

Exposure

- Estimating Exposure
- Aggregates
- PMLs
- Market Share
- Loss Models
- Deterministic Loss Modelling
- Net Loss Model
- RDSs
- Probabilistic Loss Modelling
- Loss Models
- EP Curves
- Exposure Management
- Logistics
- Pricing
- Post-disaster management
- Reporting

Aims

- To introduce you to some of the methodologies currently in use to assess exposure
- To explain what we measure today and what we report to Lloyd's
- To emphasise these are estimates based on models - this is not a black and white science!

Estimating Exposure to Loss

Estimating Exposure

- Aggregate Exposure
- Probable Maximum Loss (PML)
- Market Share
- Scenario Loss Model
- Probabilistic Models

Aggregate Exposure

- Aggregate Exposure is the exposed value at risk in the event of total devastation
- Typically, this is determined from Original Sums Insured and limits/lines applied
- Typically, it is coded by geographical area then summed
- Typically, this is wrong!

"Arithmetic" of Aggregates

Aggregate Exposure in each State

Windstorm Cat as-at 3rd July 2007

"Arithmetic" of Aggregates

Aggregate Exposure across States
 Windstorm Cat as-at 3rd July 2007

Probable Maximum Loss

- Probable Maximum Loss (PML) is the amount expected to result in loss
- This is meaningless without further clarification on type, location, and severity
- Typically, determined from Aggregate Exposure and a PML percentage, applied to each risk and area and then summed

"Arithmetic" of PMLs (1)

Single Risk

Primary (no Excess)

"Arithmetic" of PMLs (1)

Single Risk

"Arithmetic" of PMLs (2)

Single Risk (2)

Deductible $=\$ 5,000,000$
Limit $=\$ 5,000,000$

Risk PML = ?

"Arithmetic" of PMLs (2)

Single Risk (2)

"Arithmetic" of PMLs (3)

"Arithmetic" of PMLs (3)

"Arithmetic" of PMLs (4)

"Arithmetic" of PMLs (4)

Where did PML come from?

- PMLs originate from fire risks where fire breaks produce discontinuities in the probabilility - hence "PML" is taken as the loss at this discontinuity
- This can also apply to catastrophe risks for separate locations
- But doesn't generally apply nor does it apply to portfolios which are continuous
- So PMLs are generally a delusion OR
short-hand for damage at a "return period"

Loss Curve and PMLs

Market Share

- Takes a market share (usually premium) as a measure of the proportion of exposure assumed in an area by type of business
- The loss is then the market share \% multiplied by an insured market loss
- Typically, this works for homogeneous primary business or reinsurances thereof
- Typically, it doesn't work otherwise

Scenario Loss Model

- A Scenario Loss (a.k.a. Deterministic) model applies an actual or possible catastrophic event to the insured interests
- Typically, this applies damage by location and type of interest and construction type (e.g. residential homes built after 1980 at a given Zip Code) using damage factors
- Typically, the model then aggregates losses and applies risk limits and lines

Scenario Loss Model

Probabilistic Loss Model

- Invoke scenario loss models with a model of the chance of many catastrophes yields a Probabilistic Loss Model
- These are the main offerings of the specialist catastrophe loss modelling companies such as AIR, EQE, and RMS
- Typically, "black boxes" needing very accurate data
- Results are in the form of a loss curve

Return Period

- Here's what it is not ...
- The number of years which will elapse before Hurricane Andrew returns
- The number of years before something like Andrew's cyclonic intensity hits Florida
- Here's what it is:
- The average number of years that would elapse between losses greater than or equal to a specified insured loss level
- Its reciprocal is the annual probability of a loss greater than or equal to the specified insured loss.

Conclusions

All Methods are flawed

Method

- Aggregate Exposure
- PML methods
- Scenario Loss Models
- "Black Box" Models
- Market Share

I ssues

Unrealistic

Misleading

Too selective

Too dependent on assumptions

Assumes homogeneity

This is not an exact science!!

Deterministic Loss Modelling

Principles of loss estimates

Actual Loss

Loss to Syndicate
\$1,400,000

Simple Scenario Loss Model

Loss to Syndicate

Stochastic Scenario Loss Model

Net Loss Model

Realistic Disaster Scenarios

Lloyd's Realistic Disaster Scenarios

- "Aggregate"
- Loss
- Inwards reinstatements
- Outwards RI Recoveries
- Outwards reinstatements
- Analysis by reinsurer
- Analysis by class of business

Realistic Disaster Scenarios 2007

De Minimis Events

- Marine Event
- Loss of Major Complex
- Aviation Collision
- Major Risk Loss
- Satellite Risks
- Liability Risks
- Political Risks
- Alternative RDS: A
- Alternative RDS: B

Compulsory Events

- Two Events (ne+Carolina)
- Florida Wind (Two \$108bn ea)
- Cal Quake (SF \& LA \$69bn ea)
- New Madrid (\$42bn \& \$95bn)
- European Wind (\$30bn)
- Japanese Quake (\$50bn)
- Terrorism
- Gulf Wind (\$11bn \& \$95bn)
- Japanese Typhoon (\$14bn)

Florida Hurricane I

Florida Hurricane

SF Quake

New Madrid Quake

Japanese Quake

Terrorism - I

Terrorism - II

Gulf - Offshore

Gulf - Onshore

Japanese Wind

Probabilistic Loss Modelling

Probabilistic Loss Model

Catalogue of Events

Run

Stochastic
Loss Model for each event

Construct
Loss Curve

The EP Curve

Exceedance Probability (EP) Curve

EP Curve (Version 2)

Cat XYZ Locations A, B, C

Constructing the EP Curve

- RMS Method
- Event catalogue
- Each event has
- Use (reciprocal
- This give Occurrence E
- Use an algorithm to cc $/ 1 /$ L .
- AIR (and EQECAT) Method
- Simulate 10,000 years
- Sample events to apply in each year
- Rank order from largest to get frequency
- Choose Sum for AEP and Max for OEP

Credibility of Models

Credibility of Models

- Comparison of Models
- Sometimes similar sometimes not
- Secondary uncertainty
- Granularity of data
- Models of hazards can be very different
- Understated losses - eg. Isabel
- Incorrect assumptions - eg. Katrina
- Event Inadequacy
- Storm Surge damage
- New Orleans flood
- Demand Surge impact
- Understated values

Model Comparison - similar

- rms (street level data)
-—EQE PRIMARY (STREET-LEVEL DATA)
- AIR FULL SECONDARY UNCERTAINTY (STREET-LEVEL DATA)

- air mean damage ratio (street-level data)

Credibility Factors

- Data
- TSI accuracy
- Granularity
- Coding
- Model
- Adequacy
- Parameters
- Risk data (e.g. underlying protections, site-specific deductibles)

Model Comparison - differing!

Model Comparison - data sensitivity

FLORIDA COMPANY 2 (Windstorm only)
GROUND-UP LOSS COMPARISON BETWEEN GEOCODE LEVELS

Hurricane Isabel 18th Sept 2003 Cat 3

Hurricane Isabel

American Association of Wind Engineers:
"... the damage that resulted was not of a type that might have been expected for the average winds ..."
"... there was very little damage directly attributed to high wind velocities... The greatest sources of damage were from storm surge, wave action, flooding and tree failures ..."
"... The types of failures and damage that occurred in Isabel indicate that there is a whole new area of research that should be pursued by wind engineers."

Sources of non-modelled loss (wind)

- Loss Adjustment Expense
- Tree damage and removal
- Debris removal
- Demand Surge
- Satellite dishes
- Power outage
- Food spoilage
- Flooding

Analysing EP Curves

EP Curves on a Log Loss Scale

Stretched Exponential EP Curves

Stretched Exponential Loss Exceedance log scale

Example EP Curves - RMS

Example EP Curves - AIR

Exposure Management

Logistics

Exposure Management

Conceptual Data Model

RI Calculation

Workflow

Checklist

Area	Function	Typical System Used Today	Issues
Loading	Schedule Recording	Loss Model or Aggregate system	Need automated links to save re-keying
	Workflow Management	None	
Underwriting	Pricing Tools	Spreadsheet	Uses Loss model stats ...
	Modelling	Loss Model	
	Market Share	Spreadsheet	Hmmm
	Model Comparison (EP Curves)	Manual	No comparison system available
	Reviewing Exposures and Aggregates, incl GIS relative to Portfolio	Aggregate System	Should be provided by Loss Model system so aggregates can be compared to modelled losses
	RDS probes (incl GIS)	Manual or Aggregate System	Should be provided by Loss Model system
Reporting	Aggregates and Hotspots	Aggregate System	Why not Loss Model system?
	RI Calculation / Net Loss Model	Custom System	Critical for many companies. Need reinstatements calculated as well
	Deterministic (RDS)	Manual	Use Loss Model or Aggregates System for source gross losses
	Probabilistic EP Curves	Loss Model	Portfolio solutions have to created manually
	Urban Concentration	Loss Model or Aggregates System	
	Reinsurer Exposure	Manual	
Post-disaster Management	Real-time Loss Assessment	Manual	
	Estimate Development	Manual	

UW Pricing

Pricing

INPUTS

PROCESS

OUTPUTS

Pricing - Components

Factors governing price

- How much we know about the risk and similar
- Attachment point and limit
- Risk conditions (e.g. exclusions, reinstatements)
- Loss experience
- Can the risk be modelled?
- What data do we have on exposures?
and
- Commissions and expenses
- Average annual loss (pure technical price)
- Cost of capital
- Profit margin
and
- Risk loadings for uncertainties ...

Current Techniques

- Experience Stats Requires data, no volatility
- Rate on Line / Return Period Risky guess
- First Loss Curve / ILF Needs curves
- Combined ratio target No volatility
- "Mean plus third Standard Deviation" Guess
- Correlation Kreps Guess
- Value at Risk (VaR) No account of excess VaR

Post-disaster Loss Assessment

Hurricane Katrina

Katrina formed over the Bahamas on $24^{\text {th }}$ August

1st landfall, $25^{\text {th }}$ August, South Florida Category 1

It regained strength in the Gulf of Mexico, made its 2nd landfall on $29^{\text {th }}$ August in Louisiana as a Category 4 hurricane with winds of 140 mph . It's final landfall was made at the Louisiana/Mississippi border later that day as a Category 3 hurricane with winds of 125 mph . A 15 to 30 ft storm surge came ashore on virtually the entire coastline from Louisiana, Mississippi and Alabama to Florida. The 30 ft storm surge recorded at Biloxi, Mississippi is the highest ever observed in America.

Hard Rock Casino, Biloxi

Loss Assessment System

Stage 1
Pre/ Post Event Modelling

Stage 2
Post Event Risk Review/ Additional Modelling

Risk List

- Didn't rely solely on RMS model
- Took RMS model wind footprint
- Took the RMS recon storm surge footprint
- Took an RMS flood footprint for New Orleans
- Looked at each affected risk by underlying building location and potential cause of loss
- Met with claims and UWs to agree Optimistic, Pessimistic, Pick for reporting to Lloyd's

Katrina Wind Footprint (RMS model)

Katrina Storm Surge Footprint (RMS recon)

Katrina New Orleans Flooding (RMS study)

Katrina Loss Estimate Development

	RMS I ndustry	AI R I ndustry
Pre-Event Est (no flood)	\$10-25 bn ${ }^{(30 / 88)}$	\$12-26bn ${ }^{(29 / 08)}$
August Close (no flood)	\$20-35 bn ${ }^{(09 / 09)}$	\$18-25 bn ${ }^{(30 / 88)}$
Lloyd's Pick (inc flood)	\$40-60bn ${ }^{(13 / 09)}$	\$42-61 bn ${ }^{(27 / 09)}$
Sept Close	\$40-60bn ${ }^{(27 / 09)}$	\$42-61 bn ${ }^{(27 / 09)}$
Oct 9th	\$40-60bn ${ }^{(27 / 09)}$	\$42-61 bn ${ }^{(27 / 09)}$

Actual insurance industry loss (Swiss Re figure) \$66bn

RMS Event Estimates

Katrina was $24^{\text {th }}$ August

RMS Initial Event Postings (Posted on 31/08/05) for Second Landfall

```
Track 1 $ 5.7bn (5bn LA, 0.6bn MS, 20m AL)
Track 2 $ 8.5bn (5.6bn LA, 2.7bn MS, 150m AL)
Track 3 $ 7.7bn (3bn LA, 4.4bn MS, 340m AL)
```

RMS Current Event Postings (Posted on 27/ 09/ 05) for Second Landfall

```
Track 1 $10.2bn (9.2bn LA, 1bn MS)
Track 2 $ 9.2bn (8.5bn LA, 0.8bn MS)
```


Modelling Conclusions

- Pre-event estimates too low and RMS representative events are still too low
- Models excluded inland flood including that due to hurricanes (specifically breaches)
- Storm surge loss modelling too conservative and particular risks not coded or modelled
- Lack of diagnostic tools to spot aggregations
- Values understated on certain accounts
- Demand surge and related "loss amplification" effects greater than modelled

Data issue example - A floating casino

- RMS model wind reasonable
- Storm surge understated
- Location originally ignored surge

Ground-up loss estimates for Biloxi only unless otherwise stated	Schedule Values	RMS event 442255 10,000 yr EP original location		RMS event 442255 10,000 yr EP actual location	
		Wind	Surge	Wind	Surge
Buildings	$\$ 141 \mathrm{~m}$	$\$ 52 \mathrm{~m}$	$\$ 0$	$\$ 58 \mathrm{~m}$	$\$ 2 \mathrm{~m}$
Content	$\$ 26 \mathrm{~m}$	$\$ 12 \mathrm{~m}$	$\$ 0$	$\$ 13 \mathrm{~m}$	$\$ 1 \mathrm{~m}$
BI	$\$ 62 \mathrm{~m}$	$\$ 31 \mathrm{~m}$	$\$ 0$	$\$ 34 \mathrm{~m}$	$\$ 4 \mathrm{~m}$

Aggregates Revisited

UW Exposure Reporting

Progressions

Probabilistic

Deterministic Scenarios

Florida

1 Hurricane Andrew: A scenario based on an AIR Simulation of the 1992 storm, which hit Southern Florida.

100 yr. Florida Wind: AIR's tenth worst market loss in Florida in 1,000 years 250 yr. Florida Wind: AIR's fourth worst market loss in Florida in 1,000 years.
333 yr. Florida Wind: AIR's 333 yr. Florida Windstorm, market loss \$50bn.
25 yr. Florida Wind : Based on RMS's 25 year market loss for Florida.
50 yr. Florida Wind : Based on RMS's 50 year market loss for Florida
100 yr. Florida Wind : Based on RMS's 100 year market loss for Florida.
100 yr. Florida Wind : Based on RMS's RiskLink 4.3100 year Faraday loss for Florida
200 yr. Florida Wind : Based on RMS's 200 year market loss for Florida.
250 yr. Florida Wind : Based on RMS's 250 year market loss for Florida.
250 yr. Florida Wind : Based on RMS's RiskLink 4.3250 year Faraday loss for Florida.
12500 yr . Florida Wind : Based on RMS's 500 year market loss for Florida.
131000 yr. Florida Wind : Based on RMS's 1000 year market loss for Florida.

California

14 Northridge: A scenario based on an AIR simulation of the 1994 L.A. earthquake.
15100 yr. L.A. ‘Quake: AIR's tenth worst market loss in Southern California in 1,000 years. 250 yr. L.A. 'Quake: AIR's fourth worst market loss in Southern California in 1,000 years.

17 1,000 yr. L.A. 'Quake: M7.1 on Newport Inglewood fault, based on AIR 1,000 year L.A. earthquake, market loss $\$ 68 \mathrm{bn}$.
250 yr. San Francisco 'Quake: AIR's 250 yr. SF 'Quake, market loss $\$ 32.1$ Bn 500 yr. San Francisco 'Quake: AIR's 500 yr. SF 'Quake, market loss $\$ 39.7 \mathrm{Bn}$. Richter scale 8.0 San Francisco ‘Quake: AIR’s largest loss in 1,000 years in Northern California. 250 yr. California Quake : Based on RMS's RiskLink 4.3250 year Faraday loss for California. 500 yr. California Quake: Based on RMS's RiskLink 4.3500 year Faraday loss for California.

USA Miscellaneous

23 N.E. Windstorm: Based on AIR's worst simulated market loss to a NorthEast Windstorm in a 1,000 year period, affecting 11 states in the region

24 Richter scale 7.0 New Madrid 'Quake: Largest loss in a 1,000 year period according to AIR, affecting 8 states
251928 "H": Hypothetical hurricane event modelled by AIR, impacting both the Caribbean and Florida, considered a 1 in 200 year event for this region, with an estimated market loss of $\$ 27$ b

Miscellaneous

26 U.K. Flood: Based upon the U.K. Flood of 1953.
27 Japan Quake: Originally based on RMS Report, M7.5 Great Kanto Earthquake of 1923 but revised based on Underwriter's judgement.

Deterministic Reinsurer Analysis

Urban Concentrations

Hotspot Aggregates

Apgragatas For Quake/WInd At Country Lavel
 (H) $40 \% \mathrm{M}$

Aqgraqte by counter man of all paris $>\$=0 \mathrm{~m}$ Aagragta by country man of all parle m $\$ 100 \mathrm{~m}$ Agragita by country man of all parls $>$ \% $\$ 00 \mathrm{~m}$ Aggragta by country man of all paifs $\% \$ 000 \mathrm{~m}$

Lloyd's Terrorism RDS

Chicago - Sears Tower
Radius-0.5km, 2km, $5 \mathrm{~km}, 10 \mathrm{~km}$

New York - Emplre State Bullding

Radius-0.5km, 2km, 5km

250 passengers + 12 rew per aicraft 1,000 fatalities at target building Total loss of target bullding
25\% damaqe within 250m
10\% damaqe beween 250 m and 500 m

Conclusions

What's the Question? - I

- What-if?
- What would we lose in the event of a catastrophe of a given insured market loss (e.g. Florida hurricane of insured loss of \$16 bn)?
Market Share or Scenario Loss Model
- What would we lose in the event of a particular catastrophe (e.g. an earthquake of Richter magnitude 7.1 in the Los Angeles area)?

What's the Question? - II

- Are we a sound market?
- What information would satisfy rating companies such as Best's?

Scenario Loss Models for various cats and return periods?

- What information would satisfy the regulators of the market?

Scenario Loss Models for various cats and return periods?
AND NOW

EP Curves for Individual Capital Assessment (1 in 200 years)

What's the Question? - III

- What level of risk do we wish to bear?
- What's the chance of us losing a certain amount of money (e.g. $\$ 250 \mathrm{~m}$) or more on catastrophic risk in any one year?

Probabilistic (AEP)

- What amount of money could we expect to lose more than once in a certain number of years (e.g. 200)?
Probabilistic (EP)

