame (min)

Exp No Detrending 30
Exp No Detrending 90

A strong increase in forecasting performance when choosing not to detrend
the data of the in-frame was observed. This could yield the following two
interesting conclusions. Either the individual underlying exogenous inten-
sity is quite unique for each day, even though, over time, we can see a trend
emerge. Or the way we measured the trend was not optimal. Trend for
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shorter trend determination time frames are proposed for further analysis.

In this work, the events marked by time stamps were mid-price changes.
However, in theory it is possible to apply the methodology developed in this
work onto other events, such as number of trades or price changes. In a next
step, the prediction algorithm, calibrated with the settings discussed above,
can be applied to a bi-variate setup where we distinguish positive price
changes from negative price changes. This leads to a forecasting algorithm
which can, in theory, predict future price levels and can be used as a basis
in high frequency trading for buy/sell choices.
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8 Appendix

Figure 20: Distribution of parameters µ, n and τ in the year 2011 for dif-
ferent subset of sample minutes with different amount of midprice changes.
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