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A Nonuniformly Integrable Martingale Bubble with a Crash∗

Michael Schatz† and Didier Sornette† ‡

Abstract. We investigate a deterministic criterion to determine whether a diffusive local martingale with a
single jump (“crash”) is a uniformly integrable martingale. We allow the jump hazard rate and
the relative jump size to depend on the state and prove that the process is a uniformly integrable
martingale if and only if the relative jump size is bounded away from one. The result helps to classify
seemingly explosive behavior in diffusive local martingales compensated by the existence of a jump
and provides natural examples of nonuniformly integrable martingales. Local martingales that fail
to be uniformly integrable martingales have been used to model financial bubbles in stock prices as
deviation from the fundamental value. Our result extends this classification to a comprehensive and
relevant model class that explicitly models the financially relevant situation of a crash.
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1. Introduction. Local martingales that are not uniformly integrable martingales have
recently gained increased attention in the stochastic processes and mathematical finance liter-
ature, being linked to special cases in arbitrage pricing theory (Elworthy, Li, and Yor (1999),
Delbaen and Schachermayer (1998b), Guasoni and Rásonyi (2015)) and to the occurence of
bubbles (Loewenstein and Willard (2000); Cox and Hobson (2005); Heston, Loewenstein,
and Willard (2007), Jarrow, Protter, and Shimbo (2007), (2010); Herdegen and Schweizer
(2016); Biagini and Nedelcu (2015)). Based on the seminal paper of Loewenstein and Willard
(2000), Theorem 4.1 in (Jarrow, Protter, and Shimbo, 2010) characterizes three types of local
martingales that can be used to model bubbles,1 depending on the model horizon:

(a) general local martingales on an infinite time horizon,
(b) local martingales that are not uniformly integrable martingales on a stochastically

unbounded but finite time horizon,
(c) strict local martingales on a bounded time horizon.

The result is based on the fact that local martingales, while being instantaneous fair games,
may show a drop in expectation in the long term. Table 1 summarizes such a classification of
local martingales. To date most of the literature is limited to a finite time horizon, thereby
immediately excluding processes in (a) and (b). While processes in (a) rely on an infinite
time horizon and seem somewhat ill-suited for financial modeling, processes in (b) are readily
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Table 1
Characterization of RCLL nonnegative local martingales by martingale property and uniform integrability

(UI). The uniform integrability property has explanatory power on the loss of mass only for true martingales.
Strict local martingales are true supermartingales even if they are uniformly integrable.

Non-UI UI
Strict local martingale ∃t ∈ [0,∞) : E [Mt] < M0

Martingale E [M∞] < M0 E [M∞] = M0

conceivable.2 In the present paper we introduce a natural class of candidates for bubble
processes on a finite but stochastically unbounded time horizon. We combine a homogeneous
diffusion with a single jump (characterized by state dependent hazard rate and jump size) and
provide a necessary and sufficient deterministic criterion to decide whether they are uniformly
integrable martingales. While many models of mathematical bubbles lack a well-defined em-
pirical basis, a single jump has a straightforward interpretation as a financial drawdown.

In particular, we look at processes (St)t∈[0,∞) defined on a filtered probability space (Ω,F ,
(Ft)t∈[0,∞),P) that satisfy a homogeneous version of the stochastic differential equation

dSt = b(t, St)1{t < τJ}dt+ σ(t, St)1{t<τJ}dWt −
b(t, St−)

h(t, St−)
dJt,(1)

with coefficient functions b, σ, h : [0,∞) × R → [0,∞), where (Wt)t∈[0,∞) is an (Ft)t∈[0,∞)-
Brownian motion, (Jt)t∈[0,∞) is a {0, 1}-valued single jump process with

P [dJt = 1|Ft−, Jt− = 0] = h(t, St−),(2)

such that h is the hazard rate (also known as intensity process) of J , and τJ denotes the time
of the jump. For most reasonable choices of b, σ, and h such that b(t, x) 6 h(t, x)x for all
(t, x) ∈ [0,∞) × [0,∞) (see specific examples in section 5 and the detailed setting in section
3 below) the resulting process S is nonnegative and a local martingale. Intuitively, the local
martingale property can be seen from the fact that S is the sum of a Brownian integral and a
single jump process that grows instantaneously by b(t, St−) and has an expected instantaneous
decline of −(b(t, St−)/h(t, St−))P [dJt = 1|Ft−, Jt− = 0] = −b(t, St−). For τJ < t, it remains
constant at SτJ . The above questions on uniform integrability and strict local martingality
have been answered in various special cases of (1). As a simple example, assume that for
constants λ ∈ [0,∞) and κ ∈ (0, 1] we have

b(t, St) = κλSt, σ(t, St) ≡ 0, and h(t, St) ≡ λ.(3)

One can directly calculate the expected value of S∞ = SτJ as

E[S∞] = E[SτJ ] = (1− κ)S0E
[
eκλτJ

]
= (1− κ)S0

∫ ∞
0

λe−λteκλtdt = S0(4)

2One may argue, for example, that the finite model horizon for a stock price of a large corporation is more
realistically described by an unbounded random rather than a bounded deterministic lifetime.
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for κ < 1 and E[S∞] = E[0] = 0 for κ = 1. In this simple case S is a uniformly integrable
martingale if and only if κ < 1. Similarly, it is easy to check that S is indeed a martingale.
Let us present three variants of (1) in somewhat increasing generality, the last illustrating the
setting in this article, where the question of interest is whether a process can be used as a
model of mathematical bubbles in (stochastic) finite time.

Linear characteristics and time-dependent hazard rate. Based on their examination of single
jump processes with a deterministic hazard rate in Herdegen and Herrmann (2016), Herdegen
and Herrmann (2019) consider (within a more general setting) a solution to the SDE (1)
assuming a finite time horizon T ∈ [0,∞) and coefficients

b(t, St) = φ′(t)St, σ(t, St) = σ0St, and h(t, St) = h(t)(5)

for σ0 ∈ (0,∞) and continuously differentiable functions φ, h : [0, T )→ (0,∞). They show, in
particular, that the process (St)t∈[0,T ] is a strict local martingale if and only if∫ T

0
h(t)dt =∞ and

∫ T

0

(
h(t)− φ′(t)

)
dt <∞.(6)

Due to the finite time window (S∞ = ST ), any true martingale in this setting is immediately
uniformly integrable.

Driftless homogeneous diffusion. There has been a lot of interest in the strict local martin-
gale property of stochastic exponentials based on diffusions; see, e.g., Delbaen and Shirakawa
(2002), Kotani (2006), Hulley and Platen (2008), Mijatović and Urusov (2012), and references
therein. One can apply those results to a special case of (1) with a homogeneous diffusion
function and zero drift,

b(t, St) ≡ 0, σ(t, St) = σ(St), and h(t, St) ≡ 0.(7)

In particular, for diffusion coefficients σ with σ(·) 6= 0 and σ−2(·) locally integrable on (0,∞),
one can show that the process (St)t∈[0,∞) is

1. a strict local martingale on any interval [0, T ] or [0,∞) if
∫∞
c x/σ2(x)dx <∞ for some

c ∈ (0,∞) and
2. a martingale that is not uniformly integrable if

∫∞
c x/σ2(x)dx =∞ for all c ∈ (0,∞);

see, e.g., Corollary 4.3 in Mijatović and Urusov (2012). Note that, as in the last example,
for such pure diffusion processes the question whether (St)t∈[0,∞) is a uniformly integrable
martingale is trivial, as almost surely we have S∞ = 0.3

Objectives of the present paper—state-dependent drift and diffusion coefficients. Below we
consider homogeneous, state-dependent coefficient functions

b(t, St) = b(St), σ(t, St) = σ(St), and h(t, St) = h(St)(8)

for locally Lipschitz continuous b, σ and locally Hölder continuous h. As such we (partly)
extend the homogeneous, state-dependent setting of a pure diffusion as in Mijatović and
Urusov (2012) and others to a single jump framework as in Herdegen and Herrmann (2019).

3One can see this by applying the classification of Chapters 2 and 4 in Cherny and Engelbert (2005) to the
case of a driftless diffusion.
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Our main result in section 4 below is concerned with a deterministic necessary and sufficient
criterion on b, σ, and h to decide whether (St)t∈[0,∞) is a uniformly integrable martingale.

If one accepts that local martingales that are not uniformly integrable martingales are suit-
able processes to model bubbles, our result contributes to the financial literature on bubbles
in several dimensions:

1. Single jump processes as in (1) (where the single jump J represents a financial crash
of relative size b/h) are a simple and tractable alternative to include crash risk in
financial models and serve as a simple tool to integrate empirical features of bubbly
markets into mathematical models. The main result below allows us to bridge one of
the gaps between

(a) the literature on bubbles based on explosive processes and a crash as in
Sornette and Andersen (2002) with

(b) the mathematical finance notion of bubbles as nonuniformly integrable mar-
tingales or strict local martingales discussed in section 5.2.

See section 5.1.2 below for a specific example.
2. The classification of mathematical bubbles can be extended from single jump processes

with deterministic intensity as in Herdegen and Herrmann (2019) to jumps whose
hazard rate is random (state-dependent), allowing for a more realistic description of
crash risk. Moreover, we (partly) extend the setting of a pure diffusion as in Mijatović
and Urusov (2012), covering various models in the literature,4 to include the financially
relevant case of a crash; see sections 5.1.1 and 5.1.3 below for examples.

3. Equation (6) implies that single jump models with a deterministic hazard rate as in
Herdegen and Herrmann (2019) can be mathematical bubble models only if there is
an almost sure jump on a finite time interval [0, T ]. Models based on a homogeneous
diffusion as considered below feature a crash distributed on [0,∞). For an investor
with deterministic finite investment horizon (as is standard in the literature) there is
a nonzero probability that the crash does not happen within his investment horizon,
a reasonable assumption in financial problem settings.

We close with a discussion of assumptions and open questions in section 5.3.

2. Notation. The following notation is used throughout the paper. Unless stated other-
wise, we consider stochastic processes unique up to indistinguishability and require stochastic
integral equations on a probability space (Ω,F ,P) to hold P-a.s. We assume familiarity with
the notions of a martingale, supermartingale, and local martingale.5 A stochastic process
(Xt)t∈[0,∞) is uniformly integrable if

lim
n→∞

sup
t∈[0,∞)

E [|Xt|1{n < |Xt|}] = 0.(9)

For a probability space (Ω,F ,P) and random times σ, τ : Ω → [0,∞] we use the stochastic
interval notation

4For example, the CEV model or geometric Brownian motion.
5For an introduction, see, e.g., Chapter 1 in Protter (2010).
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[[σ, τ ]] = {(ω, t) ∈ Ω× [0,∞] : σ(ω) 6 t 6 τ(ω)},
[[σ, τ)) = {(ω, t) ∈ Ω× [0,∞] : σ(ω) 6 t < τ(ω)}.

(10)

For a stochastic process (Xt)t∈[0,∞) we denote its left-continuous version by (Xt−)t∈[0,∞), that
is, the process with the property that Xt− = lims↗tXs for all t ∈ [0,∞]. For a filtered
probability space (Ω,F , (Ft)t∈[0,∞),P) with a right-continuous filtration and an (Ft)t∈[0,∞)-
stopping time τ : Ω → [0,∞) we define the (itself right-continuous) filtration (Ft∧τ−)t∈[0,∞)

consisting of the σ-algebras Ft∧τ− given by

Ft∧τ− = σ ({A ∩ {s < τ} : 0 6 s 6 t, A ∈ Fs} ∪ F0) .(11)

3. Setting.

3.1. Definitions. Let b : [0,∞) → [0,∞) and σ : [0,∞) → [0,∞) be locally Lipschitz
continuous functions with σ−1(0) = {0}, let B0 ∈ (0,∞), (Ω,F , (Ft)t∈[0,∞),P) be a filtered
probability space with a right-continuous and P-complete filtration, let (Wt)t∈[0,∞) be a real
valued (Ft)t∈[0,∞)-Brownian motion, let B : [0,∞)×Ω→ (0,∞] be the unique strictly positive
process with the property that

1. for (Ft)t∈[0,∞)-stopping times (τn)n∈N : Ω→ [0,∞) given by
τn = inf{t > 0: Bt > n}, for all n ∈ N on [[0, τn]] we have∫ t

0

(
b(Bs)ds+ σ2(Bs)

)
ds <∞ and

Bt = B0 +

∫ t

0
b(Bs)ds+

∫ t

0
σ(Bs)dWs,

(12)

and
2. for the predictable (Ft)t∈[0,∞)-stopping time τ : Ω→ [0,∞] given by τ = supn∈N τn it

holds that B is (Ft∧τ−)t∈[0,∞) -adapted,
let h : [0,∞)→ [0,∞) be a locally Hölder continuous function with the property that6

b(x)

h(x)x
∈ [0, 1] for all x ∈ (0,∞) and

lim
x→∞

b(x)

h(x)x
exists,

(13)

let J : [0,∞]× Ω→ {0, 1} be an RCLL stochastic (“single jump”) process with the property
that for all t ∈ [0,∞) we have

P[Jt = 1|Ft∧τ−] = 1− e−
∫ t∧τ
0 h(Bs)ds,(14)

let τJ : Ω → R be the P-a.s. unique random time with the property that for all t ∈
[0,∞) it holds that P [Jt∧τ = 1] = P [τJ 6 t ∧ τ ], let (Gt)t∈[0,∞) be the filtration generated

6In the following, we employ the convention that 0/0 = 0 to allow for b(x) = h(x) = 0, for some x ∈ [0,∞),
while retaining notational convenience. The quantity b(x)/h(x)x is the relative jump size and thus not relevant
in cases where h(x) = 0. Let us also note here that assumption (A) below excludes the case b ≡ h ≡ 0.
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by (Ft∧τ−)t∈[0,∞) and J , and let S : [0,∞) × Ω → [0,∞) be the (Gt)t∈[0,∞)-adapted RCLL
process with the property that for all t ∈ [0,∞) we have

St = B0 +

∫ t

0
b(Ss)1{s < τJ}ds+

∫ t

0
σ(Ss)1{s < τJ}dWs −

∫ t

0

b(Ss−)

h(Ss−)
dJs.(15)

3.2. Assumptions. Moreover, we assume that
(A) for all n ∈ N ∩ [B0,∞) : P [τn <∞] = 1, and
(B) limx→∞ h(x)x2/σ2(x) exists and is finite.

3.3. Comments to the setting. Uniqueness of solutions of SDEs is understood as path-
wise uniqueness. The local Lipschitz assumption on b and σ ensures that the integral equation
(12) has a unique strong solution up to the random time τ ; see, e.g., Theorem 4.3 in Protter
(1977). The time τ is called the explosion time of B. Local Lipschitz conditions on b and
σ, b > 0 and σ(0) = 0 ensure strict positivity of B; see, e.g., Theorem 4.1 in Chapter 9 of
Friedman (1975). The σ-algebra (Ft∧τ−)t∈[0,∞) includes precisely the information of the tra-
jectories of B up to its explosion time τ . Uniqueness holds in law and pathwise; see, e.g.,
Chapter 1 in Cherny and Engelbert (2005).

The process J is a single jump process that jumps from 0 to 1 at time τJ ; for construction
(and thus existence) see section 6.5 in Bielecki and Rutkowski (2002). For a measurable
function h : [0,∞) → [0,∞) the process (h(Bt)1{t < τ})t∈[0,∞) can be understood as the
(Ft∧τ−)t∈[0,∞)-martingale intensity process of J (cf., e.g., Chapter 6 of Bielecki and Rutkowski
(2002)). The additional requirement of local Hölder continuity is used in the application of
the Feynman–Kac formula. We show below ((34) in the proof of Theorem 1) that strict
positivity of B and assumption (A) imply that P [τJ < τ ] = 1 and thus in particular that
J∞ = 1. Similarly, assumption (B) is needed in the proof and clearly restricts the choice of
σ and h, whereas (13) merely implies the natural condition that the relative jump size is in
[0, 1] and excludes the special case of periodic behavior at infinity (and is therefore not listed
as a distinct assumption in section 3.2).

Existence and uniqueness of the solution to (15) is guaranteed by the semimartingale
property of the integrator (cf. section 3 of Cheridito, Filipovic, and Yor (2005) for a discussion
of the semimartingale property of a stopped, time-inhomogeneous jump diffusion). Proposition
3.2 in Cheridito, Filipovic, and Yor (2005) (forX = S and T∆ = τJ) implies that (St)t∈[0,∞) is a
nonnegative local martingale and thus, by Fatou’s lemma, a nonnegative supermartingale with
the property that for all (Gt)t∈[0,∞)-stopping times ρ : Ω → [0,∞) it holds that E [Sρ] 6 S0.
Alternatively, one can

1. check that W is still a Brownian motion with respect to (Gt)t∈[0,∞) and
2. use the local martingale property of the compensated jump process

(Jt −
∫ t∧τ

0 h(Bs)ds)t∈[0,∞) (cf. section 6.5 of Bielecki and Rutkowski (2002)).

Then S can be expressed as integrals with respect to the local martingales J−
∫ ·∧τ

0 h(Bs)ds and
W and is itself a local martingale. The process S can be called a single jump local martingale
as it follows the diffusion B and has a single jump at τJ , thus obeying the equation

S = B1{· < τJ}+

(
1− b(BτJ )

h(BτJ )BτJ

)
BτJ1{τJ 6 ·} .(16)
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4. Main result.

Proposition 1. Assume the setting in section 3, P[τJ < τ ] = 1, and let f : [0,∞) → [0, 1]
be a measurable function. Then it holds that

E [(1− f(BτJ ))BτJ ] = E
[∫ τ

0
h(Bt) (1− f(Bt))Bte

−
∫ t
0 h(Bs)dsdt

]
.(17)

Proof. We observe that (τn)n∈N and τ are (Ft∧τ−)t∈[0,∞)-stopping times and thus τ an
(Ft∧τ−)t∈[0,∞)-predictable stopping time. Moreover, B has continuous trajectories on [[0, τ))
and is (Ft∧τ−)t∈[0,∞)-adapted. We can conclude that

(1− f(B))B 1{· < τ} : [0,∞)× Ω→ [0,∞)(18)

is an (Ft∧τ−)t∈[0,∞)-predictable process. Then the claim follows from

E [(1− f(BτJ ))BτJ 1{τJ < τ}] = E [(1− f(BτJ ))BτJ ](19)

and part (ii) of Corollary 6.3. in Jeanblanc and Rutkowski (2000). The proof of Proposition 1
is thus completed.

Lemma 1. Assume the setting and the assumptions in section 3, and let v : (0,∞)→ [0,∞)
be a twice differentiable function with the property that it satisfies the ordinary differential
equation

1

2
σ(x)2 ∂

2v

∂x2
(x) + b(x)

∂v

∂x
(x) = h(x)v(x), x ∈ (0,∞),(20)

with boundary condition limn→∞ v(n) =∞, n ∈ N. Then it holds that

lim
n→∞

n

v (n)
= 0⇐⇒

(
lim
x→∞

b(x)

h(x)x
< 1

)
and

(
lim
x→∞

h(x)x2

σ2(x)
> 0

)
.(21)

Proof. First we note that

b(x)x

σ2(x)
=

b(x)

h(x)x

h(x)x2

σ2(x)
.(22)

Using assumption (B) and the existence of limx→∞ b(x)/(h(x)x) ∈ [0, 1], there are constants
p0, q0 ∈ [0,∞) with the property that

lim
x→∞

∣∣∣∣ b(x)x

σ2(x)
− p0

∣∣∣∣ = 0, lim
x→∞

∣∣∣∣h(x)x2

σ2(x)
− q0

∣∣∣∣ = 0.(23)

Equation (22) implies that p0 6 q0 and

p0 < q0 ⇐⇒
(

lim
x→∞

b(x)

h(x)x
< 1

)
and

(
lim
x→∞

h(x)x2

σ2(x)
> 0

)
.(24)
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As elaborated in Chapter 9.12 of Birkhoff and Rota (1989), a substitution y = 1/x transforms
the solution of the ODE (20) to a solution w : (0,∞)→ [0,∞) of the ODE

∂2w

∂y2
(y) +

2

y
− 2

y2

b
(

1
y

)
σ2
(

1
y

)
 ∂w

∂y
(y)− 2

y4

h
(

1
y

)
σ2
(

1
y

)w(y) = 0, y ∈ (0,∞),(25)

with boundary condition

lim
n→∞

w

(
1

n

)
= lim

n→∞
v(n) =∞.(26)

The continuity theorem for solutions of ODEs (see Theorem 3 on p. 177 in Birkhoff and Rota
(1989)) and (23) ensures that the behavior of the solution w of (25) at 0 does not change if
we substitute the coefficient functions using p0 and q0 to arrive at the ODE

∂2w

∂y2
(y) +

(
2

y
− 2

y
p0

)
∂w

∂y
(y)− 2

y2
q0w(y) = 0, y ∈ (0,∞),(27)

which has a regular singular point at 0. To analyze the behavior of w around 0, we have to
look at the solutions r2 < r1 ∈ R of the indicial equation of the ODE (27), r(r − 1) + 2(1 −
p0)r − 2q0 = 0, with solutions

r2,1 = p0 −
1

2
± 1

2

√
4p2

0 − 4p0 + 8q0 + 1.(28)

Applying the corollary after Theorem 7 and Theorem 8 of Chapter 9 in Birkhoff and Rota
(1989), we get that in a small enough neighborhood of 0, the function w can be written as

w(y) = αw1(y) + βw2(y) with

w1(y) = yr1

(
1 +

∞∑
k=1

aky
k

)
and

w2(y) = yr2

(
1 +

∞∑
k=1

bky
k

)
+ Cw1(y) ln(y)1{r1 ∈ r2 + N}.

(29)

Now we look at two separate cases.
• For p0 = q0 = 0, (28) shows that r1 = 0, r2 = −1. Then (29) implies that limn→∞ n/w

(1/n) > 0.
• For q0 > 0, (28) shows that r1 > 0, r2 = −1 for p0 = q0 and r2 < −1 for p0 < q0. As
r1 > 0, using (26) and w1(0) = 0 we get that β > 0. Now (29) shows that limn→∞ n/w
(1/n) = 0 if and only if p0 < q0.

In both cases, we have that limn→∞ n/v(n) = limn→∞ n/w(1/n) = 0 if and only if p0 < q0.
Now we can conclude with referring to (24) above. The proof of Lemma 1 is thus
completed.
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Theorem 1. Assume the setting and the assumptions in section 3; then it holds that

E
[
BτJ −

b(BτJ )

h(BτJ )

]
= B0 ⇐⇒

(
lim
x→∞

b(x)

h(x)x
< 1

)
and

(
lim
x→∞

h(x)x2

σ2(x)
> 0

)
.(30)

Proof. Recall the (Ft)t∈[0,∞)-stopping times (τn)n∈N given by τn = inf{t > 0: Bt > n} for
n ∈ N and τ = limn→∞ τn. Let t ∈ [0,∞), fix n ∈ N ∩ [B0,∞), and let T = t ∧ τn. Then
integration by parts and Itô’s formula show that

BT e
−

∫ T
0 h(Bs)ds = B0 −

∫ T

0
Bsh(Bs)e

−
∫ s
0 h(Bu)duds

+

∫ T

0
e−

∫ s
0 h(Bu)dub(Bs)ds+

∫ T

0
e−

∫ s
0 h(Bu)duσ(Bs)dWs.

(31)

For fixed n, the integrand in the stochastic integral is bounded. Taking expectations, we get

E
[
BT e

−
∫ T
0 h(Bs)ds

]
= B0 − E

[∫ T

0

(
1− b(Bs)

h(Bs)Bs

)
h(Bs)Bse

−
∫ s
0 h(Bu)duds

]
.(32)

Using P [τn <∞] = 1, bounded convergence, and monotone convergence, respectively, we get
with t→∞ that

E
[
Bτne

−
∫ τn
0 h(Bs)ds

]
= B0 − E

[∫ τn

0

(
1− b(Bs)

h(Bs)Bs

)
h(Bs)Bse

−
∫ s
0 h(Bu)duds

]
.(33)

Equation (33), Bτn = n, and monotone convergence imply that

P [τJ < τ ] = 1− E
[
e−

∫ τ−
0 h(Bs)ds

]
= 1− E

[
e−

∫ τ
0 h(Bs)ds

]
= 1− lim

n→∞
E
[
e−

∫ τn
0 h(Bs)ds

]
> 1− lim

n→∞

B0

n
= 1.

(34)

In particular, (34) shows that the jump happens with probability 1 on [[0, τ)). Using again
monotone convergence and Proposition 1 we let n→∞ in (33) to arrive at

lim
n→∞

nE
[
e−

∫ τn
0 h(Bs)ds

]
= B0 − E

[(
1− b(BτJ )

h(BτJ )BτJ

)
BτJ

]
.(35)

Let vn : (0, n)→ [0, 1] be the function with the property that for x ∈ (0, n) it holds that

vn(x) = E
[
e−

∫ τn
0 h(Bs)ds

∣∣∣B0 = x
]
,(36)

and let Dn = (0, n) be an open domain with boundary δDn = {0}∪{n}. Note that the setting
in section 3 ensures that b, σ are continuous and h is Hölder continuous on [0, n]. Using the
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Feynman–Kac formula for a degenerate second order differential operator onDn and attainable
boundary n,7 we get that vn is twice differentiable, satisfies the ordinary differential equation

1

2
σ(x)2∂

2vn
∂x2

(x) + b(x)
∂vn
∂x

(x) = h(x)vn(x), x ∈ (0, n),(37)

and is uniquely determined by the boundary condition

vn(n) = E
[
e−

∫ τn
0 h(Bs)ds

∣∣∣B0 = n
]

= 1.(38)

For all n ∈ N, x ∈ (0, n), (33) implies that

vn(x) = E
[
e−

∫ τn
0 h(Bs)ds

∣∣∣B0 = x
]
6
x

n
(39)

and thus limn→∞ vn(x) = 0 for all x ∈ (0,∞), which is used in (44) below. Now, let v :
(0,∞)→ [0,∞) be the function given by

v(x) =
vn(x)

v2(1) · · · vn(n− 1)
for x ∈ (0, n].(40)

The boundary condition vn(n) = 1 implies the equality

vn+1(n)

v2(1) · · · vn(n− 1)vn+1(n)
=

vn(n)

v2(1) · · · vn(n− 1)
, n ∈ N,(41)

and thus, together with uniqueness of vn, we can conclude that v is well defined, independent
of n. Moreover, v is a twice differentiable function with the property that

v(n) > 0 and
v(x)

v(n)
= vn(x) for all n ∈ N, x ∈ (0, n].(42)

By definition, v satisfies the ordinary differential equation

1

2
σ(x)2 ∂

2v

∂x2
(x) + b(x)

∂v

∂x
(x) = h(x)v(x), x ∈ (0,∞),(43)

and, using (39) and (42) for arbitrary x, the boundary condition

lim
n→∞

v(n) = lim
n→∞

v(x)

vn(x)
=∞.(44)

Using (35), (36), and (42) we get that

B0 − E
[(

1− b(BτJ )

h(BτJ )BτJ

)
BτJ

]
= lim

n→∞
nE
[
e−

∫ τn
0 h(Bs)ds

]
= v(B0) lim

n→∞

n

v(n)
.

(45)

7See, e.g., Theorem 1.1 in Chapter 13 of Friedman (1976).
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Finally, Lemma 1 implies that

B0 − E
[(

1− b(BτJ )

h(BτJ )BτJ

)
BτJ

]
= 0(46)

if and only if limx→∞ b(x)/(h(x)x) < 1 and limx→∞ h(x)x2/σ2(x) > 0. The proof of Theorem 1
is thus completed.

Corollary 1. Assume the setting and the assumptions in section 3. Then the process S is
a uniformly integrable martingale if only if limx→∞ b(x)/(h(x)x) < 1 and limx→∞ h(x)x2/
σ2(x) > 0.

Proof. The single jump process S is a positive local martingale and, thus, by Doob’s
martingale convergence theorem, a supermartingale with

E [S∞] 6 B0.(47)

Thus S is a uniformly integrable martingale if and only if

E
[(

1− b(BτJ )

h(BτJ )BτJ

)
BτJ

]
= B0.

Theorem 1 completes the proof of Corollary 1.

The following corollary covers a special case that is very common in the literature; see,
e.g., the examples in sections 5.1.1 and 5.1.2 below.

Corollary 2. Assume the setting and the assumptions in section 3 and let limx→∞ b(x)x/
σ2(x) > 0. Then the process S is a uniformly integrable martingale if and only if

lim
x→∞

b(x)

h(x)x
< 1.(48)

Proof. From limx→∞ b(x)x/σ2(x) > 0 and for all x : b(x)/(h(x)x) ∈ [0, 1] we know that
limx→∞ h(x)x2/σ2(x) > 0. Then the claim follows from Corollary 1.

5. Applications and discussion.

5.1. Examples.

5.1.1. Geometric Brownian motion. First we discuss the situation where the underlying
process B is a geometric Brownian motion. In contrast to processes with deterministic jump
intensity given by (5) and the example in section 5.1.2 below, this allows us to construct a
process that is not a uniformly integrable martingale (and thus a mathematical bubble), while
the underlying diffusion is not explosive.

To see this, let σ0, c, ε ∈ (0,∞), µ0 ∈ [σ2
0/2,∞), and let b(x) = µ0x, σ(x) = σ0x and

h(x) =
(
µ0

(
1 +

c

ε

))
1{x 6 ε}+

(
µ0

(
1 +

c

x

))
1{ε < x}(49)
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for x ∈ (0,∞). Then the process B given by (12) is transient geometric Brownian motion with
explosion time τ ≡ ∞. Let us check the assumptions of section 3.2. From the discussion on
p. 197 in Karatzas and Shreve (1988) we know that P [τn <∞] = 1 for all n > B0. Moreover,
it holds that

h(x)x2

σ2(x)
=
µ0

σ2
0

(
1 +

c

x

)
, x ∈ (ε,∞) .(50)

Thus assumptions (A) and (B) are satisfied and Corollary 2 shows that the resulting single
jump process S is not a uniformly integrable martingale. S follows a geometric Brownian mo-
tion until the time of the jump that is distributed according to the hazard rate (h(Bt))t∈[0,∞).

Note that for µ0 < σ2
0/2 it holds that P [τn =∞] > 0 for n > B0 and assumption (A) is not

satisfied.

5.1.2. Andersen–Sornette model. In Sornette and Andersen (2002) and Andersen and
Sornette (2004) a model of bubbles has been introduced that is based on superexponential
diffusive growth and a crash represented by a single jump. The process satisfies the above
assumptions and can thus be shown to be a mathematical bubble for a suitable jump intensity,
highlighting a possible link between the two approaches of

1. bubbles driven by positive feedback mechanisms, superexponential growth, and a fail-
ure of market efficiency as in Sornette and Andersen (2002) and

2. mathematical bubbles as discussed in the introduction and section 5.2 below.
A similar link for processes based on deterministic jump intensity has been discussed in Herde-
gen and Herrmann (2019). To replicate the setting from Sornette and Andersen (2002),
assume the setting in section 3, let m ∈ (1,∞), µ0, σ0 ∈ (0,∞), let b : [0,∞) → [0,∞) and
σ : [0,∞)→ [0,∞) be given by b(x) = (mσ2

0/2)x2m−1 +µ0x
m and σ(x) = σ0x

m for x ∈ [0,∞),
and let Tc ∈ (0,∞). In Sornette and Andersen (2002) it has been shown that for α = 1

m−1
the process B of (12) is given by

Bt = αα
1

(µ0(Tc − t)− σ0Wt)
α for (ω, t) ∈ [[0, τ)),(51)

with explosion time τ : Ω→ [0,∞) given by τ(ω) := inf{t ∈ (0,∞) : µ0t+ σ0Wt(ω) = µ0Tc}.
As described in Sornette and Andersen (2002), the very form of µ and σ can be deduced from
the Stratonovich formulation of a nonlinear SDE

dBt = µ0B
m
t dt+ σ0B

m
t ◦ dWt,(52)

where ◦ denotes the Stratonovich integral.8 This has been introduced as a straightforward
extension of a nonlinear differential equation dx = xmdt for m > 1 as a means of describing
self-reinforcing behavior, leading to superexponential growth. From (51) we can deduce that
assumption (A) is fulfilled. Let κ : [0,∞) → [0, 1], the relative jump size, be any measurable
function such that

8Introduced in Stratonovich (1966).
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1. limx→∞ κ(x) = 1 and

2. h(x) = b(x)
xκ(x) is locally Hölder continuous and fulfils assumption (B).

Then Corollary 2 implies that S is not a uniformly integrable martingale. In Sornette and
Andersen (2002) it has been assumed that the relative jump size κ(·) ≡ κ ∈ (0, 1) is constant,
and Corollary 2 shows that in this case S is a uniformly integrable martingale.

5.1.3. Jump (to default) extended constant elasticity of variance model. Extending
diffusive models with jumps can enhance their ability to capture defaults, crashes, or market
anomalies. An example of this is the jump to default extended constant elasticity of variance
(CEV) model, introduced in Carr and Linetsky (2006). Let us discuss a similar jump extended
model and its classification as a mathematical bubble based on the results above. For this,
assume the setting in section 3, and let µ0 ∈ [0,∞), σ0 ∈ (0,∞), α, β ∈ R, b(x) = µ0x

α, and
σ(x) = σ0x

β. For α = 1 the process B (usually defined with absorption at 0) given by (12)
is the CEV model, introduced by Cox (1996) and Emmanuel and MacBeth (1982). In Carr
and Linetsky (2006) they allow for the parameter range β ∈ (−∞, 1) and α = 2β − 1 and
include a possible default (a jump to 0) to arrive at a local martingale in the form of (15),
which they called the jump to default extended CEV model. Due to the fixed relative jump
size of 1, the resulting process is a nonuniformly integrable martingale. Note that the latter
parameter range fails to be included in section 3.1, as the resulting diffusion coefficient is not
Lipschitz continuous at 0.

Instead consider the parameter range β ∈ (1,∞), α ∈ (1, 2β − 1]. Then Example 4.4 in
Mijatović and Urusov (2012) and its preceding remark show that the discounted process

Bte
−

∫ τ∧t
0

b(Bs)
Bs

ds, t ∈ [0,∞),(53)

is a strict local martingale and thus not a uniformly integrable martingale. Similar to Carr and
Linetsky (2006), instead of discounting with the drift µ0x

α−1, let us add a jump to the model
with h(x) = µ0

κ x
α−1 for some κ ∈ (0, 1). Then Corollary 1 shows that the local martingale S,

given by (16), is
1. not a uniformly integrable martingale for α ∈ (1, 2β − 1) and
2. a uniformly integrable martingale for α = 2β − 1 and µ0 > σ2

0/2.
Note that assumption (A) for the CEV model with α = 2β−1 > 1 is fulfilled if and only if

µ0 > σ2
0/2; see Theorem 5.1 in Cherny and Engelbert (2005). In particular, Corollary 1 does

not apply to the case µ0 = 0 and β = 2, in which the underlying diffusion (Bt)t∈[0,∞) is given
by the inverse Bessel process

Bt = B0 +

∫ t

0
B2
sdWs, t ∈ [0,∞),(54)

a classical example of a strict local martingale.

5.2. Comments on mathematical bubble models. Based on the seminal paper by
Loewenstein and Willard (2000), Cox and Hobson (2005), Heston, Loewenstein, and Willard
(2007), Jarrow, Protter, and Shimbo (2007), (2010), and Herdegen and Schweizer (2016) have
developed several attempts to describe financial bubbles through a deviation of a continuous
stock price from its fundamental value.
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To describe the essential idea of these approaches (see, e.g., Protter (2013) for a com-
prehensive introduction to mathematical bubble modeling), assume that some process S on
a probability space (Ω,F , (Ft)t∈[0,∞),P) describes a stock market (accompanied by the usual
bank account as numéraire) on some time interval [0, τ ], where τ : Ω→ [0,∞) is a P-a.s. finite
but possibly unbounded stopping time. Requiring the absence of arbitrage opportunities,9 we
know that in a complete market there exists a unique equivalent measure Q ≈ P such that S
is a local Q-martingale. Further assuming a complete market and the absence of dividends,
one can define the fundamental price of an asset at time 0 as the expected value of the final
payoff Sτ , that is, EQ [Sτ |F0]. Then it becomes clear that Corollary 1 above gives necessary
and sufficient conditions to classify single jump processes of the form (15) (with the choice
τ = τJ) as mathematical bubbles.

This reasoning is complicated by the fact that a market generated by single jump processes
is, in general, incomplete. Therefore, it is not immediately clear how to define the fundamental
value of an asset and there exist several competing approaches in the literature; see, e.g.,
Jarrow, Protter, and Shimbo (2010) and Herdegen and Schweizer (2016) or the discussion in
section 2.1 of Schatz and Sornette (2019). For a definite classification as either of the two
approaches it will be necessary to examine how the processes studied in this paper behave
under an equivalent change of measure.

Models of mathematical bubbles to date have mostly been considered on a finite time
horizon [0, T ] for some deterministic T ∈ (0,∞). While this is generally rationalized in many
financial problems by a finite time investment horizon of the agent, this immediately excludes
nonuniformly integrable martingales studied in Corollary 1. If we distinguish, however, in-
vestment horizon—constraining the trading activity of a market participant—and model hori-
zon—the lifetime of a financial asset—then nonuniformly integrable martingales are readily
conceivable as mathematical bubble models.

5.3. Discussion.

5.3.1. Relaxing assumptions on characteristics. Processes as defined by (15) in the set-
ting in section 3 are well defined for very general coefficient functions b, σ, h. The local
Lipschitz condition on b and σ can be significantly relaxed (see Theorem 4.53 in Engel-
bert and Schmidt (1991) or Proposition 2.2 in Cherny and Engelbert (2005)), yielding a
so-called weak solution B for (12). Moreover, the Hölder condition on h can be relaxed to
mere measurability; see, e.g., section 6.5 in Bielecki and Rutkowski (2002). The additional
assumptions we make are in order to apply the Feynman–Kac formula and analyze the ex-
pectation of (34) in Theorem 1. Very recently there has been an effort by Feehan, Gong, and
Song (2015) and Feehan and Pop (2015) to extend the stochastic representation of Dirichlet
boundary problems for a degenerate differential operator to more general10 diffusion processes.
Using these results, one may be able to extend the analysis in the present paper to such
processes.

9In the form of No free lunch with vanishing risk, developed by Delbaen and Schachermayer (1994), (1998a).
10They allowed for σ that is not Lipschitz continuous to cover, e.g., the Heston stochastic volatility model,

the SABR model, and the CEV model.
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5.3.2. Relaxing the assumptions in section 3.2. Assumption (B) in section 3.2 is neces-
sary to guarantee that the ordinary differential equation appearing in Lemma 1 has at most
regular singular points and can be analyzed using Frobenius series. There exist some results
on the (asymptotic) behavior around irregular singular points; see, e.g., sections 3.4 and 3.5 in
Bender and Orszag (1978) for a textbook treatment. However, there is no unified treatment
of such equations and an extension may be fruitful only for particular examples, if at all.

Assumption (A) in section 3.2 ensures that

P
[

lim
t→∞

Bt = 0
]

= 0(55)

for the process B given by (12). If we drop this assumption, we cannot conclude that the
jump happens with probability 1 on [0,∞) and additional terms appear in the probabilistic
representation of (37),11 thus leading to a nontrivial extension of the approach in this paper.

5.3.3. Analysis of the martingale property. Let us close with a revisit to the discussion in
the introduction. Assume we know that a process S is not a uniformly integrable martingale.
Then the obvious next question to ask is whether the process is a strict local martingale
or a martingale that is not uniformly integrable. To make this point clear, consider the
following simple example. Assume the setting in section (3), let σ0, µ0 ∈ (0,∞), and let
b(x) = µ0x, σ(x) = σ0x, and h(x) = µ0 for x ∈ (0,∞). Then the process B given by (12) is
a geometric Brownian motion and the process S follows B up to the jump, where it jumps
to 0 (we have a relative jump size b(x)/(h(x)x) ≡ 1). It is clear that S is not a uniformly
integrable martingale. However, as h is not state-dependent it holds that

E [St] = E [Bt1{t < τJ}] = E [Bt]E [1{t < τJ}] = B0,(56)

which implies that the supermartingale S is a true martingale. It is crucial to have this simple,
state-independent form of h to evaluate the expectation; in general one is confronted with a
parabolic problem (cf. Chapter 15 in (Friedman, 1976)) as opposed to the elliptic problem we
encountered in Theorem 1. Thus it is not immediately clear in general whether the process is
a true martingale.
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