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Abstract

This is a cumulative thesis of three self-contained research papers and some additional
unpublished material. The first paper has been published, while the second and third
have been submitted and are awaiting review. The research revolves around the calibration
of nonlinear ensemble models to forecast oil production and daily stock market returns.
A particular emphasize is put on the validation through back-testing for the obtained
forecasts, including the computation of statistical significance levels when possible.

Chapter two presents the generalized methodology we developed to forecast the oil
production of the UK and Norway from 2014 to 2030, based on the publication Fievet
et al. (2015). The methodology extrapolates the production of individual oil fields using
a stretched exponential, and estimates the extrapolation error from back-tests. The pro-
duction resulting from future discoveries of giant and dwarf oil fields is estimated using
Monte-Carlo simulations. The forecast validation, using the time period 2008-2014 as
out-of-sample, showed that the ensemble method, aggregating individual fields, was much
more robust then the Hubbert model applied to aggregate production.

Chapter three defines the efficient market hypothesis, and introduces the performance
benchmarks subsequently used to assess the evaluated statistical learning and agent based
strategies. A robust test for the statistical significance of directional accuracy is presented,
as well as an approximation to the relationship between directional accuracy and trading
performance. The break-even transaction cost for unit and compounded investment is put
into relationship with trading frequency and directional accuracy, and compared to typical
transaction costs on equity indices. The computation of multiple testing adjusted p-values
of trading strategies is presented in detail. A simple best Sharpe ratio portfolio strategy
is presented, which is used in the assessment of the ex-ante performance of a universe of
available strategies. Last, the four-factor regression model is introduced to regress newly
found anomalies on known anomalous factors.

Chapter four presents the particular type of agent based models studied in this thesis.
The four different types of games played by the agents, namely the majority game, delayed
majority game, minority game, and delayed minority game are analyzed separately in a
first step. To evaluate the predictive performance without multi-agent interactions, each
type of game is reverse engineered on major equity indices for a single agent model. In
a second step, the reverse-engineering results of the mixed game ABM with many agents
are presented. The multi-agent model was found to have no predictive superiority to the
single agent model. Therefore, the analysis of the predictive power of single agent models,
and the stepwise construction of two agent models, was the natural path for the further
research in this thesis.

Chapter five formalizes the relationship between the binary strategies of the agents and
decision trees. The abnormal predictive performance of a single decision tree motivated the
analysis of further statistical learning methods such as logistic regression, support vector
machine, gradient boosting, nearest neighbors, linear discriminant analysis, and quadratic
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discriminant analysis. Theoretical data generating processes are used to illustrate the lim-
itations of regressive models and advantages of statistical learning models. Some of the
statistical learning models were found to have statistically significant predictive perfor-
mance on the S&P 500, FTSE and CSI 300. In particular, the predictability was found to
be particularly high during the crash phase of the dotcom bubble, the financial crisis, the
European debt crisis, and the recent Chinese stock market turbulence. The break-even
transaction costs of up to 20 bps per round trip, on a 20 year time period, question the
weak efficient market hypothesis.

Finally, chapter six introduces an extension of statistical learning towards agent based
modeling. In particular, it is shown how multiple instances (agents) of an arbitrary pre-
dictor (e.g. a decision tree or binary strategy) can be combined to predict a given time
series. The experiments are limited to two agent models, which can still meaningfully be
calibrated. Models with more agents would require more data, which would be available
in the context of intraday trading or order book prediction. However, the later cases are
out-of-scope for this thesis.

Chapter seven gathers ideas for future research and concludes the thesis.
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Zusammenfassung

Dies ist eine kumulative Doktorarbeit, zusammengestellt aus drei eigenständigen Forschungsar-
beiten und zusätzlichem unveröffentlichtem Inhalt. Die erste Forschungsarbeit wurde
bereits veröffentlicht während die zweite und dritte Forschungsarbeit eingereicht wurden.
Die Forschung befasst sich mit der Kalibrierung von nichtlinearen Ensemblemodellen zur
Vorhersage von Ölproduktion und Börsenmärkten. Ein besonderer Schwerpunkt wird auf
die Validierung der Prognosen gelegt, insbesondere der Berechnung der statistischen Sig-
nifikanz, wenn möglich.

Kapitel zwei stellt die verallgemeinerte Methodik vor, die wir entwickelt haben, um
die Ölproduktion von Großbritannien und Norwegen von 2014 bis 2030 vorherzusagen,
basierend auf der Veröffentlichung Fievet et al. (2015). Die Methodik extrapoliert die Pro-
duktion von einzelnen Ölfeldern unter Verwendung einer gestreckten Exponentialfunktion
und schätzt den Extrapolationsfehler ab anhand von vergangenen Daten. Die Produk-
tion, die aus zukünftigen Entdeckungen von Riesen- und Zwergölfeldern resultiert, wird
mit Monte-Carlo-Simulationen geschätzt. Die Validierung über den Zeitraum 2008-2014
zeigte, dass die Ensemble-Methode, die einzelne Felder aggregierte, viel zuverlässiger ist
als das Hubbert-Modell angewandt auf die aggregierte Produktion.

Kapitel drei definiert die effiziente Markthypothese und führt die Performance Bench-
marks ein, die später zur Bewertung der evaluierten statistischen lern- und agenten-
basierten Strategien verwendet wurden. Es wird ein robuster Test für die statistische Sig-
nifikanz der Richtungsgenauigkeit sowie eine Annäherung an die Beziehung zwischen Rich-
tungsgenauigkeit und Handelsleistung dargestellt. Die Nullsumme-Transaktionskosten der
Strategien werden in Beziehung mit Handelsfrequenz und Richtungsgenauigkeit gebracht,
und mit typischen Transaktionskosten verglichen. Die Berechnung von p-Values von Han-
delsstrategien angepasst für multiple Tests wird detailliert dargestellt. Eine einfache
Portfolio-Strategie wird vorgestellt, um die Ex-Ante-Leistung eines Universums verfüg-
barer Strategien zu ermitteln. Zuletzt wird das Vier-Faktor-Regressionsmodell präsentiert,
um neue Anomalien auf Zusammenhänge mit bekannten anomalen Faktoren zu prüfen.

Kapitel vier präsentiert die spezifische Art von agentenbasierten Modellen, die in dieser
Arbeit untersucht werden. Die vier verschiedenen Arten von Spielen, die von den Agen-
ten gespielt werden, nämlich das Mehrheitsspiel, das verzögerte Mehrheitsspiel, das Min-
derheitsspiel und das verzögerte Minderheitsspiel werden in einem ersten Schritt separat
analysiert. Jede Art von Spiel wird auf realen Daten für ein Ein-Agent-Modell kalibri-
ert, um die prädiktive Leistung ohne Multi-Agenten-Interaktionen zu bewerten. In einem
zweiten Schritt werden die prädiktive-Ergebnisse des Multi-Agenten Modell mit gemis-
chten Spielen präsentiert. Es wurde festgestellt, dass das Multi-Agenten-Modell keine
Verbesserung gegenüber dem Ein-Agent-Modell aufweist. Daher waren die Analyse der
prädiktiven Fähigkeiten von Ein-Agent-Modellen und der schrittweise Aufbau von zwei
Agentenmodellen der natürliche Weg für die weitere Forschungsarbeit.

Kapitel fünf formalisiert die Beziehung zwischen den binären Strategien der Agenten
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und Entscheidungsbäume. Die abnorme prädiktive Leistung eines einzelnen Entschei-
dungsbaums motivierte die Analyse weiterer statistischer Lernmethoden wie logistische
Regression, support vector machine, gradient boosting, nearest neighbors, lineare und
quadratische Diskriminanzanalyse. Theoretische Datenerzeugungsprozesse dienen der Ve-
ranschaulichung der Einschränkungen von regressiven Modellen und Vorteilen statistischer
Lernmodelle. Einige der statistischen Lernmodelle zeigten eine statistisch signifikante
prädiktive Leistung auf dem S&P 500, FTSE und CSI 300. Besonders signifikant war
die Vorhersagbarkeit während der Dotcom-Blase, der Finanzkrise, und der Europäis-
chen Schuldenkrise und der jüngsten chinesischen Börsen-Turbulenzen. Die Nullsummen-
Transaktionskosten von bis zu 20 bps, in einem Zeitraum von 20 Jahren, stellen die
schwache effiziente Markthypothese in Frage.

Das Kapitel sechs erstellt zwei mögliche Erweiterungen der statistischen Lern-Methoden
die man als agentenbasierten Modellieren bezeichnen kann. Insbesondere wird gezeigt,
wie mehrere Instanzen (Agenten) eines beliebigen Prädiktors (z. B. ein Entscheidungs-
baum oder eine binäre Strategie) kombiniert werden können, um eine gegebene Zeitreihe
vorherzusagen. Die Kalibrierungs-Experimente beschränken sich auf die zwei und drei
Agenten-Modelle. Modelle mit mehr Agenten können nicht sinnvoll kalibriert werden da
sie mehr Daten benötigen.

Kapitel sieben sammelt Forschung-Ideen und schließt die Doktorarbeit ab.
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Chapter 1

Introduction

The Efficient Market Hypothesis (EMH) defined by Fama (1970) is a pillar of neoclassical
financial theory stating that asset prices instantaneously and fully reflect the available
information. A consequence of this assumption is that asset returns follow a martingale
process after discounting for equilibrium expected returns. In other terms, no investment
strategy can generate returns in excess of the equilibrium expected returns. The hypothesis
exists for several degrees of available information. In its weak form, the hypothesis states
that no excess profits can be made by trading based on past prices. The semi-strong form
extends this statement to publicly available information such as dividends, interest rates,
annual earnings or stock splits. The strong form extends the hypothesis to all existing
information, in particular private information available to only a small number of insiders.

Sufficient conditions for the EMH to hold are: no transaction costs; instantaneous and
cost-less availability of information to all market participants; and an identical interpreta-
tion of current information by all market participants. Needless to say that none of these
assumptions hold for real markets where transaction costs can prevent arbitrage, informa-
tion takes time to reach all participants and believes about future returns based on current
information are heterogeneous. Nonetheless, real markets can still be efficient as long as
current information is fully reflected when transactions take place, information is available
to a large enough number of market participants and no possible interpretation of current
information can consistently yield returns above the equilibrium expected returns.

Despite the convincing case that real markets can be efficient, Grossman and Stiglitz
(1980) prove that efficiency is not an equilibrium state for markets with costly information
and transactions, as there would be no compensation to the costly activities of market
participants. In addition, Milgrom and Stokey (1982) prove that the participants in an
efficient market would never trade because a bid must come from a participant with better
knowledge and accepting it would necessarily result in a loss. In fact, the cost of informa-
tion, and its heterogeneous distribution and interpretation among market participants are
the drivers of the market activity. The market allows each participant to take positions
based on his current believes. The constant flow of new events is quickly reflected in asset
prices by the trading activities of the fastest and best informed traders. The market is in
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an equilibrium state of disequilibrium that maintains the constant trading activity of the
market participants.

These aspects preventing real markets from reaching the theoretical definition of an
efficient market have been acknowledged by Fama (1991), but he points out the large
support for the EMH. A growing body of research on corporate events shows that prices
efficiently adjust to new information (e.g. dividend changes). The research on return
predictability based on past returns or macroeconomic factors shows little predictability
(Fama, 1998). The first statistically significant anomalies, found by Fama and French
(1993), origin in the size and book to market value of stocks. The stocks of companies
with small market capitalization outperform on average the stocks of companies with large
market capitalization. As well, stocks with high book to market value outperform on av-
erage stocks with low book to market value. A further major anomaly found by Jegadeesh
and Titman (1993) and Carhart (1997) is the momentum of stocks and funds, the best
performing assets continue to outperform the worst performing assets in a persistent man-
ner. However, when using the four factor model as the benchmark for equilibrium returns,
the number of funds having statistically significant excess return is vanishing (Fama and
French, 2009). Therefore, the four factor model is considered to be a good benchmark
with respect to which the weak EMH holds true.

The literature up to 2007, reviewed by Subrahmanyam (2008), already provides many
pieces of evidence challenging the semi-strong form and strong form of the EMH. In par-
ticular, the repeating occurrence of bubbles and crashes such as the dotcom bubble, the
financial crisis, ensuing “great recession” and the on-going European sovereign debt crisis,
accompanied by strong bullish markets suggests even more prominently the existence of
significant anomalies occurring in financial markets (Malkiel, 2003a). In particular, asset
returns may exhibit transient dependence structures that are incompatible with the EMH.

The precise origin of financial bubbles is still subject to debate in classical economics,
but in any case a bubble implies a significant difference between the fundamental value
of an asset and the value attributed by investors. Within the scope of the EMH, such a
difference should be arbitraged away by the rational market participants, as the market
price always reflects the fundamental asset value. To explain such discrepancies between
the fundamental value and market value, the theory of heterogeneous belief bubbles studied
markets where agents disagree about the fundamental value. The heterogeneity in beliefs
can origin from psychological biases or inherent uncertainty in estimating future cash-flow.
In a framework that limits short selling, the disagreement among market participants
about the fundamental value is sufficient to generate equilibrium prices higher than the
average expected value (Miller, 1977). The above average equilibrium price results from
the pessimists staying out of the market, as they cannot short sell the asset. Further
on, Harrison and Kreps (1978) showed that in a dynamic framework of heterogeneous
believes the asset price can exceed the valuation of the most optimistic market participant,
as a result of speculative behavior. Scheinkman and Xiong (2003) extend this dynamic
framework to continuous time, and find that bubble are characterized by high trading
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volumes, a phenomena often observed on stock markets.
A major obstacle in rejecting the EMH is that for a large number of trading strategies

some will outperform the benchmark by pure luck. To obtain a meaningful result, the
statistical significance of the top performing strategy has to be adjusted for multiple testing
with respect to the full universe of considered strategies. Among the first to achieve this
feat was White (2000) with the Reality Check method, which allowed him to show that in
the universe of technical trading rules none yields significant trading performance on the
S&P 500. This result is confirmed by Sullivan et al. (1999) for a 100 year trading period
on the Dow Jones Industrial, but some significantly performing technical trading rules on
emerging markets are found by Hsu et al. (2010). The multiple testing framework has
become a robust methodology to compute the statistical significance of a model, adjusting
for data snooping in a universe of models. The methodology has been extended by Romano
and Wolf (2005a) to reject as many null hypothesis as possible without violating the family
wise error rate, and by Hansen (2005) to reduce sensitivity to poorly performing strategies.

The finding of a trading strategy that significantly outperforms the benchmark is
a necessary condition to reject the EMH, but not sufficient because it may have been
impossible to select the winning strategy ex-ante. The definition of the EMH proposed
by Timmermann and Granger (2004) circumvents this issue by limiting the efficiency
statement to a finite universe of trading models and requiring the existence of a search
technology that would have selected an out-performing strategy ex-ante.

These observations motivated an extensive research in recent years to understand and
predict the anomalies that can occur in asset prices. Within the scope of this research, an
important tool is agent-based modeling (aka ABM), also known as agent-based compu-
tational economics (ACE). ABM provides an alternative to equilibrium models, because
it relaxes some of their restrictive assumptions by adopting a bounded rationality frame-
work (Simon, 1955, Rubinstein, 1997), which allows for heterogeneity in the preferences
and skills of the different agents. This characteristic of ABM is crucial to encompass the
possibility of a transient out-of-equilibrium dynamical view of the world. Further on, these
models give rise to complex emergent phenomena at the macro level despite well defined
behavioral rules of the agents at the micro level. As explained for instance by Bonabeau
(2002), the attributes of the system’s emergent phenomena cannot be mapped to its indi-
vidual entities. The phenomena that cannot occur in classical equilibrium models, namely
financial bubbles, market instabilities, crises and regime shifts, emerge endogenously at the
macro level in ABMs. By its structure, ABM is an ideal tool to study complex interactions
between agents as they occur in real stock markets. We refer to Hommes (2006), Hommes
and Wagener (2009), Chiarella et al. (2009) and Evstigneev et al. (2009) for reviews on
agent-based models from different perspectives. The ABM applications by Satinover and
Sornette (2012a,b) and Andersen and Sornette (2005) to predict stock market returns have
revealed significant predictability that requires further investigation.

Unfortunately, ABM often remains a tool to qualitatively understand how phenomena
emerge at the macro level, while their calibration to real data is often unsolved. The
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ABMs typically have too many degrees of freedom due to their many parameters and
overfit the limited amount of available data. In contrast, a field that has been thriving
in calibrating complex non-parametric models to real data is statistical learning. The
regularization, cross-validation and bootstrap techniques developed in statistical learning
(Hastie et al., 2001) have allowed researchers to find the maximal model flexibility (i.e.
degrees of freedom) that can robustly be calibrated to a limited dataset. These techniques
have promising applications to the calibration of ABMs.

Statistical learning models too are well suited to describe non-parametric dependence
structures potentially present in financial returns. This has sparked a large search for
predictability on stock markets using support vector machine (e.g. Cao and Tay (2001)),
neural networks (e.g. Guresen et al. (2011)), and many other methods. Unfortunately,
these studies often lack robust statistical tests and ex-ante selection of the winning strategy,
which are needed to reject the EMH at a certain significance level.

The reviewed literature shows three major research gaps that can be addressed. First,
the regression and equilibrium models most commonly used in econometrics are unsuited to
capture the non-linear emerging phenomena that arise during market bubbles and crashes.
Agent based modeling and the non-parametric models developed in statistical learning are
better suited to capture non-linear dependence structures in asset returns. Second, the
robust statistical tests developed in the finance literature to reject the EMH are not or
insufficiently used in the ABM and statistical learning literature. The consequence is
that a large number of studies reporting violations of the EMH when using ABMs or
statistical learning lack robustness and need further investigation with better statistical
tests. Third and last, the methodology developed in statistical learning to control for
overfitting presents opportunities in agent based modeling that have not yet been fully
exploited.

1.1 Predictive limitations of regression models

Wold’s decomposition theorem (Mills and Markellos, 2008, Hamilton, 1994) states that
every weakly stationary, purely non-deterministic stochastic process {Xt} can be written
as a linear filter

Xt =
∞∑
i=0

ψiat−i = ψ (B) at, (1.1)

where the {at : t = 0, ±1, ±2, . . .} are i.i.d. innovations drawn from a distribution with
zero mean and constant variance, ψi are the coefficients of the infinite polynomial ψ (B),
and B is the back-shift operator. All theoretical time series models defined as a finite-
order stochastic difference equation derive from this general concept of a linear filter with
infinite lag. Common models are the Auto-Regressive model AR(%), the Moving Average
MA(%), and the Auto-Regressive Moving Average model ARMA(%, q). Models with non-
stationarity in mean or variance can be built by assuming some stationary model for the
mean or variance. Common models for the non-stationary mean or variance are the Auto-
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Regressive Integrated Moving Average model ARIMA(%, q), the Auto-Regressive Condi-
tional Heteroskedastic model ARCH(%, q), and the Generalized Auto-Regressive Condi-
tional Heteroskedastic model GARCH(%, q).

Non-linear stochastic processes arise when their representation is obtained by some
non-linear function, for example polynomial dependencies in the innovation, asymmet-
ric innovations, or correlated innovations. As discussed by Mills and Markellos (2008,
Chap. 6), testing for non-linearity is a challenging task and is not possible in general
when the functional form of the non-linearity is unknown. As well, deterministic patterns
intertwined with a stochastic process can go undetected using linear filter models. In
particular, this thesis will examine a range of stock return sign predictability that goes
undetected using regression models.

The shortcomings of regressive models can be illustrated with the two argument
exclusive-OR function XOR (a, b) that returns true (= 1) when exactly one of the ar-
guments is true and false (= −1) otherwise. An example of XOR like data is

X = {((1, 1) , −1) , ((1, −1) , 1) , ((−1, 1) , 1) , ((−1, −1) , −1)} , (1.2)

where the four samples are assumed to be independent. The notation of Equation (1.2) is
taken from the statistical learning literature (James et al., 2014), where X is the training
data available, and ((Xt−2, Xt−1) , Xt) denotes the sample at time t with input xt =
(Xt−2, Xt−1) and output (=response) yt = Xt. Calibrating the autoregressive model
AR(2) of order two, given by

yt = β1xt, 1 + β2xt, 2 + α, (1.3)

yields β1 = β2 = α = 0 for the data of Equation (1.2), which fails at capturing the
deterministic XOR function. The XOR function is not linearly separable.

Non-linearly separable patterns can be modeled using a partition R = {R1, . . . , Rn} of
the input (or feature) space into n regions, and assigning the constant values {c1, . . . , cn}
to these regions. The resulting evolution of the time series Xt can then be written as

yt = Xt =
n∑
i=1

ci · I {xt ∈ Ri}+ at, (1.4)

with i.i.d. innovation at. This modeling approach allows for an arbitrary flexibility, as
any function can be approximated to any precision with a sufficient number of regions.
For example, the XOR data from Equation 1.2 can be modeled exactly by the two regions
R1 =

{
x ∈ R2|x1x2 ≥ 0

}
with c1 = −1, and R2 =

{
x ∈ R2|x1x2 < 0

}
with c2 = 1. The

downside of this modeling approach is that the number of parameters increases arbitrarily
with the number of regions, and a procedure to control for overfitting is required.

Nonetheless, such an approach is important to explore because the heuristic biases
humans are subject too (Tversky and Kahneman, 1974) likely include linearly inseparable
biases like the XOR function. A simplistic interpretation of the XOR function on stock
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markets goes as follows. When the stock went up two days in a row, traders start to expect
a reversal and sell the stock. When the stock went up one out of two days, traders expect
the stock to keep rising and buy more. When the stock went down two days in a row,
the traders panic an keep selling instead of betting on a reversal. Such a bias between
the upside and downside can induce linearly inseparable deterministic patterns in stock
returns.

1.2 A critique of statistical learning in finance

Extensive research effort has been dedicated to forecasting stock market returns using con-
ventional regressive models and unconventional models. Atsalakis and Valavanis (2013)
and Atsalakis and Valavanis (2009) provide a partial overview of conventional, respectively
soft computing methods. A large array of statistical learning methods have found applica-
tions in the stock markets forecasting research, the most popular being neural networks,
support vector machine, random forest, k-nearest neighbors, logistic regression, decision
trees, and random forest. Most of the studies find positive results of predictability in stock
returns. However, these studies typically do not reject the EMH for one of the following
reasons.

The analysis is ex-post, meaning the input variables of the period to forecast are
already known and used to predict the output variable. An example being the study by
Chiang et al. (1996) that uses a set of economic variables such as GDP, consumer index,
unemployment rates, and inflation rates to predict the same year performance of 101 US
funds. The neural network prediction outperforms the linear regression prediction in terms
of fund performance residuals as a function of economic indicators. While this shows a
relation between economic indicators and fund performance it does not determine if fund
performance can be predicted out-of-sample.

The out-of-sample test data is relatively small and statistical significance of the per-
formance metrics are not provided. For example, the studies by Xue-shen et al. (2007)
and Huang et al. (2008) perform an out-of-sample directional prediction of a few hundred
returns and find a directional accuracy better then random. Unfortunately, in the hy-
pothetical case were the predicted returns had a directional asymmetry during this time
period, with for example more up moves, a simple strategy always predicting up (buy &
hold) would have above random directional accuracy as well. Without a bootstrap com-
putation of the p-value for the observed directional accuracy the result could origin from
a bias in the data.

A plethora of performance metrics are provided but no clear comparison benchmark
is available. As in the studies by Tay and Cao (2001) and Chen et al. (2006), the typical
performance metrics are the Mean Squared Error (MSE), Normalized MSE, Mean Absolute
Error (MAE), directional symmetry (DS), and Weighted Direction Symmetry (WDS).
These performance metrics can be useful to compare two methods, but do not give the
reader any intuition of the actual trading performance, which could even be negative. As
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well, in many cases the different metrics exhibit an almost identical performance difference
between the compared methods and a single metric would be sufficient.

The predictive performance is significant but does not imply market inefficiency. The
study by Villa and Stella (2014) finds impressive directional accuracy on intraday returns
on the foreign exchange market of multiple currencies. The prediction is performed out-
of-sample on millions of ticks during a one year time period and leaves no doubt to its
statistical significance. However, directional accuracy does not necessarily imply prof-
itability as predicting correctly many small returns could easily be offset by transaction
costs or predicting incorrectly a few large returns.

The abnormal returns of the strategy, including transaction costs, are compared against
the buy & hold strategy but the difference could be insignificant. The statistical learning
portfolio from stocks of the S&P 500 created by Creamer and Freund (2010) has signifi-
cant abnormal returns with respect to the buy & hold strategy or other common portfolio
strategies. The abnormal returns even hold after accounting for realistic transaction costs
available at a typical broker. However, the test period is short with only 400 trading
days and the excess performance is concentrated at the beginning of the period. With-
out a bootstrap analysis of the returns there is no guarantee that the abnormal returns
are significant. A possible bootstrapping approach would be to compute the statistical
significance of the observed returns with respect to random portfolios.

This large variety of benchmarks for forecasting, and trading, performance makes it
difficult to compare the results of different studies. This line of research needs a stan-
dardized framework to assess forecasting and trading performance, and its implication for
the EMH. Such a framework should always include a test statistic with respect to a null
distribution, and the break-even transaction cost.

1.3 Calibration issues in agent based models

Currently, the use of ABMs remains confined to some academic research fields and has
not yet reached the acceptance of the economists working in finance related domains. As
discussed in Sornette (2014), the problem in gaining a better acceptance is twofold.

The first problem is that ABMs are highly complex, usually non-linear at the agent
level, which makes it difficult to relate the macro behavior to the ingredients at the micro
level. To circumvent these issues, the choices made to build a given agent-based model
often represent the personal preferences or biases of the modeler, which would not be
agreeable to another modeler. An ABM is often constructed with the goal of illustrating
a given behavior that is already encoded more or less explicitly in the chosen rules (De
Grauwe, 2010, Galla and Farmer, 2013). Therefore, the correctness of the model relies
mostly on the relevance of the used rules, and the predictive power is often constrained
to a particular domain, so that generalization is not obvious. This makes it difficult to
compare the different ABMs found in the literature and gives an impression of lack of
robustness in the results that are often sensitive to details of the modeler’s choices.
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The second problem concerns the calibration of ABMs that due to their inherent non-
linear, sometimes chaotic nature, can not be performed by any standardized method.
The likelihood function of an ABM generating a given empirical data is very difficult to
determine and can often not be sampled entirely due to the large number of parameters
in the ABM. This curse of dimensionality forces the modeler to use heuristic optimization
methods such as genetic algorithms to fit an ABM to a given dataset. This lack of
standardized and analytically well understood calibration method is a major obstacle for
economists to trust an ABM in real life applications.

To avoid such biases and minimize the calibration complexity, the class of agent-based
models considered in this paper are the ones with a discrete set of possible outcomes,
making it possible to list all the available strategies an agent can use. A first such model
has been presented in Arthur (1994) to study the "Bar Problem" and subsequently gave
rise to an extensive research on the minority game and variants thereof by Challet and
Zhang (1997), Challet et al. (1999), and Andersen and Sornette (2002). The study of
these models, as performed by Jefferies et al. (2001), showed that they can reproduce a
great variety of stylized facts, making them directly relevant to describing real markets.
As illustration, for the minority game it has been shown by Challet et al. (2001) that a
phase transition exists between an information efficient and absorption phase. Stylized
facts such as fat tails and clustered volatility occur at this phase transition, suggesting
that within the minority game modeling framework real markets operate in a marginally
efficient regime.

Given this knowledge, the next step is to understand how to calibrate these models
to a given time series. The logical approach already explored in Johnson et al. (2001),
Andersen and Sornette (2005) and Wiesinger et al. (2012) is to turn the strategies of the
agents into variables that are then optimized to best reproduce the calibration data. As
the space of possible strategies is too large to be sampled entirely, it requires the use of
genetic algorithms to reverse engineer the behavior of the involved agents. In contrast
to other models, e.g., De Grauwe (2010), Galla and Farmer (2013), the behavior of the
individual agents is not biased by the modeler with a specific parametrized functional
form, but is determined from the data within all possible behaviors. The calibrated ABM
is then used to predict the future return signs, so its predictive power can be tested out-of-
sample, which addresses the criticism from Elsenbroich (2011) that “Prediction is a thorn
in the side of ABM”. The studies performed by Andersen and Sornette (2005), Wiesinger
et al. (2012), and Satinover and Sornette (2012a,b) show that such calibrated ABM’s do
possess predictive power.

1.4 Mitigating the replication crisis

In recent years, the discussion of a replication crisis in sciences has intensified (Baker, 2016,
Loken and Gelman, 2017). More then half of all scientists agree that there is a significant
reproducibility crisis in existing publications, and another third of all scientists agree that
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there is a slight crisis. While the reproducibility is of particular concern in fields such as
psychology and sociology, the phenomenon is prevalent in all disciplines. The strongest
driver of the replication crisis is the pressure to publish positive results in top journals,
a pressure that can easily lead researcher to perform selective reporting in order to have
better results.

I was fortunate enough to write this thesis without pressure to publish and can say in
good conscience that the results are presented as truthfully as possible. Besides reporting
the results completely and without modifications, I have applied a number of best practices
to minimize the risk of errors that could falsify the results.

The most frequent occurrence of mistakes I experienced is during the implementation
of a model or method into executable code. The implementation phase bares a major
confirmation bias because as long as the results are poor one keeps verifying the code, but
when the results are good one tends to consider the implementation as done. Assuming
that implementation mistakes are just as likely to improve than to deteriorate the results,
the behavioral bias of the implementer asymmetrically boosts the probability that the final
implementation contains a mistake improving results. A notorious example is a software
package used in neuroscience Eklund et al. (2016) that was found to find significant neural
activity in a dead salmon, a result that casts doubt on thousands of previous studies relying
on that software.

To avoid implementation mistakes, a best practice is to use well established existing
libraries whenever possible. For example, all the used statistical learning methods in
this thesis rely on the implementation of the Scikit-learn package from Pedregosa et al.
(2011). Scikit-learn is a reliable statistical learning package in Python, which enjoys a
good reputation. Mistakes in the statistical learning methods are therefore unlikely, as
a large number of people have already approved the good functioning of the Scikit-learn
package.

When writing customized code, the best practice is to verify the results for at least two
cases where the analytical result can be computed. For example, the random walk model
can be used to ensure that the directional accuracy and the average return of a strategy
converge to zero as the length N of the time series goes to infinity. Other time series,
with controlled predictability, based on repeating patterns, can be used to verify that the
expected directional accuracy and average return are obtained in a variety of scenarios.

Typically, when analytical solutions or approximations of special cases match with the
simulated results and the overall intuition, the odds are good that the results are correct.
However, another class of mistakes can still arise from faulty assumptions. For example,
benchmarking directional accuracy with a wrong assumption of the number of up and down
moves can lead to positive performance when actually the null hypothesis holds true. It is
of great importance to always list the necessary assumptions for a computations and verify
them before each application. Some methods, such as bootstrap computations of statistical
significance, need much fewer assumptions as they reuse the data to be benchmark and
are therefore less error prone.
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Finally, when positive results are obtained, the confidence in the results can only be
increased by an independent experiment. For example, at CERN, a positive observation
must always been seen by the two independently built detectors ATLAS and CMS.

1.5 Chapter contributions

The recurring event of stock market bubbles and crashes in the past decades have cast
doubts on the EMH. A stock market crash, after a long phase of irrational exuberance
leading to grossly overvalued stocks, does not fit well into a theory of rational and efficient
markets. To explain this phenomena, the statistical physics community has proposed
models in which bubbles and crashes occur naturally as a consequence of imitation and
herding among investors (Sornette, 2003). The herding among traders creates positive
feedback loops that first drives the stock market into an overvalued regime, the analogue
of a critical point in statistical physics. This critical regime is inherently unstable, like the
a ruler held up vertically on your finger, and only requires a small shock to trigger a crash.
Due to the massive overvaluation build up during a bull market, and the subsequent
propagation of panic through the network of herding traders, the markets often crash
dramatically below their fundamental value (Harras and Sornette, 2011).

The herding behavior during the growth phase of a bubble, combined with the need
of increasingly large returns to compensate for the risk of a crash, was shown by Sornette
et al. (1995), Sornette and Johansen (1997), and Johansen et al. (2000) to produce super-
exponential and log periodic behavior in stock market prices. The bubbles following these
original publications, namely the dotcom bubbles, financial crisis, and Chinese stock mar-
ket turbulence all exhibited the log-periodic power law behavior (Johansen and Sornette,
2000, Jiang et al., 2010). In the context of ABM, the reverse engineering experiments
of Zhang et al. (2013) and Zhang (2013) provide strong support that the herding among
traders is as well detectable in daily return patterns.

This cumulative thesis studies the calibration on nonlinear ensemble models to fore-
cast future oil production and daily stock market returns. A particular focus is put on
validation through back-testing, and applying state of the art methodology to determine
the statistical significance of results. The forecast of a country’s oil production could be
improved using an ensemble of nonlinear extrapolations of the individual oil fields. The
predictability in daily stock market returns found with previous agent based models is
analyzed in detail, and the precise mechanism is presented. Subsequent work connects the
fields of agent based modeling and statistical learning, formalizing the agent based models
of interest as ensembles of interdependent and nonlinear predictors.

Chapter two presents the generalized methodology developed to forecast the oil produc-
tion of the UK and Norway from 2014 to 2030, based on the publication Fievet et al. (2015).
The methodology extrapolates the production of individual oil fields using a stretched ex-
ponential, and estimates the extrapolation error from back-tests. The production resulting
from future discoveries of giant and dwarf oil fields is estimated using Monte-Carlo simula-
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tions. The validation, using the time period 2008-2014 as out-of-sample, showed that the
ensemble model aggregating individual fields forecast’s was more robust then the Hubbert
model applied to aggregate production. Nonetheless, the estimated error of the forecast
remains large despite the detailed modeling. When extrapolating to the complexity of
global oil production and demand, the results show that the inherent uncertainties allow
rational agents to hold a heterogeneous array of beliefs about future oil prices, without
conflicting on fundamental factors.

Chapter three introduces the forecasting and trading performance benchmark subse-
quently used to assess the evaluated statistical learning and agent based strategies. A
robust test for the statistical significance of directional accuracy is presented, as well as an
approximation to the relationship between directional accuracy and trading performance.
The break-even transaction cost for unit and compounded investment is put into relation-
ship with trading frequency and directional accuracy, and compared to typical transaction
costs in stock markets. The computation of multiple testing adjusted p-values of trad-
ing strategies is presented in detail. Typical portfolio strategies are presented to be used
in the assessment of the ex-ante performance of a universe of available strategies. Last,
the four-factor regression model is introduces to regress newly found anomalies on known
anomalous factors.

Chapter four presents the particular type of agent based models studied in this thesis.
The four different types of games played by the agents, namely the majority game, delayed
majority game, minority game, and delayed minority game are analyzed separately in a
first step. Each type of game is reverse engineered on major equity indices for a single
agent model, to evaluate the predictive performance without multi-agent interactions. In
a second step, the reverse-engineering results of the mixed game ABM with many agents
are presented. The multi-agent model was found to have no predictive superiority to the
single agent model. Therefore, the analysis of the predictive power of single agent models,
and the stepwise construction of two agent models, was the natural path for the further
chapters in this thesis.

Chapter five formalizes the relationship between the binary strategies of the agents in
the agent based model and the decision trees. The abnormal predictive performance of
a single decision tree motivated the analysis of further statistical learning methods such
as logistic regression, support vector machine, gradient boosting, nearest neighbors, linear
discriminant analysis, and quadratic discriminant analysis. Theoretical data generating
processes are used to illustrate the limitations of regressive models and advantages of
statistical learning models. Some of the statistical learning methods were found to have
statistically significant predictive performance on the S&P 500, FTSE and CSI 300. In
particular, the predictability was found to be particularly high during the crash phase of
the dotcom bubble, the financial crisis, the European debt crisis, and the recent Chinese
stock market turbulence. The break-even transaction costs of up to 20 bps per round trip,
on a 20 year time period, question the weak efficient market hypothesis. Regressing the
anomalous returns for the S&P 500 on the three- and four-factor models shows signifi-
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cant monthly intercept and some market correlation. The observed returns are therefore
unexplained by current factors, and constitute a new anomalous 3-day crisis persistency
factor (or stylized fact) for the S&P 500. Our time trend analysis uncovered that the
most profitable periods happened during the volatile crashes of the dot-com bubble, the
financial crisis, and the European debt crisis.

Finally, chapter six introduces an extension of statistical learning towards agent based
modeling. In particular, it is shown how multiple instances of an arbitrary predictor (e.g.
a decision tree or binary strategy) can be combined to predict a given time series. The
experiments are limited to two agent models, which can still meaningfully be calibrated.
Models with more agents would require more data, which would be available in the context
of intraday trading or order book prediction. However, the later cases are out-of-scope for
this thesis.

Chapter seven gathers ideas for future research and concludes the thesis.
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Chapter 2

General methodology to forecast
oil production

2.1 Introduction

The financialization of commodities has massively increased speculative trading in the oil
market. Nowadays, anyone with access to an online broker can speculate on oil prices,
without ever physically seeing a barrel of oil. Commodities are attractive for many in-
vestors because their pricing should reliably derive from fundamental supply and demand.
Consequently, an accurate forecast of future production and demand should provide an
equally accurate estimate of future equilibrium expected prices. In this chapter, we quan-
tify the inherent uncertainty in forecasting future oil production for Norway and the UK,
two major oil producers with public monthly production data.

The work presented in this chapter is based on Fievet et al. (2015). The publication
derives from the master thesis by Del Degan (2012) under the supervision of the authors.
The methodology itself derives from the research on pricing social network companies such
as Zynga, which has been developed by three of the authors Forró et al. (2012).

Forecasting future oil production has been a topic of active interest since the beginning
of the past century because of oil’s central role in our economy. Its importance ranges from
energy production, manufacturing to the pharmaceutical industry. As petroleum is a non-
renewable and finite resource, it is primordial to be able to forecast future oil production.
The fear of a global oil peak, beyond which production will inevitably decline, has been
growing due to stagnating supplies and high oil prices since the crisis in 2008/2009 (Murray
and Hansen, 2013). As any industrialized country, Europe is strongly dependent on oil
supply to maintain its economic power. In the nowadays difficult geopolitical environment,
it is important to know how much of the oil needed in Europe will come from reliable
sources. In the past, a big share has been coming from Norway and the U.K., two of
Europe’s biggest exporters. However, the U.K. already became a net importer in 2005
and Norway’s production has been declining rapidly as well (Höök and Aleklett, 2008).
This motivates the novel Monte-Carlo methodology we developed to forecast the crude oil
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production of Norway and the U.K.
The Monte-Carlo methodology to forecast the crude oil production of Norway and the

U.K. is based on a two-step process, (i) the nonlinear extrapolation of the current/past
performances of individual oil fields and (ii) a stochastic model of the frequency of future oil
field discoveries. Compared with the standard methodology that tends to underestimate
remaining oil reserves, our method gives a better description of future oil production, as
validated by our back-tests starting in 2008. Specifically, we predict remaining reserves
extractable until 2030 to be 5.7 ± 0.3 billion barrels for Norway and 3.0 ± 0.3 billion
barrels for the UK, which are respectively 45% and 66% above the predictions using an
extrapolation of aggregate production.

2.2 State of the art

2.2.1 Hubbert’s Model for peak oil forecasting

The methodology behind forecasting future oil production has not evolved much since M.
King Hubbert, who in 1956 famously predicted that the U.S. oil production would peak
around 1965-1970 (Hubbert, 1956). That prediction has proven itself to be correct. His
main argument was based on a geological estimate of the finite oil reserves and to what
amounts as the use of the logistic differential equation for the total quantity P (t) of oil
extracted up to time t

dP

dt
= rP

(
1− P

K

)
. (2.1)

The logistic differential equation is characterized by an initial exponential growth, which
then decreases to zero as the total oil extracted reaches saturation (no more oil is to be
found). If P (t) is the amount of oil extracted up to time t, then f(t) := dP

dt is the oil
production rate. The parameter r is commonly referred to as the growth rate, and K as
the carrying capacity. The parameter K is the total quantity of oil that can be ultimately
extracted, also known as URR (Ultimately Recoverable Resources). When fitting the
logistic curve to the data, the carrying capacity K can be given as a constraint from
geological information (exogenous URR) or be estimated from the fit (endogenous URR).
In M. King Hubbert surprisingly accurate prediction of the production peak, he used an
exogenous URR based on his geological knowledge. However, as we are not geologists and
given that URR information is sometimes unavailable or differs vastly between different
sources, we use endogenously determined URR. Estimating the carrying capacity from the
production data only is in fact the main subject of this paper.

From a methodological point of view, the Hubbert model has enjoyed a longstand-
ing popularity in modeling future oil production given its simplicity. Various extensions
have been studied by Brandt (Brandt, 2007) to account for multi-cycled or asymmetric
production curves.
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Figure 2.1: A back-test of the forecast stability of the Hubbert model.

2.2.2 Back-testing Hubbert’s Model

Despite the popularity of the Hubbert model, the literature says little about its out-of-
sample performance, apart from the one case that made the prediction famous, namely the
prediction by Hubbert of the conventional oil peak that occurred in the US in 1970. This
prediction relied on geological estimates of the URR, and is therefore not only a success
of the model but also of the geological measurements.

There are many ways to address this question and we choose to study the remaining
recoverable reserves predicted by the Hubbert Model when going back in time. This
approach differs notably from Hubbert’s approach because the URR is now computed
from the model and no longer an exogenous constraint. As the problem of fitting the
logistic curve (equation 2.1) is under-constrained before the peak of f(t), the back-test
had to be started when the peak is already well visible in the data. For each time T ,
a month between the start of the back-test and the date of the latest available date, we
fitted the Hubbert model to the data truncated at time T . Based on each fit, we computed
the predicted remaining recoverable reserves in 2014.

This back-test allowed us to study how the forecast of Hubbert’s model evolves over
time. A good model, which captures well the underlying dynamics of the system, should
yield a stable forecast over time. An unstable forecast, where the model constantly has
too adapt to new data, can be considered as an indicator that the model is missing some
aspects (technically, it is called “miss-specified”). This is of course assuming that the
dynamics of the system is deterministic to a higher degree than the error the model is
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making in its forecast.
From a mathematical perspective, the Hubbert model is symmetric with respect to

its peak and will necessarily make inaccurate predictions for asymmetric production data.
It will overestimate the decline of historical production data with a negative skewness
and underestimate data with a positive skewness. An extended Hubbert model with an
asymmetry parameter may yield an improvement, but must not necessarily capture the
dynamics of the asymmetry.

For the studied cases, namely Norway and the UK, a good starting date was chosen to
be 01/2000. Fitting Norway’s production could be made using the simple logistic equation
2.1. In contrast, for the UK, the production exhibits two clear peaks, which required the
use of a double-logistic function that is the sum of two independent logistic functions with
time shifted peaks. The peak of each of the two logistic functions is matched up with one
of the two peaks in the UK production data.

The results of this back-test can be seen in figure 2.1 and clearly show that the forecast
is not stable over time. In 2000, for Norway, the Hubbert model would have predicted
2.08Gb of remaining recoverable reserves by 2014 while, up to the time of writing (July
2014), the predicted amount grew to 2.83Gb (a 36% error) and the growth is not showing
sign of slowing down, yet. For the UK, the prediction would have been 0.21Gb but grew
all the way to 1.43Gb (an error of 581%), with a recent slow down in growth. These results
clearly show that the Hubbert model can be highly unstable and unreliable in its forecast
of recoverable reserves, which is not surprising as the historical data is asymmetric with a
positive skewness. For completeness, let us stress that the relative error between the year
2000 and July 2014 in total production since the beginning is only 17% for Norway and
6.5% for the UK. Nonetheless, the Hubbert model greatly underestimates the fat tail of
the production curve.

Our aim is first to understand why the Hubbert model underestimates the tail of the
production curve and then to improve upon it. An argument could be the strong increase
in the oil price, which widened the amount of economically recoverable reserves. To discuss
this hypothesis, figure 2.1 shows the oil price as well. The forecast for Norway remains
fairly stable from 2000 to 2007 during a period when the oil price went from slightly above
$20 per barrel to more than $80 per barrel. The shift to a larger predicted remaining
production does not correlate with the peak, bottom and then rebound of the oil prices
since 2007. For the UK, the behavior is different, with increases in the forecast showing
very little delay with respect to the increases in oil prices. One could speculate that
Norway had little spare capacities and therefore the increase in remaining reserves was
always delayed with respect to oil prices as new capacities had first to be build. On the
other hand, UK could have had available or upcoming spare capacities that allowed to
respond rapidly to the increase in the oil price. While it is certain that increases in oil
prices will augment the recoverable reserves, it seems difficult to establish a well-defined
mathematical link between oil price and the increase in forecast reserves. Consequently,
an extension of the Hubbert model integrating the oil price has not been further explored.
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2.2.3 Beyond Hubbert’s Model

The existing forecasts of future oil production all use some version of the Hubbert model
(Brecha, 2012, Laherrère, 2002, Lynch, 2002) or some economical model applied to ag-
gregate production (Greiner et al., 2011). However, as just shown in the back-test, the
Hubbert model does not provide a forecast that is stable in time, underestimating the sig-
nificant tail in the production curve of the UK and Norway. Considering that none of these
Hubbert-based methodologies go into the details of studying the underlying dynamics, it
is not surprising that important features of the dynamics bearing on the total recoverable
reserves have been missed. In defense of the existing studies, the main reason for the
lack of details is certainly the lack of available data. For this reason, the Hubbert model
will likely remain a tool of choice to estimate the total reserves when only the aggregated
production of a region (typically a country) is available. Nonetheless, in this article, a
new methodology is introduced to forecast future oil production. Instead of taking the
aggregate oil production profile and fitting it with the Hubbert curve or its variants (such
as the multi-cyclic Hubbert curve), the production profile of each individual oil field is
used. By extending their production into the future and extrapolating the future rate of
discovery of new fields, the future oil production is forecast by means of a Monte Carlo
simulation. To demonstrate the generality of the methodology presented here, it is applied
to two major oil producing countries with publicly available data at the field level: Norway
Norwegian Petroleum Directorate (2014) and the U.K. (GOV.UK, 2014).

2.3 Methodology

The idea behind the methodology presented here is to model the future aggregate oil
production of a country by studying the production dynamics of its individual constituents,
the oil fields. In order to implement our approach, one must be able 1) to extend the oil
production of each individual field into the future and 2) to extrapolate the rate
of discoveries of new oil fields.

2.3.1 Extending the oil production of individual fields

The first step to predicting the future oil production of a country is to extrapolate the
future production of existing fields and to estimate the error on this extrapolation. The
data of the fields developed in the past shows a repeating asymmetric pattern. A good
example is the Oseberg field shown in figure 2.2, with a quick ramp up once the field is
being developed, and then a peak or plateau before the oil field production starts decaying.
The decay can take many different shapes and is governed by a variety of geological and
economical factors. The goal of the fitting procedure is to capture as much as possible the
impact of these different factors.
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Figure 2.2: Example of the time evolution of the oil production per day of a regular field,

parametrized beyond the peak in the decay regime by the stretched exponential function

(2.2) with β = 0.66± 0.01 and τ = −55± 1 months, shown with the black line. The one

standard deviation given by expression (2.7) is represented by the gray band.
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Figure 2.3: Example of an irregular field.
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Figure 2.4: Example of a new field.
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2.3.1.1 Regular, irregular and new fields

To forecast the oil production of each individual field, regularity had to be found in
the production’s dynamics. Unfortunately, the whole production profile can take a large
variety of shapes with often very asymmetric shapes. Therefore, modeling the whole
production profile from the beginning of extraction with the Hubbert model seems elusive.
It would require the use of various extensions of the Hubbert model and for each field the
most appropriate extension would need to be determined. This is impractical when dealing
with hundreds of oil field.
Fortunately, modeling the decay process is sufficient in order to extrapolate future oil
production. A preliminary classification is necessary to achieve that goal. Figures 2.2, 2.3
and 2.4 show that, independent of the country, oil fields can be classified into three main
categories:

• Regular fields - Their decays show some regularity (see figure 2.2);

• Irregular fields - The ones that do not decay in a regular fashion (see figure 2.3);

• New fields - The ones that do not decay yet. As such, there is no easy way to
forecast their future oil production based on past data (see figure 2.4).

All the fields have been fitted using an automated algorithm, but the results have been
subsequently checked visually to sort out the irregular fields which could not be fitted.
As of January 2014, regular fields make up 85% and 87% of the number of fields and
94% and 71% of the total produced oil volume in Norway and the U.K. respectively. As
such, being able to model them is crucial. To capture as many different decay dynamics
as possible, the decay part of the oil production rate f(t) := dP

dt has been fitted by the
stretched exponential

f(t) = f0 e
−( tτ )β . (2.2)

The stretched exponential function has many advantages as it generalizes the power law
and can therefore capture a broad variety of distributions as shown by Laherrère and Sor-
nette (1998). Moreover, (Malevergne et al., 2005) showed that the power law function can
be obtained as an asymptotic case of the stretched exponential family, allowing for asymp-
totically nested statistical tests. As can be seen in figure 2.2, the stretched exponential
(equation 2.2) is a good functional form to fit the decay process of regular fields.

For the minority of irregular fields, we assume no difference in the decay of production
between giants and dwarfs, which has been modeled as follows: the decay time scale τ
has been picked to be the average τ over the regular fields. Then β has been fixed so that
the sum of the field production over its lifetime be equal to the official ultimate recovery
estimates, when such an estimate is available.

The minority of new fields, which did not yet enter their decay phase, cannot be
extrapolated and will therefore be treated as new discoveries. The technical details of how
to treat them as new discoveries are discussed in section 2.3.2.3.
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Figure 2.5: Oesberg field - Relative error defined by expression (2.4) of the predicted
total production from time t indicated in the abscissa until 2014. One can observe that
the predicted future total production is over-estimated by as much as 70% in 1999, then
under-estimated by the same amount in 2002, while the forecast errors remain smaller
than 20% since 2004.

2.3.1.2 Back-testing & Error

For every extrapolation, be it the Hubbert model applied to aggregate production at the
country level or the stretched exponential applied to a field’s decay, we want to determine
how good and stable the predictive power is. To do so, we perform a complete back-
testing in every case. This includes a monthly back-test for the extrapolation, using a
stretched-exponential, of the decay process of every oil field.

A single back-test is made as follows:

• The production data {p0, . . . , pN} of the field or country is truncated at a certain
date in the past T ∈ {0, . . . , N}, where T is the time counted in months since the
production start of the field.

• The extrapolation of the oil production rate f(t) := dP
dt is made based on the trun-

cated data {p0, . . . , pT }.

• The future production predicted by the extrapolation function f(t) can be compared
to the actual production from the date T in the past up to the present Tf = N . The
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extrapolated total production can be computed as

Pe(T ) =
∫ Tf

T
f(t)dt (2.3)

and the relative error is given by

e(T ) = Pe(T )−∑Tf
i=T pi

Pe(T ) , (2.4)

where both Pe(T ) and e(T ) are functions of the truncation time T .

Computing this back-test, for every month in the past since the production started de-
caying, yields a plot showing the evolution of the relative error over time defined by
expression (2.5). By construction, the relative error will tend to zero as the truncation
time T approaches the present. Nonetheless, it is a useful indicator for the stability of the
extrapolation. As can been seen for the Oseberg field in figure 2.5, the relative error on
future production remained fairly stable during the past decade.

From the complete back-test, we compute the average relative error

ē = 1
N

N∑
i=0

e(i) (2.5)

of the extrapolation made on the future production. Assuming that the relative errors
are normally distributed around the average relative error, the standard deviation on the
average relative error is given by

σe =

√√√√ 1
N

N∑
i=0

(e(i)− ē)2. (2.6)

As the average relative error is often fairly constant, the extrapolation was corrected by
the average relative error, that is, if the extrapolation consistently over-estimated the
production by 10% during the back-test, the extrapolation was reduced by 10%. This
results in an extrapolated production p(t), including a 1σ confidence interval, given by

p(t) = (1− ē) f(t)± σe. (2.7)

An example of such an extrapolation including a one standard deviation range is shown
in figure 2.2 for the Oseberg field.

2.3.1.3 Aggregate error

Once the individual fields have been extrapolated using formula 2.7, we compute the
extrapolation of the oil production for the whole country. While it is straightforward to
sum the extrapolations of the individual fields to obtain the expected production, some
care has to be taken with respect to the confidence interval of the production at the
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country level.
As shown later in section 2.4, the same extrapolation including a complete monthly

back-test of total future production has been performed at the country level and the result-
ing relative error is much smaller than the average error observed on the individual fields.
To account for this observation, the assumption made is that the relative error between in-
dividual fields is uncorrelated. While one could imagine that some inter-dependence could
result from a coordinated response of supply to a sharp increase/decrease of demand, we
have not observed this to be the case at a significant level. Therefore, the fields can be
considered as a portfolio of assets with a return given by their extrapolation p(t) (eq. 2.7)
and a risk given by σfield (eq. 2.6). This means that the average standard deviation per
field at the country level from the extrapolated production can be computed as

σ2
country = 1

#fields
∑

field∈fields
σ2
field. (2.8)

Intuitively, this models well the fact that the uncorrelated errors among fields will mostly
cancel out.

2.3.2 Discovery rate of new fields

Knowing the future production rate of existing fields is not enough as new fields will be
discovered in the future. The model describing the discovery rate of new fields should
satisfy two fundamental observations.

1. The rate of new discoveries should tend to zero as time goes to infinity. This is a
consequence of the finite number of oil fields.

2. The rate of new discoveries should depend on the size of the oil fields. As of today,
giant oil fields are discovered much less frequently than dwarf oil fields.

2.3.2.1 Discoveries modeled as logistic growth

A natural choice for such a model is a non-homogeneous Poisson process. The Poisson
process is a process that generates independent events at a rate λ. It is non-homogeneous
if the rate is time-dependent, λ → λ(t). The standard way to measure λ(t) is to find
a functional form for N(t), the statistical average of the cumulative number of events
(discoveries) up to time t. Then, λ(t) is simply a smoothed estimation of the observed
rate dN(t)

dt . Figure 2.6 shows N(t) for Norwegian fields classified according to their size in
two classes, dwarfs and giant fields. The logistic curve is a good fit to the data (integral
form of equation 2.1). This implies that after an initial increase, the rate of new discoveries
reaches a peak followed by a decrease until no more oil fields are to be found, consistent
with our fundamental observations. This same approach has already been successfully
applied by Forró et al. (2012) to estimate the number of daily active users on Zynga.
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Figure 2.6: Logistic fit of the function solution of expression (2.1) to the number of
discoveries for Norway. The discovery rate of new oil fields is dependent on their size
as explained in the main text.

As the discovery and production dynamics are not independent of the field size, the
fields have been split into two groups: dwarfs and giants. Unfortunately, the two logistic
curves thus obtained are highly sensitive to the splitting size. This results from the
major issue, when fitting a logistic curve to data, that the carrying capacity can not
be determined if the data does not already exhibit the slowdown in growth towards the
carrying capacity. However, it is mentioned in the literature that often dwarf fields have
already been discovered a long time ago, but their production has been postponed for
economical reasons (Lynch, 2002, p. 378). Therefore, it is expected that the large oil
fields have mostly been found and produced, and that future discoveries will mostly be
made up of dwarf fields. Consequently, the splitting size has been picked as small as
possible in order to maximize the number of giant fields but large enough to avoid recent
discoveries. Our definition is thus:

• Dwarfs: Fields which produced less than 50 · 106 barrels.

• Giants: Fields which produced more than 50 · 106 barrels.

We note that this definition differs by a factor 10 from the more standard one, for which
oil fields with an ultimate recoverable resource of 0.5 billion barrels (Gb) or higher are
classified as giants, while oil fields with smaller URR are considered to be dwarfs (Höök
and Aleklett, 2008).

The resulting plot shown in figure 2.6 pictures the dynamics: giant oil fields have
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Figure 2.7: Complementary cumulative distribution function (CCDF) of known oil field
sizes S from Norway and the UK. The two dashes lines visualize the power law behaviour
(2.9) of the tail of the distributions.

mostly been found while the discovery process for dwarf fields is still ongoing. The logistic
growth curve fit to the giant discoveries is well constrained, however the fit for the dwarfs
is poorly constrained. As can be seen in figure 2.6, the carrying capacity K of the logistic
growth model is not well constrained by the available data. A large spectrum of values
for K can lead to an equally good fit of the data. We have not taken into account the
possible effect that newly discovered dwarf fields could become smaller and smaller until
the new fields have a size that is too small to be economical to drill.

There are in fact two competing effects that are likely to compensate each other. On the
one hand, figure 2.7 shows the complementary cumulative distribution function (CCDF) of
known oil field sizes S from Norway and the UK. Two salient properties can be observed.
First, the tails of the distributions are well described by power laws

CCDF(S) ∼ 1
S1+α , (2.9)

with exponent α = 1.2± 0.1 for Norway and α = 1.4± 0.1 for the UK. The fact that the
estimations of the exponents α are larger than 1 implies that the cumulative oil reserves
are asymptotically controlled by the largest fields, and not the small ones (Sornette, 2004).
However, the fact that the exponents α are rather close to 1 (which is called “Zipf law”)
would make the many small oil field contributing significantly in total. This brings us to
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Figure 2.8: Total estimated revenue divided by investment as a function of the estimated
ultimate recovery for a number of small oil fields.

the second important feature exhibited by figure 2.7, namely the roll-overs of the CCDFs
for small oil fields, likely due to an under-sampling of the data. Indeed, as for most data
sets involving broad distributions of sizes such as oil fields, the distributions are in general
incomplete for the small events due to the non exhaustive sampling. This incompleteness
raises the specter that our extrapolations might be grossly underestimating the large
potential contributions to the total reserves of the many small yet undiscovered small oil
fields. Assuming that the power law (2.9) would hold for smaller fields down to size of
1 million barrels leads to a number of such fields 10 to 100 times larger than presently
known.

But there is another key factor that needs to be considered, namely the fact that
small oil fields are not economically viable for exploitation, which leads to an effective
truncation in the distribution (2.9) relevant for the estimation of recoverable oil. In 1980,
the threshold for economic viability was as high as 70 million barrels (Smith, 1980, p.
591), but with today’s oil price we expect a much lower threshold. Taking the data from
the Norwegian Petroleum Directorate (2014) providing the yearly investments broken by
fields in Norway, let us consider the illustrative case of the field GAUPE. The investment
spent to develop its exploitation was $380M, while its estimated size is ' 1.2Mb, which
corresponds approximately to a total market value of $120M at $100 per barrel. It is thus
not a surprise that investment to exploit this field was interrupted in 2013. Figure 2.8
shows the total estimated revenue divided by investment as a function of the estimated
ultimate recovery for a number of small oil fields. It can be inferred that oil fields of sizes
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smaller than about 10 Mb are not economically viable as long as the market oil price does
not grow much higher than $100 per barrel. This implies that, notwithstanding the large
number of unknown small oil fields, economic considerations oblige us to neglect the small
oil fields, therefore providing a justification of our procedure. In fact, economic constraints
may lead to cap the carrying capacity at a value smaller than the one shown in figure 2.6.

To address these issues from a more solid angle, the method described in the next
section 2.3.2.2 has been used to compute the probability of different carrying capacities.

2.3.2.2 Likelihood function for the number of discoveries

To overcome the poor constraint on the carrying capacity K obtained from the fitting
procedure for dwarf fields, a method already used by Smith (1980) has been implemented.
This method makes the following two postulates:

1. “The discovery of reservoirs in a petroleum play can be modeled statistically as
sampling without replacement from the underlying population of reservoirs.”

2. “The discovery of a particular reservoir from among the existing population is ran-
dom, with a probability of discovery being dependent on (proportional to) reservoir
size.”

The fields are split into J size bins denoted S1, . . . , SJ occurring with frequency n1, . . . , nJ .
Each discovery is considered as a step i at which a field of size I(i) ∈ {S1, . . . , SJ} is found
and mij denotes the number of fields of size j ∈ {1, . . . , J} discovered before the ith step.
Then, the probability that the discovery at step i is of size j can be expressed as

P (I(i) = Sj) = (nj −mij) · Sj∑J
k=1 (nk −mik) · Sk

. (2.10)

The likelihood L for a complete sequence of N discoveries {I(1), . . . , I(N)} can then be
expressed as

L =
N∏
i=1

(
nI(i) −miI(i)

)
· SI(i)∑J

j=1 (nj −mij) · Sj
. (2.11)

The unknown parameters are the number of fields n1, . . . , nJ , whose likelihood can now
be estimated based on the existing discoveries. Using a brute force approach, the entire
space of plausible values for the variables n1, . . . , nJ has been sampled. The values nj
have been sampled between the number of existing fieldsmNj in the bin j and up to a value
nupperj , such that the scenario with the largest likelihood according to equation (2.11) has
nmaxj = nupperj /2 fields in the bin j. Subsequently, the likelihood of each scenario (value of
the tuple n1, . . . , nJ) has been normalized such that the total likelihood of all generated
scenarios equals one.

For the analysis of the discoveries of the North Sea oil fields, the number of size bins
has been fixed to J = 2 splitting between dwarfs (1) and giants (2) as described in section
2.3.2.1.
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Table 2.1: Likelihood estimation for the number of dwarf (1) and giant (2) fields. For
Norway, our logistic fit suggests that up to two new giant fields could be ultimately dis-
covered. For the U.K., the prediction is more bleak, suggesting that the most probable
scenario is that one giant field will be found (which is most likely already discovered but
classified as a new field).

mN1 n1 ± σ1 mN2 n2 ± σ2

Norway 24 88.4± 10.0 52 56.4± 1.6
U.K. 162 208± 11 99 100± 0.4

The results shown in table 2.1 are coherent with the intuitive expectation that dis-
covering a new giant field is unlikely and that future discoveries will mostly be made up
of dwarf fields. The likelihoods obtained for the carrying capacities of dwarfs and giants
have been used to constrain the logistic curve fitted to the discoveries. Figure 2.6 shows a
sample of fitted logistic curves, each curve being weighted by the likelihood of its carrying
capacity given by equation (2.11).

A comparison with the results in table 1 of Smith (1980) show that our results are
coherent. Back in 1980, Smith (1980) used J = 7, which fortunately maps easily to our
splitting using J = 2 as his first reservoir size is 0 to 50 Mb as ours, and the sum of the 6
others yields our second reservoir size 50 Mb and above. His estimated total reserves were
43.2 billion barrels with 90% confidence bounds at 38.4 and 65.0, across 203 dwarfs and
117 giants in our definition. Currently, we know that total estimated reserves are reaching
59 Bb, which is still within the 90% confidence interval of Smith. This strongly speaks in
favor of his likelihood technique. Given that, in the past 34 years, there have been major
technological improvements and a strong increase in the oil price, it is not surprising that
the actual reserves are tending towards his upper bound.

A linear scaling by 59/43.2 (actual reserves over Smith expected reserves) of the number
of fields Smith predicted, yields 277 dwarfs and 160 giants. This is close to the 296 ± 21
dwarfs and 156± 2 giants of our 60% likelihood estimation found for Norway and the UK
combined. Such a strong coherence between the two fully independent implementations
using different parameters (e.g. J = 7 versus J = 2) and different data sets (1980 versus
2014) provides a credible validation of the approach.

2.3.2.3 Future production from discoveries

We now compute an expected oil production coming from future discoveries, which requires
to combine the steps described in sections 2.3.2.1 and 2.3.2.2.

The method described in section 2.3.2.2 yields probabilities for the total number of
fields (including the not yet discovered fields) in each size bins (called a scenario). However,
this likelihood method does not give the time distribution of future discoveries. We pro-
pose to use the likelihood function to generate scenarios with their respective occurrence
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probability.
For a given scenario, the carrying capacity K (= total number of fields) is given for

each size class. This is useful to resolve the instability in fitting the logistic curve to the
number of discovered fields. The time distribution of the discoveries is then given for each
size class by the fitted logistic curve.

The actual size of a newly discovered field is generated according to the size distribution
of the existing fields in its size class. The probability distribution function of field sizes in
a given size bin has been fitted by a stretched exponential function.

The production curve is computed based on the average production curve of all existing
fields in the same size category. The production curves of the existing fields have all been
normalized to a total production of one and then have been averaged. This yields the
typical production profile including a one sigma confidence interval. For a new field, this
typical production curve is than multiplied by the size of the field.

Superposing the production curves results in the expected production curve from future
oil fields for a given scenario.

As the total parameter space is too large to be sampled entirely, a Monte Carlo tech-
nique is applied to compute the expected production with confidence interval from future
discoveries. In a nutshell, the algorithm works as follows:

1. Draw a scenario (total number of fields in each size bin) based on its probability
according to the likelihood function (2.11). This is done by generating a random
number r between 0 and 1, and computing the scenario that is mapped to r by the
cumulative distribution function of all scenarios.

2. Compute the time distribution of new discoveries by fitting a logistic curve for each
size class.

3. For each discovery, generate a size and the resulting production curve based on the
size distribution and production curves of existing fields.

4. Superpose all the production curves.

5. Repeat and average over all drawn scenarios.

The result is the expected production curve of future oil field discoveries. The distribution
of generated scenarios yields the confidence interval.

Last but not least, it has to be defined how the expected production from these future
oil field discoveries is added to the extrapolated production from existing fields. The
start of the simulation of new discoveries does not match up with the date of the latest
production data, the reason being that the new fields (defined in section 2.3.1.1), which
are already discovered but did not yet enter the decay phase, are not taken into account
in the simulation as their final size is not known. The only meaningful way of treating
the new fields is to consider them as a discovery. Therefore, the starting point in time
of the simulated production resulting from new discoveries has been chosen as the date
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in the past where it matches the current production from new fields. In order words, the
extrapolated production from regular and irregular fields added to the production from
simulated future discoveries (which is shifted into the past as to match the production
from new fields) must be equal to the current (latest available data) total production from
all fields.

2.3.3 Contributions and applicability of the methodology

The methodology described in this section combines tools from different areas to analyses
individual oil fields and forecast their combined oil production. In short, the main benefit
of this approach, compared to working directly with aggregate production data, is the
possibility to forecast non-trivial oil production profiles arising from the combination of
all the individual field dynamics. This ability reflects directly the fact that the total
production is the sum of the contributions of each individual oil field in production. Thus
modeling at the level of each field reflects more closely the reality and is likely to be
over-performing and more reliable, as we show below.

2.3.3.1 Contributions

To describe the decay dynamics of individual fields we made use of the stretched expo-
nential, which is extensively used in physics to model a variety of distributions Laherrère
and Sornette (1998). This is an improvement which has never been done in the existing
literature on oil production and allows us to capture the large differences in the decay
dynamics of different fields.

When fitting the decay process of an individual field, we did not only fit the complete
data, but performed as well a complete back-test. This is a standard procedure in the
analysis of financial times series for instance, but is not or rarely done in the literature
on forecasting oil production. This allowed us to compare the stability over time of the
different models.

Modeling the discovery dynamics of oil fields is almost untouched in the literature
and the algorithm presented in this paper constitutes a novel development. The logistic
curve is typically applied to modeling population growth and it is therefore logical to
use it to model the growth of discovered oil fields. The Hubbert model, describing total
aggregate production, is a logistic curve too and it is consequently logical to assume that
the underlying oil field population follows a logistic growth curve over time.

The first challenge we had to tackle concerns the difference between different oil field
sizes. As explained in section 2.3.2.1, we used an economical argument to choose the
optimal splitting size between dwarfs and giant fields, which indeed yielded stable results.

A second challenge arose from the sample of discovered dwarf fields, which is too
small to fit the logistic curve because the carrying capacity is not sufficiently constrained.
To overcome this issue, the method uses the likelihood estimation developed by Smith
(1980) to estimate the carrying capacity. Using the carrying capacity estimates from
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Table 2.2: Remaining oil reserves in billion barrels (Gb) until 2030 predicted by the
extrapolation of the Fit of the past country production, and predicted by the Monte-Carlo
Model. The relative difference between these two predictions is defined by ∆ = Model−Fit

Fit .
Hubbert (Gb) Fit (Gb) Model (Gb) ∆

Norway 2.83 3.95 5.72 45%
U.K. 1.43 1.79 2.98 66%

this likelihood method allowed us to constraint the logistic curve and obtain a stable fit
resulting in a prediction of the discovery dynamics over time.

2.3.3.2 Applicability

The Hubbert model is well established to obtain the big picture of aggregate production.
However, as discussed, it will fail to capture any asymmetry before and after the production
peak and does not allow for non trivial decay dynamics arising from the combination of
the heterogeneous dynamics of the individual oil fields. This results in a failure to capture
the fat tail in the production curve we assume arises from recently high oil prices.

The method developed in this paper is specifically aimed at modeling the decay dy-
namics and describing the fat tail, which needs two major requirements:

1. A large fraction (preferably above 80%) of the existing fields need to have entered
their decay phase for at least a few years, because the fitting procedure for existing
fields is only applied to the decay phase after the peak.

2. A sufficiently large fraction of all fields is already discovered, otherwise the range
of likely scenarios generated by the likelihood method is so large as to render the
prediction useless.

As mentioned, these two requirements are well met for the UK and Norway. Additionally,
our probabilistic method does not require any other input than historical production data.
Consequently, the predicted ultimately recoverable reserves can be used as an unbiased
cross check for geological URR estimates.

2.4 Results

Based on the methodology described in section 2.3.2, simulating future oil production
was straightforward. For each country, the existing oil field productions were extrapolated
and the future discoveries were simulated. Figure 2.9 shows the predicted production
resulting from the extrapolation of existing fields and the average of 1000 simulations of
future discoveries. For each country, the non-symmetric shape of the production dynamics,
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Figure 2.9: Monte-Carlo (green upper continuous line with standard deviation band start-
ing in 2014 onward) and fit forecast based on past production data (lower line and gray
one standard deviation band) for Norway (top) and the U.K. (bottom). In both cases,
the Monte-Carlo model forecasts a significantly slower decay than the fit by taking into
account that new fields will come in production.
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which contradicts the prediction based on Hubbert’s standard approach, is immediately
noticeable.

The results in table 2.2 show a striking difference between the Hubbert model, the
extrapolation of the fit and the Monte-Carlo model forecast. The preliminary study dis-
cussed in the introduction already showed that the Hubbert model forecast was not stable
over time and therefore unlikely to be accurate. Indeed the results confirm that the
Hubbert forecast is smaller then fitting the decaying process and only half of what the
Monte-Carlo model predicts. This is not surprising, because the Hubbert curve is sym-
metric and therefore the fitting procedure will be strongly biased by the rapid increase in
production before the peak, therefore predicting a rapid decrease. Only fitting the decay
process using a stretched exponential resolves this problem, because the decay is entirely
decoupled from the increase before the peak. Consequently, we expect the simple fit of
the decay to perform better.

According to the fit (extrapolation of aggregate production), Norway’s future oil pro-
duction would still decay much faster than in the Monte-Carlo case. The remaining re-
serves estimated with the Monte-Carlo methodology are 45% larger than the estimate
from the fit. This difference originates from two different effects:

• The sum of the forecast of the individual existing fields is larger than the extrapo-
lation of the aggregate production.

• The extrapolation of the aggregate production does not capture well the discovery
process of dwarf fields.

In the U.K., oil production faced a change of regime during the early nineties due to
technological innovation, giving rise to the inverted "w shape" of the oil production profile.
However, this has not been an issue as this inverted "w shape" can be fitted well by a double
logistic (Hubbert model). Alternatively, we can extrapolate the decay of the aggregate
production starting at the second peak. The differences between the three methodologies
are very similar to the Norwegian case. The Hubbert model again predicts the smallest
remaining reserves with about half the amount of the Monte-Carlo model. The fit of the
aggregate production underestimates the remaining oil reserves by about 66% compared
to the Monte-Carlo model.

Which of the models is more trustworthy? Clearly, the implications in adopting one
methodology over the other are significant. The only way to answer this question is to
back-test them. In other words: "What would each of the models have predicted, had
they been used in the past?" The next section addresses this question and presents the
validation step of our approach.

2.5 Validation
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Figure 2.10: Monte-Carlo (green upper continuous line with standard deviation band
starting in 2014 onward) and Hubbert forecast based on past production data up to 2008
(lower line and gray one standard deviation band) for Norway (top) and the U.K. (bottom).
The results can be compared with the subsequent oil production (blue area). In both cases,
the Monte-Carlo methodology is more precise.
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Table 2.3: Extrapolation of past oil production (“fit”) and prediction using the Monte-
Carlo model are made on the data set truncated in 2008. Their forecast for the period
2008-2014 is compared to the actual realized production. All units in billion barrels (Gb).

Actual (Gb) Hubbert (Gb) Fit (Gb) Model (Gb)
Norway 4.05 3.29 3.28 3.95
U.K. 2.40 1.63 2.00 2.28

Table 2.4: Remaining oil reserves in billion barrels (Gb) forecast for the period 2014-
2030 when using the data truncated in 2008, according to the extrapolation of past oil
production (“fit”) and the Monte-Carlo model. The relative difference between these two
predictions is defined by ∆ = Model−Fit

Fit .
Hubbert (Gb) Fit (Gb) Model (Gb) ∆

Norway 08 2.21 0.76 5.20 −584%
U.K. 08 0.73 0.76 2.77 −264%

For both countries, namely Norway and the U.K., a back-test using the data truncated
in 2008 has been made. Before that date, too many of the giant fields have not entered
their decay phase for a sufficiently long time to apply the extrapolation algorithm. Figure
2.10 shows the resulting production curves for the fit of the aggregate production and of
the Monte-Carlo model.

Comparing the forecast of the models with the oil production of the subsequent 6
years shows that the predictive power of the Monte-Carlo model is significantly better
than the Hubbert model or than a simple extrapolation of the aggregate past production.
Table 2.3 summarizes the difference between the approaches for the back-testing period.
The Hubbert model has the poorest performance, underestimating production by 19%
(Norway) and 47% (UK). The Monte-Carlo model is found essentially on target with
less then 5% error compared with the actual production, while the extrapolation of past
production (“fit”) is under-estimating the realized production by 19% and 16% respectively
for Norway and the U.K. These results confirm that modeling the production dynamics
of the individual fields and the discovery of new fields yields a more accurate prediction
then methodologies that just use aggregate production.

The errors of the Hubbert model and of the extrapolation of the past oil production
method (“fit”) are not dramatic over the six years from 2008 to 2014. However, the
difference between them and the Monte-Carlo approach becomes huge for the time period
from 2014 to 2030, as shown in table 2.4. The Hubbert model and the simple extrapolation
decay too fast and entirely miss the fat tails in the decay process of individual fields and
the new discoveries. It is interesting to note that the Hubbert model performs similarly
to the fit (simple extrapolation) of aggregate production for the UK, but performs much

35



Table 2.5: Oil import in million barrels per day (Mb/day) at a constant consumption of
1.5 Mb/day for the U.K. and 0.22 Mb/day for Norway. The import for the E.U. and
Norway is a lower bound based on the changes in the U.K and Norway. Negative numbers
for Norway represent exports.

2014 2020 2025 2030
Norway (Mb/day) −1.23 −0.88 −0.58 −0.43
U.K. (Mb/day) 0.7 0.9 1.0 1.1
E.U. + Norway (Mb/day) 9.8 10.45 10.85 11.1

better for Norway. This is due to the fact that the Hubbert model calibrates the decay
slope based on the increase before the peak, which in the case of Norway turns out to be
beneficial.

The simple extrapolation changed massively between the back-test in table 2.4 and
the current fit in table 2.2 (520% for Norway and 236% for the U.K.). In other words,
the simple extrapolation is very unstable in its forecast, while the Monte-Carlo forecasts
remains very consistent (less than 10% change).

As can be seen in figure 2.10, the actual production of Norway during the back-testing
period remained entirely within the quite narrow 1σ interval of the Monte-Carlo method-
ology, while totally breaking out of the 1σ interval of the simple extrapolation. For the
U.K. the Monte-Carlo methodology only performs slightly better when considering the
confidence interval, and the confidence interval is much larger due to the uncertainty on
future discoveries and their production profile.

2.6 Conclusion

The detailed discussion of a full back-test of the Hubbert model for Norway and the UK
showed that its prediction were unstable in time and therefore unlikely to be reliable. We
argue that the Hubbert model is likely to be unable to correctly capture the fat tail in
the decay process as it does not model the fat tails in the decay of individual fields nor
the discovery of new fields. An easily quantifiable link with the oil price, which is the
driving factor of oil production, could not be found and we therefore did not pursue the
exploration of extensions of the Hubbert model to capture properly the tails of the decay
production process.

We preferred a two step Monte-Carlo based methodology to forecast future oil produc-
tion which: (i) extends the oil production of current fields into the future and (ii) models
the discovery rate of new fields. This methodology was then applied to forecast the future
oil production of Norway and the U.K. These forecasts are significantly different from the
ones obtained with an extrapolation of aggregate production. Indeed, our model forecasts
45% to 66% more remaining oil reserves than the standard extrapolation. The back-test
performed on the time period between 2008 and 2014 confirmed that the Monte-Carlo
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based model better captured the production dynamics.
The results suggest that it is highly likely that the decay of Norwegian and U.K. oil

production will be much slower then one would expect from a standard extrapolation.
Nonetheless, to maintain current levels of oil consumption in the European Union, more
of it will have to be imported from outside Europe, as the imports from Norway will vanish
(currently accounting for 11% of E.U. oil imports European Commission, 2014) and the
U.K. will need to import more oil.

As shown in table 2.5, at constant consumption, the Monte-Carlo model predicts that
in 2030 the E.U. and Norway combined will need to increase their daily oil imports by 1.3
million barrels. These imports will most likely have to come from outside Europe, except
for non-standard oil sources yet to be developed.

The present methodology can be applied to many other countries and geological areas,
as well as updated at the level of the global oil production. Extensions to include the new
wave of shale oil and non-standard oil can in principle be considered and constitute an
interesting domain of application of our methodology for the future.

2.7 Three years later

Studying the inherent uncertainty in forecasting the future production of a fundamental
resources such as oil is an interesting exercise from the view point of the efficient market
hypothesis. For example, the short term forecast (months to a few years) of future oil
production for Norway and the UK has a one standard deviation uncertainty of roughly
25%. This implies a 66% difference between an optimistic scenario (+1σ) and a pessimistic
scenario (−1σ). While the short term production fluctuations are buffered by the large
oil storage facilities installed all around the world, the medium term forecast leaves ample
room for speculation. Consequently, sudden prices drops of 50%, as observed in late
2014 where oil dropped from over 100$ per barrel to below 50$ per barrel, could be well
explained by the inherent uncertainties in the fundamental production forecast. As soon as
the forecast became precise enough, fundamentals adjusted the price to its correct value.
Irrational speculation and herding among traders is not necessary for an explanation.
Especially, when considering the complexity of forecasting future oil production at the
global level, including geopolitical risks.

The three year delay between the research performed in this chapter and the writing of
this thesis makes for a great true out-of-sample test of the methodology. In February 2017,
the oil production of Norway, excluding condensates and natural gas liquids not consid-
ered in the forecast, stands at ≈ 1.6Mb/day, which is near the upper limit of the forecast
one standard deviation band. The current oil production of the UK is slightly harder to
determine because the previously used source has not been updated since 2015. Never-
theless, other sources report monthly production that fluctuated between ≈ 0.77Mb/day
and ≈ 0.97Mb/day during the second half of 2016. While it is unclear if these produc-
tion numbers for the UK include or exclude production from condensates and natural gas
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liquids, they are as well at the upper limit of the forecast one standard deviation band
(eventually slightly above). Given the restrictive one standard deviation interval used as
a forecast, we can conclude that the methodology is so far robust in a true out-of-sample
test. However, the recent surge in production of condensates and natural gas liquids in
Norway have not been foreseen.
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Chapter 3

Benchmarks for the Efficient
Market Hypothesis

3.1 Defining the efficient market hypothesis

The EMH definition popularized by Fama (1970) was based on the concept of a fair game,
where based on an information set Ω it is impossible to achieve returns in excess of the
equilibrium expected return. This follows from the idea that market prices fully and
instantaneously reflect all available information. Mathematically, the returns rt of a fair
game must satisfy

E [rt − EEquilibrium [rt|Ω]] = 0, (3.1)

where the inner expectation is taken against the equilibrium model and the outer expec-
tation is taken against the fair game. When the data generating process of the fair game
is known, the model for the equilibrium expected return is uniquely defined by the fair
game itself. Hence, the EMH definition of Equation (3.1) becomes tautological, as the
inner and outer expectation are identical and the difference is necessarily zero. However
the data generation process (i.e. game) of real stock market returns is unknown, and the
model for the equilibrium expected return is merely a sensible choice with respect to the
pricing strategies in use. Therefore, it is unknown if the stock market game is fair and the
existence of a trading system that generates profits in excess of the equilibrium expected
return is possible.

The dependency of the EMH on the information set Ω, used to build a profitable trading
system, has divided the hypothesis into three levels: (i) the weak EMH that restricts the
information to only past returns; (ii) the semi-strong form where all publicly available
information is considered; and (iii) the strong form that includes private information
potentially available to insiders. The literature (Subrahmanyam, 2008) provides evidence
challenging the semi-strong and strong form of the EMH. This seems intuitive, as the events
that impact markets are first discussed and decided beyond closed doors, and insiders with
knowledge of such private information have better then chance odds at predicting future
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returns. Therefore, the EMH may not be a fair game with respect to private information,
but remain a fair game for most investors that are limited to public data.

The martingale formulation of the fair game hypothesis excludes return predictability
in excess of the equilibrium returns at any time scale. As a consequence, such a theoretical
market bares no arbitrage opportunities that investors can exploit to generate profits. This
stands in fundamental opposition with the existence of professional investors that analyze
costly information and perform costly transactions in exchange for profits to cover their
costs. Without these active market participants their would be no mechanism by which
new information is reflected in asset prices. To reconcile this aspect with the EMH,
Grossman and Stiglitz (1980) propose the more accurate description of stock markets
being in an equilibrium degree of disequilibrium. The fastest and best informed traders
obtain a return for their arbitrage activity, which then partially reveals their information
to the uninformed traders.

The lack of incentives for traders in a fair game to pursue their arbitrage activity has
as well been proven by Milgrom and Stokey (1982) as the no trade theorem. Beyond the
no trade issue, the fair game hypothesis as well falls short in describing real markets as
it excludes all forms of predictability. However, predictability that is unprofitable after
transaction costs of real markets would not be arbitraged. Indeed, the review by Fama
(1991) found extensive evidence of predictability and therefore started a shift of the EMH
away from a fair game and towards the impossibility of profits in excess of the equilibrium
benchmark.

A common benchmark for an equity index is the buy-and-hold strategy. The EMH
implies that strategies trading the index cannot generate profits in excess of the buy-and-
hold strategy of the market. However, the expected return of portfolio strategies combining
the individual assets, which constitute the equity index of interest, is not immediately clear.
A simple model for the equilibrium expected return rit of an asset i at time t is the Capital
Asset Pricing Model (CAPM) (Sharpe, 1964) given by

E
[
rit

]
= rft + βi

(
E [rmt ]− rft

)
, (3.2)

where rfi is the risk free rate at time t (often constant), the market return rmt , and the
market sensitivity βi of the asset i. The market sensitivity is defined by its covariance
with the market as

βi = Cov
(
ri, rm

)
V ar (rm) = ρi,m

σi

σm
, (3.3)

where ρi,m is the correlation with the market, σi is the volatility of the asset, and σm is
the volatility of the market. In the CAPM, an asset with β = 1 (e.g. the market portfolio
itself) has for expected return E [r] = E [rm] as it correlates exactly with the market.
An asset has higher expected return then the market only when β > 1, E [rmt ] > 0 or
β . −1, E [rmt ] < 0. The case |β| > 1 requires σ > σm, which implies that the asset has
larger volatility then the market. Hence, the CAPM implicitly defines the market price
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of risk. An efficient portfolio provides highest return for a given level of risk. Returns in
excess of the market return are achievable only in exchange of greater risk.

The CAPM provides an elegant theoretical framework to discuss the EMH in the
context of portfolio and remains in use by practitioners due to its simplicity. Nonetheless,
the CAPM makes several limiting assumptions. The first being that the utility of return
versus risk is entirely expressible through the first two moments on the return distribution.
This is certainly a debatable assumption given the skewness and fat tails of typical stock
returns. A second assumption is again the zero transaction costs necessary for investors to
constantly re-balance their portfolio to be optimal. Besides these theoretical limitations,
the CAPM has failed empirically with multiple other factors found to influence an assets
return. The Fama-French three factor model (Fama and French, 1993) and the four
factor model (Carhart, 1997) have identified: a premium for stocks with high book to
market value; a premium for small market capitalization; and a momentum factor that is
a premium on past winners.

The four factor model has a good empirical support to accurately describe the equi-
librium expected return of an asset. Nonetheless, the recurring event of bubbles has
cast doubt on the concept of rational and efficient markets (Malkiel, 2003b). During the
growth phase of a bubble, investors exhibit irrational exuberance that drives stock prices
far above sustainable price over earning ratios. Nevertheless, in the context of new tech-
nologies with a large uncertainty on future profits (i.e. dotcom bubble), these valuations
can be compatible with a rational model of expected equilibrium prices. When the true
expected earnings become more narrowly defined (uncertainty about future profits de-
creases), while the prices are already far above their true equilibrium price, the arbitrage
of the investors adjusts prices with a severe crash. In my perspective, such a "rational"
bubble does not violate the EMH as long as no investor could have foreseen the sudden
adjustment in the equilibrium expected returns. However, the irrational herding behavior
of investors that decouples prices from fundamentals can be observed before the crash,
and should allow rational investors to exit the market in time (Shiller, 1981). A strategy
that would systematically exit the market before a crash would generate profits in excess
of the buy-and-hold strategy and therefore violate the EMH.

Technical trading rules are potential strategies that could beat the buy-and-hold strat-
egy due to their anchoring in psychological price levels that may influence traders in a
systematic manner. An example are resistance levels at which investors using technical
trading rules will enter or exit an asset because they expect a rebound or reversal. Assum-
ing that a sufficient number of traders believes in these rules and applies them, the market
could exhibit predictable return patterns violating the EMH. Indeed, the study by Sulli-
van et al. (1999) found technical trading rules that were statistically significantly better
then the buy-and-hold strategy for the Dow Jones during a 100 year time period ending
in 1986. However, the result did not hold true in the following 10 year out-of-sample
test period where the same technical trading rules performed below the benchmark. Two
explanations for such findings are possible. First, the finding was spurious despite the
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statistical significance of risk adjusted returns measured by the Sharpe ratio. In particu-
lar this is plausible if the strategy has large down side risks that are not capture by the
first two moments entering the Sharpe ratio. A more appropriate measure of risk would
have reduced the statistical significance. A second explanation is that the finding was
genuine, but the publication attracted a sufficient amount of capital into the arbitrage of
this inefficiency, which removed this violation of the EMH in later returns.

The typical spuriousness of significantly performing technical trading rules leaves room
to debate if they really challenge the EMH hypothesis. A major argument is the lack of
connection to fundamental factors explaining why these rules could continue to outperform
the benchmark. In contrast, the factor regression models derive directly from fundamen-
tals, for example it is intuitive that stocks with small capitalization have more potential
to grow then stocks with a large capitalization. Besides their lack of a fundamental expla-
nation, technical trading rules with significant performance are typically found in a search
across a large universe of technical trading rules. Despite the statistical significance being
corrected for the data-snooping effect within many rules, it often remains unclear if traders
could have selected an outperforming technical rule ex-ante. Without a sensible method
to select the winning technical trading rule, the realized profits of that rule could not have
been realized in real time. Conclusively, the case of technical trading rules has not yet
been strong enough to reevaluate the model for equilibrium expected returns.

The exploration of thousands of technical trading rules shows the inherent conflict
between the goal of rejecting the EMH and data-snooping. To find a potential trading
strategy that violates the EMH one has to systematically test all sensible strategies. How-
ever, the more strategies are tested, the more likely it is to observe a strategy with spurious
out-performance. Especially, when multiple spurious strategies are found, there are good
chances that one of them will continue to perform spuriously in later out-of-sample tests.
The opposite holds true as well, a strategy with genuine skill could be lost in a sea of
randomly performing strategies. Ultimately, the space of all possible trading strategies
increases exponentially with the duration of interest, and testing every strategy represents
an impossible NP-complete problem (Maymin, 2011). Conclusively, rejecting the EMH
entails finding a strategy that has statistically significant past abnormal returns, could
have been selected ex-ante, and is reasonably simple with a fundamental explanation that
should still hold in the future.

Within this thesis, I want to build upon the following definition of the EMH.

Efficient Market Hypothesis: "A market is efficient with respect to the infor-
mation set Ωt, search technologies St, and forecasting models Mt, if it is impos-
sible to make economic profits by trading on the basis of signals produced from
forecasting model inMt defined over predictor variables in the information set Ωt

and selected using a search technology in St." Timmermann and Granger (2004)

This definition is fully operational, nonetheless I consolidate three aspects. First, it
is unclear how to determine the profitable search technology in the set St. This would
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require a single top level search technology S∗t , selecting a search technology in St. To
avoid such ambiguity, we limit this study to a single search technology. Second, the
economic profits must be significant at the 95% confidence level (or higher) with respect
to a benchmark such as the buy-and-hold strategy, after adjusting for data-snooping.
Otherwise, any spurious economic profit would suffice to claim inefficiency. Third, the
abnormal economic profits with respect to the benchmark must be measured with a risk
adjusted metric, and the performance assessment period should be sufficient to account
for potential down side risks in higher moments of the return distribution. For example,
a test period that only contains a bull or bear market should not be considered sufficient.

A consolidated definition of the EMH would read as follows.

Efficient Market Hypothesis (consolidated): A market is efficient with re-
spect to the information set Ωt, search technology St, and forecasting modelsMt,
if it is impossible to make economic profits in excess of equilibrium expected
profits by trading on the basis of signals produced from forecasting model in Mt

defined over predictor variables in the information set Ωt and selected using the
search technology in St. The abnormal risk adjusted returns of that strat-
egy have to be statistically significant above the 95% confidence level.
The measurement period has to be representative of higher moment
down side risks not included in risk adjusted performance metrics such
as the Sharpe ratio.

I remark as well that the above definition implicitly assumes that the set of forecasting
models includes all evaluated models. An ex-post selection of models could falsify the
results by introducing a bias towards the top performing models. Likewise, the search
technology should be determined before evaluating the models to avoid any ex-post biases
towards some models.

3.2 The difficulty of distinguishing true skill from luck

When considering a large number of strategies some will necessarily perform well by luck
alone. Therefore, a crucial question is to determine if the performance of the top strategies
is significantly better then luck and can be attributed to skill. To approach this question,
let us consider a set of NRW random walks with zero mean and one skilled strategy
following a random walk with positive mean r̄. Let us now ask, by how much does the
skilled strategy have to outperform in order to stand out significantly among the NRW

random strategies?
To answer that question, let us consider a sequence {r1, . . . , rT } of T returns drawn

in rt ∼ N (0, σr = 0.01) and random models predicting up or down with a probability
of 50% each. The choice of σr = 1% corresponds to the typical daily volatility of equity
indices. As the random models are always long or short, it follows that their returns are
drawn in the distribution N (0, σr). An example of hundred random walks during one
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Figure 3.1: Hundred independent random walks during a one year trading pe-
riod. The random walks are generated by drawing returns from the normal distribution
N (0, σ = 0.01), where 0.01 = 1% is a typical standard deviation of daily equity index
returns.

trading year, which typically has 250 trading days, is shown in Figure 3.1. The simulation
shows that the best performing random walks have a cumulative return close to +40%,
which could easily be misinterpreted for skilled trading. In real life, thousands of funds
are available to investors and distinguishing true skill from luck is even harder.

The expected cumulative return of a single strategy is

E [r1 + . . .+ rT ] = 0, (3.4)

and the variance is given by

Var [r1 + . . .+ rT ] =
√
Tσr.

Hence, the mean returns of the random models after T steps are distributed as

random walk mean return ∼ N
(

0, σ〈r〉 = σr√
T

)
, (3.5)

and their daily Sharpe ratios are distributed as

random walk Sharpe ratio ∼ N
(

0, σSRd = 1√
T

)
. (3.6)

The daily Sharpe ratios of the NRW random models are all below the ensemble Sharpe
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Figure 3.2: Annual return in percent needed for a strategy to stand out at
significance level α among NRW random strategies after one year of trading
(i.e. 250 trading days). The contour plot is generated based on Equation (3.8) with
T = 250.

ratio of significance level α given by

σα,NRWSRd
= Φ−1

(
(1− α)

1
NRW

)
· 1√

T
, (3.7)

where Φ is the cumulative distribution function of the standard normal distribution, and
σSRd = 1√

T
has been used. For example, at a significance level of α = 0.05, the probability

of all NRW = 100 Sharpe ratios being below σ0.05, 100
SRd

≈ 0.156 is equal to 95%. A truly
predictive model will stand out as significant at the 95% confidence level when its Sharpe
ratio satisfies SRd ≥ 0.156. This implies a mean daily return of r̄d = SRd · σr ≥ 0.156%,
or a yearly cumulative return of r̄y ≥ 38%.

The annual cumulative return needed for a strategy to stand out as significant can be
computed as

rsignificantyearly = 250 · σα,NRWSRd
· σr = 250 · σr√

T
· Φ−1

(
(1− α)

1
NRW

)
, (3.8)

where σα,NRWSRd
is given by Equation (3.7), 250 is the number of trading days in a year,

and σr is the daily volatility of the market. At fixed significance level α and number of
random strategies NRW , the required annual cumulative return required for significance
decreases as T−1/2. A contour plot of Equation (3.8) for T = 250 and T = 2500 is shown
in Figure 3.3, respectively Figure 3.3. Isometric lines of constant significant return are
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Figure 3.3: Annual return in percent needed for a strategy to stand out at
significance level α among NRW random strategies after ten year of trading
(i.e. 2500 trading days). The contour plot is generated based on Equation (3.8) with
T = 2500.

roughly linear in a log-log scale of α and NRW .
The random walk model discussed in this section allows us to build a good intuition

for the typical time spans and return levels required for a strategy to emerge as significant
among many random strategies. However, in real life applications a number of factors
complicate the computation of the significance level of an observed strategy. Most impor-
tantly, the market returns are not normally distributed and independent. Sharpe ratio
estimations have to be corrected for autocorrelations and heteroskedasticity. As well, the
strategies are typically not independent either, and bootstrap simulations are required to
computed significance levels controlling for the Familywise Error Rate (FWE).

3.3 Performance metrics

3.3.1 Directional accuracy

When calibrating a forecasting model, a simple cost function to maximize is the number
of correct predictions. In the context of trading, a model should correctly forecast up
and down moves. This directional accuracy is occasionally used in the finance literature
(White, 2000), but is of limited interest by itself as it is not a good proxy of risk adjusted
returns. In contrast, directional accuracy is widely used in statistical learning (machine
learning) for classification problems. For a binary classification problem, the predictions
(= forecasting) results fall into four types as presented in Table 3.1: true positives; false
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Predicted Class

Class
+ -

+ True positive False negative
- False positive True negative

Table 3.1: Confusion matrix of a binary classification problem.

negatives; false positives; and true negatives. When the cost (=loss) of false positives and
false negatives is equal, the directional accuracy is a good metric to optimize. However,
in cases like diagnosing diseases, the cost of false negatives is much higher then the cost
of a second examination for a false positive. In such asymmetric scenarios, the directional
accuracy is unsuited as a performance metric and a problem specific utility function derived
from the directional accuracy should be used as a cost function.

Depending on the problem context, one may want to maximize the sensitivity, speci-
ficity or Brier score. The sensitivity expresses the fraction of correctly predicted positives
over the total number of positives in the population. The specificity expresses the fraction
of correctly predicted negatives over the total number of negatives in the population. The
Brier score can be used when the prediction probability is available, where a probability of
zero means total certainty of class zero and probability one means total certainty of class
one. The Brier score is than defined as the mean squared error between the predicted
probability and the true label.

The widespread use of the directional accuracy in the statistical (machine) learning
research has lead to its use in finance related applications of statistical learning. For
example, the forecasting performance of daily returns of the S&P 500 by James et al.
(2014) is given as an accuracy of 56%. Unfortunately, a better then random directional
accuracy does not necessarily imply that a trading strategy derived from the predictions
would have been profitable. Let us now discuss the necessary conditions for directional
accuracy to equate with trading performance by considering the directional accuracy pd(r)
of correctly predicting a return with amplitude r. The expected return (i.e. mean return)
can then be given as

E[r] =
∫ +∞

−∞
|r| · p(r) ·

(
pd(r)−

1
2

)
, (3.9)

where p(r) is the probability of a return of amplitude r in the predicted return sequence.
When predicting up or down moves, the expected return is expressed in terms of the
probability of correctly predicting an up move (p+

d ) and a down move (p−d ) as

E[r] =
(1

2 − p
−
d

)∫ 0

−∞
r · p(r) +

(
p+
d −

1
2

)∫ +∞

0
r · p(r), (3.10)

which equals the exact expected return of Equation (3.9) if and only if

p−d =
∫ 0
−∞ r · p(r) · pd(r)∫ 0
−∞ r · p(r)

and p+
d =

∫+∞
0 r · p(r) · pd(r)∫+∞

0 r · p(r)
. (3.11)
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Figure 3.4: Probability of correctly predicting an up move for an autoregressive
process of order one AR(1) with φ = 0.5 and σ = 1. The probability is computed
based on Equation (3.14). Due to the autocorrelation, large returns are more likely to be
correctly predicted then small returns.

These condition are for example satisfied when the directional accuracy is independent of
the positive or negative return amplitude, so given by

pd(r) =

p
+
d r > 0

p−d r ≤ 0
. (3.12)

This condition may work as a decent first order approximation, but is already violated
for basic data generative processes. Let us for example look at the autoregressive model
of order one AR(1) given by

rt+1 = φrt + at, (3.13)

with intercept zero, autoregressive parameter φ and normally distributed innovation at ∼
N (0, σ). When φ > 0 and rt > 0 the inequality P (rt+1rt > 0) > P (rt+1rt < 0) holds true
due to the normally distributed innovation with mean zero, and the prediction is made
according to the sign of rt. Therefore, at fixed rt+1, the probability of correctly predicting
the sign is given by

pd (rt+1|rt+1 > 0) =
∫+∞

0 N (rt+1 − φrt|0, σ)N (rt|0, σz) drt∫+∞
−∞ N (rt+1 − φrt|0, σ)N (rt|0, σz) drt

, (3.14)

= 1
2

(
1 + Erf

(
φ

σ
√

2
rt+1

))
, (3.15)

where σ2
z = σ2

1−φ2 is the variance of the autoregressive returns. The prediction probability
is not constant in rt+1. The prediction probability as a function of the return amplitude is
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shown in Figure 3.4. Due to the autocorrelation, the probability of correctly predicting a
return increases with the return amplitude. Very large returns are almost always predicted
correctly.

A performance metric that is a better proxy for the mean return can be constructed
from an accuracy metric based on more then two classes (i.e. up and down moves). One
picks nr classes that provide a good discrete approximation of the probability distributions
p (r), and nc classes that provide a good approximation of pd (r). A good discrete approx-
imation of these two distributions ensures that the mean return computed as in Equation
(3.9) is well approximated too. The multi-class prediction accuracy can then be computed
using the non-parametric test of predictive performance by Pesaran and Timmermann
(1992).

This non-parametric test relies on a contingency matrix O with nr rows for the true
returns and nc columns for the predicted returns. Each sample in the dataset is an
observation of a true and a predicted return, which can be allocated to the corresponding
cell of the contingency matrix O. Under the null hypothesis of random strategies the true
and predicted returns are independent. For sufficiently large samples, Pearson’s chi-square
test can be used to measure the independence of observations (Pearson, 1900, Plackett,
1983). For contingency matrix O, with observation numbers Oi, j , the chi-squared is
defined as

χ̂2
d =

nr∑
i=1

nc∑
j=1

(Oi, j − Ei, j)2

Ei, j
, (3.16)

where

Ei, j = Nρi·ρ·j , N =
nr, nc∑
i, j

Oi, j , ρi· =
1
N

nc∑
j=1

Oi, j , and ρ·j = 1
N

nr∑
i=1

Oi, j . (3.17)

The number of degrees of freedom of the contingency table is given by nf = (nr−1)(nc−1).
The value χ̂2

d is used as the performance measure for directional accuracy. Under the null
hypothesis of independence, the p-value of the estimated chi-square is

P
(
χ2
d ≥ χ̂2

d, nf
)

= Γ
(
nf
2

)−1
Γ
(
nf
2 ,

χ̂2
d

2

)
. (3.18)

The p-value is the probability of a directional chi-squared value χ2
d larger then the observed

value χ̂2
d. This result is useful to approximate efficiently the directional accuracy p-value,

when a Monte-Carlo approach is not feasible because of computational limits.
In the case of binary classes nr = nc = 2, the directional p-value is given by

P
(
χ2
d ≥ χ̂2

d, 1
)

=
√
πΓ
(1

2

)−1
Erfc

√ χ̂2
d

2

 . (3.19)

This result shows that in the binary case the χ̂2
d value is normally distributed with mean

zero.
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Figure 3.5: Directional p-value for n = {2, 3, 4} and N = 250 days as given by
Equation (3.18) when using the chi-squared expression of Equation (3.22). An
excess accuracy of ∆ρ = 1% in each class is already highly significant in the four class
case, but far from significant in the two and three class cases.

The chi-squared value is not particularly intuitive to visualize, in particular in a multi-
class context. To gain a better intuition, let us introduce the excess predictability

∆ρi, j = 1
N

(Oi, j − Ei, j) . (3.20)

In the case of an equal number n = nr = nc of true and prediction classes, the excess
predictability ∆ρi, j is a square matrix. Further on, let us assume that the excess pre-
dictability takes the homogeneous form

∆ρi, j =
(

n

n− 1δi, j −
1

n− 1

)
∆ρ, (3.21)

which satisfies the probability constraints ∑i ρi, j = 1 and ∑j ρi, j = 1 following from
Equation (3.17). The excess predictability n∆ρ/(n− 1) in all correct predictions is homo-
geneously balanced by the reduced predictability ∆ρ/(n− 1) in all wrong predictions. It
has to be noted that in the binary case n = 2 this is the only possible expression for ∆ρi, j ,
while for n > 2 in-homogeneous excess predictability can arise. Now the chi-squared can
be computed as

χ̂2
d =

nr∑
i=1

nc∑
j=1

n2

N
(N∆ρi, j)2 = n4N∆ρ2, (3.22)

where Ei, j = N
n2 has been used. Some examples of Equation (3.18) when using the chi-

squared expression of Equation (3.22) are shown in Figure (3.5).
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3.3.2 Directional accuracy & compounded returns

Directional accuracy provides a good indicator to determine if a model possesses some
predictive power, and allows us to efficiently compute the associated p-value as given in
Equation (3.18). However, as discussed in Section (3.3.1), better than luck directional
accuracy does not necessarily imply profitability of a trading strategy. Typically, an
investor reinvests his returns and is therefore primarily interested in the compounded
return.

Hereafter, the compounded return at time t is designated as wealth Wt, which is
normalized to unit initial wealth (W1 = 1). At each time step t the wealth Wt is invested
based on a model’s signal st ∈ R, compounding with the asset return rt. When the
absolute signal is different from one (|st| 6= 1), the strategy’s remaining cash or leveraged
position is invested respectively borrowed at the risk free rate rft . The transaction cost ∆ς
is in percentage points of the change in position. For ease of computation, the transaction
cost is assumed to be constant in time. For example, the round trip cost of taking a long
position and then selling it is 2∆ς percentage points. The wealth at time t can so be
expressed as

Wt =
t−1∏
i=1

(1− |si − si−1|∆ς)︸ ︷︷ ︸
transaction cost

(
1 + si · ri + (1− |si|) · rfi

)
︸ ︷︷ ︸

model return

, (3.23)

where s0 = 0 is an out of the market signal before the first predicted signal s1.
To understand how directional accuracy impacts compounded wealth, we compute

an analytic approximation of the expected wealth as a function of the trading pattern,
the contingency matrix, and the transaction cost. The number of observations of a true
return of class i and a predicted return of class j is denoted by Oi, j . The total number of
observations is N = ∑

i, j Oi, j . The directional accuracy is assumed constant in time and
independent of the return amplitude. In a first step, we approximate the logarithm of the
compounded wealth as

log (WN ) =
N−1∑
t=1

log (1−∆st∆ς) + log
(
1 + st · rt + (1− |st|) · rft

)
(3.24)

∼
∑
i, j

n∆si, j · log (1−∆si, j∆ς) (3.25)

+
∑
i, j

Oi, j ·
(

log (1 + sj · ri) + log
(

1 + (1− |sj |)
1 + sj · ri

· rf
))

. (3.26)

We denote by si the signal of class i in the contingency matrix, by ∆si, j = |sj − si| the
absolute difference between two signal classes, and by n∆si, j the number of transitions
between a signal of class i and a signal of class j. The average asset return of category i
is denoted by ri, and the average risk free rate by rf . Using the excess predictability of
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Equation (3.20) the expression simplifies to

log (WT ) ∼ W∆ς +Wf + IpΣ · rm +N
∑
i, j

∆ρi, j log (1 + sjri) , (3.27)

where
W∆ς =

∑
i, j

n∆si, j · log (1−∆si, j∆ς) (3.28)

is the transaction cost, and

Wf =
∑
i, j

Oi, j log
(

1 + (1− |sj |)
1 + sj · ri

· rf
)

(3.29)

is the risk free wealth and/or interest payed on leveraged positions. The third term is the
product of the average position and the average market return defined as

IpΣ = N
∑
j

ρ·jsj , respectively rm = 1
nc

∑
i, j

ρi· log (1 + sj · ri) , (3.30)

where the values ρi. and ρ.j have been defined in equation 3.17 as Ei, j = Nρi.ρ.j . Having
more, or stronger, long positions then short positions (IpΣ > 0) in a bull market (rm > 0)
will always result in positive returns. The opposite holds true for more, or stronger, short
positions in a bearish market.

The fourth term∑
i, j ∆ρi, j log (1 + sjri) expresses the return stemming from the excess

predictability. This term is constrained by the equalities ∑i ∆ρi, j = 0 and ∑j ∆ρi, j = 0.
These equalities follow from the definitions of ρi. and ρ.j given in equation 3.17, which
imply ∑i ρi. = 1 and ∑j ρ.j = 1. To further simplify this term in the case of an equal
number n = nr = nc of true and predicted returns, the excess predictability is assumed to
take the homogeneous form defined in Equation (3.21). The assumption of homogeneous
excess predictability transforms the last term into

N
n

n− 1∆ρ
∑
i

log (1 + siri)−
N

n− 1∆ρ
∑
i, j

log (1 + sjri) . (3.31)

In the case of balanced signals, satisfying ∀sj ∈ s, −sj ∈ s, the second term can be
neglected up to second order in ri.

Finally, introducing the average return rc = 1
n

∑
i log (1 + siri) of a correct prediction,

the compounded wealth can be expressed as

log (WN ) ∼W∆ς +Wf + IpΣ · rm +N
n2

n− 1∆ρ · rc. (3.32)

The last term in equation 3.32 is the expected profit made from the excess predictabil-
ity, which is proportional to the average profit rc of a correct prediction and the excess
predictability ∆ρ. This result is rather intuitive, as making ∆ρ percent more correct
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than wrong predictions, with a gain or loss of rc on each prediction, must yield an over-
all gain proportional to ∆ρ · rc. If the compounded wealth differs significantly from the
value obtained in equation 3.32, the directional accuracy is not independent of the return
amplitude, as assumed in this computation.

To finally compare the transaction costs and excess profits, let us consider a random
trading strategy going only long or short (n = 2). A random sequence of binary signals,
with identical probability, trades on average every second day. Consequently, the first
term evaluates to N

2 log (1− 2 ·∆ς), as ∆si, j = 2δi, j and n∆si, j = N
4 . The risk free wealth

is zero (Wf = 0), as the random strategy is always long or short. The average return of
a correct prediction is equal to the average absolute market return (rc = 〈log (1 + |r|)〉).
Therefore, in the case of a flat market (rm = 0), the profits from excess directional accuracy
exceed the trading costs if

− 1
2 log (1− 2 ·∆ς) + 4∆ρ · rc > 0 ⇒ ∆ρ &

∆ς
4rc

. (3.33)

A typical equity index, such as the S&P 500, has an average absolute daily return
〈|r|〉 ∼ 1%. This implies that for every basis point in spread between buy and sell
(spread = 2 ·∆ς) at least 100× 0.005%

4×1% = 0.125% in excess predictability ∆ρ is needed. The
excess predictability ∆ρ is linked to the Chi-squared by Equation (3.22) as χ2

d = 16N∆ρ2,
assuming n = 2.

3.3.3 Directional accuracy & mean return

In certain circumstances, one may not be interested in the compounded returns, but
instead in the cumulative return or mean return. This occurs when a fixed sum is in-
vested at every time step. Profits are not reinvested and losses are compensated at every
step. The relation between directional accuracy and cumulative return is analogous to the
compounded wealth derived in Section 3.3.2, replacing log returns by the returns. The
cumulative return rt at time t is given by

rt =
t−1∑
i=1

si · ri + (1− |si|) · rfi︸ ︷︷ ︸
model return

− |si − si−1|∆ς︸ ︷︷ ︸
transaction cost

, (3.34)

where s0 = 0 is an out of the market signal before the first predicted signal s1.
The number of observations of a true return of class i and a predicted return of class

j is denoted by Oi, j . The total number of observations is N = ∑
i, j Oi, j . The directional

accuracy is assumed constant in time and independent of the return amplitude. The
cumulative return is given by

rN ∼ r∆ς + rf + IpΣ · rm +N
n2

n− 1∆ρ · rc, (3.35)
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which is an identical form to the log wealth of Equation (3.32). The term

r∆ς = −∆ς
∑
i, j

n∆si, j∆si, j (3.36)

is the transaction cost, and
rf = rf

∑
i, j

Oi, j (1− |sj |) (3.37)

is the risk free return and interest payed on leveraged positions. The third term is the
product of the average position and the average market return now defined as

IpΣ = N
∑
j

ρ·j · sj , respectively rm = 1
nc

∑
i, j

ρi· · sj · ri, (3.38)

where the values ρi. and ρ.j have been defined in equation 3.17 as Ei, j = Nρi.ρ.j . The
last term is the profitability resulting from the excess predictability, which depends on the
average return rc = 1

n

∑
i si · ri of a correct prediction.

3.3.4 Sharpe ratio

A trading strategy’s profit is given by its wealth or cumulative return after transaction
costs, depending on the investment style. While the profitability is an important aspect,
it does not provide any information about the inherent risk of a strategy. As discussed in
Section 3.1, the EMH states that a strategy cannot make risk adjusted profits in excess
of the benchmark. Asset pricing models such as the CAPM implicitly define the price of
risk. Consequently, a better metric measuring risk adjusted returns is needed.

Most commonly, risk adjusted returns are measured by the Sharpe ratio of a strategy.
The Sharpe ratio for a strategy with returns {rt}T is given by

SRt =
E (rt)− E

(
rft

)
√
E
(
r2
t

)
− E (rt)2

. (3.39)

The Sharpe ratio provides risk adjusted returns assuming that the return distribution is
stationary and entirely characterized by the first two moments. In the context of financial
time series none of these assumptions hold strictly speaking, but they provide a good
approximation. In any case, the true generative process of returns is unknown and mo-
ments have to be estimated from the finite sample available through back-testing. Finite
sample properties of the Sharpe ratio are discussed in detail by Lo (2002). To maximize
the sample size, and so minimize the estimation error, this thesis uses the daily Sharpe
ratio unless stated otherwise. Monthly or yearly Sharpe ratios have a large estimation
error and are not as reliable.
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3.3.4.1 Studentized Sharpe ratio test statistic

The Sharpe ratio is used to determine the risk adjusted performance of the analyzed
strategies. Hence, to test the EMH, one has to show that the Sharpe ratio of a strategy is
significantly better then the Sharpe ratio of the benchmark, and therefore the test statistic
of interest is the Sharpe ratio difference with respect to the benchmark. The following
computation of the test statistic is based on my interpretation and implementation of the
method developed by Ledoit and Wolf (2008).

Assuming two return sequences (X1, 1, . . . , XT, 1) and (X1, 2, . . . , XT, 2) of length t,
with estimated means (µ̂1, µ̂2) and variances

(
σ̂2

1, σ̂
2
2
)
, the estimated test statistic reads

∆̂ (µ̂1, µ̂2, σ̂1, σ̂2) = Ŝh1 − Ŝh2 = µ̂1
σ̂1
− µ̂2
σ̂2
. (3.40)

This estimated test statistic has to be taken cautiously because it can be biased in the case
of correlated or heteroskedastic returns, and has a significant variance in finite samples.
To mitigate these biases, it is better to use the studentized test statistic

∆̂S = ∆̂
s
(
∆̂
) , (3.41)

corrected for the estimation error s(∆̂). Considering the vector of estimated moments
ν̂ = (µ̂1, µ̂2, σ̂1, σ̂2), with covariance matrix Ψ, the estimation error is computed as

s
(
∆̂
)

=

√
∇ν∆̂ (ν̂)T Ψ∇ν∆̂ (ν̂)

T
, (3.42)

where ∇ν∆̂ (ν̂) is the gradient with respect to the moments ν of the test statistic de-
fined in Equation (3.40), and the covariance matrix of the moments is given by Ψ =
limT→+∞E

[
ν̂T ν̂

]
.

3.3.4.2 Robust covariance estimation

In finite samples, the covariance matrix Ψ needed to estimate the studentized test statistic
defined in Equation (3.41) may be subject to biases as well. A HAC robust estimation of
Ψ is obtained with a kernel k as

Ψ̂ = t

t− 4

t−1∑
j=−t+1

k

(
j

ST

)
Γ̂t (j) , (3.43)

where

Γ̂T (j) =


1
t

∑t
t=j+1 ν̂

T
t ν̂t−j j ≥ 0

1
t

∑t
t=−j+1 ν̂

T
t+j ν̂t j < 0

. (3.44)
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Within this paper we use the Quadratic-Spectral (QS) kernel, for which the optimal band-
width S∗T can be computed using automatic methods derived by Andrews (1991) and
Newey and West (1994). The optimal bandwidth for the QS-kernel reads

S∗T ≈ 1.32 (a · T )2/5 , (3.45)

where a is a constant dependent on the DGP (e.g. AR(%), ARMA(%, q), MA(%)). When
using real financial data, we first regress an appropriate model on the data, and then
compute the constant a based on simulations with the regressed model.

3.4 Statistical significance & multiple testing

3.4.1 Methodology setup

A major requirement to reject the EMH as defined in this thesis (Definition 3.1) is not
only to find a strategy profitable in excess of the benchmark, but that the observed ex-
cess profitability is statistically significant given all tested strategies. To compute the
statistical significance of a strategy within a universe of strategies, this thesis follows the
methodology of Sullivan et al. (1999), White (2000), and Romano and Wolf (2005a). This
methodology uses bootstrap simulations (i.e. Monte-Carlo for non statisticians) to com-
pute the statistical significance of a performance metric for a given set of strategies. In
particular, it allows to preserve the exact dependency structure across all tested strategies.
The algorithm used to adjusted the p-values for multiple testing is defined in Romano and
Wolf (2016). This algorithm maximizes the number of rejected null hypotheses without
violating the familywise error rate.

A central element of the multiple-testing methodology is the observed data matrix
XT,S+1 (i.e. returns), with 1 ≤ t ≤ T time steps of the 1 ≤ s ≤ S different strategies.
The last column S + 1 is reserved for the benchmark. A strategy is generically described
by its sequence of signals {st}T1 ∈ RT determining the position at each time step on the
returns {Xt}T1 . The entries of the observed data matrix are obtained as rt, s ≡ Xt, s =
{Xt}T1 ◦ {st, s}

T
1 , where st, s is the trading signal of strategy s at time t, and ◦ denotes the

Hadamard product. In matrix form, the observed data matrix reads as

XT,S+1 =


r1, 1 . . . r1,S r1, b
... . . . ...

...
rT, 1 . . . rT,S rT, b

 ,
where each row represents a time step, and each column contains the return of a strategy
over time, with the last column containing the benchmark. The benchmark is typically
given by the buy-and-hold strategy rt, b = Xt.
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3.4.2 Null bootstrap of returns

The distribution of a chosen performance metric is computed using bootstrapped realiza-
tions of XT,S+1. The unknown probability distribution of returns is typically assumed
to be stationary, and new realizations are generated using the circular block bootstrap
of Politis and Romano (1992). This bootstrap method samples, with replacement, blocks
Xt0≤t≤t0+b, S+1 of size b from the observed returns, to generate bootstrapped observations
X∗T, S+1. A bootstrap block is written in matrix form as

Xt0≤t≤t0+b, S+1 =


rt0, 1 . . . rt0,S r1, b
... . . . ...

...
rt0+b, 1 . . . rt0+b,S rT, b

 ,
which is a sub-matrix of XT,S+1 with b rows starting at row t0. A bootstrapped data
matrix X∗T, S+1 is obtained by stacking row-wise i ∈

{
1, . . . ,

⌈
T
b

⌉}
blocks with uniformly

sampled t0, i ∼ unif
{

1, . . . ,
⌈
T
b

⌉}
, and removing the last

⌈
T
b

⌉
− T rows in case T is not a

multiple of b.
Bootstrapping the data breaks the correlation structure between the blocks of size b,

which limits the estimation of the covariance matrix to the blocks of size b and could intro-
duce major biases in the estimated test statistic. Nonetheless, this issue can be overcome
by finding the optimal block size for a given DGP. The block size selection is performed
by computing the estimated test statistic at confidence level α in a situation were the
true test statistic is known. For example, let us consider two independent realizations of
length t of an AR(%) with given parameter φ, the first being the strategy and the second
the benchmark. The two realizations have identical expected studentized Sharpe ratio.
Therefore, at significance level α, the test statistic should reject for a fraction 1−α of the
bootstrap realizations the hypothesis that the strategy has superior test statistic then the
benchmark. The optimal block size b (α) is hence a function of the significance level α.
The pseudo-code for the block size selection can be found in Ledoit and Wolf (2008).

Given m = 1, . . . , M bootstrap resamples X∗,mT, S+1 obtained with the optimal block
size, the centered studentized test statistic of strategy s for bootstrap m is

∆̂∗,mS, s =

∣∣∣∆̂∗,ms − ∆̂s

∣∣∣
s
(
∆̂∗,ms

) , (3.46)

where the test statistic is always computed with respect to the benchmark in column S+1.
The individual p-values are computed as

p∗,ms =

{
∆̂∗,mS, s ≥ ∆̂S, s

}
M + 1 , (3.47)

which is the fraction of centered test statistics that exceed the original test statistic.
The precision of the computed p-values depends on the number of null resamples M .
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For practical purposes M = 1000 is sufficient to estimate the p-values at three decimal
places, and determine if typical confidence levels of 95% or 99% are reached. Making an
assumption on the functional form of the test statistic distribution, one can extrapolate
the tails when higher accuracy is needed for extremely significant results. However, the
true tail behavior is usually unknown, and the tail estimation obtained by extrapolation
of a specific distribution is at risk of large biases.

3.4.3 Adjusting p-values for multiple testing

The individual test statistics computed in Equation (3.47) do not correct for the multiple
testing of several strategies simultaneously. To adjust for multiple testing, the stepdown
procedure of Romano and Wolf (2016) has to be applied. In a first step, the individual
strategies are ordered by increasing p-value. The indices {r1, . . . , rS} denote the permu-
tation of {1, . . . , S} that fulfills pr1 ≤ pr2 ≤ . . . ≤ prS . In a second step, the smallest
p-value in the mth resample of the S − j worst strategies is denoted by

min∗,mp, j = min
{
p∗,mrj , . . . , p∗,mrS

}
.

Introducing the p-value padj0 = 0, the adjusted p-values can be computed recursively as

padjj = max

#
{
min∗,mp, j ≤ pj

}
+ 1

M + 1 , padjj−1


for j = 1, . . . , S.

3.4.4 Null bootstrap of trading signals

A drawback of bootstrapping the returns of the strategies and benchmark is the station-
arity assumption. For this assumption to hold, the predicted stock market has to be in
the same regime during the entire test period. Unfortunately, real stock markets undergo
regime changes, the most common being bull and bear markets. Bootstraps over the past
two decades would include realizations that do not contain the dotcom bubble and finan-
cial crisis. This consequence of the stationarity condition defeats the purpose of computing
p-values with respect to realizations similar to the real market.

To avoid the issue of non-stationarity of the returns, one can instead bootstrap the
signals (long or short) of the strategies and keep the returns of the benchmark unchanged
in every bootstrap. For each bootstrap, the returns of the strategies are computed based
on the benchmark returns and the bootstrapped signals. In this setting, the bootstrapped
test statistic is computed as in Equation (3.41), and is not centered. The obtained p-
values describe the probability that the randomized strategies with same number of long
and short positions, and same cross-strategy correlation structure of the signals, achieve
the observed performance of the actual strategies.

The null bootstrap of the trading signals acts on the signal matrix
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ST,S+1 =


s1, 1 . . . s1,S s1, b
... . . . ...

...
sT, 1 . . . sT,S sT, b

 ,
which generates the observed data matrix

XT,S+1 = ST,S+1 ◦ {Xt}T1 =


s1, 1 · r1 . . . s1,S · r1 s1, b · r1

... . . . ...
...

sT, 1 · rT . . . sT,S · rT sT, b · rT

 ,

where ◦ is the Hadamard product and {Xt}T1 = {rt}T1 are the returns of the predicted
asset. The buy-and-hold strategy as benchmark is defined by si, b = 1, ∀i.

Analogously to the null bootstrap of returns in Section (3.4.2), new realization of the
observed data matrix are obtained by generating bootstrapped realization S∗T,S+1 of the
trading signals. The bootstrap realizations S∗T,S+1 are obtained by stacking uniformly
sampled blocks of size b from the signal matrix ST,S+1. The bootstrap data matrix
realizations are obtained as X∗T,S+1 = S∗T,S+1 ◦ {Xt}T1 .

In the context of bootstrapping the strategy signals, instead of the strategy returns,
the optimal bootstrap block size becomes more intuitive when considered with respect to
the mean position duration. For example, for a strategy with a mean position duration
of ten days, the bootstrapped realization should as well have a mean position duration
of ten days. Otherwise, the performance of the true strategy would be benchmarked
with respect to bootstrapped strategies having a different investment style. In order not
to compare apples and pears, the block size used for bootstrapping should preserve the
investment style. However, when comparing a set of strategies with different investment
style, no block size will preserve the characteristic position distribution of all strategies.
Nevertheless, a block size may be selected based on a simulation of a corresponding null
hypothesis at given significance level. In any case, the block size should be selected so as
to never violate the familywise error rate, the downside being that the power of the test
statistic may be sub-optimal for some strategies.

To gain some intuition of the relation between investment style and trading perfor-
mance, let us study the impact of the mean position duration ts on the wealth of random
strategies. Figure 3.6 shows the wealth quantiles as a function of the mean position du-
ration for the S&P 500. The lower quantiles, below the 95% confidence level, are almost
insensitive to the mean position duration. However, larger quantiles decrease significantly
with mean position duration. For example, the 99.9% quantile decreases by almost 40%
between mean position duration two (Wrandom (ts = 2) ∼ 11) and mean position dura-
tion 20 (Wrandom (ts = 20) ∼ 7). This decrease implies that the randomization has to be
performed with respect to the lowest mean position duration in order to not violate the
familywise error rate.

In conclusion, selecting the bootstrap block size with respect to the longest position
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Figure 3.6: Wealth quantiles of random trading strategies as a function of the
mean position duration in days. The simulation is based on daily returns of the
S&P 500 between Jan. 1, 1997 and Dec. 31, 2015. At each duration in [1, 2, . . . , 25],
the wealth distribution was estimated on a set of 10000 samples. The tail values were
evaluated from a generalized normal distribution fitted to the samples. The roughness of
the curves is a result of the particular return structure of the S&P 500, and is not a result
of an insufficient sample size.

duration would insufficiently randomize the strategies with shorter position duration. On
the other hand, selecting the block size with respect to the shortest position duration would
overly randomize strategies with longer position duration. To maximize the statistical
power of the randomization test, without violating the familywise error rate, the block
size should always be chosen with respect to the strategies with shortest mean position
duration.

3.4.5 P-value bias of the mean return

The p-values of certain metrics, for simple prediction strategies, can exhibit non-intuitive
biases. For example, let us consider the strategy with signal

st+1 = sign (rt) , (3.48)

which predicts for each time step the sign of the previous return. We benchmark this strat-
egy against the buy-and-hold strategy sBHt+1 = 1 using the mean return as a performance
metric. When predicting two returns (r0, r1, r2), where r0 is a dummy return needed for
the prediction, the mean return difference between the two strategies is

∆r̄ = 1
2 (sign (r0) r1 + sign (r1) r2)︸ ︷︷ ︸

strategy

− 1
2 (r1 + r2)︸ ︷︷ ︸
buy-and-hold

. (3.49)

60



sign (r0, r1, r2) ∆r̄

(+, +, +) r1 + r2 − r1 − r2 = 0
(+, +, −) r1 + r2 − r1 − r2 = 0
(+, −, +) 1

2 (r1 − r2 − r1 − r2) = −r2 ≤ 0

(+, −, −) 1
2 (r1 − r2 − r1 − r2) = −r2 ≥ 0

(−, −, −) 1
2 (−r1 − r2 − r1 − r2) = −r1 − r2 ≥ 0

(−, −, +) 1
2 (−r1 − r2 − r1 − r2) = −r1 − r2 ∼ 0

(−, +, −) 1
2 (−r1 + r2 − r1 − r2) = −r1 ≤ 0

(−, +, +) 1
2 (−r1 + r2 − r1 − r2) = −r1 ≤ 0

Table 3.2: Mean return difference between the buy-and-hold and previous sign
prediction strategies. The table lists all cases predicting two returns r1 and r2.

While the expected mean return difference is zero, E [∆r̄] = 0, the probabilities of it being
positive or negative are not symmetric. To show that p (∆r̄ > 0) 6= p (∆r̄ < 0) , we com-
pute the value for all possible scenarios in Table 3.2, and can determine the probabilities
to almost surely be

p (∆r̄ > 0) = 5
16 , p (∆r̄ = 0) = 4

16 and p (∆r̄ < 0) = 7
16 . (3.50)

The p-value associated to the strategy outperforming the benchmark would be p (∆r̄ < 0)+
1
2p (∆r̄ = 0) = 7

16 + 1
2 ·

4
16 = 0.5625. This bias decreases with the number of predicted

returns as shown in Figure 3.7. The bias decays with the sample size T , but remains
significant for the sample sizes of interest.

3.5 Portfolio of strategies

Another major requirement to reject the EMH as defined in this thesis (Definition 3.1) is
not only to find a strategy with statistically significant profits in excess of the benchmark,
but as well a search technology that would have selected this strategy ex-ante among all
available strategies. For a large universe of models, a mean variance portfolio as search
technology is technically challenging to implement (Senneret et al., 2016). To reasonably
invert the covariance matrix of the returns of all models, the number of past returns must
be greater than or equal to the number of models. Therefore, the ex-ante performance is
evaluated using the simpler best Sharpe ratio search technology, which invests at every
time step into the model with the best past Sharpe ratio.

Let us denote by ~rM (t) the set of returns at time t of the models in the universe M
of models. Then a search technology is a function ~S (M, t) computing the weights of a
portfolio of models in M at time t, resulting in portfolio returns rS(t) = ~S (M, t− 1) ·
~rM (t). Denoting the Sharpe ratio of model Mi ∈M at time t by SRi (t), the best Sharpe
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Figure 3.7: P-value of the mean return metric for the previous sign prediction
strategy as a function of the sample size t. As computed in Equation 3.50, the
p-value is exactly p = 0.5625 for t = 2. The bias decays with the sample length, but
remains significant above 0.5% at sample length t.
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ratio search technology reads

Si (M, t) =


0 if i 6= argmax

Mi∈M
SRi (t)

1 if i = argmax
Mi∈M

SRi (t)
. (3.51)

An initial window (e.g. one year) before the first portfolio return is necessary to have an
initial estimate for the Sharpe ratio of each strategy. Subsequently, the Sharpe ratio of
each strategy is computed in an expanding window of all past returns.

This search technology can be refined with the Reality Check method (White, 2000),
as done by Hsu et al. (2016). The refined method computes a portfolio of statistically
significant models, weighted by the p-value of their Sharpe ratio after adjusting for multiple
testing.

3.6 Factor regression tests

The buy-and-hold strategy provides a solid model of equilibrium expected returns and
is used through out the thesis as benchmark. However, a range of factors are known
to generate abnormal risk adjusted returns. Therefore, when finding a strategy with
abnormal returns, the obtained returns have to be tested for correlation with known
anomalous factors potentially explaining the observation.

To determine if abnormal returns can be explained by known factors, the returns are
regressed with the CAPM, the three-factor model of Fama and French (1993), and the
four-factor model of Carhart (1997). The full four-factor model measures performance as
a regression of

r − rf [t] = α+ βMKT

(
rm[t]− rf [t]

)
+ βSMBSMBt + βHMLHMLt + βMOMMOMt + et.

(3.52)
In this regression, r is the strategy return at month t, rf [t] is the risk-free rate (the 1-month
U.S. Treasury bill rate), rm[t] is the market return, SMBt and HMLt are the size and
value-growth returns of Fama and French (1993), MOMt is the momentum return, α is
the average return not explained by the benchmark model, and et the residual error term.
The values for rf [t], rm[t], SMBt, HMLt and MOMt are taken from Ken French’s data
library (French, 2012), and derive from underlying stock returns data from the Center for
Research in Security Prices (CRSP). The three-factor model is obtained by leaving out
the momentum term, and the CAPM is obtained by further leaving out the SMB and
HML factors.

3.7 Testing the efficient market hypothesis: an overview

The existing studies assessing the EMH using a multiple-testing framework provide a
heterogeneous picture. The study by White (2000) finds no significant technical trading
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rule during a three year time span on the S&P 500. This result is confirmed by Sullivan
et al. (1999) on a 10 year time period on the S&P 500, however they find significant
trading rules on the Dow Jones for a 100 year time period ending in 1996. Subsequently,
Hsu and Kuan (2005) analyze an extended universe of strategies and find no significantly
performing strategy on the Dow Jones and S&P 500 during the period 1990-2000. However,
they find significant trading rules for the more recent NASDAQ and Russell 2000 during
the same period. Later, Hsu et al. (2010) compare the pre-ETF and post-ETF period for
the U.S. and emerging markets. The post-ETF period is found to be fairly efficient, and
in both periods emerging markets are found to be less efficient then the more mature U.S.
markets. The efficiency check of foreign exchange markets by Hsu et al. (2016) reveals
that technical trading has been profitable in the past, but returns have been declining.
As for stock markets, the foreign exchanges of emerging countries are less efficient then in
developed countries.

The picture is equally mixed when analyzing funds. The analysis by Fama and French
(2009) shows that during the period of 1984 to 2006 mutual funds underperform in aggre-
gate the three-factor, and four-factor benchmarks by about the transaction costs. When
looking at the individual performance, even the best performers are not statistically sig-
nificant. The study of Barras et al. (2005) mitigates this picture, finding significantly
performing funds prior to 1996, and almost none afterwards. This result supports the
stock market studies discussed above that showed increasing efficiency over time. In con-
trast, the portfolio approach by Yen et al. (2015) to measure fund performance does find
significant performance during a 10 year period ending in 2007.
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Chapter 4

Agent Based Models with Binary
Strategies

4.1 Motivation & review

Econometric modeling has allowed researchers to develop a detailed understanding of the
dynamics in economic and financial time series. The methods can describe the auto-
correlation structure of returns, the autocorrelation of absolute returns, conditional fat
tails, and many other stylized facts. Nevertheless, the forecasts from these models only
work short term, until the next regime change renders a forecast obsolete. Econometric
models are fundamentally unsuited to described non-equilibrium dynamics that arise in
economics and finance. To move past Dynamic Stochastic General Equilibrium models
(DSGEs), agent based modeling is a promising tool as it naturally allows for bounded
rationality and out-of-equilibrium dynamics (Lebaron, 2006). These features are crucial
to capture the complexity of the real economy, and only such a holistic approach can
attempt to forecast regime changes from first principles (Farmer and Foley, 2009). The
applications of agent based models to describe order book dynamics, wealth distribution
among individuals, and financial markets (Chakraborti et al., 2011) have opened up the
path to a promising set of tools beyond standard econometrics.

Stock markets returns exhibit a significant number of stylized facts (Cont, 2001), most
prominent are the absence of linear autocorrelation, but autocorrelation of absolute re-
turns, skewness, and fat tails. The field of econometrics had developed a large number of
models (ARCH, GARCH, etc) to describe this stylized facts. In particular, the autocorre-
lation of absolute returns, or volatility clustering, can be well forecast using econometric
methodology. However, these models do not provide a fundamental mechanism explaining
why stock markets exhibit these stylized facts. This lack of an explanatory component in
econometrics has motivated the construction of agent based model to reproduce these styl-
ized facts from first principles. Surprisingly, relatively simple models with a noise trader
component and fundamental trader component turned out to be sufficient to generate
volatility clustering and mean reversal (Lux, 1995). Subsequent extensions of the model

65



proposed a detailed mechanism explaining bull and bear markets (Lux and Marchesi,
1999), and could generate return distributions with significant leptokurtosis and kurtosis
(Lux and Marchesi, 2000, Raberto et al., 2001, Cont, 2005, Alfi et al., 2009a,b). In these
models, the periodic dominance of herding among speculative investors over the impact
of external news is a crucial component to observe the stylized facts (Sornette and Zhou,
2006). A complete historical overview is provided by Samadiou et al. (2007).

Agent based models not only provide an endogenous mechanism for multiple stylized
facts, but explain as well why stock markets are highly stochastic. The adaptive rational
equilibrium pursued by the agents naturally gives rise to local instabilities and compli-
cated global dynamics (Brock and Hommes, 1997). The interplay between fundamentalist
and chartist traders at the micro level causes the emergence of deterministic chaos at the
macro level of the stock market (Hommes, 2006). This emergent property satisfies the
hypotheses of marginally efficient and rational markets when measured using economet-
ric tests, despite the agents bounded rationality that allows the market do go through
transient out-of-equilibrium phases Chen and Yeh (2002).

Despite the powerful explanatory power of agent based models for the common stylized
facts, their use among practitioners is almost inexisting due to the lack of standardized
calibration procedure. First attempts to quantitatively match the stylized facts were suc-
cessful for simple stationary models, but inconclusive for more realistic non-stationary
adaptive belief systems (Hommes, 2002). Subsequent approaches used aggregation and
linearization of the agent based model to estimate the parameters using standard sta-
tistical methodology. Despite the inherent difficulties in calibrating ABMs, a number of
achievements have been made in linking them to stochastic models that can be calibrated
to data Feng et al. (2012). The advantage of deriving a general linear model from an ABM
is that the parameters can be interpreted in terms of the influence of fundamentalist and
noise traders on the market (Alfarano et al., 2005). The results support the hypothesis
of strong social interaction in short-run sentiment (Lux, 2012), but the model could not
beat the random walk in an out-of-sample prediction benchmark. Recent efforts leveraging
the generalized method of moments achieved volatility forecasting performance equal to
the seminal GARCH model, and added additional information about the trend following
component (Ghonghadze and Lux, 2016).

The class of agent based models using the adaptive belief system of fundamentalist
and chartist traders has proven difficult to understand analytically. Likely for this reason,
a simpler class of agent based models was developed in parallel, deriving from the El Farol
Bar problem (Arthur, 1994). In this problem, the agents only have to make a binary
choice: to go or not to go to the bar. The payoff function the agents try to optimize
is the minority game, namely avoiding the bar when it is overcrowded. This model was
later adapted to stock markets with agents that only go long or short (Challet and Zhang,
1997). It turned out that such minority game stock markets posses phase transitions of
marginal efficiency with stylized facts matching those of real stock markets (Challet et al.,
2001). While such artificial stock market never reaches full efficiency, the continuous
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transfer of information from fundamentalists to speculators ensures marginal efficiency
(Challet et al., 1999, Zhang, 1999), exactly as discussed by Grossman and Stiglitz (1980)
two decades earlier. The advantage of the minority game model is that the stationary state
of heterogeneous interacting agents can be described as the ground state of a disordered
spin model (Challet et al., 2000), which is well understood in statistical physics.

The rationally optimizing agents in minority games were shown to underperform the
average return of all agents (Satinover and Sornette, 2009), and in particular underperform
the non-optimizing agents (Satinover and Sornette, 2007). Nonetheless, in such games,
better informed agents with longer memory can always beat simpler agents with shorter
memory (Challet and Zhang, 1998). Besides this undesirable predictability, the pure
minority game stock markets lack as well bubbles matching those observed on real stock
markets. The crucial ingredient to generate bubbles has already been well understood in
models with fundamentalist and chartist traders, where large amounts of noise traders can
drive the price far above or below the fundamental level as a consequence of overreaction
to the action of a smaller group of fundamental traders (Bak et al., 1997). Extensions
of this model adding a risk free asset are known to generate common stylized facts and
super-exponential bubbles (Kaizoji et al., 2015). Indeed, generalizing the minority game
by adding trend following agents does generate trends and bubbles (De Martino et al.,
2004). These new agents play the majority game, always trying to predict what the
majority will do at the next step. Adding a delayed majority game with one step delayed
payoff function, leading to the $-game, exhibits regime transitions from herding where the
majority wins, to reversals where the minority wins. A closely related model has analyzed
the role of imitation resulting from public and friend’s information (Harras and Sornette,
2011), and found that a lucky strike of random events can trigger a herding phase among
agents that pushes the price far above its fundamental value. Hence, simple rationally
optimizing agents can drive stock markets into states of extreme susceptibility to small
exogenous shocks (Patzelt and Pawelzik, 2013).

Following the qualitative success of minority, majority and mixed game models, a
number of efforts have been made to calibrate these models to real stock markets using
genetic algorithms. Assuming that these models capture the market dynamics emerging
from the individual agents, their forecast should beat the buy-and-hold benchmark. Initial
studies reverse engineering the agent strategies and using them for out-of-sample prediction
on hourly Forex data achieved impressive performance (Jefferies et al., 2001). Attaching
to this success, Lamper et al. (2002) showed that predictability increases prior to large
changes in agent based models with agents competing for limited resources. Further
pockets of predictability were identified by Andersen and Sornette (2005), arising when
the agents action decouples from the past returns.

Without doubt, these models have allowed researchers to make significant progress
with respect to the two major issues plaguing agent based models (Sornette, 2014): model
complexity and biases in the chosen rules; and lack of standard calibration method due to
the difficulty of determining the likelihood function. These models minimize complexity
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by using only binary histories and actions, and is bias free as agents can play any of the
finite number of binary strategies. The genetic algorithms used to optimizes the agent
strategies, so as to reproduce the observed time series, are well established.

Noticeable directional accuracy in daily returns of the Shanghai stock market was as
well achieved by reverse engineering mixed-game models (Chen et al., 2008). The exact
nature of the predictability in stock markets found with mixed agent-based is not yet fully
understood. The work by Satinover and Sornette (2012a,b) showed that the individual
agents playing a single game can as well achieve impressive directional accuracy. Conse-
quently, a more detailed study is necessary to determine which fraction of the predictability
can be attributed to the collective intelligence of the agents, and which is explained by
the micro level optimization of the agents. In mixed game models, the predictability is
typically highest during trending periods (Wiesinger et al., 2012). In this chapter, we
compared the trading performance on single agent models and mixed-game models, to
determine if the collective intelligence of multiple agents increases predictability.

4.2 Agent behavior

4.2.1 Strategy space

The rational agents have for only information the Z past returns ~rt = {rt−Z+1, . . . , rt}
and want to determine the strategy f that will predict the return rt+1 at time t+ 1. The
predicting function f , often designated as strategy, is a function f : RZ → R mapping
the vector ~rt of past returns to the predicted return

r̃t+1 = f(~rt). (4.1)

The space SZ := {f |∀f : RZ → R} of all possible strategies is infinite, while the sequence
of known returns is finite, which makes it impossible to constrain the function f in a
meaningful way. To obtain a finite space SZ , the returns have to be discretized by a
projection onto a finite set of return categories R. The projection is defined by the choice
of a function µ : R→ R. This discretization reduces the space of all possible strategies to

SZµ := {f |∀f : RZ → R}. (4.2)

Using |R| = n, the cardinal ofR, the space SZµ of discretized strategies contains
∣∣∣SZµ ∣∣∣ = nn

Z

elements. Past research has always used the simplest projection µ : rt → sign(rt), which
projects onto the binary set {−, +}. The small set of binary strategies is sufficient to give
rise to all the stylized facts of interest, and is therefore predominantly used within this
thesis. Nonetheless, in theory, one can construct strategies based on arbitrarily complex
discretization, for example to create multi-scale strategies that predict based on past
returns at different time scales.
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4.2.2 Minority & majority payoff

To maximize profits, are rational agent always tries to correctly predict the next return.
To mimic the heterogeneity of beliefs among real traders, two major types of games are
considered: the minority game where agents believe that the recent trend will reverse (anti-
persistency); and the majority game where agents believe the recent trend to continue
(persistency). The games are modeled by a payoff function π : R × R → {−1, 1} that
associates to a true return rt and predicted return r̃t the unitary gain or loss π (rt, r̃t).

A payoff defines for each combination of a true and a predicted return in R×2 the asso-
ciate payoff in {−1, 1}, which allows for a total of 2n2 possible payoff functions. Associating
the same payoff to a predicted return independently of the true return is meaningless as
there would be nothing to optimize. Consequently, in the binary case with n = 2, there
are two meaningful payoff function. One is the minority payoff function

πMG : (r, r̃)→ 1− 2δr, r̃, (4.3)

where one wins when being in the minority. An example is the decision to go to a bar or
not; if there are few people, one is in the minority and the experience is most enjoyable.
The other is the majority payoff function

πMAJG : (r, r̃)→ 2δr, r̃ − 1, (4.4)

where one wins when being in the majority. An example being stock markets during a
herding phase.

4.2.3 Strategy performance

Being endowed with the knowledge of a finite set of strategies and a payoff function, the
strategies can be ranked by their past performance and the best one can be selected for
trading at the next time step. The performance U of a strategy f , for the payoff function
π, with a delay d, on the past window of size L, is given by

Uπ, d, L(f, t) = 1
L

t−1∑
j=t−1−T

π (rj+d+1, f (~rj,m)) , (4.5)

where ~rt,m = (rt−m, . . . , rt). The parameter L determines how many past prediction are
used for the performance computation. Beyond that time, the history is considered as
obsolete for current events.

The parameter d introduces a possible delay between the time of the prediction and the
time of its execution on the market. For d = 0 the performance measure corresponds to
the standard minority (MG) and majority (MAJG) games. A one step delay, with d = 1,
corresponds to the delayed minority (dMG) and delayed majority (dMAJG) games.
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4.2.4 Memory length

The cardinal of the binary strategy space is given by
∣∣∣SZµ ∣∣∣ = 22Z and growths super-

exponentially with the number of past returns Z:

Z = 1→
∣∣∣SZµ ∣∣∣ = 4, (4.6)

Z = 2→
∣∣∣SZµ ∣∣∣ = 16,

Z = 3→
∣∣∣SZµ ∣∣∣ = 256,

Z = 4→
∣∣∣SZµ ∣∣∣ = 65536.

...

In contrast, there are only L + 1 unique performance values a strategy can take on a
window of size L, ranging from always predicting wrong (payoff = −1) to always predicting
correctly (payoff = 1) in increments of 2

L . By the pigeonhole principle, it is unlikely to
distinguish a single best strategy if

∣∣∣SZµ ∣∣∣� L+1. Hence, the number of past returns taken
as input by a strategy is limited to a memory length m that satisfies

∣∣∣Smµ ∣∣∣ = 22m < L+1.

4.2.5 Predictor summary

In a nutshell, a predictor Pµ,m, π, d, L (= agent) has the following components:

• A finite strategy space S ⊆ Smµ with nn
m distinct strategies for the discretization

map µ and memory length m.

• A payoff function π that determines the loss or gain for a true and a predicted return.

• The performance function Uπ, d, L(f, t) that computes the total payoff of a strategy
f ∈ S at time t, with a delay d on the last L time steps.

At each time step t, the prediction r̃t is given by

r̃t = f (~rt−d,m) , where f = argmaxf ′∈SUπ, d, L(f ′, t), (4.7)

which is the prediction of the strategy with the highest performance on the past L time
steps.

This definition of an agent is relatively bias free, as an agent can play any of the
strategies, and the manageable number of the binary strategies allows us to determine
the optimal strategy at each time step. Hence, these agents are a solid foundation for an
ABM that avoids the two typical problems of a modeler’s bias and intractable likelihood
function (Sornette, 2014).
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Figure 4.1: De Bruijn graphs for R = {0, 1} and m ∈ {1, 2, 3}.

4.2.6 De Bruijn representation

The strategy space Smµ := {f |∀f : Rm → R} is best visualized as a De Bruijn graph,
which is shown in Figure 4.1 for R = {0, 1} and m ∈ {1, 2, 3}. The input space Rm of
the strategies defines the |R|m nodes of the graph, and the directed edges are defined by
the |R|m+1 possible transitions

(r1, . . . , rm)→ (r2, . . . , rm+1) . (4.8)

An individual strategy f ∈ Smµ associates to each node ~r = (r1, . . . , rm) ∈ Rm a unique
transition defined by

~r = (r1, . . . , rm)→ (r2, . . . , rm, f (~r)) , (4.9)

and is therefore a sub-graph of the De Bruijn graph. A strategy f ∈ SZµ,m defines the
directed graph

Gf = (Rm, {(~r, (r2, . . . , rm, f (~r))) |~r ∈ Rm}) . (4.10)

By construction of the map f , all nodes in this graph have out-degree one and an in-
degree smaller or equal then n = |R|. Therefore the map f c, composing c times f , is well
defined for every node. Consequently, for every input ~r ∈ Rm, a strategy f can be used
to predict an arbitrary number of steps. Given the finite number of nodes in the graph,
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Figure 4.2: To the left the De Bruijn graph for R2 = {0, 1} and m = 3. To the right, the
sub-graph constrained by the sequence {1, 1, 0, 1, 0, 1, 0}.

there exists at least one node ~r ∈ Rm and cr ∈ N, 1 ≤ cr ≤ nm, such that f cr(~r) = ~r.
In words, this graph has at least one cycle of length at least one. All the nodes that are
not in a cycle are attached to one of the cycles by some non-periodic path. It follows that
for every input ~r ∈ Rm the prediction made by f will necessarily become periodic after a
finite number of steps, with a period smaller or equal to nm. Because of this periodicity,
the predictor is usually designated as a cycle predictor.

To build an intuition, let us consider the De Bruijn graph for R2 = {0, 1} and m = 3,
and discuss how the sequence

{1, 1, 0, 1, 0, 1, 0} ≡ {(1, 1, 0), (1, 0, 1), (0, 1, 0), (1, 0, 1), (0, 1, 0)} (4.11)

constraints the optimal strategy. Figure 4.2 shows on the left the complete De Bruijn
graph, and on the right the nodes and edges constrained by the sequence in equation 4.11.
Any strategy f ∈ S3

µ satisfying the constraints

(1, 1, 0)→ 1,
(1, 0, 1)→ 0,
(0, 1, 0)→ 1,

(4.12)

will maximize the performance. Therefore, there are 223−3 = 25 = 32 strategies in S3
µ with

maximal performance. To avoid such degeneracy of optimal strategies, the path traced by
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the in-sample data has to go through all nodes in the De Bruijn graph at least once.

4.2.7 Calibration optimization

To find the strategy in Smµ with the highest performance, as defined in Equation (4.5),
the brute force approach is to compute the performance of every strategy individually.
However, the performance computation in Equation (4.5) can be optimized by rearranging
the sums as

Uπ, d, L(f, t) = 1
L

∑
~r∈Rm

∑
j∈L|~rj=~r

π (rj+d+1, f (~rj)) , (4.13)

where L = {t − L, . . . , t − 1}. Now the inner sum, over a fixed ~r, can be maximized
independently from the outer sum. In the De Bruijn graph, the payoff π (rj+d+1, f (~rj))
is associated to the edge (~rj , (rj−m+2, . . . , rj , rj+d+1)). Denoting by p~r, r the probability
of finding this edge in the in-sample data used for calibration, the performance function
is given by

Uπ, d, L(f, t) = 1
nm

∑
~r∈Rm

∑
r∈R

p~r, rπ (r, f (~r)) . (4.14)

To maximize the inner sum, the strategy is now entirely determined by

f (~r) = argmax
r′∈R

∑
r∈R

p~r, rπ
(
r, r′

)
. (4.15)

In case several values r~r ∈ R maximize the inner sum, a random choice is made. The
probabilities p~r, r can be computed linearly with respect to the in-sample data size L, and
the optimal r~r can be computed linearly with respect to n = |R|, which makes the entire
computation independent from the number of strategies in the space Smµ .

Updating the best performing strategy from one time step to the next can be achieved
in constant time. Removing time t − L from L and adding time t will affect at most
two of the probabilities p~r, r, which can be updated without recomputing any of the other
probabilities. This change in the probabilities affects at most two of the inner sums in
Equation (4.14), and therefore requires to update at most two of the values of f (~r).

4.2.8 Relations between games

The minority game (MG) corresponds to the belief that markets are anti-persistent, and
the majority game (MAJG) correspond to the belief that markets are persistent. This
diametrical opposition of the two beliefs is mathematically expressed by the payoff function
relation πMG (r, r̃) = −πMAJG (r, r̃). Hence, in the case of binary cycle predictors (R =
{−, +}), it follows from Equation (4.15) that the one step ahead forecast of the minority
game is exactly opposite to the majority game forecast. When predicting one step ahead,
the minority and majority strategies are perfectly anti-correlated, and their mean return
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is exactly opposite.
For fixed calibration data, the graph of the best minority strategy and the best majority

strategy, as defined in equation 4.10, share no edges. Consequently, when predicting several
steps ahead, the minority and majority predictors are no longer bound to make opposite
predictions from the second step onward, which leads to decreasing anti-correlation as
the number of predicted steps increases. When forecasting several steps ahead, the mean
return of the minority strategy is no longer given as the opposite of the mean return of
the majority strategy.

The anti-correlation between the minority and majority game, when predicting one
step ahead, no longer holds for predictors with more then two classes (|R| > 2). Given
an odd number of states, the concept of opposite is not clearly defined anymore. A
meaningful definition for R3 = {−, 0, +} could be to define minus and plus as opposite to
each other and zero as its own opposite. However, when computing the highest performing
strategy according to Equation (4.15), there is no guarantee that the minority and majority
prediction will be opposite to each other according to this definition. Therefore, in the
three state case, the minority and majority predictors are not necessarily correlated, even
when predicting one step ahead.

The delayed games incorporate the possible belief that markets are anti-persistent
(dMG) or persistent (dMAJG) in a delayed manner. However, it has to be noted that
any d steps delayed strategy of memory m can be mapped to a none delayed strategy of
memory m+ d. The none delayed strategy makes the same prediction irrespective of the
last d values in the input. In other terms, the strategy space Sm+d

µ is a super-set of Smµ ,
and therefore the performance of the delayed predictors should be explained to a large
extend by predictors with longer memory.

4.2.9 Viable cycle predictors

As discussed in Subsection 4.2.6, the best strategy is uniquely defined if and only if the in-
sample data goes at least once through every node of the De Bruijn graph of the strategy
space. Therefore, the parameters that determine the calibration process are the number
of classes n = |R| of the discretization, the memory length m of the strategies, and the
window size L used to compute the strategy performance.

In the context of predicting daily time series, a decade of data corresponds to ≈ 2500
data points. As a long out-of-sample prediction period is needed to obtain statistically
significant results, the calibration window L should not take away more then 20% of the
data, corresponding to the bound L ≤ 500. For the in-sample data to eventually cover
all nodes in the De Bruijn graph, the constraint nm ≤ L is obtained by the pigeonhole
principle. However, in practice, the in-sample data is unlikely to cover uniformly all nodes,
and a correct bound should be chosen empirically. In the most optimistic case, the possible
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combinations are given by(
n ∈ {1, . . . , L} , m ∈

{
1, . . . ,

⌊ log (L)
log (n)

⌋})
.

The discretization µ (r) = sign (r) is the simplest possible choice in the binary case.
However, the most general discretization, with topologically connected inverse image for
each class, introduces n − 1 new parameters. The general discrete map to R2 = {−, +}
reads

µ2(r) =

− if r ≤ r0

+ if r > r0
,

where r0 ∈ R defines the split threshold between up and down moves. An evident inconve-
nience of binary cycle predictors is that they treat small and large moves as equal, which
does not filter out the noise from small returns. Hence, the trinary cycle predictors are an
interesting option as they circumvent this issue by mapping small returns to a separate
class. The general discrete map to R3 = {−, 0, +} reads

µ3(r) =


− if r ≤ r−
0 if r− < r ≤ r+

+ if r > r+

,

where r−, r+ ∈ R define thresholds between down moves and zero moves, respectively
zeros moves and up moves.

4.3 Mixed game agent based model

4.3.1 Agent heterogeneity

The single agent prediction experiments showed that the minority and majority game both
had significant predictive power when using the correct memory length m and calibration
length L. Therefore, it is a logical next step to determine if the collective intelligence of
a multi-agent model can improve upon the forecasting power of the single agent model.
Such a model follows a bottom-up approach in which interactions between the individual
agents generate improved forecast at the aggregate macro-level.

The complete Markov representation of multi-agent models with a single game (MG,
MAJG), single memory lengthm, and single calibration length L have already been derived
by Satinover and Sornette (2012a). However, these models are too rigid to combine the
different pockets of predictability found with the single agent model. Excess predictability
was found in different games, and a more promising multi-agent model should mix the
different games. Hence, a mixed game model with N agents is constructed, where agent
1 ≤ i ≤ N trades according to his private predictor P iµ,m, πi, di, L. Each agent is explicitly
assigned an individual payoff function and delay (πi, di) ∈ {πMG, πMAJG}×{0, 1}, which
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gives rise to four groups of agents: minority game; delayed minority game; majority game;
and delayed majority game. The assignments are made so as to have the same number of
agents for each of the four games. This models well the heterogeneity of believes among
traders about the current market regime and the time frame (delay) in which regime
changes occur.

In the scenario where each agent is endowed with the full knowledge of all strategies
(Si = Smµ ), the agents playing the same game would all select the same optimal strategy.
Consequently, the model would be composed of only four effective agents, one for each of
the four games. To introduce further heterogeneity of the agents, they could be assigned
different memory lengthsm, calibration window L, or strategy set Si. In nowadays trading
environment, all the agents have similar access to stock price histories and computing
power. Therefore, the memory lengthm and calibration window L will be shared by all the
agents. The additional heterogeneity between agents playing the same game is introduced
via their private strategy set. Each agent is assigned a subset Smi of all possible strategies,
of size |Smi | = ns < nn

m , which represents his personal belief about which strategies will
have the best performance. The calibration algorithm defined in Subsection 4.2.7 can be
adapted to determine the optimal strategy in the reduced set of strategies Smi of agent i.

4.3.2 Agent trading threshold

So far, an agent would always buy or sell according to his private predictor, however in
real markets an agent can decide not to trade if none of his strategies has a convincing
performance. This concept was introduced by Jefferies et al. (2001) to help model the
liquidity in the real stock markets. The liquidity is controlled by the trading threshold τ ,
which is the minimal performance the best strategy needs to exceed for being used. Below
this threshold an agent will not trade.

The performance function defined in Equation (4.5) is bounded by |U | ≤ |π| = 1.
The performance of random strategies converges to zero at large L for the minority and
majority games, because the payoff function of these games satisfies∑r∈R π (r, r̃) = 0, ∀r̃.
Hence, the performance is a measure of the excess payoff compared to random predictions,
and the trading threshold τ has to be chosen in [0, 1]. The action ait+1(~rt) taken by the
agent i at time step t+ 1 is given by

ait+1 (~rt) =
{
f it (~rt) if Uπi, di, L(f it , t) ≥ τ
0 if Uπi, di, L(f it , t) < τ

, (4.16)

where f it is the highest performing strategy of agent i at time step t.
Due to the trading threshold, the relative fraction of active agents in each game (MG,

dMG, MAJG, dMAJG) can vary over time within a simulation. This dynamic aligns with
the evidence that financial markets are characterized by regime shifts, with changing types
of investment styles, driven by the monetary policies of central banks and macroeconomic
conditions. In particular Lux and Marchesi (1999) stress the importance of including time
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varying fractions of investment styles to account for the stylized facts of financial returns.

4.3.3 Aggregate prediction

The behavior of the individual agents has been entirely determined, but the aggregation
mechanism of the individual actions still needs to be defined. The aggregation mechanism
of stock markets is the topic of an ongoing debate, with proponents of a linear aggregation
function (Kyle, 1985, Farmer, 2002), and proponents of nonlinear aggregation functions
(Lillo et al., 2003, Almgren, 2003, Bouchaud et al., 2006, Farmer et al., 2012). For the
purpose of this agent based model, a simple linear impact function is used to determine
the return predicted at the next time step as

r̃t+1 = 1
λ

N∑
i=1

ait (~rt) , (4.17)

where λ is a normalization factor called liquidity. If there are more buyers than sellers,
the price will go up and vice versa. The prediction r̃t+1 takes a finite number of N values
in the set {−N/λ, (−N + 2)/λ, . . . , N/λ}, which is more fine grained then predictions of
individual agents.

4.3.4 Mixed-game model summary

The mixed game multi-agent model is determined by the following parameters:

• The agents {1, . . . , i, . . . , N} trading according to the prediction of their individual
cycle predictor P iµ,m, ns, πi, di, L over a reduced set of strategies Smi . The payoff func-
tions πi and delays di are chosen so as to have an equal number of agents in each of
the four games (MG, dMG, MAJG, dMAJG).

• The number of strategies ns in the strategy space Si ⊆ Smµ of each agent.

• The performance threshold τ the best strategy needs to exceed for being played.

The strategies used by the agents are taken within the set of all possible binary strategies,
hence this agent based model does not suffer any particular bias introduced by the modeler.
However, some features are overly simplistic, for example the lack of capital constraints
of the agents, which trade the same irrespective of their gains or losses.

4.3.5 Calibration

For a given return history, the prediction of each individual agent is deterministic, hence
the aggregate prediction of the agents is deterministic as well. However, the heterogeneity
of the strategies tracked by the individual agents generates aggregate dynamics that cannot
be forecast by a single agent. Due to the heterogeneity of the strategy sets, the individual
agents switch their best strategy at different times, making it impossible for a single
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Figure 4.3: Minimum calibration length required for the ABM computed using Equation
(4.20) in the case of binary strategy with memory length m = 2.

Figure 4.4: Minimum calibration length required for the ABM computed using Equation
(4.20) in the case of binary strategy with memory length m = 3.
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Figure 4.5: Minimum calibration length required for the ABM computed using Equation
(4.20) in the case of binary strategy with memory length m = 4.

agent to keep track of the complexity of the multi-agent dynamic. While the forecast of
an individual agent is entirely determined by the past L returns, the multi-agent model
incorporates a states depending on the returns before the performance window of size L.

The parameters of the agent based model should be chosen so that the number of
possible states of the model is roughly equal to the number of possible states of the in-
sample calibration data. Otherwise, by the pigeonhole principle, there are sequences that
are generated by more then one ABM configuration and the calibration becomes ill-defined.
The space of all possible strategy configurations SmABM of the ABM is directly related to
the number of possible predictors for an individual agent. An individual agent consists of
a set Smi of ns distinct strategies sampled in Smµ , a payoff function πi ∈ {πMG, πMAJG},
and delay d ∈ {0, 1}. This leads to an ABM space containing

|SmABM | =

 ∣∣∣Smµ ∣∣∣
ns

N 2N2N =
(

4 · nnm !
(nnm − ns)!ns!

)N
(4.18)

different strategy configurations. The aggregation function chosen in Subsection 4.3.3
makes N distinct forecasts, equal to the number of agents, and therefore the ABM can
generate

#distinct forecast = NL (4.19)

distinct forecast for the in-sample period of length L. The number of ABM strategies is
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equal to the number of distinct in-sample sequences the ABM can generate when

L = N

log (N) · log
(

4 · nnm !
(nnm − ns)!ns!

)
. (4.20)

The minimal calibration length L in the case of binary strategies is shown as a function
of N and ns in Figure 4.3 for m = 2, in Figure 4.4 for m = 3, and in Figure 4.5 for m = 4.
The results show that an ABM with memory length m = 2 can be calibrated for several
hundreds of agents and any number of strategies per agents. At memory length m = 3,
the maximal number of agents is limited to a few dozens, and the number of strategies per
agents should be chosen sufficiently small or large depending on the number of agents. At
memory length m = 4, only a small number of agents with a few dozens of strategies are
meaningful to calibrate.

The analysis of the number of configurations of the mixed multi-agent model showed
that a viable parameter region exists, in which the likelihood function for any calibration
data should have a unique optimum. The calibration procedure to find the minimum has
to minimize the mean squared error

MSE =
L∑
i=1

(
r̃ABMi − ri

)2
(4.21)

between the predicted and true returns of the in-sample calibration data. The min-
imization is typically performed over the following parameters: the number of agents
N ∈ {3, . . . , 100}; the memory length m ∈ {1, 2, 3, 4}; the number of strategies per agent
ns ∈ {1, . . . , 16}; the threshold for action τ ∈ [0, 1]; the duration of the scoring counter
L ∈ {1, . . . , 500}; and the strategies of each agent. The reverse-engineering is performed
using a genetic algorithm as described in Wiesinger et al. (2012).

The reverse engineering procedure finds the multi-agent configuration that explains
best the observed in-sample data. As for the single agent model, the ABM is repeat-
edly calibrated using a rolling window of size L to predict one or several out-of-sample
steps. The out-of-sample prediction of the multi-agent model should possess a collective
intelligence outperforming the single agent model.

4.4 Results

We test the predictive performance of the single agent models and the multi-agent model
on the equity indices and time periods presented in table 4.1. The two chosen time periods
are ten years long and each contain a major bubble and its crash. The first time period,
from Jan. 1992 to Dec. 2001, covers the build up to the dotcom bubble and most of the
subsequent crash. The second time period, from Jan. 2002 to Dec. 2011, covers the build
up to the financial crisis, the crash, and subsequent recovery. Given this choice of time
periods, any strategy that can somehow time the crash of the bubble will significantly
outperform the buy-and-hold strategy.
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Ticker Start End σr (%) 〈|ρ|〉(%) #↑(%) ρm(Bps)

^GSPC 2002 2011 1.39 0.91 53.9 0.98
^GSPC 1992 2001 0.99 0.70 53.1 4.66
^DJI 2002 2011 1.29 0.86 52.7 1.32
^DJI 1992 2001 0.98 0.70 53.4 5.07
^NDX 2002 2011 1.68 1.18 53.7 2.36
^NDX 1992 2001 2.10 1.48 54.1 8.66

Table 4.1: Equity indices and time periods used to test the single agent models and the
mixed game ABM. The table provides: the daily volatility σr; the mean absolute return
〈|ρ|〉; the percentage of up moves (#↑); and the mean daily market return ρm.

To search in a systematic manner for anomalous models on each equity index and time
period, we test the single agent models and the multi-agent model for the memory lengths

m ∈ {1, 2, . . . , 4}

and scoring counters
L ∈ {20, 40, . . . , 500}.

This yields a total of 4×25 = 100 different models, tested on each of the six combinations
of a equity index and time period.

The maximal Sharpe ratio difference with respect to the buy-and-hold strategy (i.e.
lowest p-value)

∆Ŝrmax = max
m,L

Ŝrmodel(m, L) − Ŝrbuy-and-hold

is shown in Table 4.2 for each combination of an asset and model. The distribution of
the Sharpe ratio differences is shown in Figure 4.6 for the single agent majority models
without delay, in Figure 4.7 for the single agent majority model with a one day delay, and
in Figure 4.8 for the mixed game agent based model.

Five, out of the six experiments, with single agent majority models, without delay,
contained instances with significant trading performance at the 95% confidence level. Four,
out of the six experiments, with one day delayed single agent majority models contained
instances with significant trading performance at the 95% confidence level. None of the
mixed game agent based models had statistically significant trading performance, which
even under-performed the single agent models in all cases. The reverse engineering of
the complex multi-agent model was unable to emulate the abnormal performance (before
transaction costs) that can be achieved with trend following, as performed by the single
agent models. The genetic algorithms have not been successful at extracting potential
emergent phenomena in the stock markets.

To analyze the robustness of the ABM, we compared multiple runs predicting the same
time series. It turned out that the predictions of the individual runs had little correlation
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Figure 4.6: Sharpe ratio difference of the single agent models with respect to the buy-
and-hold strategy. The single agent models are tested for the majority game (without
delay), m ∈ {1, 2, 3, 4}, and L ∈ {20, 40, . . . , 500}, yielding a total of 100 models. As
reference, the distribution of 100 random strategies is shown, strategies that go randomly
short or long on each day.
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Figure 4.7: Sharpe ratio difference of the single agent models with respect to the buy-
and-hold strategy. The single agent models are tested for the majority game (with delay
d = 1), m ∈ {1, 2, 3, 4}, and L ∈ {20, 40, . . . , 500}, yielding a total of 100 models. As
reference, the distribution of 100 random strategies is shown, strategies that go randomly
short or long on each day.
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Figure 4.8: Sharpe ratio difference of the mixed game multi-agent model with respect
to the buy-and-hold strategy. The ABM is tested for fixed m ∈ {1, 2, 3, 4}, and L ∈
{20, 40, . . . , 500}, yielding a total of 100 models. As reference, the distribution of 100
random strategies is shown, strategies that go randomly short or long on each day.
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Ticker Start End Model Game ∆Ŝrmax Min p-value

^GSPC 2002 2011 1-Agent MAJ 0.073 0.00*
1-Agent dMAJ 0.025 0.34
ABM Mixed 0.024 0.21

^GSPC 1992 2001 1-Agent MAJ 0.071 0.00*
1-Agent dMAJ 0.072 0.00*
ABM Mixed 0.026 0.19

^DJI 2002 2011 1-Agent MAJ 0.065 0.00*
1-Agent dMAJ 0.027 0.28
ABM Mixed 0.023 0.26

^DJI 1992 2001 1-Agent MAJ 0.047 0.05*
1-Agent dMAJ 0.052 0.02*
ABM Mixed 0.009 0.46

^NDX 2002 2011 1-Agent MAJ 0.032 0.14
1-Agent dMAJ 0.072 0.00*
ABM Mixed 0.024 0.19

^NDX 1992 2001 1-Agent MAJ 0.068 0.00*
1-Agent dMAJ 0.075 0.00*
ABM Mixed 0.021 0.31

Table 4.2: Highest Sharpe ratio excess with respect to the buy-and-hold strategy, and
bootstrapped p-value, for each of the single agent and ABM experiments shown in Figure
4.6, Figure 4.7, and Figure 4.8. The experiments with significant trading performance are
marked with an asterisk (*).
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among each other, but all achieved very high in-sample fitness. A typical fitness being
a directional accuracy of more then 90% of the in-sample days. This shows that the
likelihood function of the ABM has many local maximum, and that the reverse engineering
algorithm merely selects randomly a maximum depending on the starting values of the
optimization.

A correlation analysis between the ABM and the equivalent single agent model shows
identical prediction on 54% of days, averaged across all experiments. This implies that
the agents in the ABM are heterogeneous in their beliefs, and none of the four agent
groups (MAJ, dMAJ, MG, dMG) dominates the aggregate prediction. Hence, the ABM
reverse engineering does find complex agent configurations that reproduce well the in-
sample returns. Nonetheless, the aggregate prediction did not outperform the single agent
model, and therefore the multi-agent configurations in the ABM cannot be interpreted as
capturing some true hidden state of the agents acting on the stock market.

4.5 Conclusion

In this chapter, we presented a mathematical definition of an individual agent and the
mixed game multi-agent model. Single game multi-agent models have already been studied
by Challet et al. (2001), Satinover and Sornette (2012a,b), and the positive results provide
incentive to examine the predictive power of mixed game models (Wiesinger et al., 2012,
Zhang, 2013).

The mixed game ABM is characterized by the following parameters: the number of
agents, the memory length of the agents, the number of strategies tracked by each agents,
the trading threshold of the agents, the scoring duration for the strategies, the strategies
tracked by each agent, and the game played by each agent. An exhaustive evaluation
of all possible parameter combinations is computationally impossible. Nevertheless, to
gain some systematic inside, we evaluated the ABM for all combinations of a statistically
meaningful memory length and scoring counter.

The ABMs and matching single agent models were then tested, for all memory length
and scoring counter combinations, on two distinct time periods for the S&P500, NASDAQ
and Dow Jones. The comparison between the single agent models and the ABM revealed
that the complexity added by the ABM could not improve the predictive performance.
Actually, the opposite is true, the single agent models significantly outperformed the mixed
game ABM. Hence, the approach of using genetic algorithms to reverse engineer large agent
based models is not practicable. The analysis showed that the reverse engineering over-
fitted the in-sample data, without being able to extract the true hidden state of agents
acting on the stock market.

Given the observed abnormal Sharpe ratio of single agent models, the next chapter
is focused on better understanding single agent models. The detailed study of abnormal
performance in single agent model can potentially provide insights on how to combine
multiple agents, so as to truly extract emergent predictability.
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Chapter 5

From Agent Based Modeling to
Time Series Learning

5.1 Agent as decision tree

The agents defined in Subsection 4.2 track an individual set of strategies, and at every
time step trade based on the strategy with best past performance for their payoff function.
The space of possible strategies is determined by the chosen discretization R of the returns
and the memory length m. An individual strategy is a function f : Rm → R that assigns
to each of the |R|m histories a prediction in R. For each return in the history of length
m, the class in R of that return can be determined by a sequence of inequalities. Hence,
a strategy can be visualized as a decision tree, which is a common statistical learning
method (James et al., 2014). A randomly chosen strategy for R = {−, +} and m = 3
is represented as a decision tree over the past three returns {r1, r2, r3} in Figure 5.1.
The extension to a larger number of classes defined by cuts at arbitrary thresholds, and
arbitrary memory length, is straightforward by introducing the equivalent nodes. Each
branch corresponds to a single history, and the action following that history is assigned to
the terminal node of the branch.

Ԧ𝑟 = 𝑟1, 𝑟2, 𝑟3

𝑟1 ≤ 0 𝑟1 > 0

𝑟2 ≤ 0 𝑟2 > 0 𝑟2 ≤ 0 𝑟2 > 0

𝑟3 ≤ 0 𝑟3 > 0 𝑟3 ≤ 0 𝑟3 > 0 𝑟3 ≤ 0 𝑟3 > 0 𝑟3 ≤ 0 𝑟3 > 0

− + − − −+ + +

Figure 5.1: Binary strategy with memory length m = 3 represented as a decision
tree. Each of the 23 = 8 histories is assigned to a long or short trade.
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Ԧ𝑟 = 𝑟1, 𝑟2, 𝑟3

𝑟1 ≤ 0 𝑟1 > 0

𝑟2 ≤ 0 𝑟2 > 0 𝑟2 ≤ 0 𝑟2 > 0

𝑟3 ≤ 0 𝑟3 > 0 𝑟3 ≤ 0 𝑟3 > 0 𝑟3 ≤ 0 𝑟3 > 0 𝑟3 ≤ 0 𝑟3 > 0

𝑝−−− 𝑝−−+ 𝑝−+− 𝑝−++ 𝑝+−+𝑝+−− 𝑝++− 𝑝+++

Figure 5.2: Up move probabilities for a binary decision tree with memory length
m = 3. The probabilities in the terminal nodes indicate the probability of an up move.
For example, p−−− = P (−−− → +).

Given an in-sample return sequence {r1, . . . , rL} of length L, and a decision tree
with fixed branches, the classification and regression tree algorithm (Hastie et al., 2001)
computes the class probabilities in each branch. For example, in the case of binary classes,
the probability of three down moves being followed by an up move is given by p−−− =
P (−−− → +). This probability is computed by finding all instances of three down moves
in a given in-sample sequence and taking the ratio of the number of instances followed
by an up move over the total number of instances. A generic decision tree for binary
classes and memory length m = 3 is represented in Figure 5.2. The normalization of the
probabilities imposes P (h→ −) = 1 − P (h→ +) for all histories h ∈ {−, +}m. Hence,
the generic decision tree with binary classes is determined by a total of 2m probabilities,
one for each branch. In general, the class probabilities are constrained by

∑
a∈R

P (h→ a) = 1, ∀h ∈ Rm, (5.1)

leading to a total of |R|m+1 − |R|m independent probabilities defining the decision tree.
The decision tree predicts for each history (i.e. branch) the class with the highest prob-

ability. This prediction mechanism is equivalent to selecting the strategy with the highest
performance for the majority game as defined in Subsection 4.2.7. The probabilities p~r, r
used in Equation (4.15) to determine the strategy with the highest performance are the
class probabilities of the equivalent decision tree. For the majority game, the class with
highest probability is predicted, while for the minority game the class with lowest prob-
ability is predicted. Consequently, an agent endowed with the knowledge of all possible
strategies, selecting at every time step the strategy with the highest performance on the
past L steps, is equivalent to a decision tree calibrated on the L past returns.

However, in the agent based model, the heterogeneity in believes among the agents
is modeled by having each agent track a subset of all possible strategies. Therefore,
the optimal strategy defined by the decision tree may not be available to all agents.
Nonetheless, the classification and regression tree algorithm allows for an efficient selection
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of the best strategy in a subset of all strategies. First, the optimal strategy is determined,
then the best strategy in a subset of strategies is determined by finding the strategy with
the smallest Hamming distance to the optimal strategy. Formally, the strategy selection
reads

fbest = argmax
f∈S⊆Smµ

∑
h∈Rm

|f (h)− T (h)| , (5.2)

where T (·) is the tree prediction function. In the case of the minority game, the tree
prediction function is defined to return the class with the lowest probability. Using this
algorithm, the performance of each individual strategy no longer needs to be determined.
It suffices to compute the class probabilities once, and find the strategy with the smallest
distance to the optimal strategy.

5.2 Motivating tree based forecasting

5.2.1 Linear filter models & technical trading rules

Wold’s decomposition theorem (Mills and Markellos, 2008, Hamilton, 1994) states that
every weakly stationary, purely non-deterministic stochastic process {Xt} can be written
as a linear filter with infinite lag. All time series analysis models defined as a finite-order
stochastic difference equation derive from this general concept. The simplest stationary
models being the autoregressive model AR(%) and moving average model MA(%) of order
%. Non-stationary models can be built using nested stationary models for the mean and
variance.

These models of stochastic processes are foremost characterized by the autocorrelation
function of returns and absolute returns. While these characteristics are predominantly
used to described financial returns, several stylized facts such as gain/loss asymmetry and
heavy tails are well document (Cont, 2001). The gain/loss asymmetry is often described
by the skewness of the return distribution and the heavy tails by the kurtosis. However,
possible non-linear dependencies are often neglected.

Non-linear stochastic processes arise when their representation is obtained by some
non-linear mechanism, for example polynomial dependencies in the innovation, asymmet-
ric innovations, correlated innovations, time varying parameters, or regime switching. Un-
fortunately, testing for non-linearity is a challenging task and not possible in general when
the functional form of the non-linearity is unknown (Mills and Markellos, 2008, chap. 6).
Past efforts have been concentrated on modeling the common stylized facts such as skew-
ness, fat tails, volatility clustering, and regime switching, using non-linear combinations
of linear filter models (Mills and Markellos, 2009). This continued use of linear models as
building blocks for non-linear models leaves the possibility that deterministic non-linearly
separable patterns have remained undetected in past studies

To forecast trends in stock markets, traders have developed an extensive taxonomy of
technical trading rules expressing their beliefs about the market behavior. Some of these
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rules rely on a linear filter model such as moving average, which forecasts a trend persis-
tence. While a majority of rules define trading triggers based on support and resistance
bands, channels, and oscillators, these rules do not focus on a potential intrinsic structure
of market returns, but on prices levels psychologically important to a large number of
traders. Assuming that a majority of market participants acts based on these price levels,
these rules should have significant profitability.

A common feature of linear filter models and technical trading rules is that they do
not test for some potential non-linear dependencies. An example are the return sign cor-
relations, which have been well documented by Christoffersen and Diebold (2003) and
Christoffersen et al. (2006). The presence of non-linear return sign correlation in a large
number of financial assets is further supported by the findings of Niederhoffer and Os-
borne (1966), Zhang (1999), Leung et al. (2000), Zunino et al. (2009), and James et al.
(2014). The existing assessments of the EMH are focused on testing the performance of
technical trading strategies and funds. However, the non-linear anomalies around return
sign correlations have not undergone a rigorous analysis to the best of our knowledge.
These anomalies are particularly interesting because many linearly inseparable patterns,
as for example the logical exclusive-OR function (XOR), would remain undetected with
linear models such as moving averages. Nonetheless, such patterns can be detected using
statistical learning models such as decision trees.

This section argues that return sign correlations can remain undetected in the auto-
correlation function, and propose decision trees as a forecasting model to detect return
sign correlations. The limitations of the autoregressive models to capture the predictable
XOR pattern are derived, and it is shown how decision tree based models overcome this
limitation. The different variants of decision trees are discussed, and the issue of overfit-
ting is addressed. Especially, a connection between fixed decision trees and Markov chains
is derived. The connection is used to create a binary Markov process of order %, analogous
to the autoregressive process of order %, but with more intricate non-linear autocorrelation
patterns. It is then proven that the parameters of an autoregressive process of order %
have zero expectation for a binary Markov process satisfying certain conditions.

5.2.2 From autoregressive to tree based models

The autoregressive model AR(%) defines the evolution of the time series {Xt} with % lags1

as

Xt = φ0 +
%∑
i=1

φiXt−i + at, (5.3)

with parameters φ = (φ0, φ1, . . . , φ%), and i.i.d. innovations at. The shortcoming of
autoregressive models can be illustrated with the two argument exclusive-OR function
XOR(r[−1], r[−2]) that returns true (= 1) when exactly one of the arguments is true and

1% is used as order parameter (i.e. lag) instead of the common p to avoid confusions with probabilities
denoted by p.
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false (= −1) otherwise (see Figure 5.3). An example of XOR like data is

X = {((1, 1) , −1) , ((1, −1) , 1) , ((−1, 1) , 1) , ((−1, −1) , −1)} , (5.4)

where the four samples are assumed to be at independent times. The notation of Equation
(5.4) is taken from the statistical learning literature (James et al., 2014), where X is the
training data available, and ((Xt−2, Xt−1) , Xt) denotes the sample at time t with input
xt = (Xt−2, Xt−1) and output (=response) yt = Xt. Calibrating the autoregressive model
of order two to the data of Equation (5.4) yields the parameters

(φ0 = 0, φ1 = 0, φ2 = 0) , (5.5)

which fail at capturing the deterministic XOR function. As we will discuss in section 5.3.2,
almost XOR like patterns can arise in time series data.

Non-linearly separable patterns can be modeled using a partition R = {R1, . . . , Rn} of
the input (or feature) space into n regions, and assigning the constant values {c1, . . . , cn}
to each region. The resulting evolution of the time series Xt can then be written as

yt = Xt =
n∑
i=1

ci · I {xt ∈ Ri}+ at, (5.6)

where I is the indicator function, and at are i.i.d. innovations. This modeling approach
allows for an arbitrary flexibility, as any function can be approximated to any precision
with a sufficient number of regions. For example, the XOR data from Equation (5.4)
can be modeled exactly by the two regions R1 =

{
x ∈ R2|x1x2 ≥ 0

}
with c1 = −1, and

R2 =
{
x ∈ R2|x1x2 < 0

}
with c2 = 1. The downside of this modeling approach is that the

number of parameters increases arbitrarily with the number of regions, and a procedure
to control for overfitting is required.

What remains unspecified in the stochastic process of Equation (5.6) is the algorithm
to estimate the regions based on a given realization {Xt}t1 of a process. In general, regions
of arbitrary shape and overlaps can be used. However, for the purpose of this study,
decision tree models provide sufficient flexibility. Decision trees find rectangular regions,
using a recursive splitting algorithm of the input space that minimizes a loss function for
the given training data. While several variations of the splitting algorithms exist, the most
popular Classification And Regression Tree (CART) algorithm described by Hastie et al.
(2001, chap. 9) will be used.

In the context of financial returns with low signal to noise ratio, finding the best
tree is an NP-complete problem (Hyafil and Rivest, 1976) that is not computationally
feasible. This stands in stark contrast to autoregressive models were the global optimum
can be estimated. However, this is not an issue as the CART algorithm is nonetheless
deterministic by using recursive binary splitting, and subsequent pruning. The algorithm
always finds the same tree for a given training data, allowing practitioners to independently
obtain the same forecast. The definition of the splitting algorithms for regression and
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Figure 5.3: Illustration of the XOR pattern

classification are given below, as well as a discussion of robustness in the context of highly
stochastic data.

5.2.3 Regression tree algorithm

The CART algorithm constructs a regression tree using the Mean Squared Error (MSE)
as the loss function QMSE (y, ŷ) = (y − ŷ)2. For a given training data

X = {(x1, y1) , . . . , (xN , yN )} (5.7)

and partitioning of the input space into regions R = {R1, . . . , Rn}, the algorithm assigns
the response

ĉi = 〈{yi|xi ∈ Ri}〉 (5.8)

to region Ri, which is the mean observed output in that region. The binary splitting
algorithm adds one new region at each iteration by splitting an existing region into two.
At each iteration an existing region R is split into two halves with a plane defined by
variable j and split point s as

R1 (j, s) = {x|xj ≤ s} andR2 (j, s) = {x|xj > s} . (5.9)

The optimal split is given by

min
j, s

 ∑
xi∈R1

Q (yi, ĉ1) +
∑
xi∈R2

Q (yi, ĉ2)

 , (5.10)

which can be determined efficiently by running through all the input variables and split
points defined by the inputs.
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In many scenarios, for example of XOR like training data, a split with not improvement
in the loss can be followed by a split with a large reduction of the loss. This prevents the
introduction of termination criterion in the splitting procedure. To overcome this issue,
the fully grown tree T0 is subsequently pruned. The pruning procedure finds an optimal
subtree T without the internal nodes that do not affect significantly the loss. The loss of
a subtree T ⊂ T0 is given by

Q (T , α) =
|T |∑
m=1

NmQm (t) + α |T | , (5.11)

where Qm (T ) = 1
Nm

∑
xi∈Rm Q (yi, ĉm) is the loss of the terminal node m,

Nm = # {xi ∈ Rm} (5.12)

is the number of samples in that node, and |T | is the number of terminal nodes in the
tree. The regularization coefficient α of the tree size determines to which degree smaller
trees are favored with respect to higher loss. The value α = 0 would yield the fully grown
tree T0.

In the context of predicting financial returns, the signal to noise ratio in the samples
is intrinsically low, and without appropriate pruning the data would be overfit. However,
the used Scikit-learn library (Pedregosa et al., 2011) does not have a pruning parameter
to control for overfitting, but instead sets a lower bound on the number of samples in a
terminal node. Fortunately, determining the adequate number of samples in a terminal
node is simpler then determining an equivalent pruning parameter. The lower bound
on the number of samples in a terminal node of a classification tree is computed in the
following Subsection 5.2.4. The lower bound for a regression tree is set to the lower bound
value of the equivalent classification tree.

We remark that the objective of the MSE loss function, namely minimizing variance
within each region, is not necessarily optimal for forecasting financial returns. The sub-
optimality arises when the returns within a region exhibit low variance and mean close to
zero. The insignificant mean implies that no forecast can be made. However, this does not
negatively impact performance as return forecasts of small amplitude can be discarded as
insignificant.

5.2.4 Classification tree

The dominantly stochastic behavior of financial returns translates into particularly low
statistical significance of regression model forecasts. However, the statistical significance
of a potential signal can eventually be improved by mapping the outputs to categorical
outputs. Under the assumption that the mapping removes more noise then signal, the
resulting classification problem is more robust. The simplest such mapping is r → sign (r)
that results in predicting only an up and down moves. The CART algorithm described in
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Section 5.2.3 only needs one modification for classification, namely a different loss function
because the MSE loss is not suitable for classification. Typically, the classification of K
classes (e.g. {−, +} with K = 2) is performed using the Gini index QGini (~p) = ∑K

i 6=j pipj ,
which maximizes the probability pi of a single class in a region.

In the context of predicting market up or down moves, the Gini index naturally sets
the right objective, as it will maximize the predictability of an up or down move in a given
region. However, the Gini index by itself is prone to overfitting, as terminal nodes with
a few samples of the same kind are favored despite such nodes being a likely occurrence
under the null hypothesis of no predictability. To alleviate this problem, a lower bound
on the number of samples in a terminal node is introduced.

The probability distribution of k up moves (↑) and n − k down moves (↓), assuming
equal class probability, is given by the binomial distribution

P (# ↑= k, # ↓= n− k) =
(1

2

)n( n

k

)
. (5.13)

For sufficiently large n, this binomial distribution can be approximated by the normal
distribution N

(
n
2 ,

1
4n

)
. Requiring that the prediction is significant at the one standard

deviation and the class probabilities satisfy |p+ − p−| = 2 · 0.05, a lower bound on n can
be computed. The constraints imply 1

4n = 0.052, or n ≥ 100, which would require at least
100 samples per terminal node. This illustrates the difficulty of obtaining statistically
significant forecasts and the large amount of calibration data required. In general, the
minimum number of samples per terminal node should be picked as large as possible.

5.2.5 Fixed tree

Similarly to the classification presented in Section 5.2.4, the signal to noise ratio in the
input variables can be improved by a mapping of the inputs onto the two categories
{−, +}. In case of inputs with % lags, this results in the discrete input space {−, +}%

with 2% elements. For a training set D, the limited number of possible inputs controls the
expected number of samples in a leaf R as E [NR] = |D|

2p . Therefore, with an appropriate
choice of % with respect to the sample size |D|, the problem of overfitting does not arise.
This allows us to remove the lower bound on the number of samples per leaf, resulting in
the CART algorithm to generate the fully grown tree with regions {R1, . . . , R2%} (i.e. one
region for each input). In other terms, the tree is fixed by the number of lags %, and the
CART algorithm reduces to compute the class probabilities in each leaf. A fixed tree can
be used for classification, prediction of the majority vote inside each leaf, or regression by
predicting the mean return of a leaf.

5.2.6 Probit models & polynomial features

Probit models could be used as the autoregressive equivalent of classification trees, cali-
brating the parameters using only binary up and down returns. Nonetheless, just as the
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autoregressive model, the probit model cannot capture linearly inseparable patterns like
the XOR function. To capture non-linear patterns, the autoregressive or probit models
have to be extended with non-linear features. For example, the XOR function can be
described with the quadratic feature r[t− 1] · r[t− 2].

However, polynomial features are not robust with respect to skewed distributions or
multiple patterns offset with respect to the origin (e.g. offset as (r[t− 1]− x1) (r[t− 2]− x2)).
In contrast, decision trees are non-linear predictors robust with respect to both issues. The
CART algorithm can find localized non-linear predictability independently of its location
in the input space, and use multiple regions to approximate skewness.

5.3 Comparing the forecasting power of autoregressive &
tree models

5.3.1 Connecting fixed trees to Markov chains

Given a fixed decision tree, the time evolution defined by Equation (5.6) defines as well
the transition probability p from the sample at time t to the sample at time t+ 1 as

((Xt−%, . . . , Xt−1) , Xt)
p→ ((Xt−%+1, . . . , Xt) , Xt+1) . (5.14)

The sample inputs (Xt−%, . . . , Xt−1) define 2% possible states {S1, . . . , S2%}, and the time
evolution defines the two possible transitions from each state to another state, while the
remaining 2% − 2 states are unattainable. In other terms, the fixed decision tree defines
a %-th order Markov chain with 2% states, and two time dependent non-zero outgoing
transition probabilities from each state.

We denote by P ∈ [0, 1]2
%×2% the time independent transition matrix of the Markov

chain defined by a fixed tree T , resulting from the mapping of the returns onto the states
{−, +}. The elements P ij of the transition matrix describe the probabilities P

(
Sj → Si

)
to go from state Sj to state Si. The probabilities to transition from one state to any of the
states must always sum to one, imposing∑2%

i=1 P ij = 1, ∀j. Due to the particular structure
of the tree, each state has two incoming transitions, and two outgoing transitions. This
implies that each row and column in P has two non-zeros entries.

This Markov chain admits a stationary distribution if there exists a vector of proba-
bilities π ∈ [0, 1]2

%

, satisfying |π| = ∑2%
i=1 |πi| = 1 and

Pπ = π. (5.15)

The component πi of the vector π represents the probability to be in state Si at the
stationary regime. The equality in Equation (5.15) asserts the stationarity condition
that the probability of each state is invariant when transitioning to the next state. The
stationary distribution π is an eigenvector of P with unit eigenvalue. The eigenvalues
{λ1, . . . , λ2%} of P all satisfy 0 ≤ λi ≤ 1, and consequently the stationary distribution
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is always determined by the eigenstates (i.e. eigenvectors) with unit eigenvalues, while
the eigenstates associated to eigenvalues λ < 1 decay away. The second largest eigenvalue
determines how quickly the stationary distribution is reached. Multiple eigenstates with
unit eigenvalue arise in the case of reducible chains composed of several independent
Markov chains. This can be shown by the orthogonality property of eigenstates and all
their components being strictly positive in the context of Markov chains.

5.3.2 Binary Markov based processes

In the case of binary categories {−, +}, namely up (Xt ≥ 0) and down (Xt < 0) moves,
the Markov chain defined in Section 5.3.1 has 2% possible states. Each state Si ∈ {−, +}%

has two outgoing transitions probabilities pi+ and pi−, the probability of an up move,
respectively a down move. These two outgoing probabilities are subject to pi+ + pi− = 1,
and we can characterize them by a single variable ∆pi = pi+−pi−, where pi+ = 1

2 (1 + ∆pi)
and pi− = 1

2 (1−∆pi). Each state Si has as well two incoming transition probabilities,
which we denote by p+i = P

(
S+i → Si

)
and p−i = P

(
S−i → Si

)
, where the first index (+

or −) stands for the first sign of the previous state (e.g. Si = (−, +), S+i = (+, −)→ Si,
and S−i = (−, −)→ Si). We remark that the sets of outgoing and incoming probabilities
are in one-to-one correspondence. The duplicate definition of the transition probabilities
is introduced for subsequent convenience.

The stationary distribution π satisfies

π+i · p+i + π−i · p−i = πi, ∀1 ≤ i ≤ 2%, (5.16)

where π+i and π−i stand for the probabilities at stationarity of the state S+i, respectively
S−i. I remark that the outgoing probabilities of each state must always sum to one,
but the incoming probabilities can be arbitrary p+i, p−i ∈ [0, 1]. In the special case of
incoming probabilities p+i + p−i = 1, the stationary distribution is given by πi = 1

2% , ∀i.
In other terms, the stationary distribution with uniform probability for all states arises
when the incoming probabilities of each state (i.e. rows in P ) sum to one. This result
can be derived from Equation (5.15) by setting π = 1

2%
~1, which leads to P 1

2%
~1 = 1

2%
~1 ⇒∑2%

j=1 P ij = p+i + p−i = 1, ∀i.
Based on the Markov chain, I define the Data Generating Process (DGP)

Xt+1 =

+ |N (at+1| 0, σ)| with probability pt+
− |N (at+1| 0, σ)| with probability pt−

, (5.17)

where pt+ and pt− are the outgoing transition probabilities for the state St at time t.
In order for this DGP to generate a continuous normal distribution, without jump at

Xt = 0, the number of up and down moves needs to be equal, which is enforced by the
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Figure 5.4: Illustration of binary Markov processes and associated parameters:
a) one lag (% = 1); b) two lags (% = 2) and stationary regime with equal
probabilities for all states.

condition

B (P ) =
2%∑
i=1

πi∆pi = 0. (5.18)

As the stationary vector π is a function of P , the Equation (5.18) is a non trivial polynomial
equation in P . However, in the case where all states are equally likely, the balance of up
and down moves is achieved when ∑2%

i=1 ∆pi = 0.
I remark that the balancing condition is not the only possibility to obtain a continuous

distribution. The balance between up and down moves can be broken locally as long as the
balancing Equation (5.18) has expectation zero: E [B (P )] = 0. Assuming sufficiently low
autocorrelation over time for the balancing term B (P ), the discontinuity of the return
distribution in finite samples cannot be detected in a statistically significant manner.
Another possibility is to remove the discontinuity with an asymmetry of the left and right
tail distribution. The later case is regularly observed in equity indices where up moves are
more likely but the negative returns have a larger tail (i.e. distribution skewness).

Figure 5.4.a shows the binary Markov process with lag one (% = 1). Figure 5.4.b shows
the two degrees of freedom in the binary Markov process with lag two (% = 2), uniform
state probability, and equal number of up and down moves. When picking ∆p1 = 0.5 and
−0.5 < ∆p2 � 0 the binary Markov process with two lags produces almost exactly the
XOR pattern. The binary Markov processes with three and four lags have more then two
degrees of freedom when fulfilling the uniform state probability and balancing conditions.

5.3.3 Expected autoregressive forecast for binary Markov processes

The Markov DGP defined in Equation (5.17) violates the Martingale condition

E [Xt+1|Xt−%+1, . . . , Xt] = 0 (5.19)
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when there exists a state Si such that ∆pi 6= 0. This subsection determines to which
degree the deterministic pattern can be predicted using an AR(%) autoregressive model as
defined in Equation (5.3). Assuming homoskedasticity of the inputs X (not to be confused
with the samples X) and outputs Y , the unbiased least square regression estimator reads

φ̂ =
(
XTX

)−1
XTY . (5.20)

To compute the expectation of this estimator for the binary Markov DGP I notice that
for every state S ∈ S = {−, +}% there is a reverse state −S. Therefore, the set of states
can be split into two as S = S+∪S−, where

∣∣S+∣∣ =
∣∣S−∣∣ and S+

i = −S−i , ∀1 ≤ i ≤ 2%−1.
Each state is paired to its reverse. Assuming n observed samples, the inputs X belong
to the space S×n, and the distribution of Y is defined by Equation (5.17). Using these
assumptions we compute

E
[
XTY

]
=

2%−1∑
i=1

α
(
π+
i S

+
i p

+
i+ + π−i S

−
i p
−
i−

)
, (5.21)

where α is a normalization factor stemming from the half-normal distribution of the vari-
ables. In the case of uniform probabilities for all states, the expectation simplifies to

E
[
XTY

]
= α

2%
2%−1∑
i=1

S+
i

(
p+
i+ − p

−
i−

)
. (5.22)

The condition ∆p+
i = ∆p−i implies E

[
XTY

]
= 0 as

p+
i+ − p

−
i− = 1

2
(
1 + ∆p+

i − 1−∆p−i
)

= 0,

and at the same time fulfills the balancing condition of Equation (5.18). As a result, the
estimated parameters φ̂ are zero, and the autoregressive model is unable to predict the
deterministic pattern in the Markov process.

The binary Markov process with lag % = 1 only has the two states {−, +}, which
can be split into S+ = {+} and S− = {−}, and is determined by the two parameters
∆p+

1 (= ∆p1) and ∆p−1 (= ∆p2). This process has zero expectation for an autoregressive
model when ∆p+

1 = ∆p+
2 , which implies the stationary regime π+ = π− = 1

2 . However, the
balancing condition of Equation (5.18) is incompatible as it is satisfied when ∆p+

1 = −∆p+
2 .

Nonetheless, as discussed in Section 5.3.2, the balancing condition is not necessary as the
return distribution can be skewed.

The binary Markov process with two lags can satisfy the balancing condition and have
zero expectation for an autoregressive process. The DGP including the degrees of freedom
fulfilling these conditions are shown in Figure 5.4.b.
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5.3.4 Expected fixed tree forecast for autoregressive processes

Assuming an autoregressive DGP AR(%), I want to determine how well a fixed regression
tree with % lags is able to predict the deterministic component arising when ‖φ‖ > 0. The
fixed regression tree assigns to every of the 2% input states Si =

(
Si, 1, . . . , Si, %

)
∈ S the

mean

ĉi = E
[
Xt+1|sign (Xt−%+1) = Si, 1, . . . , sign (Xt) = Si, %

]
. (5.23)

In an autoregressive process with normally distributed innovations, the lagged variables
are distributed as xt = (Xt−%+1, . . . , Xt) ∼ N (0, Λ (φ)), where Λ (φ) ∈ R% is the co-
variance matrix of the % lags, assuming the independent innovations are distributed as
at ∼ N (0, σ).

Due to the autocorrelation, there is a directional bias of the return dependent of the
previous % returns. This bias can be computed for a region Ri =

{
x ∈ R%|xjSi j ≥ 0, ∀j

}
to be

P (yt ≥ 0|xt ∈ Ri) =
∫
Ri

N (x| 0, Λ (φ))
∫ +∞

−φ·x
N (a| 0, σ) dxda. (5.24)

In the general case of an arbitrary autoregressive parameter φ, this integral cannot be
evaluated in closed form.

The simplest case AR(1) has the analytically solution

P (yt ≥ 0|xt ∈ R+) = 1
2 + 1

π
arctan

(
φ

1− φ2

)
, (5.25)

where R+ = R+. As expected, the bias is independent of the variance of the inno-
vations. The directional bias for the region R− = R− is obtained by symmetry as
P (yt ≥ 0|xt ∈ R−) = 1 − P (yt ≥ 0|xt ∈ R+). Assuming the calibration data is sufficient
for a decision tree to predict the bias correctly every time, the directional accuracy of
the tree will be P (yt ≥ 0|xt ∈ R+). An AR(1) predictor with correct parameter φ always
makes the same prediction as a decision tree in this scenario, and therefore the two pre-
dictors have identical directional accuracy. As an example, for φ = 0.1 the directional
accuracy is ≈ 0.532.

Determining the directional accuracy for the AR(2) case leads to integrals over multi-
variate distribution that cannot be solved in closed form. Hence, only numerical solutions
are possible and would require a lengthy computation analyzing each region separately.
Nonetheless, let us remark what happens in the regions R+− and R−+ for the parameter
choice φ = (φ0 = 0, φ1, φ2 = φ1). The value of φ · x for x = (x1, x2) ∈ R+− is anti-
symmetric with respect to the axis x2 = −x1. As a consequence of this anti-symmetry,
the integral defined in Equation (5.24) takes the constant value P (yt ≥ 0|xt ∈ Ri) = 1

2 ,
and this region has no predictability bias for a fixed tree. However, the regions R++ and
R−− exhibit a predictability bias similar to the AR(1) case, and therefore the fixed tree
predictor will have roughly half the directional accuracy of the autoregressive predictor in
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Model Description

AR Auto-Regressive
RTMSE Regression Tree with MSE loss % ∈ {1, 2, 3, 4}

L ∈ {10, 20, . . . , 500}
CTGini Classification Tree with Gini index loss
F RT Fixed Regression Tree with mean prediction
F CT Fixed Classification Tree with majority vote

Table 5.1: Overview of the strategies compared in this study. A strategy is
defined by a model, the order parameter %, and the calibration window length L. A total
of 5models×4 lags×50 lengths =1000 strategies are tested.

this specific case. Hence, fixed trees can be a sub-optimal choice to predict autoregressive
processes with two lags or more. Nonetheless, they are more robust then autoregres-
sive models, which are entirely unable to predict a binary Markov process. Additionally,
the CART algorithm can generate a regression tree approximating arbitrarily well the
autoregressive process, assuming sufficient calibration data is available. In reverse, the
autoregressive model is always to rigid to capture the binary Markov process.

5.3.5 Simulation study

To confirm the theoretical results, the statistical significance of the competing models
is simulated on an autoregressive process of order two and a binary Markov process of
order two. The statistical significance is studied based on the studentized Sharpe ratio
as a function of the sample size, the calibration window length, and the autocorrelation
parameters.

At each time step, a model M is calibrated on the past L returns to forecast one step
ahead as X̃t+1 = M

(
{Xt}tt−L+1

)
, where X̃t+1 is the forecast of the model. For the purpose

of this study, the forecast X̃t+1 is then mapped to a long or short trading signal defined by
st+1 = sign

(
X̃t+1

)
2. This produces a sequence of binary signals {st}TL+1 ∈ {−1, 1}t−L−1

that define the corresponding trading strategy on the returns {Xt}t1. Hence, a strategy is
defined by a model, the number of lags %, and the calibration window length L. Table 5.1
presents an overview of the models and the parameters of the associated strategies.

The first L returns in the sequence {Xt}t1 are part of the calibration window of size
L, and only the subsequent returns are forecast one step ahead using a rolling window of
size L. Nevertheless, for further convenience, the number of forecast returns is defined by
T , implicitly assuming that L initial returns have been cropped before the first forecast.

2We remark that in general continuous trading signals can be constructed based on the value of a re-
gression forecast or the class probabilities of a classifier. However, within this paper we evaluate forecasting
models only based on binary signals, as more complex trading strategies are out-of-scope for the purpose
of studying the predictive power of decision trees.
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5.3.5.1 Setup

As finite sample realizations of a DGP have large variance, the p-value for a strategy on
a DGP has to be computed as an average over multiple runs. To obtain a reasonably
small confidence interval, a p-value has to be averaged over 5000 runs with 500 bootstrap
iterations for the data matrix of each run. The p-value for a given strategy and DGP
depends on three parameters, namely the autocorrelation parameters φ or ∆p of the
DGP (implicitly defining the lag %), the number of forecast returns t, and the calibration
window length L. Given the large computational expense of a single p-value, and the large
parameter space, a small subset of simulations have been chosen to study the impact of
the different parameters.

Following the theoretical analysis of Section 5.3.1, the two compared data generating
processes are: DGP1, an autoregressive process AR(2) with the two degrees of freedom
φ = (φ1, φ2); and DGP2, a binary Markov based process M(2) defined in Equation (5.3.2),
with the two degrees of freedom ∆p = (∆p1, ∆p2) as shown in Figure 5.4.b. Realizations
of both processes are generated with normally distributed innovations at ∼ N (0, σ = 1).

First, I study the behavior of the statistical significance as a function of the autocor-
relation parameters, expecting significance to increase with autocorrelation. Two years of
trading (t = 500 days) are simulated with a calibration length of L = 50.

Second is the verification that significance increases with the duration T as true skill
becomes less likely to be a result of luck. In particular, the typical T needed to achieve
a given significance level is determined. A moderately explosive process is picked with
autocorrelation φ = ∆p = (0.2, 0.2) and a calibration length of L = 50.

Third, the impact of the calibration length L on the significance level is explored. In
finite samples, the estimation error of small autocorrelations is large, and therefore the
calibration window length plays an important role. To illustrate this behavior, a small
autocorrelation φ = ∆p = (0.1, 0.1) and a sufficient number of time steps t = 500 is
chosen.

5.3.5.2 Results

The simulated p-values as a function of the autocorrelation parameters φ and ∆p are pre-
sented in Figure 5.5, showing the increase in statistical significance as the autocorrelation
becomes stronger. To obtain a 95% confidence level for an individual strategy on a two
year time frame, autocorrelations larger then (0.3, 0.3) need to be present.

Figure 5.6 shows the increase in statistical significance with the sample size T . Even for
autocorrelation parameter φ = (0.2, 0.2), which is much higher then average on financial
markets, at least T = 800 samples are needed before a 95% confidence level is achieved.

Figure 5.7 shows the decrease in significance with the calibration window length L.
At least L = 175 samples for calibration are needed before the autocorrelation parameter
φ = (0.1, 0.1) can be estimated robustly.

As computed in Section 5.3.3, the autoregressive forecasting model does not pick up
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Figure 5.5: P-values of all models when predicting an autoregressive process
AR(2) and a binary Markov process M(2) as function of the parameters
(φ1, φ2 = φ1) and (∆p1, ∆p2 = ∆p1). The prediction is made for sample size T = 500
and calibration window length L = 50. The regression tree with MSE loss and the clas-
sification tree with Gini index loss perform similarly on both DGPs, but have the lowest
performance on the autoregressive processes. The fixed regression and classification tree
perform almost identically on both DGPs. The autoregressive process is optimal at pre-
dicting itself, however fails entirely at predicting the binary Markov process. The fixed
trees exhibit a small bias at φ = 0 resulting from the effect described in Appendix 3.4.5.
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Figure 5.6: P-values of all models with calibration length L = 50 when predicting
an autoregressive process AR(2) and binary Markov process M(2), with param-
eters (φ1 = 0.2, φ2 = 0.2), respectively (∆p1 = 0.2, ∆p2 = 0.2). The significance of the
performance increases with the sample size T . The tree based models performs similarly
on both DGPs. The autoregressive predictor only work on the autoregressive DGP.
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Figure 5.7: P-values of all models for sample size T = 500 when predicting an
autoregressive process AR(2) and binary Markov process M(2), with parame-
ters (φ1 = 0.1, φ2 = 0.1), respectively (∆p1 = 0.1, ∆p2 = 0.1). The significance of the
predictability increases with the calibration window length L as the estimation of the
parameters becomes more robust.
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the deterministic pattern in the binary Markov based process. The p-value converged to
0.5 for all tested parameters. In contrast, the tree based performance is almost identical
on the autoregressive and binary Markov process. The regression tree performs slightly
better then the classification tree for the autoregressive DGP, and vice versa for the binary
Markov DGP. The dynamic trees significantly underperform the fixed trees, especially at
small autocorrelations, as they overfit the noise.

5.3.6 Empirical results

5.3.6.1 Data & parameters

To demonstrate how decision tree based models can outperform autoregressive models
on real data, the forecasting performance of all strategies is analyzed on daily returns of
the S&P 500 during the 20 year time period Jan. 1, 1995 to Dec. 31, 2015. The daily
returns are obtained from Thomson-Reuters Eikon with dividend adjustment. The studied
universe of strategies arises from the models in Table 5.1, backtested for all calibration
window lengths L ∈ {10, 20, . . . , 500} and lags % ∈ {1, 2, 3, 4}.

Two strategies that only differ by their calibration window lengths L1 and L2 are
highly correlated when |L2 − L1| < 10. A step size of ∆L = 10 finds the optimal length
with sufficient accuracy, while avoiding to compare almost identical strategies. As well,
the bootstrap algorithm maintains the correlation structure, and therefore the multiple
testing adjusted p-values are not impacted by the choice of ∆L. The upper bound of 500
trading days on L results from the fact that the best strategies were found well below this
bound.

The limit % ≤ 4 on the number of lags % arises from the condition L
2% ≥ 20, which

imposes the lower bound of 20 on the an average samples per leaf in a decision tree, or
equivalently a≈ 5% accuracy on the class probabilities. At lag % = 5, the class probabilities
would be determined with a 6.5% accuracy, which is too high for a meaningful prediction.

To perform the bandwidth selection for the HAC covariance matrix estimation, as
well as the bootstrap block size selection, the parametric AR(%)−GARCH (%, %) model is
chosen. The model parameters are obtained by regression on the daily returns of the S&P
500 on the entire time period. The optimal parameters, determined by simulation, were
found to have a kernel bandwidth S∗5000 = 2.7 and block size b = 5, roughly independent
of the lag %.

5.3.6.2 Performance of the top strategies

The individual p-values of all 1000 strategies are shown in Figure 5.8. The individual
p-values are shown instead of the multiple testing adjusted p-values because in the later
most p-values are simply one, and the relative performance is not visible anymore. The
best performing predictor is the fixed classification tree (FCT ) with lags % = 2 and
calibration length L = 370, which had a studentized Sharpe ratio performance of ∆1st

S =
2.12, noticeably higher then the second best predictor at ∆2nd

S = 2.05. This predictor was
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Figure 5.8: Overview of the individual p-values of all strategies on the S&P 500
during the 20 year time period Jan. 1, 1995 to Dec. 31, 2015. The five forecasting
models are: autoregressive (AR); regression and classification tree (RTMSE , CTGini); and
the fixed regression and classification trees (FRT , FCT ). Each forecasting model is run
for the lags % = {1, 2, 3, 4} and calibration window lengths L = {10, 20, . . . , 500}. The
p-values are obtained by 5000 bootstrap simulations. The fixed trees perform above the
95% confidence level at lags {1, 2, 3} and calibration window length % ≥ 250. The other
models never perform significantly.
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Model % L ry(%) Shy MD (%) p padj BE (bps) #RT

B&H 5.15 0.49 -30.5 0 0
FCT 2 370 7.87 0.96 -12.2 < 2.0 · 10−4 0.004 16.4 1246
FCT 3 400 7.80 0.94 -10.1 < 2.0 · 10−4 0.031 10.6 1870
FCT 1 340 7.65 0.86 -10.6 ≤ 5.9 · 10−4 0.031 21.4 860
FRT 3 330 7.86 0.92 -12.6 < 2.0 · 10−4 0.043 8.3 2417
AR 1 200 6.15 0.53 -23.4 0.002 0.750 2.2 2728
RTMSE 2 210 5.75 0.55 -13.7 0.010 0.920 1.3 2653
CTGini 3 250 5.58 0.88 -15.4 0.012 0.953 0.9 2651

Table 5.2: Summary of the top performing strategies. The key values in order are:
the model family; the number of lags %; the calibration window length L; the compounded
annual return ry; the yearly Sharpe ratio Shy; the maximum draw down MD; the indi-
vidual p-value; the p-value adjusted for multiple-testing in the entire universe of models;
the break-even transaction costs (BE) with the buy-and-hold strategy; and the number of
round trips #RT.
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Figure 5.9: Cumulative returns without (upper plot) and with (lower plot)
transaction costs of the top performing model (FCT ) at three different lags on
the S&P 500 during the 20 year time period Jan. 1, 1995 to Dec. 31, 2015.
The highest predictability arises during the crash of the financial crisis in 2008 for all lags.
Noticeable predictability arises as well during the implosion of the dotcom bubble from
2000 to 2003 at lag p = 2 and during the European debt crisis in late 2011 at lag p = 3.
The lower plot shows the same strategies with 10bps of round trip transaction costs.
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FCT α (tα) βMKT (tMKT ) βSMB (tSMB) βHML (tHML) βMOM (tMOM ) R2

% = 1 1.06 (3.5) 0.31 (4.7) 0.08
L = 340 1.03 (3.4) 0.31 (4.5) 0.10 (1.1) 0.10 (1.0) 0.09

0.90 (2.9) 0.38 (5.2) 0.08 (0.8) 0.16 (1.6) 0.16 (2.7) 0.11
% = 2 1.22 (4.2) 0.20 (3.1) 0.04
L = 370 1.20 (4.1) 0.19 (2.9) 0.07 (0.8) 0.04 (0.4) 0.04

1.21 (4.1) 0.19 (2.6) 0.08 (0.8) 0.03 (0.3) -0.02 (-0.3) 0.04
% = 3 1.19 (3.7) 0.20 (2.7) 0.03
L = 400 1.20 (3.7) 0.16 (2.2) 0.13 (1.2) -0.07 (-0.7) 0.04

1.17 (3.5) 0.18 (2.2) 0.12 (1.2) -0.06 (-0.6) 0.04 (0.5) 0.04

Table 5.3: Intercepts and slopes in variants of regression for the three top
performing FCT strategies on the S&P 500. The table shows the monthly intercepts
(α) and regression slopes (βMKT , βSMB, βHML and βMOM , for rm − rf , SMB, HML,
and MOM , respectively), as well as their t-statistics, for the CAPM, three-factor, and
four-factor versions of regression. The factors are estimated for the three top performing
FCTs on the S&P 500 between Jan. 1, 1995 and Dec. 31 2015 at zero transaction cost, as
shown in Figure 5.9. The monthly intercepts are significant for all strategies and regression
models. As well the market factor is significant in all cases, and particularly strongly at
lag % = 1. The FCT with lag one correlates significantly with momentum.

found to have a performance above the 99% confidence level when adjusting for multiple
testing of all 1000 strategies. The fixed classification and regression trees are the only
predictors that reach a performance above the 95% confidence level for a large range
of lags and calibration lengths, when adjusted for multiple testing. This thick set of
outperforming rules shows the presence of a robust signal, which has low probability of
being a spurious phenomenon due to data-snooping. At lag % = 4, the length L is to small
for a robust calibration length and no predictor reaches significant results. This confirms
the choice of tested lags. The results are in line with the simulation were the fixed trees
where the most robust predictors, and longer calibration length provide a more robust
parameter estimation.

The cumulative returns over time for the buy-and-hold strategy and the best fixed
classification tree predictors are shown in Figure 5.9 without and with typical transaction
costs. The one-way transaction costs of 0.05% applied at each buy or sell is supported
by the discussion of Hsu et al. (2010, sec. 4.2). The strongest predictability arises during
the burst of the dotcom bubble, the crash of the financial crisis, and the European debt
crisis. Some performance metrics for the best strategy in each model class are shown in
Table 5.2. The best strategy achieves twice the buy-and-hold return, twice the Sharpe
ratio, and roughly a third of the maximum draw down. The break even costs of 21.4 bps
per round trip are higher then the typical 10 bps of costs on actual markets .
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5.3.6.3 Further analysis

The statistical significance of the best performing strategies does not imply that the EMH
is violated, as it may have been impossible to select one of these strategies ex-ante. Follow-
ing the EMH definition of Timmermann and Granger (2004), there needs to be a search
technology that would have selected the winning strategy. The EMH is tested using the
search technology that invests at every point in time into the strategy with the best Sharpe
ratio after 10bps of round trip transaction costs. The search technology uses an expanding
window over all past returns. As can be seen in the lower plot of Figure 5.9, the FCT
strategy with lag % = 1 and L = 340 starts to outperform the two next best strategies
early on around 1997. The search technology confirms that no other strategy in the uni-
verse of 1000 strategies would have hindered the ex-ante generation of economic profits
in excess of the buy-and-hold strategy. Consequently, the result does seem to violate the
EMH, or at least raises questions about what limits to arbitrage could have prevented
the implementation of such strategies, at least in the last two decades. The test period,
which includes two major crashes, is unlikely to hide extreme events that could drasti-
cally change the downside risks of the strategy with respect to the market. However, an
accurate simulation of transaction costs and potential market friction would have to be
performed to confirm the result.

To determine if this abnormal performance can be explained by known factors, the
performance is evaluated with the CAPM, the three-factor model of Fama and French
(1993), and the four-factor model of Carhart (1997). The full four-factor model measures
performance as a time-series regression of

r − rf [t] = α+ βMKT

(
rm[t]− rf [t]

)
+ βSMBSMBt + βHMLHMLt + βMOMMOMt + et.

(5.26)
In this regression, r is the strategy return on month t, rf [t] is the risk-free rate (the 1-month
U.S. Treasury bill rate), rm[t] is the market return, SMBt and HMLt are the size and
value-growth returns of Fama and French (1993), MOMt is the momentum return, α is
the average return not explained by the benchmark model, and et the residual error term.
The values for rf [t], rm[t], SMBt, HMLt and MOMt are taken from Ken French’s data
library (French, 2012), and derive from underlying stock returns data from the Center
for Research in Security Prices (CRSP). The three-factor model is obtained by leaving
out the momentum term, and the CAPM is obtained by further leaving out the SMB

and HML factors. Table 5.3 shows the intercept and regression slopes (load) for all
three models, including their t-statistics. The returns of the three best strategies are
partially explained by the market returns (significant βMKT ), but nevertheless all three
have significant intercept α that remains unexplained by known factors. The return sign
correlation uncovered by the decision tree strategies qualifies as a new anomalous factor.

To obtain a better understanding of the return dynamics that generate the predictabil-
ity during the burst of the different bubbles, Figure 5.10 presents a zoom-in on this periods.
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Figure 5.10: Cumulative returns without transaction costs of the top performing
model (FCT ) at three different lags on the S&P 500 during the anomalous
periods. The left plot shows the anomalous performance of the fixed classification tree
with lag % = 2 and calibration length L = 340 during the burst of the dotcom bubble.
The center plot shows the anomalous performance of the fixed classification tree with lag
% = 1 and calibration length L = 370 during the financial crisis. The right plot shows
the anomalous performance of the fixed classification tree with lag % = 3 and calibration
length L = 400 during the European debt crisis.

Dotcom Bubble Financial Crisis European Debt Crisis
P (+) ≈ 0.48 P (+) ≈ 0.52 P (+) ≈ 0.56
P (−− → +) ≈ 0.54 P (− → +) ≈ 0.61 P (−−− → +) ≈ 0.56
P (−+→ −) ≈ 0.53 P (+→ −) ≈ 0.55 P (−−+→ +) ≈ 0.59
P (+− → −) ≈ 0.54 P (−+− → −) ≈ 0.50
P (++→ −) ≈ 0.56 P (+−− → −) ≈ 0.56

P (−+ +→ +) ≈ 0.67
P (+−+→ +) ≈ 0.60
P (+ +− → +) ≈ 0.67
P (+ + +→ −) ≈ 0.55

Table 5.4: Daily return sign correlations of the S&P 500 during the burst of the
dotcom bubble, financial crisis, and European debt crisis. The sign correlations
are computed based the whole time periods shown in Figure 5.10, and do not account for
potential non-stationarity. The burst of the dotcom bubble had more down moves then
up moves, with significant two day directional accuracy. The crash of the financial crisis is
impregnated by a daily reversal of the return sign, with up moves being 11% more likely
then down moves after a down move. The European debt crisis exhibits a more intricate
three day sign correlation, with an up move being 10 to 17% more likely then a down
move after two up moves and one down move in arbitrary order.
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During each period, the best performing strategy is significant at the 99.9% level when
performing a bootstrap of returns under the stationarity condition (see Section 3.4.2). The
burst of the dotcom bubble is dominated by a predictable return sign pattern at lag two
(break-even cost of 45 bps per round trip). The crash of the financial crisis is dominated by
a one day return sign dependency (break-even cost of 83 bps per round trip). Finally, the
European debt crisis exhibits a more intricate three lag pattern that cannot be captured
by lower lag strategies (break-even cost of 32 bps per round trip). The abnormal transition
probabilities of these patterns are presented in Table 5.4. These stationary snapshots over
the whole duration of each bubble confirm the significant directional accuracy.

Applying the theoretical model developed in Section 5.3.2 and 5.3.3, to the stationary
snapshots of the three periods of abnormal returns, confirms the fundamental concept that
autoregressive models poorly capture return sign correlations. The expected autoregressive
parameters computed with Equation (5.22) based on the values of Table 5.4 are

EDotcom [φ] = (0.006, −0.013) ,

EFinancial Crisis [φ] = (−0.027) , and

EEuropean Debt Crisis [φ] = (−0.000, 0.008, 0.013) .

The expected parameters φ have been scaled so as to be comparable with the directional
accuracies presented in Table 5.4. The values show that the autoregressive model captures
at most 2.7% of excess directional accuracy, far smaller then the maximal 17% of directional
accuracy capture by the fixed classification tree. Hence, the theoretical model explains
why the autoregressive underperforms the fixed trees on the S&P 500 as shown by Figure
5.8.

5.3.6.4 Conclusion

The EMH is an assumption about financial market at the heart of many regulatory de-
cisions. This hypothesis has been verified to hold true for a large range of regressive
forecasting models, technical trading rules and asset portfolios. However, recent develop-
ments in statistical learning have not yet undergone a rigorous test.

In this paper, we presented a common non linearly separable pattern that can arise,
but cannot be forecast using autoregressive models. Decision tree models possess arbitrary
flexibility and are well suited to capture these non linearly separable patterns. The issue of
overfitting can be addressed with an adequate lower bound on the number of samples per
leaf in a decision tree. We provide a connection between fixed decision trees and Markov
chains. The presented class of binary Markov processes with a deterministic component are
proven to be unpredictable with autoregressive models. In contrast, the fixed classification
trees only marginally underperform an autoregressive forecast on an autoregressive DGP
for most parameter choices. A simulation study confirmed the theoretical results and the
robustness of fixed classification and regression trees.
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The models are tested on daily returns of the S&P 500 for different lags and calibration
window lengths, giving rise to a universe of 1000 strategies. The multiple testing adjusted
p-value of each strategy, benchmarked against the buy-and-hold strategy, is computed
using the methodology of Romano andWolf (2005b) and Ledoit andWolf (2008). The fixed
classification tree (FCT) at lags % ∈ {1, 2, 3} and calibration window length L ∈ [300, 460]
are the best strategies, significant above the 95% confidence level. This confirms the
simulation results where the fixed trees were robust predictors for autoregressive and
Markov based processes. The analysis showed that the theoretical model holds true on the
S&P 500 to explain the performance difference between decision trees and autoregressive
strategies.

Without transaction costs, the best fixed tree strategies more then double the cumu-
lative return and Sharpe ratio of the buy-and-hold strategy. They break even with the
buy-and-hold strategy at transaction costs as high as 21 bps per round trip. A simple best
Sharpe ratio search technology could have selected ex-ante the best performing strategy.
The strategies all have significant intercept for the four-factor regression model. Therefore,
the EMH appears to be violated, in particular during the dotcom bubble (2000-2003), the
financial crisis (2008-2009) and the European debt crisis (2012). During bull markets, the
performance of decision tree based strategies is roughly equal to the buy-and-hold strat-
egy. While no certain explanation can be given, it would not be surprising to find that
behavioral heuristics, as exposed by Tversky and Kahneman (1974) even among trained
statisticians, have significant impact during a market crash. The strong return sign corre-
lations speak in favor of biases in human heuristics relying more on past return signs then
on the amplitude.

The finding of this study stands in contrast with multiple prior market efficiency stud-
ies that included the S&P 500. The studies by Sullivan et al. (1999), Hsu and Kuan
(2005) found no significantly performing technical trading rule on the S&P 500, while our
fixed classification trees perform significantly on a longer test period of 20 years. The
study by Hsu et al. (2010), as well testing technical trading rules, further concluded that
market efficiency has increased after the introduction of ETFs in the year 2000, and that
emerging markets are less efficient then more mature markets. Our study provides a solid
counter example of a mature market that exhibits large inefficiencies. As well, the largest
inefficiencies appear long after the introduction of ETFs, casting doubt on the impact of
ETFs on market efficiency. The discrepancy with prior studies is a result of their focus on
technical trading rules. Our work shows that market efficiency cannot be measured only
using technical trading rules.

Noticeable research has gone into detecting explosive regimes in stock markets (Phillips
et al., 2011, Kaizoji et al., 2015, Sornette and Cauwels, 2015), and studying the growth
phase of bubbles. In contrast, the return dynamics during the burst of a bubble seem
under researched as shown by the recent findings of an acceleration factor (Ardila et al.,
2015) and the novel return sign predictability established in this paper. Future research
needs to study more in detail the predictability dynamics during bubbles on other stock
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indices. As well, it needs to be better understood which stocks in an equity drive the
predictability

5.4 Towards time series learning

The binary strategies used by the agents in the agent based model happened to be equiv-
alent to a decision tree. The decision trees were shown to capture sign correlations that
would go unnoticed with autoregressive models. It turned out that such correlations were
statistically significant in the S&P 500 during the past 20 years. Tree based trading strate-
gies could have exploited these sign correlations in a profitable manner after adjusting for
transaction costs. Given this success of decision trees in finding non-linearly separable
patterns in the returns of the S&P 500, there are two follow up questions: are these return
sign correlations present in other assets as well? and are there more non-linear patterns
that could be found with other models?

The forecasting methodology used for the decision tree and autoregressive models, al-
ways predicting one step ahead using a rolling window of size L, is straightforward to
extend for other time series or statistical learning models. The research by Fernández-
Delgado et al. (2014) showed that a small number of statistical learning models provide
the highest performance across a large range of data-sets. This section implements an eval-
uation of a larger universe of strategies constructed from these top performing statistical
learning models. Each models gives rise to several strategies, which are parametrized by
the number of lags and in-sample length used for calibration. Additionally, a AR-GARCH
model is used as a time series reference model. This led to a total of 3136 uniquely defined
strategies.

The strategies are evaluated on daily returns of the CSI 300 during the period 2005-
2015, and the FTSE and S&P 500 during the period 1995-2015. This choice of three
major equity indices, well separated geographically (and too some extend economically),
provides a good test set to determine if non-linear patterns are common in equity indices.

5.4.1 Statistical learning & nonlinear finite lag processes

A general nonlinear stochastic process {Xt} is described by some arbitrary function f (·)
mapping uncorrelated random variables {at} as

Xt − µ = f (at, at−1, at−2, . . .) . (5.27)

In practice, this general representation is of limited use because the curse of dimensionality
makes it difficult or even impossible to determine f based on past data. To calibrate f on
past data, the common approach is to chose a specific parametric form for f , with a few
parameters that can be determined from the data. For example, the linear filter models
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are obtained by a Taylor expansion at first order as

Xt − µ = f (0, 0, . . .) + at · ∂x1f (0, x2, . . .) + at−1 · ∂x2f (x1, 0, . . .) + . . . , (5.28)

where the first order partial derivatives of f evaluated at zero are related to the coefficients
of the autoregressive process. Common nonlinear models can be obtained by considering
the second order terms.

Besides polynomial processes obtained by Taylor expansion, one can as well consider
non-parametric nonlinear autoregressive models of order % of the form

Yt = f (Yt−1, . . . , Yt−%) + εt. (5.29)

For a discussion, see Chapter 6.3 in Mills and Markellos (2008). With the advent of
cheap computation, a large number so called statistical learning (or machine learning in
computer sciences) models have been developed, which solve special cases of finding f in
a non-parametric setting. These methods are discussed in detail by Hastie et al. (2001)
and James et al. (2014).

In the context of statistical learning, the problem is to estimate the systematic relation
f between a set of inputs X and dependent outputs Y , such that

Y = f(X) + ε. (5.30)

The error term ε has mean zero, and is independent of X. To illustrate, the output could
be the wage of a person, and the inputs are some characteristics of that person, such as
age and years of education. The difference to the nonlinear autoregressive models is that
the input and output variables a separate entities.

A statistical learning algorithm learns a non-parametric function f based on a training
dataset

D = {(X1, Y1) , . . . , (XN , YN )} (5.31)

with a sufficient number of samples. In the wage example, a sample would be a data tuple
(X = (age, education) , Y = (wage)) associated to a person. The set of statistical learning
models include parametric and non-parametric methods, ranging from low flexibility (e.g.
linear regression) to high flexibility (e.g. support vector machine with non-linear kernels).
The challenge in the estimation of f for flexible models is to avoid over-fitting the error
term associated with the dataset D. The method has to only extract the systematic
information, so that the estimated function works on any dataset D′ with new samples of
the same type.

5.4.1.1 Issues in cross-validating time series data

The statistical learning models all find some non-parametric approximation of the data
used for calibration. However, the intrinsic signal to noise ratio in financial time series
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is small, which makes it difficult to distinguish between truly predictable patterns and
randomly occurring transient patterns. The standard technique to avoid over-fitting is
to split the dataset into a training and a test set. The calibration is then performed
in multiple steps. At each step the calibration on the training set is refined and the
performance on the test set is computed. When the performance on the test set reaches
a plateau, the calibration is considered to be optimal. More extensive cross-validation
can be performed by generating multiple (training, test) sets based on the dataset, and
repeating the calibration process on each of them.

A core assumption of the cross-validation techniques is the sample independence, which
does not hold in the time series context. For a discussion, see Chapter 6.3.3 in Mills and
Markellos (2008). In nonlinear autoregressive models the samples are sequential in time,
which makes it difficult to justify cross-validation methods that consider the samples as
independent. The only test set that respects the time order uses the last samples in
the time series data used for calibration. However, assuming some form of nonlinear
autocorrelation, the last samples have the highest correlation with the predicted next step
output and should therefore be used for calibration. Consequently, any type of test set or
cross-validation is likely to affect negatively the predictive power.

5.4.1.2 Calibration window length and lag selection

Most statistical learning models split the input space into multiple regions similarly to
the decision trees in Subsection (5.2.2) and predict the mean or majority vote in each
region. The discussion for classification trees in Subsection 5.2.4 showed that at least 100
samples are needed in each region to obtain a 95% confidence level for a binary prediction,
assuming independent random samples as null hypothesis. As this number of samples
does not dependent on the shape of the region, this lower bound is meaningful for most
statistical learning models and is applied throughout this thesis.

Although the sample size should be maximized to avoid over-fitting, it may not be
optimal to keep all past data because financial time series are usually not strictly stationary
(Mills and Markellos, 2008). Non-stationarity negatively impacts predictive performance
when the calibration is done across multiple distinct regimes. To minimize the mixing
of different regimes, the number of samples used for calibration is limited to a constant
in-sample calibration length L. For the decision tree prediction experiment on the S&P
500 in Subsection 5.3.6 the best results where obtained well below the in-sample length
of two years (L ≤ 500 trading days). As this length characterizes the typical duration of
a stationary regime in an equity index, and is independent of the prediction model, this
bound is used for all statistical learning models.

The curse of dimensionality strongly limits the number of lags that can be calibrated
robustly. Similarly to the decision trees, one can argue that a meaningful prediction
model should distinguish at least two distinct regions in each lag dimension, otherwise
the lag variable has no influence on the prediction. Two regions correspond to the best
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case scenario of binary input and output variables. Hence, in the best case scenario, the
complexity of a prediction model increases as 2%. The limit % ≤ 4 on the number of lags
% follows from the condition L

2% ≥ 20, which imposes the lower bound of 20 on the an
average samples per region, or equivalently a ≈ 5% accuracy on the class probabilities. At
lag % = 5, the class probabilities would be determined with a 6.5% accuracy, which is too
high for a meaningful prediction.

5.4.1.3 Regression vs classification

Asset returns are quantitative outputs that are typically modeled using regression. The
degrees of freedom in regression models have a variety of origins: the parameters of a
function, for example the coefficients of a linear regression; the parameters of a kernel
transforms of the inputs, for example the exponent in a homogeneous polynomial kernel;
and the number of partitions of the input space, for example the leaves in a regression
tree. Models with too few degrees of freedom will have high bias, failing to model relevant
relations between inputs and outputs. Models with too many degrees of freedom will have
high variance, modeling the random noise in the training data. In the context of financial
time series, the signal to noise ratio is small and therefore the optimal models should have
a low number of degrees of freedom and maximize the signal to noise ratio.

Subsection 5.2.4 argued that the signal to noise ratio of financial data can be im-
proved by mapping the returns to a finite number of classes. The classification problem
of maximizing the probability of a single class in each region is better suited to maximize
predictability than the mean squared error loss typically used in regression models. As
well, the statistical significance of a prediction is easier to estimate.

From a behavioral perspective of the stock market participants, one could argue that
the traders do not care about the precise value of returns. Fundamentalists trade based on
their fundamental analysis of companies, and chartists mostly look at trends and a finite
set of patterns. Consequently, it is meaningful to map returns onto a set of classes that
relate closely to the discrete mental models used by the agents. Tversky and Kahneman
(1974) showed extensively that humans, even when trained in statistics, often rely on
heuristics to answer statistical questions. Further on, Gary and Wood (2010) studied
human mental models in solving strategic problems, and reported that good heuristics
often suffice to achieve good performance. Within this heuristic perspective, the agents
trading on stock markets make the strongest distinction between negative and positive
returns. Therefore, the most sensible preprocessing is a binary map of the outputs to
down and up moves. Such binary outputs can be predicted using classifiers. In a second
step, the same binary preprocessing can as well be applied to the inputs.

Beyond the binary map of up and down moves, a infinite number of generalized binary
maps and high order maps are possible as discussed in Subsection 4.2.9. However, testing
all these maps individually defeats the purpose of statistical learning. Models such as
decision trees are able to learn the optimal map dynamically with the adequate pruning
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parameter.

5.4.2 Constructing the universe of strategies

There are hundreds of statistical learning models available in the literature (Fernández-
Delgado et al., 2014). In James et al. (2014), several of the most common methods
have been tested on returns of the S&P 500 between the year 2001 and 2005, with the
highest performing method being the quadratic discriminant analysis. The present chapter
evaluates the set of models presented in Table 5.5, covering the families of linear regression
(AR-GARCH), discriminant analysis, logistic regression, nearest neighbors, support vector
machines, decision trees, and bagging and boosting of decision trees. These are the most
commonly used methods and known to be among the top performers across a large variety
of problems. Neural networks have been excluded, as they are computationally much more
intensive and difficult to interpret.

Classification models (and most regression models) can be visualized as separating
the samples with decision boundaries maximizing the predictability within each group
formed by the boundaries. The difference between the methods mostly lies in the shape of
the decision boundaries. For the reader unfamiliar with statistical learning, some visual
examples are provided in Figure 5.11. These figures represent a two dimensional input
and a three class categorical output (e.g. negative returns, small returns and positive
returns). Subfigure a) shows the optimal decision boundary from a linear discriminant
analysis separating three multivariate normal distributions. Subfigure b) shows some
optimal hyperplane boundaries used in support vector machines. Finally, subfigure c)
represent the boundaries of a decision tree obtained by recursively splitting the dataset.

The selected regression models are applied to the quantitative inputs and outputs.
The classification methods are applied to quantitative inputs but binary outputs of down
and up moves. The case of binary inputs organizes the samples neatly into % dimensional
hypercubes as illustrated in subfigure d). In such a configuration, the shape of the decision
boundaries becomes mostly irrelevant as many models will make the same prediction. An
input space partitioned into hypercubes can be exactly matched by the decision boundary
of decision tree based model. Therefore, binary inputs are predicted using a decision tree.
The prediction of a decision tree is the majority vote (classification) or mean (regression)
within each hypercube. Table 5.6 provides an overview of all the 16 possible combinations
of using regression and classification. Given the four different lags % ∈ {2, 3, 4, 5} and the
in-sample length L ∈ {10, . . . , 500} in steps of ∆L = 10, the universeM has 4×49×16 =
3136 uniquely defined strategies.

As for the decision trees in Subsection 5.3.5, a model prediction is simply converted to
a long or short trading signal. A positive regression forecast is converted to a long position
and a negative regression forecast to a short position. Down and up class predictions of a
classifier are straightforwardly converted to a short position, respectively a long position.
The strategies are always long or short, and never out of the market. However, the
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Model Description Parameters

Regression

AR(p)-
GARCH(p, q) Linear regression model, with a nested linear

regression model for the variance of the error terms.
Lags p = q = m

Classifiers

Linear
Discriminant

Assumes k classes from independent multivariate
distributions. Computes the optimal linear boundary
between the distributions.

No shrinkage

Quadratic
Discriminant

Assumes k classes from independent multivariate
distributions. Computes the optimal quadratic
boundary between the distributions.

Logistic
Regression

Computes the logistic decision boundary between
two classes.

Regression/Classification

Nearest
Neighbors

Finds the k nearest neighbors of a data point and
computes their mean output or majority vote.

k = 5, Minkowski
metric, uniformly
weighted

Support
Vector
Machine

Computes the maximum-margin separating
hyperplane.

Linear kernel

Decision
Tree

Partitions the features space by recursive splitting at
optimal values along a single feature. Computes the
mean or majority vote in each subset.

Any depth,
minimum one
sample per leaf

Random
Forest

Averages the prediction of many decision trees
trained on subsamples of the training data to avoid
over-fitting.

10 trees

Gradient
Boosting

Recursively creates decision trees to reduce the
remaining errors.

Max depth 3, 100
boosts, learning
rate 0.1

Table 5.5: Description and relevant parameters of the statistical learning meth-
ods evaluated in the present work to forecast daily returns. The table separates
regression only, classification only (e.g. down/up moves), and dual purpose methods.
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Figure 5.11: Schematic examples of decision boundaries for several statistical
learning methods fitted on the inputs (r−2, r−1) of two past quantitative returns
and three possible output classes. The methods are: a) linear discriminant analysis;
b) support vector machine; c) decision tree; d) decision tree fitted on binary returns (the
choice of having twice the red class as the majority vote is arbitrary).
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Inputs Outputs Methods

Quantitative Quantitative 6 Regressors

Quantitative Binary 8 Classifiers

Binary Quantitative 1 Regression Tree

Binary Binary 1 Decision Tree

Total: 16

Table 5.6: Summary of all the tested combinations of quantitative and binary
inputs and outputs. The number of available classifiers and regressors is taken from
the selection presented in Table 5.5.

amplitude of a regression forecast or the probability of the predicted class could be used
to construct more fine grained trading signals. For example taking larger positions upon
certain forecasts, and staying out of the market upon uncertain forecasts. Nonetheless,
such an exploration of different trading signals is not at the heart of this thesis that will
only evaluate strategies based on unit long and short positions.

5.4.2.1 Models discussion

The AR-GARCH model predicts the next step return based on the autocorrelations at
different lags and volatility of the past returns. However, in the context of highly stochastic
financial data, the regression most of the time captures the current market trend, and the
resulting strategies are highly correlated with the market and momentum.

The linear and quadratic discriminant analysis can determine if the %-variate distribu-
tion of returns followed by a down move significantly differs from the %-variate distribution
of returns followed by an up move. Whenever the two distributions are distinguishable, the
prediction probability will rise above randomness. The largest difference between the two
distributions is located in the tails, where the predictions with the highest probabilities
will be made. The tails of the distributions are associated to large returns, consequently
the discriminant methods could detect predictability linked to high volatility.

The logistic regression detects directions in the input space that are dominantly fol-
lowed by a down or up move. Due to the approximate normal distribution of returns
around zero, the reference point will be found near zero. Predictions with high probabil-
ity will be made following large returns, consequently the logistic regression can detect
predictability linked to high volatility in a certain direction in the input space.

The nearest neighbor model is evaluated for k = 5, computing for a given input the
mean or majority vote of the five nearest samples (using an euclidean metric) in the training
set. In the classification case, the odd number of neighbors ensures an unambiguous
prediction. The choice of only five neighbors guarantees the estimation of a neighborhood
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Index Start End Wy(%) SRy ↑(%) rm (%) rc (%)

CSI 300 Apr. 8, 2005 Dec. 31, 2015 13.12 0.45 54.1 5.60·10−3 1.34
FTSE Jan. 1, 1995 Dec. 31, 2015 3.45 0.11 52.2 0.88·10−3 0.82
S&P 500 Jan. 1, 1995 Dec. 31, 2015 7.37 0.31 53.7 2.64·10−3 0.82

Table 5.7: Summary statistics of the equity indices used for the empirical study.
This table provides a summary statistics of the equity indices used to test the statistical
learning methods on daily returns. The key values in order are: the compounded annual
growth rate Wy; the yearly Sharpe ratio SRy; the number of positive days; the average
daily market return rm due to the market trend as defined in Equation 3.30; and the
average daily return rc on a winning trade as defined in Equation 3.32.

close to the evaluated input even in the case of % = 5 lags. This model can detect pockets
of predictability localized in a small neighborhood of the input space.

The support vector machine (SVM) model separates the features space by a hyper-
plane, maximizing the class asymmetry between the two areas defined by the hyperplane.
This method is ideal to detect any imbalance of the distribution of up or down moves
in the input space. On the downside, the standard SVM classifier does not support the
computation of a prediction probability.

The decision tree model partitions the input space into disjoint n-orthotopes (hyper-
rectangles), maximizing the proportion of a single class in each of them. As discussed
in Subsection 5.2, without a well selected pruning parameter, decision trees are prone to
overfitting, which can be addressed by bagging and boosting models. The bagging model,
called a random forest, averages multiple trees calibrated on subsets of the training data
to reduce the variance. The boosting method recursively reduces the error by adding new
trees calibrated on the remaining error. To avoid a perfect fit from the beginning, the tree
depth is limited to the number of lags in the boosting case.

5.4.3 Empirical results

The universe of strategies is tested on daily returns of equity indices in three geographical
areas: Asia, Europe and U.S. The selected stock indices are the CSI 300 Index in Shanghai,
the FTSE in London and the S&P 500 in the U.S. The daily returns are loaded from the
Thomson Reuters data stream, while the monthly risk free rates are taken from the Ken
French’s data library French (2012). An overview with relevant key values is provided in
Table 5.7. The starting date of the CSI 300 correspond to the first ever trading day of
that index.

5.4.3.1 Best models

Table 5.8 presents for each model family the statistical significance of the best model. The
performance measures are the directional accuracy, wealth (i.e. compounded returns), and
Sharpe ratio as defined in Section 3.3. The test statistics are computed using a one-sided
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test for excess performance. The p-values have been adjusted for multiple testing within
each family using the algorithm of Section 3.4, and indicate if a model family is significant
when considered in isolation.

The p-values pW of the compounded wealth and pSR of the Sharpe ratio are mostly
identical. This finding is not surprising as both performance measures depend primarily
on the mean daily return. Exceptions to the identical wealth and Sharpe ratio significance
are found among the top performing models. For example, for the best DT-B model on
the S&P 500 the large upside volatility, seen on Figure 5.12, penalizes the Sharpe ratio
performance. On the contrary, for the best LDA-C model on the FTSE, staying out of
the market during high volatility days improves the Sharpe ratio performance.

This study focuses on models with statistically significant wealth, the measure of profits
used to test the EMH. Some model families stand out as significant, far above the 95%
confidence level. On the S&P 500, the decision tree models with binary inputs (DT-BR
and DT-B) are highly significant. On the FTSE, the best model is the support vector
regression (SVM-R), second is the decision tree regressor with binary inputs (DT-BR),
and third comes the linear discriminant analysis (LDA-C). Further significant models are
the nearest neighbor regression (NN-R) and binary decision trees (DT-BC). The single case
above the 95% level for the decision regressor model family (DT-R) could be a statistical
outlier. On the CSI 300, the nearest neighbor classifier model family (NN-C) is consistently
significant. However, it is significantly outperformed by a single GB-R model.

An overview of the models with highest significance on pW is presented in Table 5.9.
The p-values adjusted for multiple testing across the entire universe remain significant for
the FTSE and S&P 500. The best model for the CSI 300 is significant at the 94% level
after only 8 years of trading, and would likely be highly significant on an equivalent 18 year
period if its performance remained at the same level. The best performing model for each
equity index is consistently found at lag % = 3, while the optimal in-sample length is found
in two different regions. For the S&P 500 and the FTSE, the optimal in-sample length
clusters around L ∈ [390, 400], and for the CSI 300 the optimal in-sample length cluster
around L ∈ [150, 160]. For the equity indices tested in this study, these combinations of lag
and in-sample length provide the best tradeoff in maximizing sample size and minimizing
the risk of calibrating across multiple regimes.

The trading performance over time of a selection of the best models presented in Table
5.9 is shown in Figure 5.12. For the FTSE, the top performing DT-BC and LDA-C models
are not shown as they correlate highly with the shown models DT-BR, respectively SVM-
R. This Figure reveals that the highest abnormal returns on the S&P 500 and FTSE
occur during the dot-com bubble (1997-2003), the financial crisis (2008-2009), and the
European debt crisis (2012). The GB-R and NN-C models on the CSI 300 have very
different dynamics. The abnormal returns of the GB-R model correlate highly with the
financial crisis (2008), and the recent Chinese stock market turbulences (2015). The GB-
R model is a variant of boosted decision trees, and this result therefore strengthens the
finding that decision tree based models have significant predictability during crises. The
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Figure 5.12: Trading performance of the best model for each equity index. These
three figures show the compounded wealth W (t) of the best model from Table 5.9 for the
CSI 300, FTSE, and S&P 500. As reference, the figures show the market return (or buy
& hold strategy), as well as the pW = 50% and pW = 0.1% quantiles of the randomized
strategies. All strategies are shown at zero transaction cost ∆ς = 0.
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Figure 5.13: Mean position duration in days by model family. The position dura-
tions have been averaged over all lags, in-sample lengths, and equity indices. The error
bars indicate the average one standard deviation of the durations for a single model. The
model families can be split into two clusters: GARCH, LR-C, and SVM-C with high mean
durations between 10 and 25 days; and all the other models with mean durations around
two days (vertical dashed line).

abnormal returns of the NN-C model are made during the period 2009 to 2012, not visibly
linked to a crisis. Nonetheless, the financial crisis (2008) and recent Chinese stock market
turbulences (2015) are smoothened out in comparison to the buy & hold strategy.

5.4.3.2 Model mean position duration

The p-values adjusted for multiple testing across the entire model universe are computed
using the algorithm from Section 3.4. Following the simulation study of Subsection 3.4.4,
the block size of the bootstrap algorithm has to be close to the mean position duration to
maximize the statistical power of the test. As well, the block size should not exceed the
mean position duration of the strategies with shortest positions, otherwise the familiwise
error rate would be violated.

To determine the optimal randomization scheme, the mean duration of all model fam-
ilies has been computed, as shown in Figure 5.13. Except for the GARCH, LR-C, and
SVM-C models, the mean position duration is always close to two days. Given the low
correlation of these three models with the other 13 models, these two groups of models
are bootstrapped independently. While sampling independently reduces somewhat the
statistical power of the test, this is more then offset by the improvement of removing the
three models with long mean position duration. As can be read from Figure 3.6, longer
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Figure 5.14: The compounded wealth (W ) versus the directional accuracy p-
value (p

χ2
d
) for the binary decision tree model family (DT-B), on the S&P

500 between 1997 and 2015. The trading days between 1995 and 1997 are only
used for calibration, but not for the out-of-sample performance. The four different lags
% ∈ [2, 3, 4, 5] are differentiated by distinct markers. The market return during the period
is given as a reference by a horizontal dotted line. The probability distribution function,
as well as the confidence regions pχ2

d
,W , are obtained using one million simulated random

strategies. The expected wealth E
(
W

(
p
χ2
d

))
as a function of the directional accuracy

p-value is computed by Equation 3.32, at zero transaction cost ∆ς = 0.

mean position durations imply significantly lower wealth quantiles, and therefore these
strategies do not impact the sampling of the wealth tail of randomized strategies with
shorter mean position duration.

5.4.3.3 Wealth correlation with directional accuracy

To better understand the performance of the models in the top performing family for each
equity index, their wealth has been plotted against their directional accuracy. Figure 5.14
shows the DT-BC models on the S&P 500. The out-performers are found at lags two
and three, with lag three visibly out-performing lag two. Figure 5.15 shows the SVM-R
models on the FTSE. None of the lags is significantly out-performing the others, with the
exception of one visible outlier at lag three. Figure 5.16 shows the NN-C models on the
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Figure 5.15: The compounded wealth (W ) versus the directional accuracy p-value (p
χ2
d
)

for the support vector machine regression model family (SVM-R), on the FTSE between
1997 and 2015. For details see caption of Figure 5.14.
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Figure 5.16: The compounded wealth (W ) versus the directional accuracy p-value (p
χ2
d
)

for the k nearest neighbor classifier model family (NN-C), on the CSI 300 between 2007
and 2015. For details see caption of Figure 5.14.
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CSI 300, with significant out-performers at lag three and four.
For classification models, the compounded wealth should follow closely the expected

value E
(
W

(
p
χ2
d

))
of Equation 3.32, as the binary outputs used for training do not

contain any information about the return amplitude. Indeed, for the S&P 500 and the
CSI 300, the classification models follow quite closely the theoretical relation, up to a
constant shift. On the S&P 500, the models’ actual wealth outperforms the expected
wealth consistently, indicating that predictability was higher during volatile periods. On
the CSI 300, the models actual wealth are in good agreement with the expected wealth
for lag four, while being slightly lower for lag three. This indicates that the lag three
predictors have missed some major tail events.

For regression models, the compounded wealth is not necessarily linked to overall
directional accuracy, as the prediction can be strongly dependent on the return amplitude.
Indeed, for the top performing regression model on the FTSE (SVM-R), there is no strong
relationship between directional accuracy and compounded wealth. The models merely lie
within the shape of the confidence intervals computed from random strategies.

The confidence regions of randomized strategies on the CSI 300 are strongly stretched
along the W axis, which is in part due to the fact that the time period 2007-2015 is less
then half the one used for the FTSE and S&P 500. This stretched confidence region is a
result of fat tails in the return distribution. Consequently, on the CSI 300, more then half
of the randomized strategies lie above the expected wealth curve.

5.4.3.4 Model correlations

To check for redundancy among the models, the Pearson correlation of the model families is
computed, averaging all correlations at identical in-sample length and lag. The correlations
averaged over all three equity indices are shown in Figure 5.17. Most model pairs have a
correlation below 50%, clearly justifying their individual appearance in the model universe.

High correlations are found among the (SVM-R, SVM-C, LDA-C, LR-C) models that
correlate up to 84%. This is expected, as these methods all find a hyperplane maximally
separating up and down moves. In case of the LDA-C method, the hyperplane is sepa-
rating the two multivariate distributions of the two classes. For the LR-C method, the
hyperplane is maximizing the asymmetry of up and down moves on each side of the plane.
The high correlation between the SVM-R and LDA-C models explains why both families
are significant simultaneously on the FTSE (see Table 5.8). Two other well correlated
pairs are (DT-BR, DT-B) and (NN-R, NN-C) with correlation coefficient equal to 68%,
respectively 63%. This is expected too, as both models in these two pairs differ only in
taking the average or majority vote among an identical group of samples. The high cor-
relation between the DT-BR and DT-B models explains why both families are significant
simultaneously on the S&P 500 and FTSE. Last, the LR-C method correlates at 65% with
the GARCH model, indicating that it performs a similar type of trend following.
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Figure 5.17: Pearson correlation of returns between the different model fam-
ilies, at identical in-sample length and lag. The Pearson correlations have been
averaged over in-sample length L, lags %, and the three equity indices (S&P 500, FTSE,
and CSI 300). The models are all positively correlated due to excess in up moves in the
predicted asset, inducing a proportional excess in up predictions by the models. Most
model pairs have a correlation below 50%, resulting from their fundamentally different
prediction dynamics. None of the models pairs are redundant above the 84% level.
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Index Wy(%) SRy p
χ2
d

pW ∆ρ (%) 2∆ς=bh (bps)

CSI 300 -3.41 0.19 2.5·10−2 0.48 1.31 -0.6
FTSE 3.16 0.16 0.40 0.15 0.31 2.2
S&P 500 14.43 0.62 9.8·10−3 1.0×10−3 0.98 9.9

Table 5.10: Summary of the best Sharpe ratio search technology portfolio per-
formance for each equity index. The key values in order are: the compounded annual
growth rate Wy; the yearly Sharpe ratio SRy; the p-values p

χ2
d
and pW ; the excess pre-

dictability ∆ρ as defined in Equation 3.21; and the round trip transaction costs 2∆ς=bh

breaking-even in Wy with the buy & hold strategy.

5.4.3.5 Periods of abnormal performance

To systematically detect periods where strategies have abnormal returns, the distribu-
tion of the performance is analyzed with respect to the buy & hold strategy. The value
log

(
S(t)
BH(t)

)
is used as a scale free measure of performance, were S(t) is the value of the

strategy, and BH (t) is the value of the buy & hold strategy. The typical period of abnor-
mal returns is around 6 months, and hence the performance measure Pt = ∆6m log

(
St
BHt

)
is used, were ∆6m is the 6 months differentiator. The distribution of P over time is found
to be non-normal, and therefore the over-performance is defined as any value of P in the
upper non-normal tail. Figure 5.18 shows the performance P over time for the same mod-
els as Figure 5.12, as well as the distribution of the performance P aggregated over the
models for each equity index. The periods of excess performance confirm their correlation
with the crisis periods mentioned previously.

5.4.3.6 Ex-ante performance

The finding of profitable model families, statistically significant after correcting for data
snooping, does not guarantee that it would have been possible to select these models
ex-ante. To settle this question, the best Sharpe ratio search technology is applied for
each equity index to the entire universe of strategies. The performance of the resulting
portfolios are presented in Table 5.10. The search technology is only significant for the
S&P 500, and fails at selecting the best model for the FTSE and CSI 300.

These results are not surprising given the model family performances of Table 5.8. The
S&P 500 has one model family (DT-BB) that outperforms the second best model family
(DT-BR), while all the other families are insignificant. This performance distribution
among the models makes it easy for the search technology to select the best model and
stick to it. For the FTSE and the CSI 300, multiple model families are competing at similar
significance levels. This induces the search technology to constantly switch to the new best
performing model. Often the switch occurs at the moment were the best performing model
suffers a draw-down, leaving the search technology portfolio with a mediocre performance
compared to the best performing model.

The Figure 5.19 shows the trading performance over time of the search technology
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Figure 5.18: Excess trading performance with respect to buy & hold. The per-
formance P is measured as Pt = ∆6m log

(
St
BHt

)
, were St is the value at time t of the

strategy, BHt is the value of the buy & hold strategy at time t, and ∆6m is the 6 months
differentiator. These three figures show the performance measure of the best models (GB:
Gradient Boosting; NN: Nearest Neighbor; DT: Decision Tree; SVM: Support Vector
Machine; suffixed as "-R" for regressors, "-C" for classifiers, and "-B" for binary) from
Table 5.9 for the CSI 300, FTSE, and S&P 500. Over-performance is determined by the
threshold (red line) were the tail of the performance distribution becomes non-normal.
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Figure 5.19: Trading performance of the search technology portfolio for each
equity index. These three figures show the compounded wealthW (t) of the best Sharpe
ratio search technology, applied to the whole universe of models, for the CSI 300, FTSE,
and S&P 500. As reference, the figures show the market return (or buy & hold strategy),
as well as the pW = 50% and break even quantiles of the randomized strategies. All
strategies are shown at zero transaction cost ∆ς = 0.
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portfolio on all three equity indices. On the CSI 300, the search technology keeps switching
models until 2011, with an unfavorable timing producing abnormally low returns. Starting
in 2011, the search technology sticks to the best performing model of Table 5.9 (NN-C,
L = 380, % = 3), producing abnormally high returns until the end of 2015. On the
FTSE, the search technology keeps switching models during the entire time period, never
producing any abnormal returns. On the S&P 500, the search technology selects the best
model of Table 5.9 (DT-BB, L = 400, % = 3) early on, and benefits from the constant
abnormal performance of this model.

5.5 Conclusion

This extensive performance analysis of statistical learning models to forecast daily returns
found models significant at the 97.5% confidence level on the S&P 500 and FTSE, and
94% level on the CSI 300. The three best models, one for each equity index, were found
at lag % = 3, in-sample length L ∈ [390, 400] for the S&P 500 and FTSE, and in-sample
length L = 160 for the CSI 300. While they could be a statistical fluke, the consistency
at lag m = 3 strengthens the finding of dependencies in the daily returns of the analyzed
equity indices. The results clearly reject the martingale hypothesis E (rt|rt−3, rt−2, rt−1) =
0, in line with the argumentation of Grossman and Stiglitz (1980) and the Adaptive
Market Hypothesis (Lo, 2012). The S&P 500 and FTSE exhibit significant predictability
in directional accuracy of the binary return sequences (DT-BR, and DT-B model families),
which go unnoticed in linear regression models such as AR-GARCH. This finding is in good
agreement with the study by Christoffersen and Diebold (2003). The CSI 300 exhibits
significant local predictability among the five nearest neighbors of sequences of three and
four returns (NN-C model families), a result that would go unnoticed as well in linear
regression models.

The trading performance over time of the best models was most abnormal during
the dot-com bubble (1997-2003), the financial crisis (2008-2009), the European debt cri-
sis (2012), and the recent Chinese stock market turbulence (2015). The EMH seems to
hold except during the market crises, where statistically significant deviations are found.
Indeed, crisis periods are certainly the most propitious to drastic actions, driven by short-
sighted human behavior, and not backed by statistics. As well, in times of fear and panic,
investors tend to herd according to the psychology of "being safe in numbers", a behavior
reducing the number of competing strategies, and creating a market dominantly driven by
a single effective agent (i.e. the herding investors). Coupled with periodic announcements
of major monetary institutions, such market dynamics have a high likelihood to introduce
systematic biases that can be arbitraged. To verify the EMH as defined by Timmermann
and Granger (2004), an ex-ante strategy select was performed using the best Sharpe ratio
search technology. The EMH is rejected at transaction costs below 2.2 bps per round trip
for the FTSE, and below 9.9 bps for the S&P 500.

The model universe could be extended with trinary decision tree models, and neural
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networks. However, extracting the found dependencies using unsupervised neural net-
works could reveal challenging. The data used as input could be extended to include more
publicly available data such as dividends, risk free rates, or volatility levels. For equity
indices showing significant anomalies, such as the S&P 500, the different sectors should be
analyzed to determine which stocks drive the predictability. Further leveraging the ran-
domization test, the search technology could be refined to determine the optimal window
size on which to select a model, improving upon the expanding window used in this study.
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Chapter 6

Emergent Predictability in Two
Agent Models

6.1 Introduction

In the previous chapter, we showed that majority and minority agents can be represented
as fixed classification trees. Further on, we have proven that a single agent, with the
knowledge of all possible strategies, is equivalent to a fixed classification tree calibrated
with the CART algorithm. Each branch of the classification tree uniquely maps to a
history of returns, and the best strategy of the equivalent majority agent predicts the
class (up or down) with highest probability. A minority agent predicts for each history
the class with lowest probability. We then leveraged the highly efficient implementation
of the CART algorithm in the scikit-learn library to perform an extensive study of single
agent models.

Our study of the trading performance of statistical learning models showed that several
fixed classification tree models outperform significantly the buy-and-hold benchmark. The
abnormal trading performance holds true over a twenty year time period, across multiple
assets, and after adjusting for multiple testing. The analysis of trading performance over
time revealed significant pockets of predictability around the dotcom bubble, financial
crisis, European debt crisis, and the Chinese stock market turbulence. The pockets of
predictability occurred at distinct lags % and calibrations length L.

However, our study only looked at the strategies that out-performed over the entire
twenty year time period, and did not search for transient abnormal performance in the
other strategies. As well, we did not test delayed predictions, which are known to be crucial
in multi-agent models to observe transitions between herding and contrarian regimes (An-
dersen and Sornette, 2002). In this chapter, we are going to investigate more closely the
fixed classification tree models for different delays. In particular, we search for abnormal
performance at a yearly scale.

We find significant anomalous predictability on the NASDAQ for majority and minor-
ity models alike, after adjusting for multiple testing. The abnormal performance is mostly
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concentrated around the dotcom bubble and financial crisis. A principal component anal-
ysis reveals shared dynamics between the anomalous minority and majority models. The
analyzed market crashes are preceded by a significant minority signal at short time scales,
which then synchronizes with a majority signal at a longer time scale, rupturing the bubble
and triggering the crash.

Current research has not yet answered the question if emergent stock market behavior
can be calibrated through the collective intelligence of multiple agents. Hence, the abnor-
mal performance in single agent models raises the question whether multiple such models,
at different lag and calibration length, can be combined so as to significantly outperform
the individual models. The answer turns out to be positive, the collective intelligence
of a heterogeneous two agent model captures emergent dynamics, and has anomalous
predictability significantly out-performing the single agent models.

The key to building the two agent model is the correct weighting of the two class
probabilities of the individual agents. As the two agents are calibrated with different
in-sample length and memory length, the confidence interval on their respective class
probability differs. Hence, the aggregation of the two class probabilities into a single
prediction needs to weight each probability by the average number of samples per history.

6.2 Representing Agents as Decision Trees

In minority and majority agent models, the global information shared by all agents is the
history ~rt = {rt−1+%, . . . , rt} of the most recent % outcomes (i.e. memory), given as a
binary sequence ~rt ∈ {−, +}×% of up and down moves. An individual strategy associates
to each history an action to buy or sell. An agent possesses a private set of strategies,
and keeps track of their performance on the past window of size L, using a payoff function
π, which depends on the game played by the agent. At each time step, an agent buys or
sells stock following his best strategy. Liquidity is often modeled using a trading threshold
below which an agent would not trade Jefferies et al. (2001), however this feature is
unnecessary for the present work.

6.2.1 Strategy Space

For fixed number of lags %, a strategy is a function

s : {−, +}×% → {−, +} , (6.1)

associating an up or down prediction to each history. An example of a two lag strategy is
presented in Figure 6.1. The resulting strategy space

S% := {s | ∀s : {−, +}×% → {−, +}} (6.2)
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Figure 6.1: Strategy with two lags % = 2 represented as a decision tree. Each of
the 22 = 4 histories is assigned to a buy or sell action based on the class probabilities in
the calibration data.

contains |S%| = 22% elements. In typical multi-agent simulations, some heterogeneity
among agents is introduced by assigning to each agent Ai a subset S%i ⊆ S% of all possible
strategies.

6.2.2 Delay

Agents with delayed actions are a crucial ingredient in mixed game models to observe
speculative up-trends followed by a correction Andersen and Sornette (2002). Therefore,
a delay parameter d is introduced, modeling the possible hesitation of agents, which may
delay their trade by one or several days when they feel uncertain. A delayed strategy s
forecasts the direction of the return d steps ahead as r̃t+d+1 = s (~rt).

6.2.3 Agent as Optimal Decision Tree

When calibrating a single agent model, heterogeneity in the agent’s strategies is not re-
quired, and the agent can be endowed with the knowledge of all strategies. Models with
a partial strategy set are possible, but not optimal from a decision theory point of view.
As well, there are 2% partial strategy sets at lag %, which would drastically increase the
number of models to analyze (nonetheless feasible). Hence, the present work focuses on
analyzing single agent models with the full strategy space.

A strategy is equivalent to a decision tree as illustrated in Figure 6.1, where each
branch corresponds to a single history, and the terminal node of a branch assigns the action
following its history. As proven in Subsection 6.2.4, the best performing strategy in S%

for the majority payoff is always the optimal fixed classification tree T (·), as constructed
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with the Classification And Regression Tree algorithm (CART, see Hastie et al., 2001)
applied to the binary returns in the past window of size L. The samples used for training
the decision tree at time t are given by

Xt =
{(
~rt−L̃, %, rt−L̃+d+1

)
, . . . , (~rt−1−d, %, rt)

}
. (6.3)

For training samples X, the CART algorithm computes the class probabilities for {−, +}
in each branch (i.e. history). The class probabilities for a history ~r are determined by the
ratio

P (~r → −) = 1− P (~r → +) = |{X ∈ X|X = (~r, −)}|
|{X ∈ X|X = (~r, ·)}| . (6.4)

Hence, a decision tree with binary classes is determined by a total of 2% probabilities,
one for each branch. An optimal majority tree predicts for each branch the class with
the highest probability, while the optimal minority tree predicts the class with the lowest
probability. Ties are settled by a random prediction.

A detailed treatment of autoregressive decision trees and the CART algorithm is pro-
vided in Fievet and Sornette (2017). The authors proof that decision trees are robust
predictors for linear autoregressive correlations, and additionally for non-linear sign cor-
relations, which can be missed by linear autoregressive models. Hence, decision trees
constitute a solid foundation for the prediction mechanism of agents.

6.2.4 Proof of Equivalence Between Agents and Decision Trees

To find the strategy in S% with the highest performance, as defined in Section 4.2.3,
the brute force approach is to compute the performance of every strategy individually.
However, the performance computation in Eq. (4.5) can be optimized by rearranging the
sums as

Uπ, d, L(s, t) ∝
∑
~r∈R%

∑
j∈L|~rj=~r

π (rj+d+1, s (~rj)) , (6.5)

where L = {t − L̃ + d, . . . , t − 1 − d}. Now the inner sum over a fixed history ~r can be
maximized independently from the outer sum. Denoting by p~r, r the probability of finding
the transition P (~rt → rt+d+1) in the calibration window of length L, the performance
function is given by

Uπ, d, L(s, t) ∝
∑
~r∈R%

∑
r∈R

p~r, rπ (r, s (~r)) . (6.6)

To maximize the inner sum, the best strategy is now entirely determined as

s (~r) = argmax
r′∈R

∑
r∈R

p~r, rπ
(
r, r′

)
. (6.7)
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In case several values r ∈ R maximize the inner sum, a random choice is made. The
computation time for the probabilities p~r, r is linear with respect to the size L of the
calibration window, which makes the computation of the best strategy independent from
the number of strategies in the space S%.

Updating the best performing strategy from one time step to the next is achieved in
constant time. Removing the time step t− L̃+ d from L, and adding the time step t− d,
will affect at most two of the probabilities p~r, r, which are updated without recomputing
the other probabilities. This change in the probabilities affects at most two of the inner
sums in Equation (6.6), and therefore requires to update at most two of the values of s (~r).

The decision tree predicts for each history (i.e. branch) the class with the highest
probability. This prediction mechanism is equivalent to selecting the strategy with the
highest performance for the majority game as defined in Subsection 4.2.3. The probabilities
p~r, r, used in Equation (6.7) to determine the strategy with the highest performance, are
the class probabilities of the equivalent decision tree. Consequently, an agent endowed
with the knowledge of all possible strategies, selecting at every time step the strategy with
the highest performance on the past window of size L, is equivalent to an optimal decision
tree calibrated on that window. In the case of the minority game, the tree prediction
function is defined to return the class with the lowest probability.

6.3 Single Agent Experiments

6.3.1 Trading Strategies

The performance of a single agent model is evaluated by trading based on the one step
ahead forecasts using a rolling window of size L, and taking a long or short position defined
by st+1 = sign

(
r̃t+1

)
. This produces a sequence of binary trading signals {st}TL+1 ∈

{−, +}T−L that define the corresponding trading strategy on the market returns {rt}TL+1.
Hence, a strategy is defined by a payoff function (MIN or MAJ), the number of lags %,
the calibration window length L, and the delay d. For further convenience, it is implicitly
assumed that L initial returns have been cropped before the first forecast.

6.3.2 Experiments

We search for anomalous predictability by analyzing the trading performance of all mean-
ingful single agent models on the NASDAQ during the 20 year time period Jan. 1, 1995 to
Dec. 31, 2015. The daily returns are obtained from Thomson-Reuters Eikon with dividend
adjustment. A total of 2000 experiments is run, determined by the two games (MIN and
MAJ) and the following parameter space.

At lag %, the class probabilities for the 2% unique histories need to be computed using
(6.4). The accuracy of the computed class probabilities depends on the average number
of samples per leaf given by L

2% . In (Fievet and Sornette, 2017), the best decision tree
models on the S&P 500 are found at % ∈ {1, 2, 3} and L ≤ 500, significantly above an
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average of 20 samples per leaf. The upper bound of two years on the investment horizon
is independently found optimal to reproduce stylized facts (Feng et al., 2012). Hence, a
calibration length of up to two years, and a maximum of four lags, constitute a reasonable
search space that encompasses all potentially interesting models. Two strategies that
only differ by their calibration window lengths L1 and L2 are highly correlated when
|L2 − L1| < 10. Therefore, we use a step size of ∆L = 10, which provides a sufficient
sampling of strategies, while avoiding to compare almost identical strategies.

For the delay parameter d, we test d ∈ {0, 1, 2, 3, 4}. Experiments in behavioral
finance show that traders are slow to update their beliefs, a phenomenon known as conser-
vatism (Barberis et al., 1998). It takes between two to five contrarian observations before
a subject changes his opinion, which motivates the range of chosen delays.

6.3.3 Anomalous Predictability

Detecting anomalies across a large number of experiments challenging, as the probability of
spurious anomalies increases with the number of tests. We use the step-down methodology
to correct for multiple testing (White, 2000, Romano and Wolf, 2005b, 2016), which rejects
as many null hypotheses as possible, at given significance level, without violating the
familywise error rate.

We measure risk adjusted returns with the Sharpe ratio (Sharpe, 1994), and benchmark
against the buy-and-hold strategy using a stationary block bootstrap of returns, rejecting
at a significance level of 0.05. The bootstrap p-values express the probability of the
strategies under-performing the buy-and-hold strategy, when sampling with replacement
blocks of returns from the time period of interest. However, during market draw-downs,
a large number of lucky strategies are short in the market, hence have significant Sharpe
ratio, but without possessing any true skill in predicting daily returns. To further restrict
the definition of an anomaly, besides abnormal Sharpe ratio, we require the simultaneous
presence of anomalous daily directional accuracy at a significance level of 0.05 (see Section
3.3.1). Hence, a model is anomalous when its Sharpe ratio is statistically significant, and
explained by its ability to predict the daily market return direction.

We search for anomalous periods with a rolling window of one year (250 trading days),
moving in steps of 10 trading days. In each window, the model returns are tested for the
simultaneous occurrence of statistically significant Sharpe ratio and directional accuracy.
For anomalous one year windows, the beginning is incrementally cropped, and the end
incrementally cropped or extended, in steps of 10 days, until the window maximizes the
test statistic. We remark that the bootstrap algorithm maintains the correlation struc-
ture between all strategies, and therefore the multiple testing adjusted p-values are not
impacted by the choice of ∆L.

The anomalous single agent models for the S&P 500 and Dow Jones are shown in Figure
6.3, respectively Figure 6.4. The results are similar to the NASDAQ, strengthening the
robustness of the methodology.
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6.3.4 Empirical Results

The experiments revealed a number of anomalous periods in the NASDAQ as shown in
Figure 6.2. During up trending markets, instances of models with sufficient directional
accuracy to beat the buy-and-hold market are rare, and may be spurious. However, during
flat but volatile markets, and market crashes, strongly anomalous periods are found for
both games, robust to a large number of lags %, delays d, and calibration lengths L.

Anomalous market dynamics are found precursory to the dotcom bubble and the finan-
cial crisis, providing empirical support that large changes in the stock market are preceded
by increased predictability as theorized previously (Lamper et al., 2002). The events are
preceded by an anomalous delayed market anti-persistency (minority game1) at a short
time scale of 30 to 40 days. The delayed minority anomaly signals that a sizable fraction of
market participants start to be contrarians. This dynamic breaks the growth phase of the
bubbles, and transitions the market to a flat regime with high volatility. The contrarian
anomalies are followed by an anomalous majority signal at shorter delay and longer time
scale. The majority anomaly can be interpreted as a majority of traders flipping to the
contrarian side, exiting the market, and hence bursting the bubble.

As a cross-check, the same search for anomalous models was performed on the S&P
500 and Dow Jones. The findings remain robust across all three equity indices, as shown
in Figure 6.3, respectively Figure 6.4.

6.3.5 Principal Component Analysis

The dynamics during the dotcom bubble and financial crisis are characterized by the
simultaneous occurrence of multiple anomalous single agent models, and the transition over
time between anomalies at different time scales, lags, and delays. A better understanding
of the interplay between the different anomalous regimes is crucial to the construction of
multi-agent models.

To disentangle the multiple overlaid dynamics, and extract the dominant components,
we use principal component analysis (PCA, see Hastie et al., 2001, Bishop, 2006). Denoting
by ri = {ri1, . . . , riT } the returns of a strategy si in a set S of N strategies, theM principal
components (PCs) are obtained by the minimization problem

min
Vq

N∑
i=1

∥∥∥(ri − r̄)− VMV T
M

(
ri − r̄

)∥∥∥2
, (6.8)

which finds the projection VM , onto a subspace of dimensionality M , which minimizes the
reconstruction error. The returns are centered with respect to the mean return r̄ of all
strategies.

The PCs capture time periods, potentially disjoint, with the highest correlation among
1We remark that the term "minority" game can be misleading, as an anomalous minority signal implies

that a dominant fraction of agents believes in a market reversal during a significant number of days. A
more appropriate name would be "contrarian" game, or "reversal" game.
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Figure 6.2: Anomalous time periods found in the NASDAQ with single agent
models during the time period Jan. 1995 to Dec. 2015. A total of 2000 models
are tested, resulting from: 2 games (MIN/MAJ) ×4 lags (%) ×5 delays (d) ×50 calibration
lengths (L). Using a rolling window of one year, 105 periods are found that exhibit
statistically significant Sharpe ratio and directional accuracy, after adjusting for multiple
testing. The intensity of the color is determined by the sum of the Sharpe ratios of the
out-performing models. The black vertical lines are given as a visual aid for the timing of
market anomalies.
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Figure 6.3: Anomalous time periods found in the S&P 500 with single agent
models during the time period Jan. 1995 to Dec. 2015. A total of 2000 models
are tested, resulting from: 2 games (MIN/MAJ) ×4 lags (%) ×5 delays (d) ×50 calibration
lengths (L). A total of 233 anomalous periods are found using a rolling window of one year,
determining the models that exhibit statistically significant Sharpe ratio and directional
accuracy after adjusting for multiple testing. The intensity of the color is determined by
the sum of the Sharpe ratios of the out-performing models. The black vertical lines are
given as a visual aid for the timing of market anomalies.
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Figure 6.4: Anomalous time periods found in the Dow Jones with single agent
models during the time period Jan. 1995 to Dec. 2015. A total of 2000 models
are tested, resulting from: 2 games (MIN/MAJ) ×4 lags (%) ×5 delays (d) ×50 calibration
lengths (L). A total of 297 Anomalous periods are found using a rolling window of one year,
determining the models that exhibit statistically significant Sharpe ratio and directional
accuracy after adjusting for multiple testing. The intensity of the color is determined by
the sum of the Sharpe ratios of the out-performing models. The black vertical lines are
given as a visual aid for the timing of market anomalies.
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Figure 6.5: Most anomalous minority and majority model on the NASDAQ
during the crash of the dotcom bubble. Six significant single agent models are found
during the early peak and crash of the dotcom bubble. The first principal component (PC
1) explains 52.6% of the variance across these models. In particular, the first component is
significantly shared by the minority and majority game models. Several successive regimes
are distinguishable: (i) a majority regime (MAJ) building up to the peak; (ii) a strong
minority regime (MIN) during the first crash in March 2000; (iii) a mixed regime in which
the market remains flat; and finally (iv) a majority regime during the true burst of the
bubble in September 2000. A 90% confidence boundary on directional accuracy is shown
as reference.
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Figure 6.6: Most anomalous minority and majority model on the NASDAQ
during the financial crisis. Eight significant single agent models are found during
the financial crisis. The first principal component (PC 1) explains 40.8% of the variance
across these models. In particular, the first component is significantly shared by the
minority and majority game models. Three successive regimes are distinguishable: (i)
an initial minority regime (MIN); (ii) a mixed regime (MIX) where the majority and
minority models synchronize; and (iii) a strong majority regime during the burst of the
bubble in September 2008. A 90% confidence boundary on directional accuracy is shown
as reference.
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a subset of strategies. Taking the mean return of the subset of strategies during the
correlated periods, and zero outside the periods, is a PC that minimizes (6.8). The PCs
allow us to determine the time periods with strongest inter-strategy correlation, and the
projection coefficients determine the involved strategies for each PC.

Determining the first PC of the eight anomalous models during the beginning of the
dotcom bubble revealed that 52.6% of the variance is explained by the first PC over a 15
month time frame. The first PC is significantly shared between the minority and majority
models at different delays, showing that persistent and anti-persistent predictable patterns
are intertwined. Figure 6.5 shows the two most anomalous models, alongside with their
projection onto the first principal component. The minority model is gaining momentum
during the first half of the year 2000, in particular during the first crash in late March
2000. During the subsequent period, the synchronicity between the majority and minority
models keeps maturating, until the bubble ruptures in October 2000 accompanied by a
strong majority signal.

As shown in Figure 6.6, the first PC of the six anomalous models during the financial
crisis explains 40.8% of the variance over a 15 month time frame. There as well, the
minority and majority game models significantly share the first PC, but in more distinct
time periods. The financial crisis visible starts in late 2007 with a minority anomaly, while
the majority model closely follows the buy-and-hold strategy. In April 2008, the minority
and majority models start to synchronize, until a majority takes over in September 2008
and bursts the bubble.

The interplay between anomalous minority and majority patterns can be interpreted
as the presence of two major groups of investors, confirming a study of individual traders
that identified two investment styles (Goetzmann and Massa, 2002): contrarians profit
takers; and positive feedback momentum traders.

6.4 Heterogeneous Two Agent Models

The strong first principal component shared by the anomalous minority and majority
models are evidence that the market dynamics emerge from the interplay between multiple
agents. Usually, the heterogeneity in multi-agent models is introduced by endowing the
individual agents with different strategies, games, and delays. However, the present results
lead us to drop the heterogeneity in strategies, and combine two optimal single agent
models with different calibration lengths, games, lags, and delays. The heterogeneity
in investment horizon is known to be crucial in ABMs to reproduce long-term memory
observed in the stock market (Feng et al., 2012).

Combining the class probabilities of two individual agents, as defined in (6.4), is not
as straightforward as taking their mean, because the distinct calibration lengths imply
different accuracy on the estimated probabilities. We define the accuracy on the estimated
class probabilities as the average number of samples per history, which is given by L

2% .
Hence, the class probability P−2A of a down move in a two agent model, weighting by
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Figure 6.7: Two agent model on the NASDAQ during the crash of the dotcom
bubble. The two agent model combines the forecast of the shown minority and majority
agents as defined in (6.9). The lower panel indicates the long an short position taken by
the two agent model, including the following color coding: red, minority agent dominated;
blue, majority agent dominated; purple, both agents agreed.
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Figure 6.8: Two agent model on the NASDAQ during the financial crisis. The two
agent model combines the forecast of the shown minority and majority models as defined
in (6.9). The lower panel indicates the long an short position taken by the two agent
model, with the following color coding: red, minority agent dominated; blue, majority
agent dominated; purple, both agents agreed.
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Annualised Sharpe Ratio Break-even cost (bps)
Model Dotcom F. C. Dotcom F. C.
One Agent (MIN) 1.6 1.0 49 72
One Agent (MAJ) 1.9 1.7 65 137
Two Agents Mix 2.6 2.3 93 138

Table 6.1: Sharpe ratio and buy-and-hold break-even transaction costs of the
best single agent minority and majority model, and the two agent model,
during the dotcom bubble and financial crisis (F.C.). The individual model’s
cumulative return over time is shown in Figure 6.7, respectively Figure 6.8. The two
agents models out-perform the single agent models in daily Sharpe ratio above the 95%
confidence level.

accuracy the individual class probabilities of the two agents, is given by

P−2A =
2%2 · L1 · P−A1

+ 2%1L2 · P−A2

2%2 · L1 + 2%1 · L2
, (6.9)

where P−A1
is the class probability of agent one, and P−A2

of agent two. This weighting
ensures that the class probabilities of the two single agents are weighted by their respective
confidence interval.

The cumulative returns over time of the two agent model, combining the two best
single agent models, during the dotcom bubble and the financial crisis is shown in Figure
6.7, respectively Figure 6.8. Table 6.1 shows the improvement in daily Sharpe ratios of
the two agent model in comparison to the underlying single agent models. In both cases,
the two agent model out-performs above the 95% confidence level the single agent models.

The out-performance is a non-trivial result, because there is no guarantee that the
strength and timing of the anomalous predictability in the individual models allows for an
improved combined forecast. In a scenario where correct class probabilities are weak, and
wrong class probabilities are strong, the individual anomalous predictability could equally
well cancel out when combined. The out-performance of the two agent model is proof
that the market returns are the result of emerging dynamics from the interplay between
contrarian and momentum traders.

6.5 Implementation

The single agent and two agent prediction models are implemented using the scikit-learn
package in python. The multiple-testing adjusted p-values for the Sharpe ratio can be
computed out of the box with the arch package in python. The implementation of the
single agent model, as a wrapper of the DecisionTreeClassifier class, is provided below.Add

import numpy as np
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from sklearn.tree import DecisionTreeClassifier

class OneAgent(object):

def __init__(self, game, lags, delay, l):

# Game is majority (MAJ) or

# minority (MIN)

self.game = game

self.lags = lags

self.delay = delay

# Calibration window length L

self.l = l

def predict_proba(self, returns):

# Local shortcuts

p = self.lags

d = self.delay

l = self.l

# Compute binary returns of

# up and down moves.

# Take only l (L) last returns

b_returns = [

1 if r >= 0 else -1

for r in returns[-l:]

]

# <- % -><- d -><- output ->

# Compute inputs as an array

# with shape (L− %− d, %)

inputs = np.array([

returns[i:-(p + d - i)]

for i in range(p)

], dtype=float).transpose()

# Compute outputs matching to the inputs

outputs = b_returns[p+d:]
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# Create a classification tree instance

tree = DecisionTreeClassifier(

criterion="gini",

splitter="best",

max_depth=None,

min_samples_split=2,

min_samples_leaf=1,

min_weight_fraction_leaf=0.,

max_features=None,

random_state=None,

max_leaf_nodes=None,

min_impurity_split=0,

class_weight=None,

presort=False

)

# Train the tree

tree.fit(inputs, outputs)

if d == 0:

prediction_input = [b_returns[-p:]]

else

prediction_input = [b_returns[-(p+d):-d]]

ps = tree.predict_proba(prediction_input)[0]

# Threshold determination

dp = ps[1] - ps[0] if len(ps) > 1 else ps[0]

# Game determination

return dp if self.game == "MAJ" else -dp

def predict(self, returns):

dp = self.predict_proba(returns)

return np.sign(dp) if np.abs(dp) >= 0 else 0

# Predict a sequence of returns with a model

def strategy_returns(returns, model):

max_l = 500

return [
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model.predict(returns[(i-max_l):i])

for i in range(max_l, len(returns))

] * returns[max_l:]

The two agent model combines two single agents as implemented below.

import numpy as np

class TwoAgent(object):

def __init__(self, agent1, agent2):

self.agent1 = agent1

self.agent2 = agent2

def predict(self, returns):

dp1 = self.agent1.predict_proba(returns)

dp2 = self.agent2.predict_proba(returns)

w1 = self.agent1.l * 2**self.agent2.lags

w2 = self.agent2.l * 2**self.agent1.lags

dp = (w1 * dp1 + w2 * dp2)/(w1 + w2)

return np.sign(dp) if np.abs(dp) >= 0 else 0

The p-value for the directional accuracy can be computed efficiently as an independence
test on the confusion matrix, as implemented below.

from sklearn.metrics import confusion_matrix

from scipy.stats import chi2_contingency

def directional_p_value(true_returns, predicted_returns):

# Ensure returns are binary sequences of up and down moves

true_returns = [0 if r <= 0 else 1 for r in true_returns]

predicted_returns = [0 if r <= 0 else 1 for r in predicted_returns]

# Compute confusion matrix

cm = confusion_matrix(true_returns, predicted_returns)

# Return p-value of Pearson independence test

return chi2_contingency(cm)[1]
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6.6 Conclusion

Starting from the common definition of minority and majority agents with binary strate-
gies, we prove their equivalence to optimal decision trees. The low computational cost
of computing optimal decision trees allows us to test all meaningful single agent models
for anomalous trading performance on the NASDAQ. Periods with anomalous Sharpe ra-
tio and directional accuracy are found in strong correlation with the dotcom bubble and
financial crisis.

We disentangle the complex dynamics of multiple co-occurring anomalous models using
principal component analysis. The first principal component of the anomalous models
during the early stage of the dotcom bubble, and during the financial crisis, explain more
than 40% of the variance. The first component reveals significantly shared dynamics
between the anomalous minority and majority game. Both bubbles are characterized
by a precursory minority signal, likely to origin from an increased number of contrarian
traders expecting market anti-persistency. The minority signal is subsequently followed
by a majority signal, likely to origin from a market consensus of an imminent draw-down.

A novel mechanism, combining two individual agents into a two agent model, reveals
that the collective intelligence of two agents uncovers emerging predictability. The results
demonstrate that the heterogeneity in investment horizons among agents is a crucial fea-
ture of the stock market dynamics, confirming results from the calibration of stylized facts
(Feng et al., 2012).

Single agent models perform a spectroscopy of financial markets, identifying anomalous
market dynamics that are precursors to an imminent rupture in current market dynamics.
Two agent models have to be further explored to determine their potential in predicting
anomalous market dynamics.
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Chapter 7

Conclusion & Outlook

The focus of this thesis is on out-of-sample predictability using non-linear ensemble models.
In complex systems, the observed variables at the macro level arise from interactions at
the micro level. The particularity of such systems is that the behavior emerging at the
macro level is typically not deducible from the rules determining the behavior at the micro
level. Complex systems typically exhibit non-linear behavior at the macro level, which is
often of chaotic nature. Such complex behavior makes it difficult to calibrate models and
make reliable forecasts.

The first complex system for which we developed a non-linear ensemble model is that
of oil production in the UK and Norway. Past studies typically use the Hubbert model to
extrapolate aggregate oil production. However, such an aggregate extrapolation is unlikely
to be accurate, because the oil production profiles arising at the country level result from
many oil fields with diverse production curves, and a non-trivial process of discovery of
new fields. A back-test showed that the Hubbert model is highly unstable over time, and
can be improved. Our model, which extrapolates each oil field individually, and models
the discovery process of new giant and dwarf fields, revealed to be stable over time and
to accurately capture the fat tail in declining oil production. After three years of out-of-
sample forecast, the true oil production is still within the one standard deviation band of
the forecast.

The second and major application of non-linear ensemble models developed in this
thesis is the prediction of daily equity index returns. Assuming that the weak efficient
market hypothesis holds true, no model can predict the returns at levels that are profitable
after transaction costs. However, existing research on agent based models established that
they can reproduce many stylized facts of financial markets. Especially, studies performing
out-of-sample forecasts did find significant excess predictability using agent based models.
In this thesis, we used state of the art benchmarks to determine if agent based models can
challenge the weak efficient market hypothesis.

The space of sensible single agent majority and minority models turned out to be fairly
large. A single agent model is determined by the memory length of the agent, the in-sample
length used for calibration, and the game played (majority and minority). In total, the
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single agent model space contains two hundred instances, resulting from the different
parameter combinations to test. Our study of trading performance of single agent models
found statistically significant Sharpe ratio on the S&P 500, FTSE, NASDAQ, and Dow
Jones, after adjusting for multiple testing. However, the mixed-game multi-agent model,
calibrated using genetic algorithms, could not outperform the single agent models. The
calibration of emergent phenomena remained an open problem, which we subsequently
tackled with smaller incremental steps.

Further on, we showed that the agents in majority and minority games can be repre-
sented as fixed classification trees. In particular, single agent models with the knowledge of
all possible strategies are equivalent to a fixed classification tree calibrated with the CART
algorithm. The proof of this equivalence established a formal bridge between agent based
modeling and statistical learning. In turns out that a multi-agent minority or majority
model is not far from a random forest or gradient boosting model, which combine multiple
weak learners (i.e. a single agent) into a strong learner. However, major differences exist,
in particular multiple agents cannot be calibrated in isolation, and the non-stationary time
series nature of the problem prevents the construction of a test set.

Given the connection between agent based models and classification trees, we studied
the predictive power of a broad number of statistical learning models. Besides the decision
tree model, we found that the support vector regression, nearest neighbor, and gradient
boosting models as well have significant abnormal trading performance on some equity
indices. We have proven that decision tree models can capture non-linear return sign
dependencies that would go unnoticed with linear autoregressive models. These results
show that while returns are typically not linearly correlated, there are number of transient
non-linear dependencies missed by conventional linear time series models. The strength
of these dependencies does challenge the weak efficient market hypothesis.

Last, we explored two agent models, to determine if two agents can calibrate emergent
return dependencies that cannot be described by a single agent model. The result was
positive, the two agent model did significantly outperform the single agent model during
the dotcom bubble and financial crisis. The key to combining the predictions of the two
individual agents is the correct weighting of their class probabilities. The class probabilities
need to be weighted by their confidence interval, resulting from the average number of
samples per history available for training.

The empirical results obtained in this thesis revealed abnormal non-linear dependen-
cies in stock market returns. While we analyzed the decision tree models in detail, the
abnormal predictability found with support vector regression, nearest neighbor, and gra-
dient boosting models needs to be further explored. The nearest neighbor model should be
tested for all sensible number of neighbors, and the fixed radius nearest neighbor variant
needs to be tested as well. The gradient boosting model could be a powerful generalization
of decision trees that works in a broader number of scenarios. However, an algorithm to
tune the learning rate of the gradient boosting in a time series context needs to be devised.

We have proven that the decision tree type models can capture non-linear return
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dependencies that would go unnoticed with linear autoregressive models. Similarly, all
statistical learning models should be analyzed in a times series context to determine what
type of dependencies they can capture, and how they overlap or complement conventional
autoregressive models. A unification of statistical learning and time series analysis into
"time series learning" is only a matter of time. Current research in time series learning
has already studied numerous non-parametric and non-linear models, which complement
or overlap with the non-parametric models in statistical learning.

The study of trading performance in this thesis only used daily equity index returns.
Further studies should test for predictability using more data, such as trading volume,
daily high and low return, implied volatility, interest rates, and other publicly available
data with possible causal relations. To avoid overfitting, a careful feature selection needs
to be performed. An alternative to feature selection could be the extraction of principal
components, which are then used as inputs. Besides using a broader set of input data, the
predictability needs as well to be studied at different time scales. Intraday returns, or even
complete order book information, provide a much larger dataset, enabling the calibration
of more complex models.

The search for abnormal market predictability was performed over a large model space,
resulting from different parameter combinations. The study of two agent models showed
that the predictions can be aggregated so as to outperform the performance of single
agent models. However, it remains open how to systematically aggregate the predictions
of all models into a single forecast. Multiple possibilities have to be explored to determine
what works best in the non-stationary context of financial markets. A first possibility
is to aggregate the model forecasts weighted by the posterior probability of their in-
sample performance. A second possibility could be to weight the models by the p-value of
their out-of-sample performance, which however would introduce a new parameter for the
window size on which to evaluate the performance. Eventually, some non-linear weighting
by these probabilities could turn out to be the optimal aggregation mechanism.

The theoretical results derived in this thesis established strong connections between
agent based modeling and statistical learning. Further research should be dedicated to
describe agent based models in the formalism of statistical learning, and ultimately inte-
grate agent based models as a new set of algorithms to construct ensemble predictor from
multiple weak learners (i.e. agents). Similar to the random forest or gradient boosting
algorithms, but calibrating synchronously the weak learners. Given that neural networks
with long short term memory are Turing complete (i.e. universal computers), any agent
based model can necessarily be described as a neural network. Hence, the integration of
agent based models as a subbranch of deep learning is only a matter of time. Key to this
integration is the development of interpretation algorithms, which describe a calibrated
neural networks in human understandable terms (e.g. different agents).
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